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98 DR. GLAISHER, ON CERTAIN SERIES

§2. Replacing z by 2z in these results, we have therefore

4 fo [ p &I e du dy

a vo

=16 f . f ) ¢ ¥R gempan g gy
=r‘(“;‘ 1)1,(;8:-1) {l+(a+1)2(13+ 1)w,
L @Dt 3)‘(!34, 1) (8+9)
r (?) r (B) {aﬁm+a(a+2)3,? (B+2) ,

2] \2
+a(a+2) (a+4)B(B+2)(B+4) °+&c.},

x
5!

+ &c.}

—_

1
2

in which « and 8 are >—1,and #>—1and <1.

§ 3. Putting u=rsinf, v=rcosb, we find
f m}f ¢y dudy
a L]

by ]"’ J’h” ¢ 1= ars (6in 9)= (cos B)F rdfdr

a+B+2\ [ (sinf)* (cosh)’ 20
2 ) . (L+=zsin26)i*

_ 1 (a+B+2) [ (sin}f)" (cos 10)° 20
4\ 2 /J, (+zsing)ice=

Similarly, putting s=7sin8, t=7 cos, we find
J : J e g g gy
a a
= [ [ b e gin ) (eon )P rd
0“0

where k=1 -}z,

1p(atB+2\ ¥ (sin )" (cos0)™

2l Il T T Lo

- Tk (a+8+2\ ™ (sin §6)*** (cos §6)
8\ 2 /), (1-As@"

1
=57(
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AND DEFINITE INTEGRALS. 99

In this last integral let # =am u: it thus becomes
1 a+B+42\ (snu(1—cnu)*(l+cnu)
gatith r ( 2 ) fo ( du u-)a‘+;3+i—' du:
wh;reéthe square of the modulus in the elliptic functions
=1}
§4. Tt has thus been shown that the value of the series
a+1) . (B+ (x+1)(B+1) ,
I‘(2 )l‘( 2 ){H' 71 e
RECERICES 3)4(;8+ D (8+3) m4+&c_}

(@) ot

2 \2
 SEEDCLODED 40 15
is represented vy the five definite integrals
4}(” f' IR e e, b L @
[ 0

o L]
=16 j f PR L N PRI (1)
0 0

_ o f2+B+2\ [*(sin}) (cosif)
=r = (L5 wem By ddb s wale. (iii)

o+ B+ 2\ [ (sin36)" (cos3B)¥H

. o | L=R sin'@)HFI

- a+B+2\ [*Fsnu(1=cnu)*(1+cnu)’
2+ r ( 2 ) f e (dnae)™# s

where, as before, « and 8 are each > — 1,  lies between — 1
and + 1, and &, the square of the modulus in the last integral,

=i~

=2r( @ ..on.n.. ()

§5. The formula obtained by equating (iii) and (iv) is
&e{lltaps deserving of being noticed separately. It may be
ritten

" sin Gsind0)” (ens16)°
o (1 = lsin’e )it e

----- d0 =

where 7 = 1 - }a,

2
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100 DR. GLAISHER, ON CERTAIN SERIES

The special case a=—3%, B=~ 1, § 6.
§6. Ifa=—4 and 8=—1, then

()
and r (;) r'(g):r' (— i)= 160 (3).

The series in § 4 therefore becomes
; U A
") {l +§-—4m +mw &t &c.}
] 7 7
-4 (3) {§z+%z’+ﬁ%)
and the integral (v) -
—2r (3) j du= 4K,

m’+&c.},

If % be the square of the modulus, then 2 =1—2k =%~ 1,
which is the quantity denoted by A in the paper in vol. xix.
Thus the above result is the same as the expansion of K

given on p. 147 of that volume.

The case a=t—3%, B=—¢-1%, §7,8.

§7. Leta=¢—}, 8=—17— %, then the series in §4

=v@+iora -4 fi-Tter CDEED 0 ko]

+%P(-&+é=‘)F(—i—%€){(e"-&)w

_@-DE-9 L EoDE-DE =) e

al 5!
and the integrals (iii), (iv) and (v) become

W At ~ 7
16 f f Yo (‘:) dsdt
—oqi [T (tani6)”

o (1—hsin®6)

K 1 —cenuy'
= ¥ pl
o _L (1 +cnu) dy

the modulus being as before = /(4 — 1).
In these formule ¢ must lic between — § and + 5.
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AND DEFINITE INTEGRALS. 101

§8. The two series which occur in the series in the
preceding section are the series 4, and B, of p. 72 of the
present volume. It follows therefore that the above three
integrals satisfy Legendre’s equation.

For example, taking the third integral, we sce that if

f’xfl— cmc\‘
jo 1 +cnia)

then w satisfies Legendre’s equation

e dw
(1-—x)d—;f—2x-—-+(s‘-7})w=0,

where A = &'~ &, k being the squared modulus of the elliptic
functions,

The case o = B, §§9-11.

§9. If 8=a, the series in § + becomes

- (a::-l) {1 +(a;-!])’wg+(a+ 1);$a+ 3)’x, . &c}

i L T e L

and the five integrals are

4 f d [ " o2 () di dy
1] ]

= 16[ f ¢ (apyen gy g

AT (ac +1) (7 (sinf)*
f (l + x sin 6)* ye 49

_T(a+1) (sin )" 76
==z | (-hsoo)™
r(a+1) [2E pER r a:+] et 7
LD e D e

It is supposed that a>~-1 and that z lies between — &
and + 1.
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AND DEFINITE INTEGRALS, 103

and the integrals become

([ [eem (g an
=16f f ¢TI s e gy 0

(tan -%9)’
o 1+ xsin 6
_ [T sinf (tan}6)”
~J, 1-hsin'd
= [ax sd (Eﬂ)" du,
0 1L 95
the squared modulus being = 4 — Ja.

The quantity a is resmc(ed to values intermediate to — 1
and + 1.

§13. The series in the preceding section admits of sum-
mation as follows:
It is known that the series

el Je-n@-),

=7 - &e,
is equal to E%%“)r)’
V-

and that the series

1-2 2_!1 ' +(a - 1,) (a. i 3')::'— &e.
18 equal to co‘:’((:t j"; x) :

Also
- w
FrG+3)TrG-40)= sin(% tia)m  cosgam’

o e L gaﬂ'
sothat T () T (-4a)= ¥ 81?11;&?1’

The scries in question therefore
m  cos (asin'z) a  s8in (asin™'z)
Scostar W(l—a')  smjamr N(L— &)
27 sina (3T —qm"a:) 2w sin(acos” :r:)
sinar ~ N(1—&')  swarw Y7 T
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104 DR. GLAISHER, ON CERTAIN SERIER

§14. We thus find that

of [ ()

_ [7 (tanif)
~J, 1+ asind
r sin @ (tan36)™

T—h g W (b=} —42)

[}

—rxsd l +¢nu du, (mod) =} - 1w
27 gin(a cos'x)
= Snar N(l-2)
where a and & must both lie between — 1 and + 1.

§15. As a particular case, putting a =0, wo have

fm ‘m —uf—p*-2puy = P, de
QJ. s B dudv-J FERETs )
(A" sinfdf _ (% cos 'z
~J = R N L V-4

1t is easy to verify that

J‘ﬁ"' dé By cos™ 'z
» 1+wsin9 V(l-a')’
4\{(11— ) =1+- a:+—— +ﬁ-5m+&c.

2.4.6
== f (1 + o sin’0 + 2* sin'0 + o° 5in°0 + &c.) 6,
o

and, by differentiating the known expansion of (sin™z)’",

sin"'z 2 4 2 4, 6 F
(z sin @ + 2° sin’0 + 2° sin’d + &e.) b,
go that 1
i L J’F {1 — x 8in 0 4 2* sin*8 — &* 5in°0 + &e.} d&
v(i-a o
J LA g
T 1+xsing”
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106 DR, GLAISHER, ON CERTAIN SERIES

The first equation is equivalent to the particular case n =2
of the known theorem

@ . a® " 12 n-1
] J J sz anerd Grtyman, ¢ v dudy...dt
(1] (] 0
LR
(p+n)
§17. Tt is evident that we may obtain more general

results by differentiating the above theorems with respect
to w. For example, n being any positive integer, we have

—u?—p?—2zur n "L D d =‘\{1_=: L!
f:j:e FTA ] woy TG ll+xj‘i+1’

- Kgn™ly ﬂ"_2.:1-.&...{2:!: -2) 1
giving , e 185 2n-1) B
where n is any positive integer greater than unity.

The corresponding formula when » is not restricted to
integral values is given in § 20 of the following paper.

. =nt{2m)ie

Formule derivable by repeated differentiation, §§ 18, 19.

§18. We may also introduce into the double integrals
two letters @ and & with respect to which, as well as to =,
the?f may be differentiated.

Thus from §§ 15, 16, and the case a =~ 4 of § 9, we find

a
3

@ o T e
—au?—by~2zuv att?
€ dudv=}% 7,

o v =N |ao — Z”)

* ™ —au—br—3zuv 1 __'\/_ﬂ' 1 i
LJ; ¢ uv'dudy = 8B wt i

i (-

=i —aw—de2—2zun
J’ j A w it dudo =
o Vo @

where K (%) denote the complete elliptic integral corresponding:-
to the squared modulus 4.

By differentiating these results m times with respect to a,
n times with respect to b, and r times with respect to x, we
obtain the values of the integrals in the case in which the
powers of u and v which occur are respectively

Ll g Ll Itr+l v!ﬁh‘ll

TR ) , U

wmir—y antr-g
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AND DEFINITE INTEGRALS. 107

In the first case the cxponents are any positive integral
numbers whose difference is even, in the second any positive
integral numbers whose difference is uneven, and in the third
28+ 1 d 2t+1

2 g 2
not <—} and differ by an even number. Zero is of course
to be counted as an even number in both cases.

any fractions of the forms , which are

§19. For example, taking the last of the three equations
and differentiating with respect to a, we find

—aut-by*—2xuv 3 -4 o 4\/‘!1' . _\/_'rr_ Ef_}f
ff:e u'v dadv—‘l———agbiﬁ 4a§bixdk’

and, differentiating with respect to x,
[ [° -awtvtaw 3 4, 5 _ N7 dK
1.1, ¢ uby dudv—4a%§ 7
when, putting a and 4 equal to unity,
ff I B A gy gy - VT (K- (2 =22 G) )
0s0
d

4 200
an
= —ut—pt-2xup 3 *(I d a \,“T g
(] urHU AU = — 7
f ) J’ s 8 hk

The differential equation for K derived from the double
definite integral, § 20.

§20. By introducing a and 4 into the definite integral in
the equation

fgjau-r-“-hfpdstfl = ‘%’E K(} - Lx),

we have :
[ e letete VL - @
fn f" e dsdt = 1aifi K (& - 2—“§6i) .

Tt is evident that the effect of differentiating the definite
integral twice with respect to @ is the same as differentiating
it once with respect to a, and once with respect to 4, and
wultiplying by 4; so that,

: 1 @

) we g (2~ p)
d’u d’u

4 =

then - 4 L

www.rcin.org.pl



108 DR. GLAISHER, ON CERTAIN DEFINITE INTEGRALS,

fu_ 1 &K
de’ g dR'?
du K xz dK

Now

“ @ WA
whence e @_K_'_'_ i
dadb ™ 1gatyt  aa®p! dh T 160t AR

Substituting in the differential relation, we thus find

d’K iz dK A 2" d’K
F=E-ap @tz o
o] &€ ’
Now  d-gap=h dtgmp=f
m'l
whence 1— = =4Ak,
ab
& ’
and a—i—z‘& =k - k,
80 that the result becomes
,d'K , e

which is the well-known differential equation satisfied by K.

Generalised form of the double integrals, § 21.

§21. If in place of the integrals in §3 we consider the
more general integrals in which the exponent is raised to.
the power n, we find that

j ¢ T e B d
0 (1]

- fm J‘*e_(‘i_'_gqms‘t’)" P e Y [
0J0

Ll N (a + 842\ (" (sin}6)" {cos 16)° 8
4n 2n /) o (L +asindpe#™
1 (a+B+2\ (" sinf (sin}6) (cos 16)°
i ¥ ( Zn ) f T (L - hsin*g)i=r o
1 /a+B+2\ [*€ snu(1l+cnu)®(l+cnu)f b

s T s (dnuj“”_"’;‘-
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DR. GLAISHER, DEVELOPMENTS IN POWERS OF - %%, 109

These last three expressions, in which all positive values of
are admissible differ from the corresponding formule in §§3

and 4 only by the factor ;ll , which occurs outside the whole

expression, and also in the argument of the Gamma function.

Thus, taking the first double integral, we see that its value
when the exponent u‘+v'+2zuv is raised to the power n
bears to its value when the exponent is raised to the power m
the ratio of

1F(a+8+2) » lr(a+3+2).

;a 2n m 2m

DEVELOPMENTS IN POWERS OF &*-#%
By J. W. L. Glaisker.

The general theorem, § 1.
§1. IN §§ 9 and 10 of the preceding paper it was shown

that
n+1
R R S RV I‘( 2 ) Ko
16 e §''dsdt = — | sd"udu
a ]

o .

TS 1Y, (A1) (n+57., }
3 r‘*( : ){I-l- Sl TS N e

n+3\ (1, (n+38)' , (n43)'(n+7) ,
-4r’( 1 ){é“ Tl e e

where A =% — %, & and %’ denoting 4" and %" respectively.
The letter m is not restricted to integral values: it may
have any value > — 1.

Differential relation between P, and P, § 2.
§ 2. By differentiating the first relation
! (n+ 1

f j ¢* ¢ 23\3"7"3”;9‘38&:_ — f sd" u du,
L Pzl o
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