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ON THE FLEX-LOCUS OF A SYSTEM OF PLANE
CURVES WHOSE EQUATION IS A RATIONAL
INTEGRAL FUNCTION OF THE COORDINATES
‘ AND ONE ARBITRARY PARAMETER.

By M. J. M. Hill, M.A., D.Sc., Professor of Mathematics at
University College, London.

Let F @y 9,0) = 0ueveacnsenneinsn i (T)

be the equation of the system of curves, rational and integral
with regard to.the coordinates «, y and the parameter c.
There is a point of inflexion on a curve of the system,
where d’y/dx* = 0.
Using square brackets to enclose the variable with regard
to. which partial differential coefficients of f (w, y, c) are taken,

[+ [ L A st (),

d dy\* d’
[, @] +2 [o,9] 7 + (3,9 () + ) T =0-..(11D),
or, substituting for dy /de from (II) in (III),

[z, 2] (T - 2 [, (=] 3] + [y, ) [ = = [ T IV
Hence if d"y[dx’ = 0, in general

[z, @] (4] - 2 [, y] [«] [y] + [, ] [=]' = 0...(V).
The left-hand side of (V) is the Hessian.
Consequently let (V) be written in the form

In (VI) H is a function of 2, v, c.
Let the roots of (I) considered as an equation for ¢ be
5 Ouy siny €
" Let the result of substituting any root ¢, for ¢ in H be
denoted by 7.

Let the result of eliminating ¢ between (I) and (VI) be
denoted by £ = 0.

Let the locus of the points of inflexion, or flex-locus, of the
curves (I) be #=0. Let the locus of their double points be
N=0. Let the locus of their cusps be C=0.

Then the object of this paper is to show that Z containg
the factors F, N°¢, C°.

www.rcin.org.pl



DR. HILL, ON THE FLEX-LOCUS OF A SYSTEM. 121

1. The differential coefficients of H as _far as the third order.

Let 0 denote partial differentiation when =, y are inde-
pendent variables, ¢ being expressed as a function of @, y by
means of (I).

~a; = [, 2, 2] [y] - 2 [%, @, 5] [2] [y] + [=, 9, y] [T’
+2 [2] {[= 2] [y, 5] — [= 9]}
o | [y -2[zy clle][y] +[y,9,¢][] |

or| + 2 [m] {[wa c] [1/7 y] o [.% c] [“‘1 .’/]}
- 2 [y] {[=, ¢] [= ] = [y, ¢] [, «]}
o

= [, 2, @, ] [y]' — 2 [, %, ®, y] [«] [y] + [», @, 9, y] [«]

+ 2 [2] {[®, @, &] [y, ¥] — 8 [%, 2, y] [, y] + 2 [, 3, y] [, 2]}
+2 [y] ([, 2, 2] [%, y] = [, #, y] [, 2]}
+2 [w, 2] {[x, 2] [y, ] - [, yT}
+2 @f [z, %, , c] [y]'—2[=,2,y,c] (] [y] + [m,g/, Y c] [m]’
ox | +2 [“’] {[2, 2, ¢] [y 9] — 2 [, 95¢] [, y]+ [, 9, 0] [, ]
+ [, 9, y] [, ¢] = [=, 2, y] [y, c]}
+2 [7/] {[y 2, @] [y, ¢] = [, 2, ¥] [=, c]}
+2 [, c] {[=, 2] [y, 9] - (2, y'}
+ (@0_ )’ (@@, ¢,¢] [y] — 2 (2,9, ¢,¢] [@] [y] + [, 9, , €] [T
ox/ |+2 (] [y, 9] [0, 0] - EXXX
+2[=,¢][y,y,¢] - 2[y,c] [, 3, c]}
+2 [y] [, ][y, ¢, ¢] - [, y][=, ¢, c]
-2 [z, ¢][=, ¥, c] +2[y, ¢] [, , c]}
+2 {[@, %] [y, c]' - 2 [, y] [, c] (5, c] + [1, ] [% eI}
d'e [ (@, @, c][y]'—2 [, y, c][][y] + ¥, 3, ][]’

P& | 202l Ay, y1- [ [z, 9]

-2 [y]{{x c] [, y] - [3, o] [, 2]}

8
In forming e it is necessary only to calculate the terms

which obv1ously do not vanish through containing a factor

(] or [y].
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122 DR, HILL, ON THE FLEX-LOCUS

The terms retained will then be ¢
6 [z, z] ([, , x] (v, y1-2 [, , y][=, y] + [, ¥, y] [z, =]}
+6% [, 2, 2] ([, €] [, 9] + [, ¢} [, 3]}
; 0z | — [, ] {8 [, c] [x, y] + [y, ¢] [z, =]}
+2[=, 9, 9] [, ] [, «]
+ [z, c] (2 [x,2] [y, y] - [, y1'}
+ [z2] {(%,2] (3,9, ¢] - 2 [x,9] [#, 9, c]}
+6 (a_c )’ [, :r] [y,¢]' =2 [z, 2,y][=,c] Ly, el Hz,y,9][=, CJ'T
- \ow/ | +2[x,¢] {[w,2,][5,9]-2[2,y,¢] [2,y]+[9,5, ] [, =]}
+2[w, ¢, c] {[2, %] [y, y] — [, y]'}
+6 (Q‘f )s [, 2,c][y, c]'-2[x,y,c][x,¢][y,c] + [y, ¢][z,c]’ :
0z/ | +[z,¢,¢] {{=0] [y, 9] - [9,¢] [= y]}
= [ ¢y ¢] {[=, ¢] [z, 2] = [y, ] [, 2]}

+6 22 [ay6] [0,2] 391 [, 7}

462 2% (1e,a] [y, F - 2 [z, §] [, ] [y, ] + [ 9] [, -

4

2. To prove that at a point on the node-locus
oH o'H

H—- 0, 'a; = O’ -55; ==

At a point £, 5 on the node-locus, the equations

[z]=0, [y]=0, [(]=0
hold; see a paper by the Author on the ¢c- and p- dis-
criminants of Ordinary Integrable Differential Equations of
the First Order (Proceedings of the London Mathematical
Society, Vol. X1X., p. 562).

Let the value of ¢ corresponding to the curve which has
the node at £, 7 be 1.
Then z = £, y = 5, c = y satisfy

[z]=0, [y]=0, [c]=0.
Hence, they also make

0.

H=0,
oH_
’a;— H
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OF A SYSTEM OF PLANE CURVES. 123

a‘a,'g =2[2, «]{[z, =] [y, y]- [+, 9]}

42 [4,6] (12,21 (3, 9] ~ [,

28 (21l o - 259 B 1 s ]+ 9] s
But z=§, y =n, c=1 also make '

(=, 2] [=, 9] [=, ]
[y, 2] (9, 9] (s c]
[e) #] [ey 7] [y €]
see paper cited above, p. 563.

. Therefore

[z, 2] [y, ] = 2 [%, 9] [=, ¢] [, c]+ [y, y][=, ]
=[e, c] {[z, #] [, ¥] = [=, 3T},

=0;

therefore
%g =2 {[z,2] [y, y] - [=,3T} {[m, ]+2 [@,¢] g—i +[e, ] (g_i )} ,
de

oz
[+ 1% =0,

which is indeterminate since [z] =0, [¢] = 0.
Hence, differentiating

[z,z]+2 [w,c]g-i+[é,c] (g—:) + [c]g—:,=0.
But [C] o O’
theretore [z, z] + 2 [=, ] %ﬁ_’t +{e:0) @i )' =0,

therefore éﬁ =0.

o'

Now to determine + , there is the equation

3. To shew that at a point on the cusp-locus
oH oH_  o°H

H——'—O’ a;:o’ F—O, —a—d,'a=0'
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124 DR. HILL, ON THE FLEX-LOCUS

At a point on the cusp-locus (see paper cited above, pages

563, 564),
[z, ]: [, y]: [, c]
=[y,2]:[y,y]:[y,c]
= [01 x] :{e, 5] : [e, c]y
wherein =t y=nc—ul
Put in the above [¢,z] =¢ [¢,¢c],
[e;yl=p [oc],
therefore {2, 2]=0" [¢, 0],
[""’ yl=ap|e, c]'
[y, y1=p" [¢,c]-
As the cusp is a node, it is only necessary in this case to
prove = 0.
On making the above substitutions in the value of —~— e

d’c dc o'
the coefficients of =— 3 and 8 a 5 both vanish.

The terms remaining in —&T / [c, c]’ are

60’ {p’ [‘”’ z,x] —2pa (2, 2, y]+ 0" [,y y]}
s oc l: 4p’c [z, z, z] — 8pa’ [z, 2, y] + 40° [2, y, ¥
0z | +2p°0" [, 2, ¢] - 4pa’ [a, , c]+2¢*[y,y,c]]

+ (@ﬁ) [ 2p* [, z, z] — 4po [z, 2, y] + 20" [%%3/]
0z % 4/3’0' ["‘3 zy c] -~ SPU’ [.z', Y, c] + 40" [.”/r Y c] {

% (g%)s |:6p’ [#,2,¢] =12p0 2,3, c] + 60" [y, y, "]:l
mo(or2)[ | Plassd-tolnssl+olana)
aw ac {P [z, @y ¢] = 2p0 [2, 9, c]+7a [y, c]} i

But the equation to determine %(; is in this case

[z, 2] +2 [z, c] g—:: +[eyc] (g_::_)': 0,
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OF A SYSTEM OF PLANE CURVES. 125

and this becomes

s oc geyt
g + 20 8—.—” + (a—x> —0.
Hence a—H=O at points on the cusp-locus.

ox’
4. To show that if 7'=0 be the flex-locus, Z must contain
F as a factor.
: E=AHH,.. H,

where 4 is the rationalising factor.
If 2=, y=mn be a point on the flex-locus, then when
x = £, y =1 the equations

S (z,9,¢)=0,
H=0
are satisfied by a common value of c.
Hence one of the quantities H,, H,, ..., H vanishes.
therefore ; E=0.

Hence Z contains F as a factor.

5. To show that if N=0 be the node-locus,  contains N*

as a factor. 5
H oH
T Panh O T

At a point £ 5 on the node-locus, the values of z, y, ¢

satisfy
S(2,9,¢)=0,
[«] =0,

(y] 1m0,
[e] =0.

Hence (I) treated as an equation for ¢ has equal roots-
Suppose that when z=§, y =17 the roots c,, ¢, become equal,
then writing % for brevity in the form

E=BHH,

and forming all the partial differential coefficients of E with
regard to 2 up to the 5th order, every term in the result must
contain H, or H, or a first or second differential coefficient of
H or H,. Hence all these differential coefficients vanish.

Hence Z must contain N°® as a factor.

At a point on the node-locus, =0
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126 DR. HILL, ON THE FLEX<LOCUS

6. To show that if C'=0 be the cusp-locus, £ must contain
C? as a facter.
If z=E, y=n be a point on the cusp-locus the same equa=

tions hold as in the case of the node-locus, but in addition
3

=~ vanishes.
a 3

Consequently if all the differential coefficients of E with
regard to z up to the 7th order be formed, every term in the
result must contain H, or H, or a first or second or third
differential coefficient of H or H,. Hence all these differs
ential coefficients of must vamsh Hence Z must coutaxn
C® as a factor.

7. Putting together the results of the last three articles it
follows that the result of eliminating ¢ between

Sz, 9,¢)=0,
(2, z][y]' -2 [=, y][+] [y] + [, y] [s]' =0

contains the factors

and

F N°, C°
8. The preceding results agree with Pliicker’s Formula

3n(n—2)=17+ 60+ 8.

. For every point of intersection of the curve and its Hessian,
there is a factor in the eliminant.
As the Hessian cuts the curve once at a point of inflexion,
6 times at a double point, and 8 times at a cusp, the factors
of the eliminant might be expected to be the tlex-locus once,
the node-locus 6 times, and the cusp-locus 8 times.

Egample 1.
Take the curves
y—c—a'=0,
Therefore [z] =— 32",
[y]=1,
[#, 2] = - 6z,
[x, .7/] =0,
[y, y]=0.
Therefore  [«]' [y, y] -2 [#][y][=, y] + [y]' [z, ] =0
becomes x=0,
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OF A SYSTEM OF PLANE CURVES. 127

Hence the result of eliminating ¢ between
y—c—a’=0,
and z =0,
is x=0.

Hence 2 =0 is the flex-locus, and z occurs to the first power
in the eliminant.

Ezample I1.
(6= = (y =) =0.
Therefore [#]=38(x—¢),
[y]=-1,
[, 2] =6 (z - c),
[+, ]=0,
(v, y]=0.
Henco [y [, ] - 2[e] [y] [, y1 + [+]' 3 y] =0
becomes 6 (w=c)=0.
Eliminating ¢ from
(2= o = (=) =0,
and : z—c=0,

the result is 2 — y = 0.
This is the flex-locus, and occurs only once.

Example 111,
(y-ef—a(z-a)(z-0)=0,
i.e. (y—c) =2+ 2" (@+8) —2ab=0 ..ccuvue.e. (),

Therefore [2]=- 32"+ 2z (a + b) - ab,
[.7/:] = 2 -(y % c)7

[#,a]==-6x+2(at+0),

[x, y] =

[:9]= 2;
Therefore [y [z, ] - 2 [] [y] [, 5]+ [+7 [3, 41 =0
becomes
4(y-c)'{=6a+2(at+d)}+2 {~ 32"+2x(a+d)—ab}'=0...(II),
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128 DR: HILL, ON THE FLEX-LOCUS

Now the result of eliminating ¢ from (I) and (II) is
[82 (z —a) (2 —b) (a +b - 8z) +2 {— 32"+ 22 (a +b) — ab}*]'=0,
t.e [4z(2—a) (x—b) (a+b— 8x) + {32°— 22 (a +b) +ab}"]'=0,
i.e. {82 = 4 (a + b) 2° + 6aba® —a’b’}" = 0.

Now this is the flex-locus, for

y-c=[e(@—a) (== BT,

fi;.’_/ =%3x"—2x (a+b) + ab
dz [z(®—a)(@=0b)]"?

dz’

alar B e (e B § (B2 - Releab) dal)
d*y=%{[6m 2(a+B)] o (e-ae- B4 }

z(z—a)(@—0)
=4x(x—a)(.z‘—-b) (82— a—0b)— (82" =2z (a+b) + ab)"
Az (z-a) (x-B)]F

Hence ‘Z_’%—_-o, when
dx

4z (- a) (@ —b) (a4 b — 8z) + (32" — 22 (a + b) + ab}’=0.

The reason why this factor occurs twice is this :—

The curve being symmetrical with regard to the axis of @,
if z = £, y =7 is a point of inflexion, so sz =§, y = — 7.

Now the system of curves is formed by shifting the curve

y'=z(x-a)(e-0)

parallel to the axis of y.

Hence, if z=&, y =7 be one point of inflexion on the
curve, then the straight line 2 = £ 1s a part of the flex-locus.
But it is the locus not of one point of inflexion only, but of
two, for as the curve y*==z (v = a) (z — b) is moved parallel
to the axis of y, two of its points of inflexion describe the
line z = £. ¥

Ezample IV.
Take the curves (y — ¢)' — 2 (¢ — a)' = 0.
The results may be deduced from the last example by

putting b = a.
Hence the locus to be considered is now

(82" —8aa® + 6a’" — a*)* = 0,

i.e. (—a)’ Bz +a)=0.
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OF A SYSTEM OF PLANE CURVES. 129

In this z = a is the double point locus, hence # — @ occurs
6 times as a factor.

Again 3z +a=0 is the locus of the two points of
inflexion; every point on this locus contains two points of
inflexion. Consequently 3z + a occurs twice as a factor.

That 82 + a =0 is the flex-locus is seen at once, since

y—c=af — azt,
%‘Z = ot — jaz},
%:}(3x+a)x*.

Hence id'i/, =0 when 3z + a=0.
daz

Ezample V.
(y —e¢)=2a"
This is obtained by putting @ = 0 in the last result.
The locus to be considered becomes now
2° = 0.
Now z = 0 is the cusp-locus.
Hence it occurs 8 times.

Ezxample VI
(e-c)f-y+c"'=0,
[#] =3 (z - o)},
(y]=-1

[% @]=6(z - o),

[z, ]=0,

(9, 9] =0, |
therefore [«]'[y, y] - 2 [2, y][=] [y] + [y]' [+, =] =0
becomes z—c=0.

Eliminating ¢ from
e—c=0,
“and (2=c)—y+c" =0,
the result is 2 —y=0.

Now & — y =0 is the flex-locus.
Hence it occurs only once as a factor.
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