107.

NOTE ON THE THEORY OF A POINT IN PARTITIONS.

[Edinburgh British Association Report (1871), pp. 23-25.]

In writing down all the solutions in positive integers of the indefinite Equation of Weight, x + 2y + 3z + ... = n, or, in other words, in exhibiting all the partitions of n any integer greater than zero, it may sometimes be useful to be provided with an easy test to secure ourselves against the omission of any of them. Such a test is furnished by the following theorem:—

$$\Sigma (1 - x + xy - xyz \dots) = 0;$$

thus, for example, if x + 2y + 3z + 4t + ... = 4, the solutions are five in number, namely

(1)
$$y = 2$$
,

(2)
$$t = 1$$
,

(3)
$$x=1, z=1,$$

(4)
$$x = 2, y = 1,$$

$$(5)$$
 $x=4$,

the values of the omitted variables in each solution being zero. The five corresponding values of 1 - x + xy... are

$$1, 1, 0, 1, -3,$$

whose sum is zero.

The theorem may be proved immediately by expressing the denumerant (which is zero) of the simultaneous equations

$$\begin{cases} x + 2y + 3z + \dots = n, \\ x + y + z + \dots = 0, \end{cases}$$

in terms of simple denumerants according to the author's general method, or by virtue of the known theorem,

$$(1-t) (1-t^2) (1-t^3) \dots$$

$$= 1 - \frac{t}{(1-t)} + \frac{t^3}{(1-t)(1-t^2)} - \frac{t^6}{(1-t)(1-t^2)(1-t^3)} + \frac{t^{10}}{(1-t)(1-t^2)(1-t^3)(1-t^4)} + \dots$$

This gives at once the equation

$$\frac{1}{(1-t)(1-t^2)(1-t^3)\dots} - \frac{t}{(1-t)^2(1-t^2)(1-t^3)\dots} + \frac{t^3}{(1-t)^2(1-t^2)^2(1-t^3)\dots} + \dots = 1.$$

Hence the coefficient of t^n in the above written series for all values of n other than zero is zero. But it will easily be seen that the coefficient of t^n in the first term is $\Sigma 1$, in the second term Σx , in the third Σxy , &c.; so that

$$\Sigma \left(1 - x + xy \dots \right) = 0,$$

as was to be shown. Thus we have obtained for the problem of indefinite partition a new algebraical unsymmetrical test supplementing the well-known pair of transcendental symmetrical tests expressible by the equations

$$\Sigma \frac{\Pi (x+y+z...)}{\Pi x \Pi y \Pi z...} = 2^{n-1},$$

$$\Sigma (-)^{x+y+z...} \frac{\Pi (x+y+z...)}{\Pi x \Pi y \Pi z...} = 0 *.$$

The identity employed in the text is only a particular case of Euler's identity,

$$(1+tz)(1+t^2z)(1+t^3z)\dots = 1 + \frac{tz}{(1-t)} + \frac{t^3z^2}{(1-t)(1-t^3)} + \dots,$$

which is tantamount to affirming that the number of partitions of n into r distinct integers is the same as the number of partitions of n into any

* Subject of course to the condition that n is greater than 1. If $x, y, z, ..., \omega$ represents any solution in positive integers of the equation

$$x+2y+3z+\ldots+r\omega=r$$
,

it is easy to see that

$$\Sigma \left(-\right)^{x+y+\ldots+} \frac{\Pi \left(x+y+\ldots+\omega\right)}{\Pi x \Pi y \ldots \Pi \omega} = 1, -1, \text{ or } 0,$$

according as n, in regard to the modulus r+1, is congruent to 0, 1, or neither to 0 nor 1, for the left-hand side of the equation is obviously the coefficient of x^n in the development of

$$\frac{1}{1+x+x^2...+x^r}$$
, that is $\frac{1-x}{1-x^{r+1}}$.

On making $r=\infty$, this theorem becomes the one in the text. It obviously affords a remarkable pair of independent arithmetical quantitative criteria for determining whether or not one number is divisible by another.

integers none greater than r, in which all the integers from 1 to r appear once at least. It has not, I believe, been noticed that these two systems of partitions are conjugate to each other, each partition of the one system having a correspondent to it in the other. The mode of passing from any partition to its correspondent is by converting each of its integers into a horizontal line of units, laying these horizontal lines vertically under each other, and then summing the columns. Thus, for example, 3, 4, 5 will be first expanded horizontally into

1 1 1, 1 1 1 1, 1 1 1 1 1,

and then summed vertically into

107

3 3 3 2 1.

This is the method employed by Mr Ferrers to show that the number of partitions of n into r, or a less number of parts, is the same as the number of partitions of n into parts none greater than r, and is, in fact, only a generalization of the method of intuitive proof of the fact that

 $m \times n = n \times m$,

the difference merely being that we here deal with a parallelogram separated into two conterminous parts by an irregularly stepped boundary—one filled with units, the other left blank, instead of dealing with one entirely filled up with units.