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39.

ON THE DIAMETRAL PLANES OF A SURFACE OF THE SECOND
ORDER.

[From the Cambridge and Dublin Mathematical Journal, vol. 1. (1846), pp. 274—278.]

LEr U=A2+ By*+ 022+ 2Fyz + 2Gzz+ 2Hry =0, be the equation of a surface of
the second order referred to its centre, and let az+a'y+a’2=0 be the equation of
one of its diametral planes; then, as usual

(4—uw)a+ Hd + Ga’ =0,
Hoa+ (B—u)d + Fa! =i,
Ga+ Fo' + (C — u)a’=0,

which are equivalent to two independent equations, and consequently capable of deter-

mining the ratios @ : @ : a”, provided that u satisfy the cubic equation that is obtained
by eliminating o, &, &’ from the three equations.

We have from the second and third, from the third and first, and from the first
and second equations respectively,

a:ad: a”—:a/ : ?ﬁ/ : QE/=;E/ : aB, : §I=QE/ . i;/ : @/:

where, if
A =BC —F*
B=0C4 -,
C=A4B - H?,
F=GH—-AF,
¢ = HF — BG,
H=FG —-CH,

a, 8, C, ¥, &, 1, are what these become when A4, B, C' are changed into
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A—u, B—u, C—u, so that
A =a—-(B+C)u+t+w,
B,=PB—(C+A)u+u
C=C—-(4A+B)u+u

d},=i}‘+Fﬂ,
@, = 0 + Gu,
B, =1+ Hu

Hence the equation az + a'y + a”z=0 may be written in the three forms
Re+Wy+G,z=0,
Be+B,y+ §f, 2=0,
Gao+fy+&€:2=0
or, what comes to the same thing, as follows,
Rz + Wy + &z +u(Adz+ Hy + Gz) + vz =0,
Bz +By + ffz +u (He+ By + Fz) + vy =0,
Gz + ffy +z+u(Ge +Fy + 02) + vz2=0,
in which for shortness v has been written instead of
w—(4+B+0)u
The elimination of u, v from these equations gives a result ® =0, where ® is a
homogeneous function of the third order in z, y, z; and this equation, it is evident,

must belong to the three diametral planes jointly, i.e. ® must be the product of three
linear factors, each of which equated to zero would correspond to a diametral plane

Thus the system of diametral planes is given by
O=| Az +WVy+ &z, Az+ Hy+Gz, « |=0,
Bz +By + ff2, Hz+By+Fz, y
Gao + ffy + €z, Go+Fy+0z, z
or developing the determinant, as follows,
0= (19 — HG) & + (Hff — FI) y°* + (F&G - Gff)
+{ G(@-B)-& (C-B) — HF - FQ} 3=
+{ HA-C)-|A4-0) - (FG&G - Gf)
+{ F@B-2) - (B-4) - (18- HEG)]
+(~H(E-1B)+79 (C - B)+ (F& - Gff)} yz
+(-F@A-O)+F (4-0) + (61§ — HG)] 2z
+~G@B-R)+C (B-4) + (HF —FiR)} =y
+(C1 — BA + AT — (A + BA — AB) ayz;

a8
ay’
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or reducing

0= (F(G*-H)—-GH(C-B)a®
{GH—F*)—HF (A -O)} »®
{H(F*—-@)—-FG(B-A)} 7
{G(A-B)(B-C)+FH(A+B-20)+ G (F*+ G* — 2H*)} y2*
{H (B-— C’(C’ A)+GF (B+C0—24) + H (G*+ H* — 21*)} 2a®
{F(C—A)(A-B)+GH (C+ A —2B) + F (H*+ F* — 26°)} oy

J

J
{H(B-0)(C- A)+FG(O+A 2B) + H(H + F* - 27} y*2
(F(C—A)(A-B)+GH(A+B—-20)+ F (F*+ G* - 2H*)} 7
{((A—-B) (B—C)+ HF (B+(C—-24)+ Q@ (G*+ H*—2F*)} a*y
g |

(A—B) (B—C) (C— A)+(B—0) F* + (C — A) G+ (A — B) H*} ayz.

+
+
+
+
+
+
+
+

In the case of curves of the second order, the result is much more simple; we have

@=| Adz+ Hy, z |=0,
Hz+By, y
Le. ®=H @y —a*)+ (4 —B)zy=0,

for the equation of the two diameters.

The above formule may be applied to the question of finding the diametral planes
of the cone circumscribed about a given surface of the second order, (or of the lines
bisecting the angles made by two tangents of a curve of the second order). Considering
the latter question first: if

+% 1=0

be the equation of the curve, and «, B the coordinates of the point of intersection of
the two tangents, the equation of the pair of tangents is

(o §mr) (o) (-

or making the point of intersection the origin,

(D) (E+5)- (544 -o
Le. (Bz — ay)® — (b** + a*y?) =0

whence A =p8*—b%, B=a*—a?, H=—0af, and the equation to the lines bisecting the
angles formed by the tangents is

aB (2 — ') — {@— B2 — (a* — ")} @y =0,
which is the same for all confocal ellipses; whence the known theorem,

“If there be two confocal ellipses, and tangents be drawn to the second from any
point P of the first, the tangent and normal of the first conic at the point P, bisect

the angles formed by the two tangents in question.”
C. 33
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In the case of surfaces, the equation of the circumscribing cone referred to it

vertex as origin, is

whence

(

a!

T 2)( B 72—1) (m+€§'+"z> 0;

b2 ¢ b2

A = B + b — b,
B = y*a? + ac* — a’c?,
C =a’? + Sa*— b*a?,

=—a’By,
= bﬂfya )
H=—c%f.
Hence, omitting the factor b + c*a?B® + a*b*y* — a’b*c?, we have
ﬁ =q2 — az,
B=-0
C=q*—¢,
F =8y
i =nya,

8 =aB;

and the equation of the system of diametral planes becomes

@By (¢ = 1) a* + Bhya (@ — o) g + v (' — @?) 2

®=0=

+

e

+ va
- aB
o ol e
- ya
+{(@*~

—a? (c”
a2 (1,2 it bz 202) Sy Bz (az 62) o 'Y az) A (az cz) (be e ,/2)} .Z‘y”
@ (E—-b)—B(a—c*) — (b + ¢* — 2a%) — (a* — ¢*) (¢ — b)) %z

— V) + B (8 1.0 = 20) - o ) HlBRn 0 et B gt
bz) A Bz (az = 02) + 72 (62 £ — 2b2) i (62 = bz) (az e cz‘)} zat

— (¢4 0" = 2) + B (@) (B — @) = (B = @) (@~ @) 2

e (¢t -
B) (5 — o) (¢ — @) +

) = B (@ + b — 20°) +42 (b= a?) — (¢ - ) (0"~ @)} %y

(o + ) (B — &) — (B + ) (¢ — a2) (' + 4989 (@ = B9 +
a? (b* —¢?) (2a% — b — &%) + B (c* — a?) (2b* — 2 — @) + 2 (a* = 1) (2¢* — @® — b)) aryz;

and since this is a function of a®— % b2 —¢? and ¢! — @’ the equation is the same
for all confocal ellipsoids; whence the known theorem, “The axes of the circumseribing
cone having its vertex in a given point P, are tangents to the curves of intersection
of the three surfaces, confocal with the given surface, which pass through the point P.”
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