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40.
ON THE THEORY OF INVOLUTION IN GEOMETRY.
[From the Cambridge and Dublin Mathematical Journal, vol. 11. (1847), pp. 52—61.]

WHEN three conics have the same points of intersection, any transversal intersects
the system in six points, which are said to be in involution. It appears natural to
apply the term to the conics themselves; and then it is easy to generalize the notion of
involution so as to apply it to functions of any number of variables. Thus, if U, V...
be homogeneous functions of the same order of any number of variables z, ¥ ..., a
function @, which is a linear function of U, V ..., is said to be in involution with
these functions. More generally ® may be said to be in involution with any system of
factors of these functions: or if U, V ... be given functions of #, y, z..., homogeneous
of the degrees m, m ..., and w, v, ... arbitrary homogeneous functions of the degrees
r—m, r—mn ...; then, if ® =uU+vV +..., ® is a function of the degree », which is
in involution with U, V.... The question which immediately arises, is to find the
degree of generality of ©, or the number of arbitrary constants which it contains.
And this is a question which, from the variety and interest of its geometrical 'inter-
pretations, has very frequently been treated of by geometers, though mnever, I
believe, in quite so general a form, (the number » has almost always had particular
values given to it, except in a short paper of my own, on the particular case of two
curves, in the Jouwrnal, vol. 11 p. 211 [5])! There is also an analytical application of

1 The first suggestion of the problem is contained in a memoir of Euler’s—* Sur une contradiction apparente
dans la doctrine des lignes courbes,” Mém. de Berlin, t. 1v. [1748] p. 219. It is noticed also in Cramer’s
Introduction @ Vanalyse des lignes courbes [1750]. The following memoirs also have been published on the subject:
Pliicker, ¢ Recherches sur les courbes algébriques de tous les degrés,” Gerg. Ann. t. xix. [1828—29] p. 97;
“Recherches sur les surfaces algébriques de tous les degrés,” p. 129; (a great number of memoirs on particular
applications of the theory are contained in Gergonne;) Jacobi, ‘“De relationibus quee locum habere debent inter
puncta intersectionis duarum curvarum vel trium superficierum dati ordinis, simul cum enodatione paradoxi
algebraici,” Crelle, t. xv. [1836]; Pliicker, ‘ Théordmes généraux concernant les équations d'un degré quelconque
entre un nombre quelconque d’inconnues,” Crelle, t. xvi. [1837], (but this last must be read with caution, as
several of the theorems are incorrect, or at least stated without the proper limitations); and the Einleitende
Betrachtungen, in Pliicker’s ¢ Theorie der algebraischen Curven” [1839]. The following memoirs of Hesse, con-
taining developments relative to the case of three surfaces of the second order, may likewise be mentioned,
“De curvis et superficiebus secundi gradus,” Crelle, t. xx. [1840] p. 285; and * Ueber die lineare Construction
des achten Schnitt-punctes dreier Oberflichen zweiter Ordnung, wenn sieben Schnitt-puncte derselben gegeben
sind,” Crelle, t. xxv1. [1843] p. 147.
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260 ON THE THEORY OF INVOLUTION IN GEOMETRY. [40

the theory, of considerable interest, to the problem of elimination between any number
of equations containing the same number of variables. Suppose, for instance, two equa-
tions, U=0, V=0, when U, V are homogeneous functions of #, y of the degrees m,
respactively. To eliminate the variables it is sufficient to multiply the first equation by
a7 o 2y..., y" %, and the second by a™.., y™, and from the equations so obtained
to eliminate linearly the (m+m) quantities a™+n3, gm+n—2y  ¢™-1 But in the case
of a greater number of equations it is mot at first obvious how many new equations
should be obtained; and when a number apparently sufficiently great have been found,
it may happen that the equations so obtained are not independent, and that the elimi-
nation cannot be performed. But in showing the connexion that exists between these
different equations, the theory of involution explains in what manner a system is to be
formed, which includes all the really independent equations, and gives the means of
detecting the extraneous factors which appear in the result of the linear elimination of
the different terms; but I do not see at present any mode of obtaining the final result
at once in its reduced form free from any extraneous factors.

Let X, Y, ... be given homogeneous functions of the same degree of any number of

variables, and suppose
®@=aX +8Y+...,
a, B... being constants, and the number of terms in the series being ¢g; © contains
therefore g arbitrary constants. If however, by giving to a« /B ... particular values
&, B ..., or as, B, ..., and representing by ®,, ®,... the corresponding values of ®, we
have -identically
®,=0, 0,=0,... (b equations);

then the constants in ® group themselves together into a smaller number g—7% of

arbitrary constants. This supposes, however, that the last mentioned equations are linearly
independent ; if there are a certain number k of equations

®1=0, ®2=0...,

(where ®,, ®@,, ... are linear functions of ®,, ©,...) which are identically satisfied, inde-
pendently of the h equations, then the equations in question are equivalent to h—Fk
equations, and the function ® contains g—(h—k) or g—h+k, arbitrary constants.
Similarly if the functions @ are not independent; so that the number of arbitrary
constants really contained in © is always

N=g—h+k-&ec ..

Consider now the case of a function ®, homogeneous of the »* degree in the variables
z, ¥...{(0+1) in number}. Let U, V... be functions of the degrees m, n ..., and suppose

O=ulU+ovV+..
where «, v ... are arbitrary functions of the degrees r—m, r—mn, ... {r is supposed
throughout greater than m, n ...}. Suppose for shortness that the number of terms i

8
+ 6] 18

the complete function of @ variables, and of the order p, ie. the quotient [BW, g
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40] ON THE THEORY OF INVOLUTION IN GEOMETRY. 261

represented by [p, 6]; then the function ® contains apparently a number

([r=m, 8] +[r—n,0]+...)
of arbitrary constants.

But since we should have identically ® = 0 by assuming u=LV,v=- LU, w=0, &c....
(L the general function of the order r—m—n), or u=MW, v=0, w=—MU (M the
general function of the order r—m —p) &ec., the number N must be diminished by

[r—m—mn, Ol+[r—m—p, O]+[r—n—p, O]+...;

but the equations just obtained are themselves not linearly independent, and in conse-
quence of this the number of arbitrary constants has to be increased by

[r—m—-—n—p, 0]+ ...;
and so on. Hence finally the whole number of arbitrary constants in the function @ is
N=[r—m, Ol+[r—mn, 0)+[r—p, 0]+...
—[r—m-—n, 0]—[r—-m—p, 8]—[r—n—p, 6]—...
+[r—m—-n—p, 0]+ ... + & &c. ........ A (A).

This however supposes that all the numbers r —m, r—n..., » —m —n..., are positive :
whenever this is not the case for any one of them, the corresponding term is obviously
to be omitted. With this convention the equation (A) gives always the correct number
of arbitrary constants in ®: it will be convenient to represent it in the abbreviated
form

N={r:mmn,p,..:60].

An expression analogous to this, for the particular case of r=m, but incorrect on
account of the omission of all the terms after the second line, has been given by
M. Pliicker (Crelle, tom. XVI. p. 55), and even some of his particular formule are incorrect.
But proceeding to examine some particular cases: if r>m+n+p+...—8—1, then in
the expression (A) either no terms are to be omitted, or else the terms to be omitted
reduce themselves to zero, so that N is given by this formula continued to its last
term. It will be subsequently shown that in this case

fr:mmnp..:60=[r,0—mnp...;

or in the case of two or three variables, we have the theorem, “If a curve or surface
~of the order r be determined to pass through the mn points of intersection of two
curves of the orders m and n, or the mnp points of intersection of three surfaces of the
orders m, m, p; then if r>m+n—3, or r>m+n+p—4, the curve or surface contains
precisely the same number of arbitrary constants as if the mn or mnp points were
perfectly arbitrary.”

This is natural enough; the peculiarity is in the case where r 3 m+n—3, or
">m+n+p—4 For instance, for two curves, »  m +n — 3, we have

re:mn:2=[r—m, 2]+ [r—n, 2]=[r, 2]—mn+[r—m—n, 2],
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262 ON THE THEORY OF INVOLUTION IN GEOMETRY. [40

or the new curve contains 4 [m + n —r—1]* more arbitrary constants than it would
do if the mn points, through which it was made to pass, had been perfectly arbitrary;
a result given before in the Journal, [5].

In the case of surfaces, if » $ m+n+p—4. Then assuming r>m+n—4, m+p—4
or n+p—4, we have
{r:m, n, p:3}=[r—m, 3]+[r—n, 3]+[r—p, 3]
—[r=m—n, 8]—[r—m—p, 3]-[r—n—p, 3]
=[r, 3] —mnp—[r—m—n—p, 3];
or the surface contains } [m+n+p—r—1]° more arbitrary constants than it would do if
the mnp points, through which it was made to pass, had been perfectly arbitrary.

Similarly, in the case where r is not greater than one or more of the quantities
m+n—4, m+p—4, n+p—4 Thus in particular, if » be not greater than the least of

these quantities
fr:m,n p:3l=[r, 3]—mnp+[r—n—p, 3]+[r—m—p, 3]
+[r—m—-n, 3]=[r—-m—n-p, 3];

or the surface contains

bmtntp—r—1F=4ntp—r—1F=jm+p-r—1F—Im+n—r-1p
more arbitrary constants than it would otherwise have done. Again, for a surface of the
r® order, subjected to pass through the curve of intersection of two surfaces of the
orders m, n,

{rim, n, 3}=[r—m, 8]+[r—n, 3]—[r—m—mn, 3];

in which the last term, or } [m+n—»r—17, is to be omitted when r>m+n—4.

The function of the #* order, which is satisfied by the systems of values which
satisfy the equations of the orders m, nm... contains, we have seen, [r, m, n, p...0]
arbitrary constants; hence it may be determined so as to pass through this number,
diminished by unity, of arbitrary points. But the equation being determined in general
by the condition of being satisfied by [r, ]—1 systems of variables, it will be com-
pletely determined if, in addition to the above number of arbitrary systems, we suppose
it to be satisfied by a number N=[r, 8]—{r; m, n, p...: 6] of systems satisfying the
equations above. Hence the theorem

“The equation of the +" order which is satisfied by a number
N=[r, ]—{r; m, n, p...: 0]

of systems satisfying the equations of the orders m, n, p...is satisfied by any systems
whatever which satisfy these equations.”

In particular—“The surface of the 7™ order which passes through a number
[r, O] ={r:m, n: 0}
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of points in the curve of intersection of two surfaces of the orders m, m,—or through
[r, 0]={r:m, n, p: 6} of the mnp points of intersection of three surfaces of the orders

m, n, p,—passes through the curve of intersection, or through the mnp points of inter-
section.”

Thus a surface of the second order which passes through eight points of the curve
of intersection of two surfaces of the second order passes through this curve; and any
surface of the second order which passes through seven of the points of intersection
of three surfaces of the second order passes through the eighth point. (The first
theorem obviously fails if the eight points have the relation in question, ie. if they
are the eight points of intersection of three surfaces of the second order.)

Again—“The curve of the 7" order which passes through [r, 8]—{r:m, n:6} of
the points of intersection of two curves of the orders mn, passes through the remaining
points of intersection.” e.g. “Any curve of the third order which passes through eight
of the points of intersection of two curves of the third order, passes also through
the ninth point.”

Consider next the following question, which [as regards particular cases] has been
treated of by Jacobi in the memoir already quoted (Crelle, tom. xv.). “To find the
number of relations which must exist between K (6-+1) variables, forming K systems,
each of which satisfies simultaneously equations of the orders m, m, p... respectively ;
the number ¢ of these equations being anything less than #; or ¢ being equal to 6,
provided at the same time K=mnp ....”

Suppose m < n, n < p... and write

[m, 6]—{m:m, n, p..:6}=N,
[n, 0]—{n :n, p ........: O} =N,
&e.

Imagine the equations of the orders m, »... given. Any function of the m™ order
which is satisfied by N of the systems of values which satisfy the given equations,
and any particular equation of the m™ order, is satisfied by the remaining K — N
systems of values. Hence assuming N systems, satisfying the equations of the orders
%, p ... but otherwise arbitrary, the remaining systems must satisfy these equations,
and a completely determinate equation of the m™ order; ie. there must be ¢ rela-
tions between the variables of each system, and consequently ¢ (K — N) relations in
all. Similarly, if the equations of the orders p ... were given, N’ systems of variables
might be assumed satisfying these equations, but otherwise arbitrary; the remaining
N— N’ systems satisfy (¢ —1) determinate equations, or the number of relations
between the variables is (¢ —1) (N —N’)...; continuing in the same manner the total
number of relations between the variables is

K -—N)+(p—1)(N-N)+(p—2)(N'=N")+ ...
in which however any term (¢—1)(N—N') or (¢—2) (N—N’)... &, which becomes
negative, must be omitted. It is obvious that we may write more simply
N =[m, 6]—1—{m; n, p...0},
N=[n 6]-1—{n;p...0}, &c
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In particular, to find the relations which must exist between the coordinates of mn
points in order that they may be the points of intersection of two curves of the
orders m, n respectively: here K=mn, N=13%[m+ 2] —4[m—n+2P =1 (2mn — n®+ 3n),
N =% (n*+3n+2), so that N—N'=m (m —n)—1 which becomes negative when m=n;
hence in general the required number of conditions is mn —3n+1, but when m=n,
the number in question becomes (n—1) (n—2). :

Passing to the case of surfaces; to determine the number of relations which must
exist between the coordinates of mnp points, in order that they may be the points
of intersection of surfaces of the orders m, n, p respectively. The number required is

3 (mnp— N) +2 (N — N)+ (N = N"),

where
N=[m, 3]-1—[m—mn, 3]—[m—p, 8]+[m—n—p, 3]
(this last term to be omitted when m<n+p—3),
N =[n, 3]—1—[n—p, 3],
N'=[p, 3]-1.

If, for instance, m >n+p—3, so as to retain the term [m—n—p, 3], and n>p,
so as to retain the term N’ — N”, the number becomes, after all reductions,

2mmp +np* —4np —2p* = (p—1) (p—2) (p - 3),

a formula given by Jacobi. If, however, n=p, this number must be augmented by
unity. Again, for m <n+p—3, the required number is

2mnp +np? —4np -2 -3 (p—-1) (p—2)(p—-3)
—tm+p—m—1) (n+p—m—2)(n+p—m—23),

which however must be augmented by unity if m=n or n=p, and by 3 if m=n=p.
But without entering into further details about this part of the subject, which has been
sufficiently illustrated by the examples that have been given, I pass on to notice the
application of the above theory to the problem of elimination. Imagine (6 + 1) equations
between the (6+ 1) variables, the first sides of these being, as before, rational and
integral homogeneous functions of the variables of the orders m, n, p... respectively.
Writing m+n+p ... —@=r, and multiplying the first equation by all the terms of the
form z*yf... of the degree r—m, the second equation by all the terms of the same form,
of the degree r—mn, and so on, there result a certain number of equations, containing
all the terms z*yf... of the degree r. But these equations are not independent; and
the reasoning in the former part of the present paper shows that the number of inde-
pendent equations is given by the symbol {r:m, n, p...: 6}; the number of terms a%P...
1s evidently [r, 6]; and it will be shown immediately that for the actual value of 7,

{r W= om) o p Gl V0SS R, R L IR (B);

so that the number of quantities to be linearly eliminated is precisely equal to the
number of equations, or the elimination is always possible. I may mention also that,

www.rcin.org.pl



40] ON THE THEORY OF INVOLUTION IN GEOMETRY. 265

supposing the coefficients of all the equations to be of the order unity, the order of the
result, free from extraneous factors, may be shown to be

[r—m, O]+...—2{[r—m—n, 0]+...} +3{[r—-m—n—p, 0]+...] —&ec.
=R EmP. .. P F & i (©),

(the equality -of which will be presently proved) a result which agrees with that deduced
from the theory of symmetrical functions; but I am not in possession of any mode of
directly obtaining the final result in this its most simplified form. My method, which

it is not necessary to explain here more particularly, leads me to the formation of a set
of functions

¢ in number, such that Z divides Y, this quotient divides X, and so on until we have
a certain quotient which divides P, and this quotient equated to zero is the result of
the elimination freed from extraneous factors. It only remains to demonstrate the
formulee (A), (B), and (C). Suppose in general that (k) denotes the sum of all the
terms of the form mPn?..., which can be formed with a given combination of % letters
out of the ¢ letters m, m, p...; and let 3 (k) denote the sum of all the series (k)
obtained by taking all the possible different combinations of % letters. It is evident
that 3 (k) is a multiple of (¢), {(¢) denoting of course the sum of all the terms
ml..., m, n... being any letters whatever out of the series m, n, p...}. Let g be the
number of exponents @, b, ..., then (¢) contains [¢p]/ terms, also (k) contains [k} terms,
and the number of terms such as (k) in the sum 2 (k) is [¢]** + [¢ — k]*—* Hence
evidently

2= 2225 @)

or, what comes to the same thing,

2¢-0=C20 )

Let A be an indeterminate coefficient, ¢ a summatory sign referring to different
systems of exponents; then

Sod ¢-b-s 2l a),

or, giving to & the values 1, 2 ... ¢, multiplying each equation by an arbitrary coeffi-
cient, and adding, putting also for shortness ¢4 (¢ —k) = Uy, we have

Uyt ag3Upt o= (4 oy Bl ) 4 @),

whence in particular,
Up— 33Uy + ... = a {04794 ($)},
U —22Ugs + ... =0 {(p —g) W74 ($)},
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which are still equations of considerable generality. If now ¢ =6 and U, is a function
of m+mn+p+...of the order 6, the quantity o {094 ()] reduces itself to the single
term of U, which contains the product mnp.... Hence, if

Up=[a+m+n+p ..., 0]

in which afterwards a=»-m—n—p—... we have the formula (A). Again, if ¢ =60+1,
and Uy, is a function of m+n+p... of the order 6, the sum o {07 A (¢)} vanishes;
whence writing Upiy=[m+n+p...—0, 0], we have the formula (B). Similarly, if in the
second formula ¢ =6+ 1, and Uy, is a function of m+n+p ... of the degree 6, then

o {(0+1-9)0%74 (6+1)],
reduces itself to the term which contains mn...+np...+mp ...+ &c.; whence, if
Upn=[m+n+p+..-0, 0],

we have the formula (C).
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