44.

ON A MULTIPLE INTEGRAL CONNECTED WITH THE THEORY OF ATTRACTIONS.

[From the Cambridge and Dublin Mathematical Journal, vol. II. (1847), pp. 219-223.]

Mr Boole [in the Memoir "On a Certain Multiple definite Integral" Irish Acad. Trans. vol. xxi. (1848), pp. $40-150$] has given for the integral with n variables

$$
\begin{equation*}
V=\int \frac{\phi\left(\frac{x^{2}}{f^{2}}+\frac{y^{2}}{g^{2}}+\ldots\right) d x d y \ldots}{\left[(a-x)^{2}+(b-y)^{2} \ldots+u^{2}\right]^{\frac{13}{n+q}}} \tag{1}
\end{equation*}
$$

limits

$$
\frac{x^{2}}{f^{2}}+\frac{y^{2}}{g^{2}}+\ldots<1,
$$

the following formula, or one which may readily be reduced to that form ${ }^{1}$,

$$
\begin{equation*}
V=\frac{f g \ldots \pi^{\frac{1}{2} n}}{\Gamma\left(\frac{1}{2} n+q\right)} \int_{\eta}^{\infty} \frac{S s^{-q-1} d s}{\sqrt{\left\{\left(s+f^{2}\right)\left(s+g^{2}\right) \ldots\right\}}} \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
S=\frac{(1-\sigma)^{-q}}{\Gamma(-q)} \int_{0}^{1} t^{-q-1} \phi\{\sigma+t(1-\sigma)\} d t \tag{3}
\end{equation*}
$$

in which

$$
\begin{equation*}
\sigma=\frac{a^{2}}{f^{2}+s}+\frac{b^{2}}{g^{2}+s} \ldots+\frac{u^{2}}{s} \tag{4}
\end{equation*}
$$

and η is determined by

$$
1=\frac{a^{2}}{f^{2}+\eta}+\frac{b^{2}}{g^{2}+\eta} \ldots+\frac{u^{2}}{\eta}
$$

[^0]Suppose $f=g=\ldots=\infty$; also assume

$$
\begin{equation*}
\phi(\lambda)=\frac{1}{\left(f^{2} \lambda+v^{2}\right)^{\frac{1}{n}+q^{\prime}}} \tag{5}
\end{equation*}
$$

then the integral becomes

$$
\begin{equation*}
U=\int \frac{d x d y \ldots}{\left(x^{2}+y^{2} \ldots+v^{2}\right)^{\frac{2}{n+\alpha}}\left\{(x-a)^{2}+\left(y-b^{2}\right) \ldots+u^{2}\right\}^{\frac{1}{2} n+q}} \tag{6}
\end{equation*}
$$

the limits for each variable being $-\infty, \infty$.
Now, writing $f^{2} s$ for s and $f^{2} \eta$ for η, the new value of η reduces itself to zero, and

$$
U=\frac{f^{-2 q} \pi^{\frac{1}{2} n}}{\Gamma\left(\frac{1}{2} n+q\right)} \int_{0}^{\infty} \frac{S d s}{(1+s)^{\frac{3}{n}}}
$$

Also $\sigma=0$; but

$$
f^{2} \sigma=\frac{r^{2}}{1+s}+\frac{u^{2}}{s}
$$

where $r^{2}=a^{2}+b^{2}+\ldots$ whence also putting $\frac{t}{f^{2}}$ for $t, \phi\{\sigma+t(1-\sigma)\}$ becomes

$$
\frac{1}{\left\{f^{2} \sigma+t(1-\sigma)+v^{2}\right\}^{\frac{3 n}{} n+q^{\prime}}}
$$

i.e.

$$
\frac{1}{(t+A)^{\frac{1}{2} n+q^{\prime}}}
$$

if for a moment

$$
A=\frac{r^{2}}{1+s}+\frac{u^{2}}{s}+v^{2}
$$

Hence

$$
\begin{aligned}
S & =\frac{f^{2 q}}{\Gamma(-q)} \int_{0}^{\infty} \frac{t^{-q-1} d t}{(t+A)^{\frac{1}{2} n+q^{\prime}}} \\
& =\frac{\Gamma\left(\frac{1}{2} n+q+q^{\prime}\right)}{\Gamma\left(\frac{1}{2} n+q^{\prime}\right)} \frac{f^{2 q}}{A^{\frac{1}{2} n+q+q^{\prime}}}
\end{aligned}
$$

or substituting in U, and replacing A by its value,

$$
U=\frac{\pi^{\frac{1}{2} n} \Gamma\left(\frac{1}{2} n+q+q^{\prime}\right)}{\Gamma\left(\frac{1}{2} n+q\right) \Gamma\left(\frac{1}{2} n+q^{\prime}\right)} \int_{0}^{\infty} \frac{s^{-q-1} d s}{(1+s)^{\frac{1}{2} n}\left(\frac{r^{2}}{1+s}+\frac{u^{2}}{s}+v^{2}\right)^{\frac{1}{n} n+q+q^{\prime}}}
$$

or, what comes to the same,

$$
\begin{equation*}
U=\frac{\pi^{\frac{1}{2} n} \Gamma\left(\frac{1}{2} n+q+q^{\prime}\right)}{\Gamma\left(\frac{1}{2} n+q\right) \Gamma\left(\frac{1}{2} n+q^{\prime}\right)} \int_{0}^{\infty} \frac{s^{\frac{1}{2} n+q^{\prime}-1}(1+s)^{q+q^{\prime}} d s}{\left(v^{2} s^{2}+j s+u^{2}\right)^{\frac{1}{2} n+q+q^{\prime}}} \tag{7}
\end{equation*}
$$

where

$$
j=u^{2}+v^{2}+r^{2} .
$$

The only practicable case is that of $q^{\prime}=-q$, for which

$$
\begin{equation*}
U=\frac{\pi^{3 n} \Gamma\left(\frac{1}{2} n\right)}{\Gamma\left(\frac{1}{2} n+q\right) \Gamma\left(\frac{1}{2} n-q\right)} \int_{0}^{\infty} \frac{s^{3 n-q-1} d s}{\left(v^{2} s^{2}+j s+u^{2}\right)^{3 n}} \tag{8}
\end{equation*}
$$

Consider the more general expression

$$
\begin{equation*}
\Theta=\int_{0}^{\infty} s^{-q-1} \phi\left(\frac{v^{2} s^{2}+j s+u^{2}}{s}\right) d s \tag{9}
\end{equation*}
$$

by writing

$$
2 u \sqrt{ } s=\sqrt{ }\left(s^{\prime}+4 u v\right) \pm \sqrt{ } s^{\prime}
$$

the upper sign from $s=\infty$ to $s=\frac{u}{v}$, and the lower one from $s=\frac{u}{v}$ to $s=0$, it is easy to derive

$$
\begin{equation*}
\Theta=(2 v)^{2 q} \int_{0}^{\infty} \frac{\{\sqrt{ }(s+4 u v)+\sqrt{ } s\}^{-2 q}+\{\sqrt{ }(s+4 u v)-\sqrt{ } s\}^{-2 q}}{\sqrt{ } s \sqrt{ }(s+4 u v)} \phi(s+j+2 u v) d s \tag{10}
\end{equation*}
$$

Now, by a formula which will presently be demonstrated,

$$
\begin{align*}
& \int_{0}^{\infty} \frac{\{\sqrt{ }(s+4 u v)+\sqrt{ } s\}^{-2 q}+\{\sqrt{ }(s+4 u v)-\sqrt{ } s\}^{-2 q}}{\sqrt{ } s \sqrt{ }(s+4 u v)} e^{-\theta s} d s \\
&=\frac{2 \sqrt{ } \pi}{\Gamma\left(\frac{1}{2}-q\right)} \theta^{-q} \int_{0}^{\infty} s^{-\frac{1}{2}-q}(s+4 u v)^{-\frac{1}{-}-q} e^{-\theta s} d s \tag{11}
\end{align*}
$$

whence

$$
\begin{align*}
& \int_{0}^{\infty} \frac{\{\sqrt{ }(s+4 u v)+\sqrt{ } s\}^{-2 q}+\{\sqrt{ }(s+4 u v)-\sqrt{ } s\}^{-2 q}}{\sqrt{ } s \sqrt{ }(s+4 u v)} F s \cdot d s \\
&=\frac{2 \sqrt{ } \pi}{\Gamma\left(\frac{1}{2}-q\right)} \int_{0}^{\infty} s^{-\frac{1}{2}-q}(s+4 u v)^{-\frac{1}{2}-q}\left(-\frac{d}{d s}\right)^{-q} F s . d s \tag{12}
\end{align*}
$$

Thus, by merely changing the function,

$$
\begin{equation*}
\Theta=\frac{2^{2 q+1} v^{2 q} \sqrt{ } \pi}{\Gamma\left(\frac{1}{2}-q\right)} \int_{0}^{\infty} s^{-\frac{1}{b}-q}(s+4 u v)^{-\frac{1}{2}-q}\left(-\frac{d}{d s}\right)^{-q} \phi(s+j+2 u v) d s \tag{13}
\end{equation*}
$$

and hence in the particular case in question

$$
\begin{equation*}
U=\frac{2^{2 q+1} v^{2 q} \pi^{\frac{1}{2}(n+1)}}{\Gamma\left(\frac{1}{2}-q\right) \Gamma\left(\frac{1}{2} n+q\right)} \int_{0}^{\infty} s^{-\frac{1}{2}-q}(s+4 u v)^{-\frac{1}{2}-q}(s+j+2 u v)^{-\frac{1}{2} n+q} d s \tag{144}
\end{equation*}
$$

by means of the formula

$$
\left(-\frac{d}{d s}\right)^{-q}(s+\alpha)^{-\frac{1}{-} n^{\prime}}=\frac{\Gamma\left(\frac{1}{2} n-q\right)}{\Gamma\left(\frac{1}{2} n\right)}(s+\alpha)^{-\frac{-3}{2} n+q} .
$$

But as there may be some doubt about this formula, which is not exactly equivalent either to Liouville's or Peacock's expression for the general differential coefficient of a
power, it is worth while to remark that, by first transforming the $\frac{1}{2} n^{\text {th }}$ power into an exponential, and then reducing as above (thus avoiding the general differentiation), we should have obtained

$$
U=\frac{2^{2 q+1} v^{2 q} \pi^{\frac{1}{2}(n+1)}}{\Gamma\left(\frac{1}{2}-q\right) \Gamma\left(\frac{1}{2} n+q\right) \Gamma\left(\frac{1}{2} n-q\right)} \int_{0}^{\infty} d \theta \int_{0}^{\infty} d s \theta^{\frac{1}{2} n-q-1} e^{-\theta(s+j+2 u v)} s^{-\frac{1}{2}-q}(s+4 u v)^{-\frac{1}{2}-q} e^{-\theta s},
$$

which reduces itself to the equation (14) by simply performing the integration with respect to θ; thus establishing the formula beyond doubt ${ }^{1}$. The integral may evidently be effected in finite terms when either q or $q-\frac{1}{2}$ is integral. Thus for instance in the simplest case of all, or when $q=-\frac{1}{2}$,

$$
U=\frac{\pi^{\frac{1}{2}(n-1)}}{v \Gamma \frac{1}{2}(n+1)} \frac{1}{(j+2 u v)^{\frac{1}{2}(n-1)}}=\int_{-\infty}^{\infty} \frac{d x d y \ldots}{\left(x^{2}+y^{2} \ldots+v^{2}\right)^{\frac{1}{2}(n+1)}\left\{(x-a)^{2}+\ldots u^{2}\right\}^{\frac{1}{2}(n-1)}},
$$

a formula of which several demonstrations have already been given in the Journal.
The following is a demonstration, though an indirect one, of the formula (11): in the first place

$$
\begin{align*}
&\left.\int_{0}^{\infty} \frac{\{\sqrt{ }(s+4 u v)+}{} \sqrt{ } s\right\}^{-2 q}+\{\sqrt{ }(s+4 u v)-\sqrt{ } s\}^{-2 q} \\
& \sqrt{ } s \sqrt{ }(s+4 u v) e^{-\theta s} d s \\
&=\frac{2 \Gamma\left(\frac{1}{2}-q\right) \theta^{q} e^{2 u v \theta}}{\sqrt{ } \pi(4 u v)^{2 q}} \int_{0}^{\infty}\left(4 u^{2} v^{2}+x^{2}\right)^{q-\frac{1}{2}} e^{i \theta x} d x
\end{align*}
$$

(where as usual $i \doteq \sqrt{ }-1$): to prove this, we have

$$
\begin{aligned}
\int_{-\infty}^{\infty}\left(4 u^{2} v^{2}+x^{2}\right)^{q-\frac{1}{2}} e^{i \theta x} d x=\frac{1}{\Gamma\left(\frac{1}{2}-q\right)} \int_{-\infty}^{\infty} d x & \int_{0}^{\infty} d t t^{-\frac{1}{2}-q} e^{-t\left(4 u^{2} v^{2}+x^{2}+i \theta x\right.} \\
& =\frac{\sqrt{ } \pi}{\Gamma\left(\frac{1}{2}-q\right)} \int_{0}^{\infty} d t t^{-1-q} e^{-4 u^{2} v^{2} t-\frac{\theta^{2}}{4 t}}
\end{aligned}
$$

or, putting $4 u v \sqrt{ } t=\sqrt{ }(s+4 u v) \pm \sqrt{ } s$ (which is a transformation already employed in the present paper), the formula required follows immediately.

Now, by a formula due to M. Catalan, but first rigorously demonstrated by M. Serret,

$$
\int_{0}^{\infty} \frac{\cos \alpha x d x}{\left(1+x^{2}\right)^{n}}=\frac{\pi}{(\Gamma n)^{2}} \int_{0}^{\infty} e^{-(\alpha+2 z)}(z+\alpha)^{n-1} z^{n-1} d z
$$

(Liouville, t. viII. [1843] p. 1), and by a slight modification in the form of this equation

$$
\int_{-\infty}^{\infty}\left(4 u^{2} v^{2}+x^{2}\right)^{q-\frac{1}{2}} e^{i \theta x} d x=\frac{\pi e^{-2 u v \theta}(4 u v)^{2 q}}{\theta^{2 q} \Gamma^{2}\left(\frac{1}{2}-q\right)} \int_{0}^{\infty} s^{-q-\frac{1}{2}}(s+4 u v)^{-q-\frac{1}{2}} e^{-\theta s} d s
$$

which, compared with (16), gives the required equation.

[^1]Note.-One of the intermediate formulæ of Mr Boole [in the Memoir referred to] may be written as follows:

$$
S=\frac{1}{\pi} \int_{0}^{1} d \alpha \int_{0}^{\infty} d v v^{q} \cos \left[(\alpha-\sigma) v+\frac{1}{2} q \pi\right] \phi \alpha,
$$

or what comes to the same thing, putting $i=\sqrt{ }-1$, and rejecting the impossible part of the integral,

$$
\begin{gathered}
S=\frac{1}{\pi} e^{\frac{1}{2 q \pi i}} \int_{0}^{1} d \alpha \int_{0}^{\infty} d v v^{q} e^{2 v(\alpha-\sigma)} \phi z \\
S=\int_{0}^{1} I \phi \alpha d \alpha, \quad I=\frac{1}{\pi} e^{\frac{1}{q} q \pi i} \int_{0}^{\infty} d v v^{q} e^{i v(\alpha-\sigma)} .
\end{gathered}
$$

Now $(\alpha-\sigma)$ being positive,
i.e.

$$
\begin{aligned}
& I=\frac{1}{\pi} e^{\frac{1}{2} q \pi i} \Gamma(q+1) e^{\frac{1}{2}(q+1) \pi i}(\alpha-\sigma)^{-q-1} ; \\
& I=\frac{1}{\pi} e^{\left(q+\frac{1}{2}\right) \pi i} \Gamma(q+1)(\alpha-\sigma)^{-q-1},
\end{aligned}
$$

or, retaining the real part only,

$$
\begin{aligned}
& I=-\frac{1}{\pi} \sin q \pi \Gamma(q+1)(\alpha-\sigma)^{-q-1} \\
& I=\frac{1}{\Gamma(-q)}(\alpha-\sigma)^{-q-1}
\end{aligned}
$$

But ($\alpha-\sigma$) being negative,

$$
\begin{aligned}
& I=\frac{1}{\pi} e^{\frac{1}{q} q \pi i} \Gamma(q+1) e^{-\frac{1}{2}(q+1) \pi i}(\sigma-\alpha)^{-q-1} \\
& I=\frac{1}{\pi} e^{-\frac{1}{2} \pi i} \Gamma(q+1)(\sigma-\alpha)^{-q-\frac{1}{2}}
\end{aligned}
$$

i.e. or, retaining the real part only, $I=0$.

Hence

$$
S=\frac{1}{\Gamma(-q)} \int_{\sigma}^{1}(\alpha-\sigma)^{-q-1} \phi \alpha d \alpha
$$

or putting

$$
\begin{gathered}
\alpha=\sigma+t(1-\sigma), \text { or } \alpha-\sigma=t(1-\sigma) \\
S=\frac{(1-\sigma)^{-q}}{\Gamma(-q)} \int_{0}^{1} t^{-q-1} \phi[\sigma+t(1-\sigma)] d t
\end{gathered}
$$

the expression in the text. Mr Boole's final value is

$$
S=\left(-\frac{d}{d \sigma}\right)^{q} \phi(\sigma)
$$

which, though simpler, appears to me to be in some respects less convenient.
C.

[^0]: ${ }^{1}$ See note at the end of this paper.

[^1]: ${ }^{1}$ A paper by M. Schlömilch "Note sur la variation des constantes arbitraires d'une Integrale definie," Crelle, t. xxxiII. [1846], pp. 268-280, will be found to contain formulæ analogous to some of the preceding ones.

