572.

THEOREM IN REGARD TO THE HESSIAN OF A QUATERNARY FUNCTION.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xiI. (1873), pp. 193-197.]

I wISH to put on record the following expression for the Hessian of $P^{k}+\lambda P^{\prime k^{\prime}}$, where P, P^{\prime} are quaternary functions of (x, y, z, w) of the degrees l, l^{\prime} respectively, and λ is a constant; the demonstration is tedious enough, but presents no particular difficulty.

I write (A, B, C, D) for the first derived functions of P; and $(a, b, c, d, f, g, h, l, m, n)$ for the second derived functions; and similarly for P^{\prime}. The Hessian of P is thus

$$
\left|\begin{array}{llll}
a, & h, & g, & l \\
h, & b, & f, & m \\
g, & f, & c, & n \\
l, & m, & n, & d
\end{array}\right|
$$

which is denoted by ($a b c d$); moreover, if in this determinant we substitute the accented letters for the letters of each line successively, the result is denoted by ($a b c d^{\prime}$); and so if we substitute the accented letters for the letters of each pair of lines successively, the result is denoted by $\left(a b c^{\prime} d^{\prime}\right)$. Observe that

$$
a b c d^{\prime}=\left(a^{\prime} \delta_{a}+b^{\prime} \delta_{b}+\ldots\right) a b c d \text { and } a b c^{\prime} d^{\prime}=\frac{1}{2}\left(a^{\prime} \delta_{a}+b^{\prime} \delta_{b}+\ldots\right)^{2} a b c d
$$

The notation $\left(a b c D^{\prime 2}\right)$ is used to denote the determinant

$$
-\left|\begin{array}{lllll}
& A^{\prime}, & B^{\prime}, & C^{\prime}, & D^{\prime} \\
A^{\prime}, & a, & h, & g, & l \\
B^{\prime}, & h, & b, & f, & m \\
C^{\prime}, & g, & f, & c, & n \\
D^{\prime}, & l, & m, & n, & d
\end{array}\right|
$$ and from it we derive the expression $\left(a b c^{\prime} D^{\prime 2}\right)$, viz.

$$
a b c^{\prime} D^{\prime 2}=\left(a^{\prime} \delta_{a}+b^{\prime} \delta_{b}+\ldots\right) a b c D^{\prime 2}
$$

The final result is expressed in terms of the several functions $a b c d, a b c d^{\prime}, a b c^{\prime} d^{\prime}, a b^{\prime} c^{\prime} d^{\prime}$, $a^{\prime} b^{\prime} c^{\prime} d^{\prime}, a b c D^{\prime 2}, a^{\prime} b^{\prime} c^{\prime} D^{2}, a b c^{\prime} D^{\prime 2}, a^{\prime} b^{\prime} c D^{2}$, viz. we have

$$
\begin{aligned}
& \mathfrak{S}\left(P^{k}+\lambda P^{k k}\right)=\quad k^{4}(k-1)\left(\frac{1}{k-1}+\frac{l}{l-1}\right) P^{4 k-4} \cdot a b c d \\
& +\lambda\left\{\begin{array}{l}
k^{3}(k-1)\left(\frac{1}{k-1}+\frac{l}{l-1}\right) k^{\prime} P^{3 k-3}\left\{\begin{array}{r}
P^{\prime k^{\prime}-1} \cdot a b c d^{\prime} \\
+\left(k^{\prime}-1\right) P^{\prime k^{\prime}-2} \cdot a b c D^{\prime 2}
\end{array}\right\} \\
-\frac{k^{3}(k-1) k^{\prime}}{(l-1)^{2}}\left[l^{\prime}\left(l^{\prime}-1\right)+l^{2}(k-1)\right] P^{3 k-4} P^{\prime k^{\prime}} \cdot a b c d
\end{array}\right\} \\
& \left(\begin{array}{cc}
k^{2} k^{\prime 2} & P^{2 k-2} \\
+P^{2} 2 k^{\prime}-2 & a b c^{\prime} d^{\prime} \\
+k^{2} k^{\prime 2}\left(k^{\prime}-1\right) & P^{2 k-2} \\
+k^{2} k^{\prime 2 k^{\prime}-3}(k-1) & a b c^{\prime} D^{\prime 2} \\
P^{2 k-3} & P^{2 k^{\prime}-2} \\
a^{\prime} b^{\prime} c D^{2}
\end{array}\right. \\
& +\lambda^{2}\left\{\left\{\begin{array}{l}
\frac{l(l-1)}{\left(l^{\prime}-1\right)^{2}} a^{\prime} b^{\prime} c^{\prime} D^{2} \cdot P \\
+\frac{l^{\prime}\left(l^{\prime}-1\right)}{(l-1)^{2}} a b c D^{\prime 2} \cdot P^{\prime} \\
-\frac{l^{2}}{\left(l^{\prime}-1\right)^{2}} a b^{\prime} c^{\prime} d^{\prime} \cdot P^{2} \\
+\frac{l l^{\prime}}{(l-1)\left(l^{\prime}-1\right)} a b c^{\prime} d^{\prime} \cdot P P^{\prime}(k-1)\left(k^{\prime}-1\right) P^{2 k-3} P^{\prime 2 k^{\prime}-s} \\
-\frac{l^{\prime 2}}{(l-1)^{2}} a b c d^{\prime} \cdot P^{\prime 2}
\end{array}\right\}\right\} \\
& +\lambda^{3}\left\{\begin{array}{c}
k^{\prime 3}\left(k^{\prime}-1\right)\left(\frac{1}{k^{\prime}-1}+\frac{l^{\prime}}{l^{\prime}-1}\right) k P^{\prime 2 k^{\prime}-3}\left\{\begin{array}{c}
P^{k-1} \cdot a^{\prime} b^{\prime} c^{\prime} d \\
+(k-1) P^{k-2} \cdot a^{\prime} b^{\prime} c^{\prime} D^{2}
\end{array}\right\} \\
-\frac{k^{\prime 3}\left(k^{\prime}-1\right) k}{\left(l^{\prime}-1\right)^{2}}\left[l(l-1)+l^{\prime 2}\left(k^{\prime}-1\right)\right] P^{k} P^{\prime 3 k^{\prime}-4} \cdot a^{\prime} b^{\prime} c^{\prime} d^{\prime}
\end{array}\right\} \\
& +\lambda^{4} \cdot k^{\prime^{4}}\left(k^{\prime}-1\right)\left(\frac{1}{k^{\prime}-1}+\frac{l^{\prime}}{l^{\prime}-1}\right) P^{\prime^{\prime} 4 k^{\prime}-4} \cdot a^{\prime} b^{\prime} c^{\prime} d^{\prime} .
\end{aligned}
$$

In verification, I remark that, $\lambda=0$, the formula becomes

$$
\mathfrak{S}\left(P^{k}\right)=k^{4}(k-1)\left(\frac{1}{k-1}+\frac{l}{l-1}\right) P^{4 k-4} \cdot a b c d,
$$

that is

$$
=\frac{k^{4}(k l-1)}{l-1} P^{4 k-4} \cdot a b c d .
$$

Hence, writing $P^{\prime}=P$, which implies $k^{\prime}=k$ and $l^{\prime}=l$, we ought to have

$$
\mathfrak{J}\left\{(1+\lambda) P^{k}\right\}=(1+\lambda)^{4} \cdot \frac{k^{4}(k l-1)}{l-1} P^{4 k-4} \cdot a b c d .
$$

But writing in the formula $P^{\prime}=P$, it is to be observed that $a b c d^{\prime}=4 a b c d, a b c^{\prime} d^{\prime}=6 a b c d$, $a b^{\prime} c^{\prime} d^{\prime}=4 a b c d, a^{\prime} b^{\prime} c^{\prime} d^{\prime}=a b c d$: moreover that $a b c D^{\prime 2}$ and $a^{\prime} b^{\prime} c^{\prime} D^{2}$ are each $=a b c D^{2}$, but that $a b c^{\prime} D^{\prime 2}$ and $a^{\prime} b^{\prime} c D^{2}$ are each $=3 a b c D^{2}$, and (as is easily shown to be the case)

$$
a b c D^{2}=\frac{l}{l-1} P . a b c d .
$$

Thus the whole coefficient of λ becomes

$$
\left\{\begin{array}{l}
k^{4}(k-1)\left(\frac{1}{k-1}+\frac{l}{l-1}\right)\left\{4+\frac{(k-1) l}{l-1}\right\} \\
-k^{4} \frac{(k-1)}{(l-1)^{2}}\left\{l(l-1)+l^{2}(k-1)\right\}
\end{array}\right\} P^{4 k-4} \cdot a b c d
$$

where the numerical factor is

$$
\begin{aligned}
& =k^{4}(k-1)^{2}\left(\frac{1}{k-1}+\frac{l}{l-1}\right)\left(\frac{4}{k-1}+\frac{l}{l-1}-\frac{l}{l-1}\right) \\
& =4 k^{4}(k-1)\left(\frac{1}{k-1}+\frac{l}{l-1}\right)
\end{aligned}
$$

or, finally, it is

$$
=\frac{4 k^{4}(k l-1)}{l-1} .
$$

The coefficient of λ^{2} is

$$
\begin{aligned}
& =k^{4}\left\{6-\frac{2 l^{2}(k-1)^{2}}{(l-1)^{2}}\right\} P^{4 k-4} \cdot a b c d \\
& +k^{4}\left\{6(k-1)+\frac{2(k-1)^{2} l}{l-1}\right\} P^{4 k-5} \cdot a b c D^{2}
\end{aligned}
$$

or, substituting for $a b c D^{2}$ its value $=\frac{l}{l-1} P . a b c d$, the expression is equal to $P^{4 k-4} a b c d$ into a numerical coefficient, which is

$$
k^{4}\left\{6-\frac{2 l^{2}(k-1)^{2}}{(l-1)^{2}}+\left(\frac{6(k-1) l}{l-1}+\frac{2(k-1)^{2} l^{2}}{(l-1)^{2}}\right)\right\}
$$

viz. this is

$$
\begin{aligned}
6 k^{4} & \left\{1+\frac{(k-1) l}{l-1}\right\} \\
& =6 \frac{k^{4}(k l-1)}{l-1}
\end{aligned}
$$

and the coefficients of λ^{3}, and λ^{4} are equal to those of λ and λ^{0} respectively. Hence the formula gives, as it should do,

$$
\mathfrak{S}\left\{(1+\lambda) P^{k}\right\}=(1+\lambda)^{4} \frac{k^{4}(k l-1)}{l-1} P^{4 k-4} \cdot a b c d .
$$

Attending only to the form of the result, and representing the numerical factors by A, B, \&c., we may write

$$
\begin{aligned}
& \mathfrak{J}\left(P^{k}+\lambda P^{\prime k}\right)=\quad A \quad P^{4 k-4} a b c d \\
& +\lambda . \quad B\left\{\begin{array}{l}
P^{s k-3} P^{\prime k^{\prime}-1} a b c d^{\prime} \\
+\left(k^{\prime}-1\right) P^{s k-3} P^{k^{\prime}-2} a b c D^{\prime} 2
\end{array}\right\} \\
& +C P^{3 k-4} P^{\prime k} a b c d \\
& +\lambda^{2} \text {. } D \quad P^{2 k-2} P^{\prime 2 k^{\prime}-2} a b c^{\prime} d^{\prime} \\
& +E \quad P^{2 k-2} P^{\prime 2 k^{\prime}-3} a b c^{\prime} D^{\prime 2} \\
& +E^{\prime} \quad P^{2 k-3} P^{\prime 2 k^{\prime}-2} a^{\prime} b^{\prime} c D^{2} \\
& +F \quad P^{2 k-3} P^{\prime 2 k^{\prime}-3}\left(\Lambda P+\Lambda^{\prime} P^{\prime}\right) \\
& +\lambda^{3} \text {. } C^{\prime} P^{k} P^{\prime 3 k^{k}-4} a^{\prime} b^{\prime} c^{\prime} d^{\prime} \\
& +B^{\prime}\left\{\begin{array}{l}
P^{k-1} P^{\prime 3 k-3} a^{\prime} b^{\prime} c^{\prime} d \\
+(k-1) P^{k-2} P^{\prime 3 k^{\prime}-3} a^{\prime} b^{\prime} c^{\prime} D^{2}
\end{array}\right\} \\
& +\lambda^{4} \text {. } A^{\prime} P^{\prime \prime 4 k^{\prime}-4} a^{\prime} b^{\prime} c^{\prime} d^{\prime},
\end{aligned}
$$

where, for shortness, certain terms in λ^{2} have been represented by $\Lambda P+\Lambda^{\prime} P^{\prime}$.
Suppose $k=k^{\prime}=2$; then attending only to the terms of the lowest order in P, P^{\prime} conjointly, we have

$$
\begin{aligned}
\mathfrak{S}\left(P^{2}+\lambda P^{\prime 2}\right)= & \lambda B \cdot P^{3} \cdot a b c D^{\prime 2} \\
& +\lambda^{2} \cdot P P^{\prime}\left(\Lambda P+\Lambda^{\prime} P^{\prime}\right) \\
& +\lambda^{3} B^{\prime} \cdot P^{\prime 3} \cdot a^{\prime} b^{\prime} c^{\prime} D^{2}
\end{aligned}
$$

If the function operated upon with \mathfrak{J} had been $U P^{2}+U^{\prime} P^{\prime 2}$, the lowest terms in P, P^{\prime} would have been of the like form; and it thus appears that for a surface of the form $U P^{2}+U^{\prime} P^{\prime 2}=0$, the nodal curve $P=0, P^{\prime}=0$ is a triple curve on the Hessian surface.

If $k=2, k^{\prime}=3$, then attending only to the terms of the lowest order in P, P^{\prime} conjointly, we have

$$
\begin{aligned}
\mathfrak{J}\left(P^{2}+\lambda P^{\prime 3}\right)= & A \cdot P^{4} \cdot a b c d \\
& +\lambda \cdot 2 B \cdot P^{3} P^{\prime} \cdot a b c D^{\prime_{2}}
\end{aligned}
$$

and the like result would be obtained if the function operated upon with $\mathfrak{5}$ had been $U P^{2}+U^{\prime} P^{\prime 3}$. It thus appears that for a surface of the form $U P^{2}+U^{\prime} P^{/ 3}=0$, the cuspidal curve $P=0, P^{\prime}=0$ is a 4 -tuple curve on the Hessian surface, the form in the vicinity of this line, or direction of the tangent plane, being given by

$$
P^{3}\left(A \cdot P \cdot a b c d+2 B \lambda \cdot P^{\prime} \cdot a b c D^{\prime 2}\right)=0
$$

viz. there is a triple sheet $P^{3}=0$, coinciding with the direction of the surface in the vicinity of the cuspidal line; and a single sheet

$$
A \cdot P \cdot a b c d+2 B \lambda \cdot P^{\prime} \cdot a b c D^{\prime 2}=0 .
$$

At the points for which the osculating plane of the curve $P=0, P^{\prime}=0$ coincides with the tangent plane of $P=0$ (or, what is the same thing, with that of the surface), we have $a b c D^{\prime 2}=0$, and the triple and single sheets then coincide in direction.

