574.

ON WRONSKI'S THEOREM.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xir. (1873), pp. 221-228.]

The theorem, considered by the author as an answer to the question "En quoi consistent les Mathématiques? N'y aurait-il pas moyen d'embrasser par un seul problème, tous les problèmes de ces sciences et de resoudre généralement ce problème universel ?" is given without demonstration in his Réfutation de la Théorie de Fonctions Analytiques de Lagrange, Paris, 1812, p. 30, and reproduced (with, I think, a demonstration) in the Philosophie de la Technie, Paris, 1815; and it is also stated and demonstrated in the Supplément à la Réforme de la Philosophie, Paris, 1847, p. CIx et seq.; the theorem, but without a demonstration, is given in Montferrier's Encyclopédie Mathématique (Paris, no date), t. III. p. 398.

The theorem gives the development of a function $F x$ of the root of an equation

$$
0=f x+x_{1} f_{1} x+x_{2} f_{2} x+\& c
$$

but it is not really more general than that for the particular case $0=f x+x_{1} f_{1} x$; or say when the equation is $0=\phi x+\lambda f x$.* Considering then this equation

$$
\phi x+\lambda f x=0,
$$

let a be a root of the equation $\phi x=0$; the theorem is

$$
\begin{aligned}
F x & =F \\
& -\frac{\lambda}{1} \frac{1}{\phi^{\prime}}\left|\left(\int f F^{\prime}\right)^{\prime}\right| \\
& +\frac{\lambda^{2}}{1.2} \frac{1}{\phi^{\prime 3}}\left|\begin{array}{cc}
\phi^{\prime}, & \left(\int f^{2} F^{\prime}\right)^{\prime} \\
\phi^{\prime \prime}, & \left(\int f^{2} F^{\prime}\right)^{\prime \prime}
\end{array}\right| \frac{1}{1}
\end{aligned}
$$

[^0]\[

$$
\begin{array}{l|lll}
-\frac{\lambda^{3}}{1.2 .3} \frac{1}{\phi^{\prime 6}} & \begin{array}{lll}
\phi^{\prime}, & \left(\phi^{2}\right)^{\prime}, & \left(\int f^{3} F^{\prime}\right)^{\prime} \\
\phi^{\prime \prime}, & \left(\phi^{2}\right)^{\prime \prime}, & \left(\int f^{3} F^{\prime}\right)^{\prime \prime} \\
\phi^{\prime \prime \prime}, & \left(\phi^{2}\right)^{\prime \prime \prime}, & \left(\int f^{3} F^{\prime}\right)^{\prime \prime \prime}
\end{array}
$$ \&

+ \&c., \& \&
\end{array}
\]

where $F, f, F^{\prime \prime}$, \&c. denote $F a, f a, F^{\prime \prime} a$, \&c. and the accents denote differentiation in regard to a; the integral sign \int is written instead of \int_{a}; this is introduced for symmetry only, and obviously disappears; in fact, we may equally well write

$$
\begin{aligned}
F x & =F \\
& -\frac{\lambda}{1} \frac{1}{\phi^{\prime}} f F^{\prime \prime} \\
& +\frac{\lambda^{2}}{1.2} \frac{1}{\phi^{\prime 3}} \left\lvert\, \begin{array}{ll|l|l}
\phi^{\prime}, & f^{2} F^{\prime \prime} & \frac{1}{\phi^{\prime \prime}}, & \left(f^{2} F^{\prime}\right)^{\prime}
\end{array}\right. \\
& -\frac{\lambda^{3}}{1.2 .3} \frac{1}{\phi^{\prime 6}} \left\lvert\, \begin{array}{lll}
\phi^{\prime}, & \left(\phi^{2}\right)^{\prime}, & f^{3} F^{\prime \prime} \\
\phi^{\prime \prime}, & \left(\phi^{2}\right)^{\prime \prime}, & \left(f^{3} F^{\prime}\right)^{\prime}
\end{array}\right. \\
\hline & 1.1 .2 \\
& + \text { \&c. }
\end{aligned}
$$

I stop for a moment to remark that Laplace's theorem is really equivalent to Lagrange's; viz. in the first mentioned theorem we have $x=\phi(a+\lambda f x)$, that is $\phi^{-1} x=a+\lambda f \phi \cdot \phi^{-1} x$, and then $F x=F \phi \cdot \phi^{-1} x$, viz. by Lagrange's theorem

$$
F x=F \phi+\frac{\lambda}{1} F \phi^{\prime} \cdot f \phi+\frac{\lambda^{2}}{1.2}\left\{F \phi^{\prime} \cdot(f \phi)^{2}\right\}^{\prime}+\& c .,
$$

where on the right hand $F \phi$ and $f \phi$ are each regarded as one symbol, the argument being always a and the accents denoting differentiation in regard to a, thus $F \phi^{\prime}$ is

$$
d_{a} \cdot F \phi a=F^{\prime} \phi a \cdot \phi^{\prime} a, \& c .,
$$

viz. this is Laplace's theorem.
Suppose in Wronski's theorem $\phi x=x-a$; that is, let the equation be

$$
x-a+\lambda \phi x=0,
$$

then each determinant reduces itself to a single term: thus the determinant of the third order is

$$
\left.\begin{array}{lll}
(x-a)^{\prime}, & \left\{(x-a)^{2}\right\}^{\prime}, & f^{3} F^{\prime} \\
(x-a)^{\prime \prime}, & \left\{(x-a)^{2}\right\}^{\prime \prime \prime}, & \left(f^{3} F^{\prime}\right)^{\prime} \\
(x-a)^{\prime \prime \prime}, & \left\{(x-a)^{2}\right\}^{\prime \prime \prime}, & \left(f^{3} F^{\prime}\right)^{\prime \prime}
\end{array} \right\rvert\,,
$$

where in the first and second columns the accents denote differentiation in regard to x, which variable is afterwards put $=a$; the determinant is thus

$$
=\left|\begin{array}{ccc}
1, & *, & * \\
0, & 1.2, & * \\
0, & 0, & \left(f^{3} F^{\prime}\right)^{\prime \prime}
\end{array}\right|
$$

C. IX.
viz. it is

$$
=1 \cdot 1 \cdot 2\left(f^{3} F^{\prime \prime}\right)^{\prime \prime}
$$

and so in other cases; the formula is thus

$$
F x=F-\frac{\lambda}{1} f F^{\prime \prime}+\frac{\lambda^{2}}{1.2}\left(f^{2} F^{\prime}\right)^{\prime}-\frac{\lambda^{3}}{1.2 .3}\left(f^{3} F^{\prime}\right)^{\prime \prime}+\& c .
$$

agreeing with Lagrange's theorem.
Suppose in general $\phi x=(x-a) \psi x$, or let the equation be
that is,

$$
(x-a) \psi x+\lambda f x=0
$$

$$
x-a+\lambda \frac{f x}{\psi x}=0:
$$

we have then by Lagrange's theorem

$$
F x=F-\frac{\lambda}{1} F^{\prime} \frac{f}{\psi}+\frac{\lambda^{2}}{1.2}\left\{F^{\prime \prime}\left(\frac{f}{\psi}\right)^{2}\right\}^{\prime}-\frac{\lambda^{3}}{1.2 .3}\left\{F^{\prime}\left(\frac{f}{\psi}\right)^{3}\right\}^{\prime \prime}+\& c .
$$

Consider for example the term $\left\{F^{\prime}\left(\frac{f}{\psi}\right)^{3}\right\}^{\prime \prime}$; this is

$$
=\left\{F^{\prime} x \cdot \frac{(x-a)^{3}(f x)^{3}}{(\phi x)^{3}}\right\}^{\prime \prime}
$$

the accents denoting differentiation in regard to x, and x being ultimately put $=a$; or, what is the same thing, it is

$$
=\left(\frac{d}{d \theta}\right)^{2}\left[F^{\prime \prime}(a+\theta) \frac{\theta^{3}\{f(a+\theta)\}^{3}}{\{\phi(a+\theta)\}^{3}}\right],
$$

the accents now denoting differentiation in regard to θ, and this being ultimately put $=0$. This is

$$
\left(\frac{d}{d \theta}\right)^{2}\left[F^{\prime}(a+\theta) \frac{\{f(a+\theta)\}^{3}}{\left(\phi^{\prime} a+\frac{\theta}{1.2} \phi^{\prime \prime} a+\ldots\right)^{3}}\right]
$$

This may be written $\left(F^{\prime} f^{3} \frac{1}{A^{3}}\right)^{\prime \prime}$, where

$$
A=\phi^{\prime}+\frac{1}{2} \theta \phi^{\prime \prime}+\frac{1}{6} \theta^{2} \phi^{\prime \prime}+\ldots
$$

it being understood that as regards $F^{\prime} f^{3}$, which is expressed as a function of a only (θ having been therein put $=0$), the exterior accents denote differentiations in respect to a, whereas in regard to $A,=\phi^{\prime}+\frac{1}{2} \theta \phi^{\prime \prime}+\& c$., they denote differentiation in regard to θ, which is afterwards put $=0$. And the theorem thus is

$$
F x=F-\frac{\lambda}{1}\left(F^{\prime} f \cdot \frac{1}{A}\right)+\frac{\lambda^{2}}{1 \cdot 2}\left(F^{\prime} f^{2} \cdot \frac{1}{A^{2}}\right)^{\prime}-\frac{\lambda^{3}}{1 \cdot 2 \cdot 3}\left(F^{\prime} f^{3} \cdot \frac{1}{A^{3}}\right)^{\prime \prime}+\& c .
$$

This must be equivalent to Wronski's theorem; it is in a very different, and, I think, a preferable form; but the results obtained from the comparison are very interesting, and I proceed to make this comparison.

Taking the foregoing coefficient $\left(F^{\prime} f^{3} \frac{1}{A^{3}}\right)^{\prime \prime}$ this should be equal to Wronski's term

$$
\frac{1}{1.1 .2} \frac{1}{\phi^{\prime 6}}\left|\begin{array}{lll}
\phi^{\prime}, & \left(\phi^{2}\right)^{\prime}, & f^{3} F^{\prime} \\
\phi^{\prime \prime}, & \left(\phi^{2}\right)^{\prime \prime}, & \left(f^{3} F^{\prime}\right)^{\prime} \\
\phi^{\prime \prime \prime}, & \left(\phi^{2}\right)^{\prime \prime \prime}, & \left(f^{3} F^{\prime}\right)^{\prime \prime}
\end{array}\right|
$$

or, what is the same thing, the determinant should be

$$
\begin{aligned}
& =1 \cdot 1 \cdot 2 \phi^{\prime 6}\left(\frac{1}{A^{3}} f^{3} F^{\prime}\right)^{\prime \prime} \\
& =1 \cdot 1 \cdot 2 \phi^{\prime 6}\left\{f^{3} F^{\prime \prime}\left(\frac{1}{A^{3}}\right)^{\prime \prime}+2\left(f^{3} F^{\prime}\right)^{\prime}\left(\frac{1}{A^{3}}\right)^{\prime}+\left(f^{3} F^{\prime}\right)^{\prime \prime} \frac{1}{A^{3}}\right\}
\end{aligned}
$$

that is, the values of

$$
1.1 .2 \phi^{\prime 6} \frac{1}{A^{3}}, \quad 1.1 .2 \phi^{\prime 6} 2\left(\frac{1}{A^{3}}\right)^{\prime}, \quad 1.1 .2 \phi^{\prime 6}\left(\frac{1}{A^{3}}\right)^{\prime \prime}
$$

should be

$$
=\phi^{\prime}\left(\phi^{2}\right)^{\prime \prime}-\phi^{\prime \prime}\left(\phi^{2}\right)^{\prime}, \quad \phi^{\prime \prime \prime}\left(\phi^{2}\right)^{\prime}-\phi^{\prime}\left(\phi^{2}\right)^{\prime \prime \prime}, \quad \phi^{\prime \prime}\left(\phi^{2}\right)^{\prime \prime \prime}-\phi^{\prime \prime \prime}\left(\phi^{2}\right)^{\prime \prime}
$$

respectively. Or, what is the same thing, if

$$
\frac{1}{\left(\phi^{\prime}+\frac{\theta}{2} \phi^{\prime \prime}+\frac{\theta^{2}}{2.3} \phi^{\prime \prime \prime}+\ldots\right)^{3}}=A_{0}+\frac{1}{1} A_{1} \theta+\frac{1}{1.2} A_{2} \theta^{2}+\ldots
$$

then the last mentioned functions should be

$$
\text { 1.1.2 } \phi^{\prime 6} A_{0}, \quad 1.1 .2 \phi^{\prime 6} 2 A_{1}, \quad 1.1 .2 \phi^{\prime 6} A_{2} .
$$

We have

$$
A_{0}=\frac{1}{\phi^{\prime 3}}, \quad A_{1}=-\frac{3}{2} \frac{\phi^{\prime \prime}}{\phi^{\prime 4}}, \quad A_{2}=-\frac{\phi^{\prime \prime \prime}}{\phi^{\prime 4}}+\frac{3 \phi^{\prime \prime 2}}{\phi^{\prime 5}},
$$

or the identities are

$$
\begin{array}{rlrl}
2 \phi^{\prime 3} & =\phi^{\prime}\left(\phi^{2}\right)^{\prime \prime}-\phi^{\prime \prime}\left(\phi^{2}\right)^{\prime}, & =\phi^{\prime}\left(2 \phi \phi^{\prime \prime}+2 \phi^{\prime 2}\right)-\phi^{\prime \prime} \cdot 2 \phi \phi^{\prime}, \\
-6 \phi^{\prime \prime} \phi^{\prime 2} & =\phi^{\prime \prime \prime}\left(\phi^{2}\right)^{\prime}-\phi^{\prime}\left(\phi^{2}\right)^{\prime \prime \prime}, & =\phi^{\prime \prime \prime} \cdot 2 \phi \phi^{\prime}-\phi^{\prime}\left(2 \phi \phi^{\prime \prime}+6 \phi^{\prime} \phi^{\prime \prime}\right), \\
+6 \phi^{\prime \prime 2} \phi^{\prime}-2 \phi^{\prime \prime \prime} \phi^{\prime 2} & =\phi^{\prime \prime}\left(\phi^{2}\right)^{\prime \prime \prime}-\phi^{\prime \prime \prime}\left(\phi^{2}\right)^{\prime \prime}, & & =\phi^{\prime \prime}\left(2 \phi \phi^{\prime \prime \prime}+6 \phi^{\prime} \phi^{\prime \prime}\right)-\phi^{\prime \prime \prime}\left(2 \phi \phi^{\prime \prime}+2 \phi^{\prime 2}\right),
\end{array}
$$

which is right. And in like manner to verify the coefficient of λ^{4}, we should have to compare the first four terms of the expansion of

$$
\frac{1}{\left(\phi^{\prime}+\frac{\theta}{2} \phi^{\prime \prime}+\frac{\theta^{2}}{2.3} \phi^{\prime \prime \prime}+\ldots\right)^{4}} .
$$

$13-2$
with the determinants formed out of the matrix

$$
\left|\begin{array}{ccc}
\phi^{\prime}, & \phi^{\prime \prime}, & \phi^{\prime \prime \prime}, \\
\left(\phi^{2}\right)^{\prime}, & \left(\phi^{2}\right)^{\prime \prime \prime}, & \left(\phi^{2}\right)^{\prime \prime \prime \prime}, \\
\left(\phi^{3}\right)^{\prime}, & \left(\phi^{3}\right)^{\prime \prime \prime}, & \left(\phi^{3}\right)^{\prime \prime \prime}, \\
\left(\phi^{3}\right)^{\prime \prime \prime \prime}
\end{array}\right| .
$$

The series of equalities may be presented as follows, writing as above A to denote the function

$$
\begin{aligned}
& \phi^{\prime}+\frac{\theta}{2} \phi^{\prime \prime}+\frac{\theta^{2}}{2.3} \phi^{\prime \prime \prime}+\ldots, \\
& \frac{1}{A}=\frac{1}{\phi^{\prime}} .1, \\
& \frac{1}{A^{2}}=\frac{-1}{\phi^{\prime 3}}\left|\begin{array}{cc}
\theta, & 1 \\
\phi^{\prime}, & \phi^{\prime \prime}
\end{array}\right| \cdot \frac{1}{1}, \\
& \frac{1}{A^{3}}=\frac{+1}{\phi^{\prime 6}}\left|\begin{array}{ccc}
\frac{1}{2} \theta^{2}, & \frac{1}{2} \theta, & 1 \\
\phi^{\prime}, & \phi^{\prime \prime}, & \phi^{\prime \prime \prime} \\
\left(\phi^{2}\right)^{\prime}, & \left(\phi^{2}\right)^{\prime \prime \prime}, & \left(\phi^{2}\right)^{\prime \prime \prime}
\end{array}\right| \cdot \frac{1}{1.1 .2}, \\
& \frac{1}{A^{4}}=\frac{-1}{\phi^{\prime 10}}\left|\begin{array}{ccc}
\frac{1}{6} \theta^{3}, & \frac{1}{6} \theta^{2}, & \frac{1}{3} \theta, \\
\phi^{\prime}, & \phi^{\prime \prime}, & \phi^{\prime \prime \prime}, \\
\left(\phi^{2}\right)^{\prime}, & \left(\phi^{2}\right)^{\prime \prime \prime}, & \left(\phi^{2}\right)^{\prime \prime \prime \prime}, \\
\left.\phi^{3}\right)^{\prime}, & \left(\phi^{2}\right)^{2 \prime \prime \prime \prime} & \\
\left(\phi^{3}\right)^{\prime \prime}, & \left(\phi^{3}\right)^{\prime \prime \prime}, & \left(\phi^{3}\right)^{\prime \prime \prime \prime}
\end{array}\right| \cdot \frac{1}{1.1 .2 .1 .2 .3},
\end{aligned}
$$

where in each case the function on the left hand is to be expanded only as far as the power of θ which is contained in the determinant: the numerical coefficients in the top-lines of the several determinants are the reciprocals of

$$
n(n-1) \ldots 2.1, \quad n(n-1) \ldots 2, \quad n(n-1), \quad n, \quad 1,
$$

where n is the index of the highest power of θ. The demonstration of Wronski's theorem therefore ultimately depends on the establishment of the foregoing equalities As a verification, in the fourth formula, write $\phi=e^{a}(a=0)$, we have

$$
\left(\frac{\theta}{e^{\theta}-1}\right)^{4} \text { or } \frac{1}{\left(1+\frac{1}{2} \theta+\frac{1}{6} \theta^{2}+\frac{1}{24} \theta^{3}+\ldots\right)^{4}}=-\frac{1}{12}\left|\begin{array}{rrrr}
\frac{1}{6} \theta^{3}, & \frac{1}{6} \theta^{2}, & \frac{1}{3} \theta, & 1 \\
1, & 1, & 1, & 1 \\
2, & 4, & 8, & 16 \\
3, & 9, & 27, & 81
\end{array}\right|
$$

where the right hand is

$$
\begin{aligned}
& =-\frac{1}{12}\left(-1.12+\frac{1}{3} \theta \cdot 72-\frac{1}{6} \theta^{2} \cdot 132+\frac{1}{6} \theta^{3} \cdot 72\right) \\
& =\quad 1-2 \theta+\frac{11}{6} \theta^{2}-\theta^{3},
\end{aligned}
$$

and expanding the left hand as far as θ^{3}, this is

$$
\begin{array}{rlr}
= & 1 & \\
& =1\left(\frac{1}{2} \theta+\frac{1}{6} \theta^{2}+\frac{1}{24} \theta^{3}\right) & -2 \theta-\frac{2}{3} \theta^{2}-\frac{1}{6} \theta^{3} \\
& +10\left(\quad \frac{1}{4} \theta^{2}+\frac{1}{6} \theta^{3}\right) & +\frac{5}{2} \theta^{2}+\frac{5}{3} \theta^{3} \\
-20(& \left.\frac{-5}{8} \theta^{3}\right) & \frac{1}{1-2 \theta+\frac{11}{6} \theta^{2}-\theta^{3},}
\end{array}
$$

which agrees.
Reverting to the above equations, and expanding the several terms $\left(\phi^{2}\right)^{\prime}=2 \phi \phi^{\prime}$, $\left(\phi^{2}\right)^{\prime \prime}=2 \phi \phi^{\prime \prime}+2 \phi^{\prime 2}$, \&c., then, since in each case the left-hand side contains $\phi^{\prime}, \phi^{\prime \prime}, \phi^{\prime \prime \prime}$, \&c. but not ϕ, it is clear that on the right-hand side the terms involving ϕ must disappear of themselves; and assuming that this is so, the equality takes the more simple form obtained by writing in the foregoing expressions $\phi=0$, viz. we thus have $\left(\phi^{2}\right)^{\prime}=0,\left(\phi^{2}\right)^{\prime \prime}=2 \phi^{\prime 2}, \& c$. In order to simplify the formulæ, I replace the series $\phi^{\prime}, \frac{1}{2} \phi^{\prime \prime}$, $\frac{1}{6} \phi^{\prime \prime \prime}, \frac{1}{24} \phi^{\prime \prime \prime \prime}$, \&c. by b, c, d, e, \&c., and I thus find that they assume the following simple form, viz. writing

$$
\Theta=b+c \theta+d \theta^{2}+e \theta^{3}+\& c \cdot
$$

then we have

$$
\begin{aligned}
& \frac{1}{\Theta}=\frac{1}{b} \cdot 1, \\
& \frac{1}{\Theta^{2}}=-\frac{2}{b^{3}}\left|\begin{array}{ccc}
\theta, & \frac{1}{2} \\
b, & c
\end{array}\right|, \\
& \frac{1}{\Theta^{3}}=+\frac{3}{b^{6}}\left|\begin{array}{ccc}
\theta^{2}, & \frac{1}{2} \theta, & \frac{1}{3} \\
b, & c, & d \\
b^{2}, & 2 b c
\end{array}\right|, \\
& \frac{1}{\Theta^{4}}=-\frac{4}{b^{10}}\left|\begin{array}{cccc}
\theta^{3}, & \frac{1}{2} \theta^{2}, & \frac{1}{3} \theta, & \frac{1}{4} \\
b, & c, & d, & e \\
& b^{2}, & 2 b c, & 2 b d+c^{2} \\
& & b^{3}, & 3 b^{2} c
\end{array}\right|,
\end{aligned}
$$

viz. for Θ^{-n} the right-hand gives the development as far as θ^{n-1}. It will be observed, that in the determinants the several lines are the coefficients in the expansions of $\Theta, \Theta^{2}, \Theta^{3}, \& c$. respectively.

The demonstration is very easy; it will be sufficient to take the equation for $\frac{1}{\Theta^{4}}$. Assume

$$
\frac{1}{\Theta^{4}}=\ldots r \theta^{6}+q \theta^{5}+p \theta^{4}+\beta \theta^{3}+\frac{1}{2} \gamma \theta^{2}+\frac{1}{3} \delta \theta+\frac{1}{4} \epsilon
$$

where clearly $\epsilon=\frac{4}{b^{4}}$, and write also

$$
\begin{array}{lr}
\Theta=B_{1}+C_{1} \theta+D_{1} \theta^{2}+E_{1} \theta^{3}+\ldots, \\
\Theta^{2}= & B_{2}+C_{2} \theta+D_{2} \theta^{2}+\ldots \\
\Theta^{3}= & B_{3}+C_{3} \theta+\ldots,
\end{array}
$$

where $B_{1}=b, B_{2}=b^{2}, B_{3}=b^{3}$; we wish to show that

$$
\begin{array}{r}
\beta B_{1}+\gamma C_{1}+\delta D_{1}+\epsilon E_{1}=0, \\
\gamma B_{2}+\delta C_{2}+\epsilon D_{2}=0, \\
\delta B_{3}+\epsilon C_{3}=0,
\end{array}
$$

for this being the case, neglecting the terms in θ^{4}, θ^{5}, \&c., and writing

$$
\beta \theta^{3}+\frac{1}{2} \gamma \theta^{2}+\frac{1}{3} \delta \theta+\epsilon\left(\frac{1}{4}-\frac{1}{\epsilon \Theta^{4}}\right)=0
$$

then eliminating $\beta, \gamma, \delta, \epsilon$, we have

$$
\left.\begin{array}{cccc}
\theta^{3}, & \frac{1}{2} \theta^{2}, & \frac{1}{3} \theta, & \frac{1}{4}-\frac{1}{\epsilon \Theta^{4}} \\
B_{1}, & C_{1}, & D_{1}, & E_{1} \\
& B_{2}, & C_{2}, & D_{2} \\
& & B_{3}, & C_{3}
\end{array} \right\rvert\,=0
$$

in which equation the term which contains

$$
\frac{1}{\Theta^{4}} \text { is }+\frac{1}{\epsilon} B_{1} B_{2} B_{3} \frac{1}{\Theta^{4}}, \quad=\frac{1}{4} b^{10} \frac{1}{\Theta^{4}} ;
$$

and the equation thus is $\frac{1}{\Theta^{4}}=-\frac{4}{b^{10}}$ multiplied by the determinant without the term in question (that is, with $\frac{1}{4}$ for its corner term).

To prove the subsidiary theorems, multiply the expression of $\frac{1}{\Theta^{4}}$ by $\frac{1}{\theta^{4}}$, and differentiate in regard to θ, we have

Multiplying by

$$
\frac{4(\theta \Theta)^{\prime}}{(\theta \Theta)^{5}}=\ldots-2 r \theta-q+\frac{\beta}{\theta^{2}}+\frac{\gamma}{\theta^{3}}+\frac{\delta}{\theta^{4}}+\frac{\epsilon}{\theta^{5}} .
$$

$$
\theta \Theta=B_{1} \theta+C_{1} \theta^{2}+D_{1} \theta^{3}+E_{1} \theta^{4}
$$

we see that $B_{1} \beta+C_{1} \gamma+D_{1} \delta+E_{1} \epsilon$ is the coefficient of $\frac{1}{\theta}$ in $\frac{4(\theta \Theta)^{\prime}}{(\theta \Theta)^{4}}$; and similarly $B_{2} \gamma+C_{2} \delta+E_{2} \epsilon$ is the coefficient of $\frac{1}{\theta}$ in $\frac{4(\theta \Theta)^{\prime}}{(\theta \Theta)^{3}}$, and $B_{3} \delta+C_{3} \epsilon$ that of $\frac{1}{\theta}$ in $\frac{4(\theta \Theta)^{\prime}}{(\theta \Theta)^{2}}$. Now, m being any positive integer, $\frac{1}{(\Theta \theta)^{m}}$ expanded in ascending powers of θ contains negative and positive powers of θ, but of course no logarithmic term; hence differentiating in regard to $\theta, \frac{(\Theta \theta)^{\prime}}{(\Theta \theta)^{m+1}}$ contains no term in $\frac{1}{\theta} ;{ }^{*}$ and the expressions in question are thus each $=0$; which completes the demonstration.

The foregoing formulæ giving the expansion of $\frac{1}{\Theta^{n}}$ up to θ^{n-1} in terms of the coefficients in the expansions of $\Theta, \Theta^{2}, \ldots \Theta^{n-1}$ are I think interesting.

[^1]
[^0]: * For in the result, as given in the text, instead of $\lambda f x$ write $x_{1} f_{1} x+x_{2} f x+\&$ c., then expanding the several powers of this quantity, each determinant is replaced by a sum of determinants of the same order, and we have the expansion of $F x$ in powers of x_{1}, x_{2}, \ldots.

[^1]: * This is a well-known method made use of by Jacobi and Murphy.

