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587.

A SMITH’S PRIZE DISSERTATION.

[From the Messenger of Mathematics, vol. ill. (1874), pp. 1—4.]

Write a dissertation:

On the general equation of virtual velocities.

Discuss the principles of Lagrange's proof of it and employ it [the general equation] 
to demonstrate the Parallelogram of Forces.

Imagine a system of particles connected with each Other in any manner and 
subject to any geometrical conditions, for instance, two particles may be such that their 
distance is invariable, a particle may be restricted to move on a given surface, &c. 
And let each particle be acted upon by a force [this includes the case of several 
forces acting on the same particle, since we have only to imagine coincident particles 
each acted upon by a single force]. Imagine that the system has given to it any 
indefinitely small displacement consistent with the mutual connexions and geometrical 
conditions; and suppose that for any particular particle the force acting on it is P, 
and the displacement in the direction of the force (that is, the actual displacement 
multiplied into the cosine of the angle included between its direction and that of 
the force P) is = bp. Then bp is called the virtual velocity of the particle, and the 
principle of virtual velocities asserts that the sum of the products Pbp, taken for all 
the particles of the system, and for any displacement consistent as above, is = 0; say 
that we have

This is also the general equation of virtual velocities: as to the mode of using 
it, observe that the displacements bp are not arbitrary quantities, but are in virtue of 
the mutual connexions and other geometrical conditions connected together by certain 
linear relations; or, what is the same thing, they are linear functions of certain inde­
pendent arbitrary quantities bu. Substituting for bp their expressions in terms of bu 
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we have XPδp = X Uδu, where the several expressions U are each of them a linear 
function of the forces P, and where on the right hand X refers to the several 
quantities δu; and the resulting equation is X77δu = 0j viz. since the quantities δu are 
independent, the equation divides itself into a set of equations 771 = 0, U2 = 0,... which 
are the equations of equilibrium of the system.

Lagrange imagines the forces produced by means of a weight W at the extremity 
of a string passing over a set of pulleys, as shown in the figure, viz. assuming the 
forces commensurable and equal to mW, nW, &c., we must have m strings at A, 

n strings at B, and so on. Suppose any indefinitely small displacement given to the 
system ; each string at A is shortened by δp, or the m strings at A by mδp; and the 
like for the other particles at B, &c.; hence, if mδρ + nδq+..., = -^-(Pδp + Qδq + ...), 

be positive, the weight W will descend through the space

Now, in order that the system may be in equilibrium, W must be in its lowest 
position; or, what is the same thing, if there is any displacement allowing W to 
descend, W will descend, causing such displacement, and the original position is not a 
position of equilibrium. That is, if the system be in equilibrium, the sum ΣPδp cannot 
be positive.

But it cannot be negative; since, if for any particular values of δp the sum XPδp 
is negative, then reversing the directions of the several displacements, that is, giving 
to the several displacements δp the same values with opposite signs, then the sum 
XPδp will be positive; and we assume that it is possible thus to reverse the directions 
of the several displacements. Hence, if the system be in a position of equilibrium, 
we cannot have 1Pδp either positive or negative; that is, we obtain as the condition 
of equilibrium ΣPδp = 0.

The above is Lagrange’s reasoning, and it seems completely unobjectionable. As 
regards the reversal of the directions of the displacements, observe that we consider 
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such conditions as a condition that the particle shall be always in a given plane, but 
exclude the condition that the particle shall lie on a given plane, i.e. that it shall 
be at liberty to move in one direction (but not in the opposite direction) off from 
the plane. But the pulley-proof is equally applicable to a case of this kind. Thus, 
imagine a particle resting on a horizontal plane, and let z be measured vertically 
downwards, x and y horizontally. Suppose the particle acted on by the forces X, Yt Z, 
and replacing these by a weight W as above, the condition of equilibrium is, that 

shall not be positive. We may have 8x and δy, each positive or negative; whence 
the conditions X = 0 and Y = 0. But 8z is negative; hence the required condition is 
satisfied if only Z is positive; that is, if the vertical force acts downwards. Clearly 
this is right, for if it acted upwards it would lift the particle from the plane. The 
case considered by Lagrange is where the particle is always in the plane; here 8z = 0, 
and there is no condition as to the force Z.

The only omission in Lagrange’s proof is, that he does not expressly consider the 
case of unstable equilibrium, where the weight W is at a position, not of minimum, 
but of maximum altitude. In such a case, however, the sum XPδj9 is still = 0, taking 
account (as the proof does) of the displacements considered as infinitesimals of the first 
order; although taking account of higher powers, the sum ΣPδp would have a positive 
value. An explanation as to this point might properly have been added to make the 
proof “ refutation-tight,” but the proof is not really in defect.

P.S. Lagrange excludes tacitly, not expressly, the case where the direction of a 
displacement is not reversible; he observes that the various displacements δp, when 
not arbitrary, are connected only by linear equations; and “ par consequent les valeurs 
de toutes ces quantites seront toujours telles qu’elles pourront changer de signe λ la 
fois.” The point was brought out more fully by Ostrogradsky, but I think there is 
no ground for the view that it was not brought out with sufficient clearness by Lagrange 
himself.

Parallelogram of forces.

Let P, Q, R be the forces, α, β, 7 their inclinations to any line; then taking δs 
the displacement in the direction of this line, the displacements in the directions of 
the forces are δ∙s cos α, δs cos β, 8s cos 7, and the equation ΣPδp = 0 assumes the form 

that is, we have 

viz. this equation holds whatever be the fixed line to which the forces are referred. 
It is easy to see that, supposing it to hold in regard to any two lines, it will hold 
generally, and that the relation in question is thus equivalent to two independent con­
ditions; and forming these we may obtain from them the theorem of the parallelogram 
of forces.
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But to obtain this more directly, take A, B, C for the angles between the forces 
Q and R, R and P, P and Q respectively, then A + B + C — 27γ, and thence 

whence writing α = ⅛7r, or taking the line of displacement at right angles to the 
force P, we have 

and the equation becomes OP - Qsin C + R sin B = 0, that is, Q : R = sin B : sin O'; and 
similarly R : P = sin C : sin A, that is, 

equations which in fact express that each force is equal and opposite to the diagonal 
of the parallelogram formed by the other two forces.
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