589.

ON RESIDUATION IN REGARD TO A CUBIC CURVE.

[From the Messenger of Mathematics, vol. III. (1874), pp. 62-65.]

THE following investigation of Prof. Sylvester's theory of Residuation may be compared with that given in Salmon's *Higher Plane Curves*, 2nd Edition (1873), pp. 133-137:

If the intersections of a cubic curve U_3 with any other curve V_n are divided in any manner into two systems of points, then each of these systems is said to be the residue of the other; and, in like manner, if starting with a given system of points on a cubic curve we draw through them a curve of any order V_n , then the remaining intersections of this curve with the cubic constitute a residue of the original system of points.

If the number of points in the original system is = 3p, then the number of points in the residual system is = 3q; and if we again take the residue, and so on indefinitely, the number of points in each residue will be $\equiv 0 \pmod{3}$; viz. we can never in this way arrive at a single point. But if the number of points in the original system be $3p \pm 1$, then that in the residual system will be $3q \mp 1$; and we may in an infinity of different ways arrive at a residue consisting of a single point; or say at a "residual point," viz. after an odd number of steps if the original number of points is = 3p - 1, but after an even number of steps if the original number of points is = 3p + 1. But starting from a given system of points on a given cubic curve, the residual point, however it is arrived at, will be one and the same point; this is Prof. Sylvester's theorem of the residual point; any other process leading to a residual point must lead to the same point. Thus if through the 2 points we draw a conic, meeting the cubic besides in 4 points; through these a conic meeting the cubic besides

27 - 2

in 2 points; and through this a line meeting the cubic besides in 1 point; this will be the before-mentioned residual point.

The general proof is such as in the following example:

Take on the cubic U_3 a system of $3\kappa - 2$ points, say the points α : through these a curve V_k , besides meeting the cubic in $3k - 3\kappa + 2$ points β : and through these a curve $P_{k-\kappa+1}$, besides meeting the cubic in a point C. And again through the $3\kappa - 2$ points α a curve W_k , besides meeting the cubic in $3k' - 3\kappa + 2$ points β' : and through these a curve $Q_{k-\kappa+1}$, besides meeting the cubic in a single point; this will be the point C.

The proof consists in showing that we have a curve $A_{k+k'-\kappa-2}$ such that

$$A_{k+k'-\kappa-2} U_3 = Q_{k'-\kappa+1} V_k + P_{k-\kappa+1} W_{k'}.$$

For this observe that

 $\begin{array}{l} Q_{k'-\kappa+1} \mbox{ meets } W_{k'} \mbox{ in } 3k'-3\kappa+2 \mbox{ points } \beta' \mbox{ and besides in } k'^2-k'(\kappa+2)+3\kappa-2 \mbox{ points } \epsilon'; \\ P_{k-\kappa+1} \mbox{ meets } V_k \mbox{ in } 3k-3\kappa+2 \mbox{ points } \beta \mbox{ and besides in } k'^2-k(\kappa+2)+3\kappa-2 \mbox{ points } \epsilon; \\ P_{k-\kappa+1}, \mbox{ } Q_{k'-\kappa+1} \mbox{ meet in } (k-\kappa+1)(k'-\kappa+1) \mbox{ points } C; \end{array}$

 V_k , $W_{k'}$ meet in $3\kappa - 2$ points α and $kk' - 3\kappa + 2$ points α ;

 $Q_{k'-\kappa+1} V_k$ and $P_{k-\kappa+1} W_{k'}$ meet in

$$kk' - k(\kappa - 1) - k'(\kappa - 1) + (\kappa - 1)^{2} \text{ points } C$$

$$3k' - 3\kappa + 2 ,, \beta'$$

$$k'^{2} - k'(\kappa + 2) + 3\kappa - 2 ,, \epsilon'$$

$$3k - 3\kappa + 2 ,, \beta$$

$$k^{2} - k(\kappa + 2) + 3\kappa - 2 ,, \epsilon$$

$$kk' - 3\kappa + 2 ,, a$$

$$\frac{3\kappa - 2}{(k + k')^{2} - (2\kappa - 2)(k + k') + (\kappa - 1)^{2}}, \alpha$$

$$(k + k' - \kappa + 1)^{2} \text{ points.}$$

Every $(k + k' - \kappa + 1)$ this through

$$\frac{1}{2}(k+k'-\kappa+1)(k+k'-\kappa+4)-1$$

of these points passes through all.

Now $A_{k+k'-\kappa-2}$ may be drawn to pass through

 $\frac{1}{2}(k+k'-\kappa-2)(k+k'-\kappa+1)$

of the points a.

212

www.rcin.org.pl

Hence $A_{k+k'-\kappa-2}U_3$ is a $(k+k'-\kappa+1)$ thic through

$$\frac{1}{2} (k + k' - \kappa - 2) (k + k' - \kappa + 1)$$

$$= \frac{1}{2} (k + k')^{2} - \frac{1}{2} (2\kappa + 1) (k + k') + \frac{1}{2} (\kappa^{2} + \kappa - 2) \text{ points } \alpha$$

$$3\kappa - 2 \quad , \quad \alpha$$

$$3k \quad -3\kappa + 2 \quad , \quad \beta$$

$$\frac{3k' \quad -3\kappa + 2}{\frac{1}{2} (k + k')^{2} + (-\kappa + \frac{5}{2}) (k + k') + \frac{1}{2} \kappa^{2} - \frac{5}{2} \kappa + 1} \quad \beta$$

$$= \frac{1}{2} \{(k + k')^{2} + (k + k') (-2\kappa + 5) + (\kappa - 1) (\kappa + 4) - 2\}$$

$$= \frac{1}{2} (k + k' - \kappa + 1) (k + k' - \kappa + 4) - 1$$

of the points in question; and therefore through all. Whence

$$A_{k+k'-\kappa-2} U_3 = Q_{k'-\kappa+1} V_k + P_{k-\kappa+1} W_{k'}.$$

Also U_3 meets $Q_{k'-\kappa+1} V_k$ in $3 (k+k'-\kappa+1)$ of the $(k+k'-\kappa+1)^2$ points, viz. these are

$$3\kappa - 2$$
 points α ,
 $3k - 3\kappa + 2$, β ,
 $3k' - 3\kappa + 2$, β' ,
 1 ,, C ,

and $A_{k+k'-\kappa-2}$ meets $Q_{k'-\kappa+1} V_k$ in $(k+k'-\kappa-2)(k+k'-\kappa+1)$, that is, in

$$(k+k')^2 + (k+k')(-2\kappa - 1) + \kappa^2 + \kappa - 2$$

of the

$$(k+k'-\kappa+1)^2$$
 points,

viz. these are

kk'	+(k+k')(-	$(\kappa + 1) + \kappa^2 - 2\kappa$	points C	y
k'^2	$-k'(\kappa+2)$	$+ 3\kappa$	-2 " é	,
k^2	$-k (\kappa + 2)$	$+ 3\kappa -$	-2 " ε	
kk'		— З <i>к</i> -	+2 " a	
(k+k')	$)^{2} + (k + k')(-2)^{2}$	$(2\kappa-1)+\kappa^2+\kappa^2$		

Hence U_3 passes through 1 of the points C, that is, through an intersection of $Q_{k'-\kappa+1}$ and $P_{k-\kappa+1}$, that is, $Q_{k'-\kappa+1}$ and $P_{k-\kappa+1}$ intersect U_3 in a common point C; which was the theorem to be proved.

In the particular case $3\kappa - 2 = 10$, k = k' = 4, the theorem is, given on a cubic 10 points, if through these we draw a quartic meeting the cubic besides in 2 points;

589]

ON RESIDUATION

and through these a line meeting the cubic besides in a point C; then this is a fixed point, independent of the particular quartic. And the proof is as follows: we have

U a cubic through 10 points α ;

V a quartic through the 10 points, and besides meeting the cubic in 2 points β ;

W a quartic through the 10 points, and besides meeting the cubic in 2 points β' ;

P the line joining the two points β , and besides meeting V in two points ϵ ;

Q the line joining the two points β' , and besides meeting W in two points ϵ' ; P, Q meet in the point C;

U, V meet in the 10 points α , and besides in 6 points a;

A a conic through 5 of the points a.

Then quintics QV, PW meet in the 10 points α , 2 points β , 2 points ϵ , 2 points β' , 2 points ϵ' , 6 points a and 1 point C. Every quintic through 19 of these passes through the 25. But we have AU, a quintic through 5 points a, and the 10 points α , 2 points β and 2 points β' ; hence AU passes through all the remaining points, or we have

AU = QV + PW,

Р	passes through	β,	β,	ε,	ε, (Ο,				
Q	"	β',	β',	έ,	ε', (С,				
V	"	ε,	ε,	β,	β,	6	points a	, 10	points	α,
W	23	ε',	€',	β',	β',	6	points a	e, 10	points	α,
A	33	ε,	€,	έ,	ε',	6	points a	<i>b</i> ,		
U	>>	β,	β,	β',	β', C	7,				

or, what is the same thing,

A ,	Р	intersect in	ε,ε,
А,	Q	"	ϵ' , ϵ' ,
А,	V	"	ϵ , ϵ , 6 points a ,
А,	W	"	$\epsilon', \epsilon', 6$ points a ,
U,	P	"	β, β, C,
U,	Q	"	$\beta', \beta', C,$
U,	V	"	β , β , 10 points α ,
U,	W	23	$\beta', \beta', 10$ points α .

In particular U, P, Q intersect in the point C; that is, C as given by the intersection of U by the line P; and as given by the intersection of U by the line Q; is one and the same point.

214