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591.

A SMITH’S PRIZE PAPER AND DISSERTATION; SOLUTIONS
AND REMARKS.

[From the Messenger of Mathematics, vol. ill. (1874), pp. 165—183, vol. ιv. (1875), 
pp. 6—8.]

1. Find the triangular numbers which are also square.

The “ mise en equation” is immediate; we have to find n, m such that 

or, what is the same thing,

Observing that this is satisfied by n = m=l, that is, 2?i + 1 = 3, 2m = 2, we have the 
general solution given by 

where p is any positive integer; viz. 2n + 1, 2m being rational, this implies 

and thence the equation in question. The successive powers 

give the solutions 

viz. the square triangular numbers are
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2, Show how to express any symmetrical function of the roots of an equation in 
terms of the coefficients. What objection is there to the method which employs the sums 
of the powers of the roots ∕

The ordinary method is that referred to, employing the sums of the powers of 
the roots; but it is a very bad one. In fact, writing 

leading to 

then if the method were employed throughout, we should have for instance to find 
Saβγ, that is, d, from the formula 

but the process introduces terms b3 and be each of a higher order than d (reckoning 
the order of each coefficient as unity), with numerical coefficients which destroy each 
other. And, so again, Sa2β would be calculated from the formula

— —------------- — —------ 7

but there is here also a term b3 of a higher order, with numerical coefficients which 
destroy each other. And the order in which the several expressions are derived the 
one from the other is a non-natural one; S3 is required for the determination of 
Sa2β, whereas (as will be seen) it is properly Sa2β which leads to the value of S3.

The true method is as follows: we have 

and we thence derive the sets of equations
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viz. we thus have 1 equation to give Sa; 2 equations to give Saβ and Sa2; 3 equations 
to give Saβy, Sa2β, Sa3; and so on. And taking for instance the third set of equations, 
the first equation gives Saβy, the second then gives Sa2β, and the third then gives 
Sa3, viz. we have

Of course the process for the formation of the successive sets of equations would 
require further explanation and development.

3. Given a point P in the interior of an ellipsoid, show that it is possible to 
determine an exterior point Q such that for every chord RS through P, the relation 
QR : QS = PR : PS may hold good.

There is no difficulty in the analytical solution and in showing thereby that the 
point Q is determined as the intersection of the polar plane of P by the perpend­
icular let fall from P on this plane. But a simple and elegant geometrical solution 
was given in the Examination. Constructing Q as above, let the chord RS meet the 
polar plane of P in Z; then the polar plane of Z passes through P, that is, the 
line ZP is harmonically divided in R, S, or we have

Again ZQP being a right angle, the sphere on ZP as diameter will pass through Q; and 
R, S being points on the diameter, and Z, Q points on the surface, ZR : ZS = QR : QS; 
whence the required relation QR : QS =■ PR : PS.

4. Find the number of regions into which infinite snace is divided by n planes.

The number ⅜(n3 + 5n + 6) is a known result, but not a generally known one, and 
I intended the question as a problem; I do not think it is a difficult one.

Consider the analogous problem for lines in a plane: the first line divides the 
plane into 2 regions.

The second line is by the first divided into 2 parts, and therefore adds 2 regions.

The third line is by the other two divided into 3 parts, and therefore adds 
3 regions; and so on.

That is, the number of regions for

1 line is = 2 =2 regions,
2 lines =2 + 2 = 4 „

3 lines =2 + 2 + 3 =7 „

n lines = 2 + 2 + 3 + ... + n = ⅜(n2 + n + 2) „
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In exactly the same way for the problem in space:
The first plane divides space into 2 regions.
The second plane is by the first plane divided into 2 regions, and therefore adds 

2 regions.
The third plane is by the other two planes divided into 4 regions, and therefore 

adds 4 regions.
The fourth plane is by the other three planes divided into 7 regions, and there­

fore adds 7 regions: and so on.

That is the number of regions for

1 plane is = 2 = 2 regions
2 planes =2 + 2 = 4 „
3 planes =2 + 2 + 4 =8,,
4 planes =2 + 2 + 4 + 7 =15 „

n planes = 2 + 2 + 4 + 7 + ... + ⅜ (n2 — n + 2) = ⅜ (n3 + 5n + 6),
# »

where, for effecting the summation, observe that the series is

5. In the theory of Elliptic Functions, explain and connect together the notations 
F(θ), am u (sinarnu, cosam u, ∆am u), illustrating them by reference to the circular 
functions* .

What is asked for is an explanation of the fundamental notations of Elliptic 
Functions. To a student acquainted with the subject, the only difficulty is to say 
enough to bring the meaning fully out, and not to say more than enough.

Defining F(x) by the equation

(viz. the integral is taken from 0 up to the indefinite value x), then the fundamental 
property of elliptic functions (derived from consideration of the differential equation 

consists herein, that the functional relation

* It would have been better in the question to have written F (x) instead of F(θ).
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is equivalent to an algebraic equation between the arguments x, y, z. F(x) as defined 
by the foregoing equation is properly an inverse function; this at once appears from 
a particular case, viz. writing k = 0, F (x) = sin-1 x, and the theory of the function F (x) 
in the general case corresponds to what the theory of circular functions would be, if 
writing F(x) to denote sin-1 a?, we were to work with "the equation 

as equivalent to the algebraical equations (one a transformation of the other)

But in the actual theory of circular functions, we introduce the direct symbols sin, 
cos; writing F(x) = θ, that is, x = sin θ, √(1 — x2) = cosθ, and similarly F(y) = φ, that is, 
y = sin φ and √(1 — y2) = cos φ, then the equation

becomes F(z)=θ + φ, that is, ^ = sin(d + φ), √(1 — z2} = cos (θ + φ'), and the other two 
equations become 

viz. these are the addition-equations for the functions sin and cos.

In passing from the original notation F(x) to the notation amu, we make the 
like step of passing from an inverse to a set of direct functions; first modifying the 
meaning of F, so as to denote by F(θ) what was originally ,F(sin0), we have as the 
new definition

(if as usual Δ0 denotes √(1 — k2 sin2 θ}), and this being so, the relation F (β) + F (φ) = F (μ) 
is equivalent to a relation between the sine, cosine, and Δ of θ, φ, μ. Writing then 
F(θ) = u, and considering this equation as determining θ as a function of u, θ = am u, 
we have sin θ = sin . am u, cos θ = cos. am u, and ∆0=∆.amu, and similarly F(φ)=υ, 
φ=a,τnv, &c., then the equation F(θ) + F(φ) = F(μ) becomes F(μ)==u + v, that is, 
μ = am (-u + v); and the algebraic relation in its various forms gives the values of 
sin. am (u + υ), cos. am (u + v∖ Δ.am(κ + 2∕) in terms of the like functions of u, v 
respectively, viz. it is the addition-theorem for the function am.

Observe that am u is considered as a certain function of u, sι'n. am u is its sine, 
cos. am u its cosine, and 

a function analogous to a cosine. But making only a slight change in the point of 
view, we have sinam u, a certain function of u, and
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two allied functions, viz. sinam u is analogous to a sine, and the other two functions 
to cosines; the algebraical equations give the sinam, cosam, and ∆am of u + v in 
terms of the like functions of u and v respectively, viz. they constitute the addition­
theorem for these functions.

6. Find the differential equation satisfied by a hyperg eometric series, and express 
by means of such seines the coefficients of the expansion of (1 — 2α cos θ 4- afn according 
to multiple cosines of θ.

I understand the expression “ hypergeometric series ” in the restricted sense in 
which it signifies the series

I find it was understood in the more general sense of a series

where the coefficient αn+1 is given in terms of the preceding one α,l by an equation 
of the form αn+1 = φ (n). an. In this latter sense, but supposing for greater simplicity, 
that φ (n) is a rational and integral function of n, the solution is as follows: we operate 

(cZ ∖ rf
xdx∕ ', v^z' X dx reSarded as a s*ngle 8ymb°1 °f 

operation; x .xn = nxn, (xxn = n2xn, &c.; thus x is, as regards xn, = n, and

therefore We thence have 

and consequently

which is the required differential equation. This is equivalent to the process given

in Boole, only he writes x = eθ, in order to reduce x ~ to a mere differentiation ~.

I regard this introduction of a new variable θ as most unfortunate; the effect is

entirely to conceal the real nature of the operation; the notion of x as a single

symbol of operation is quite as simple as that of ~; and by means of it we retain 
the original variable.

The process is substantially the same when φ (n) is a rational fraction, but I give 
the investigation directly for the hypergeometric series in the restricted sense, viz. 
writing u for the series F (a, β, y, x), we find
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or, what is the same thing, 

as at once appears by writing the general term successively under the two forms 

and

The differential equation may also be written

Take next the function

where the second term contains the factor j a, the third the factor and

so on. Throwing these out, the remaining factors are each of them a hypergeometric 
series, viz. representing the whole expression by 

we have 

and generally
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__ L
7. The function e (χ-a^ has been suggested as an exception to the theorem that if 

a function and all its differential coefficients vanish for a given value of the variable, 
then the function is identically =0; discuss the question as regards the precise meaning 
of the theorem, and validity of the exception.

The suggestion was made by Sir W. R. Hamilton; the following remarks arise 
in regard to it:

ι
The function e (* -α>2 is a function which in a certain sense satisfies the condition 

that for a given value (= α) of the variable, the function and all its differential 
i_ 

coefficients vanish; viz. each differential coefficient is of the form Xe <a5-α>,, where X 
is a finite series of negative powers of x — a; if then x = a + r, where r is real and 
positive, and if r continually diminishes to zero, then (x — α)2, remaining always real 

and positive, continually diminishes to zero, that is, — ——- remaining always real and(Λ∕ —" Cl)
__ 1

negative continually increases to — ∞, and e (*- α>a remaining always real and positive 
continually diminishes to zero. And, moreover, (X containing only a finite series of 

ι
negative powers of x — a) the expression Xe (≈e-α>*  will in like manner, remaining always 
real, continually approximate to zero. But assume x = a + r (cos θ + i sin 0), r real and 
positive, 0 real; then (x — a)2 = r2 (cos 20 + i sin 20), and if cos 20 be positive, then the 
real part of (x — a)2, being always positive, continually diminishes to zero, and the like 
conclusions follow. If however cos 20 be negative, then the real part of (x — a)2 is 

negative, and the real part of ~ zp- ayi is positive, and as r diminishes continually 
ι

approximates to + ∞; so far from e (χ~a'>i continually approximating to zero, it is in 
general an imaginary quantity continually approximating to infinity; and the like is 
the case with its successive differential coefficients; the conclusion is, it is not true 

ι_
simpliciter that the function e <a,-β>,, or any one of its successive differential coefficients, 
vanishes for the value a of the variable.

Generally, if a real or imaginary quantity a + βi is represented by the point whose 
rectangular coordinates are a, β; say if the value a of the variable x is represented 
by the point P, and any other value a + h + ki, by the point Q (h, k being therefore 
the coordinates of Q measured from the origin P), then a function F (x) which as Q 
(no matter in what direction) approaches and ultimately coincides with P, tends to 
become and becomes ultimately = 0, may be said to vanish simpliciter for the value a 
of the variable; but if this is only the case when Q approaches P in a certain 
direction or within certain limits of direction, the function not becoming zero when 
Q approaches in a different direction, then the function may be said to vanish sub 
modo for the value a of the variable.

Taking the theorem to mean “ If for a given value a of the variable, a function 
and its differential coefficients vanish sub modo, the function is identically = 0,” the
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instance of the function e ^x~a^ shows that the theorem is certainly not true; but 
taking the theorem to mean “ If for a given value a of the variable, the function 
and its differential coefficients vanish simpliciter, then the function is identically =0”; 
the instance does not apply to it, and the truth of the theorem remains an open 
question.

The above view is consistent with a theorem obtained by Cauchy and others, 
defining within what limits of h the expansion by Taylor’s theorem of the function 
F(a + h) is applicable, viz. a and h being in general imaginary as above, if the 
function (or ? the function and its successive differential coefficients) is (or are) finite 
and continuous so long as the distance PQ does not exceed a certain real and positive 
value p, then the expansion is applicable for any point Q, whose distance PQ does not 
exceed this value p: but it ceases to be applicable for a point Q, the distance of 

ι 
which is equal to or exceeds p. In the case of a function such as e (χ~a')2, dis­
continuity arises at the point P, that is, for the value p = 0, and according to the 
theorem in question, the expansion is not applicable for any value of p however small.

I wish to remark on a view which appears to me to be founded on a radical 
ι 

misconception of the notion of convergence. Writing F(x) = e (χ~a)2, consider the series

ι
Then admitting that the exponential e (χ-ayi becomes =0 for x = a, the successive 
functions F(α), F,(a), F"(a),... are each =0 as containing this exponential: but inas­
much as the successive differentiations introduce negative powers of x — a, each successive 
function is regarded as an infinitesimal of a lower order than those which precede it; 
say F(a) being = O, the successive terms are multiples 0fj-, (F~3, O~6, 0ft^^9, &c. respect­
ively ; where however μ is infinite, so that the several exponents μ,, μ, — 3, p — 6, &c., 
however far the series is continued, remain all of them positive. This being so, it is 

said that the series F(α) + F'(α) ∣ + &c., as being really of the form O + 0μ~3 + O-6+... 

is divergent, and for this reason fails to give a correct value of F(a + h). I appre­
hend that the notion of divergence is a strictly numerical one; a series of numbers 
a + b + c + d + ... is divergent when the successive sums a, a+b, a + b + c, a + b + c + d, 
&c., are numbers not continually tending to a determinate limit. In the actual case 
the series is 0+0 + 0 + 0 + ..., viz. each term is by hypothesis an absolute zero; the 
successive sums 0, 0 + 0, 0 + 0 + 0, ... are each =0, and we cannot, by the process of 
numerical summation, make the sum of the series to be anything else than 0. If it 
could, there would be an end of all numerical equality between infinite series; for 
taking any convergent series α + δ + c + d+..., if 0 means 0, this is the same thing 
as the series, also a convergent one,
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and their difference 0 + 0÷0 + ... must be = 0. I regard the view as a mere failure 
to reconcile the equation 

with the supposed fact in regard to the function

8. Find the value of the definite integrals 

the limits being in each case ∞, — ∞. Examine whether the last two integrals can be 
found by a process such as Laplace’s (depending on a double integral) for the first 
integral.

Laplace’s process for the integral J"e~χ,dx is as follows: write u= ∣'e~χ, dx, then also 

w= le~ytdy, and thence 

which, considering x, y as rectangular coordinates and substituting for them the polar 
coordinates r, θ, becomes 

and then considering the double integral as extending over the infinite plane, and 
taking the limits to be r = 0 to r= ∞ , θ = 0 to θ- 2ττ, we obtain 

that is,

There is an assumption the validity of which requires examination. We have u the 
limit of the integral I e~xli dx, as α approaches to co; and this being so, we have

√ —<x

u2 the limit of 

viz. %2 is the integral of e~^+^ taken over a square, the side of which is 2α, α being 
ultimately infinite. But making the transformation to polar coordinates, and integrating 
as above, we in fact take the integral over a circle radius = β, β being ultimately 
infinite. And we assume that the two values are equal; or, generally, that taking 
the integral over an area bounded by a curve which is such that the distance of 
every point from the origin is ultimately infinite, the value of the integral is inde­
pendent of the form of the curve.
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This is really the case under the following conditions: l0. For a curve of a given 
form, the integral tends to a fixed limit, as the size is continually increased. 20. The 
quantity under the integral sign is always of the same sign (say always positive); 
(the last condition is sufficient, but not necessary). For, to fix the ideas, let the curves 
be as before the square and the circle : take a square; surrounding this, a circle; and 
surrounding the circle, a square. Imagine the two squares and the circle continually to 
increase in magnitude; the integral over the smaller square and that over the larger 
square, each tend to the same fixed limit; consequently the integral over the area 
enclosed between the two squares tends to the limit zero; and a fortiori the integral 
over the area enclosed between the circle and either of the two squares tends to the 
limit zero; that is, the integral over the square, and that over the circle, tend to the 
same limit. In the case under consideration, the function β^~(£ca+2/2> is always positive; 
and the integral j'j'e~fχ2+^, dxdy, taken over the circle, tends (as in effect shown above) 

to the limit 7r: hence the process is a legitimate one.

But endeavour to apply it to the other two integrals; write 

then 

where the double integrals on the left-hand side really denote integrals taken over a 
square and are not equal to the like integrals taken over a circle. This appears 
d posteriori if we only assume that the integrals u, v have determinate values; for 
taking the integrals over a circle they would be

sinand would involve the indeterminate functions ∞; that is, if it were allowable to cos
take the integrals over a circle, we should have %uv and υ2 — u2 indeterminate instead 
of determinate.

A process of finding them is as follows: in the equation Je-a≈2dx = f(τr), sub­

stituting in the first instance x √(α) for x, a real and positive, we have 

and if it be assumed that this equation extends to the case where a = a + βi, the 
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real part a real and positive*;  or, what is the same thing, a = p (cos θ + ι sin θ), p real 
and positive, θ between the limits 0 and ⅜7r, then we have 

or, separating the real and imaginary parts and taking p = 1, we have

Admitting these formulae to be true in general, there is still considerable difficulty in 
seeing that they hold good in the limiting case ^ = ⅜7Γ. But assuming that they do, 
the formulae then become 

which are the values of the integrals in question.

9. Considering in a solid body a system of two, three, four, five, or six lines, deter­
mine in each case the relations between the lines in order that it may be possible to 
find along them forces to hold the body in equilibrium.

If there are two lines, the condition obviously is that these must be one and the 
same line.

If three lines, then these must lie in a plane, and meet in a point.

The conditions in the other cases ought to be in the text-books; they in fact 
are not, and I assumed that they would not be known, and considered the question 
as a problem; it is, in regard to the cases of four and five lines, a very easy problem 
when the solution is seen.

In the case of four lines; imagine in the solid body an axis meeting any three 
of the lines, and let this axis be fixed; the condition of equilibrium about this axis 
is that the fourth line shall meet the axis. The required condition therefore is that 
every line meeting three of the four lines shall meet the fourth line; or, what is the 
same thing, the four lines must be generators (of the same kind) of a skew hyperboloid.

In the case of five lines, taking any four of them, we have two lines (tractors) 
each meeting the four lines; and taking either of the two lines as an axis, then for 
equilibrium the fifth line must also meet this axis; the required relations therefore 
are that the fifth line shall meet each of the two lines which meet the other four 
lines; or, what is the same thing, that there shall be two lines each meeting the 
five given lines.

* The equation is clearly not true unless this is so: for a being negative, then in virtue of the factor 
e-<∞ζ f}ιe exponential, instead of decreasing will increase, and ultimately become infinite as x increases to ÷∞
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The case of six lines is one the answer to which could not have been discovered 
in an examination; the relations in fact are that the six lines shall form an involution; 
viz. this is a system such that taking five of the lines as given, then if the sixth 
line is taken to pass through a given point it may be any line whatever in a 
determinate plane through this point; or, what is the same thing, if the sixth line 
is taken to be in a given plane, it may be any line whatever through a determinate 
point in this plane. But in a particular case, the answer is easy; suppose five of 
the six given lines to be met by a single line, then the sixth line may be any line 
whatever meeting this single line.

10. If X, Ir, Z,... are the roots of the equation 

show that the differential equation obtained by the elimination of c is ζX'Y'Z' = 0, where 
ζ denotes the product of the squared differences of the roots X, 17, Z,..., and X', Y', Z,,... 
are the derived functions of these roots; and connect this result with the theory of 
singular solutions.

We have identically 

the original equation and its derived equation 

(the latter of them of degree n — 1) may therefore be written

To eliminate c, we have in the nilfactum of the second equation to substitute succes­
sively the values c = X, c= Y, &c., multiply the several functions together and equate 
the result to zero; the factors are evidently 

where each difference occurs twice, e.g. X — Y under the two forms X —Y and Y — X 
respectively; the result thus is 

that is,

Thus in particular in the case of a quadric equation 

the differential equation is 
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viz. since X + Y = -P, and λrΓr = Q, this is 

and writing also 

we find 

the differential equation thus is

The application to the theory of singular solutions is that, in the case where the 
function (1, P, Q...)(c, l)n breaks up into rational factors c — X, c-Y,..., the factor 
ζ=(X — Y)2(X — Z)-... divides out and should be rejected from the differential equation, 
which in its true form is X,Y'Z' ... = 0; viz. this is what we obtain immediately, 
considering the given integral equation as meaning the system of curves c — X = 0, 
c— lr=0,..., and there is not really any singular solution; whereas in the case where 
the factors are not rational, the factor in question, when the product X'Y,Z'... is 
expressed in terms of the coefficients P, Q,..., and their derived coefficients does not 
divide out from the equation; and in this case, equated to zero, it gives a proper 
singular solution of the equation.

11. In the theory of elliptic motion, v denoting the mean anomaly and e the eccen- 

tricity, if m' be an angle such that tan ⅜v = r-----tan ⅛m', find in terms of e, m the1 β
mean anomaly m.

Taking as usual u for the eccentric anomaly, to commence the solution write down 

that is, 

and u being given hereby as a function of m', we have by substitution in the equation 
m = w —esinu, to find m as a function of m'.

A creditable approximate solution would be m = m' + 0 .e, viz. this would be to 
show that neglecting terms in e2, &c., we have m = m'. In fact, taking e small, we have 

and thence if u = m' + x, we have
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that is,

and

The complete solution would be obtained by expanding u in terms of e, m' from the 
equation tan⅜w = √(⅛) tan ⅜m' (which is of the form tan ⅛u = n tan ∣w√, giving for 

u a known series = m' + multiple sines of m'∖ and then observing that the same 
equation leads to 

we have 

where the second term has also to be expanded in a series of multiple sines of w/; 
which can be done without difficulty.

12. If (u, v) are given functions of the coordinates (x, y), neither of them a 
maximum or a minimum at a given point 0; and if through 0 we draw Ox' in the 
direction in which v is constant and u increases, and 0y' in the direction in which u is 
constant and v increases; then the rotation (through an angle not greater than 7r), from 
Ox' to 0y, is in the same direction with that from Ox to 0y, or in the contrary 

direction, according as is positive or negative.

The theorem has not, so far as I am aware, been noticed, and it seems to be 
one of some importance; there is no difficulty in it, but the answer requires some 
care in writing out; of course where the whole question is one of sign and direction, 
the omission to state that a subsidiary quantity is positive may render an answer 
worthless.

It depends on the following lemma: Consider the triangle OX'Y', such that Ox, 
0y being any rectangular axes through the origin 0, the coordinates of X' are h, k, 
and those of Y, are h1, k1∙. then considering the area as positive, the double area is 
= ± (hk1 — h1k), viz. the sign is + or — according as the rotation from OX' to 0 Y' 
(through an angle less than 7r) is in the same direction with that from Ox to 0y, 
or in the contrary direction; or, what is the same thing, hk1 — hlk is in the first case 
positive and in the second case negative.

To show this, suppose for a moment that the lines 0X', OY' are each of them 
in the quadrant xθy, say in the first quadrant, the inclination of 0Y' to Ox exceeding 

that of OX' to 0x', then h, k, h1, k1 are all positive, and that is, hk1- h1k is +, 
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and the rotation from OX' to OY' is in the same direction as that from Ox to Oy; 
or the lemma holds good. Now OX' remaining fixed, let OY' revolve in the direction 

Ox to Oy; so long as OY' remains in the first quadrant, f continues to increase, ∕⅛ι
β jc

and we have always and hk1-h1k≈ + ,, when OY' comes into the second quadrant

(h, k being always positive), h1 is negative and k1 positive, consequently hk1 — h1k is 
the sum of two positive terms, and therefore = + ; as OY' continues to revolve and 

k kpasses into the third quadrant, we have h1, k1 each negative, but < jb> and therefore 

hk1 — h1k still = +; when, however, 0 Y' comes into the position opposite to 0X', then 
k kjt~jl> and hk1-hxk is =0; and when 0Y', continuing in the third quadrant, has

1 ... k k
passed the position in question, we have ~ > ⅛, and therefore hk1 -h1k≈-, but now 

the angle X'0Y' measured in the original direction has become >7r, and the rotation 
OX' to OY' through an angle less than 7r will be in the opposite direction, that is, 
in the direction opposite to that from Ox to Oy; and, similarly, when OY' passes 
into the fourth quadrant, and until, passing into the first quadrant, it approaches the 
position OX', the sign of hk1 — h1k will be —, and the rotation will be in the direction 
contrary to that from Ox to Oy. The lemma is thus true for any position of OX' 
in the first quadrant; and the like reasoning would show that it is true for any 
position of OX' in the second, the third, or the fourth quadrant; hence the lemma 
is true generally.

This being so, taking a new origin, let the coordinates of 0 be x, y; and drawing 
through 0 the axes 0x', Oy' as directed, let X' be the point belonging to the values 
u + δu, v of (u, v), and Y' the point belonging to the values u, υ + δv of (u, υ); taking 
8u positive, X' will be on Ox' in the direction 0 to x', and similarly taking δυ 
positive, Y' will be on Oy' in the direction 0 to y'. Taking as before (Λ, k) for the 
coordinates of X', and (λ1, Λ1) for the coordinates of Y', these coordinates being measured 
from the point 0 as origin, we have 

whence, writing for a moment
And in like manner 

whence

www.rcin.org.pl



234 a smith’s prize paper and dissertation ; [591

and hence

that is, 

and 8u, 8υ being as above each of them positive, J has the same sign as hk1 — h1k. 
But the rotation from OX' to 0Y' is in the same direction as that from Ox to 0y, 
or in the contrary direction, according as lιk1 — h1k is + or —, that is, according as

is + or —; which is the theorem in question.

13. Write a dissertation on:

The theory and constructions of Perspective.

In Perspective we represent an object in space by means of its central projection 
upon a plane: viz. any point P1* of the object is represented by P', the intersection 
with the plane of projection of the line DvP1 from the centre of projection (or say 
the eye) D1 to the point P1j and considering any line or curve in the object, this is 
represented by the line or curve which is the locus of the points P', the projections 
of the corresponding points P1 of the line or the curve in the object.

* The subscript unity is used to denote a point not in the plane of projection, considered as a point 
out of this plane; a point in the plane of projection, used in the constructions of perspective as a con­
ventional representation of a point P1, will be denoted by the same letter P without the subscript unity. 
And the like as regards D1 and D.

The fundamental construction in perspective is derived from the following con­
siderations : viz. considering through P1 (fig. 1) a line meeting the plane of projection 
in Q, and draλving parallel thereto through D1 a line to meet the plane of projection 
in M and joining the points M, Q, then the lines D1M, MQ, QP1 are in a plane; 
that is, the plane through D1 and the line P1Q meets the plane of projection in MQ;

and consequently the projection P' of any point P1 in the line P1Q lies in the line 
QM; and not only so, but considering only the points P1 of this line which lie 
behind the plane of projection (D1 being considered as in front of it), the projections 
of all these points lie on the terminated line viz. Q is the projection of the
point Q, and M the projection of the point at infinity on the line QP1; or, if we 
please, the finite line QM is the projection of the line QP1∞ .
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If we consider a set of lines parallel to P1Q, these all give rise to the same 
point M, and thus their projections MQ all pass through this point M, which is said 
to be the “ vanishing point ” of the system of parallel lines. Again, if we consider 
any two or more lines through P1, to each of these there correspond different points 
M and Q, and, therefore, a different line MQ, but these all intersect in a common point 
P' which is the projection of P1. If the lines are all in one and the same plane 
through P1, then the locus of the points Q is a line, the intersection of this plane 
with the plane of projection, say the “ trace ” line; and the locus of the points M 
is a parallel line, the intersection of the parallel plane through D1 with the plane of 
projection; say this is the “ vanishing line ” for the plane in question.

A construction in perspective presupposes a conventional representation on the 
plane of projection (or say on the paper) as well of the position of the eye as of the 
object to be projected. If for simplicity we suppose the object to be a figure in one 
plane, then this plane intersects the paper in a trace line, and we may imagine the 
plane made to rotate about the trace line until it comes to coincide with the paper, 
and we have thus the plane object conventionally represented on the paper. Similarly 
considering the parallel plane through the eye D1, and regarding D1 as a point of 
this plane, the plane meets the paper in the vanishing line, and we may imagine the 
plane made to rotate (in the direction opposite to that of the first rotation) until it 
comes to coincide with the paper, bringing the point D1 to coincide with a point D 
of the paper. We have thus the “ point of distance ” D, being a conventional repre­
sentation on the paper of the position of the eye D1j but which point D has, observe, 
a different position for different directions of the plane of the object.

To fix the ideas, suppose the plane of projection to be vertical, and the plane of 
the object to be a horizontal plane situate below the eye. The trace line will be 
represented by a horizontal line HH' (fig. 2), and the object by a figure in the plane 

of the paper below the line HH, such that, bending this portion of the paper back­
wards through a right angle round HH,, the figure would be brought to coincide with 
the object*.  The vanishing line will be a horizontal line KK' above HH,i and the

* It is assumed in the text, that the figure on the paper is equal in magnitude to the object; but 
practically the figure is drawn on a reduced scale, the distance between the lines KK,, HIΓ, and the distance 
DS (representing respectively the distance between the parallel planes, and the distance of the eye from the 
plane of projection) being drawn on the same reduced scale.
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eye will be represented by a point D above KK', in suchwise that, bending the upper 
part of the paper round KK, forwards through a right angle, the point D would come 
to coincide with the position D1 of the eye. This being so, taking any line PQ in 
the representation of the object, we draw through D the parallel line DM, and then 
joining the points M and Q, we have MQ as the perspective representation of the 
line QP∞, which represents a line QP1∞ of the object. And drawing through P any 
number of lines, each of these gives a point Q and a point M, but the lines MQ 
all meet in a common point P,, which is the perspective representation of the point 
P; which point P' may, it is clear, be obtained as the intersection with any one line 
MQ of the line DP drawn to join P with the point of distance D. The plane of 
the object has for convenience been taken to be horizontal; but its position may be 
any whatever, and in particular the construction is equally applicable in the case where 
the plane is vertical.

In the case of an object not in one plane, any point Q1 of the object may be 
determined by means of its projection by a vertical line upon a given horizontal plane, 
say this is P1, and of its altitude Q1P1 above this plane. We in fact determine the 
object by means of its groundplan, and of the altitudes of the several points thereof. 
It is easy, from the foregoing principles, to see that, drawing through P the vertical 
line PQ equal to the altitude, and joining the points Q, D, then the vertical line 
through P' meets this line QD in a point Q,, which will be the perspective repre­
sentation of Q1. We have thus a construction applicable to any solid figure whatever.
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