592.

ON THE MERCATOR'S-PROJECTION OF A SKEW HYPERBOLOID OF REVOLUTION.

[From the Messenger of Mathematics, vol. IV. (1875), pp. 17-20.]

In a note "On the Mercator's-projection of a surface of revolution" read before the British Association, [555, (5)], I remarked that the surface might be, by its meridians and parallels, divided into infinitesimal squares; and that these would be on the map represented by two systems of parallel lines at right angles to each other, dividing the map into infinitesimal squares; and that, by taking the squares not infinitesimal but small, for instance, by considering the meridians at intervals of 10° or 5° , we might approximately construct a Mercator's-projection of the surface. But it is worth while, for the skew hyperboloid of revolution, to develop analytically the ordinary accurate solution.

Taking the equation of the surface to be

$$\frac{x^2+y^2}{a^2}-\frac{z^2}{c^2}=1,$$

{or, if as usual $a^2 + c^2 = a^2 e^2$, then $x^2 + y^2 - (e^2 - 1) z^2 = a^2$ }, and writing $x = r \cos \theta$, $y = r \sin \theta$, the meridians corresponding to the several longitudes θ are in the map represented by the parallel lines $X = a\theta$, and the parallels corresponding to the several values of z are in the map represented by a set of parallel lines Z = f(z), the form of the function being so determined that the infinitesimal rectangles on the map are similar to those on the surface. The required relation is readily found to be

$$Z = \int \frac{\sqrt{\{(a^2 + c^2) \, z^2 + c^4\}}}{z^2 + c^2} \, dz,$$

where the integral is taken from the value z = 0.

[592

The substitution which first presents itself is to write herein $z = \frac{c^2}{\sqrt{(a^2 + c^2)}} \tan \phi$; or, what is the same thing,

$$z = a\left(e - \frac{1}{e}\right) \tan \phi,$$

where observe that $a\left(e-\frac{1}{e}\right)$ is the distance between a focus and its corresponding directrix. The equation of the surface is satisfied by writing therein $\sqrt{(x^2 + y^2)} = a \sec \psi$, $z = c \tan \psi$, and ψ as thus defined is the "parametric latitude"; hence the foregoing angle ϕ is a deduced latitude connected with the parametric latitude ψ by the equation

$$\tan \phi = \frac{c}{a\left(e - \frac{1}{e}\right)} \tan \psi, \quad = \frac{e}{\sqrt{(e^2 - 1)}} \tan \psi.$$

The resulting formula in terms of ϕ is

$$Z = \int_{0} \frac{c^{2} \sqrt{(a^{2} + c^{2})} d\phi}{\cos \phi (c^{2} + a^{2} \cos^{2} \phi)},$$

or, if we write herein $\zeta = \tan \frac{1}{2}\phi$, the formula becomes

$$Z = 2c^2 \sqrt{(a^2 + c^2)} \int_0^\infty \frac{(1 + \zeta^2)^2}{1 - \zeta^2} \frac{d\zeta}{c^2 (1 + \zeta^2)^2 + a^2 (1 - \zeta^2)^2},$$

viz. the function under the integral sign is rational. The expression is, however, complicated, and a more simple formula is obtained by using instead of ϕ the parametric latitude ψ ; viz. we have $z = c \tan \psi$, and thence

$$Z = \int \frac{\sqrt{(a^2 \sin^2 \psi + c^2)}}{\cos \psi} \, d\psi,$$

or, putting herein

$$\sin\psi = \frac{c}{a} \frac{u}{\sqrt{(1-u^2)}},$$

and therefore

$$\cos^2\psi = \frac{a^2 - (a^2 + c^2) u^2}{a^2 (1 - u^2)},$$

and

$$a^{2}\sin^{2}\psi + c^{2} = \frac{c^{2}}{1 - u^{2}}, \quad \cos\psi d\psi = \frac{c}{a} \frac{du}{(1 - u^{2})^{\frac{3}{2}}}$$

the formula becomes

$$Z = c^{2}a \int_{0}^{0} \frac{du}{(1-u^{2}) \left\{a^{2} - (a^{2} + c^{2}) u^{2}\right\}},$$

or, what is the same thing,

$$= a \left(e^{2} - 1 \right) \int_{0} \frac{du}{\left(1 - u^{2} \right) \left(1 - e^{2} u^{2} \right)};$$

$$Z = \frac{1}{2}a \left\{ \log \frac{1-u}{1+u} - e \log \frac{1-eu}{1+eu} \right\},\,$$

the logarithms being hyperbolic.

www.rcin.org.pl

HYPERBOLOID OF REVOLUTION.

As already mentioned, u is connected with the parametric latitude ψ by the equation

$$\sin \psi = \frac{c}{a} \frac{u}{\sqrt{(1-u^2)}}, \quad = \frac{u\sqrt{(e^2-1)}}{\sqrt{(1-u^2)}},$$

that is,

 $\sin \psi = \sqrt{(e^2 - 1)} \tan p, \text{ if } u = \sin p,$

or conversely

$$u = \frac{\sin \psi}{\sqrt{(e^2 - 1 + \sin^2 \psi)}},$$

so that the point passing to infinity along the branch of the hyperbola, or ψ passing from 0 to 90°, u passes from 0 to $\frac{1}{e}$; and for $u = \frac{1}{e}$ the value of Z becomes, as it should do, infinite. The value of z in terms of u is

$$z = \frac{(e^2 - 1) u}{\sqrt{(1 - e^2 u^2)}}$$
, or conversely $u = \frac{z}{\sqrt{(c^2 z^2 + e^2 - 1)}}$,

and we have, moreover,

$$u = \frac{1}{e} \frac{2\zeta}{1+\zeta^2}, \quad = \frac{1}{e}\sin\phi, \quad = (\text{as before}) \frac{\sin\psi}{\sqrt{(e^2 - 1 + \sin^2\psi)}}$$

It will be recollected that, in the Mercator's-projection of the sphere, the longitude and latitude being θ , ϕ , the values of X, Z are

$$X = a\theta, \quad Z = \log \tan\left(\frac{\pi}{4} + \frac{1}{2}\phi\right),$$

the logarithm being hyperbolic.

In the case of the rectangular hyperbola a = c, = 1 suppose,

$$e = \sqrt{2}, \quad z = \tan \psi, \quad u = \frac{\sin \psi}{\sqrt{1 + \sin^2 \psi}}, \quad = \sin p, \text{ if } \sin \psi = \tan p;$$

whence

$$Z = \frac{1}{2}h \cdot l \frac{\tan(45^{\circ} - \frac{1}{2}p)}{\tan(45^{\circ} + \frac{1}{2}p)} - \frac{1}{2}\sqrt{2}h \cdot l \frac{\tan(22^{\circ}30' - \frac{1}{2}p)}{\tan(22^{\circ}30' + \frac{1}{2}p)},$$

the first term being of course

 $=h.l \tan (45^{\circ} - \frac{1}{2}p), \text{ or } -h.l \tan (45^{\circ} + \frac{1}{2}p).$

Transforming to ordinary logarithms, this is

 $Z = \frac{1}{\sqrt{(2)\log e}} \left[-\sqrt{(2)\log \tan \left(45^\circ + \frac{1}{2}p\right)} + \left\{ \log \tan \left(22^\circ 30' + \frac{1}{2}p\right) - \log \tan \left(22^\circ 30' - \frac{1}{2}p\right) \right\} \right],$

say this is

$$Z = \frac{1}{\sqrt{2}\log e} \left(-A + B\right),$$

www.rcin.org.pl

592]

240 MERCATOR'S-PROJECTION OF A SKEW HYPERBOLOID OF REVOLUTION. 592

where

$$\begin{split} &A = \sqrt{(2)\log \tan \left(45^\circ + \frac{1}{2}p\right)}, \\ &B = \log \tan \left(22^\circ 30' + \frac{1}{2}p\right) - \log \tan \left(22^\circ 30' - \frac{1}{2}p\right). \end{split}$$

Taking ψ as the argument, I tabulate $z_{,} = \tan \psi$, and $Z_{,}\sqrt{2}\log e_{,} = -A + B$, as shown in the annexed table: the last column of which gives, therefore, the positions of the several parallels of 5°, 10°, ..., 85°; the interval of 5° between two meridians is, on the same scale,

$$\sqrt{(2)\log e} \cdot \frac{\pi}{36} = (1.4142136) (.4342945) (.0872665), = .05360;$$

viz. this is nearly equal to the arc of meridian 0° to 5°, and the table shows that the arcs 0°—5°, 5°—10°, &c. continually increase as in a Mercator's-projection of the sphere, but more rapidly; there is, however, nothing in this comparison, since the determination of latitude on the hyperboloid by the equation $z = \tan \psi$ is altogether arbitrary.

ψ	$z = an \psi$	р	A	В	-A+B
0°	0.	0°	0.	0.	0.
5	·08749	4°58′51″	·05348	·10719	.05370
10	·17632	9 51 0	·10611	·21439	·10827
15	·26795	14 30 40	$\cdot 15724$	·32174	·16450
20	·36397	18 53 0	·20619	·42943	·22324
25	·46631	22 54 30	$\cdot 25342$	·53780	·28539
30	·57735	$26 \ 34 \ 0$	·29557	·64758	•35201
35	.70020	29 50 20	·33538	·75959	·42421
40	·83910	$32 \ 44 \ 0$	·37170	·87506	•50337
45	1.00000	35 15 50	·40446	·99554	·59108
50	1.19175	37 27 20	·43360	1.12355	·68995
55	1.42815	39 19 20	·45913	1.26151	·80238
60	1.73205	40 53 40	·48117	1.41445	·93328
65	2.14450	42 11 10	·49971	1.58840	1.08869
70	2.74747	43 13 10	.51478	1.79504	1.28026
75	3.73205	44 0 30	·52646	2.05524	1.52877
80	5.67128	44 33 40	·53469	2.41347	1.87877
85	11.43005	44 53 30	·53973	3.02355	2.48381
90	œ	45° 0' 0''	·54133	8	8