592.

ON THE MERCATOR'S-PROJECTION OF A SKEW HYPERBOLOID OF REVOLUTION.

[From the Messenger of Mathematics, vol. iv. (1875), pp. 17-20.]
In a note "On the Mercator's-projection of a surface of revolution" read before the British Association, [555, (5)], I remarked that the surface might be, by its meridians and parallels, divided into infinitesimal squares; and that these would be on the map represented by two systems of parallel lines at right angles to each other, dividing the map into infinitesimal squares; and that, by taking the squares not infinitesimal but small, for instance, by considering the meridians at intervals of 10° or 5°, we might approximately construct a Mercator's-projection of the surface. But it is worth while, for the skew hyperboloid of revolution, to develop analytically the ordinary accurate solution.

Taking the equation of the surface to be

$$
\frac{x^{2}+y^{2}}{a^{2}}-\frac{z^{2}}{c^{2}}=1,
$$

$\left\{\right.$ or, if as usual $a^{2}+c^{2}=a^{2} e^{2}$, then $\left.x^{2}+y^{2}-\left(e^{2}-1\right) z^{2}=a^{2}\right\}$, and writing $x=r \cos \theta, y=r \sin \theta$, the meridians corresponding to the several longitudes θ are in the map represented by the parallel lines $X=a \theta$, and the parallels corresponding to the several values of z are in the map represented by a set of parallel lines $Z=f(z)$, the form of the function being so determined that the infinitesimal rectangles on the map are similar to those on the surface. The required relation is readily found to be

$$
Z=\int \frac{\sqrt{ }\left\{\left(a^{2}+c^{2}\right) z^{2}+c^{4}\right\}}{z^{2}+c^{2}} d z,
$$

where the integral is taken from the value $z=0$.

The substitution which first presents itself is to write herein $z=\frac{c^{2}}{\sqrt{\left(a^{2}+c^{2}\right)}} \tan \phi$; or, what is the same thing,

$$
z=a\left(e-\frac{1}{e}\right) \tan \phi
$$

where observe that $a\left(e-\frac{1}{e}\right)$ is the distance between a focus and its corresponding directrix. The equation of the surface is satisfied by writing therein $\sqrt{ }\left(x^{2}+y^{2}\right)=a \sec \psi$, $z=c \tan \psi$, and ψ as thus defined is the "parametric latitude"; hence the foregoing angle ϕ is a deduced latitude connected with the parametric latitude ψ by the equation

$$
\tan \phi=\frac{c}{a\left(e-\frac{1}{e}\right)} \tan \psi,=\frac{e}{\sqrt{ }\left(e^{2}-1\right)} \tan \psi .
$$

The resulting formula in terms of ϕ is

$$
Z=\int_{0} \frac{c^{2} \sqrt{ }\left(a^{2}+c^{2}\right) d \phi}{\cos \phi\left(c^{2}+a^{2} \cos ^{2} \phi\right)},
$$

or, if we write herein $\zeta=\tan \frac{1}{2} \phi$, the formula becomes

$$
Z=2 c^{2} \sqrt{ }\left(a^{2}+c^{2}\right) \int_{0} \frac{\left(1+\zeta^{2}\right)^{2}}{1-\zeta^{2}} \frac{d \zeta}{c^{2}\left(1+\zeta^{2}\right)^{2}+a^{2}\left(1-\zeta^{2}\right)^{2}}
$$

viz. the function under the integral sign is rational. The expression is, however, complicated, and a more simple formula is obtained by using instead of ϕ the parametric latitude ψ; viz. we have $z=c \tan \psi$, and thence

$$
Z=\int \frac{\sqrt{ }\left(a^{2} \sin ^{2} \psi+c^{2}\right)}{\cos \psi} d \psi
$$

or, putting herein

$$
\sin \psi=\frac{c}{a} \frac{u}{\sqrt{\left(1-u^{2}\right)}}
$$

and therefore

$$
\cos ^{2} \psi=\frac{a^{2}-\left(a^{2}+c^{2}\right) u^{2}}{a^{2}\left(1-u^{2}\right)}
$$

and

$$
a^{2} \sin ^{2} \psi+c^{2}=\frac{c^{2}}{1-u^{2}}, \quad \cos \psi d \psi=\frac{c}{a} \frac{d u}{\left(1-u^{2}\right)^{\frac{2}{2}}},
$$

the formula becomes

$$
Z=c^{2} a \int_{0} \frac{d u}{\left(1-u^{2}\right)\left\{a^{2}-\left(a^{2}+c^{2}\right) u^{2}\right\}}
$$

or, what is the same thing,

$$
=a\left(e^{2}-1\right) \int_{0} \frac{d u}{\left(1-u^{2}\right)\left(1-e^{2} u^{2}\right)}
$$

viz. we thus have

$$
Z=\frac{1}{2} a\left\{\log \frac{1-u}{1+u}-e \log \frac{1-e u}{1+e u}\right\},
$$

the logarithms being hyperbolic.

As already mentioned, u is connected with the parametric latitude ψ by the equation

$$
\sin \psi=\frac{c}{a} \frac{u}{\sqrt{ }\left(1-u^{2}\right)}, \quad=\frac{u \sqrt{ }\left(e^{2}-1\right)}{\sqrt{ }\left(1-u^{2}\right)},
$$

that is,

$$
\sin \psi=\sqrt{ }\left(e^{2}-1\right) \tan p, \text { if } u=\sin p,
$$

or conversely

$$
u=\frac{\sin \psi}{\sqrt{\left(e^{2}-1+\sin ^{2} \psi\right)}}
$$

so that the point passing to infinity along the branch of the hyperbola, or ψ passing from 0 to $90^{\circ}, u$ passes from 0 to $\frac{1}{e}$; and for $u=\frac{1}{e}$ the value of Z becomes, as it should do, infinite. The value of z in terms of u is

$$
z=\frac{\left(e^{2}-1\right) u}{\sqrt{\left(1-e^{2} u^{2}\right)}} \text {, or conversely } u=\frac{z}{\sqrt{\left(c^{2} z^{2}+e^{3}-1\right)}}
$$

and we have, moreover,

$$
u=\frac{1}{e} \frac{2 \zeta}{1+\zeta^{2}},=\frac{1}{e} \sin \phi, \quad=\text { (as before) } \frac{\sin \psi}{\sqrt{\left(e^{2}-1+\sin ^{2} \psi\right)}}
$$

It will be recollected that, in the Mercator's-projection of the sphere, the longitude and latitude being θ, ϕ, the values of X, Z are

$$
X=a \theta, \quad Z=\log \tan \left(\frac{\pi}{4}+\frac{1}{2} \phi\right),
$$

the logarithm being hyperbolic.
In the case of the rectangular hyperbola $a=c,=1$ suppose,

$$
e=\sqrt{ }(2), \quad z=\tan \psi, \quad u=\frac{\sin \psi}{\sqrt{\left(1+\sin ^{2} \psi\right)}}, \quad=\sin p, \text { if } \sin \psi=\tan p
$$

whence

$$
Z=\frac{1}{2} h . l \frac{\tan \left(45^{\circ}-\frac{1}{2} p\right)}{\tan \left(45^{\circ}+\frac{1}{2} p\right)}-\frac{1}{2} \sqrt{ }(2) h . l \frac{\tan \left(22^{\circ} 30^{\prime}-\frac{1}{2} p\right)}{\tan \left(22^{\circ} 30^{\prime}+\frac{1}{2} p\right)},
$$

the first term being of course

$$
=h . l \tan \left(45^{\circ}-\frac{1}{2} p\right), \text { or }-h . l \tan \left(45^{\circ}+\frac{1}{2} p\right) .
$$

Transforming to ordinary logarithms, this is

$$
Z=\frac{1}{\sqrt{(2)} \log e}\left[-\sqrt{ }(2) \log \tan \left(45^{\circ}+\frac{1}{2} p\right)+\left\{\log \tan \left(22^{\circ} 30^{\prime}+\frac{1}{2} p\right)-\log \tan \left(22^{\circ} 30^{\prime}-\frac{1}{2} p\right)\right\}\right],
$$

say this is

$$
Z=\frac{1}{\sqrt{(2)} \log e}(-A+B)
$$

where

$$
\begin{aligned}
& A=\sqrt{ }(2) \log \tan \left(45^{\circ}+\frac{1}{2} p\right), \\
& B=\log \tan \left(22^{\circ} 30^{\prime}+\frac{1}{2} p\right)-\log \tan \left(22^{\circ} 30^{\prime}-\frac{1}{2} p\right) .
\end{aligned}
$$

Taking ψ as the argument, I tabulate z, $=\tan \psi$, and $Z \cdot \sqrt{ }(2) \log e,=-A+B$, as shown in the annexed table: the last column of which gives, therefore, the positions of the several parallels of $5^{\circ}, 10^{\circ}, \ldots, 85^{\circ}$; the interval of 5° between two meridians is, on the same scale,

$$
\sqrt{ }(2) \log e \cdot \frac{\pi}{36}=(1 \cdot 4142136)(\cdot 4342945)(\cdot 0872665),=\cdot 05360
$$

viz. this is nearly equal to the are of meridian 0° to 5°, and the table shows that the arcs $0^{\circ}-5^{\circ}, 5^{\circ}-10^{\circ}$, \&c. continually increase as in a Mercator's-projection of the sphere, but more rapidly; there is, however, nothing in this comparison, since the determination of latitude on the hyperboloid by the equation $z=\tan \psi$ is altogether arbitrary.

0°	0.	0°	0.	0.	0.
5	. 08749	$4^{\circ} 58^{\prime} 51^{\prime \prime}$. 05348	$\cdot 10719$. 05370
10	-17632	9510	-10611	$\cdot 21439$	-10827
15	-26795	143040	-15724	-32174	-16450
20	-36397	18530	-20619	-42943	-22324
25	-46631	225430	-25342	$\cdot 53780$	-28539
30	-57735	26340	-29557	$\cdot 64758$	-35201
35	$\cdot 70020$	295020	-33528	. 75959	-42421
40	-83910	32440	- 37170	- 87506	-50337
45	1.00000	351550	-40446	$\cdot 99554$	-59108
50	1-19175	372720	-43360	$1 \cdot 12355$	-68995
55	$1 \cdot 42815$	391920	-45913	$1 \cdot 26151$	- 80238
60	1.73205	405340	-48117	$1 \cdot 41445$	-93328
65	$2 \cdot 14450$	421110	-49971	1.58840	1.08869
70	2.74747	$\begin{array}{llll}43 & 1310\end{array}$	-51478	1.79504	1-28026
75	3.73205	$\begin{array}{llll}44 & 0 & 30\end{array}$. 52646	2.05524	1.52877
80	$5 \cdot 67128$	443340	-53469	$2 \cdot 41347$	1.87877
85	11.43005	445330	-53973	3.02355	$2 \cdot 48381$
90	∞	$45^{\circ} 0^{\prime} 0^{\prime \prime}$	$\cdot 54133$	∞	∞

