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ON THE POTENTIALS OF POLYGONS AND POLYHEDRA.

[From the Proceedings of the London Mathematical Society, vol. vi. (1874—1875),
pp. 20—34. Read December 10, 1874.]

The problem of the attraction of polyhedra is treated of by Mehler, Crelle, t. lxvi. 
pp. 375—381 (1866); but the results here obtained are exhibited under forms, which 
are very different from his and which give rise to further developments of the theory.

General Formulas for the Potentials of a Cone and a Shell.

1. The law of attraction is taken to be according to the inverse square of the
distance; and I commence with the general case of a cone standing upon any portion 
of a surface Σ as its base, and attracting a point at its vertex, the cone being con
sidered as a mass of density unity.

2. Considering, in the first instance, an element of mass, the position of which
is determined by its distance r from the vertex (or origin) and by two angular 
coordinates defining the position of the radius vector r, then the element is = r2 dr dω 
(where dω is the element of solid angle, or surface of the unit-sphere), and the corre

sponding element of potential is r2 dr dω, =r dr dω ; whence 

which, integrating from r = 0 to r = its value at the surface, is 

where r now denotes the radius vector at a point of the surface, being, therefore, a 
given function of the two angular coordinates: and the remaining (double) integration 
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is to be extended to all values of the angular coordinates belonging to a position of 
r within the conical surface which is the other boundary of the attracting mass, or 
say over the spherical aperture of the cone.

3. If the value of the radius vector at the surface is taken to be mr (m a 
constant), then we have obviously 

and hence also, writing m + dm instead of m, we obtain, for the potential of the 
portion of the shell lying between the similar and similarly situated surfaces Σ and Σ', 
belonging to the parameters m and m + dm respectively, the value

   this is = 2 — into the potential of the cone; and we thus see that it is the same m
problem to determine the potential of the cone, and that of the subtended portion of 
the indefinitely thin shell included between the two surfaces.

4. The same result may be arrived at as follows: the element of solid angle dω 
determines on the surface an element of surface d∑, and if dv be the corresponding 
normal thickness of the shell, then the element of mass is = dv d∑, and the element 

of potential is = dv dΣ (mr being, as before, the radius vector at the surface). 

Take α the complement of the inclination of the radius vector to the tangent plane— 
that is, α the inclination of the radius vector to the normal, or, what is the same 
thing, to the perpendicular from the origin on the tangent plane (whence, also, if mp 
be the length of this perpendicular, then p=r cos α). The shell-thickness in the direction 
of the radius vector is = r dm, or we have dv = r dm cos α; the element of potential 

is therefore = — cos α dΣ. But dω being the spherical aperture of the cone subtending 

the element d∑, the perpendicular section at the distance mr is = m2r2dω; we have 

therefore dΣ = —— m2r2 dω ; and hence the element of potential is = m dm. r2 dω, orcos α 
the potential of the subtended portion of the shell is as before, =m dm ∫ r2dω.

5. It may be added that, integrating between the values m, n (m > n), we obtain 
1/2 (m2 — n2) ∫ r2 dω for the potential of the shell-portion included between the surfaces 

mr, nr; and if n = 0, then, as before, the potential of the cone is = 1/2m2 ∫r2dω.
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Cone on a plane base, and plane figure.

6. Suppose that the surface Σ is a plane; the surface Σ' is, of course, a parallel 
plane. Taking here mp for the perpendicular distance of the plane Σ from the origin, 
then, if δ be the infinitesimal distance of the two planes from each other, we have

δ δ=pdm, that is, dm = -; the potential of the cone is, as before, =⅛m2∫r2dω, and

that of the plane figure, thickness δ, is

7. Taking, for greater convenience, m=l, we have

Potential of cone

Do. of plane figure

where p is now the perpendicular distance of the plane from the vertex; or if, as 
regards the plane figure, the infinitesimal thickness δ is taken as unity, then

Potential of plane figure

In each case r is the value of the radius vector corresponding to a point of the plane
figure which is the base of the cone, and the integration extends over the spherical
aperture of the cone.

8. If the position of the radius vector is determined by the usual angular
coordinates, θ its inclination to the axis of z, and φ its azimuth from the plane of
zx—viz. if we have 

then, as is well-known, dω = sin θ dθ dφ, and the integral

Taking the inclination of p to the axes to be α, β, γ respectively, the equation 
of the plane which is the base of the cone is 

viz. we have

that is, 
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and the integral r2 dω is therefore 

and, in particular, if p coincide with the axis of z, so that the equation of the plane 
is z = p, then the integral is

9. The integration in regard to θ can be at once performed; viz. in the latter 

case we have ; and in the former case, writing, as we may do, 

then

Case of a Polyhedron or a Polygon.

10. Consider now the pyramid, vertex the origin 0, standing on a polygonal base. 
Letting fall from the vertex a perpendicular OM on the base of the pyramid, and 
drawing planes through OM and the several vertices of the polygon, we thus divide 
the pyramid into triangular pyramids; viz. AB being any side of the polygon, a com
ponent pyramid (or tetrahedron) will be OMAB, vertex 0 and base MAB, where MO 
is a perpendicular at M to the triangular base MAB. And drawing through MO a 
plane at right angles to AB, meeting it in D (viz. MD is the perpendicular from M 
on the base AB of the triangle), we divide the triangular pyramid into two pyramids 
OMAD, OMBD, each having for its base a right-angled triangle ; viz. the vertex is 0, 
the base is the triangle ADM (or, as the case may be, BDM) right-angled at D, and 
OM is a perpendicular at the vertex M to the plane of the triangle. It is to be 
observed that, in speaking of the original pyramid as thus divided, we mean that the 
pyramid is the sum of the component pyramids taken each with the proper sign, + or —, 
as the case may be.

11. In the case of a polyhedron, this is in the like sense divisible into pyramids 
having for the common vertex the origin or point 0, and standing on the several 
faces respectively; hence the polyhedron is ultimately divisible into triangular pyramids 
such as OADM, where ADM is a triangle right-angled at D, and where OM is a 
perpendicular at M to the plane of the triangle. Hence the potential of the polyhedron 
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in regard to the point 0 depends upon that of the pyramid OADM; and (what is the 
same thing) the potential of any plane polygon in regard to the point 0 depends upon 
that of the right-angled triangle ADM, situate as above in regard to the point 0. I 

take OM = h, MD = f, DA = g; viz. supposing, as we may do, that the plane of the 
triangle is parallel to that of xy, the point M on the axis of z, and the side MD 
parallel to the axis of x, then f, g, h will be the coordinates of the point A.

Formulae for component triangular Pyramid, and Triangle.

12. Writing, as above, x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ, and observing that 
h is the perpendicular distance originally called p, we have, for the potential of the 
pyramid, 

where, φ being regarded as a given angle, the integral expression sec θ must be taken 
from 0 = 0 to the value of θ corresponding to a point in the side AD. For any 

fsuch point we have ∫ = r sin θ cos φ, h = r cos θ, that is, = tan θ cos φ, or the required

value of θ is and consequently that of sec θ is 

or, as this may also be written, 

hence

www.rcin.org.pl



602] ON THE POTENTIALS OF POLYGONS AND POLYHEDRA. 271

13. The first term of the integral, writing therein for a moment tan ϕ = x, is

Hence, replacing x by its value, we have

to be taken from ϕ = 0 to the value of ϕ corresponding to the point A; viz. we 
have here f=r sin θ cos ϕ, g = r sin θ sin φ, h=rcosθ, and thence tanφ=^ or f tan φ=g', 

whence, writing for shortness, (viz. s denotes the distance OA∖ we have 

or, observing that

this is 

for the potential of the pyramid OMDA in regard to the point 0; by omitting the 
factor 1/2h, we have 

for the potential of the triangle MDA. The expression tan-1 denotes, here and else

where, an arc included between the limits : it is therefore + or — according 
as the tangent is + or -.

Formulae for rectangular Pyramid, and Rectangle.

14. Completing the rectangle MDAE, the potential of the triangle AME is 
obtained by interchanging the letters g and /; viz. we have 

for the potential of the triangle MEA.
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The sum of the two gives the potential of the rectangle MDAE; viz. for this 
rectangle, we have

But we have 

for the function on the left hand is

viz. the denominator being the tangent of the arc is ∞, and the

component arcs being each positive and less than , the arc in question can only be 

 We have consequently 

for the potential of the rectangle MDAE. And, multiplying this by 1/2h, we have 

for the potential of the rectangular pyramid, vertex 0 and base MDAE.

Formula for the Cuboid.

15. Completing the rectangular parallelopiped, or, say for shortness, the “cuboid,” 
the sides whereof are (f g, h); this breaks up into three pyramids, standing on the 
rectangles fg, gh, and hf respectively; and the potentials for the last two pyramids 
are at once obtained from the last-mentioned expression of V by mere cyclical inter
changes of the letters. Adding the three expressions, we obtain 

for the potential of the cuboid.

Group of Results, for Point, Line, Rectangle, and Cuboid.

16. It is convenient to prefix two results, that for the potential of the point A 
(mass taken to be unity), and that for the potential of the line AE (density taken to 
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be unity, or mass of an element of length dx, taken to be = dx). We have, the 
attracted point being always at 0,

Potential of point A

Potential of line AE

Potential of rectangle MDAE

Potential of cuboid

which functions may be called A (f, g, h), B (f, g, h), C (f g, h), and D(f, g, h) 
respectively. It is to be observed that f, g, h are taken to be each of them positive, 
and that s denotes in every case the positive value of ; for a symmetrically 
situated body, corresponding to negative values of each or any of these quantities, the 
potential has in each case its original value, without change of sign. But B is an odd 
function as regards f, C an odd function as regards f or g, D an odd function as regards 
f, g, or A; for example, ±h) and C (f, —g, ±h) are each = — C(f g, h), and
therefore of course C (—f, — g, ± h) = C (f, g, h).

Extension to case where the attracted point has an arbitrary position.

17. The attracted point has thus far been considered as in a definite position in 
regard to the attracting mass; but it is easy to pass to the general case of any 
relative position whatever. Thus, for a line AB, if M be the foot of the perpendicular 
let fall from the point 0, and if, to fix the ideas, the order of succession of the three 
points is A, B, M, then, with respect to the point 0,

line AB = line AM — line BM.

Taking the y- and z-coordinates to be b, c, the x-coordinates for the points A, B, M to be 
x0, x1, a respectively, and in the figure a>x1, xi> x0, then a— x0, a-x1 are each of 
them positive, a-x0 being the greater, the potential of the line AM is =B(a- x0, b, c), 
that of BM is = B (α — x1, b, c), and the potential of the whole line is 

viz. this formula is proved for the case where M is situate as in the figure. But 
supposing that A and B retain their relative position (viz. x1 > x0), then the formula 
holds good for any other position of M; thus, if M be between the points A, B— 
viz. if the order is A, M, B—then

line AB = line AM + line BM,
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and potential is 

where the second term is 

and the potential is

18. Similarly for a rectangle ABCD, if M, the foot of the perpendicular from the 
point 0, has the position shown in the figure, then

rectangle AD = rectangle MC

— rectangle MA
— rectangle MD

4- rectangle MB,

where 0 is a point on the perpendicular at the common vertex M of the four rectangles; 
and the resulting expression for the rectangle AD will apply to any position of the 
point M.

19. And in like manner for a cuboid; taking the point 0 in any determinate 
position, the cuboid may be decomposed into eight cuboids (each with the sign + or — 
as the case may be) having the point 0 for a common vertex; and the resulting 
expression for the potential will apply to any position whatever of the point M.

20. The results may be collected and exhibited as follows:—the coordinates of 
the attracted point are a, b, c; and it is assumed that ¾>⅜, y1>y0, Zι> z0, (viz. for 
x the order is +∞, x-i, x0, — ∞, and so for y and z respectively).

Potential of point (x, y, z) is = A (a — x , b — y , c — z)∙,

Potential of line (x1, y, z), (x0, y, z) is = B (a — x0, b — y , c — z)
-B(a-x1, b-y, c-z')∙,

Potential of rectangle (x1, y1, z), (x0, y1, z) is = C (a —x0, b-y0, c — z)

(λ"i> 2∕o> -^)> (⅜> y0, z) G (d x0, b y1, c z)
-C(a-xx, b-y0, c-z)
+ C(a-x1, b-y1, c-z)-,
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Potential of cuboid

21. These are connected together as follows, viz.:—
∣ 

Potential of line = I dx Potential of point,

Potential of rectangle = ∫dy Potential of line,

Potential of cuboid = ∫dz Potential of rectangle,

equations which are in fact of the form

Differential properties of the functions A, B, C, D.

22. These relations, with other allied ones, may be verified as follows. Writing 
the fundamental forms are

We have dxr = x/r., and thence
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or, since

this is 

which, the denominator being, as before,

It is now easy to form the following results:—

23. First, 

and thence

24. Secondly, 

then 

and thence

25. Thirdly,
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in verification whereof, observe that the remaining terms are 

which is = 0;

and thence

26. Fourthly, 

and thence

viz. the denominator being = 0, the arc is + or we have

the value being if x, y, z are all three of them, or only one, positive; but +

if they are all three of them, or only one, negative.
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Application to the Potentials of the Point, the Line, the Rectangle, and the Cuboid.

27. Take now V to denote in succession the foregoing expressions of the potential 
of a point, a line, a rectangle, or a cuboid, at the point (a, b, c). In the first three 
cases respectively, each of the component terms is reduced to zero by the operator 
da + db2 + (dc2; and we have, therefore, 

which is as it should be. But in the case of the cuboid, each of the eight com-

ponent terms is by the operator reduced to + - , and we have therefore

Σ denoting the sum of eight terms, the + denoting + or —, according to the sign 
of the term in the formula (viz. in four cases this is +, and in four cases it is — 

and the + π/2 denoting the value π with its proper sign depending on the signs of the 

quantities (a—x0, b — y0, c-z0), &c., as explained in the preceding Number.

Suppose for a moment a>x1, b>y1, c>z1, or the attracted point in one of the 
 regions exterior to the cuboid; then + ππ will in each case be = — -, and the sign 

+, being + for four of the terms and — for the four remaining terms, the sum is =0. 
And similarly, in all cases where the attracted point is exterior to the cuboid, the 
sum of the eight terms is = 0. But when the attracted point is interior, that is, 
when a>xa<x1, b>y0<y1, c>z0<z1, then it is found that, for the four terms which 

have the sign +, the value of + — is = — —; and for the four terms which have the

sign —, its value is = + —; whence, in the sum, each term is = ——, or the value is 

= — 4π. Hence, in the case of the cuboid, we have 

according as the attracted point is external or internal.

Verification in regard to the Rectangle.

28. I start from the formula
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where, as before, xγ > x0, y1>y0. V is here a function of (a, b, c), satisfying the partial 
differential equation 

and (as is easily verified) vanishing when any one of the variables a, b, c becomes 
infinite; it does not become infinite for any finite values of a or b, or any positive 
value of c. Hence, by a theorem of Green’s *,  there exists on the plane z — 0 a dis
tribution of matter giving rise to the potential V; and not only so, but the density 
at any point (x, y) of the plane is given by the formula 

where W is what V becomes on writing therein x, y in place of a, b, and c = 0 is 
regarded as an indefinitely small positive quantity.

We have

And hence

Putting c = 0, as above, each arc is =~ or — ∏, according as the fraction under 

the tan-1 is positive or negative—that is, according as the numerator is positive or 
negative. Suppose for a moment zc>zr1, y>y1, viz. the point (x, y) is here in a 
region exterior to the rectangle (x1, yi), (x1, y0), (x0, y1), (x0, y0): the value of dcW is 

= — -q+o+-^-w, = θ 5 and similarly, for every other position of the point {x, y)
Δ Δ δ δ

dV dV,* The theorem in question is a particular case of Green’s, ^-ιrP- ~ (“Essay on the Application

of Mathematical Analysis to the Theories of Electricity and Magnetism” (1828), see p. 31 of the Collected 
Works); viz. the surface is here a plane, and V = V'. And it is also a particular case of the formula 

(“Memoir on the Determination of the Exterior and Interior Attraction of Ellipsoids 

of Variable Densities” (1835), see p. 199 of the Collected Works); viz. s is taken =2; and Green’s extra- 
spatial coordinate u then becomes the coordinate z of ordinary tri-dimensional space.
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exterior to the rectangle, the value is = 0. But for a point interior to the rectangle, 
we have x<x1>xq, y<yι>y0, and in this case the value is

Hence 

according as the point is exterior or interior to the rectangle, viz. the distribution 
producing the potential in question is a uniform distribution (density unity) over the 
rectangle, which is as it should be.

Potential of a Cuboidal Surface.

29. The preceding formulae lead to the expression of the potential of a cuboidal 
surface (viz. the surface composed of the six faces of a cuboid, each of them being 
considered as a plate of the same uniform density) upon a point a, b, c. Writing, for 
convenience,

where each term is supposed to have (compounded with its expressed sign) a sign +, 
as follows: viz. in any fg term f log ~~ > ⅜5r l°g ’ or ^an~ ⅛) ’ s⅛n ±

is + if f and g are both positive or both negative, but is — if f and g are the 
one of them positive and the other negative; and the like as to the gh terms and 
the hf terms respectively. And this being so, the expression for the potential (applying 
as well to an interior as to an exterior point) is

It is, in fact, easy to verify that the final result, interpreted as above, represents 
the sum of the six positive values, which are the values of the potential for the six 
faces of the cuboid respectively.
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