610.

ON THE ANALYTICAL FORMS CALLED TREES, WITH APPLI-CATION TO THE THEORY OF CHEMICAL COMBINATIONS.

[From the Report of the British Association for the Advancement of Science, (1875), pp. 257-305.]

I HAVE in two papers "On the Analytical forms called Trees," *Phil. Mag.* vol. XIII. (1857), pp. 172—176, [203], and ditto, vol. XX. (1859), pp. 374—378, [247], considered this theory; and in a paper "On the Mathematical Theory of Isomers," ditto, vol. XLVII. (1874), p. 444, [586], pointed out its connexion with modern chemical theory. In particular, as regards the paraffins C_nH_{2n+2} , we have *n* atoms of carbon connected by n-1 bands, under the restriction that from each carbon-atom there proceed at most 4 bands (or, in the language of the papers first referred to, we have *n* knots connected by n-1 branches), in the form of a tree; for instance, n=5, such forms (and the only such forms) are

And if, under the foregoing restriction of only 4 bands from a carbon-atom, we connect with each carbon-atom the greatest possible number of hydrogen-atoms, as shown in the diagrams by the affixed numerals, we see that the number of hydrogen-atoms is 12 (= 2.5 + 2); and we have thus the representations of three different paraffins, $C_5 H_{12}$. It should be observed that the tree-symbol of the paraffin is 54-2

completely determined by means of the tree formed with the carbon-atoms, or say of the carbon-tree, and that the question of the determination of the theoretic number of the paraffins $C_n H_{2n+2}$ is consequently that of the determination of the number of the carbon-trees of n knots, viz. the number of trees with n knots, subject to the condition that the number of branches from each knot is at most = 4.

In the paper of 1857, which contains no application to chemical theory, the number of branches from a knot was unlimited; and, moreover, the trees were considered as issuing each from one knot taken as a root, so that, n=5, the trees regarded as distinct (instead of being as above only 3) were in all 9, viz. these were

which, regarded as issuing from the bottom knots, are in fact distinct; while, taking them as issuing each from a properly selected knot, they resolve themselves into the above-mentioned 3 forms. The problem considered was in fact that of the "general root-trees with n knots"—general, inasmuch as the number of branches from a knot was without limit; root-trees, inasmuch as the enumeration was made on the principle last referred to. It was found that for

knots...... 1, 2, 3, 4, 5, 6, 7, 8,.....
No. of trees was... 1, 1, 2, 4, 9, 20, 48, 115,.....
= 1,
$$A_1$$
, A_2 , A_3 , A_4 , A_5 , A_6 , A_7 ,.....;

the law being given by the equation

$$(1-x)^{-1}(1-x^2)^{-A_1}(1-x^3)^{-A_2}(1-x^4)^{-A_3}\dots = 1+A_1x+A_2x^2+A_3x^3+A_4x^4+\dots;$$

but the next following numbers A_8 , A_9 , A_{10} , the correct values of which are 286, 719, 1842, were given erroneously as 306, 775, 2009. I have since calculated two more terms, A_{11} , $A_{12} = 4766$, 12486.

The other questions considered in the paper of 1857 and in that of 1859 have less immediate connexion with the present paper, but for completeness I reproduce the results in a Note*.

* In the paper of 1857 I also considered the problem of finding B_r the number with r free branches, with bifurcations at least: this was given by a like formula

loading to	$(1-x)^{-1}(1-x)$	$(2)^{-B_2}(1 -$	$x^{3})^{-B_{3}}(1 - x^{3})^{-B_{3}}(1 - x^{3$	$(-x^4)^{-B_4}$	=1+x+	$-2B_2 x^2 + 2$	$2B_3 x^3 + 2B_4 x^4$	•••
feading to	$B_r =$	1,	2,	5,	12,	33,	90,	
ior	r =	2,	3,	4,	5,	6,	7,	

In the paper of 1859, the question is to find the number of trees with a given number m of terminal knots: we have here

 $\phi m = 1.2.3...(m-1)$ coefficient of x^{m-1} in $\frac{1}{2-e^x}$,

www.rcin.org.pl

610] APPLICATION TO THE THEORY OF CHEMICAL COMBINATIONS.

To count the trees on the principle first referred to, we require the notions of "centre" and "bicentre," due, I believe, to Sylvester; and to establish these we require the notions of "main branch" and "altitude": viz. in a tree, selecting any knot at pleasure as a root, the branches which issue from the root, each with all the branches that belong to it, are the main branches, and the distance of the furthest knot, measured by the number of intermediate branches, is the altitude of the main

429

branch. Thus in the left-hand figure, taking A as the root, there are 3 main branches of the altitudes 3, 3, 1 respectively: in the right-hand figure, taking A as the root, there are 4 main branches of the altitudes 2, 2, 1, 3 respectively; and we have then the theorem that in every tree there is either one and only one centre, or else one and only one bicentre; viz. we have (as in the left-hand figure) a centre A which is such that there issue from it two or more main branches of altitudes equal to each other and superior to those of the other main branches (if any); or else (as in the right-hand figure) a bicentre AB, viz. two contiguous knots, such that issuing from A (but not counting AB), and issuing from B (but not counting BA), we have two or more main branches, one at least from A and one at least from B, of altitudes equal to each other and superior to those of the other main branches in question (if any). The theorem, once understood, is proved without difficulty: we consider two terminal knots, the distance of which, measured by the number of intermediate branches, is greater than or equal to that of any other two terminal knots; if, as in the left-hand figure, the distance is even, then the central knot A is the centre of the tree; if, as in the right-hand figure, the distance is odd, then the two central knots AB form the bicentre of the tree.

In the former case, observe that if G, H are the two terminal knots, the distance of which is $= 2\lambda$, then the distance of each from A is $= \lambda$, and there cannot be

4683.

7,

47293, ...

8, ...

OIVINO	the	V9.	1168
8	OTTO	1 64.5	- CECK

for

 $\phi m = 1, 1, 3, 13, 75, 541,$ m = 1, 2, 3, 4, 5, 6,

But if from each non-terminal knot there ascend two and only two branches, then in this case $\phi m = \text{coefficient}$ of x^{m-1} in $\frac{1-\sqrt{1-4x}}{2x}$, viz. we have the very simple form

			φn	$a=\frac{1.5}{1}$.2.3.	$\frac{2m-3}{\dots m}$	2^{m-1} ,	
giving		$\phi m =$	1,	1,	2,	5,	14,	42,
for		m =	1,	2,	3,	4,	5,	7,

www.rcin.org.pl

ON THE ANALYTICAL FORMS CALLED TREES, WITH

any other terminal knot I, the distance of which from A is greater than λ (for, if there were, then the distance of I from G or else from H would be greater than 2λ); there cannot be any two terminal knots I, J, the distance of which is greater than 2λ ; and if there are any two knots I, J, the distance of which is $= 2\lambda$, then these belong to different main branches, the distance of each of them from A being $=\lambda$; whence, starting with I, J (instead of G, H), we obtain the same point A as centre. Similarly, in the latter case, there is a single bicentre AB.

Hence, since in any tree there is a unique centre or bicentre, the question of finding the number of distinct trees with n knots is in fact that of finding the number of centre- and bicentre-trees with n knots; or say it is the problem of the "general centre- and bicentre-trees with n knots:" general, inasmuch as the number of branches from a knot is as yet taken to be without limit; or since (as will appear) the number of the bicentre-trees can be obtained without difficulty when the problem of the root-trees is solved, the problem is that of the "general centre-trees with n knots." It will appear that the solution depends upon and is very readily derived from that of the foregoing problem of general root-trees, so that this last has to be considered, not only for its own sake, but with a view to that of the centretrees. And in each of the two problems we doubly divide the whole system of trees according to the number of the main branches, issuing from the root or centre as the case may be, and according to the altitude of the longest main branch or branches, or say the altitude of the tree; so that the problem really is, for a given number of knots, a given number of main branches, and a given altitude, to find the number of root-trees, or (as the case may be) centre-trees.

We next introduce the restriction that the number of branches from any knot is equal to a given number at most; viz. according as this number is = 2, 3 or 4, we have, say oxygen-trees, boron-trees^{*}, and carbon-trees respectively; and these are, as before, root-trees or centre- or bicentre-trees, as the case may be. The case where the number is 2 presents no difficulty: in fact, if the number of knots be = n, then the number of root-trees is either $\frac{1}{2}(n+1)$ or $\frac{1}{2}n$; viz. n=3 and n=4, the roottrees are

and the number of centre- or bicentre-trees is always = 1: viz. n odd, there is one centre-tree; and n even, one bicentre-tree; it is only considered as a particular case of the general theorem. The case where the number is = 3 is analytically interesting: although there may not exist, for any 3-valent element, a series of hydrogen compounds

* I should have said nitrogen-trees; but it appears to me that nitrogen is of necessity 5-valent, as shown by the compound, Ammonium-Chloride, $= NH_4 Cl$. Of course, the word boron is used simply to stand for a 3-valent element.

610 APPLICATION TO THE THEORY OF CHEMICAL COMBINATIONS.

 B_nH_{n+2} corresponding to the paraffins. The case, where the number is = 4 or say the carbon-trees, is that which presents the chief chemical interest, as giving the paraffins C_nH_{2n+2} ; and I call to mind here that the theory of the carbon-root trees is established as an analytical result for its own sake and as the foundation for the other case, but that it is the number of the carbon centre- and bicentre-trees which is the number of the paraffins.

The theory extends to the case where the number of branches from a knot is at most = 5, or = any larger number; but I have not developed the formula.

I pass now to the analytical theory: considering first the case of general roottrees, we endeavour to find for a given altitude N the number of trees of a given number of knots n and main branches α , or say the generating function

$\Sigma \Omega t^{\mathbf{a}} x^n$,

where the coefficient Ω gives the number of the trees in question. And we assume that the problem is solved for the cases of the several inferior altitudes 0, 1, 2, 3,.., N-1.

This being so, observe that a tree of altitude N can be built up as shown in the figure, which I call the edification diagram, by combining one or more trees of altitude N-1 with a single tree of altitude not exceeding N-1; viz. in the figure, N=3, we have the two trees a, b, each of altitude 2, combined, as shown by the

dotted lines, with the tree c of altitude 1: the whole number of knots in the resulting tree is the sum of the number of knots on the three trees a, b, c: the number of main branches is equal to the number of the trees a, b, plus the number of main branches of the tree c. It is to be observed that the tree c may reduce itself to the tree (\cdot) of one knot and of altitude zero; but each of the trees a, b, as being of the altitude N-1, must contain at least N knots.

Taking N=2 or any larger number, it is hence easy to see that the required generating function $\Sigma \Omega t^a x^n$ is

$$= (1 - tx^{N})^{-1} (1 - tx^{N+1})^{-l_1} (1 - tx^{N+2})^{-l_2} \dots [t^{1 \dots \infty}]$$
 (first factor),

$$x + (t) x^2 + (t, t^2) x^3 + (t, t^2, t^3) x^4 + \dots$$
 (second factor).

As regards the first factor, the exponents taken with reversed sign, that is, as positive, are 1 = no. of trees, altitude N-1, of N knots; $l_1 = ditto$, same altitude, of (N+1) knots; $l_2 = ditto$, same altitude, of N+2 knots, and so on; and where the

symbol $[t^{1...\infty}]$ denotes that, in the function or product of factors which precedes it, the terms to be taken account of are those in $t^1, t^2, t^3, ...$; viz. it denotes that the term in t^0 , or constant term (=1 in fact), is to be rejected.

In the second factor, the expressions x, $(t) x^2$, $(t, t^2) x^3$, ... represent, for given exponents of t, x, denoting the number of main branches and the number of knots respectively, the number of trees of altitude not exceeding N-1: thus x, $=1 t^9 x^4$ represents the number of such trees, 1 knot, 0 main branch, =1; and so, if the value of $(t, t^2, t^3, t^4) x^5$ be $(\alpha t + \beta t^2 + \gamma t^3 + \delta t^4) x^5$, then for trees of an altitude not exceeding N-1, and of 5 knots, α represents the number of trees of 1 main branch, β that of trees of 2 main branches, γ that of trees of 3 main branches, δ that of trees of 4 main branches. It is clear that the number of trees satisfying the given conditions and of an altitude not exceeding N-1 is at once obtained by addition of the numbers of the trees satisfying the given conditions, and of the altitudes $0, 1, 2, \ldots, N-1$; all which numbers are taken to be known.

It is to be remarked that the first factor,

$$(1-tx^N)^{-1}(1-tx^{N+1})^{-l_1}(1-tx^{N+2})^{-l_2}\dots [t^{1\dots\infty}],$$

shows by its development the number of combinations of trees a, b, ... of the altitude N-1; one such tree at least must be taken, and the symbol $[t^{1...\infty}]$ gives effect to this condition: the second factor $x + (t)x^2 + (t, t^2)x^3 + ...$ shows the number of the trees c of altitude not exceeding N-1. And this being so, there is no difficulty in seeing how the product of the two factors is the generating function for the trees of altitude N.

In the case N = 0, the generating function, or GF, is = x; viz. altitude 0, there is only the tree (.), 1 knot, 0 main branch.

When N = 1, the GF is $= (1 - tx)^{-1} [t^{1} + t^{\infty}] x$, $= tx^{2} + t^{2}x^{3} + t^{3}x^{4} \dots$

viz. altitude 1, there is 1 tree tx^2 , 2 knots, 1 main branch; 1 tree t^2x^3 , 3 knots, 2 main branches; and so on.

Hence N=2, we obtain

$$GF = (1 - tx^2)^{-1} (1 - tx^3)^{-1} (1 - tx^4)^{-1} \dots [t^{1 + tx^2}] \cdot (x + tx^2 + t^2x^3 + t^3x^4 + \dots);$$

viz. as regards the second factor, altitude not exceeding 1, that is, =0 or 1, there is altitude 0, 1 tree x, and altitude 1, 1 tree tx^2 , 1 tree t^2x^3 , and so on. And we hence derive the GF's for the higher values N=3, 4, &c.: the details of the process will be afterwards more fully explained.

So far, we have considered root-trees; but referring to the last diagram, it is at once seen that the assumed root will be a centre, provided only that (instead of, it may be, only a single tree a of the altitude N-1), we take always two or more trees of the altitude N-1 to form the new tree of the altitude N. And we give effect

[610

610] APPLICATION TO THE THEORY OF CHEMICAL COMBINATIONS.

to this condition by simply writing in place of $[t^{1\dots\infty}]$ the new symbol $[t^{2\dots\infty}]$, which denotes that only the terms t^2 , t^3 , t^4 , ... are to be taken account of; viz. that the terms in t^0 and t^1 are to be rejected. The component trees of the altitude N-1are, it is to be observed, as before, root-trees; hence the second factor of the generating function is unaltered: the theorem is that for the centre-trees of altitude N we have the same generating function as for the root-trees, writing only $[t^{2\dots\infty}]$ in place of $[t^{1\dots\infty}]$. Or, what is the same thing, supposing that the first factor, unaffected by either symbol, is

 $= 1 + x^{N} (\alpha t + \beta t^{2} + ...) + x^{N+1} (\alpha' t + \beta' t^{2} + ...) + ...,$

then, affecting it with $[t^{1}\dots\infty]$, the value for the root-trees is

 $= x^{N}(\alpha t + \beta t^{2} + ...) + x^{N+1}(\alpha' t + \beta' t^{2} + ...) + ...,$

and, affecting it with $[t^{2\dots\infty}]$, the value for the centre-trees is

$$= x^{N}(\beta t^{2} + ...) + x^{N+1}(\beta' t^{2} + ...) + ...$$

It thus appears how the fundamental problem is that of the root-trees, its solution giving at once that of the centre-trees; whereas we cannot conversely solve the problem of the root-trees by means of that of the centre-trees.

As regards the bicentre-trees, it is to be remarked that, starting from a centre-tree of altitude N+1 with two main branches, then by simply striking out the centre, so as to convert into a single branch the two branches which issue from it, we obtain a bicentre-tree of altitude N. Observe that the altitude of a bicentre-tree is measured by that of the longest main branch from A or B, not reckoning AB or BA as a main branch. Hence the number of bicentre-trees, altitude N, is = number of centretrees of two main branches, altitude N+1.

This is, in fact, the convenient formula, provided only the number of centre-trees of two main branches has been calculated up to the altitude N + 1. But we can find independently the number of bicentre-trees of a given altitude N: the bicentre-tree is, in fact, formed by taking the two connected points A, B each as the root of a root-tree altitude N (the number of knots of the bicentre-tree being thus, it is clear, equal to the sum of the numbers of knots of the two root-trees respectively); and it is thus an easy problem of combinations to find the number of bicentre-trees of a given altitude N. Write

$$x^{N+1}\left(1+\beta x+\gamma x^2+\delta x^3+\ldots\right)$$

as the generating function of the root-trees of altitude N; viz. for such trees, 1 = no. of trees with N+1 knots, $\beta = no$. with N+2 knots, and so on; then the generating function of the bicentre-trees of the same altitude N is

$$= x^{2N+2} (1 + \beta_{x} x + \gamma_{x}^{2} + \delta_{x}^{3} + \dots),$$

C. IX.

55

ON THE ANALYTICAL FORMS CALLED TREES, WITH

610

where

$$\begin{split} \beta_{,} &= \beta, \\ \gamma_{,} &= \gamma + \frac{1}{2}\beta \, (\beta + 1), \\ \delta_{,} &= \delta + \beta \gamma, \\ \epsilon_{,} &= \epsilon + \beta \delta + \frac{1}{2}\gamma \, (\gamma + 1), \\ \zeta_{,} &= \zeta + \beta \epsilon + \gamma \delta, \end{split}$$

and so on; or, what is the same thing, calling the first generating function ϕx , then the second generating function is $=\frac{1}{2} \{(\phi x)^2 + \phi(x^2)\}$.

It will be noticed that the bicentre-trees are not, as were the centre-trees, divided according to the number of their main branches; they might be thus divided according to the sum of the number of the main branches issuing from the two points of the bicentre respectively; a more complete division would be according to the number of main branches issuing from the two points respectively; thus we might consider the bicentre-trees (2, 3), with 2 main branches from one point, and 3 main branches from the other point of the bicentre; but the whole theory of the bicentre-trees is comparatively easy, and I do not go into it further.

We have yet to consider the case of the limited trees where the number of branches from a knot is equal to a given number at most: to fix the ideas, say the carbon-trees, where this number is =4. The distinction as to root-trees and centreand bicentre-trees is as before; and the like theory applies to the two cases respectively. Considering first the case of the root-trees, and referring to the former figure for obtaining the trees of altitude N from those of inferior altitudes, then the trees a, b,... of altitude N-1 must be each of them a carbon-tree of not more than (4-1=)3 main branches: this restriction is necessary, inasmuch as, if for any such tree the number of main branches was = 4, then there would be from the root of such tree 4 branches plus the new branch shown by the dotted line, in all 5 branches; and similarly, inasmuch as there is at least one component tree a contributing one main branch, the number of main branches of the tree c must be (4-1=)3 at most: the mode of introducing these conditions will appear in the explanation of the actual formation of the generating functions (see explanation preceding Tables III., IV., &c.). The number of main branches is =4 at most, and the generating functions have only to be taken up to the terms in t^4 ; the first factor is consequently in each case affected with a symbol [t^{1...4}], denoting that the only terms to be taken account of are those in t, t^2 , t^3 , t^4 ; hence as there is a factor t at least, and the whole is required only up to t^4 , the second factor is in each case required only up to t^3 .

As regards the centre-trees, the generating functions have here the same expressions as for the root-trees, except that, instead of the symbol $[t^{1...4}]$, we have the symbol $[t^{2...4}]$, denoting that in the first factor the only terms to be taken account of are those in t^2 , t^3 , t^4 ; hence as there is a factor t^2 at least, and the whole is required only up to t^4 , the second factor is in each case required up to t^2 ; and we then complete the theory by obtaining the bicentre-trees. The like remarks apply of course to

610] APPLICATION TO THE THEORY OF CHEMICAL COMBINATIONS.

the boron-trees, number of branches = 3 at most, and to the oxygen-trees, number = 2at most; but, as already remarked, this last case is so simple, that the general method is applied to it only for the sake of seeing what the general method becomes in such an extreme case.

We thus form the Tables, which I proceed to explain.

Table I. of general root-trees is in fact a Table of triple entry, viz. it gives for any given number of knots from 1 to 13 the number of root-trees corresponding to any given number of main branches and to any given altitude. In each compartment, that is, for any given number of knots, the totals of the columns give the number of the trees for each given altitude, and the totals of the lines give the number of the trees for each given number of main branches: the corner grand totals of these totals respectively show for each given number of knots the whole number of roottrees :--

viz. knots	•••	1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11,	12,	13,
numbers are		1,	1,	2,	4,	9,	20,	48,	115,	286,	719,	1842,	4766,	12486,

as already mentioned: these numbers were calculated by an independent method.

Table II. of general centre- and bicentre-trees consists of a centre part and a bicentre part: the centre part is arranged precisely in the same manner as the roottable. As to the bicentre part, where it will be observed there is no division for number of main branches, the calculation of the several columns is effected by the before-mentioned formula,

$$\phi_{x} = \frac{1}{2} \left\{ (\phi x)^{2} + \phi(x^{2}) \right\};$$

thus column 2, we have by Table I. (totals of column 2)

$$bx = x^3 + 2x^4 + 4x^5 + 6x^6 + 10x^7 + 14x^8 + 21x^9 + 29x^{10} + \dots,$$

and thence

 $\phi_{x} = x^{6} + 2x^{7} + 7x^{8} + 14x^{9} + 32x^{10} + 58x^{11} + 110x^{12} + 187x^{13} + \dots$

As already mentioned, each column of Table I. is calculated by means of a generating function given as a product of two factors, each of which is obtained from the columns which precede the column in question; and Table II., the centre part of it, is calculated by means of the same generating functions slightly modified: these generating functions serving for the calculation of the two Tables are given in the table entitled "Subsidiary Table for the calculation of the GF's of Tables I. and II.," which immediately follows these two Tables, and will be further explained.

ON THE ANALYTICAL FORMS CALLED TREES, WITH [610

TABLE I.—General Root-trees.

Index x , or number of knots.	Index t , or number of in branches.	been	bortis	ter ler		alla" a	Altitud	le or n	umber	of colu	mn.	- Tine	ti ol caso.	pplied extreme Weath	na na
	ma	0	1	2	3	4	5	6	7	8	9	10	11	12	13
1	0	1	1		10 10	a bio	5								
200	Total	1	1		rtifle	novie					niai				
2	1	e oni	1	1	held	to ela					divid				
	Total	baa	1	1	PILL I										
3	$\frac{1}{2}$	dmin	1	1	1 1	ad de		120.1			and in				
	Total	8 . A.	1	1	2										
4	$\begin{array}{c}1\\2\\3\end{array}$	12	1	1	1	$2 \\ 1 \\ 1$		S			Sec.		in a la	ie knyt	
	Total	Sec. 11	1	2	1	4					. Sille		oituele		
5	$\begin{array}{c}1\\2\\3\\4\end{array}$	ente gabi tor 3	1	1 2 1	2 1	1	4 3 1 1	high					No. II		
for	Total	. 00	1	4	3	1	9				9930				
6	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $		1	$\begin{array}{c}1\\2\\2\\1\end{array}$	4 3 1	3 1	1	9 6 3 1 1							asd and
1. 2	Total		1	6	8	4	1	20			and the			13	in the second
7	$\begin{array}{c}1\\2\\3\\4\\5\\6\end{array}$		1	1 3 3 2 1	6 8 3 1	8 4 1	4	1	20 16 7 3 1 1	ting for	- Color	- 19 		in and a second	
the	Total	Beate	1	10	18	13	5	1	48	10 11	aborg				
8	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array} $	ibodi ibodi ig o ig o eMda do	1	1 3 4 3 2 1	10 15 9 3 1	18 13 4 1	13 5 1	5 1	1	48 37 18 7 3 1 1 1				inini giritare dutos a meni do	
	Total		1	14	38	36	19	6	1	115					
9	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \end{array} $		1	$ \begin{array}{c} 1 \\ 4 \\ 5 \\ 5 \\ 3 \\ 2 \\ 1 \end{array} $	$ \begin{array}{r} 14 \\ 30 \\ 19 \\ 9 \\ 3 \\ 1 \end{array} $	$38 \\ 36 \\ 14 \\ 4 \\ 1$	36 19 5 1	19 6 1	6 1	1	$ \begin{array}{r} 115 \\ 96 \\ 44 \\ 19 \\ 7 \\ 3 \\ 1 \\ 1 \end{array} $				
	Total		1	21	76	93	61	26	7	1	286				

436

www.rcin.org.pl

-

Index x , r number of knots.	Index t , or number of in branches.	iid.		0		-	Alti	tude or	numbe	er of co	olumn.			t of the second	
0	ma	0	1	2	3	4	5	6	7	8	9	10	11	12	13
10	$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 9 \end{array} $		1	$ \begin{array}{c} 1 \\ 4 \\ 7 \\ 6 \\ 5 \\ 3 \\ 2 \\ 1 \end{array} $	$21 \\ 51 \\ 42 \\ 20 \\ 9 \\ 3 \\ 1$	$76 \\ 89 \\ 41 \\ 14 \\ 4 \\ 1$	$93 \\ 61 \\ 20 \\ 5 \\ 1$	$ \begin{array}{c} 61 \\ 26 \\ 6 \\ 1 \end{array} $	26 7 1	71	1	$286 \\ 239 \\ 117 \\ 46 \\ 19 \\ 7 \\ 3 \\ 1 \\ 1$	0	r ng	
	Total		1	29	147	225	180	94	34	8	1	719	-		
11	$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 10 \\ \end{array} $	4	1	$ \begin{array}{c} 1 \\ 5 \\ 8 \\ 9 \\ 7 \\ 5 \\ 3 \\ 2 \\ 1 \end{array} $	$29 \\ 90 \\ 79 \\ 46 \\ 20 \\ 9 \\ 3 \\ 1$	$ \begin{array}{r} 147 \\ 210 \\ 110 \\ 42 \\ 14 \\ 4 \\ 1 \end{array} $	$225 \\ 180 \\ 67 \\ 20 \\ 5 \\ 1$	$ \begin{array}{r} 180 \\ 94 \\ 27 \\ 6 \\ 1 \end{array} $	94 34 7 1	34 8 1	81	1	$\begin{array}{c c} 719\\ 622\\ 299\\ 124\\ 47\\ 19\\ 7\\ 3\\ 1\\ 1\end{array}$		
	Total	-	1	41	277	528	498	308	136	43	9	1	1842	hite	1.1
12	$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 11 \end{array} $		1	$ \begin{array}{r} 1 \\ 5 \\ 10 \\ 11 \\ 10 \\ 7 \\ 5 \\ 3 \\ 2 \\ 1 \end{array} $	$\begin{array}{r} 41\\ 145\\ 152\\ 91\\ 47\\ 20\\ 9\\ 3\\ 1\end{array}$	$277 \\ 467 \\ 278 \\ 115 \\ 42 \\ 14 \\ 4 \\ 1$	528 493 208 68 20 5 1	498 308 101 27 6 1	308 136 35 7 1	136 43 8 1	43 9 1	91		$\begin{array}{c c} 1842\\ 1607\\ 793\\ 320\\ 126\\ 47\\ 19\\ 7\\ 3\\ 1\\ 1\\ 1\end{array}$	
	Total	2	1	55	509	1198	1323	·941	487	188	53	10	1	4766	
13	$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ \end{array} $		1	$ \begin{array}{r} 1 \\ 6 \\ 12 \\ 15 \\ 13 \\ 11 \\ 7 \\ 5 \\ 3 \\ 2 \\ 1 \end{array} $	$55 \\ 238 \\ 272 \\ 184 \\ 95 \\ 47 \\ 20 \\ 9 \\ 3 \\ 1$	$509 \\ 1012 \\ 669 \\ 299 \\ 116 \\ 42 \\ 14 \\ 4 \\ 1$	$1198 \\ 1524 \\ 376 \\ 213 \\ 68 \\ 20 \\ 5 \\ 1$	$1323 \\ 941 \\ 344 \\ 102 \\ 27 \\ 6 \\ 1$	$941 \\ 487 \\ 144 \\ 35 \\ 7 \\ 1$	487 188 44 8 1	188 53 9 1	53 10 1	10 1	1	$\begin{array}{r} 4766\\ 4460\\ 1871\\ 857\\ 327\\ 127\\ 47\\ 19\\ 7\\ 3\\ 1\\ 1\\ 1\end{array}$
5	Total		1	76	924	2666	3405	2744	1615	728	251	64	11	1	12486

TABLE I. (continued).

Index x , or number of knots.	ndex t, or umber of in branches.		Alti	Cen tude or	tre-Tre numbe	es. r of colu	umn.			Centre.	rand Total.	Bicentre.		Bio	entre Altit	e-Tre	es.	- Tarica
0	L n ma	0	1	2	3	4	5	6			G		0	1	2	3	4	5
1	0	1	1			The second		1.94		1	1	0				-		
	Total	1	1															
2										0	1	1	1					
3	2		1	1				68								or T		
	Total	000	1	1		1 1 20		1 23	-	1	1	0						
4	$\frac{2}{3}$	- 2123 - 0122 - 0122	1	1	Ł			10		90 J	100						-	
	Total	1. 54	1	1				3		1	2	1		1				
5	$2 \\ 3 \\ 4$	100	1	1	1 1													
	Total	1	1	1	2					2	3	1		1				
6	2 3 4 5	1	1	1 1	1 1 1												14. 1	
	Total		1	2	3			1.10		3	6	3		2	1	1-		
7	$\begin{array}{c}2\\3\\4\\5\\6\end{array}$		1	2 2 1	1	3 2 1 1												
1.1.17	Total		1	5	1	7		10-18	81. S	7	11	4		2	2			
8	$2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7$	AR I	1	2 3 2 1	2 1	4 4 2 1 1											0	
1 in	Total		1	8	3	12		1		12	23	11		3	7	1		
9	2 3 4			3 4 4	7 3 1	1	11 7 5			1					1			
8849	56	111		$\begin{vmatrix} 2\\ 1 \end{vmatrix}$		197 6	21	28.00	ne. Si	112. 15	1				Int	012		
	7 8		1				1	3			1							
	Total	1	1	14	11	1	27			27	47	20		3	14	3		

TABLE II.—General Centre- and Bicentre-Trees.

Index x , r number of knots.	ndex t, or number of in branches.	11	Alti	Cen tude or	tre-Tre numbe	es. er of col	umn.	1		Centre.	rand Total.	Bicentre.		Bio	Altit	e-Tree	98.	that o
0	Ina	0	1	2	3	4	5	6			G	-	0	1	2	3	4	5
10	$ \begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \end{array} $		1	3 6 5 4 2 1	14 11 3 1	3 1	20 18 8 5 2 1 1				1	-			1			
	Total		1	21	29	4	55		1	55	106	51		4	32	14	1	
11	2 3 4 5 6 7 8		1	4 7 8 6 4 2 1	$32 \\ 26 \\ 12 \\ 3 \\ 1$	14 4 1	1	$ \begin{array}{c} 51 \\ 37 \\ 21 \\ 9 \\ 5 \\ 2 \\ 1 \end{array} $							1			0
	9 10		1					1	112									8
	Total		1	32	74	19	1	127		127	235	108		4	58	42	4	
12	2 3 4 5 6 7 8 9 10 11		1	$ \begin{array}{r} 4 \\ 9 \\ 10 \\ 9 \\ 6 \\ 4 \\ 2 \\ 1 \end{array} $	58 63 30 12 3 1	42 19 4 1	4 1	$ \begin{array}{r} 108 \\ 92 \\ 44 \\ 22 \\ 9 \\ 5 \\ 2 \\ 1 \\ 1 \end{array} $. (-			De De la cara de la cara
	Total		1	45	167	66	5	284		284	551	267		5	110	128	23	1
13	2 3 4 5 6 7 8 9 10 11 12	I HE		$5 \\ 11 \\ 14 \\ 12 \\ 10 \\ 6 \\ 4 \\ 2 \\ 1$	110 132 78 31 12 3 1	128 66 20 4 1	23 5 1	1	$267 \\ 214 \\ 113 \\ 47 \\ 23 \\ 9 \\ 5 \\ 2 \\ 1 \\ 1$					-				
isomel.	Total	3	1	65	367	219	29	1	682	682	1301	619		5	187	334	88	5

TABLE II. (continued).

ON THE ANALYTICAL FORMS CALLED TREES, WITH

Subsidiary Table for GF's of Tables I. and II.

ex t.			-	1	iten i		Ind	lex of a	<i>r</i> .	n E M	uren hu				
Ind	0	1	2	3	4	5	6	7	8	9	10	11	12	13	288 484
0	obi	1			1.2		-		1.1.60	nucloo b	e readeux	10 m	Altito	il col li	GF, column 0.
*	•	- 1		11. B.	-1- 6		- gradent		7						GF, column 1.
0 1 2 3 4 5 6 7 8 9 10 11 12	(1)	1	1	1	1	1	1	1	1	1	1	1	1		First factor.
						2	-	100			1				Second factor.
*			-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1		GF, column 2.
0 1 2 3 4 5 6	(1)	.85	1	1	1	1 1	1 2 1	1 2 1	1 3 2 1	1 3 3 1	1 4 4 2 1	1 4 5 3 1	1 5 7 5 2 1		First factor.
0 1 2 3 4 5 6 7 8		1	1	1	1	1	1	1	1	1		500×04			Second factor.
$9 \\ 10 \\ 11 \\ 12$			2				1			100 M	1	1	1	1	A A A A A A A A A A A A A A A A A A A
*	0			-1	-2	- 4	- 6	-10	- 14	- 21	- 29	- 41	- 55	- 76	GF, column 3.
$ \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \end{array} $	(1)	•	•	1	2	4	6 1	$10 \\ 2$	14 7	$\begin{array}{c} 21\\ 14\\ 1\end{array}$	$\begin{array}{c} 29\\ 32\\ 2\end{array}$	41 58 7	55 110 18 1	•	First factor.
$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \end{array}$	101	1	1	1	1 1 1	1 2 1 1	1 2 2 1 1	$ \begin{array}{c} 1 \\ 3 \\ 2 \\ 1 \\ 1 \end{array} $	$ \begin{array}{c} 1 \\ 3 \\ 4 \\ 3 \\ 2 \\ 1 \\ 1 \end{array} $	1 4 5 5 3 2 1 1	$ \begin{array}{c} 1 \\ 4 \\ 7 \\ 6 \\ 5 \\ 3 \\ 2 \\ 1 \\ 1 \end{array} $	$ \begin{array}{c} 1 \\ 5 \\ 9 \\ 7 \\ 5 \\ 3 \\ 2 \\ 1 \\ 1 \end{array} $	$ \begin{array}{r} 1 \\ 5 \\ 10 \\ 11 \\ 10 \\ 7 \\ 5 \\ 3 \\ 2 \\ 1 \\ 1 \end{array} $	$ \begin{array}{r} 1 \\ 6 \\ 12 \\ 15 \\ 13 \\ 11 \\ 7 \\ 5 \\ 3 \\ 2 \\ 1 \\ 1 \end{array} $	Second factor.

440

[610

610]

APPLICATION TO THE THEORY OF CHEMICAL COMBINATIONS.

							1					2			
ex t.							Inde	x of x.							
Ind	0	1	2	3	4 ~	5	6	7	8	9	10	11	12	13	
*					-1	- 3	- 8	- 18	- 38	- 76	- 147	- 277	- 509	- 924	GF, column 4.
$ \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \end{array} $	(1)	D		1	1	3	8	18	38 1	76 3	147 14	277 42	$509\\128\\1$	2	First factor.
$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \end{array}$		1	1	1 1	2 1 1	3 3 1 1	5 5 3 1 1	$ \begin{array}{c} 7 \\ 11 \\ 6 \\ 3 \\ 1 \\ 1 \end{array} $	$ \begin{array}{c} 11\\ 18\\ 13\\ 6\\ 3\\ 1\\ 1\\ 1 \end{array} $	$15 \\ 34 \\ 24 \\ 14 \\ 6 \\ 3 \\ 1 \\ 1$	$22 \\ 55 \\ 49 \\ 26 \\ 14 \\ 6 \\ 3 \\ 1 \\ 1$	$30 \\ 95 \\ 87 \\ 55 \\ 27 \\ 14 \\ 6 \\ 3 \\ 1 \\ 1$	$\begin{array}{c} 42\\ 150\\ 162\\ 102\\ 57\\ 27\\ 14\\ 6\\ 3\\ 1\\ 1\end{array}$	56 244 284 199 108 58 27 14 6 3 1 1	Second factor.
*	•				•	-1	- 4	- 13	- 36	- 93	- 225	- 528	- 1198	- 2666	GF, column 5.
$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	(1)				4.1	1	4	13	36	93	225 1	528 4	$\begin{array}{c} 1198\\ 23\end{array}$		First factor.
$ \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ \end{array} $		1	1	1	2 1 1	4 3 1 1	8 6 3 1 1	$15 \\ 15 \\ 7 \\ 3 \\ 1 \\ 1$	29 31 17 7 3 1 1	$53 \\ 70 \\ 38 \\ 18 \\ 7 \\ 3 \\ 1 \\ 1 \\ 1$	$98 \\ 144 \\ 90 \\ 40 \\ 18 \\ 7 \\ 3 \\ 1 \\ 1$	$ 177 \\ 305 \\ 197 \\ 97 \\ 41 \\ 18 \\ 7 \\ 3 \\ 1 \\ 1 1 $	$\begin{array}{r} 319\\ 617\\ 440\\ 217\\ 99\\ 41\\ 18\\ 7\\ 3\\ 1\\ 1\\ 1\end{array}$	$565 \\ 1256 \\ 953 \\ 498 \\ 224 \\ 100 \\ 41 \\ 18 \\ 7 \\ 3 \\ 1 \\ 1$	Second factor.
*	•	•	•	•	•	•	-1	- 5	- 19	- 61	- 180	- 498	- 1323	- 3405	GF, column 6.
$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	(1)						1	5	19	61	180	498	$\begin{array}{c} 1323 \\ 1 \end{array}$		First factor.
0 1 2 3 4 5 6 7 8 9 10 11 12		1	1	1	2 1 1	4 3 1 1	9 6 3 1 1	$ \begin{array}{r} 19 \\ 16 \\ 7 \\ 3 \\ 1 \\ 1 \end{array} $	$42 \\ 36 \\ 18 \\ 7 \\ 3 \\ 1 \\ 1$	$89 \\ 89 \\ 43 \\ 19 \\ 7 \\ 3 \\ 1 \\ 1$	191 205 110 45 19 7 3 1 1	$\begin{array}{c} 402\\ 485\\ 264\\ 117\\ 46\\ 19\\ 7\\ 3\\ 1\\ 1\end{array}$	$\begin{array}{r} 847\\ 1110\\ 648\\ 285\\ 119\\ 46\\ 19\\ 7\\ 3\\ 1\\ 1\end{array}$	$1763 \\ 2780 \\ 1329 \\ 711 \\ 2992 \\ 120 \\ 46 \\ 19 \\ 7 \\ 3 \\ 1 \\ 1$	Second factor.

Subsidiary Table for GF's of Tables I. and II. (continued).

C. IX.

ON THE ANALYTICAL FORMS CALLED TREES.

www.rcin.org.pl

Subsidiary Tak	le for GF	's of Tables	I. and II.	(continued).
----------------	-------------	--------------	------------	--------------

¢ t.	1						• 1	Ind	lex of a	;.					Sur Cry
Inde	0	1	2	3	4	5	6	7	8	9	10	11	12	13	
		T.Lapi	ist of	1.000		and with		0	1.00		-1	- 9	- 53	- 251	GF, column 10.
0 1	(1)										1	9 5	53	251	First factor.
$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \end{array}$		1	1	1	2 1 1	4 3 1 1	9 6 3 1 1	20 16 7 3 1 1	48 37 18 7 3 1 1 1	$ \begin{array}{r} 115 \\ 96 \\ 44 \\ 19 \\ 7 \\ 3 \\ 1 \\ 1 \end{array} $	$286 \\ 239 \\ 117 \\ 46 \\ 19 \\ 7 \\ 3 \\ 1 \\ 1$	$718 \\ 622 \\ 299 \\ 124 \\ 47 \\ 19 \\ 7 \\ 3 \\ 1 \\ 1$	$1832 \\ 1606 \\ 793 \\ 320 \\ 126 \\ 47 \\ 19 \\ 7 \\ 3 \\ 1 \\ 1$	$\begin{array}{r} 4702\\ 4449\\ 1870\\ 857\\ 327\\ 127\\ 47\\ 19\\ 7\\ 3\\ 1\\ 1\end{array}$	Second factor.
*												-1	- 10	- 64	GF, column 11.
01	(1)						1.1	1	1.00			1	10	64	First factor.
0 1 2 3 4 5 6 7 8 9 10 11 12	in the second second	1	1	1 1	2 1 1	4 3 1 1	9 6 3 1 1	$20 \\ 16 \\ 7 \\ 3 \\ 1 \\ 1$	48 37 18 7 3 1 1 1	$ \begin{array}{r} 115 \\ 96 \\ 44 \\ 19 \\ 7 \\ 3 \\ 1 \\ 1 \end{array} $	$286 \\ 239 \\ 117 \\ 46 \\ 19 \\ 7 \\ 3 \\ 1 \\ 1$	71962229912447197311	$1841 \\ 1607 \\ 793 \\ 320 \\ 126 \\ 47 \\ 19 \\ 7 \\ 3 \\ 1 \\ 1$	$\begin{array}{r} 4755\\ 4459\\ 1871\\ 857\\ 327\\ 127\\ 47\\ 19\\ 7\\ 3\\ 1\\ 1\end{array}$	Second factor.
*	mysich		man		-			22.52	11.38	1000	mary	1.1	-1	11	GF, column 12.
01	(1)					11						. (1	11	First factor.
$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \end{array}$	2 - 1 - C - 2	1	1	1	2 1 1	4 3 1 1	9 6 3 1 1	$20 \\ 16 \\ 7 \\ 3 \\ 1 \\ 1$	48 37 18 7 3 1 1	$115 \\ 96 \\ 44 \\ 19 \\ 7 \\ 3 \\ 1 \\ 1$	$286 \\ 239 \\ 117 \\ 46 \\ 19 \\ 7 \\ 3 \\ 1 \\ 1$	$719 \\ 622 \\ 299 \\ 124 \\ 47 \\ 19 \\ 7 \\ 3 \\ 1 \\ 1$	$1842 \\ 1607 \\ 793 \\ 320 \\ 126 \\ 47 \\ 19 \\ 7 \\ 3 \\ 1 \\ 1$	$\begin{array}{c} 4765\\ 4460\\ 1871\\ 857\\ 327\\ 127\\ 47\\ 19\\ 7\\ 3\\ 1\\ 1\end{array}$	Second factor.
*		E				9								-1	GF, column 13.
$\begin{array}{c} 0 \\ 1 \end{array}$	(1)							•						1	First factor.
$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \end{array}$		1	1	1	2 1 1	4 3 1 1	9 6 3 1 1	20 16 7 3 1 1	48 37 18 7 3 1 1	$115 \\ 96 \\ 44 \\ 19 \\ 7 \\ 3 \\ 1 \\ 1$	$286 \\ 239 \\ 117 \\ 46 \\ 19 \\ 7 \\ 3 \\ 1 \\ 1$	71962229912447197311	$1842 \\ 1607 \\ 793 \\ 320 \\ 126 \\ 47 \\ 19 \\ 7 \\ 3 \\ 1 \\ 1$	$\begin{array}{r} 4766\\ 4460\\ 1871\\ 857\\ 327\\ 127\\ 47\\ 19\\ 7\\ 3\\ 1\\ 1\end{array}$	Second factor.

56-2

I proceed to explain the Subsidiary Table, first in its application to Table I.

The Subsidiary Table is divided into sections, giving the GF's of the successive columns of Table I., each section being given by means of the preceding columns of Table I.; for instance, that for column 3 by means of columns 0, 1, 2 of Table I.

As regards column 0, the Table shows that the GF is =x.

As regards column 1, it shows that the GF has a first factor,

$$(1-tx)^{-1}$$
, = (1) + tx + t^2x^2 + t^3x^3 + ...,

which is operated on by the symbol $[t^{1...\infty}]$, viz. the constant term (1) is to be rejected; and that it has a second factor, = x: the product of these, viz. $(tx + t^2x^2 + t^3x^3 + ...) \times x$, is the required *GF*, the coefficients of which are accordingly given in column 1 of Table I.

As regards column 2, it shows that the GF has a first factor,

$$(1-tx^2)^{-1}(1-tx^3)^{-1}(1-tx^4)^{-1}\dots,$$

where the indices -1, -1, -1, ... are the sums of the numbers in column 1, Table I., (with their signs changed): which first factor is

$$1 + tx^2 + tx^3 + \begin{pmatrix} t \\ + t^2 \end{pmatrix} x^4 + \dots,$$

and it is as before to be operated on with $[t^{1...\infty}]$, viz. the constant term is to be rejected; and further, that there is a second factor $= x + tx^2 + t^2x^3 + ...$, the coefficients of which are obtained by summation of the numbers in the several lines of columns 0, 1 of Table I. We have thence column 2 of Table I.

As regards column 3, it shows that the GF has a first factor,

$$(1 - tx^3)^{-1}(1 - tx^4)^{-2}(1 - tx^5)^{-4}\dots,$$

where the indices $-1, -2, -4, \ldots$ are the sums of the numbers in column 2 of Table I., (with their signs changed): which first factor is

$$= 1 + tx^{3} + 2tx^{4} + 4tx^{5} + \begin{pmatrix} 6t \\ + t^{2} \end{pmatrix} x^{6} + \dots,$$

and it is as before to be operated on with $[t^{1}\dots\infty]$, viz. the constant term is to be rejected; and that there is a second factor

$$= x + tx^{2} + {t \choose + t^{2}} x^{3} + {t \choose + t^{2}} x^{4} + \dots,$$

the coefficients of which are obtained by summation of the numbers in the several lines of columns 0, 1, 2 of Table I.: we have thence column 3 of Table I.

And similarly, by means of columns 0, 1, 2, 3 of Table I., we form the GF of column 4; that is, we obtain column 4 of Table I., and so on indefinitely.

www.rcin.org.pl

.

610] APPLICATION TO THE THEORY OF CHEMICAL COMBINATIONS.

To apply the Subsidiary Table to the calculation of the GF's of Table II., the only difference is that the first factors are to be taken without the terms in t^{1} : thus for Table II. column 3, the first factor of the GF

$$= t^2 x^6 + 2t^2 x^7 + 7t^2 x^8 + \begin{pmatrix} 14t^2 \\ +t^3 \end{pmatrix} x^9 + \&c.,$$

the second factor being as for Table I.

$$= x + tx^{2} + \begin{pmatrix} t \\ + t^{2} \end{pmatrix} x^{3} + \&c.$$

The remaining Tables are Tables III. and IV., oxygen root-trees and centre- and bicentre-trees, followed by a Subsidiary Table for the calculation of the GF's: Tables V. and VI., boron root-trees and centre- and bicentre-trees, followed by a Subsidiary Table; and Tables VII. and VIII., carbon root-trees and centre- and bicentre-trees, followed by a Subsidiary Table. The explanations given as to Tables I., II. and the Subsidiary Table apply *mutatis mutandis* to these; and but little further explanation is required: that given in regard to the Subsidiary Table of Tables III. and IV. shows how this limiting case comes under the general method. As to the Subsidiary of Tables V. and VI., it is to be observed that each * line of the Table is calculated from a column of Table V., rejecting the numbers which belong to t^3 ; thus Table V., column 4, the numbers are

and taking the sums for the first and second lines only, these are

 $1, 4, 9, 17, 29, 45, \ldots,$

which, taken with a negative sign, are the numbers of the line *GF, column 5.

And so as to the Subsidiary of Tables VII. and VIII., each * line of the Table is calculated from a column of Table VII., rejecting the numbers which belong to t^4 ; thus Table VII., column 4, the numbers are

t^1	1	3	8	15	27	43
t^2		1	4	13	33	74
t^3			1	4	14	38
t^4				1	4	14;

and taking the sums for the first, second, and third lines only, these are

$$1, 4, 13, 32, 74, 155, \ldots$$

which, taken with a negative sign, are the numbers of the line *GF, column 5.

Referring to the foregoing "Edification Diagram," the effect is that we thus introduce the conditions that in a boron-tree the number of component trees a, b, ... is at most (3-1=)2 and that in a carbon-tree the number of component trees a, b, ... is at most (4-1=)3.

www.rcin.org.pl

Index x , r number of knots.	ndex t , or number of in branches.	Hore	taran stindu namin uni-n			Alti	tude or	numbe	r of col	umn.	Ener Ener			
0	na	0	1	2	3	4	5	6	7	8	9	10	11	12
1	0	1	1.189	119 .9	1.80	10360.64	1.80099	-11.13	128	1 March	12.09	Labore		(b)m
2	1		1											
3	$\frac{1}{2}$	ni, *	1	1	hores	an la ta	1. 191		1.17	bela	7 -40	JAE	10.10	-16
4	$\frac{1}{2}$			1	1			in an an a	interio		i uni	cheo	2 44.	ell a
5	$\frac{1}{2}$			1	1	1		A.						
6	$\frac{1}{2}$				1	1	1				-			
7	$\frac{1}{2}$		nta e	toda"	1	1	1	1	ųmi		and the	ITTA N	3 34	ality I
8	$\frac{1}{2}$			11.1		1	1	1	1			dire		1
9	$\frac{1}{2}$	nil *	dana	.1117	ban	1	1	1	1	1	orta	03 10	L. D.B. V.	în A
10	$\frac{1}{2}$			3			1	1	1	1	1		T ale	all a
11	$\frac{1}{2}$						1	1	1	1	1	1		
12	$\frac{1}{2}$					1.2	1. A.	1	1	1	1	1	1	1.5
13	$\frac{1}{2}$			1	par a	1		1	1	1	- 1	1	1	1

TABLE III.—Oxygen Root-Trees.

www.rcin.org.pl

447

Index x , r number of knots.	dex t, or umber of in branches.	Alt	itude	Cent or n	tre-Tr umbe	rees. er of d	eolum	ın.	Centre.	Total.	Bicentre.		Bie	entre Altit	e-Tree ude.	es.	
0	In n ma	0	1	2	3	4	5	6			1	0	1	2	3	4	. 5
1	0	1							 1	1	0			-			
2									0	1	1	1					
3	2		1						1	1	0			-			
4									0	1	1		1	-			
5	2		1	1					. 1	1	0						
6									0	1	1			1			
7	2				1				1	1	0						
8									0	1	1		1		1		
9	2	1		1.1		1			1	1	0					-	
10									0	1	1	-				1	
11	2						1		1	1	0						
12			-	1					0	1	1			-			1
13	2							1	1	1	0					-	-

TABLE IV.-Oxygen Centre- and Bicentre-Trees.

Index t. Index of x. GF, column 0. -1 GF, column 1. * First factor. $\frac{1}{2}$ Second factor. GF, column 2. -1 * First factor. Second factor. -1 GF, column 3. * First factor. . • $\frac{1}{2}$: Second factor. -1 GF, column 4. 야 First factor. • • • Second factor. -1 GF, column 5. * First factor. Second factor.

Subsidiary Table for GF's of Tables III. and IV.

and so on indefinitely; viz. observing that the first factors, as shown by the Table, are $(1 - tx)^{-1} [t^{1,2}]$, $(1 - tx^2)^{-1} [t^{1,2}]$, &c., the Table in fact shows that as regards Table III. the GF's are for

eolumn	0: x,
y	$1: tx + t^2 x^2 \cdot x$,
>>	$2: tx^2 + t^2x^4 \cdot x + tx^2$,
"	$3: tx^3 + t^2x^6 \cdot x + t(x^2 + x^3),$
"	4: $tx^4 + t^2x^8$. $x + t(x^2 + x^3 + x^4)$,
	5: $tx^5 + t^2x^{10}$. $x + t(x^2 + x^3 + x^4 + x^5)$;

viz. developing as far as t^2 , that the successive GF's are

22

22

22

",,

column 0: x,

1: $tx^{2} + t^{2}x^{3}$, 2: $tx^{3} + t^{2}(x^{4} + x^{5})$, 3: $tx^{4} + t^{2}(x^{5} + x^{6} + x^{7})$, 4: $tx^{5} + t^{2}(x^{6} + x^{7} + x^{8} + x^{9})$, 5: $tx^{6} + t^{2}(x^{7} + x^{8} + x^{9} + x^{10} + x^{11})$; &c., agreeing with Table III.

And so also it shows that, as regards Table IV. (centre part), the GF's of the successive columns are for

column 0: x, ,, 1: $t^2x^2 \cdot x$, ,, 2: $t^2x^4 \cdot x$, ,, 3: $t^2x^6 \cdot x$, ,, 4: $t^2x^8 \cdot x$, ,, 5: $t^2x^{10} \cdot x$; .

viz. that the successive GF's are x, t^2x^3 , t^2x^5 , t^2x^7 , t^2x^9 , t^2x^{11} ,..., agreeing in fact with Table IV.

C. IX.

TABLE V.-Boron Root-trees.

ndex x , \cdot number if knots.	ndex t, or number of in branches.	ezor	LAX18	000	1.1.51	Alti	itude or	r numb	er of c	olumn.					
I 00	I	0	1	2	3	4	5	6	7	8	9	10	11	12	L anu
1	0	1	1										Tol. 9	an Lag	ndi -
	Total	1	1						1.00		difflor				
2	1		1	1					- 33						
	Total		1	1			1.+ 4		6 %	2					
3	$\frac{1}{2}$		1	1	1 1	+ 4	343	19695	- 40	18					
*	Total		1	1	2	+	1+ 31		144	1.				1 Carlo	
4	$\begin{array}{c}1\\2\\3\end{array}$		1	1 1	1	$\begin{array}{c}2\\1\\1\end{array}$		-	- 44	3			-		
	Total	-	1	2	1	4) parts	Beergen (P guli		- 12	199	n pain	goleval	VIR.
5	$\begin{array}{c}1\\2\\3\end{array}$			$2 \\ 1$	$\frac{2}{1}$	1	3 3 1			0 0	ernior			140.04	
	Total			3	3	1	7		1	h					-
6	$\begin{array}{c}1\\2\\3\end{array}$			$\frac{1}{2}$	$2 \\ 3 \\ 1$	3 1	1	6 5 3	- 100-	2					
	Total			3	6	4	1	14		-	-				
7	$\frac{1}{2}$	-		1 2	1 6 3	5 4 1	4 1	1	$\begin{array}{c}11\\12\\6\end{array}$				-		property 2 produce
	Total			3	10	10	5	1	29						
8	$\begin{array}{c}1\\2\\3\end{array}$	ne G	101	2	1 7 7	$\begin{array}{c} 7\\10\\4\end{array}$	$9\\5\\1$	5 1	1	$23 \\ 23 \\ 14$	ndi e noi	enoste eno e	o it o	A AN	DRACT
	Total			2	15	21	15	6	1	60				ST. AN	and search
9	$\begin{array}{c}1\\2\\3\end{array}$			1	9 11	8 21 11	$\begin{array}{c} 17\\15\\5\end{array}$	$\begin{array}{c} 14\\ 6\\ 1\end{array}$	6 1	1	$ \begin{array}{r} 46 \\ 52 \\ 29 \end{array} $			-	1 Talger
1	Total			1	20	40	37	21	7	1	127		1		
10	$\begin{array}{c}1\\2\\3\end{array}$			1	7 18	9 36 26	29 37 16	$\begin{array}{c} 32\\21\\6\end{array}$	20 7 1	7 1	1	98 109 68			
	Total	1	1	1	25	71	82	59	28	8	1	275			
11 	$\begin{array}{c}1\\2\\3\end{array}$	gui	arys		7 21	7 59 53	$ 45 \\ 82 \\ 43 $	66 59 22	53 28 7	27 8 1	8 1	1	$207 \\ 244 \\ 147$	ends	.xiv
	Total				28	119	170	147	88	36	9	1	598	111	LARI
12	$\begin{array}{c}1\\2\\3\end{array}$				4 26	7 82 102	$ \begin{array}{r} 66 \\ 165 \\ 105 \end{array} $	$ \begin{array}{r} 127 \\ 147 \\ 66 \end{array} $	$ \begin{array}{r} 125 \\ 88 \\ 29 \end{array} $	81 36 8	$\begin{array}{c} 35\\9\\1\end{array}$	9 1	1	451 532 337	
	Total				30	191	336	340	242	125	45	10	1	1320	
13	$\begin{array}{c}1\\2\\3\end{array}$				3 26	$ \begin{array}{r} 4 \\ 114 \\ 175 \end{array} $	89 316 236	231 340 177	$274 \\ 242 \\ 96$	213 125 37	$ \begin{array}{c} 117 \\ 45 \\ 9 \end{array} $	44 10 1	10 1	1	983 1196 757
	Total			-	29	293	641	748	612	375	171	55	11	1	2936

610]

Index x , or number of knots.	ndex t, or number of in branches.	5.8	Alti	Cer tude or	ntre-Tre numbe	ees. er of col	umn.		indica 0	Centre.	rand Total.	Bicentre.	2	Bi	centr Alti	e-Tre tude.	es.	
0	I	0	1	2	3	4_	5	6	-		G.		0	1	2	3	4	5
1	0	1	1		2												0	
	Total	1	1							1	1	0						
2			1		1		-				-							-
										0	1	1	1		-			- 1
3	2		1	1							-					1		
	Total		1	1						1	1	0						
4_	2		1	1			1	1									1	
	Total		1	1						1	2	1		1			. 0	
5	2			1	1						24							
	Total			1	1			1-		1	2	1		1				
6	2 3			1 1	1 1						-					-		
	Total			2 ,	2					2	4	2		1	1.			
7	$\frac{2}{3}$			$\frac{1}{2}$	1	$\frac{2}{2}$					1						1	
	Total			3	,, 1	4				4	6	2			2			
8	2 3			2	$2 \\ 1$	2 3												
1	Total		1	2	3	5	3			5	11	6			5	1		
9	2 3			1	5 3	1	$\begin{array}{c} 6\\ 4\end{array}$											
	Total			1	8	. 1	10		1	10	18	8			5	3	. \ 4	
10	2 3	7455-		1	5 9	3 1	8 11							F				
	Total		198	1	14	4	19			19	37	18		121	6	11	1	
11	2 3				$\begin{array}{c} 6\\ 14\end{array}$	11 4	1	18 18									- 9	
	Total	FIL	14	100	20	15	1	36		36	66	30			4	22	4	
12	$\frac{2}{3}$	200		TRI-	4 21	$\begin{array}{c} 22\\ 16 \end{array}$	4 1	30 38	-									
	Total		182	CHI	25	38	5	68	T	68	135	67			3	44	19	1
13	$\frac{2}{3}$				3 24.	44 42	19 5	1	67 71					-				
	Total	NOR D	198	in the second	27	86	24	1	138	138	265	127			1	68	53	5

TABLE VI.—Boron Centre- and Bicentre-Trees.

57-2

lex t.			A. T. K		21		Index	of x.							
Ind	0	1	2	3	4	5	6	7	8	9	10	11	12	13	
0		1	-			1.8					-				GF, column 0.
*		-1					1	1					- 1	100	GF, column 1.
0 1 2 3	1	1	1	1				2-				3	1		First factor.
0		1													Second factor.
sje			-1	-1										-	GF, column 2.
0 1 9	1		1	1	1	1	1			-					First factor.
3					-	1	1	1	1	1					
$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$		1	1	1						1					Second factor.
sk				-1	- 2	-2	-1	-1							GF, column 3.
0 1 2 3	1			1	2	2	1	$\frac{1}{2}$	5	5 1	6 2	4 5	3 9		First factor.
0 1 2		1	1	1 1	1 1	2	1	1	-						Second factor.
*					-1	- 3	- 5	- 7	-8	- 9	-7	-7	4	-3	GF, column 4.
0 1 2 3	1				1	3	5	7	8 1	9 3	7 11	7 22	4 44 1		First factor.
$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	-	1	1	1 1	2 1	2 3	2 4	1 7	1 7	7	7	7	4	3	Second factor.
sje						-1	- 4	- 9	- 17	- 29	- 45	- 66	- 89	- 118	GF, column 5.
$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	1			-	18	1	4	9	17	29	45 1	66 4	89 19		First factor.
$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	42	1	1	1 1	2 1	3 3	5 5	6 11	8 17	8 30	9 43	7 66	7 86	4 117	Second factor.
*							-1	- 5	- 14	- 32	- 66	- 127	- 231	- 405	GF, column 6.
$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	1			10	7.65	-	1	5	14	32	66	127	231 1		First factor.
$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	-	1	1	1	2 1	33	6 5	10 12	17 22	25 45	38 80	$52\\148$	$73\\251$	93 433	Second factor.

Subsidiary Table for GF's of Tables V. and VI.

452

[610

610]

Subsidiary Table for GF's of Tables V. and VI. (continued).

								112							
Index x , or number of knots.	ndex t , or umber of in branches.		22	ed	14	Alt	itude o	r numb	er of c	olumn.					
0	L n ma	0	1	2	3	4	5	6	7	8	9	10	11	12	
1	0 .	1	1		-					1 15					
10000	Total	1	1								-			1 June Hand	
2	1		1	1											
	Total	R	1	1	24										
3.	1		1	1	1					-					
-	Total		1	1											
	1			1	1	2									
4	2			1	-	1		-			2		1		12
	3	154	1		01	1	191	-		6.9				-	
10[maps	Total		1	2	1	4						-		Montal	arealthe a
5	1			1	2	1	4								
miner.	2			2	1		3							X	
	4		1				1			- 5			-	112/4	
1 2 2000	Total		1	4	3	1	9								
6	1				4	3	1	8		3				Tit	
	2			2	3	1		6	3						
(nates)	3 4			1	-		RET) 1			.8				
	Total			5	8	4	1	18			-	-			
7	1		_		4	8		1	17						a
- TALA	2	1		2	8	4	1		15	1	-				
in the second	3			3	3	1			7						
	4			2		-		-	3			12.2			
	Total			7	16	13	5	1	42			1			

TABLE VII.—Carbon Root-trees.

www.rcin.org.pl

Index x , x number of knots.	Index t, or number of in branches.			Ø		Alt	titude o	r numl	per of c	olumn					ler for
0	ma	0	1	2	3	4	5	6	7	8	9	10	11	12	-
8	1				5	15	13	5	1	39					
	2			1	13	13	5	1		33				1 otal	1
	3	1.4		3	9	4	1			17					1
	4			3	3	1				7	-				
1 in	Total			7	30	33	19	6	1	96		-			
9	1				4	27	32	19	6	1	89			1	
	2			1	22	33	19	6	1		82			A PARTY	
	3			3	17	14	5	1			40				1.0
	4			4	9	4	1				18				
	Total		1	8	52	78	57	26	7	1	229				
10	1				4	43	74	56	26	7	1	211			
	2			8-1	29	74	57	26	7	1		194			
	3	1	-	3	34	38	20	6	1			102		The Low	
	4			4	18	14	5	1				42			1. 1. 1. 1.
	Total			7	85	169	156	89	34	8	. 1	549			
11	1				3	67	155	151	88	34	8	1	507		
	2	1			40	154	156	89	34	8	1		482 [.]	10124	The second
	3			2	54	95	63	27	7	1	1		249	1. 1.	
	4			5	38	39	20	5	1	4			108		
	Total			7	135	355	394	272	130	43	9	1	1346	in the second	
12	1				2	97	316	374	267	129	43	.9	1	1238	
	2				46	297	389	273	130	43	- 9	1		1188	
	3			1	88	218	184	96	35	8	1			631	1.1
	4			4	66	100	64	27	7	1	201-1			269	-
1.18	Total		-	5	202	712	953	770	439	181	53	10	1	3326	International Providence
13	1			-	1	136	612	889	743	432	180	52	10	1	3056
1. 1. 1. 1.	2		1	- 1 -	55	550	929	770	439	181	53	10	1		2988
	3			1	127	474	491	309	138	44	9	1			1594
	4			4	117	239	190	97	35	8	1				691
	Total			5	300	1399	2222	2065	1355	665	243	63	11	1	8329

TABLE VII. (continued).

ON THE ANALYTICAL FORMS CALLED TREES, WITH

									1		1	1	1)					
ndex x , number f knots.	dex t , or umber of n branches.		Alti	Cen tude or	tre-Tre numbe	es. er of col	umn.			Centre.	and Total.	ticentre.		Bio	centre Altit	e-Tree	es.	
I 0.	In nu mai	0	1	2	3	4	5	6	2.10		Gri	B	0	1	2	3	4	5
1	0	1	1					C. Res C.		-				-				-
	Total	1	1			unico te			in the second	1	1	0				12	-110	
2						-				alidam.	-				in he	anges -		
										0	1	1	1	0				
3	2		1	1	1.1.3	1				-							6	
	Total	2	1	1					1	1	1	0						
4	2		1	1							-	1.11						
	Total		1	1		0 1			-	1	2	1		1	Rol			
5	2		1	1	2					-		-						
-	Total		1	1	2				1	2	3	1		1				
6	2 3			1	1						4							
	Total			2	2		-		1	2	5	3		2	1	a la		
7	$2 \\ 3 \\ 4$			$2 \\ 2 \\ 1$	1	$3 \\ 2 \\ 1$. 30										01	
	Total			5	1	6				6	9	3	1	1	2			
8	$2 \\ 3 \\ 4$			$\begin{array}{c}1\\3\\2\end{array}$	2 1	3 4 2	110								1			
	Total			6	3	9				9	18	9	1	1	7	1		
9	$2 \\ 3 \\ 4$	949 249		$1\\3\\4$	7 3 1	1	9 6 5		1									
	Total	946	L	8	11	1	20		-	20	35	15			12	3		
10	$2 \\ 3 \\ 4$			3 4	$\begin{array}{c}12\\11\\3\end{array}$	3 1	15 15 7				-							
1	Total			7	26	4	37		- pr	37	75	38			23	14	1	
11	2 3 4	. /		2 5	$\begin{array}{r} 23 \\ 24 \\ 12 \end{array}$	$\begin{array}{c} 14 \\ 4 \\ 1 \end{array}$	1	38 30 18			-				100			
BBRE	Total			7	59	19	1	86	- Pie	86	159	73			30	39	4	
12	2				30	39	4	73										
area	3	16		4	54 27	4	1	35	22	4					Larr	r		
	Total			5	111	62	5	183		183	357	174			42	108	23	1
13	2 3 4			1 4	42 88 63	$ \begin{array}{r} 108 \\ 63 \\ 20 \end{array} $	23 5 1	1	174 157 88									
	Total			5	193	191	29	1	419	419	799	380		1	47	244	84	5

TABLE VIII.—Carbon Centre- and Bicentre-Trees.

456

www.rcin.org.pl

۰.	TO	TTTT	TITIOINT	OT.	OTTENTTOTTE	COMDITITIO.

Subsidiary	Table	for	GF's	of	Tables	VII.	and	VIII.
------------	-------	-----	------	----	--------	------	-----	-------

lex t.	Index of x.														
Inc	0	1	2	3	4	5	6	7	8	9	10	11	12	13	1.4.64
0	1000.5	1				-		-				3			GF, column 0.
*	and real	-1							inster.						GF, column 1.
$\begin{array}{c} 0\\ 1\\ 2\\ 3\\ 4 \end{array}$	1	1	1	1	•					5.7					First factor.
0	Nes al	1	1-12		1	R-1									Second factor.
*	real Berlé		-1	-1	-1									1	GF, column 2.
$\begin{array}{c} 0\\ 1\\ 2\\ 3\\ 4 \end{array}$	(1)		1	1	1	1	2 1	1	1 2 1	$\frac{2}{1}$	2 2	1 2	1 3		First factor.
0 1 2 3		1	1	1	1										Second factor.
*	20			-1	- 2	-4	-4	- 5	-4	- 4	- 3	-2	-1	-1	GF, column 3.
0 1 2 3 4	(1)			1	2	4	4 1	5 2	4 4	4 12 1	3 23 2	2 30 7	$\begin{array}{c}1\\42\\16\\1\end{array}$		First factor.
0 1 2 3		1	1	1	1 1 1 1	$\begin{array}{c}1\\2\\1\end{array}$	2 2	23	1 3	1 3	3	2	1	1	Second factor.
*		-2214			-1	- 3	-8	- 15	- 27	- 43	-67	- 97	- 136	- 183	GF, column 4.
0 1 2 3	(1)				1	3	8	15	27 1	43 3	$\begin{array}{c} 67\\ 14\end{array}$	97 39	136 108 1		First factor.
0 1 2 3	haluna	1	1	1	2 1 1	3 3 1	4 5 3	$4 \\ 10 \\ 6$	$5\\14\\12$	4 23 20	4 29 37	$\begin{array}{c}3\\40\\56\end{array}$	$\begin{array}{c}2\\46\\89\end{array}$	$\begin{array}{c}1\\55\\128\end{array}$	Second factor.
*	Alto A		-			-1	-4	- 13	- 32	-74	- 155	- 316	- 612	- 1160	GF, column 5.
0 1 2	(1)				-	1	4	13	32	74	155 1	316 4	612 23		First factor.
0 1 2 3		1	1	1	2 1 1	4 3 1	7 6 3	$\begin{array}{c} 12\\14\\7\end{array}$	20 27- 16	$\begin{array}{c} 31\\56\\34\end{array}$	47 103 . 75	70 194 151	99 343 307	$137 \\ 605 \\ 602$	Second factor.
*	5-						-1	- 5	- 19	- 56	- 151	- 374	- 889	- 2032	GF, column 6.
0 1 2	1						1	5	19	56	151	374	889 1		First factor.
0 1 2 3		1	1	111	2 1 1	4 3 1	8 6 3	16 15 7	33 32 17	63 75 39	121 160 95	$225 \\ 350 \\ 214$	$ \begin{array}{c c} 415 \\ 732 \\ 491 \end{array} $	$749 \\ 1534 \\ 1093$	Second factor.

ON THE ANALYTICAL FORMS CALLED TREES, WITH

Subsidiary Table for GF's of Tables VII. and VIII. (continued).

ex t.	Index of x.														
Ind	0	1	2	3	4	5	6	7	8	9	10	11	12	13	
*								-1	- 6	- 26	- 88	- 267	- 743	- 1968	GF, column 7.
0 1	(1)		5					1	6	26	88	267	743		First factor.
$\begin{array}{c} 0\\ 1\\ 2\\ 3 \end{array}$		1	1	1 1	2 1 1	4 3 1	8 6 3	17 15 7	38 33 17	82 81 40	177 186 101	376 439 241	789 1005 587	$\begin{array}{c} 1638 \\ 2304 \\ 1402 \end{array}$	Second factor.
*									-1	-7	- 34	- 129	- 432	- 1320	GF, column 8.
0 1	(1)	2							1	7	34	129	432	-	First factor.
$\begin{array}{c} 0\\ 1\\ 2\\ 3 \end{array}$		1	1	1 1	$2 \\ 1 \\ 1$	4 3 1	8 6 3	$\begin{array}{c} 17\\15\\7\end{array}$	39 33 17	88 82 40	203 193 102	464 473 248	$1056 \\ 1135 \\ 622$	$2381 \\ 2743 \\ 1540$	Second factor.
*	10.04									-1	-8	- 43	- 180	- 657	GF, column 9.
0 1	(1)								1	1	8	43	180		First factor.
$\begin{array}{c} 0\\ 1\\ 2\\ 3 \end{array}$		1	1	1 1	2 1 1	4 3 1	8 6 3	17 15 7	39 33 17	89 82 40	$210 \\ 194 \\ 102$	498 481 249	$1185 \\ 1178 \\ 630$	$2813 \\ 2924 \\ 1584$	Second factor.
*								11		1.1.1.	-1	- 9	- 53	- 242	GF, column 10.
0 1	(1)										1	9	53		First factor.
$\begin{array}{c} 0\\ 1\\ 2\\ 3 \end{array}$		1	1	1	2 1 1	4 3 1	8 6 3	17 15 7	39 33 17	89 82 40	$211 \\ 194 \\ 102$	$506 \\ 482 \\ 249$	1228 1187 631	$2993 \\ 2977 \\ 1593$	Second factor.
*												-1	- 10	- 63	GF, column 11.
0 1	(1)				3						_	1	10	63	First factor.
0 1 2 3		1	1	1 1	2 1 1	4 3 1	8 6 3	17 15 7	39 33 17	89 82 40	$211 \\ 194 \\ 102$	$507 \\ 482 \\ 249$	$1237 \\ 1188 \\ 631$	$3048 \\ 2987 \\ 1594$	Second factor.
*				11-1-10				1. 11	17.18				-1	- 11	GF, column 12.
0 1	(1)											-	1	11	First factor.
$ \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \end{array} $		1	1	1 1	2 1 1	4 3 1	8 6 3	17 15 7	39 33 17	89 82 40	$211 \\ 194 \\ 102$	$507 \\ 482 \\ 249$	1238 1188 631	$3055 \\ 2988 \\ 1594$	Second factor.
*														-1	GF, column 13.
0 1	(1)													1	First factor.
0 1 2 3		1	1	1 1	2 1 1	4 3 1	8 6 3	17 15 7	39 33 17	89 82 40	211 194 102	507 482 249	1238 1188 634	$3056 \\ 2988 \\ 1594$	Second factor.

www.rcin.org.pl

[610

.

610]

I annex the following two Tables of (centre- and bicentre-) trees as far as I have completed them.

ts.	Valency not greater than													
Kno	0	1	2 Oxygen.	3 Boron.	4 Carbon.	5	6	7	8	aused a				
1	1	1	1	1	1	1	1	1	1	1				
2	6	1	1	1	1	1	1	1	1	1				
3			1	1	1	1	1	1	1	1				
4			1	2	2	2	2	2	2	2				
5			1	2	3	3	3	3	3	3				
6	10 12	91 I.H	1	4	5	6	6	6	6	6				
7			1	6	9	10	11	11	11	11				
8			1	11	18	21	22	23	23	23				
9			1	18	35	42	45	46	47	47				
10			1	37	75					106				
11			1	66	159	7		4.		235				
12			1	135	357					551				
13			1	265	799	4				1301				

TABLE A.

TABLE B.

lots.	Actual Valency.												
Kn	0	1	2	3	4	5	6	7	8				
1	1												
2		1		1									
3			1										
4			1	1									
5			1	1	1								
6			1	3	1	1							
7	- 10 1		1	5	3	1	1						
8			1	10	7	3	1	1					
9			1	17	17	7	3	1	1				
10	9		1	36	38			-					
11			1	65	93								
12			1	134	222								
13			1	264	534								

In A, the columns 2, 3, 4, and the last column are the totals given by the Tables IV., VI., VIII., and II., and the remaining numbers of columns 5, 6, 7, 8 have been found by trial; and, in B, the several columns are the differences of the 58-2

columns of A. The signification is obvious; for instance, if the number of knots is =9, then Table A, if the valency, or the maximum number of branches from a knot,

$$is = 2, 3, 4, 5, 6, 7, 8 \text{ or any greater number},$$

No. of trees = 1, 18, 35, 42, 45, 46, 47:

viz. with 9 knots the tree can have at most 8 branches from a knot, so that the number of trees having at most 8 branches from a knot is = 47, the whole number of trees with 9 knots; and so the number of knots being as before = 9, Table B shows that the number of 47 is made up of the numbers

viz. 1 is the No. of trees, at most 2 branches from a knot,

17	22	>>	3	>>	"	at least one	3-branch knot.
17	>>	"	4	"	"	23	4 "
7	33	"	5	"	>>	"	5 "
3	>>	23	6	"	"	"	6 "
1	22	>>	7	"	""	» ·	7 "
1	22	"	8	"	>>	>>	8 "

I annex also a plate showing the figures of the 1+1+2+3+6+11+23+47 trees of 1, 2, 3,..,9 knots, classified according to their altitudes and number of main branches; and as to the bicentre-trees, according to the number of main branches from *each* point of the bicentre. The affixed numbers show in each case the greatest number of branches from a knot; so that when this is (2), the knots may be oxygen, boron-, carbon-, &c., atoms; when (3), boron-, carbon-, &c., atoms; when (4), carbon-, &c., atoms; and so on.

To face page 460.