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610.

ON THE ANALYTICAL FORMS CALLED TREES, WITH APPLI­
CATION TO THE THEORY OF CHEMICAL COMBINATIONS.

[From the Report of the British Association for the Advancement of Science, (1875), 
pp. 257—305.]

I have in two papers “ On the Analytical forms called Trees,” Phil. Mag. vol. 
x∏L (1857), pp. 172—176, [203], and ditto, vol. xx. (1859), pp. 374—378, [247], con­
sidered this theory; and in a paper “On the Mathematical Theory of Isomers,” ditto, 
vol. XLvιι. (1874), p. 444, [586], pointed out its connexion with modern chemical theory. 
In particular, as regards the paraffins C,lH2n+2, we have n atoms of carbon connected 
by n — 1 bands, under the restriction that from each carbon-atom there proceed at 
most 4 bands (or, in the language of the papers first referred to, we have n knots 
connected by n — 1 branches), in the form of a tree; for instance, n = 5, such forms 
(and the only such forms) are

And if, under the foregoing restriction of only 4 bands from a carbon-atom, we 
connect with each carbon-atom the greatest possible number of hydrogen-atoms, as 
shown in the diagrams by the affixed numerals, we see that the number of hydrogen­
atoms is 12 (=2.5 + 2); and we have thus the representations of three different 
paraffins, C5Hj2. It should be observed that the tree-symbol of the paraffin is
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428 ON THE ANALYTICAL FORMS CALLED TREES, WITH [610

completely determined by means of the tree formed with the carbon-atoms, or say of 
the carbon-tree, and that the question of the determination of the theoretic number 
of the paraffins CnH2n+2 is consequently that of the determination of the number of 
the carbon-trees of n knots, viz. the number of trees with n knots, subject to the 
condition that the number of branches from each knot is at most = 4.

In the paper of 1857, which contains no application to chemical theory, the 
number of branches from a knot was unlimited; and, moreover, the trees were 
considered as issuing each from one knot taken as a root, so that, n = 5, the trees 
regarded as distinct (instead of being as above only 3) were in all 9, viz. these were 

which, regarded as issuing from the bottom knots, are in fact distinct; while, taking 
them as issuing each from a properly selected knot, they resolve themselves into the 
above-mentioned 3 forms. The problem considered was in fact that of the “ general 
root-trees with n knots”—general, inasmuch as the number of branches from a knot 
was without limit; root-trees, inasmuch as the enumeration was made on the principle 
last referred to. It was found that for 

the law being given by the equation 

but the next following numbers A8, A9, A10, the correct values of which are 28€ 
719, 1842, were given erroneously as 306, 775, 2n09. I have since calculated tw∣ 
more terms, 2l11, √412 = 4766, 12486.

The other questions considered in the paper of 1857 and in that of 1859 hav< 
less immediate connexion with the present paper, but for completeness I reproduc∣ 
the results in a Note*.

* In the paper of 1857 I also considered the problem of finding Br the number with r free branches 
with bifurcations at least: this was given by a like formula 

leading to

for

In the paper of 1859, the question is to find the number of trees with a given number m of terminal 
knots : we have here

coefficient of
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610] APPLICATION TO THE THEORY OF CHEMICAL COMBINATIONS. 429

To count the trees on the principle first referred to, we require the notions of 
“ centre ” and “ bicentre,” due, I believe, to Sylvester; and to establish these we 
require the notions of “ main branch ” and “ altitude ”: viz. in a tree, selecting any 
knot at pleasure as a root, the branches which issue from the root, each with all 
the branches that belong to it, are the main branches, and the distance of the furthest 
knot, measured by the number of intermediate branches, is the altitude of the main 

branch. Thus in the left-hand figure, taking A as the root, there are 3 main branches 
of the altitudes 3, 3, 1 respectively: in the right-hand figure, taking A as the root, 
there are 4 main branches of the altitudes 2, 2, 1, 3 respectively; and we have 
then the theorem that in every tree there is either one and only one centre, or else 
one and only one bicentre; viz. we have (as in the left-hand figure) a centre A 
which is such that there issue from it two or more main branches of altitudes equal 
to each other and superior to those of the other main branches (if any); or else 
(as in the right-hand figure) a bicentre AB, viz. two contiguous knots, such that 
issuing from A (but not counting AB), and issuing from B (but not counting BA), 
we have two or more main branches, one at least from A and one at least from B, 
of altitudes equal to each other and superior to those of the other main branches in 
question (if any). The theorem, once understood, is proved without difficulty: we 
consider two terminal knots, the distance of which, measured by the number of 
intermediate branches, is greater than or equal to that of any other two terminal 
knots; if, as in the left-hand figure, the distance is even, then the central knot A 
is the centre of the tree; if, as in the right-hand figure, the distance is odd, then 
the two central knots AB form the bicentre of the tree.

In the former case, observe that if G, H are the two terminal knots, the distance 
of which is = 2λ, then the distance of each from A is = λ, and there cannot be

giving the values

for

But if from each non-terminal knot there ascend two and only two branches, then in this case φm=coefficient 

of xm~γ in viz. we have the very simple form 

giving

for 
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430 ON THE ANALYTICAL FORMS CALLED TREES, WITH [610

any other terminal knot I, the distance of which from A is greater than λ (for, if 
there were, then the distance of I from G or else from II would be greater than 
2X); there cannot be any two terminal knots I, J, the distance of which is greater 
than 2λ; and if there are any two knots I, J, the distance of which is = 2λ, then 
these belong to different main branches, the distance of each of them from A being 
= X; whence, starting with I, J (instead of G, H), we obtain the same point 4 as 
centre. Similarly, in the latter case, there is a single bicentre AB.

Hence, since in any tree there is a unique centre or bicentre, the question of
finding the number of distinct trees with n knots is in fact that of finding the
number of centre- and bicentre-trees with n knots; or say it is the problem of the
“ general centre- and bicentre-trees with n knots: ” general, inasmuch as the number
of branches from a knot is as yet taken to be without limit; or since (as will 
appear) the number of the bicentre-trees can be obtained without difficulty when the 
problem of the root-trees is solved, the problem is that of the “ general centre-trees 
with n knots.” It will appear that the solution depends upon and is very readily 
derived from that of the foregoing problem of general root-trees, so that this last has 
to be considered, not only for its own sake, but with a view to that of the centre­
trees. And in each of the two problems we doubly divide the whole system of trees 
according to the number of the main branches, issuing from the root or centre as 
the case may be, and according to the altitude of the longest main branch or 
branches, or say the altitude of the tree; so that the problem really is, for a given 
number of knots, a given number of main branches, and a given altitude, to find the 
number of root-trees, or (as the case may be) centre-trees.

We next introduce the restriction that the number of branches from any knot 
is equal to a given number at most; viz. according as this number is = 2, 3 or 4, 
we have, say oxygen-trees, boron-trees*,  and carbon-trees respectively; and these are, 
as before, root-trees or centre- or bicentre-trees, as the case may be. The case where 
the number is 2 presents no difficulty: in fact, if the number of knots be = n, then 
the number of root-trees is either j(n-f-l) or ⅜nj viz. n = 3 and n = 4, the root­
trees are 

* I should have said nitrogen-trees; but it appears to me that nitrogen is of necessity 5-valent, as 
shown by the compound, Ammonium-Chloride, = NH4 Cl. Of course, the word boron is used simply to stand 
for a 3-valent element.

and the number of centre- or bicentre-trees is always = 1: viz. n odd, there is one 
centre-tree; and n even, one bicentre-tree; it is only considered as a particular case 
of the general theorem. The case where the number is = 3 is analytically interesting: 
although there may not exist, for any 3-valent element, a series of hydrogen compounds 
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610] APPLICATION TO THE THEORY OF CHEMICAL COMBINATIONS. 431

Bn H7l+2 corresponding to the paraffins. The case, where the number is =4 or say 
the carbon-trees, is that which presents the chief chemical interest, as giving the 
paraffins CnH2n+2j and I call to mind here that the theory of the carbon-root trees 
is established as an analytical result for its own sake and as the foundation for the 
other case, but that it is the number of the carbon centre- and bicentre-trees which 
is the number of the paraffins.

The theory extends to the case where the number of branches from a knot is 
at most = 5, or = any larger number; but I have not developed the formula.

I pass now to the analytical theory: considering first the case of general root­
trees, we endeavour to find for a given altitude N the number of trees of a given 
number of knots n and main branches α, or say the generating function 

where the coefficient Ω gives the number of the trees in question. And we assume that 
the problem is solved for the cases of the several inferior altitudes 0, 1, 2, 3,.., Ar — 1.

This being so, observe that a tree of altitude Aτ can be built up as shown in 
the figure, which I call the edification diagram, by combining one or more trees of 
altitude Λr — 1 with a single tree of altitude not exceeding N — 1; viz. in the figure, 
-ZV^=3, we have the two trees a, b, each of altitude 2, combined, as shown by the 

dotted lines, with the tree c of altitude 1: the whole number of knots in the 
resulting tree is the sum of the number of knots on the three trees a, b, c: the 
number of main branches is equal to the number of the trees a, b, plus the number 
of main branches of the tree c. It is to be observed that the tree c may reduce 
itself to the tree (∙) of one knot and of altitude zero; but each of the trees a, bt 
as being of the altitude N — 1, must contain at least N knots.

Taking N = 2 or any larger number, it is hence easy to see that the required 
generating function SΩiα⅛∙n is

(first factor), 
(second factor).

As regards the first factor, the exponents taken with reversed sign, that is, as 
positive, are 1 = no. of trees, altitude N— 1, of N knots; l1 = ditto, same altitude, of 
(N+l) knots; Z2= ditto, same altitude, of Ar+2 knots, and so on; and where the 
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432 ON THE ANALYTICAL FORMS CALLED TREES, WITH [610

symbol [i1∙∙∙00] denotes that, in the function or product of factors which precedes it, 
the terms to be taken account of are those in t1, t2, t3, ... ; viz. it denotes that the 
term in t0, or constant term (= 1 in fact), is to be rejected.

In the second factor, the expressions x, (t) x2, (t, t2)x1,... represent, for given 
exponents of t, x, denoting the number of main branches and the number of knots 
respectively, the number of trees of altitude not exceeding N^ — 1: thus x, = 1 tPx1 
represents the number of such trees, 1 knot, 0 main branch, = 1; and so, if the 
value of (t, t2, t3, ti) a? be (αtf + βt2 ÷ yt3 + δtf4) ∕r5, then for trees of an altitude not 
exceeding N — 1, and of 5 knots, α represents the number of trees of 1 main branch, 
β that of trees of 2 main branches, γ that of trees of 3 main branches, δ that of 
trees of 4 main branches. It is clear that the number of trees satisfying the given 
conditions and of an altitude not exceeding N — 1 is at once obtained by addition 
of the numbers of the trees satisfying the given conditions, and of the altitudes 
0, 1, 2, ..,Ar-1; all which numbers are taken to be known.

It is to be remarked that the first factor, 

shows by its development the number of combinations of trees a, b,.. of the altitude 
N — 1; one such tree at least must be taken, and the symbol [<1∙00] gives effect to 
this condition: the second factor x + (i)x2 + (t, t2) x3+... shows the number of the 
trees c of altitude not exceeding N — 1. And this being so, there is no difficulty in 
seeing how the product of the two factors is the generating function for the trees of 
altitude N.

In the case JNr = 0, the generating function, or GF, is =x; viz. altitude 0, there 
is only the tree (∙), 1 knot, 0 main branch.

viz. altitude 1, there is 1 tree tx2, 2 knots, 1 main branch; 1 tree t2x3, 3 knots, 2 main 
branches; and so on.

Hence A7" = 2, we obtain 

viz. as regards the second factor, altitude not exceeding 1, that is, =0 or 1, there 
is altitude 0, 1 tree x, and altitude 1, 1 tree tap, 1 tree t2x3, and so on. And we 
hence derive the GF’s for the higher values N^ = 3, 4, &c.: the details of the process 
will be afterwards more fully explained.

So far, we have considered root-trees; but referring to the last diagram, it is at
once seen that the assumed root will be a centre, provided only that (instead of, it
may be, only a single tree a of the altitude N^ — 1), we take always two or more trees
of the altitude N^ — 1 to form the new tree of the altitude N^. And we give effect 
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to this condition by simply writing in place of [i1∙∙∙∞] the new symbol [tf2∙∙∙∞], which 
denotes that only the terms t~, t3, ti, ... are to be taken account of; viz. that the 
terms in t0 and t1 are to be rejected. The component trees of the altitude N^ — 1 
are, it is to be observed, as before, root-trees; hence the second factor of the generating 
function is unaltered: the theorem is that for the centre-trees of altitude N^ we have 
the same generating function as for the root-trees, writing only pa∙∙∙00] in place of 
[i1∙∙∙00]. Or, what is the same thing, supposing that the first factor, unaffected by either 
symbol, is 

then, affecting it with [⅛1∙∙∙∞], the value for the root-trees is 

and, affecting it with [i2∙∙∙∞], the value for the centre-trees is

It thus appears how the fundamental problem is that of the root-trees, its solution 
giving at once that of the centre-trees; whereas we cannot conversely solve the problem 
of the root-trees by means of that of the centre-trees.

As regards the bicentre-trees, it is to be remarked that, starting from a centre-tree 
of altitude Ar+1 with two main branches, then by simply striking out the centre, so 
as to convert into a single branch the two branches which issue from it, we obtain 
a bicentre-tree of altitude Ar. Observe that the altitude of a bicentre-tree is measured 
by that of the longest main branch from A or B, not reckoning AB or BA as a 
main branch. Hence the number of bicentre-trees, altitude Ar, is = number of centre­
trees of two main branches, altitude Ar + 1.

This is, in fact, the convenient formula, provided only the number of centre-trees 
of two main branches has been calculated up to the altitude A7^ +1. But we can find 
independently the number of bicentre-trees of a given altitude N: the bicentre-tree 
is, in fact, formed by taking the two connected points A, B each as the root of a 
root-tree altitude N (the number of knots of the bicentre-tree being thus, it is clear, 
equal to the sum of the numbers of knots of the two root-trees respectively); and 
it is thus an easy problem of combinations to find the number of bicentre-trees of 
a given altitude Ar. Write 

as the generating function of the root-trees of altitude Λr; viz. for such trees, 1 = no. 
of trees with N + 1 knots, β = no. with Ar + 2 knots, and so on; then the generating 
function of the bicentre-trees of the same altitude N is
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where 

and so on; or, what is the same thing, calling the first generating function φx, then 
the second generating function is = ⅜ {(φx r+≠(≈≈≡>)}.

It will be noticed that the bicentre-trees are not, as were the centre-trees, divided 
according to the number of their main branches; they might be thus divided according 
to the sum of the number of the main branches issuing from the two points of the 
bicentre respectively; a more complete division would be according to the number of 
main branches issuing from the two points respectively; thus we might consider the 
bicentre-trees (2, 3), with 2 main branches from one point, and 3 main branches from 
the other point of the bicentre; but the whole theory of the bicentre-trees is com­
paratively easy, and I do not go into it further.

We have yet to consider the case of the limited trees where the number of 
branches from a knot is equal to a given number at most: to fix the ideas, say the 
carbon-trees, where this number is =4. The distinction as to root-trees and centre- 
and bicentre-trees is as before; and the like theory applies to the two cases respectively. 
Considering first the case of the root-trees, and referring to the former figure for 
obtaining the trees of altitude N from those of inferior altitudes, then the trees 
a, b,... of altitude N — 1 must be each of them a carbon-tree of not more than 
(4 — 1 =) 3 main branches: this restriction is necessary, inasmuch as, if for any such 
tree the number of main branches was = 4, then there would be from the root of 
such tree 4 branches plus the new branch shown by the dotted line, in all 5 branches; 
and similarly, inasmuch as there is at least one component tree a contributing one 
main branch, the number of main branches of th~ ■ tree c must be (4 — 1 =) 3 at most: 
the mode of introducing these conditions will appear in the explanation of the actual 
formation of the generating functions (see explanation preceding Tables III., IV., &c.). 
The number of main branches is = 4 at most, and the generating functions have only 
to be taken up to the terms in ti∙, the first factor is consequently in each case affected 
with a symbol [∕1∙∙∙4], denoting that the only terms to be taken account of are those 
in t, t2, t3, ti', hence as there is a factor t at least, and the whole is required only 
up to ti, the second factor is in each case required only up to t3.

As regards the centre-trees, the generating functions have here the same expressions 
as for the root-trees, except that, instead of the symbol [t1∙∙∙4], we have the symbol 
[£2-4], denoting that in the first factor the only terms to be taken account of are 
those in t2, t3, ti; hence as there is a factor t2 at least, and the whole is required 
only up to ∕4, the second factor is in each case required up to i2; and we then com­
plete the theory by obtaining the bicentre-trees. The like remarks apply of course to 
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the boron-trees, number of branches = 3 at most, and to the oxygen-trees, number = 2 
at most; but, as already remarked, this last case is so simple, that the general method 
is applied to it only for the sake of seeing what the general method becomes in such 
an extreme case.

We thus form the Tables, which I proceed to explain.

Table I. of general root-trees is in fact a Table of triple entry, viz. it gives for 
any given number of knots from 1 to 13 the number of root-trees corresponding to 
any given number of main branches and to any given altitude. In each compartment, 
that is, for any given number of knots, the totals of the columns give the number 
of the trees for each given altitude, and the totals of the lines give the number of 
the trees for each given number of main branches: the corner grand totals of these 
totals respectively show for each given number of knots the whole number of root- 
trees:—

viz. knots
numbers are 

as already mentioned: these numbers were calculated by an independent method.

Table II. of general centre- and bicentre-trees consists of a centre part and a 
bicentre part: the centre part is arranged precisely in the same manner as the root­
table. As to the bicentre part, where it will be observed there is no division for 
number of main branches, the calculation of the several columns is effected by the 
before-mentioned formula, 

thus column 2, we have by Table I. (totals of column 2) 

and thence

As already mentioned, each column of Table I. is calculated by means of a generating 
function given as a product of two factors, each of which is obtained from the 
columns which precede the column in question; and Table II., the centre part of it, 
is calculated by means of the same generating functions slightly modified: these 
generating functions serving for the calculation of the two Tables are given in the 
table entitled “Subsidiary Table for the calculation of the GF,s of Tables I. and II.,” 
which immediately follows these two Tables, and will be further explained.

www.rcin.org.pl
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Table I.—General Root-trees.

Altitude or number of column.
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Table I. (contf⅛uec∕).

Altitude or number of column.
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Table II.—General Centre- and Bicentre-Trees.

Centre-Trees.
Altitude or number of column.

Bicentre-Trees.
Altitude.

www.rcin.org.pl



610] APPLICATION TO THE THEORY OF CHEMICAL COMBINATIONS. 439

Table II. (continued).

Centre-Trees.
Altitude or number of column.

Bicentre-Trees.
Altitude.
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Subsidiary Table for GF’s of Tables I. and II.

Index of x.

GF, column 0.

GF, column 1.

First factor.

Second factor.

GF, column 2.

First factor.

Second factor.

GF, column 3.

First factor.

Second factor.
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Subsidiary Table for GF’s of Tables I. and II. (continued}.

Index of x.

GF, column 4.

First factor.

Second factor.

GF, column 5.

First factor.

Second factor.

GF, column 6.

First factor.

Second factor.
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Subsidiary Table for GFs of Tables I. and II. (continued).

Index of x.

GF, column 7.

First factor.

Second factor.

GF, column 8.

First factor.

Second factor.

GF, column 9.

First factor.

Second factor.
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Subsidiary Table for GF’s of Tables I. and II. (continued).

Index of x.

GF, column 10

First factor.

Second factor.

GF, column 11.

First factor.

Second factor.

GF, column 12.

First factor.

Second factor.

GF, column 13.

First factor.

Second factor.
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I proceed to explain the Subsidiary Table, first in its application to Table I.

The Subsidiary Table is divided into sections, giving the GF’s of the successive 
columns of Table I., each section being given by means of the preceding columns 
of Table I.; for instance, that for column 3 by means of columns 0, 1, 2 of Table I.

As regards column 0, the Table shows that the GF is = x.

As regards column 1, it shows that the GF has a first factor, 

which is operated on by the symbol [P∙00], viz. the constant term (1) is to be rejected; 
and that it has a second factor, = x: the product of these, viz. (tx + t2xl + t3x3 +...) × x, is 
the required GF, the coefficients of which are accordingly given in column 1 of 
Table I.

As regards column 2, it shows that the GF has a first factor, 

where the indices —1, —1, — 1,.. are the sums of the numbers in column 1, Table I., 
(with their signs changed): which first factor is

and it is as before to be operated on with [tf1 ∙∙∙00], viz. the constant term is to be
rejected; and further, that there is a second factor = x + tx2 + t2xP + ..., the coefficients
of which are obtained by summation of the numbers in the several lines of columns
0, 1 of Table I. We have thence column 2 of Table I.

As regards column 3, it shows that the GF has a first factor, 

where the indices —1, —2, — 4,.. are the sums of the numbers in column 2 of 
Table I., (with their signs changed): which first ffi,ctor is 

and it is as before to be operated on with [<1-*],  viz. the constant term is to be 
rejected ; and that there is a second factor 

the coefficients of which are obtained by summation of the numbers in the several 
lines of columns 0, 1, 2 of Table I.: we have thence column 3 of Table I.

And similarly, by means of columns 0, 1, 2, 3 of Table I., we form the GF of 
column 4; that is, we obtain column 4 of Table I., and so on indefinitely.
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To apply the Subsidiary Table to the calculation of the GF’s of Table II., the 
only difference is that the first factors are to be taken without the terms in t1: 
thus for Table II. column 3, the first factor of the GF 

the second factor being as for Table I.

The remaining Tables are Tables III. and IV., oxygen root-trees and centre- and 
bicentre-trees, followed by a Subsidiary Table for the calculation of the GF’s: 
Tables V. and VI., boron root-trees and centre- and bicentre-trees, followed by a 
Subsidiary Table; and Tables VII. and VIII., carbon root-trees and centre- and 
bicentre-trees, followed by a Subsidiary Table. The explanations given as to Tables I., 
II. and the Subsidiary Table apply mutatis mutandis to these; and but little further 
explanation is required: that given in regard to the Subsidiary Table of Tables III. 
and IV. shows how this limiting case comes under the general method. As to the 
Subsidiary of Tables V. and VI., it is to be observed that each * line of the Table 
is calculated from a column of Table V., rejecting the numbers which belong to ts∖ 
thus Table V., column 4, the numbers are 

and taking the sums for the first and second lines only, these are
1, 4, 9, 17, 29, 45,..,

which, taken with a negative sign, are the numbers of the line *GF,  column 5.
And so as to the Subsidiary of Tables VII. and VIII., each * line of the Table 

is calculated from a column of Table VII., rejecting the numbers which belong to ti', 
thus Table VII., column 4, the numbers are 

and taking the sums for the first, second, and third lines only, these are 

which, taken with a negative sign, are the numbers of the line *GF,  column 5.
Referring to the foregoing “ Edification Diagram,” the effect is that we thus 

introduce the conditions that in a boron-tree the number of component trees a, b, ... 
is at most (.3 — 1 =) 2 and that in a carbon-tree the number of component trees 
a, b, ... is at most (4—1=)3.
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Table TIT.—Oxygen Root-Trees.

Altitude or number of column.
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Table IV.—Oxygen Centre- and Bicentre-Trees.

Centre-Trees.
Altitude or number of column.

Bicentre-Trees.
Altitude.
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Subsidiary Table for GF’s of Tables III. and IV.

Index of x.

GF, column 0.

GF, column 1.

First factor.

Second factor.

GF, column 2.

First factor.

Second factor.

GF, column 3.

First factor.

Second factor.

GF, column 4.

First factor.

Second factor.

GF, column 5.

First factor.

Second factor.
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and so on indefinitely; viz. observing that the first factors, as shown by the Table, 
are (1 — te)^1 [t1∙9], (1 — ta2)-1 [δ1∙2], &c., the Table in fact shows that as regards Table III. 
the GF’s are for

column 0: x,

viz. developing as far as t2, that the successive GF’s are

column 0: x.

And so also it shows that, as regards Table IV. (centre part), the GF’s of the 
successive columns are for

column 0: x,

viz. that the successive GF’s are x, t2xs, t2x5, t2x7, t2x9, t2xn,.., agreeing in fact with 
Table IV.
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Table V.—Boron Root-trees.

Altitude or number of column.
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Table VI.—Boron Centre- and Bicentre-Trees.

Centre-Trees.
Altitude or number of column.

Bicentre-Trees.
Altitude.
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Subsidiary Table for GF's of Tables V. and VI.

GF, column 0.

GF, column 1.

First factor.

Second factor.

GF, column 2.

First factor.

Second factor.

GF, column 3.

First factor.

Second factor.

GF, column 4.

First factor.

Second factor.

GF, column 5.

First factor.

Second factor.

GF, column 6.

First factor.

Second factor.
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Subsidiary Table for GF’s of Tables V. and VI. (continued).

Index of x.

GF, column 7.

First factor.

Second factor.

GF, column 8.

First factor.

Second factor.

GF, column 9.

First factor.

Second factor.

GF, column 10.

First factor.

Second factor.

GF, column 11.

First factor.

Second factor.

GF, column 12.

First factor.

Second factor.

GF, column 13.

First factor.

Second factor.
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Table VII.—Carbon Root-trees.

Altitude or number of column.
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Table VII. (continued).

Altitude or number of column.
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Table VIII.—Carbon Centre- and Bicentre-Trees.

Centre-Trees.
Altitude or number of column.

Bicentre-Trees.
Altitude.
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Subsidiary Table for GF’s of Tables VII. and VIII.

Index of x.

GF, column 0.

GF, column 1.

First factor.

Second factor.

GF, column 2.

First factor.

Second factor.

GF, column 3.

First factor.

Second factor.

GF, column 4.

First factor.

Second factor.

GF, column 5.

First factor.

Second factor.

GF, column 6.

First factor.

Second factor.
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Subsidiary Table for GF’s of Tables VII. and VIII. (continued).

Index of x.

GF, column 7.

First factor.

Second factor.

GF, column 8.

First factor.

Second factor.

GF, column 9.

First factor.

Second factor.

GF, column 10.

First factor.

Second factor.

GF, column 11.

First factor.

Second factor.

GF, column 12

First factor.

Second factor.

GF, column 13.

First factor.

Second factor.
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I annex the following two Tables of (centre- and bicentre-) trees as far as I have 
completed them.

Table A.

Valency not greater than

Table B.

Actual Valency.

In A, the columns 2, 3, 4, and the last column are the totals given by the 
Tables IV., VI., VIII., and II., and the remaining numbers of columns 5, 6, 7, 8 
have been found by trial; and, in B, the several columns are the differences of the

58—2
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columns of A. The signification is obvious; for instance, if the number of knots is 
= 9, then Table A, if the valency, or the maximum number of branches from a knot,

is = 2, 3, 4, 5, 6, 7, 8 or any greater number,

No. of trees = 1, 18, 35, 42, 45, 46, 47:

viz. with 9 knots the tree can have at most 8 branches from a knot, so that the
number of trees having at most 8 branches from a knot is = 47, the whole number 
of trees with 9 knots; and so the number of knots being as before = 9, Table B 
shows that the number of 47 is made up of the numbers

1, 17, 17, 7, 3, 1, 1;

viz. 1 is the No. of trees, at most 2 branches from a knot,

I annex also a plate showing the figures of the 1 + 14-2 + 3 +6 + 11 + 23 + 47 
trees of 1, 2, 3,.., 9 knots, classified according to their altitudes and number of main 
branches; and as to the bicentre-trees, according to the number of main branches 
from each point of the bicentre. The affixed numbers show in each case the greatest 
number of branches from a knot; so that when this is (2), the knots may be oxygen-, 
boron-, carbon-, &c., atoms; when (3), boron-, carbon-, &c., atoms; when (4), carbon-, 
&c., atoms; and so on.
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