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A MEMOIR ON PREPOTENTIALS.

[From the Philosophical Transactions of the Royal Society of London, vol. clxv. Part II. 
(1875), pp. 675—774. Received April 8,—Read June 10, 1875.]

The present Memoir relates to multiple integrals expressed in terms of the (s + 1) 
ultimately disappearing variables (x, .., z, u>y), and the same number of parameters 
(a, .., c, ey); they are of the form 

where p and dτr depend only on the variables (x, .., z, w). Such an integral, in regard 
to the index ⅛∙s + q, is said to be “ pre potential,” and in the particular case q = — ⅜ 
to be “potential.” 

I use throughout the language of hyper-tridimensional geometry: (x, .., z, w) and 
(a, . ., c, e) are regarded as coordinates of points in (s + l)-dimensional space, the former 
of them determining the position of an element p dw of attracting matter, the latter 
being the attracted point; viz. we have a mass of matter = J* p dtσ distributed in such 

manner that, dτr being the element of (s ÷ 1)- or lower-dimensional volume at the point 
(x, . ., z, w), the corresponding density is p, a given function of (x, .., z, w'), and that the 
element of mass pdτσ exerts on the attracted point (a, .., c, e) a force inversely proportional 
to the (s + + l)th power of the distance {(α — x)I 2 +.. + (c — z~)2 + (e — w)ψ. The integra
tion is extended so as to include the whole' attracting mass J p dττ; and the integral 

is then said to represent the Prepotential of the mass in regard to the point (a, .., c, e). 
In the particular case s = 2, q = —1, the force is as the inverse square of the distance, 
and the integral represents the Potential in the ordinary sense of the word.

The element of volume dτσ is usually either the element of solid (spatial or (s + l)- 
dimensional) volume dx..dzdw, or else the element of superficial (s-dimensional) 
volume dS. In particular, when the surface (s-dimensional locus) is the (s-dimensional)
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607] A MEMOIR ON PREPOTENTIALS. 319

plane w = 0, the superficial element dS is = dx... dz. The cases of a less-than-s-dimen- 
sional volume are in the present memoir considered only incidentally. It is scarcely 
necessary to remark that the notion of density is dependent on the dimensionality of 
the element of volume dτ∑>-. in passing from a spatial distribution, pdx...dzdw, to a 
superficial distribution, p dS, we alter the signification of p. In fact, if, in order to 
connect the two, we imagine the spatial distribution as made over an indefinitely thin 
layer or stratum bounded by the surface, so that at any element dS of the surface 
the normal thickness is dv, where dv is a function of the coordinates (x, .., z, w) of the 
element dS, the spatial element is = dv dS, and the element of mass pdx ...dz dw is 
= pdv dS; and then changing the signification of p, so as to denote by it the product 
p dv, the expression for the element of mass becomes p dS, which is the formula in 
the case of the superficial distribution.

The space or surface over which the distribution extends may be spoken of as the
material space or surface; so that the density p is not = 0 for any finite portion of the
material space or surface; and if the distribution be such that the density becomes = 0
for any point or locus of the material space or surface, then such point or locus, 
considered as an infinitesimal portion of space or surface, may be excluded from and 
regarded as not belonging to the material space or surface. It is allowable, and 
frequently convenient, to regard p as a discontinuous function, having its proper value 
within the material space or surface, and having its value = 0 beyond these limits; 
and this being so, the integrations may be regarded as extending as far as we please 
beyond the material space or surface (but so always as to include the whole of the 
material space or surface)—for instance, in the case of a spatial distribution, over the 
whole (s + l)-dimensional space; and in the case of a superficial distribution, over 
the whole of the s-dimensional surface of which the material surface is a part.

In all cases of surface-integrals it is, unless the contrary is expressly stated, 
assumed that the attracted point does not lie on the material surface; to make it 
do so is, in fact, a particular supposition. As to solid integrals, the cases where the 
attracted point is not, and is, in the material space may be regarded as cases of 
coordinate generality; or we may regard the latter one as the general case, 
deducing the former one from it by supposing the density at the attracted point to 
become =0.

The present memoir has chiefly reference to three principal cases, which I call 
A, C, D, and a special case, B, included both under A and C: viz. these are:—

A. The prepotential-plane case; q general, but the surface is here the plane 
w = 0, so that the integral is

B. The potential-plane case; q = — ⅜, and the surface the plane w = 0, so that 
the integral is
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C. The potential-surface case; q = — ⅜, the surface arbitrary,[so that the integral is

D. The potential-solid case; q = -⅛, and the integral is

It is, in fact, only the prepotential-plane case which is connected with the partial 
differential equation 

considered in Green’s memoir * “ On the Attractions of Ellipsoids ” (1835), and called 
here “the prepotential equation.” For this equation is satisfied by the function 

and therefore also by 

and consequently by the integral 

that is, by the prepotential-plane integral; but the equation is not satisfied by the value 

nor, therefore, by the prepotential-solid, or general superficial, integral.

But if q = — ⅜, then, instead of the prepotential equation, we have “ the potential 
equation ” 

and this is satisfied by

and therefore also by

Hence it is satisfied by

* [Green’s Mathematical Papers, pp. 185—222.] 
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the potential-solid integral, provided that the point (a, .., c, e) does not lie within the 
material space: I would rather say that the integral does not satisfy the equation, 
but of this more hereafter; and it is satisfied by 

the potential-surface integral. The potential-plane integral (B), as a particular case of 
(C), of course also satisfies the equation.

Each of the four cases give rise to what may be called a distribution-theorem; 
viz. given V a function of (a, .., c, e) satisfying certain prescribed conditions, but 
otherwise arbitrary, then the form of the theorem is that there exists and that we 
can find an expression for p, the density or distribution of matter over the space or 
surface to which the theorem relates, such that the corresponding integral V has its 
given value: viz. in A and B there exists such a distribution over the plane w = 0, 
in C such a distribution over a given surface, and in D such a distribution in 
space. The establishment, and exhibition in connexion with each other, of these four 
distribution-theorems is the principal object of the present memoir; but the memoir 
contains other investigations which have presented themselves to me in treating the 
question. It is to be noticed that the theorem A belongs to Green, being in fact 
the fundamental theorem of his memoir of 1835, already referred to. Theorem C, in 
the particular case of tridimensional space, belongs also to him, being given in his 
“ Essay on the Application of Mathematical Analysis to the theories of Electricity and 
Magnetism” (Nottingham, 1828*),  being partially rediscovered by Gauss**  in the year 
1840; and theorem D, in the same case of tridimensional space, to Lejeune-Dirichlet: 
see his memoir “ Sur un moyen general de verifier l’expression du potentiel relatif a 
une masse quelconque homogene ou heterogene,” Crelle, t. xxxπ. pp. 80—84 (1840). I 
refer more particularly to these and other researches by Gauss, Jacobi, and others in 
an Annex to the present memoir.

On the Prepotential Surface-integral. Art. Nos. 1 to 18.

1. In what immediately follows we require 

limiting condition x2 + ... + z2 = Ri, the prepotential of a uniform (s-coordinal) circular 
diskf, radius R, in regard to a point (0, .., 0, e) on the axis; and in particular the

* [Also Crelle, t. xxxιx., pp. 73—89, t. xliv., pp. 356—374, t. xlvπ., pp. 161—221; Green's Mathematical 
Papers, pp. 1—115.]

** [“ Allgemeine Lehrsatze in Beziehung auf die im verkehrten Verhaltnisse des Quadrats der Entfernung 
wirkenden Anziehungs- und Abstossungskrafte,” Ges. Werke, t. v., pp. 195—242.]

+ It is to be throughout borne in mind that x, .., z denotes a set of s coordinates, x, .., z, w a set of 
s +1 coordinates; the adjective coordinal refers to the number of coordinates which enter into the equation; 
thus, x2+... +z2 + w2=f2 is an (s +l)-coordinal sphere (observe that the surface of such a sphere is s-dimensional); 
x2+ ...+z2=f2, according as we tacitly associate with it the condition w=0, or w arbitrary, is an s-coordinal 
circle, or cylinder, the surface of such circle or cylinder being s-dimensional, but the circumference of the 
circle (s - l)-dimensional; or if we attend only to the s-dimensional space constituted by the plane w = 0, the 
locus may be considered as an s-coordinal sphere, its surface being (s -1)-dimensional. 
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value is required in the case where the distance e (taken to be always positive) is 
indefinitely small in regard to the radius R.

Writing x = rξ, .., z = rζ,, where the s new variables ξ, .., ζ are such that ξ2 + ... + ζ2 = 1, 
the integral becomes 

where dS is the element of surface of the s-dimensional unit-sphere ξ'2 + ... + ζ2 = 1; the 
integral jdS denotes the entire surface of this sphere, which (see Annex I.) is 

The other factor, 

is the r-integral of Annex II.
2. We now consider the prepotential-surface integral

As already mentioned, it is only a particular case of this, the prepotential-plane integral, 
which is specially discussed; but at present I consider the general case, for the purpose 
of establishing a theorem in relation thereto. The surface (s-dimensional surface) $ is 
any given surface whatever.

Let the attracted point P be situate indefinitely near to the surface, on the 
normal thereto at a point N^, say the normal distance NP is = «*;  and let this point 
Ar be taken at the centre of an indefinitely small circular (s-dimensional) disk or 
segment (of the surface), the radius of which R, although indefinitely small, is in
definitely large in comparison with the normal distance «. I proceed to determine 
the prepotential of the disk; for this purpose, transforming to new axes, the origin 
being at Ar and the axes of x, .., z in the tangent-plane at N, then the coordinates 
of the attracted point P will be (0, .., 0, «), and the expression for the prepotential 
of the disk will be 

where the limits are given by x2 + ... + z2 < R2.

Suppose for a moment that the density at the point N is = p', then the density 
throughout the disk may be taken = p', and the integral becomes 

where instead of p' I write p; viz. p now denotes the density at the point W. 
Making this change, then (by what precedes) the value is

8 is positive; in afterwards writing 8=0, we mean by 0 the limit of an indefinitely small positive 
quantity.
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q = Positive. Art. Nos. 3 to 7.

3. I consider first the case where q is positive. The value is here

or, since is indefinitely small, the a>integral may be neglected, and the value is

Observe that this value is independent of R, and that the expression is thus the 
same as if (instead of the disk) we had taken the whole of the infinite tangent-plane, 
the density at every point thereof being = p. It is proper to remark that the neglected 
terms are of the orders

so that the complete value multiplied by a29 is equal to the constant + terms

of the orders

4. Let us now consider the prepotential of the remaining portion of the surface; 
every part thereof is at a distance from P exceeding, in fact far exceeding, R; so 
that imagining the whole mass ∣ ρ dS to be collected at the distance R, the pre

potential of the remaining portion of the surface is less than

viz. we have thus, in the case where the mass JpdS is finite, a superior limit to the 

prepotential of the remaining portion of the surface. This will be indefinitely small 
in comparison with the prepotential of the disk, provided only a29 is indefinitely small 

ι+-compared with Rg+2^, that is, a indefinitely small in comparison with R 29 The proof 
assumes that the mass j pd∣S is finite; but considering the very rough manner in which 

∫p dS
the limit pg+2q was obtained, it can scarcely be doubted that, if not universally, at 

least for very general laws of distribution, even when J~p dS is infinite, the same thing 

is true; viz. that by taking a sufficiently small in regard to R, we can make the
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prepotential of the remaining portion of the surface vanish in comparison with that 
of the disk. But without entering into the question I assume that the prepotential 
of the remaining portion does thus vanish; the prepotential of the whole surface in 
regard to the indefinitely near point P is thus equal to the prepotential of the disk; 
viz. its value is 

which, observe, is infinite for a point P on the surface.

5. Considering the prepotential V at an arbitrary point (a, .., c, e) as a given 
function of (a, .., c, e) the coordinates of this point, and taking (x, .., z, w) for the
coordinates of the point N, which is, in fact, an arbitrary point on the surface, then the
value of V at the point P indefinitely near to N will be = W, if W denote the same
function of (x, .., z, w) that V is of (a, .., c, e). The result just obtained is therefore 

or, what is the same thing,

As to this, remark that V is not an arbitrary function of (a, .., c, e): non constat 
that there is any distribution of matter, and still less that there is any distribution 
of matter on the surface, which will produce at the point (a, .., c, e), that is, at every 
point whatever, a prepotential the value of which shall be a function assumed at 
pleasure of the coordinates (a, .., c, e). But suppose that Pr, the given function of 
(a, .., c, e), is such that there does exist a corresponding distribution of matter on the 
surface, (viz. that V satisfies the conditions, whatevei' they are, required in order that 
this may be the case), then the foregoing formula determines the distribution, viz. it 
gives the expression of p, that is, the density at any point of the surface.

6. The theorem may be presented in a somewhat different form; regarding the 
prepotential as a function of the normal distance «, its derived function in regard 
to « is 

that is, 

and we thus have 

or, what is the same thing,
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dWwhere, however, W being given as a function of (x,..,z, w), the notation requires 

explanation. Taking cos α, .., cos 7 to be the inclinations of the normal at N, in the 
direction NP in which the distance « is measured, to the positive parts of the axes 
of (a, .., z∖ viz. these cosines denote the values of 

each taken with the same sign + or —, and divided by the square root of the sum 
of the squares of the last-mentioned quantities, then the meaning is

7. The surface S may be the plane w = 0, viz. we have then the prepotential
plane integral 

where e (like «) is positive. In afterwards writing e = 0, we mean by 0 the limit of 
an indefinitely small positive quantity.

The foregoing distribution-formulae then become 

and 

which will be used in the sequel.
It will be remembered that in the preceding investigation it has been assumed 

that q is positive, the limiting case q = 0 being excludedf.

8. I pass to the case q = — ⅜, viz. we here have the potential-surface integral

it will be seen that the results present themselves under a remarkably different form. 

The potential of the disk is, as before,

+ This is, as regards q, the case throughout; a limiting value, if not expressly stated to be included, is 
always excluded.

www.rcin.org.pl



326 A MEMOIR ON PREPOTENTIALS. [607

where p here denotes the density at the point N^; and the value of the r-integral

Observe that this is indefinitely small, and remains so for a point P on the surface; 
the potential of the remaining portion of the surface (foi' a point P near to or on 
the surface) is finite, that is, neither indefinitely large nor indefinitely small, and it 
varies continuously as the attracted point passes through the disk (or aperture in the 
material surface now under consideration); hence the potential of the whole surface 
is finite for an attracted point P on the surface, and it varies continuously as P 
passes through the surface.

It will be noticed that there is in this case a term in V independent of a; 
and it is on this account necessary, instead of the potential, to consider its derived 
function in regard to a; viz. neglecting the indefinitely small terms which contain 

powers of I write

The corresponding term arising from the potential of the other portion of the 
surface, viz. the derived function of the potential in regard to a, is not indefinitely 
small; and calling it Q, the formula for the whole surface becomes

9. I consider positions of the point P on the two opposite sides of the point N^,
say at the normal distances a', a", these being positive distances measured in opposite
directions from the point N. The function V, which represents the potential of the
surface in regard to the point P, is or may be a different function of the coordinates
(a, .., c, e) of the point P, according as the point is situate on the one side or the 
other of the surface (as to this more presently). I represent it in the one case by 
V', and in the other case by V"; and in further explanation state that a, is measured 
into the space to which V refers, a" into that to which V" refers; and I say that 
the formulae belonging to the two positions of the point P are 

where, instead of V', V", I have written W', W", to denote that the coordinates, as 
well of P' as of P", are taken to be the values (x, .., z, w) which belong to the 
point N. The symbols denote
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where (cos α', .., cos γz) and (cos a", .., cos 7") are the cosine-inclinations of the normal 
distances a" to the positive parts of the axes of (x, .., z~); since these distances are 
measured in opposite directions, we have cos a." = — cos α', .., cos 7" = — cos γ'. If we 
imagine a curve through N cutting the surface at right angles, or, what is the same 
thing, an element of the curve coinciding in direction with the normal element P'NP", 
and if s denote the distance of N from a fixed point of the curve, and for the point 
P, if s become s + δ's, while for the point P" it becomes s — δ"s, or, what is the same 
thing, if s increase in the direction of NP' and decrease in that of NP”, then if any 
function Θ of the coordinates («,.., z, w) of N be regarded as a function of s, we 
have

10. In particular, let Θ denote the potential of the remaining portion of the 
surface, that is, of the whole surface exclusive of the disk; the curve last spoken of 
is a curve which does not pass through the material surface, viz. the portion to which 
Θ has reference: and there is no discontinuity in the value of Θ as we pass along 

this curve through the point N. We have Q, = value of at the point P,, and

Q" = value of at the point P"; and the two points P', P" coming to coincide 

together at the point N^, we have then

We have in like manner and the equation obtained
above may be written

in which form they show that as the attracted point passes through the surface from 
the position P' on the one side to P" on the other, there is an abrupt change in 

dW dVthe value of , or say of , the first derived function of the potential in regard 

to the orthotomic arc s, that is, in the rate of increase of V in the passage of the 
attracted point normally to the surface. It is obvious that, if the attracted point 
traverses the surface obliquely instead of normally, viz. if the arc s cuts the surface 

obliquely, there is the like abrupt change in the value of
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Reverting to the original form of the two equations, and attending to the relation 
Q,+ Q" = O, we obtain 

or, what is the same thing,

11. I recall the signification of the symbols:—V', V" are the potentials, it may 
be different functions of the coordinates (a, .., c, e) of the attracted point, for positions 
of this point on the two sides of the surface (as to this more presently): and W', W" 
are what V', V" respectively become when the coordinates (a, .., c, e) are replaced by 
(cc, .., z, w), the coordinates of a point N on the surface. The explanation of the

dW' dW"symbols -7— , , 7r is given a little above; p denotes the density at the point (x,..,z, w).Ct∏ Cl⅛

12. The like remarks arise as with regard to the former distribution theorem (A); 
the functions V, V" cannot be assumed at pleasure; non constat that there is any 
distribution in space, and still less any distribution on the surface, which would give 
such values to the potential of a point (a, .., c, e) on the two sides of the surface 
respectively; but assuming that the functions V', V" are such that they do arise from 
a distribution on the surface, or say that they satisfy all the conditions, whatever they 
are, required in order that this may be so, then the formula determines the distri
bution, viz. it gives the value of p, the density at a point {x, .., z, w) of the surface.

13. In the case where the surface is the plane w = 0, viz. in the case of the 
potential-plane integral,

(e assumed to be positive); then, since the conformation is symmetrical on the two sides 
of the plane, V and V" are the same functions of (a, .., c, e), say they are each = V; 
W', W" are each of them the same function, say they are each = W, of (a, .., z, e) 
that V is of (a, .., c, e); the distribution-formula becomes 

viz. this is also what one of the prepotential-plane formulae becomes on writing therein 
9,= -⅜∙

q = 0, or Negative. Art. Nos. 14 to 18.

14. Consider the case q = 0. The prepotential of the disk is
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to get rid of the constant term we must consider the derived function in regard to n, 
viz. this is 

and we have thus for the whole surface 

where Q, which relates to the remaining portion of the surface, is finite; we have thence, 
writing, as before, W in place of V, 

or say

15. Consider the case q negative, but — 9<⅜. The prepotential of the disk is here 

to get rid of the first term we must consider the derived function in regard to «, 
viz. this is 

whence, for the potential of the whole surface, 

where Q, the part relating to the remaining portion of the surface, is finite. Multiplying 
by «2«+1 (where the index 2^ + 1 is positive), the term in Q disappears; and writing, 
as before, W in place of V, this is 

or, say 

viz. we thus see that the formula (A*)  originally obtained for the case q positive 
extends to the case q = 0, and q = — but — q < ⅜; but, as already seen, it does not 
extend to the limiting case q = — ⅜.

16. If q be negative and between — ⅜ and — 1, we have in like manner a formula
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but here, 2q +1 being negative, the term «2^+1 Q does not disappear: the formula has 
to be treated in the same way as for q = —1, and we arrive at 

viz. the formula is of the same form as for the potential case q = —Observe that 
the formula does not hold good in the limiting case q = — 1.

17. We have, in fact, for q = — 1, the potential of the disk 

whence 

since, in the complete differential coefficient « + 2« log «, the term « vanishes in con 
parison with 2β log «. Then, proceeding as before, we find 

but I have not particularly examined this formula.

18. If q be negative and > — 1 (that is, —q> 1), then the prepotential for the 
disk is 

and it would seem that, in order to obtain a result, it would be necessary to proceed 
to a derived function higher than the first; but I have not examined the case.

Continuity of the Prepotential-surface Integral. Art. Nos. 19 to 25.

19. I again consider the prepotential-surface integral 

in regard to a point (a,.., c, e) not on the surface; q is either positive or negative, 
as afterwards mentioned.

The integral or prepotential and all its derived functions, first, second, &c. ad 
infinitum, in regard to each or all or any of the coordinates (a,.., c, e), are all finite. 
This is certainly the case when the mass J ρ dS is finite, and possibly in other cases 

also; but to fix the ideas we may assume that the mass is finite. And the pre
potential and its derived functions vary continuously with the position of the attracted 
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point (a,.., c, e), so long as this point in its course does not traverse the material 
surface. For greater clearness we may consider the point as moving along a continuous 
curve (one-dimensional locus), which curve, or the part of it under consideration, does 
not meet the surface; and the meaning is that the prepotential and each of its 
derived functions vary continuously as the point (a, .., c, e) passes continuously along 
the curve.

20. Consider a “ region,” that is, a portion of space any point of which can be, 
by a continuous curve not meeting the material surface, connected with any other 
point of the region. It is a legitimate inference, from what just precedes, that the 
prepotential is, for any point (a,.., c, e) whatever within the region, one and the same 
function of the coordinates (a,.., c, e), viz. the theorem, rightly understood, is true; 
but the theorem gives rise to a difficulty, and needs explanation.

Consider, for instance, a closed surface made up of two segments, the attracting 
matter being distributed in any manner over the whole surface (as a particular case 
s ⅛ 1 = 3, a uniform spherical shell made up of two hemispheres); then, as regards 
the first segment (now taken as the material surface), there is no division into regions, 
but the whole of the (s + l)-dimensional space is one region; wherefore the prepotential 
of the first segment is one and the same function of the coordinates (a,.., c, e) of the 
attracted point for any position whatever of this point. But in like manner the 
prepotential of the second segment is one and the same function of the coordinates 
(a,.., c, e) for any position whatever of the attracted point. And the prepotential of 
the whole surface, being the sum of the prepotentials of the two segments, is 
consequently one and the same function of the coordinates (a,.., c, e) of the attracted 
point for any position whatever of this point; viz. it is the same function for a 
point in the region inside the closed surface and for a point in the outside region. 
That this is not in general the case we know from the particular case, s +1 = 3, of 
a uniform spherical shell referred to above.

21. Consider in general an unclosed surface or segment, with matter distributed 
over it in any manner; and imagine a closed curve or circuit cutting the segment 
once; and let the attracted point (a, ..,c, e) move continuously along the circuit. We 
may consider the circuit as corresponding to (in ordinary tridimensional space) a plane 
curve of equal periphery, the corresponding points on the circuit and the plane curve 
being points at equal distances s along the curves from fixed points on the two 
curves respectively; and then treating the plane curve as the base of a cylinder, we 
may represent the potential as a length or ordinate, V = y, measured upwards from 
the point on the plane curve along the generating line of the cylinder, in such wise 
that the upper extremity of the length or ordinate y traces out on the cylinder a 
curve, say the prepotential curve, which represents the march of the prepotential. 
The attracted point may, for greater convenience, be represented as a point on the 
prepotential curve, viz. by the upper instead of the lower extremity of the length or 
ordinate y∖ and the ordinate, or height of this point above the base of the cylinder, 
then represents the value of the prepotential. The before-mentioned continuity-theorem 
is that the prepotential curve, corresponding to any portion (of the circuit) which

42—2 
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does not meet the material surface, is a continuous curve: viz. that there is no abrupt 
change of value either in the ordinate y (= Tr) of the prepotential curve, or in the 

cZτ∕ cZ“?/first or any other of the derived functions , —, &c. We have thus (in each of 

the two figures) a continuous curve as we pass (in the direction of the arrow) from 

a point P' on one side of the segment to a point P" on the other side of the 
segment; but this continuity does not exist in regard to the remaining part, from 
P” to P', of the prepotential curve corresponding to the portion (of the circuit) 
which traverses the material surface.

22. I consider first the case q = — ⅜ (see the left-hand figure): the prepotential 
is here a potential. At the point N, which corresponds to the passage through the 
material surface, then, as was seen, the ordinate y (= the Potential V) remains finite

r/?/and continuous; but there is an abrupt change in the value of , that is, in the 

direction of the curve: the point W is really a node with two branches crossing at 
this point, as shown in the figure; but the dotted continuations have only an analytical 
existence, and do not represent values of the potential. And by means of this branch- 
to-branch discontinuity at the point Ar, we escape from the foregoing conclusion as to 
the continuity of the potential on the passage of the attracted point through a closed 
surface.

23. To show how this is, I will for greater clearness examine the case (s+l) = 3, 
in ordinary tridimensional space, of the uniform spherical shell attracting according to 
the inverse square of the distance; instead of dividing the shell into hemispheres, I 
divide it by a plane into any two segments (see the figure, wherein A, B represent 
the centres of the two segments respectively, and where for graphical convenience the 
segment A is taken to be small).

We may consider the attracted point as moving along the axis xx', viz. the two 
extremities may be regarded as meeting at infinity, or we may outside the sphere 
bend the line round, so as to produce a closed circuit. We are only concerned with 
what happens at the intersections with the spherical surface. The ordinates represent 
the potentials, viz. the curves are a, b, c for the segments A, B, and the whole 
spherical surface respectively. Practically, we construct the curves c, α, and deduce the 
curve b by taking for its ordinate the difference of the other two ordinates. The 
curve c is, as we know, a discontinuous curve, composed of a horizontal line and two 
hyperbolic branches; the curve a can be laid down approximately by treating the 
segment A as a plane circular disk; it is of the form shown in the figure, having 
a node at the point corresponding to A. (In the case where the segment A is 
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actually a plane disk, the curve is made up of portions of branches of two hyperbolas; 
but taking the segment A as being what it is, the segment of a spherical surface, 
the curve is a single curve, having a node as mentioned above.) And from the 

curves c and a, deducing the curve b, we see that this is a curve without any 
discontinuity corresponding to the passage of the attracted point through A (but with 
an abrupt change of direction or node corresponding to the passage through J5). And 
conversely, using the curves a, b to determine the curve c, we see how, on the passage 
of the attracted point at A into the interior of the sphere, in consequence of the 
branch-to-branch discontinuity of the curve a, the curve c, obtained by combination 
of the two curves, undergoes a change of law, passing abruptly from a hyperbolic to 
a rectilinear form, and how similarly on the passage of the attracted point at B from 
the interior to the exterior of the sphere, in consequence of the branch-to-branch 
discontinuity of the curve b, the curve c again undergoes a change of law, abruptly 
reverting to the hyperbolic form.

24. In the case q positive, the prepotential curve is as shown by the right-hand 
figure on p. 332, viz. the ordinate is here infinite at the point N corresponding to 
the passage through the surface; the value of the derived function changes between 
+ infinity and — infinity; and there is thus a discontinuity of value in the derived 
function. It would seem that, when q is fractional, this occasions a change of law 
on passage through the surface: but that there is no change of law when q is 
integral.

In illustration, consider the closed surface as made up of an infinitesimal circular 
disk, as before, and of a residual portion; the potential of the disk at an indefinitely 
near point is found as before, and the prepotential of the whole surface is 
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where V1, the prepotential of the remaining portion of the surface, is a function which 
varies (and its derived functions vary) continuously as the attracted point traverses 
the disk. To fix the ideas, we may take the origin at the centre of the disk, and 
the axis of e as coinciding with the normal, so that «, which is always positive, is 
= ± e; the expression for the prepotential at a point (a,.., c, e) on the normal through 
the centre of the disk is

viz. when q is fractional there is the discontinuity of law, inasmuch as the term 

changes from to ζ-~j2g≡ but wbθ∏ q is integral this discontinuity disappears. The

like considerations, using of course the proper formula for the attraction of the disk, 
would apply to the case q = 0 or negative.

25. Or again, we might use the formulae which belong to the case of a uniform 
(s + l)-coordinal spherical shell (see Annex No. III.), viz. we decompose the surface 
as follows,

surface = disk + residue of surface;

and then, considering a spherical shell touching the surface at the point in question 
(so that the disk is, in fact, an element common to the surface and the spherical 
shell), and being of a uniform density equal to that of the disk, we have

disk = spherical shell — residue of spherical shell;
and consequently

surface = spherical shell — residue of spherical shell + residue of surface ;

and then, considering the attracted point as passing through the disk, it does not 
pass through either of the two residues, and there is not any discontinuity, as regards 
the prepotentials of these residues respectively; there is consequently, as regards the 
prepotential of the surface, the same discontinuity that there is as regards the 
prepotential of the spherical shell. But I do not further consider the question from 
this point of view.

The Potential Solid Integral. Art. No. 26.

26. We have further to consider the prepotential (and in particular the potential) 
of a material space; to fix the ideas, consider for the moment the case of a 
distribution over the space included within a closed surface, the exterior density being 
zero, and the interior density being, supposed for the moment, constant; we consider 
the discontinuity which takes place as the attracting point passes from the exterior 
space through the bounding surface into the interior material space. We may imagine 
the interior space divided into indefinitely thin shells by a series of closed surfaces 
similar, if we please, to the bounding surface; and we may conceive the matter 
included between any two consecutive surfaces as concentrated on the exterior of the 
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two surfaces, so as to give rise to a series of consecutive material surfaces; the 
quantity of such matter is infinitesimal, and the density of each of the material surfaces 
is therefore also infinitesimal. As the attracted point comes from the external space 
to pass through the first of the material surfaces—suppose, to fix the ideas, it moves 
continuously along a curve the arc of which measured from a fixed point is — s—there 
is in the value of V (or, as the case may be, in the values of its derived functions 
dV , &c.) the discontinuity due to the passage through the material surface; and the 

like as the attracted point passes through the different material surfaces respectively. 
Take the case of a potential, q = — ⅜; then, if the surface-density were finite, there 
would be no finite change in the value of V, but there would be a finite change 

dVin the value of as it is, the changes are to be multiplied by the infinitesimal

density, say p, of the material surface; there is consequently no finite change in the 
value of the first derived function; but there is, or may be, a finite change in the 

d2Vvalue of -y-2 and the higher derived functions. But there is in V an infinitesimal 

change corresponding to the passage through the successive material surfaces respectively; 
that is, as the attracted point enters into the material space, there is a change in 
the law of V considered as a function of the coordinates (a, .., c, e) of the attracted 
point; but by what precedes this change of law takes place without any abrupt 
change of value either of V or of its first derived function; which derived function 
may be considered as representing the derived function in regard to any one of the 
coordinates a, .., c, e. The suppositions, that the density outside the bounding surface 
was zero and inside it constant, were made for simplicity only, and were not essential; 
it is enough if the density, changing abruptly at the bounding surface, varies con
tinuously in the material space within the bounding surface*.  The conclusion is that 
V', V'' being the values at points within and without the bounding surface, V and 
V" are in general different functions of the coordinates (a,.., c, e) of the attracted 
point; but that at the surface we have not only V = V", but that the first derived 
functions are also equal, viz. that we have

27. In the general case of a Potential, we have

If ρ does not vanish at the attracted point (a,.., c, e), but has there a value p' 
different from zero, we may consider the attracting (s + l)-dimensional mass as made

It is, indeed, enough if the density varies continuously within the bounding surface in the neighbourhood 
of the point of passage through the surface; but the condition may without loss of generality be stated as 
in the text, it being understood that for each abrupt change of density within the bounding surface we must 
consider the attracted point as passing through a new bounding surface, and have regard to the resulting 
discontinuity.
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up of an indefinitely small sphere, radius e and density ρ', which includes within it 
the attracted point, and of a remaining portion external to the attracted point. 

d2 d2 d2Writing V to denote ∙∙∙ ÷^√>÷^-2> then, as regards the potential of the sphere,

4(Γ∙1)s+1we have VF=- p p' (see Annex III. No. 67), and as regards the remaining
ι (⅛s - ⅜)

portion V V = 0; hence, as regards the whole attracting mass, V V has the first- 
mentioned value, that is, we have 

where p' is the same function of the coordinates (a,.., c, e) that ρ is of (⅛,,.. ,z, w)', 
viz. the potential of an attracting mass distributed not on a surface, but over a 
portion of space, does not satisfy the potential equation 

but it satisfies the foregoing equation, which only agrees with the potential equation 
in regard to a point (a,.., c, e) outside the material space, and for which, therefore, 
p is =0.

The equation may be written 

or, considering V as a given function of (a,.., c, e), in general a discontinuous 
function but subject to certain conditions as afterwards mentioned, and taking W the 
same function of (#,.., z, w) that V is of (a,.., c, e), then we have 

viz. this equation determines p as a function, in general a discontinuous function, of 
(x,.., z, w) such that the corresponding integral 

may be the given function of the coordinates (a,.., c, e). The equation is, in fact, 
the distribution-theorem D.

28. It is to be observed that the given function of (a,.., c, e) must satisfy 
certain conditions as to value at infinity and continuity, but it is not (as in the 
distribution-theorems A, B, and C it is) required to satisfy a partial differential 
equation; the function, except as regards the conditions as to value at infinity and 
continuity, is absolutely arbitrary.
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The potential (assuming that the matter which gives rise to it lies wholly within 
a finite closed surface) must vanish for points at an infinite distance: or, more- 
accurately, it must for indefinitely large values of α2 +... + c2 + e2 be of the form, 
Constant ÷ (α2 + ... + c2 + e2fs~⅛. It may be a discontinuous function; for instance, 
outside a given closed surface it may be one function, and inside the same surface a 
different function of the coordinates (a,.., c, e); viz. this may happen in consequence 
of an abrupt change of the density of the attracting matter on the one and the 
other side of the given closed surface, but not in any other manner; and, happening 
in this manner, then V' and V" being the values for points within and without the 
surface respectively, it has been seen to be necessary that, at the surface, not only 

dV' dV" dV, dV" dV' dV,' o , . +,V = v , but also -j—= ——,.., = —— = . bubιect to these conditions as-da da de de de de j
to value at infinity and continuity, Pr may be any function whatever of the coordinates 
(a,.., c, e); and then taking W, the same function of (x,.., z, w), the foregoing 
equation determines p, viz. determines it to be =0 for those parts of space which 
do not belong to the material space, and to have its proper value as a function of 
(λ∙, .. ,z, w) for the remaining or material space.

The Prepotential-Plane Theorem A. Art. Nos. 29 to 36.
29. We have seen that, if there exists on the plane w = 0 a distribution of 

matter producing at the point (a,.., c, e) a given prepotential V— viz. V is to be 
regarded as a given function of (a,.., c, e)—, then the distribution or density p is 
given by a determinate formula; but it was remarked that the prepotential V cannot 
be a function assumed at pleasure: it must be a function satisfying certain conditions. 
One of these is the condition of continuity; the function V and all its derived 
functions must vary continuously as we pass, without traversing the material plane, 
from any given point to any other given point. But it is sufficient to attend to 
points on one side of the plane, say the upperside, or that for which e is positive; 
and since any such point is accessible from any other such point by a path which 
does not meet the plane, it is sufficient to say that the function V must vary 
continuously for a passage by such path from any such point to any such point; 
the function V must therefore be one and the same function (and that a continuous 
one in value) for all values of the coordinates (a,.., c) and positive values of the 
coordinate e.

If, moreover, we assume that the distribution which corresponds to the given 

potential V is a distribution of a finite mass Jpdx...dz over a finite portion of the 

plane w = 0, viz. over a portion or area such that the distance of a point within the 
area from a fixed point, or say from the origin (a,.., c) = (0, .., 0), is always finite; 
this being so, we have the further condition that the prepotential V must, for in
definitely large values of all or any of the coordinates (a, .., c, e), reduce itself to the 
form
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The assumptions upon which this last condition is obtained are perhaps unnecessary; 
instead of the condition in the foregoing form we, in fact, use only the condition that 
the prepotential vanishes for a point at infinity, that is, when all or any one or more 
•of the coordinates (a, .., c, e) are or is infinite.

Again, as we have seen, the prepotential V must satisfy the prepotential equation

These conditions satisfied, to the given prepotential V there corresponds, on the 
plane w = 0, a distribution given by the foregoing formula; it will be a distribution 
over a finite portion of the plane, as already mentioned.

30. The proof depends upon properties of the prepotential equation 

or, what is the same thing, 

say, for shortness,

Consider, in general, the integral 

taken over a closed surface >8 lying altogether on the positive side of the plane e = 0, 
the function W being in the first instance arbitrary.

Writing the integral under the form
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Write dS to denote an element of surface at the point z, e). Then taking
α, .., 7, δ to denote the inclinations of the interior normal at that point to the positive 
axes of coordinates, we have 

and the first terms are together

W here denoting the value at the surface, and the integration being extended over 
the whole of the closed surface: this may also be written 

where » denotes an element of the internal normal.

The second terms are together

We have consequently

31. The second term vanishes if W satisfies the prepotential equation □ W = 0; 
and this being so, if also W = 0 for all points of the closed surface β, then the first 
term also vanishes, and we therefore have 

where the integration extends over the whole space included within the closed surface; 
whence, W being a real function, 

for all points within the closed surface; consequently, since W vanishes at the surface, 
W = 0 for all points within the closed surface.

32. Considering W as satisfying the equation □ W = 0, we may imagine the closed 
surface to become larger and larger, and ultimately infinite, at the same time flattening 
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itself out into coincidence with the plane e = 0, so that it comes to include the whole 
space above the plane e = 0: say the surface breaks up into the surface positive infinity 
and the infinite plane β = 0.

r c∕]7
The integral I e29+1 W —j— dS separates itself into two parts, the first relating to 

the surface positive infinity, and vanishing if W = 0 at infinity (that is, if all or 
any of the coordinates x,.., z, e are infinite); the second, relating to the plane e = 0, 

f ∕ d J7∖is ∕ W [eiq+1-^-∖dx... dz, W here denoting its value at the plane, that is, when e = 0, 

and the integral being extended over the whole plane. The theorem thus becomes

Hence also, if W = 0 at all points of the plane e = 0, the right-hand side vanishes, 
and we have

dW dW dWConsequently =0, .., = 0, = 0, for all points whatever of positive space ; and

therefore also W = 0 for all points whatever of positive space.

33. Take next U, W, each of them a function of (x, .., z, e'), and consider the 
integral 

taken over the space within a closed surface >8; treating this in a similar manner, we 
find it to be 

where the integration extends over the whole of the closed surface S; and by parity 
of reasoning it is also 

with the same limits of integration; that is, we have 

which, if U and W each satisfy the prepotential equation, becomes

And if we now take the closed surface $ to be the surface positive infinity, together 
with the plane e = 0, then, provided only U and V vanish at infinity, for each integral 
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the portion belonging to the surface positive infinity vanishes, and there remains only 
the portion belonging to the plane e = 0; we have therefore 

where the functions U, W have each of them the value belonging to the plane e = 0 : 
viz. in U, W considered as given functions of (x, .., zi e) we regard e as a positive 
quantity ultimately put = 0; and where the integrations extend each of them over the 
whole infinite plane.

34. Assume 

an expression which, regarded as a function of (x, .., z, e), satisfies the prepotential 
equation in regard to these variables, and which vanishes at infinity when all or any 
of these coordinates («,.., z, e) are infinite.

We have 

and we have consequently 

where it will be recollected that e is ultimately = 0; to mark this, we may for W 
write TF0.

Attend to the left-hand side; take Fo the same function of a, .., c, e = 0, that Wo 
is of x,..,z, e = 0; then, first writing the expression in the form 

write x = a + eξ,.., z = c + eξ, the expression becomes 

where the integral is to be taken from — ∞ to + ∞ for each of the new variables

Writing ξ = rot, .., ζ= ry, where α2 + ... + γ2 = 1, we have dξ ... dζ≈ rs~1 dr dS : also
<ξ2+ ... + ζ2 = r2, and the integral is
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where jdS denotes the surface of the s-coordinal unit sphere α2 + ... + γ2 = 1, and the 

r-integral is to be taken from r = 0 to τ = ∞ ; the values of the two factors thus are

Hence the expression in question is 

and we have 

or, what is the same thing,

35. Take now V a function of (a, .., c, e') satisfying the prepotential equation in 
regard to these variables, always finite, and vanishing at infinity; and let W be the 
same function of (x, .., z, e), W therefore satisfying the prepotential equation in regard 
to the last-mentioned variables. Consider the function 

where the integral is taken over the infinite plane e = 0; then this function (Tr — the 
integral) satisfies the prepotential equation (for each term separately satisfies it), is 
always finite, and it vanishes at infinity. It also, as has just been seen, vanishes for 
any point whatever of the plane e = 0. Consequently it vanishes for all points whatever 
of positive space. Or, what is the same thing, if we write

where p is a function of (x, .., z), and the integral is taken over the whole infinite
plane, then if V is a function of (a, .., c, e) satisfying the above conditions, there
exists a corresponding value of p; viz. taking W the same function of (x,.., z, e)
which V is of (a, .., c, e), the value of p is

dWwhere e is to be put =0 in the function e27+1 . This is the prepotential-plane

theorem; viz. taking for the prepotential in regard to a given point (a, .., c, e) a 
function of (a, .., c, e) satisfying the prescribed conditions, but otherwise arbitrary, 
there exists on the plane e = 0 a distribution ρ given by the last-mentioned formula.
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36. It is assumed in the proof that 2q + 1 is positive or zero; viz. q is positive, 
or if negative then — q f ⅜; the limiting case q = — ⅛ is included.

It is to be remarked that, by what precedes, if q be positive (but excluding the 
case q = 0), the density p is given by the equivalent more simple formula

The foregoing proof is substantially that given in Green’s memoir on the Attraction 
of Ellipsoids; it will be observed that the proof only imposes upon V the condition 
of vanishing at infinity, without obliging it to assume for large values of (a,.., c, e) 
the form

The Potential-surf ace Theorem C. Art. Nos. 37 to 42.

<Z2 d2 d2
37. In the case q = -⅛> writing here = 2 dz2^^~ de2, we ^lave, Prec^se^y

as in the general case, 

and if the functions U, W satisfy the equations V U = 0, V W = 0, then (subject to the 
exception presently referred to) the second terms on the two sides respectively each of 
them vanish.

But, instead of taking the surface to be the surface positive infinity together with 
the plane e = 0, we now leave it an arbitrary closed surface, and for greater symmetry 
of notation write w in place of e; and we suppose that the functions U and W, or one 
of them, may become infinite at points within the closed surface; then, on this last 
account, the second terms do not in every case vanish.

38. Suppose, for instance, that U at a point indefinitely near the point (a,.., c, e) 
within the surface becomes 

then if V be the value of W at the point (a,.., c, e), we have 

and since V U — 0, except at the point in question, the integral may be taken over any 
portion of space surrounding this point, for instance, over the space included within the
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sphere, radius R, having the point (a,.., c, e) for its centre ; or taking the origin at 
this point, we have to find Jdx ... dzdw V U, where

and the integration extends over the space within the sphere a?2 + ... + z2 4- w2 — R2.

39. This may be accomplished most easily by means of a particular case of the 
last-mentioned theorem; viz. writing W = 1, we have

∕, d Uor the required value is = ~∣ dS over the surface of the last-mentioned sphere.

We have, if for a moment r2 = x2 + ... + z2 + w2,

that is, at the surface; and hence

where ∣ dS is the whole surface of the sphere x2 + ... + z2 + w2 = R2, viz. it is = Rs, 

multiplied by the surface of the unit-sphere rc2+...+^2+w2= 1. This spherical surface, 
say ∕ d∑, is

and we have thus and consequently

40. Treating in like manner the case, where W at a point indefinitely near the 
point (a,.., c, e) within the surface becomes

and writing T to denote the same function of (a,.., c, e) that U is of .., z, w), we 
have, instead of the foregoing, the more general theorem
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where, in the two solid integrals, we exclude from consideration the space in the imme
diate neighbourhood of the two critical points (a,.., c, e) and (a,.., c, e) respectively.

Suppose that W is always finite within the surface, and that U is finite except at 
the point (a,.., c, e): and moreover that U, W are such that V U==Q, V JF = θ; then 
the equation becomes

In particular, this equation holds good if U is

41. Imagine now on the surface S a distribution pdS producing at a point 
(α', ..,c', e') within the surface a potential V', and at a point (α", ..,c", e") without 
the surface a potential V"; where, by what precedes, V" is in general not the same 
function of (α",.., c", e") that V is of (α',.., c', e').

It is further assumed that at a point (a,.., c, e) on the surface we have V = F":

that V', or any of its derived functions, are not infinite for any point (α', ..,c', e') 
within the surface:

that V", or any of its derived functions, are not infinite for any point (a",.., c", e") 
without the surface:

and that V" = 0 for any point at infinity.

Consider V as a given function of (a,.., c, e); and take W' the same function 
of z, w). Then if, as before, 

we have

Similarly, considering V" as a given function of (a,.., c, e), take W" the same 
function of (#,.., z, e). Then, by considering the space outside the surface S, or say 
between this surface and infinity, and observing that U does not become infinite for 
any point in this space, we have 

adding these two equations, we have
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But in this equation the functions W' and W" each of them belong to a point 
(x,.., z, w') on the surface, and we have at the surface W' = W", = W suppose; the 

term on the right-hand side thus is j W + which vanishes in virtue of

; and the equation thus becomes

that is, the point (a,.., c, e) being interior, we have

In exactly the same way, if (a,.., c, e) be an exterior point, then we have 

adding, and omitting the terms which vanish, 

that is,

42. Comparing the two results with 

we see that, V and V" satisfying the foregoing conditions, there exists a distribution p 
on the surface, producing the potentials V and V" at an interior point and an 
exterior point respectively; the value of p in fact being 

where W', W" are respectively the same functions of {xi ∙∙, z, w) that V', V" are of 
(a, ..,c, e).

The Potential-solid Theorem D. Art. No. 43.

43. We have as before (No. 40),
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where, assuming first that W is not infinite for any point (x,..,z, w) whatever, we have 

no term in T; and taking next U = -,---------------- ———ι 7------ as before, we’ ° {(α — x)2 + ... + (c — z)2 + (e — w)ψδ *
have V U =■ 0; the equation thus becomes 

where W may be a discontinuous function of the coordinates (x,..,z, w), provided only 
there is no abrupt change in the value either of W or of any of its first derived 

dW dW dWfunctions -5— ,.., -z7 , v~ > viz. it may be any function which can represent the 

potential of a solid mass on an attracted point («,.., z, w); the resulting value of 
V W is of course discontinuous. Taking, then, for the closed surface £ the boundary 
of infinite space, U and W each vanish at this boundary, and the equation becomes 

viz. substituting for U its value, and comparing with 

where the integral in the first instance extends to the whole of infinite space, but 
the limits may be ultimately restricted by ρ being = 0, we see that the value of p is

W being the same function of (x,.., z, w) that V is of (a,.., c, e): which is the 
theorem D.

Examples of the foregoing Theorems. Art. Nos. 44 to 50.

44. It will be remarked, as regards all the theorems, that we do not start with 
known limits; we start with V a function of (a,.., c, β), the coordinates of the 
attracted point, satisfying certain prescribed conditions, and we thence find ρ, a function 
of the coordinates (x,.., z) or (x,.., z, <ui), as the case may be, which function is 
found to be = 0 for values of (x,.. ,z) or (x,.., z, w) lying beyond certain limits, and 
to have a determinate non-evanescent value for values of (x,.., z~) or (x,.., z, w) lying 
within these limits; and we thus, as a result, obtain these limits for the limits of 
the multiple integral V.

45. Thus in theorem A, in the example where the limiting equation is ultimately 
found to be x2 + ... + z2 =f2, we start with V a certain function of a2+...+c2 
(= κ2 suppose) and e2, viz. V is a function of these quantities through θ, which 
denotes the positive root of the equation
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the value in fact being V = t~q~1 (t + j^'i)~⅛g dt, and the resulting value of p is found
J θ

to be =0 for values of (x,.., z) for which x2 + ... + z2 >f2. Hence V denotes an 
integral 

the limiting equation being x2 + ... + z2 =f2: say this is the s-coordinal sphere.

And similarly, in the examples where the limiting equation is ultimately found to 

be7, + ...+ ^-2 = 1, we start with V a certain function of a,.. ,c, e through θ (or 

directly and through θ), where θ denotes the positive root of the equation 

and the resulting value of p is found to be =0 for values of (x,..,z) for which

Hence V denotes an integral

∕^2

the limiting equation being y2 + ... + = 1: say this is the s-coordinal ellipsoid. It is

clear that this includes the before-mentioned case of the s-coordinal sphere; but, on 
account of the more simple form of the ^-equation, it is worth while to work out 
directly an example for the sphere.

46. Three examples are worked out in Annex IV.; the results are as follows:—

First, θ defined for the sphere as above; q + 1 positive;

over the sphere

This is included in the next-mentioned example for the ellipsoid.

Secondly, θ defined for the ellipsoid as above; q + 1 positive;
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over the ellipsoid

This result is included in the next-mentioned example; but the proof for the 
general value of m is not directly applicable to the value m = 0 for the case in 
question.

Thirdly, θ defined for the ellipsoid as above; q +1 positive; m = 0 or positive, 
and apparently in other cases.

over the ellipsoid as above,

And we have in Annex V. a fourth example; here θ and the ellipsoid are as 
above: the result involves the Greenian functions.

47. We may in the foregoing results write e = 0; the results,—writing therein 
⅛ + l for s, and in the new forms taking (a,.., c, e) and (x,.., z, w) for the two 
sets of coordinates respectively, also writing q — ∣ for q—, would give integrals of the 
form 

for the (s + l)-coordinal sphere and ellipsoid a2 + ... + z2+ w2 =f2 and

say these are prepotential-solid integrals; and then, writing q = — ⅛, we should obtain 
potential-solid integrals, such as are also given by the theorem D. The change can 
be made if necessary; but it is more convenient to retain the results in their 
original forms, as relating to the s-coordinal sphere and ellipsoid.

There are two cases, according as the attracted point (a,.., c) is external or 
internal.

For the sphere:—For an external point κ2>f2', writing e=0, the equation yτfΓρ = 

has a positive root, viz. this is θ = κ,2 — f2; and θ will have, or it may be replaced 
by, this value κ2-f2∙. for an internal point κ2<f2∖ as e approaches zero, the positive 
root of the original equation gradually diminishes and becomes ultimately =0, viz. in 
the formulae θ is to be replaced by this value 0.

For the ellipsoid:—For an external point + ... + > 1; writing e = 0, the equation

has a positive root, and θ will denote this positive root: for an
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C“internal point + ... + ^-2 < 1; as e approaches zero the positive root of the original 

equation gradually diminishes and becomes ultimately = 0, viz. in the formulae θ is 
to be replaced by this value 0.

The resulting formulae for the sphere x2 + ... + z2 — f2 may be compared with 
formulae for the spherical shell, Annex VI., and each set with formulae obtained by 
direct integration in Annex III.

We may in any of the formulae λvrite <? = —⅜, and so obtain examples of theorem B.

48. As regards theorem C, we might in like manner obtain examples of potentials 
relating to the surfaces of the (s + l)-coordinal sphere x2 + ...+za+wa=f2, and 

ellipsoid ^2 +... + j~2+ -p = 1, or say to spherical and ellipsoidal shells; but I havej2 h κ
confined myself to the sphere. We have to assume values V' and V" belonging to 
the cases of an internal and an external point respectively, and thence to obtain a 
value p, or distribution over the spherical surface, which shall produce these potentials 
respectively. The result (see Annex VI.) is 

over the surface of the (s + l)-coordinal sphere 

and 

where κ2 = a2 + ... + c2 + e2. Observe that for the interior point the potential is a mere 
constant multiple of f.

The same Annex VI. contains the case of the s-coordinal cylinder x2 + ... + z2 = f2, 
which is peculiar in that the cylinder is not a finite closed surface ; but the theorem 
C is found to extend to it.

49. As regards theorem D, we might in like manner obtain potentials relating 
(Xp Z2

to the (s + l)-coordinal sphere x2 + ... + z2 + w2=f2 and ellipsoid v⅛+∙.∙+^ + p = 15 

but I confine myself to the case of the sphere (see Annex VII.). We here assume 
values V and V" belonging to an internal and an external point respectively, and 
thence obtain a value p, or distribution over the whole (s + l)-dimensional space, 
which density is found to be =0 for points outside the sphere. The result obtained is
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over the (s + l)-coordinal sphere xi + ... + + w2 = f2, 

where «2 = α2 + ... + c2 + e2.

50. The remaining Annexes VIII. and IX. have no immediate reference to the 
theorems A, B, C, D, which are the principal objects of the memoir. The subjects to 
which they relate will be seen from the headings and introductory paragraphs.

Annex I. Surface and Volume of Sphere λ∙2+... + ^2 + w2 =∕2. Art. Nos. 51 and 52.

51. We require in (s + l)-dimensional space, j'dx...dzdw, the volume of the 

sphere x2 + ... +z2 + w2 = f2, and dS, the surface of the same sphere.

Writing 

with the limiting condition f+... + £+ w = l; but in order to take account as well 
of the negative as the positive values of x,.. ,z, w, we must multiply by 2s+1. The 
value is therefore 

extended to all positive values of ξ,..,ζ, ω, such that ^+... + ζ"+ω<15 and we obtain 
this by a known theorem, viz.

Volume of (s + l)-dimensional sphere

Writing x = fξ, ..,z=fζ, w = fω, we obtain dS = fs d⅛, where dX is the element of 
surface of the unit-sphere ξ2 + ... + ζ2 + ω2 = 1; we have element of volume dξ... dζdω 
-=rsdrd‰ where r is to be taken from 0 to 1, and thence 

that is, 

consequently J dS = surface of (s +l)-dimensional sphere
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52. Writing 5 — 1 for s, we have

Volume of (s — l)-dimensional sphere

Surface of do.

which forms are sometimes convenient.

Writing in the first forms s + 1 —- 3, or in the second forms s=3, we find in 
ordinary space

Volume of sphere =

and

Surface of sphere

as they should be.

Annex II. The Integral Art. Nos. 53 to 63.

53. The integral in question (which occurs ant⅛, No. 2) may also be considered 
as arising from a prepotential integral in tridimensional space; the prepotential of an 

element of mass dm is taken to be = ÷j~--, where d is the distance of the element 

from the attracted point P. Hence if the element of mass be an element of the plane 
z = 0, coordinates (x, y), ρ being the density, and if the attracted point be situate in 
the axis of z at a distance e from the origin, the prepotential is

For convenience, it is assumed throughout that e is positive.

Suppose that the attracting body is a circular disk, radius R, having the origin 
for its centre (viz. that bounded by the curve P + y2 = RP) ; then writing x = r cos θ, 
y =r sin θ, we have 

which, if p is a function of r only, is 

and in particular, if ρ = rs~2, then the value is 
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the integral in regard to r being taken from r = 0 to r = R. It is assumed that s — 1 
is not negative, viz. it is positive or (it may be) zero. I consider the integral 

which I call the r-integral, more particularly in the case where e is small in com
parison with R. It is to be observed that e not being = 0, and R being finite, the 
integral contains no infinite element, and is therefore finite, whether q is positive, 
negative, or zero.

54. Writing r = e^∕v, the integral is

. R2the limits being — and 0.

In the case where q is positive, this is 

viz. the first term of this is 

and the second term is a term expansible in a series containing the powers 2q, 2q + 2,
• . ∙ 1&c. of the small quantity , as appears by effecting therein the substitution v = -;

Jλ∕ 0C

viz. the value of the entire integral is by this means found to be

55. In the case where q is = 0, or negative, the formula fails by reason that the 
^⅛s-ι . r∙∞ r∞

element °f the integrals j , ∣ becomes infinite for indefinitely large values
er
f -R ι

of v. Recurring to the original form ∣ +^^~2^⅜s+¾> *s to be observed that the

integral has a finite value when e = 0; and it might therefore at first sight be 
imagined that the factor (r2 + e2)-is~tf might be expanded in ascending powers of e2, and 
the value of the integral consequently obtained as a series of positive powers of e2.

(rBut the series thus obtained is of the form e'-k 1 r→7-2*-1  dr, where 2q being positive, 
J 0

the exponent — 2q — 2k — 1 is for a sufficiently small value of k at first positive, or if 
negative less than — 1, and the value of the integral is finite; but as k increases the 
exponent becomes negative, and equal or greater than — 1, and the value of the 
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integral is then infinite. The inference is that the series commences in the form 
A + Be2 + Cei...: but that we come at last when q is fractional to a term of the form 
Ke~2q, and when q is = 0 or is integral, to a term of the form Ke~2q∖c>g e^, the process 
giving the coefficients A, B, C,.., so long as the exponent of the corresponding term 
e0, e2, e4,.. is less than — 2q (in particular q = 0, there is a term k log e, and the 
expansion-process does not give any term of the result), and the failure of the series after 
this point being indicated by the values of the subsequent coefficients coming out = ∞ .

56. In illustration, we may consider any of the cases in which the integral can 
be obtained in finite terms. For instance,

Integral is

viz. expanding in ascending powers of e, this is 

or we have here a term in e3. And so,

Integral is 

viz. expanding in ascending powers of e, this is 

or we have here a term in e4 log, e.

57. Returning to the form

and writing herein or, what is the same thing, and for shortness

the value is

where observe that q — 1 is 0 or negative, but X being a positive quantity less than 
I, the function afl~λ (1 — χ)⅛~1 is finite for the whole extent of the integration.

* Term is which, being large, is reduced to
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58. If q = 0, this is

where observe that, in virtue of the change made from - (1 — x)⅛8~1 to — {1 — (1 — ½∙)is-1} oc oc
(a function which becomes infinite, to one which does not become infinite, for x = 0),. 
it has become allowable in place of I to write I — I .

Jx Jo Jo

When e is small, the integral which is the third term of the foregoing expression 

is obviously a quantity of the order e2; the first term is ⅜ ^log + log + ⅛) ’ 
p

neglecting terms in e2, is = j log — , and hence the approximate value of the r-integral 

or, what is the same thing, it is 

where the integral in this expression is a mere numerical constant, which, when ⅜s — 1 
is a positive integer, has the value 

neglecting this in comparison with the logarithmic term, the approximate value is

59. I consider also the case q = — ⅜; the integral is here
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and the first term of this being = Ve2 + -R2- e, this is consequently

As regards the second term of this, we have

or, taking each term between the limits 1, 0,

viz. this integral has the value

and the value of the r-integral is consequently

which is of the form

say the approximate value is

Cr .where the first term R is the term ι dr, given by the expansion in ascending powers 
Jo

of ea; the second term is the term in e~2q. And observe that the term is the value of

calculated by means of the ordinary formula for a Eulerian integral (which formula, 
on account of the negative exponent —1, is not really applicable, the value of the 
integral being = ∞) on the assumption that the Γ of a negative q is interpreted in 
accordance with the equation Γ (q + 1) = qVq; viz. the value thus calculated is

on the assumption Γ⅜ = — ⅜Γ (— ⅜); and this agrees with the foregoing value.

60. It is now easy to see in general how the foregoing transformed value 

where q is negative and fractional, gives at once the value of
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the term in e~2q. Observe that in the integral x is always between 1 and

a positive quantity less than ; the function to be integrated never becomes infinite. 

Imagine for a moment an integral ∕ xa dx, where α is positive or negative. We may
J A

conventionally write this = [ xa dx — [ xa dx, understanding the first symbol to mean 
J o Jo

Jfι+∙ l1+<ι — 01+α
and the second to mean ; they of course properly mean — f^∑px~ and

but the terms in 01+α, whether zero or infinite, destroy each other, 

the original form xadx, in fact, showing that no such terms can appear in the 

result.

In accordance with the convention, we write 

and it follows that the term in e~2q is 

this last expression (wherein q, it will be remembered, is a negative fraction) being 
understood according to the convention; and so understanding it, the value of the 
term is 

where the Γ of the negative q is to be interpreted in accordance with the equation

Γ(g+l) = gΓg5 viz. we have Γg = Γ (g + 1), pjΓ (g + 2), &c., so as to make

the argument of the Γ positive. Observe that under this convention we have

or the term is

61. An example in which ⅜s — 1 is integral will make the process clearer, and 
will serve instead of a general proof. Suppose q==- f, ⅜s — 1=4, the expression 

is used, in accordance with the convention, to denote the value
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But we have

agreeing with the former value.

62. The case of a negative integer is more simple. To find the logarithmic term of

we have only to expand the factor (1 — λ,)⅛s 1 so as to obtain the term involving x~q. 
We have thus the term

where so that, neglecting the terms in

and the term in question is

The general conclusion is that q being negative, the r-integral

has for its value a series proceeding in powers of e2, which series up to a certain point 
is equal to the series obtained by expanding in ascending powers of e2 and inte
grating each term separately; viz. the series to the point in question is

continued so long as the exponent of e is less than — 2q; together with a term Ke~2q 
Rwhen q is fractional, and Ke~2q log — when q is integral; viz. q fractional, this term is
β

and q integral, it is
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63. It has been tacitly assumed that ⅛s + q is positive; but the formulae hold 
good if ⅛s + q is =0 or negative. Suppose ⅜s + q is 0 or a negative integer, then 
Γ (∣s + q) = ∞, and the special term involving e~2? or e~29 log e vanishes; in fact, in 
this case the r-integral is 

where (r2+e2)-⅛8+⅛' has for its value a finite series, and the integral is therefore equal 
to a finite series A + Be2 + Ce4 + &c. If ⅜s + q be fractional, then the Γ of the negative 
quantity ⅛s + q must be understood as above, or, what is the same thing, we may, 
instead of Γ(⅜s+<∕), write 

thus, q being integral, the exceptional term is

For instance, s=l, q = — 2, the term is

jRor, since Γf = f∙⅜Γ⅜, and Γ3 = 2, the term is +fe4log-, agreeing with a preceding 
β

result.

Annex III. Prepotentials of Uniform Spherical Shell and Solid Sphere.
Art. Nos. 64 to 92.

64. The prepotentials in question depend ultimately upon two integrals, which 
also arise, as will presently appear, from prepotential problems in two-dimensional space, 
and which are for convenience termed the ring-integral and the disk-integral respect
ively. The analytical investigation in regard to these, depending as it does on a 
transformation of a function allied with the hypergeometric series, is I think interesting.

65. Consider first the prepotential of a uniform (s + l)-dimensional spherical shell. 
This is 

the equation of the surface being x2 + ... + ^2 ÷ w2 =_/2; and there are the two cases 
of an internal point, a2 + ... + c2 + e2 < f∖ and an external point, α2 + ... + c2 + e2 >∕2.

The value is a function of α2+... + c2 + e2, say this is = κ2. Taking the axes so 
that the coordinates of the attracted point are (0, .., 0, κ), the integral is
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where the equation of the surface is still x2 + ... ÷ z2 + w2 = f'2. Writing x =fζ, ∙ ∙,z =fζ,

, we have or the integral is

Assume ξ = px,.., ζ=pz, where x2 + ... + z2 — 1; thenp2+ω2=l. Moreover, dξ...dζ, 
= p8~1dpd∑, where cZΣ is the element of surface of the s-dimensional unit-sphere 
xs + ... + z2 = 1; or for p, substituting its value Vl — ω2, we have dp = .~ ω ; and

V 1 — ω2
thence dξ ... dζ = — (1 — ω2)* 8~1 ω dω d½. The integral as regards p is from p = — 1 to 
+ 1, or as regards ω from 1 to —1; whence reversing the sign, the integral will be 
from ω = — 1 to + 1; and the required integral is thus 

where J d∑ is the surface of the s-dimensional unit-sphere (see Annex I.),

and for greater convenience transforming the second factor by writing therein ω = cos θ, 
(Γ1)sthe required integral is = r, ,*  r multiplied by
1 (⅜s)

which last expression—including the factor 2fs, but without the factor —is the

ring-integral discussed in the present Annex. It may be remarked that the value can 
be at once obtained in the particular case s = 2, which belongs to tridimensional space: 
viz. we then have 

which agrees with a result given, Mecanique Celeste, Book xιι. Chap. II.

66. Consider next the prepotential of the uniform solid (⅛, + l)-dimensional sphere, 

the equation of the surface being ic2 + ... + z2 + w2 =∕2; there are the two cases of an 
internal point κ <f, and an external point κ >f (α2+ ... + c2 + e2 = ∕c2 as before).
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Transforming so that the coordinates of the attracted point are 0, .., 0, κ, the 
integral is 

where the equation is still x2 + ... + z2 + w2 =f2. Writing here x = rξ,.. ,z = rξ, where 
ξ2 + ... + ζ2≈l, we have dx ... dz = rs~l dr di, where d∑ is an element of surface of the 
s-dimensional unit-sphere ξ2 +... + ξ2 = l "f the integral is therefore

where, as regards r and w, the integration extends over the circle r2 + w2 = f2. The 
2 (Γ1)s

value of the first factor (see Annex I.) is = L,1 writing y and x in place of1 ⅜s

r and w respectively, the integral is multiplied by

over the circle x2 + y2 =f2; viz. this last expression ^without the factor is the

disk-integral discussed in the present Annex.

67. We find, for the value in regard to an internal point κ<f 

which, in the particular case q = — ⅜, is 

viz. the integral in t is here 

or we have

It may be added that, in regard to an external point κ> f the value is
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which, in the same case <7 = —1, is

where the i-integral is

and the value of V is therefore

Recurring to the case of the internal point; then, writing 

and observing that we have

(in particular, for ordinary space s + 1 = 3, or the value is which is

right).

68. The integrals referred to as the ring-integral and the disk-integral arise also 
from the following integrals in two-dimensional space, viz. these are

in the first of which dS denotes an element of arc of the circle x2 + y2=f2, the 
integration being extended over the whole circumference, and in the second the 
integration extends over the circle xi + y2 =f2', ys~γ is written for shortness instead of 
(y2)*< β^n, vjz t}βs is considered as always positive, whether y is positive or negative; 
it is moreover assumed that s — 1 is zero or positive.

Writing in the first integral x≈fcosθ, y=fsinθ, the value is

viz. this represents the prepotential of the circumference of the circle, density varying 
as (sin θ)s~∖ in regard to a point x = κ, y = 0 in the plane of the circle; and similarly 
the second integral represents the prepotential of the circular disk, density of the 
element at the point (x, y) = ys~1, in regard to the same point x = κ, y = 0; it being 
in each case assumed that the prepotential of an element of mass p dτχ at a point 

at distance d is
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69. In the case of the circumference, it is assumed that the attracted point is 
not on the circumference, κ not = /; and the function under the integral sign, and 
therefore the integral itself, is in every case finite. In the case of the circle, if κ 
be an interior point, then if 2q — 1 be =0 or positive, the element at the attracted 
point becomes infinite; but to avoid this we consider, not the potential of the whole 
circle, but the potential of the circle less an indefinitely small circle radius ε having 
the attracted point for its centre; which being so, the element under the integral 
sign, and consequently the integral itself, remains finite.

It is to be remarked that the two integrals are connected with each other; viz. 
the circle of the second integral being divided into rings by means of a system of 
circles concentric with the bounding circle x2 + y' = f'i, then the prepotential of each 
ring or annulus is determined by an integral such as the first integral; or, analytically, 
writing in the second integral x = r cos θ, y =r sin θ, and therefore dxdy = r dr dθ, the 
second integral is 

viz. the integral in regard to θ is here the same function of r, κ that the first 
integral is of f κ∖ and the integration in regard to r is of course to be taken 
from r=0 to r≈f. But the ^-integral is not, in its original form, such a function 
of r as to render possible the integration in regard to r; and I, in fact, obtain the 
second integral by a different and in some respects a better process.

70. Consider first the ring-integral which, writing therein as above x=fcosθt 
y=f sin θ, and multiplying by 2 in order that the integral, instead of being taken 
from 0 to 2∙7γ, may be taken from 0 to 7r, becomes

Write cos|0 = \6?; then sin∣0 = √1 — x, sin θ = 2χi (1 — χ)⅛; dθ = — x~⅛ (1 — rc)-^ dx; 
cos θ = — 1 + 2x; θ = 0 gives x = l, θ = π gives x = 0, and the integral is

♦

if for shortness u=-7—so that obviously u < 1.(*  +∕)2 j

The integral in x is here an integral belonging to the general form 

viz. we have
Ring-integral =
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71. The general function ∏ (a, β, γ, u) is

or, what is the same thing,

and consequently transformable by means of various theorems for the transformation 
of the hypergeometric series, in particular, by the theorems

and if or, what is the same thing, then

In verification, observe that if u=l then also υ = l, and that with these values, 
calculating each side by means of the formulae

the resulting equation, ∣, becomes

that is,

which is true, in virtue of the relation

72. The foregoing formulae, and in particular the formula which I have written 
F(a, β, 2β, u) = (1 + √v)2a F (a, a-∕3 + ⅜, β + ⅛, v), are taken from Kummer’s Memoir, 
“Ueber die hypergeometrische Reihe,” Crelle, t. xv. (1836), viz. the formula in question 
is, under a slightly different form, his formula (41), p.'76; the formula (43), p. 77, 
is intended to be equivalent thereto; but there is an error of transcription, 2α- 2β÷l, 
in place of β + ⅛, which makes the formula (43) erroneous.

It may be remarked as to the formulae generally that, although very probably 
∏ (a, β, 7, w) may denote a proper function of u, whatever be the values of the indices 
(a, β, γ), and the various transformation-theorems hold good accordingly (the Γ-function 
of a negative argument being interpreted in the usual manner by means of the 
equation Γx = - Γ (1 + x∖ = * ξ Γ(2 + a?) &c.), yet that the function ∏ (a, β, γ, u),

0C 0C ∖X "f~ L)
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used as denoting the definite integral J zrβ~1 (1 — x)β~1 (1 — ux)~*  da, has no meaning

except in the case where a and β are each of them positive.

In what follows we obtain for the ring-integral and the disk-integral various
expressions in terms of ∏-functions, which are afterwards transformed into i-integrals 
with a superior limit ∞ and inferior limit 0, or κ2 — f2; but for values of the 
variable index, q lying beyond certain limits, the indices α and β, or one of them, 
of the ∏-function will become negative, viz. the integral represented by the ∏-function, 
or, what is the same thing, the ^-integral, will cease to have a determinate value, 
and at the same time, or usually so, the argument or arguments of one or more of 
the Γ-functions will become negative. It is quite possible that in such cases the 
results are not without meaning, and that an interpretation for them might be found; 
but they have not any obvious interpretation, and we must in the first instance 
consider them as inapplicable.

73. We require further properties of the ∏-functions. Starting with the foregoing 
equation 

each side may be expressed in a fourfold form:—

where, instead of (1 + ¼j)2α (1 — v)2^-2a, it is proper to write (1 ÷ (1—vzv)2^-3a ;
and then to each form applying the transformation 

we have
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I select the second of the first four forms; equating it successively to each of the 

second four forms, and attending to the relation we find

Putting herein β-^s, ct = ⅛s + q, the formulae become 

where observe that on the right-hand side the ∏-functions in I. and IV. only differ 
by the sign of q, and so also the ∏-functions in II. and III. only differ by the sign 
of q. We hence have
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and comparing with (IV.),

74. The foregoing formula,

Ring-integral

4∕e∕,where u = 7->- j, gives, as well in the case of an exterior as an interior point, a 
(√ + «)

convergent series for the integral; but this series proceeds according to the powers 
⅛ιcf

of ζ^p-y2∙ We may obtain more convenient formulae applying to the cases of an 

internal and an external point respectively.

75. For an internal point and therefore

where the ∏-functions on the right-hand side are respectively

the ⅛-forms being obtained by means of the transformation viz. this

gives

whence the results just written down.
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We hence have

Ring-integral =

As a verification write κ = 0, the four integrals are 

hence from each of them
Ring-integral

which is, in fact, the value obtained from

Ring-integral ■

on putting therein ∕c = 0; viz. the value is

76. For an external point
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where the ∏-functions on the right hand are respectively

We have then

Ring-integral =

Observe that in II. and III. the integrals, except as to the limits, are the same 
as in the corresponding formulae for the interior point.

If in the ^-integrals we put t + κ2-f2 in place of t, and ultimately suppose κ 
indefinitely large in comparison with f, they severally become 

and they all four give

Ring-integral

which agrees with the value

when is indefinitely large.
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77. We come now to the disk-integral,

over the circle x2 + y2 = f2. Writing x = κ + p cos φ, y — p sin φ, we have dx dy = p dp dφ, 
and the integral therefore is 

where the integration in regard to p is performed at once; viz. the integral is

or multiplying by 2, in order that the integration may be taken only over the semi
circle, y = positive, this is 

the term (p1-29) being taken between the proper limits.

78. Consider first an interior point κ,<f As already mentioned, we exclude an 
indefinitely small circle radius e, and the limits for p are from p = e to ρ = its value at

the circumference; viz. if here x=fcosθ, y≈fsinθ, then we have /cos θ = κ + p cos φ, 
/sin θ = p sin φ, and consequently 

and the integral therefore is

gl—2q r
As regards the second term, this is = - χ---- j sinβ~1 φ dφ, from φ = 0 to φ = τr; or,

what is the same thing, we may multiply by 2 and take the integral from φ = 0 to φ≈^.
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Writing then smφ=^∕x, and consequently sins~1 φ dφ ≈ ⅛x⅛s~1 (1 — χ)~i dx, the term is 

the value of the disk-integral is

But we have

and thence

that is,

or, what is the same thing,

the expression for the disk-integral is therefore

79. Writing as before this is

As a verification, observe that, if κ = 0, each of the ∏-functions becomes

hence the whole first term is viz. this is and

the complete value is 

vanishing, as it should do, if ∕=e.

80. In the case of an exterior point κ>f the process is somewhat different; but 
the result is of a like form. We have

Disk-integral
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where ρ1 refers to the point M' and ρ to the point M. Attending first to the integral 

and writing as before this is

the inferior and the superior limits being here the values of θ which correspond to the 
points N, Λ respectively, say θ + a, and θ = 0', hence, reversing the sign and inter

changing the two limits, the value of — J*  p1 2q sin® 1 θ dφ is the above integral taken 

from 0 to α. But similarly the value of + [ Pι1~eq sin®-1 θ dφ is the same integral taken 

from a to ττ. For the two terms together, the value is the same integral from 0 to π; 
viz. we thus find

Disk-integral

or, writing as before

81. As a verification, suppose that κ is indefinitely large : we must recur to the 
last preceding formula; the value is thus 

viz. this is 

where the integral of the first term vanishes; the value is thus 
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where we may multiply by 2 and take the integral from 0 to . Writing then 

sin0=V⅛ the value is 

where the integral is 

and hence the value is 

viz. this is = —— J ys~1 dx dy, over the circle a? + y'2 = f2, as is easily verified.

82. Reverting to the interior point κ <f,

Disk-integral 

then reducing the expression in { ] by the transformations for ∏ (⅜s, ⅜s + q, u) 
and the like transformations for ∏ (⅜s, ⅜s, ⅛s + q-1, w), the term in { } may be ex
pressed in the four forms:—

multiplied by

multiplied by
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83. The first and the fourth of these are susceptible of a reduction which does not 
appear to be applicable to the second and the third. Consider in general the function 

the second ∏-function is here 

viz. this is 

or, since the first term vanishes between the limits, this is

Hence the two ∏-functions together are 

that is,

We have therefore 

and from the same equation, written in the form 

we obtain

Z '' '1 ∖ J '

84. Hence the terms in [ ] in the first and the fourth expressions in No. 82 are
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respectively ; the corresponding values of the disk-integral are

which we may again verify by writing therein κ = 0, viz. the ∏-functions thus become

and consequently the integral is

85. But the forms nevertheless belong to a system of four. In the formulae

writing we deduce

and the last-mentioned values of the disk-integral may thus be written in the four 
forms:
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and since the last of these is in fact the second of the original forms, it is clear 
that, if instead of the first we had taken the second of the original forms, we should 
have obtained again the same system of four forms.

86. Writing as before the forms are

87. The third of these possesses a remarkable property. Wι,ite τnf instead of f, 
and at the same time change t into m2t: the integral becomes

and hence, writing and therefore the value is

term in e.

Hence the term in δ∕ is 

where the factor which multiplies 8f is, as it should be, the ring-integral; it in fact 
agrees with one of the expressions previously obtained for this integral.

88. Similarly for an exterior point κ > f ∖ starting in like manner from, Disk
integral 

and reducing in like manner, the term in { } may be expressed in the four forms

multiplied by
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multiplied by

multiplied by

89. For the reduction of the first and the fourth of these, we have to consider

viz. this is 

that is,

I repeat, for comparison, the foregoing equation 

by adding and subtracting these we obtain two new formulae; for reduction of the 
fourth formula, the equation may be written

90. But it is sufficient to consider the first formula; the term in [ ] is 

and the corresponding value of the disk-integral is
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which we may again verify by taking therein κ indefinitely large; viz. the value is 
then = J⅞.⅞ as above. It is the first of a system of four forms, the others

Γ (⅜s +1) κ8+2q
of which are

And hence, writing as before , the four values are

where we may in the integrals write t + κ2-f2 in place of t, making the limits ∞ , 0; 
but the actual form is preferable.

91. In the third form, for f write mf at the same time changing t into mt’, 
the new value of the disk-integral is

Writing here mf=f + δ∕, that is, m = 1 + y , m2 = 1 + and observing that, if 

— g + ⅜ be positive, the factor {m2(t +∕2) - ∕c2}-9+i vanishes for the value t = --f'2 at 

the lower limit, we see that on this supposition, — q + ⅛ positive, the value is

viz. the term in δ∕, is = δ∕ multiplied by the expression
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that is, multiplied by 

which is in fact = δ∕ multiplied by the value of the ring-integral.

92. Comparing for the cases of an interior point κ <f and an exterior point 
κ >f, the four expressions for the disk-integral, it will be noticed that only the third 
expressions correspond precisely to each other; viz. these are: interior point, n<f; the 
value is 

where, if ⅜ — q be positive (which is, in fact, a necessary condition in order to the 
applicability of the formula), the term in e vanishes, and may therefore be omitted: 
and exterior point, κ>f∖ the value is 

differing only from the preceding one in the inferior limit κ2 — f2 in place of 0 of 
the integral. We have ⅜ — q positive, and also ⅜s + q positive; viz. q may have any 
value diminishing from ⅜ to — ⅜s, the extreme values not admissible.

Annex IV. Examples of Theorem A. Art. Nos. 93 to 112.

93. It is remarked in the text that, in the examples which relate to the s-coordinal 
sphere and ellipsoid respectively, we have a quantity θ, a function of the coordinates 
(a, .., c, e) of the attracted point; viz. in the case of the sphere, writing a2 + ... + c2 = λ2, 
we have 

in the case of the ellipsoid, we have 

the equations having in each case a positive root which is called θ. The properties 
of the equation are the same in each case; but for the sphere, the equation being 
a quadric one, can be solved. The equation in fact is 

and the positive root is therefore

Suppose e to diminish gradually and become = 0; for an exterior point, κ>f, the 
value of the radical is = κ2 - f2, and we have θ = κ2 -f2; for an interior point, κ<f
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f2 + ∕c2the value of the radical, supposing e only indefinitely small, is =∕2 — ∕c2 +*⅞ -----2 e2, and
J ~ κ

-f" AC~∖ βθ ∕ ∙ ∙ ∕ K~ ∖ ∙
1 +y,a _ κ2p =j-2 _ ~K2 > or> w^at is the same thing, = [1 — y2); viz. 

the positive root of the equation continually diminishes with e, and becomes ultimately 
= 0.

If κ or e be indefinitely large, then the radical may be taken = e2 + κ2, and we 
have θ indefinitely large, = e2 + κ2.

94. The result is similar for the general equation 

the left-hand side is =0 for θ = ∞ , and (as θ decreases) continually increases, becoming 
infinite for θ = 0; there is consequently a single positive value of θ for which the 
value is = 1; viz. the equation has a single positive root, and θ is taken to denote 
this root.

In the last-mentioned equation, let e gradually diminish and become = 0; then 
for an exterior point, viz. if

has (as is at once seen) a single positive root, and θ becomes equal to the positive 

root of this equation; but for an interior point, or 7^+∙∙∙+τ^<l> the equation just 

written down has no positive root, and θ becomes = 0, that is, the positive root of 
the original equation continually diminishes with e, and for e = 0 becomes ultimately 

g2 ∕ ∖
= 0; its value for e small is, in fact, given by = [1 —y2 — ... — Also a, ..,c, e 

(or any of them) indefinitely large, θ is indefinitely large, = a2 + ... +c2 + e2.

95. We have an interesting geometrical illustration in the case $+1 = 2; θ is 
here determined by the equation 

viz. θ is the squared ^-semiaxis of the ellipsoid, confocal with the conic f-2+2~^> 
J 9 

which passes through the point (a, b, e). Taking e = 0, the point in question, if 

yj+->1, is a point in the plane of xy, outside the ellipse, and we have through 

the point a proper confocal ellipsoid, whose squared ^-semiaxis does not vanish; but 

if y2 + — < 1, then the point is within the ellipse, and the only confocal ellipsoid 

through the point is the indefinitely thin ellipsoid, squared semiaxes (∕2, g2, 0), which 
in fact coincides with the ellipse.
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96. The positive root θ of the equation 

has certain properties which connect themselves with the function

We have, the accents denoting differentiations in regard to θ, 

where 

and we have the like formulae for

We deduce 

and to this we may join, η being arbitrary,

Again, defining V 1θ and □0 as immediately appears, we∙ have 

and passing to the second differential coefficients, we have 

where

and the like formulae for Joining to these we obtain
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where the last two terms destroy each other; observing that we have 

the result is

97. First example, κ2 = a2 + ... + c2, and θ the positive root

V is assumed , where 5 positive.

I do not work the example out; it corresponds step by step with, and is hardly 
more simple than, the next example, which relates to the ellipsoid. The result is 

hence the integral 

taken over the sphere

98. Second example. θ the positive root of 
positive.

Consider here the function 

this satisfies the prepotential equation. We have in fact 

with the like expressions for ...,

Hence
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or, substituting for □0 and V 1θ their values, this is

Moreover V does not become infinite for any values of (a,.., c, e), e not = 0; 
and it vanishes for points at ∞. And not only so, but for indefinitely large values 
of any of the coordinates (a,.., c, e) it reduces itself to a numerical multiple of 
(α2 + ... + c2 + e2)-⅛s+s; in fact, in this case θ is indefinitely large, = α2 + ... + c2 + e2. 
Consequently throughout the integral, t is indefinitely large, and we may therefore write 

that is,

The conditions of the theorem are thus satisfied, and we have for p either of 
the formulae 

in the former of them q must be positive; in the latter it is sufficient if q + 1 be 
positive.

99. We have W the same function of (x,..,z, e) that V is of (a,..,c, e); viz. 
writing λ for the positive root of 

the value of W is

Considering the formula which involves e2qW,—first, if y7, + ... + ^∙2 > 1, then, when 

e is = 0 the value of λ is not = 0; the integral W is therefore finite (not indefinitely 
large), and we have e2q W = 0, consequently p = 0.

But if y2+...+^-2< 1, then, when e is indefinitely small λ is also indefinitely 

small; viz. we then have the value of W is 

and hence
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100. Again, using the formula which involves (e2ρ+1 we have here

or substituting for Θ and their values and multiplying by e22+1, we find

and therefore

ττ ∙ ∙ (X^ Z~Hence, writing e=0: first, for an exterior point or y2 +...+^-2> 1, λ is not =0, 

and the expression vanishes in virtue of the factor e2⅛+2, whence also p = 0; next, 

for an interior point or y2+...+^^2< 1, λ is =0, hence also 

is infinite; neglecting in comparison with it the other terms the value is

and we have, as before,

101. Hence in the formula

p has the value just found, or, what is the same thing, we have

taken over ellipsoid

www.rcin.org.pl



607] A MEMOIR ON PREPOTENTIALS. 385

102. We may in this result write e = 0. There are two cases, according as the
• •••■ ∙ C~attracted point is exterior or interior: if it is exterior, v- + ... + r- > 1, θ will denote λ ∕2 Λ2

the positive root of the equation if it be interior,

θ will be = 0; and we thus have

for exterior point 

for interior point

but as regards the value for an interior point it is to be observed that, unless q be 
negative (between 0 and — 1, since 1 + q is positive by hypothesis), the two sides of 
the equation will be each of them infinite.

103. Third example. We assume here 

where 

as before, θ is the positive root of the equation 

and ∣s + q is positive in order that the integral may be finite; also m is positive.

104. In order to show that V satisfies the prepotential equation □ V = 0, I shall, 
in the first place, consider the more general expression, 

where η is a constant positive quantity which will be ultimately put = 0. The 
functions previously called J and Θ will be written Jo and Θo> an*I  tΛ θ will no'v 
denote
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whence also, subtracting from J the evanescent function Jo, we have 

say this is 

and we have thence, by former equations and in the present notation,

In virtue of the equation which determines θ, we have 

and thence 

with like expressions for 

and hence
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105. Writing Γ, T, for the first derived coefficients of I, T in regard to t, we have

The integral is therefore 

viz. ∕m~1 T vanishing for t = ∞ , this is

Hence, writing instead of we have

viz. this is

or, writing instead of this is

We have here

Also Θ'Θ0 — (s)Θ0' contains the factor η, is ≈ηM suppose.
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106. Substituting for J, J' — 2P + J, and Θ'Θ0 — ΘΘ0' their values ηP, ηQ, and 
ηM, the whole result contains the factor 77m+1, viz. we have

If here, except in the term ηm+1, we write η = 0, we have 

the formula becomes 

or (instead of Jo, Θo) using now J, Θ in their original significations 

this is 

or, what is the same thing,

viz. the expression in { } is

We thus see that, η being infinitesimal, □ V is infinitesimal of the order τfn+1; and 
hence, η being = 0, we have 

viz. the prepotential equation is satisfied by the value 

where m + 1 is positive.

107. We have consequently a value of p corresponding to the foregoing value 
of V; and this value is
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where, writing λ for the positive root of

we have

we thence obtain

or, multiplying by e24+1 and substituting for its value

we have

where the second term, although containing the evanescent factor

is for the present retained.

108. I attend to the second term.

l0. Suppose then, as e diminishes and becomes =0, λ does not

become zero, but it becomes the positive root of the equation

hence the term, containing as well the evanescent factor e2^+2 as the other evanescent 

factor
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20. Suppose  then, as e diminishes to zero, λ tends to become =0,

but - is finite and = 1—— , whence — is indefinitely large; and since 
 

 which is finite, the denominator may

be reduced to - , and the term therefore isλ2

which, the other factor being finite, vanishes in virtue of the evanescent factor

Hence the second term always vanishes, and we have (e being =0)

109. Considering first the case then, as e diminishes to zero, λ

does not become = 0; the integral contains no infinite element, and it consequently 
vanishes in virtue of the factor e2q+2.

But if  then, introducing, instead of t the new variable ξ, = - , that 
 
and writing for shortness

the term becomes 

where, as regards the limits, corresponding to t = ∞ we have ξ = 0, and corresponding 
to t = λ we have ξ the positive root of R-ξ=0. But e is indefinitely small; except 
for indefinitely small values of ξ, we have
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and if ξ be indefinitely small, then, whether we take the accurate or the reduced 
expressions, the elements are finite, and the corresponding portion of the integral is 
indefinitely small. We may consequently reduce as above; viz. writing now

the formula is

or writing ξ = Rιι, the integral becomes which is

that is, we have

and consequently

that is,

viz. p has this value for values of z) such that but is =0 if

110. Multiplying by a constant factor so as to reduce p to the value Rq+m, the 
final result is that the integral

the limits being given by the equation

is equal to

where θ is the positive root of
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In particular, if e = 0, or 

there are two cases:

exterior, is positive root of

interior, vanishes, viz. the limits in the integral are ∞ , 0;

q must be negative, 1 + q positive as before, in order that the t-integral may not be 
infinite in regard to the element t = 0.

It is assumed in the proof that m and 1 + q are each of them positive; but, 
as appears by the second example, the theorem is true for the extreme value m = 0; 
it does not, however, appear that the proof can be extended to include the extreme 
value q = — 1. The formula seems, however, to hold good for values of m, q beyond 
the foregoing limits; and it would seem that the only necessary conditions are ⅟2s + q, 
1 + m, and 1 + q + nι, each of them positive. The theorem is, in fact, a particular case 
of the following one, proved Annex X. No. 162, viz.

taken over the ellipsoid is equal to

where σ denotes assuming we have

and the theorem is thus proved.

111. Particular cases: m=0;

Cor. In a somewhat similar manner it may be shown that
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Multiplying the first by a and subtracting it from the second, we have 

or, writing q + 1 for q, this is 

and we have similar formulae with .., (c — z), e, instead of (a — x), in the numerator.

112. If m=l, we have 

which, differentiated in respect to α, gives the (α — <c)-formula; hence conversely, 
assuming the a — x,.., c - z, e-formulae, we obtain by integration the last preceding 
formula to a constant pres, viz. we thereby obtain the multiple integral = C + right
hand function, where C is independent of (a,.., c, β); by taking these all infinite, and 
observing that then θ = ∞ , the two integrals each vanish, and we obtain (7 = 0.

In particular, when s = 3, q = — 1, then 

which, putting therein e = 0, gives the potential of an ellipsoid for the cases of an 
exterior point and an interior point respectively.

Annex V. Green’s Integration of the Prepotential Equation

113. In the present Annex, I in part reproduce Green’s process for the integration 
of this equation by means of a series of functions, which are analogous to Laplace’s 
Functions and may be termed “ Greenians ” (see his Memoir on the Attraction of 
Ellipsoids, referred to above, p. 320); each such function gives rise to a Prepotential 
Integral.

Green shows, by a complicated and difficult piece of general reasoning, that there 
exist solutions of the form P" = Θ<∕> (see post, No. 116), where φ is a function of the
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s new variables α, β,.., 7 without θ, such that V φ = κφ, κ being a function of θ only; 
these functions φ of the variables a, β,.., 7 are in fact the Greenian Functions in 
question. The function of the order 0 is φ = 1; those of the order 1 are φ = a, 
φ = β,.., φ = rγ', those of the order 2 are φ = aβ, &c., and s functions each of the form

The existence of the functions just referred to other than the s functions involving 
the squares of the variables is obvious enough; the difficulty first arises in regard to 
these s functions; and the actual development of them appears to me important by 
reason of the light which is thereby thrown upon the general theory. This I accom
plish in the present Annex; and I determine by Green’s process the corresponding 
prepotential integrals. I do not go into the question of the Greenian Functions of 
orders superior to the second.

114. I write for greater clearness (a, b,..,c, e) instead of (a,..,c, e) to denote the 
series of (s +1) variables; viz. (a, b,.., c) will denote a series of s variables; corre
sponding to these we have the semiaxes (f g,.., h), and the new variables (a, β,.., y); 
these last, with the before-mentioned function Θ, are the s +1 new variables of the 
problem; and, for convenience, there is introduced also a quantity ε; viz. we have 

where

That is, we have θ a function of a, b, .., c, e, determined by 

and then α, β,.. , 7 are given as functions of the same quantities a, b,.., c, e by the 
equations

~9 7.2 z»2

also e, considered as a function of the same quantities, is

115. Introducing instead of a, b,..,c, e the new variables a, β,..,y, θ, the trans
formed differential equation is
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where for shortness

Also

116. To integrate the equation for V, we assume 

where Θ is a function of θ only, and ϕ a function of α, β,..., γ (without θ), such that 

κ being a function of θ only. Assuming that this is possible,  the remaining equation 
to be satisfied is obviously

Solutions of the form in question are
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and it can be shown next that there is a solution of the form

117. In fact, assuming that this satisfies Vφ- κφ = 0, we must have identically 

so that, from the term in α2, we have 

or, what is the same thing, 

with the like equations from β2,.., γ2; and from the constant term we have

118. Multiplying this last by f2, and adding it to the first, we obtain 

viz. putting for shortness 

and similarly
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To these we join the foregoing equation

Eliminating A, B,..,C, D, we have an equation which determines κ as a function of θ; 
and the equations then determine the ratios of A, B,..,C, D, so that these quantities 
will be given as determinate multiples of an arbitrary quantity M. The equation 
for κ is in fact 

and the values of A, B,.., C, D are then 

values which seem to be dependent on θ: if they were so, it would be fatal to 
the success of the process; but they are really independent of θ.

119. That they are independent of θ depends on the theorems; that we have 

where κ0 is a quantity independent of θ determined by the equation

(κ0 is in fact the value of κ on writing θ = 0): and that, omitting the arbitrary 
multiplier, the values of A, B,..,C, D then are 

or, what is the same thing, the value of φ is

120. To explain the ground of the assumption 

observe that, assuming 
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then multiplying out and reducing, we obtain 

viz. the equation divides out by the factor g2-f2, thereby becoming 

that is, it gives for κ the foregoing value: hence clearly, κ having this value, we 
obtain by symmetry 

proportional to 

viz. the ratios, not only of A : B, but of A : B : ... : C will be independent of θ.

121. To complete the transformation, starting with the foregoing value of κ, we 
have 

so that we have 

and

Substituting for A, B,.., C their values, this last becomes 

viz. this is 

nr, substituting for Ω its value, and dividing out by 2q + 2,*  we have 

the equation for the determination of κ0.
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122. The equation for xr0 is of the order s; there are consequently s functions of 
the form in question, and each of the terms α2, β2,.., 72 can be expressed as a linear 
function of these. It thus appears that any quadric function of α, β,.., 7 can be 
expressed as a sum of Greenian functions; viz. the form is

lines;,

viz. the terms multiplied by D', D", &c. respectively are those answering to the roots 
κ0', κ0",.. of the equation in κ0.

The general conclusion is that any rational and integral function of a, β,.., γ can 
be expressed as a sum of Greenian functions.

123. We have next to integrate the equation

Suppose κ = 0, a particular solution is Θ = 1. Next, suppose

in fact, omitting the constant denominator, or writing and therefore

the equation to be verified is

which is right.

Again, suppose (value belonging to φ = aβ, see No. 116); a

particular solution is in fact, omitting the constant factor, or writing
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and therefore

the equation to be verified is

■or putting for shortness this is

which is true. And, generally, the particular solution is deduced from the value 
of φ by writing therein

in place of α, β,.., 7 respectively : say the value thus obtained is Θ = H, where H is 
what φ becomes by the above substitution.

124. Represent for a moment the equation in Θ by

and assume that this is satisfied by Then we have
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and therefore

viz. multiplying by this is

or

viz. substituting for P its value, this is

Hence, integrating,

C an arbitrary constant,

and
arbitrary,

where the constants of integration are C*,  λ; or, what is the same thing, taking T 
the same function of t that H is of θ (viz. T is what φ becomes on writing therein 

in place of α, β,.., γ respectively), then 

where χ may be taken = ∞ : we thus have

Recollecting that 

so that for θ = ∞ we have a2+ b2+ ... +c2 + e2= 0, the assumption χ = ∞ comes to 
making V vanish for infinite values of (a, b,..,c, e).

125. We have to find the value of p corresponding to the foregoing value of V; 
viz. W being the value of V, on writing therein (a, y,..,z) in place of (a, b,.., c), 
then (theorem A)
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Take λ the same function of (x, y,..,z, e) that θ is of (a, b,.. ,c, e): viz. take λ 
the positive root of

and let (ξ, η,..,ζ, τ) correspond to (a, β,..,y, e), viz.

so that W is the same function of (ξ, η,.., λ) that V is of (a, β,.., θ): say this is

then we have for p the value

where e is to be put = 0.

126. Suppose e is =0; then, if is not = 0 but is the

positive root of

and we have ρ = 0, viz. p is = 0 for all points outside the ellipsoid

But if then, on writing e = 0, we have

where the term in ( ) is

Hence
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where ψ0, Λo are what ψ, Λ become on writing therein λ = 0. It will be remembered 
that A is what H becomes on changing therein θ into X; hence Λo is what H 
becomes on writing therein θ = 0.

Moreover ψ is what φ becomes on changing therein α, β,.., γ into ξ, η,.., ζ: 
00 'll zwriting λ = 0, we have £ = 7, η = -,.., ζ~τ', hence ψ0 is what φ becomes on changing 
J 9 fl

x y ztherein α, β,..,y into 7, -,..,τ∙ And it is proper in φ to restore the original variables

by "writing in place of a, β,.., 7.

127. Recapitulating, 

where, since for the value of V about to be mentioned p vanishes for points outside 
the ellipsoid, the integral is to be taken over the ellipsoid 

and then, transferring a constant factor, if 

the corresponding value of p is 

where Ao is what H becomes on writing therein 0 = 0, and ψ0 is what ψ becomes 
on writing

128. Thus, putting for shortness ∩ = £-9-1 {(£+jf2) ... (⅛ + Λ2)}-*,  we have in the three 

several cases respectively,
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For the case last considered

T same function with t fθr

where κ0 is the root of the equation

Annex VI. Examples of Theorem C. Art. Nos. 129 to 132.

129. First example: relating to the (s + l)-coordinal sphere
Assume 

these values each satisfy the potential equation.
V is not infinite for any point outside the surface, and for indefinitely large 

distances it is of the proper form.
V" is not infinite for any point inside the surface; and at the surface V = P".
The conditions of the theorem are therefore satisfied. Writing 

we have

where
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which at the surface is

Hence

(viz. p is constant).

130. Writing for convenience a constant which may be put

we have and consequently

for exterior point κ>f,

for interior point κ<f.

By making a,..,c, e all indefinitely large, we find

viz. the expression on the right-hand side is here the mass of the shell thickness δ∕. 

Taking s = 3, we have the ordinary formulae for the Potential of a uniform spherical 
shell.

131. Suppose s = 3, but let the surface be the infinite cylinder x2 + y2 =f 2. Take 
here

each satisfying the potential equation but V^', instead of vanishing, is

infinite at infinity, and the conditions of the theorem are not satisfied; the Potential 
of the cylinder is in fact infinite. But the failure is a mere consequence of the special 
value of s, viz. this is such that s — 2, instead of being positive, is = 0. Reverting 
to the general case of (s -I- l)-dimensional space, let the surface be the infinite cylinder 
x2+... + z2=f2∙, and assume

(a constant).

These satisfy the potential equation; viz. as regards V', we have
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V is not infinite at any point outside the cylinder; and it vanishes at infinity, 
except indeed when only the coordinate e is infinite, and its form at infinity is not

V" is not infinite for any point within the cylinder; and at the surface we have 
F' = V''.

We have 

where

at the surface;

and therefore

(viz. p is constant);

or, what is the same thing, writing , whence p≈ δ∕*,  and writing also

we have

132. This is right; but we can without difficulty bring it to coincide with the 
result obtained for the (s + l)-dimensional sphere with only 5—1 in place of 5; we may 
in fact, by a single integration, pass from the cylinder x2 + ... + z2 = f2 to the 5-dimen
sional sphere or circle x2 + ... + z2 =f2, which is the base of this cylinder. Writing first 
dS = d∑ dw, where dS refers to the s variables (x, ..,z) and the sphere x2 + ... + z2=f2; 
or using now dS in this sense, then in place of the original dS we have dS dw: and 
the limits of w being ∞, — ∞, then in place of e — w we may write simply w. This 
being so, and putting for shortness (a — λ,)2 + ... + (c— z)2 = A2, the integral is 

and we have without difficulty

www.rcin.org.pl



607] A MEMOIR ON PREPOTENTTALS. 407

To prove it, write w = A tan θ, then the integral is in the first place converted into

which, putting cos # = Va? and therefore sin θ = Vl — xi becomes

which has the value in question.

Hence, replacing A by its value, we have

that is,

viz. this is the formula for the sphere with s — 1 instead of ∙s,.

Annex VII. Example of Theorem D. Art. Nos. 133 and 134.

133. The example relates to the (s + l)-dimensional sphere <z>2 + ... + zn- + w2 =J 2. 
Instead of at once assuming for V a form satisfying the proper conditions as to 
continuity, we assume a form with indeterminate coefficients, and make it satisfy the 
conditions in question. Write

In order that the two values may be equal at the surface, we must have

in order that the derived functions may be equal, we must have

viz. these are all satisfied if only

We have thus the values of A and B; or the exterior potential being as above
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the value of the interior potential must be

The corresponding values of W are of course 

and we thence find

Assuming for M the value the last value becomes p = 1; writing for

shortness α2 + ... + c2 + β2 = κ2, we have

over (s + l)-dimensional sphere 

, for an exterior point κ>f

for an interior point κ <f

134. The case of the ellipsoid for s + 1-dimensional space may be

worked out by the theorem; this is, in fact, what is done in tridimensional space 
by Lejeune-Dirichlet in his Memoir of 1846 above referred to (p. 321).

Annex VIII. Prepotentials of the Homaloids. Ax↑>. Nos. 135 to 137.

135. We have in tridimensional space the series of figures—the plane, the line, 
the point; and there is in like manner in (s-f- l)-dimensional space a corresponding 
series of (s + l) terms; the (s ÷ l)-coordinal plane—the line, the point: say these 
are the homaloids or homaloidal figures. And, taking the density as uniform, or, 
what is the same thing, =1, we may consider the prepotentials of these several 
figures in regard to an attracted point, which, for greater simplicity, is taken not to 
be on the figure.

136. The integral may be written 

which still relates to a (s + l)-dimensional space: the (s+l) coordinates of the 
attracted point are (a,..,c, d,..,e, u), instead of being (a,.., c, e); viz. we have the 
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s' coordinates (a, . .,c), the s — s' coordinates (d,..,e), and the (s+l)th coordinate u; 
and the integration is extended over the (s — √)-dimensional figure w = — oc to 
+ ∞ ,.., t = — ∞ to+∞. And it is also assumed that q is positive.

It is at once clear that we may reduce the integral to 

say for shortness 

where A2, =(a-x)2 + ... + (c — 2,)2 + u2, is a constant as regards the integration, and 
where the limits in regard to each of the s - s' variables are — ∞ , + oo .

We may for these variables write ...,r£, where ^2+ ... + ξ2 = 1; and we then 
have w2 + ... + t2 = r2, dw ...dt = rs~*~ 1 dr dS, where dS is the element of surface of 
the (s — s')-coordinal unit-sphere ξ2 + ... + ζ2= 1. We thus obtain 

where the integral in regard to r is taken from 0 to ∞, and the integral ∣ dS 

over the surface of the unit-sphere; hence by Annex I. the value of this last factor 

is = r?∕ ~—'∖∙ The integral represented by the first factor will be finite, provided 

only ⅜s' + q be positive; which is the case for any value whatever of s', if only q 
be positive.

The first factor is an integral such as is considered in Annex II.; to find its 
value we have only to write γ = AVλi, and we thus find it to be 

and we thus have

137. As a verification, observe that the prepotential equation □ V = 0, that is, 

for a function V, which contains only the s' + 1 variables (a,.., c, u), becomes 

which is satisfied by V, a constant multiple of 
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Annex IX. The Gauss-Jacobi Theory of Epispheric Integrals. Art. No. 138.

138. The formula obtained (Annex IV. No. 110) is proved only for positive values 
of m; but writing therein q = 0, m = — ⅜, it becomes 

a formula which is obtainable as a particular case of the more general formula

(notation to be presently explained), being a result obtained by Jacobi by a process 
which is in fact the extension to any number of variables of that used by Gauss*  
in his Memoir “ Determinatio attractionis quam.........exerceret planeta, &c.” (1818).

1 c∕lz, », t dzthe value of dS is = 7----7 -———, where w now stands forf... h w 
we must, in finding the value of the integral, take account of the two values of w, 

and finally extend the integral to the values of x,..,z which satisfy

* [Ges. Werke, t. iii, pp. 331—355.]

I proceed to develop this theory.

139. Jacobi’s process has reference to a class of s-tuple integrals (including some 
of those here previously considered) which may be termed “epispheric”: viz. considering 
the (s + l) variables (x,..,z, w) connected by the equation rca+...+21 2+w2= 1, or say 
they are the coordinates of a point on a (s + l)-tuple unit-sphere, then the form is 
J UdS, where dS is the element of the surface of the unit-sphere, and U is any function 

of the s +1 coordinates; the integral is taken to be of the form 
and we then obtain the general result above referred to.

Before going further it is convenient to remark that, taking as independent variables 
cZ‰Z∕ ∙ ∙ ∙ dzthe s coordinates x,..,z, we have dS =------ — , where w stands foraw

we must in obtaining the integral take account of the two values of w, and finally 
extend the integral to the values of x,..,z which satisfy x2+...+z2<l.

• H∕ zIf, as is ultimately done, in place of x,..,z we write respectively, then
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140. The determination of the integral depends upon formulae for the transforma
tion of the spherical element dS, and of the quadric function (x, y,.., z, w, 1)2.

First, as regards the spherical element dS; let the s +1 variables x, y,.., z, w 
which satisfy a? + y- + ... + z2 + w2 = 1 be regarded as functions of the s independent 
variables θ, φ,.., -ψ∙; then we have

for shortness.

Suppose we effect on the s + 1 variables (x, y,.., z, w) a transformation 

thus introducing for the moment s÷2 variables X, Y,..,Z, W, T, which satisfy 
identically X2+Y2+... + Z2 + W2 — T2 = 0; then, considering these as functions of the 
foregoing s independent variables θ, φ, .., ψ, we have

141. Considering next the s + 2 variables X, Y,..,Z, W, T as linear functions 
(with constant terms) of the s + 1 new variables ξ, η, .., ζ, ω, or say as linear functions 
of the s + 2 quantities 'ξ, η,..,ξ, ω, 1: which implies between them a linear relation 

and assuming that we have identically 

so that, in consequence of the left-hand side being = 0, the right-hand side is also 
= 0 ; viz. ξ, η,.., ξ, ω are connected by
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let dX represent the spherical element belonging to the coordinates ξ, η, .., ζ, ω. 
Considering these as functions of the foregoing s independent variables θ, φ,.., φr, 
we have

142. In this expression we have ξ, η,.., ζ, ω, each of them a linear function of 
the $ + 2 quantities X, Y,.., Z, W, T; the determinant is consequently a linear function 
of s + 2 like determinants obtained by substituting for the variables any s + 1 out of 
the s + 2 variables X, Y,..,Z, W, T; but in virtue of the equation 

these $ + 2 determinants are proportional to the quantities X, Y,..,Z, W, T respectively, 
and the determinant thus assumes the form 

where Δ is the like determinant with (X, Y,.., Z, IF), and where the coefficients 
a, b,.., c, d, e are precisely those of the linear relation aX + δlr÷ ... + cZ + dW + eT = 1 ; 

the last-mentioned expression is thus = j,∆, or, substituting for Δ its value, we have 

viz. comparing with the foregoing expression for dS we have 

which is the requisite formula for the transformation of dS.

143. Consider the integral 

which, from its containing a single quadric function, may be called “one-quadric.” 
Then effecting the foregoing transformation,
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and observing that 

the integral becomes 

where X, Y, . ., Z, W, T denote given linear functions (with constant coefficients) of the 
s +1 variables ξ, η,.., ζ, ω, or, what is the same thing, given linear functions of the 
5+2 quantities ξ, η,.., ζ, ω, 1, such that identically

We have then ξ2 + η2 + ... + ζ2 + ω2 — 1 = 0, and d∑ as the corresponding spherical element.

144. We may have X, Y,..,Z, W, T such linear functions of ξ, y,.., ζ, ω, 1 that 
not only 

as above, but also 

this being so, the integral becomes 

where the s + 2 coefficients A, B,.., C, E, L are given by means of the identity 

viz. equating the discriminant to zero, we have an equation in θ, the roots whereof 
are — A, -B,.., — C, — E, — L.

The integral is 

which is of the form 

where I provisionally assume that a, b,.., c, e are all positive.

145. To transform this, in place of the s+1 variables ξ, η,.., ζ, ω connected by 
we introduce the 5+1 variables x, y,.., z, w, such that
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where 

and consequently

Hence, writing dS to denote the spherical element corresponding to the point (x, y,.., z, w), 
we have, by a former formula, 

or, what is the same thing,

Hence, integrating each side, and observing that J" dS, taken over the whole spherical

surface we have

146. For a, b,.., c, e write herein a + θ, b + θ,.., c + θ, e+ θ respectively, and 
multiply each side by θq~1, where q is any positive integer or fractional number 
less than ⅜s: integrate from θ = 0 to θ = ∞. On the left-hand side, attending to the 
relation ξ2 + η2 + ... + ζ2 + ω2 = 1, the integral in regard to θ is 

where p2, = aξ2 + bη2 + ... + cζ2 + eω2, is independent of Θ as before; the value of the 
definite integral is 

which, replacing p by its value and multiplying by c∕∑, and prefixing the integral sign, 
gives the left-hand side; hence, forming the equation and dividing by a numerical 
factor, we have

In particular, if q = then
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or, if for a,.., c, e we restore the values then

viz. we thus have

where (t +A) ... (t+C)(t + E)(t + L) is in fact a given rational and integral function 
of t; viz. it is

147. Consider, in particular, the integral

here

viz. the discriminant taken negatively is

which is

and consequently — A,.., — C, — E, — L are the roots of the equation

148. The roots are all real; moreover there is one and only one positive root. 
Hence, taking — L to be the positive root, we have A,.., C, E, —L all positive, and 
therefore a fortiori A — L,.., C — L, E — L all positive : which agrees with a foregoing
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provisional assumption. Or, writing for greater convenience θ to denote the positive 
quantity — L, that is, taking θ to be the positive root of the equation

we have

or, what is the same thing, we have

where on the left-hand side w now denotes and the limiting equation

149. Suppose Z = 0: then, if

the equation

has a positive root differing from zero, which may be represented by the same letter θ; 
but if

then the positive root of the original equation becomes = 0; viz. as I gradually 
diminishes to zero, the positive root θ also diminishes and becomes ultimately zero.

Hence, writing Z = 0, we have

or, what is the same thing,
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θ now denoting either the positive root of the equation 

or else 0, according as

(JL"λ β'In the case -zro + ... + < 1, the inferior limit being then 0, this is, in fact, Jacobi’s 

theorem (Crelle, t. xn. p. 69, 1834); but Jacobi does not consider the general case 
where I is not = 0, nor does he give explicitly the formula in the other case

150. Suppose A, = 0, e being in the first instance not =0: then the former alter
native holds good; and observing, in regard to the form which contains + w in the 
denominator, that we can now take account of the two values by simply multiplying 
by 2, we have

(w on the right-hand side denoting and the limiting equation being

, each

where θ is here the positive root of the equation which

is the formula referred to at the beginning of the present Annex. We may in the 
formula write e = 0, thus obtaining the theorem under two different forms for the cases 

and < 1 respectively.

Annex X. Methods of Lejeune-Dirichlet and Boole. Art. Nos. 151 to 162.

151. The notion, that the density p is a discontinuous function vanishing for 
points outside the attracting mass, has been made use of in a different manner by 
Lejeune-Dirichlet (1839) and Boole (1857): viz. supposing that p has a given value 
f(x, ..iz) within a given closed surface 3 and is = 0 outside the surface, these geometers 
in the expression of a potential or prepotential integral replace p by a definite integral 
which possesses the discontinuity in question, viz. it is = f(x,.., z) for points inside 
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the surface and = 0 for points outside the surface; and then in the potential or 
prepotential integral they extend the integration over the whole of infinite space, thus 
getting rid of the equation of the surface as a limiting equation for the multiple 
integral.

152. Lejeune-Dirichlet’s paper “Sur une nouvelle methode pour la determination 
des integrales multiples” is published in Comρtes Rendus, t. vm. pp. 155—160 (1839), 
and Liouville, t. IV. pp. 164—168 (same year). The process is applied to the form

taken over the ellipsoid but it would be equally applicable to the

triple integral itself, or say to the s-tuple integral 

or, indeed, to

taken over the ellipsoid but it may be as well to attend to the first

form, as more resembling that considered by the author.

153. Since is =1 or 0, according as λ is <1 or > 1, it

follows that the integral is equal to the real part of the following expression, 

where the integrations in regard to x,..,z are now to be extended from — ∞ to + ∞ 
for each variable. A further transformation is necessary : since 

writing herein (a — x)2 + ... + (c — z/ for σ, and ⅜∙s + <y for r, we have 

and the value is thus
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where the integral in regard to the variables (x,.., z) is

and here the ^-integral is

and the like for the other integrals up to the ^-integral. The resulting value is thus

which, putting therein

154. But we have to consider only the real part of this expression; viz. writing 

for shortness we require the real part of

Writing here for sin φ its exponential value and using the formula

(σ positive),

and the like one

(in which formulae q must be positive and less than 1), we see that the real part in 
question is = 0, or is

according as

155. If the point is interior, and consequently also σ < 1, and

the value, writing instead of 7r, is
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Cl^ c~But if the point be exterior, y2+...+p> 1, and hence, writing θ for the positive 
• Cl? c2root of the equation, σ=lj viz. 0 is the positive root of the equation +...+^-^ = 1;

then t = 0, σ is greater than 1, and continues so as t increases, until, for t = 0, σ 
becomes =1, and for larger values of t we have σ < 1; and the expression thus is 

viz. the two expressions, in the cases of an interior point and an exterior point 
respectively, give the value of the integral

This is, in fact, the formula of Annex IV. No. 110, writing therein e = 0 and m = -q.

156. Boole’s researches are contained in two memoirs dated 1846, “On the 
Analysis of Discontinuous Functions,” Trans. Royal Irish Academy, vol. xxι. (1848), 
pp. 124—139, and “On a certain Multiple Definite Integral,” do. pp. 140—150 (the 
particular theorem about to be referred to is stated in the postscript of this memoir), 
and in the memoir “ On the Comparison of Transcendents, with certain applications 
to the theory of Definite Integrals,” Phil. Trans, vol. CXLVH. (1857), pp∙ 745—803, 
the theorem being the third example, p. 794. The method is similar to, and was in 
fact suggested by, that of Lejeune-Dirichlet; the auxiliary theorem made use of in 
the memoir of 1857 for the representation of the discontinuity being 

which is a deduction from Fourier’s theorem.

Changing the notation (and in particular writing s and ⅛ s + q for his n an^ l)> 
the method is here applied to the determination of the s- tuple integral 

λvhere φ is an arbitrary function, taken over the ellipsoid

157. The process is as follows: we have
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viz. the right-hand side is here equal to the left-hand side or is = 0, according as 

^-+...+τ2< 1 oι, >1. V is consequently obtained by multiplying the right-hand side 
∕2 λ,2 . .
by dx... dz and integrating from - oo to ÷ ∞ for each variable.

Hence, changing the order of the integration,

where

Now

158. Substituting, and integrating with respect to ξ,.., ζ between the limits — co, 
+ oo , we have

or, what is the same thing, writing in place of τ, this is

that is, writing

we have

or, writing

159. Boole writes

viz. starting from Fourier’s theorem,
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where φ (σ) is regarded as vanishing except when σ is between the limits 0, 1, 
and the limits of u are taken to be 1, 0 accordingly, then, according to an admissible 
theory of general differentiation, we have the result in question. He has in the 
formula ∣ instead of my t; and he proceeds, “ Here σ increases continually with s. 

As s varies from 0 to ∞, σ also varies from 0 to ∞. To any positive limits of σ 
will correspond positive limits of s; and these, as will hereafter appear—this refers to 
his note B—, will in certain cases replace the limits 0 and ∞ in the expression for V”

160. It seems better to deal with the result in the following manner, as in part 
shown p. 803 of Boole’s memoir. Writing the integral in the form 

effect the integration in regard to v; viz. according as u is greater or less than σ, 
then 

and consequently, writing for σ its value,

161. To further explain this, consider t as an ^--coordinate and u as a y-coordinate; 
then, tracing the curve 

for positive values of x this is a mere hyperbolic branch, as shown in the figure, 
viz. x = 0, y = ∞ ; and as x continually increases to oo , y continually decreases to zero.

The limits are originally taken to be from w = 0 to w=l and ⅛=0 to t = ∞, viz. 
over the infinite strip bounded by the lines tθ, 01, 11; but within these limits the 
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function under the integral sign is to be replaced by zero whenever the values u, t 

are such that u is less than >7—- + ... + —^. + 7 > viz. when the values belong to a∕ ~ ^4^^ t il~ + t t
point in the shaded portion of the strip; the integral is therefore to be extended 
only over the unshaded portion of the strip; viz. the value is

the double integral being taken over the unshaded portion of the strip; or, what is the 
(Z'2 c~ C~same thing, the integral in regard to w is to be taken from u =-^—, + ... + ,7- ≠"*̂7j *t “I-1 h 4- t t

(say from u = σ) to u = l, and then the integral in regard to t is to be taken from 
t = θ to t=∞, where, as before, θ is the positive root of the equation σ = 1, that 

„ α2 c2 e2 1
ls∙0f ∕Γ+⅞+∙∙∙+⅛ψ⅛+β-1∙

162. Write u = σ + (l-σ)x, and therefore u-σ = (l-σ)x, 1— ?/= (1 — σ) (1 — 1χ∙)
and du = (l-σ)dχ∙, then the limits (1, 0) of x correspond to the limits (1, σ) of u, 
and the formula becomes

where σ is retained in place of its value This is, in fact, a

form (deduced from Boole’s result in the memoir of 1846) given by me, Cambridge 
and Dublin Mathematical Journal, vol. 11. (1847), p. 219, [44].

If in particular and
thence 

and then, restoring for σ its value, we have 

as the value of the integral

taken over the ellipsoid This is, in fact, the theorem of Annex IV.

No. 110 in its general form; but the proof assumes that q is positive.
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