627.

GEOMETRICAL ILLUSTRATION OF A THEOREM RELATING TO AN IRRATIONAL FUNCTION OF AN IMAGINARY VARIABLE.

[From the Proceedings of the London Mathematical Society, vol. viII. (1876-1877), pp. 212-214. Read May 11, 1876.]

If we have v, a function of u, determined by an equation $f(u, v)=0$, then to any given imaginary value $x+i y$ of u there belong two or more values, in general imaginary, $x^{\prime}+i y^{\prime}$ of v : and for the complete understanding of the relation between the two imaginary variables, we require to know the series of values $x^{\prime}+i y^{\prime}$ which correspond to a given series of values $x+i y$, of v, u respectively. We must for this purpose take x, y as the coordinates of a point P in a plane Π, and x^{\prime}, y^{\prime} as the coordinates of a corresponding point P^{\prime} in another plane Π^{\prime}. The series of values $x+i y$ of u is then represented by means of a curve in the first plane, and the series of values $x^{\prime}+i y^{\prime}$ of v by means of a corresponding curve in the second plane. The correspondence between the two points P and P^{\prime} is of course established by the two equations into which the given equation $f\left(x+i y, x^{\prime}+i y^{\prime}\right)=0$ breaks up, on the assumption that $x, y, x^{\prime}, y^{\prime}$ are all of them real. If we assume that the coefficients in the equation are real, then the two equations are

$$
\begin{aligned}
& f\left(x+i y, x^{\prime}+i y^{\prime}\right)+f\left(x-i y, x^{\prime}-i y^{\prime}\right)=0, \\
& f\left(x+i y, x^{\prime}+i y^{\prime}\right)-f\left(x-i y, x^{\prime}-i y^{\prime}\right)=0 ;
\end{aligned}
$$

viz. if in these equations we regard either set of coordinates, say (x, y), as constants, then the other set $\left(x^{\prime}, y^{\prime}\right)$ are the coordinates of any real point of intersection of the curves represented by these equations respectively.

I consider the particular case where the equation between u, v is $u^{2}+v^{2}=a^{2}$: we have here $(x+i y)^{2}+\left(x^{\prime}+i y^{\prime}\right)^{2}=a^{2}$: so that, to a given point P in the first plane, there
C. IX.
correspond in general two points $P_{1}^{\prime}, P_{2}^{\prime}$ in the second plane: but to each of the points A and B, coordinates $(a, 0)$ and $(-a, 0)$, there corresponds only a single point in the second plane.

We have here a particular case of a well-known theorem: viz. if from a given point P we pass by a closed curve, not containing within it either of the points A or B, back to the initial point P, we pass in the other plane from P_{1}^{\prime} by a closed curve back to P_{1}^{\prime}; and similarly from P_{2}^{\prime} by a closed curve back to P_{2}^{\prime} : but if the closed curve described by P contain within it A or B, then, in the other plane, we pass continuously from P_{1}^{\prime} to P_{2}^{\prime}; and also continuously from P_{2}^{\prime} to P_{1}^{\prime}.

The relations between $(x, y),\left(x^{\prime}, y^{\prime}\right)$ are

$$
\begin{aligned}
x^{\prime 2}-y^{\prime 2} & =a^{2}-\left(x^{2}-y^{2}\right), \\
x^{\prime} y^{\prime} & =-x y,
\end{aligned}
$$

whence also

$$
\left(x^{\prime 2}+y^{\prime 2}\right)^{2}=a^{4}-2 a^{2}\left(x^{2}-y^{2}\right)+\left(x^{2}+y^{2}\right)^{2} .
$$

And if the point (x, y) describe a curve $x^{2}+y^{2}=\phi\left(x^{2}-y^{2}\right)$, then will the point (x^{\prime}, y^{\prime}) describe a curve $x^{\prime 2}+y^{\prime 2}=\psi\left(x^{\prime 2}-y^{\prime 2}\right)$, obtained by the elimination of $x^{2}-y^{2}$ from the two equations

$$
\begin{aligned}
x^{\prime 2}-y^{\prime 2} & =a^{2}-\left(x^{2}-y^{2}\right) \\
\left(x^{\prime 2}+y^{\prime 2}\right)^{2} & =a^{4}-2 a^{2}\left(x^{2}-y^{2}\right)+\phi\left(x^{2}-y^{2}\right) ;
\end{aligned}
$$

viz. this is

$$
\left(x^{\prime 2}+y^{\prime 2}\right)^{2}=-a^{4}+2 a^{2}\left(x^{\prime 2}-y^{\prime 2}\right)+\phi\left\{a^{2}-\left(x^{\prime 2}-y^{\prime 2}\right)\right\} .
$$

In particular, if the one curve be $\left(x^{2}+y^{2}\right)^{2}=\alpha+\beta\left(x^{2}-y^{2}\right)$; then the other curve is

$$
\left(x^{\prime 2}+y^{\prime 2}\right)^{2}=-a^{4}+2 a^{2}\left(x^{\prime 2}-y^{\prime 2}\right)+\alpha+\beta\left\{\alpha^{2}-\left(x^{\prime 2}-y^{\prime 2}\right)\right\},
$$

that is,

$$
\left(x^{\prime 2}+y^{\prime 2}\right)^{2}=\alpha^{\prime}+\beta^{\prime}\left(x^{\prime 2}-y^{\prime 2}\right),
$$

where

$$
\alpha^{\prime}=-a^{4}+\beta a^{2}+\alpha, \quad \beta^{\prime}=2 a^{2}-\beta .
$$

Writing for greater simplicity $a=1$, then $\alpha^{\prime}=-1+\alpha+\beta, \beta^{\prime}=2-\beta$; in particular, if $\alpha=0$, then $\alpha^{\prime}=-1+\beta, \beta^{\prime}=2-\beta$.

Supposing successively $\beta<1, \beta=1$, and $\beta>1$, then in each case P describes a closed curve or half figure-of-eight, as shown in the annexed P-figure; but in the first case the point A is inside the curve, in the second case on it, and in the third case outside it, as shown by the letters A, A, A of the figure; and, corresponding to the three cases respectively, we have the three P^{\prime}-figures, the curve in the first of them consisting of two ovals, in the second of them being a figure of eight, and in the third a twice-indented or pinched oval: the small figures $1,2,3,4$ in the P-figure, and $1,2,3,4$ and $1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}$ in the P^{\prime}-figures serve to show the corresponding
positions of the points P and $P_{1}^{\prime}, P_{2}^{\prime}$ respectively; and the courses are further indicated by the arrows. And we thus see how the two separate closed curves described

P^{\prime}-Fig. 1.

P^{\prime}-Fig. 2.

by P_{1}^{\prime} and P_{2}^{\prime}, as in figure 1, change into the single closed curve described one half of it by P_{1}^{\prime} and the other half of it by P_{2}^{\prime} as in figure 3 .

