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ON HAMILTON’S QUADRATIC EQUATION AND THE GENERAL 
UNILATERAL EQUATION IN MATRICES.

[Philosophical Magazine, xvπι. (1884), pp. 454—458.]

In the Philosophical Magazine of May last I gave a purely algebraical 
method of solving Hamilton’s equation in Quaternions, but did not carry out 
the calculations to the full extent that I have since found is desirable. The 
completed solution presents some such very beautiful features, that I think 
no apology will be required for occupying a short space of the Magazine with 
a succinct account of it.

Hamilton was led to this equation as a means of calculating a continued 
fraction in quaternions, and there is every reason for believing that the 
Gaussian theory of Quadratic Forms in the theory of numbers may be 
extended to quaternions or binary matrices, in which case the properties of 
the equation with which I am about to deal will form an essential part of 
such extended theory*. Let us take a form slightly more general than that 
before considered, namely, the form 

with the understanding that the determinant of p (if we are dealing with 
matrices), or its tensor if with quaternions, differs from zero. Let us 
construct the ternary quadratic 

defined as the determinant of up + vq +wr, on the one supposition, or by 
means of the equations 

on the other supposition.
* I have found, and stated, I believe, in the form of a question in the Educational Times 

some years ago, that any fraction whose terms are real integer quaternions may be expressed as 
a finite continued fraction, the greatest-common-measure process being applicable to its two 
terms, provided both their Moduli are not odd multiples of an odd power of 2, which can always 
be guarded against by a previous preparation of the fraction.
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On referring to the article of May [p. 226 above], it will be seen that the 
solution of the equation may be made to depend on the roots of a cubic 
equation in the quantity therein called λ. When fully worked out, this 
equation will be found to take the remarkable form eκςι.I = 0, where I is the 
invariant of the ternary quadratic above written, and Ω = 2αδc — αδd. It 
may also be shown that 

where u is a two-valued function of λ, and v a linear function of u.

I shall suppose that I, the final term in the equation in λ, differs from 
zero: the solution of the given equation in x will then be what may be 
termed regular, and will consist of three pairs of actual and determinate 
roots. When I = 0, the solution ceases to be regular; some of the roots may 
disappear from the sphere of actuality, or may remain actual but become 
indeterminate, or these two states of things may coexist. The first coefficient 
of the equation in λ is a, the determinant of p (or its squared tensor), which 
also must not be zero, as in that case one root at least of λ would be infinite. 
Let us suppose, then, that neither a nor I vanishes. The very interesting 
question presents itself as to what kind of equalities can arise among the 
three pairs of roots, and what are the conditions of such arising.

This equation admits of an extremely interesting and succinct answer as 
c ^⅛^ 2cZfollows:—Let m represent —θ—; the equalities between the roots of the o

given equation in x will be completely governed, and are definable by the 
equalities existing between those of the biquadratic binary form

* If the equation is regarded as one in quaternions, the determining biquadratic is the 
modulus of x2 + xp + q∙, from which it follows immediately that, if p, q are real quaternions, all 
the four roots, say a, β, γ, δ, are imaginary. It may be shown that the roots of Hamilton’s 
determining cubic are

and these therefore are (as shown also by Hamilton) all of them real. The biquadratic serves to 
determine the points in which the variable conic associated to the equation px2 + qx + r (that is, 
the determinant to xp + yq + zr) is intersected by the absolute conic xz - y2. Each root of the 
given equation corresponds to a side of the complete quadrilateral formed by the four points of 
intersection of these two conics; and thus we see that there are five cases to consider when the 
variable conic is a conic proper, according as it intersects or touches the fixed conic (which can 
happen in four different ways); and seven other cases where the conic degenerates into two 
intersecting or two coincident lines (in which cases the solution becomes irregular); namely, the 
intersecting lines may cut or touch in one or two points the fixed one, and may cut or touch the 
conic at their point of intersection, which gives five cases; and the coincident lines may cut or 
touch the fixed conic, which gives two more. Hence there are in all twelve principal cases to 
consider in Hamilton’s form of the Quadratic Equation in Quaternions: or rather thirteen, for 
the case of the variable and fixed conics coinciding must not be lost sight of.
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If the biquadratic has two equal roots, the given quadratic will have two 
pairs of equal roots.

If the biquadratic has two pairs of equal roots, the given quadratic will 
have four equal roots.

If the biquadratic has three equal roots, the quadratic will have three 
pairs of equal roots.

If the biquadratic has all its roots equal, the quadratic will have all its 
roots equal.

In the first case two of the three pairs of roots of the given quadratic 
coincide, or merge into a single pair.

In the second case, not only two pairs merge into one pair, but the two 
roots of that pair coincide with one another.

In the third case the three pairs merge into a single pair.

In the fourth case the two members of that single pair coincide with 
one another.

So long as the equation in x remains regular, no kind of equalities can 
exist between the roots other than those above specified.

For instance, let us consider the possibility of two values of x, and no 
more, becoming equal. First, let us inquire what is the condition to be 
satisfied in order that the scalar parts of two roots which belong to the same 
pair shall become equal. It may be shown that the sufficient and necessary 
condition that this may take place is that the irreducible sub-invariant 
of degree 3 and weight 6 (that is, the first coefficient of the irreducible skew
covariant of the associated biquadratic form [a, b, m, e, /]) shall vanish.

If, now, the vectors as well as the scalars of the two roots are to be equal, 
it may be shown that the second as well as the first coefficient of the skew
covariant must vanish. But this cannot happen without the discriminant 
vanishing*; for it may easily be seen that the discriminant of a binary 
biquadratic with its sign changed is equal to sixteen times the product of 
the first and last coefficients, less the product of the second and penultimate 
coefficients of its irreducible skew-covariant. Hence when two roots belong
ing to the same pair of the given quadratic coincide, two values of λ become 
equal, and therefore all four roots belonging to two pairs merge into one.

Again, it is not possible for two roots belonging to two pairs correspond
ing to two different values of λ to coincide; for in such case the expression

* The first two coefficients of the skew-covariant vanishing implies the existence of two pairs 
of equal roots and vice versa. This is on the supposition made that a, the first coefficient of 
the given quartic, is not zero.
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given for x shows that pq, p, q, 1 would be connected by a linear equation. 
But when this happens (as has been shown by me elsewhere), the invariant 
of the associated ternary quartic vanishes and the equation ceases to be 
regular. Thus, then, it appears that it is impossible for a single relation of 
equality {and no more) to exist between the roots of the given equation 
when its form is regular. So, again, it may be shown that it is impossible for 
four, and no more, relations of equality to exist between the roots.

It need hardly be added, that the equation pxi + qx + r==0 ceases to be 
regular when q or r vanishes.

The reader may satisfy himself as to the truth of what has been alleged 
as to the relation of the discriminant of a binary biquadratic to the coefficients 
of its skew-covariant by simple verification of the identity

The biquadratic equation in X, Y is what the determinant of λp+μq + vr 
becomes when X2, XY, Y2 are substituted therein for λ, μ, vi so that we 
may say that (a, 6, m, e,f) {x, 1)4 is the determinant of px2 + qx + r, when x is 
regarded as an ordinary quantity. Let φx be any quadratic factor of this 
biquadratic function in x: I have found that φx = 0 will be the identical 
equation to one of the roots of the given equation ∕⅛ = 0, where

Between the two equations fx = 0, φx = 0, x2 may be eliminated and x 
found in terms of known quantities: φx will have six different values, which 
will give the six roots of fx — 0. It is far from improbable that a similar 
solution applies to a unilateral equation fx = 0 of any degree n in matrices of 
any order ω.

Call Fx the determinant offx when x is regarded as an ordinary quantity; 
then, if φx is an algebraical factor of the degree ω in x contained in Fx, it 
would seem to be in all probability true that φx = 0 is the identical equation 
to one of the roots of fx = 0; and, vice versa, that the function identically 
zero of any such root is a factor of Fx. By combining the equations fx = 0, 
φic = 0, all the powers of x except the first may be eliminated, and thus every 
root of x determined. The solution of the given equation will depend upon 
the solution of an ordinary equation of the degree nω, and the number of 
roots will be the number of ways of combining nω things ω and ω together. 
Thus, for a cubic equation in quaternions the number of roots would be ⅛6.5, 
or 15. In the May number of this Magazine [p. 229 above] it was supposed 
to be shown to be 21; but it is quite conceivable that this determination may
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be erroneous, especially as it was deduced from general considerations of the 
degrees of a certain system of equations without attention being paid to their 
particular form, which might very well be such as to occasion a fall in the 
order of the system. I am strongly inclined, with the new light I have 
gained on the subject, to believe that such must be the case, and that the 
true number of roots for a unilateral equation in quaternions of the degree 
n is 2n2-n*; in which case the theorem above stated, and which may be 
viewed as a marvellous generalization of the already marvellous Hamilton- 
Cayley Theorem of the identical equation, will be undoubtedly true for all 
values of n and ω. But I can only assert positively at present that it is true 
for the case of n = 1 whatever ω may be, and for the case of n = 2, ω = 2 j*.

* From the number 21 above referred to, now known to be erroneous, the general value 
was inferred to be n3-n2+n, whereas it is demonstrably 2n2-n only for the general unilateral 
equation of degree n in quaternions, as I proved it to be for the Jerrardian form of that equation.

t I have since obtained an easy proof of the truth of the conjectural theorem for all values 
of n and ω; see the Comptes Rendus of the Institute of France for October 20th last [p. 197 above].
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