
42.

LECTURES ON THE THEORY OF RECIPROCANTS.
[American Journal of Mathematics, vIII. (1886), pp. 196—260; Ix. pp. 1—37, 113—161, 297—352 ; x. pp. 1—16. Delivered in Oxford, 1886.]The lectures here reproduced were delivered, or are still in the course of delivery, before a class of graduates and scholars in the University of Oxford during the present year. They are to be regarded as easy lessons in the new Theory of Reciprocants of which an outline will be found in Nature for January 7, which contains a report of a Public Lecture on the subject delivered before the University of Oxford in December of the preceding year.They are designed as a practical introduction to an enlarged theory of Algebraical Forms, and as such are not constructed with the rigorous adhesion to logical order which might be properly expected in a systematic treatise. The object of the lecturer was to rouse an interest in the subject, and in pursuit of this end he has not hesitated to state many results, by way of anticipation, which might, with stricter regard to method, have followed at a later period in the course.There will be found also occasional repetitions and intercalations of allied topics which are to be justified by the same plea, and also by the fact that the lectures were not composed in their entirety previous to delivery, but gradually evolved and written between one lecture and another in the way that seemed most likely to the lecturer to secure the attention of his auditors.Since the delivery of his public lecture in December last, papers have been contributed on the subject to the Proceedings of the Mathematical 
Society of London by Messrs Hammond, MacMahon, Elliott, Leudesdorf and Rogers, and one to the Comptes Rendus de l'Institut by M. George Perrin. It may therefore be inferred that the lectures have not altogether failed in attaining the desired end of drawing attention to a subject which, in the opinion of the lecturer, constitutes a very considerable extension of the previous limits of algebraical science.
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304 Lectures on the Theory of Reciprocants [42

LECTURE I.A new world of Algebraical forms, susceptible of important geometrical applications, has recently come into existence, of which I gave a general account in a public lecture at the end of last term. I propose in the follow­ing brief course to go more fully into the subject and lay down the leading principles of the theory so far as they are at present known to me. The parallelism between the theory of what may be called pure reciprocants and that of invariants is so remarkable that it will be frequently expedient to pass from one theory to the other or to treat the two simultaneously. It may be as well therefore at once to give notice that the term invariant will hereafter be applied alike to invariants ordinarily so called and to those more general algebraical forms which have been termed sources of covariants, differentiants, seminvariants, or subinvariants. A form which is an invariant in the old sense will be termed, when necessary to specify it, a satisfied invariant, an expression which the chemico-graphical representation of invariants or covariants will serve to explain and justify.In an elucidatory course of lectures such as the present, it will be advis­able to follow a freer order of treatment than would be suitable to the presentation of it in a systematic memoir. My object is to make the theory known, to excite curiosity regarding it, and to invite co-operation in the task of its development.By way of introduction to the subject, let us begin with an investigation of the properties of a differential expression involving only the first, second and third differentia] coefficients of either of two variables in respect to the other. For this purpose let us consider not what I have called the Schwarzian itself, which is an integral rational function of these three quantities, but the fractional expression 

which becomes the Schwarzian when cleared of fractions, and which after Cayley we may call the Schwarzian Derivative and denote by 
(x, y) will then of course mean
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42] Lectures on the Theory of Reciprocants 305It is easy to establish the identical equation
Using for brevity y', y", y"' to denote, as usual, 
and x,, x,,, x,,, to denote 
respectively, the relation to be verified is
Now, 
andWhence we obtain 
and the truth of (1) is manifest.This may be put under the form
showing that a certain function of the first, second and third derivatives of one variable in respect to another remains unaltered, save as to algebraical Sign, when the variables are interchanged. An example of a similar kind with which we are all familiar is presented by the well-known function   ’ which is equal to  ∙We are thus led to inquire whether there may not be an infinite number of algebraical functions of differential derivatives which possess a similar property, and by prosecuting this inquiry to lay the foundations of the theory of Reciprocation or Reciprocants.Having regard to the fact that the present theory originated in that of the Schwarzian Derivative, I shall proceed to demonstrate, although this iss. ιv. 20
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306 Lectures on the Theory of Reciprocants [42not strictly necessary for the theory of Reciprocants, the remarkable identity
This identical relation is the fundamental property of Schwarzians, and from it every other proposition concerning their form is an immediate deduction.In the following proof*,  y and z are regarded as two given functions of any variable t, and x as a variable function of the same: so that y and z are functions of x for any given function that x is of t.It will be seen that 
remains unaltered by any infinitesimal variation θ of x, that is, when x becomes x + ϵϕ (x), ϵ being an infinitesimal constant and ϕ (x) an arbitrary finite function of x.For brevity, let accents denote differential derivation in regard to x, and let any function of x enclosed in a square parenthesis signify the augmented value of that function when x becomes x + θ. In calculating such augmented values, since we suppose that θ = ϕ(f), it is clear that θ, θ', θ" ... are each of them infinitesimals of the first order, and consequently that all products, and all powers higher than the first of these quantities, may be neglected.We have therefore

And since by definition
* As originally given in the Messenger of Mathematics, Vol. xv., this was defaced by so many 

errata as to render expedient its reproduction in a corrected form.
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42] Lectures on the Theory of Reciprocants 307we readily obtain
So alsoWhence by subtraction
Dividing the left-hand side of this by [z'2], and the right-hand side by 
z'2 (1 — 2θ') which is the equivalent of [z'2], our final result is
Thus, then, we have seen that the expression 
does not vary when x receives an infinitesimal variation ϕ(x), from which it follows, by the general principle of successive continuous accumulation, that the same will be true when x undergoes any finite arbitrary variation, and consequently this expression has a value which is independent of the form of 
x regarded as a function of t; it will, of course, be remembered that y and z are supposed to be invariable functions of t. Let x become z, then (y, x) 

dzbecomes (y, z), while at the same time (z, x) vanishes and becomes unity: so that we obtain
Hence, whatever function x may be of t,
To this fundamental proposition the equation marked (1), itself the import­ant point in regard to the Theory of Reciprocants, is an immediate corollary. For if in (2) we interchange y and z, it becomes
and now, making x = z, we have
which is the same as (1), except that z occupies the place of x.
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308 Lectures on the Theory of Reciprocants [42But (1) may be obtained more immediately from (2) by substituting in it 
x for y and y for z, leaving x unaltered; when it becomes
This is equivalent to saying that
a verification of which has been given already.Observe that - or (y, x) contains in its denominator andcontains in its denominator, which is the same as in thenumerator. Thus it is that the square of dy/dx enters three times.Let me insist for a moment on the import of the fact brought to lightin the course of this investigation, that is invariable when x, y

and z being regarded as functions of t, x alters its form, but y and z retain(dy/dx)2 in the denominator instead of (dz/dx)2 , and then make the same affirmation as before; as will be evident if we only remember that by hypothesis y and z are both of them constant functions of
t, and that therefore (dz/dy)2 must also be so. This is tantamount to sayingthat when the same conditions are fulfilled {(y, x) — (z, x)} (dx)2 is invariable, that is, that when x becomes X in virtue of any substitution (including a homographic one) impressed upon it,
and thus we see that when x becomes X,
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42] Lectures on the Theory of Reciprocants 309factor of its altered self when for x any arbitrary function of x is substituted, the new factor taken on depending wholly and solely on the particular sub­stitution impressed upon x. In the ordinary theory of invariants, the substitution impressed is limited to be homographic; in this case it is absolutely general. We might, moreover, add as a corollary that if (y, x), 
(z, x), (u, x) ... are regarded as roots of any Binary Quantic, every invariant of that Binary Quantic is a covariant in the extended sense in which the word has just been used, in respect to the system of simultaneous forms 
f(x), ϕ (x), ψ (x) .... For every such invariant will be a function of 
and will therefore remain a persistent factor of its altered self, taking on a power of dX/dx as its extraneous factor.axCalling (fx, x) the Schwarzian Derivative of f(x), our theorem may be stated in general terms as follows:

All invariants of a Binary Quantic whose roots are the Schwarzian Deri­
vatives of a given set of functions of the same variable are Covariants (in an 
extended sense) of that set of functions.The theory of the Schwarzian derivative originates in that of the linear differential equation of the second order, 
which becomes, when we write 
whereNow, suppose that u1 and u2 are any two particular solutions of the first of these equations, and let z denote their mutual ratio; so that, when v1 and v2 are the corresponding particular solutions of the second equation, we readily obtain 
and therefore,A second differentiation gives

But since the first term of the expression just found vanishes identically, and we have
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310 Lectures on the Theory of Reciprocants [42

or, Differentiating this again, we find

Hence where the left-hand side of the equation is “the Schwarzian Derivative ” with 
z written in the place of y.

LECTURE II.The expression 2y'y'" — 3y"2 which we have called the Schwarzian, may be termed a reciprocant, meaning thereby that on interchanging y, y", y"'with x,, x,,, x,,, its form remains unaltered, save as to the acquisition of what may be called an extraneous factor, which, in the case before us, is a power of 
y' (with a multiplier — 1). Before we proceed to consider other examples of reciprocants it will be useful to give formulae by means of which the variables may be readily interchanged in any differential expression.We shall write t for y, and τ for its reciprocal x,, using the letters a, b, c,..to denote the second, third, fourth, etc., differential derivatives of y with respect to x, and a, β, γ, ... to denote those of x with respect to y. The advantage of this notation will be seen in the sequel.The values of a, β, γ, ... in terms of t, a, b, c, ... are given by the formulae

If, in these equations, we write 
and
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42] Lectures on the Theory of Reciprocants 311they become

Any one of the formulae in either set may be deduced from the formula immediately preceding it by a simple process of differentiation.Thus, since we haveBut so that
By continually operating with 1/t(αδt + b∂a + cδb + ...) the table may be extended as far as we please, the expressions on the right-hand side being the successive values of 

found by giving to n the values 0, 1, 2, 3, ....Precisely similar reasoning shows that, when the modified letters 
a0, a1, a2, ... are used, 
and thatA proof of the formula 
obtained by Mr Hammond, in which 
will be given later on, when we treat of this operator, which, in the theory of Reciprocants, is the analogue of the operator a∂b + 2b∂c + 3c∂d + ..., with which we are familiarly acquainted in the theory of Invariants.
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312 Lectures on the Theory of Reciprocants [42Consider the expressionIf, in γr — 5αβ, which may be called its transform, we write 
this becomes a fraction whose denominator is i8, while its numerator is

Removing the common factor t from the numerator and denominator of this fraction, we have
Here, then, as in the case of the well-known monomial for which 

and the Schwarzian for which 
the expression changes its sign on reciprocation.That reciprocation is not always accompanied with a change of sign will be clear if we consider the product of any pair of the three expressions given above. Or we may take, as an example of a reciprocant in which this change of sign does not occur, the form

HereIn the fraction on the right-hand side the only surviving terms of the numerator are those containing the highest power of t, the rest destroying one another. Thus
Reciprocants which change their sign when the variables x and y are interchanged, will be said to be of odd character; those, on the contrary, which keep their sign unchanged will be said to be of even character. The distinction is an important one, and will be observed in what follows.Forms such as the one just considered, where t does not appear in the form itself, but only in the extraneous factor, will be called Pure Reciprocants, in order to distinguish them from those forms (of which the Schwarzian 2tb-3α2 is an example) into which t enters, which will be called Mixed Reciprocants. It will be seen hereafter that Pure Reciprocants are the analogues of the invariants of Binary Quantics.
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42] Lectures on the Theory of Reciprocants 313With modified letters (that is, writing
Operating on this with 

we haveWe shall prove subsequently that all Pure Reciprocants are, in like manner, subject to annihilation by the operator V.Hitherto we have only considered homogeneous forms; let us now take as an example of a non-homogeneous reciprocant the expression
Here
In the numerator of this fraction the terms + 3α2 and -3a2 cancel, a factor t divides out, and we have finally
In general, a Reciprocant may be defined to be a function F of such a kind that F (τ, α, β, γ, ...) contains F(t, a, b, c, ...) as a factor. An import­ant special case is that in which the other factor is merely numerical; the function F is then said to be an Absolute Reciprocant.When we limit ourselves to the case where F is a rational integral func­tion of the letters, it may be proved that
For, in the first place, since any one of the letters α, β, γ, ... is a rational function of t, a,b,c,... and integral with respect to all of them except t, containing only a power of this letter in the denominator, it is clear that any rational integral function of τ, α, β, γ, ... such as F(τ, α, β, γ, ...) is supposed to be, must be a rational integral function of t, a,b, c, ... divided by some power of t. But since F is a reciprocant, F(τ, a, β, γ, ...) must contain 

F (t, a,b,c, ...) as a factor; and if we suppose the other factor to be 
we must have 
where φ is rational and integral with respect to all the letters.
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314 Lectures on the Theory of Reciprocants [42

Moreover,Hence we must have identically 
where, on the supposition that the functions <∕> contain other letters besides t and τ, φ (t, a,b, c, ...) is, and φ (τ, a, β, γ, ...) can be expressed as, a rational function integral as regards the letters a, b, c, .... But this supposition is manifestly inadmissible, for the product of two integral rational functions of 
a, b, c, ... cannot be identically equal to unity. Hence t is the only letter that can appear in the extraneous factor and we may write 
where ψ (t) is a rational integral function.The same reasoning as before shows that we must have identically

But this cannot be true if ψ (t) has any root different from zero; for if we give t such a value as will make ψ (t) vanish, this value must also make ψ (τ) infinite; and since 
the only value of t for which ψ(τ) becomes infinite is a zero value. Hence 
ψ (t) is of the form Mtm, and consequently ψ (τ) = Mτm. Thus 
and thereforeWe have now proved that if F is a rational integral reciprocant, 
or we may say, where κ = 1 or 0 according as the reciprocant is of odd or even character.It obviously follows that the product or quotient of any two rational integral reciprocants is itself a reciprocant; but it must be carefully observed that this is not true of their sum or difference unless certain conditions are fulfilled. For if we write 
andwe see that 
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42] Lectures on the Theory of Reciprocants 315and consequently this expression will be a reciprocant if κ1 = κ2 and μ1 = μ2, but not otherwise. If we call the index of t in the extraneous factor the 
characteristic, what we have proved is that no linear function of two recipro­cants can be a reciprocant, unless they have the same characteristic and are of the same character. In dealing with Absolute Reciprocants, since the characteristic of these is always zero, we need only attend to their character.I propose for the present to confine myself to homogeneous and isobaric reciprocants *,  that is, to such as are homogeneous and isobaric when the letters t, a,b, c, ... are considered to be each of degree 1, their respective weights being —1, 0, 1, 2, .... The letter w will be used to denote the weight of such a reciprocant, i its degree, and j its extent, that is, the weight of the most advanced letter which it contains.Let any such reciprocant F(t,a,b,c,...) contain a term Atvalbmcn..., then 
andThe corresponding term in F(τ, α, β, γ, ...) will be Aτυalβmγn... where

Now, if no term of F contains a smaller number of the letters a,b,c, ... than are found in the term we are considering, the first terms of β, γ, etc., may be taken instead of these quantities themselves and Aτυalβmγn... may be replaced by
But since we must have identically
Hence the character is even or odd according to the parity of i — v (that is, of the smallest number of letters different from t in any term), and the characteristic μ = 3i + w.The type of a reciprocant depends on the character, weight, degree and extent. As the extraneous factor is always of the form (—)κtμ, where κ is 1 or 0, we may define the type of a reciprocant by 

according as its character is odd or even.For Pure Reciprocants the smallest number of letters different from t in any term is (since all the letters are different from t) the same as its degree.
* Here and elsewhere the word reciprocant is used in the sense of rational integral reciprocant: 

this will always be done when there is no danger of confusion arising from it.
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316 Lectures on the Theory of Reciprocants [42Hence the character of a Pure Reciprocant is odd or even according to the parity of i, and for this reason the type of a Pure Reciprocant may be defined by w: i, j.A linear combination of reciprocants of the same type will be a recipro­cant, for when the type is known both the character and characteristic are given.

LECTURE III.Let F be any function (not necessarily homogeneous or even algebraical) of the differential derivatives which acquires a numerical multiplier M, but is otherwise unchanged when the reciprocal substitution of x for y and y for x is effected. A second reciprocation multiplies the function again by M, and thus the total effect of both substitutions is to multiply F by M2. But since the second reciprocation reproduces the original function, we must have M2 = 1. Functions of this kind are therefore unaltered by reciprocation (except it may be in sign), and for this reason are called Absolute Reciprocants. These, as we shall presently see, play an important part in the general theory. Like all other reciprocants, they range naturally in two distinct classes, those of odd and those of even character.It is perhaps worthy of notice that the extraneous factor of a general reciprocant is the exponential of an absolute reciprocant of odd character. For if we must still have, as before, 
that is or log ϕ(t, a, b, c, ...) is an absolute reciprocant of odd character.An absolute reciprocant may be obtained from any pair of rational integral reciprocants in the same way that an absolute invariant is found from two ordinary invariants. For let 
and then or we may say that F1μ2 ÷ F2μ1 is an absolute reciprocant of even or odd character according to the parity of κ1μ2- κ2μ1.
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42] Lectures on the Theory of Reciprocants 317Thus, for example, from
andwe form an absolute reciprocant of even character.From a reciprocant F whose characteristic is μ, we obtain an absolute reciprocant of the same character as F by dividing it by t2.For if we only remember that τ = 1/t , it obviously follows that
can be written in the form
where the original character of the reciprocant F is preserved.It may be noticed that a reciprocant of odd character cannot be divided by √(- l)t2 so as to give an absolute reciprocant of even character; for, the reciprocal of F being -tμF', that of F÷√(-l)t2 will still be — F'÷√(-l)τ2. The character of a reciprocant is thus seen to be one of its indelible attributes.As simple examples of absolute reciprocants we may takewhich becomes on reciprocation and which reciprocates intoThe character of the former is even, that of the latter odd.Observing that
we haveFrom this, in like manner, we obtain
and so, in general,
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318 Lectures on the Theory of Reciprocants [42

Hence . log t is an absolute reciprocant, and of an odd character, for all positive integral values of i. We thus obtain a series of fractions with rational integral homogeneous reciprocants in their numerators and powers of t3/2 in their denominators. It will be sufficient, before proceeding to the more general theory of Eduction, as it may be called, to examine, by way of illustration, the cases in which i = 1, 2 and 3.Let i = 1; then
So that, in the case where i = 2, we have

The numerator of this fraction is the Schwarzian.In like manner, when i = 3,
But here a reduction may be effected, for (a/t3/2)3 , as well as a/t3/2 itself, is an 

found. Hence we may reject the term 9/2 . a3/t9/2 without thereby affecting the reciprocantive property of the form, and thus obtain
an absolute reciprocant of odd character. The corresponding rational integral reciprocant is

We have found that and are each of them reciprocants.
2btWhy, then, by parity of reasoning, is not 2bt/t3 , and therefore b, a reciprocant ? It is because —, the square of -τ , is of even character, while -----------  is ofan odd character, so that no linear combination of the two would be 

legitimate.
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42] Lectures on the Theory of Reciprocants 319If we differentiate any absolute reciprocant with respect to x, we shall obtain another reciprocant of the same character. For let R be any absolute reciprocant and R' its transform, then 
and since d/dx = t d/dy may be written in the equivalent but more symmetrical form 
we haveOn one side of this identical equation is a function of the differential derivatives of y with respect to x; on the other, a precisely similar function 1 dRof those of x with respect to y. Hence . is an absolute reciprocant, <7jRand therefore is a reciprocant, the character of each being the same as that of R.I will avail myself of the conclusion just obtained, which is the cardinal property of absolute reciprocants, to give a general method of generating from any given Rational Integral Reciprocant an infinity of others—rational integral educts of it, we may say. Let F be such a reciprocant, and μ its charac- 

F d ∕ F∖teristic; then — is an absolute reciprocant, and consequently —  is a reciprocant, both of them of the same character as F; that is 

or we may say is a reciprocant of the same character as F.This is even true for non-homogeneous reciprocants, for the only assump­tion made at present as to the nature of F is that it is a rational integral reciprocant. But if we further assume that it is homogeneous and isobaric*,  we know thatNow, Euler’s equation gives
* It will subsequently be proved that every rational integral reciprocant which is homo­

geneous is also isobaric.
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320 Lectures on the Theory of Reciprocants [42and from the similar equation for isobaric functions (remembering that the weights of t, a, b, c, ... are — 1, 0, 1, 2, ...) we obtain 
so thatAnd since we may in replace by

or by its equivalent
The conclusion arrived at is that when F is a rational integral homo­geneous reciprocant, 

is another, and that both are of the same character.It will be convenient to use the letter G to denote the operator just found and to speak of it as the generator for mixed reciprocants. By the repeated operation of this generator on a we may obtain the series 
Ga, G2a, G3a, ..., whose terms will be mixed reciprocants, since each operation increases the highest power of t by unity. The forms thus obtained will, in general, not be irreducible. It is, in fact, easy to see that a reduction must always take place at every second step. Observing that GF only expresses the numerator of the absolute reciprocant . in a  convenient form,
and that G2F is equivalent to the numerator of . we have

so that
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42] Lectures on the Theory of Reciprocants 321The whole of this fraction is an absolute reciprocant of the same characteras F ; so also is the product of the even absolute reciprocant by

We may therefore reject the term from the numerator, and theremaining fraction
will still be an absolute reciprocant of the same character as F. Its numera­tor, which is one degree lower than G2F, may be written in the form

This, it may be noticed, is a reciprocant of the same character as F, even when F is non-homogeneous.Starting with α, we have
But, for the reason previously given, 18α3 may be removed, so that reject­ing this term and dividing out by 4t we obtain the form

which may be called the Post-Schwarzian.The next form is obtained by operating on the Post-Schwarzian with G; thus, we have to calculate the value of G (ct — 5ab), where
The working may be arranged as follows:

The result should be read thus:
To obtain the next of this series of reciprocants, we have to operate on this with G and at the same time to take account of the reduction that hass. Iv. 21

www.rcin.org.pl



322 Lectures on the Theory of Reciprocants [42to be made at each alternate step. The arrangement of the work is similar to that of the former case.

This divides by 2i, giving the reduced value
The next obtained by this process will be seen by the following work to be

This cannot be reduced in the same manner as the preceding form, but it must not be supposed that the forms thus obtained are in general irreducible.Having regard to the circumstance that the forms of the series
 they may be called the successive educts, and the reduced forms given above may be called the reduced educts and denoted by E1, E2, E3.... Thus
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42] Lectures on the Theory of Reciprocants 323

LECTURE IV.We have seen that when F is a rational integral homogeneous and isobaric reciprocant, GF is another of the same character. It will now appear that the condition of isobarism is implied in that of homogeneity; for let F be a rational integral homogeneous reciprocant, μ its characteristic and i its degree in the letters t, a, b, c,..., then, in the identical equation 
both members are homogeneous and of the same degree in the letters 
t,a,b,c, ... ; that is, if Atkalbmcn... be any term of F(t, a, b, c, ...), its degree must be the same as that of tμΑτkal βmy11 ... when τ, α, β, γ, ... are expressed in terms of t, a, b, c, .... But 
and so on. The degrees of τ, a, β, γ, ... are therefore — 1, — 2, — 3, — 4, ... respectively. Hence 
orAnd by hypothesis so thatNeither μ, nor i is dependent for its value on the selection of a particular term of F, for all terms of J7(τ, a, β, γ, ...) are multiplied by the same extraneous factor ±tu, and all terms of F(t,a,b,c, ...) are of the same degree i. Hence — k + m+ 2n+ ... must also be the same for each term of 
F', or, attributing the weights — 1, 0, 1, 2, ... to the letters t, a, b, c, ..., the function F is isobaric.Next, suppose F to be fractional, and let it be the ratio of the two rational integral homogeneous reciprocants F1 and F2. The operation of G on F will, in this case also, generate another reciprocant of the same character as F. For, since G is linear in the differential operative symbols ∂α, ∂b, ∂c, ...,its operation will be precisely analogous to that of differen­tiation, so that, operating with G on 
we have
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324 Lectures on the Theory of Reciprocants [42In order to prove that this is a reciprocant, we have to show that the character and characteristic are the same for both terms of the numerator. But GF1 is a reciprocant of the same character as F1, and GF2 is one of the same character as F2; thus the two terms of the numerator are of the same character as F1F2. As regards the characteristic, it should be noticed that 
G, that is, the operator (2bt- 3α2) ∂α + (2ct- 4αb)∂b + ..., increases the degree by unity, but does not alter the weight, so that it increases the characteristic of any rational integral homogeneous reciprocant by 3. Thus the characteristic of each term in the numerator exceeds by 3 that of F1F2. Hence GF is a reciprocant, and, taking account of its denominator as well as its numerator, we see that the operation of G on a rational homogeneous reciprocant, whether fractional or integral, produces another in which the original character is preserved while the characteristic is increased by three units.More generally, let F1, F2, F3, ... be any rational homogeneous recipro­cants whose extraneous factors are (—)κ1tμ1, (—)κ2tμ2, (—)κ3tμ3, ... respectively; and suppose Φ to consist of a series of terms of the form AF1λlF2λ2F3λ3 ..., such that the extraneous factor for each term is (—)κtμ. Then Φ is a recipro­cant, but not necessarily a rational one; for the indices λ1, λ2, λ3, ... may be supposed fractional, provided only that they satisfy the conditionspositive or negative even integer,andWe proceed to show that GΦ is also a reciprocant, and that its extraneous factor is (—)κtμ+3. Since

we have to prove not only that each term of this expression is a reciprocant, but also that all of them have the same extraneous factor; otherwise their sum would not be a reciprocant.Now, inthe extraneous factor for each term is by hypothesis (—)κtu, so that the extraneous factor for each term of
is and therefore is a reciprocant. Also, GF1 is a reciprocantwhose extraneous factor is Hence is a reciprocant having
(—)ktμ+3 for extraneous factor, and in exactly the same way we see that every other term of GΦ is also a reciprocant with the same extraneous factor.
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42] Lectures on the Theory of Reciprocants 325Thus G, operating on any homogeneous reciprocant whose extraneous factor is (—)ktμ, generates another whose extraneous factor is (—)κtμ+3.If, in the generator for mixed reciprocants, 
we write α=1.2.α0, b = 1.2.3.α1, c = 1.2.3.4.α2...,(that is, if we use the system of modified letters previously mentioned), its expression assumes a more elegant form. Substituting for a, b, c, ... their values in terms of the modified letters, we have 
and so thatAgain, and so thatSimilarly,Thus the modified generator for mixed reciprocants is 
in which the general term is

The factor 1.2 may, of course, be rejected, and our modified generator may be written in the simple form
Operating with this on the homogeneous reciprocant F(t, a0, a1, a2, ...), the result will be another homogeneous reciprocant of the same character as 

F. When we start with a0 and make the reductions which, as we have seen, occur at every second step, we find a system of reduced educts corresponding in every particular with those formerly given, but expressed in terms of the modified letters a0, a1, a2, ... instead of a, b, c, .... These are as follows:
fl...

It will be observed that in the unreduced forms, marked with an asterisk, the sum of the 
numerical coefficients is zero. This is a direct consequence, as may be easily seen, of the form 
of the modified generator, in which the sum of the numerical coefficients in each term is also zero.
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326 Lectures on the Theory of Reciprocants [42It will be found on trial that these modified educts are obtained with greater ease and with less liability to error by a direct application of the generator 
than by making the substitution of 1.2 . a0, 1.2.3. α1, 1.2.3.4 . α2, ... for 
a,b,c,... in the system of educts already given. For this reason the working by the former method is here performed, instead of being merely indicated.From α0 we obtain immediately

Operating on this with the generator, there results
This, when reduced by removing its last term and dividing the others by 

2t, givesThe next form is found from this by a simple operation, without subse­quent reduction, and is therefore
Or, collecting the terms and rejecting the numerical factor 5,
The operation of the generator on this gives
The collection of terms and subsequent reduction is shown below:

Removing the factor 6t, the reduced form is
Operating on this with the generator, we have

which cannot be reduced in the same manner as the preceding form.
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42] Lectures on the Theory of Reciprocants 327To obtain a generator for passing from pure to pure reciprocants a process is employed similar to that which gave the generator for mixed reciprocants which we have just been using. I state the results before giving the proof, and then proceed to speak of generators in the theory of Invariants. The generator for pure reciprocants is 
or, expressed in terms of the modified letters,

By operating with this on any pure reciprocant R, we generate another pure reciprocant of opposite character to that of R.The connection between the two theories of Reciprocants and Invariants is so close, and these brother-and-sister theories throw so much light upon each other, that I began to inquire whether, in the latter, there did not exist a theory of Generators parallel to that of the former.Fortunately, Mr Hammond was able to recall a correspondence in which Prof. Cayley had given such a theory, which he regarded, and justly, as an important invention. Its substance has been subsequently incorporated in the Quarterly Journal (Vol. XX. p. 212). It offers itself spontaneously in the Reciprocantive Theory; in the Invariantive one it calls for a distinct act of invention. Prof. Cayley has discovered two generators similar in form with those for reciprocants, and one of them strikingly so; in a letter to me he calls these P and Q. As given by him, 
where i is the degree and w the weight, the weights of a, b, c, d, ... being taken to be 0, 1, 2, 3, ... (I supply the a which Cayley turns into unity.) As an example he takes the “ Invariant ” a2d — 3abc + 2δ3= I, suppose. We have then 

and
P and Q may be transformed by means of Euler’s equation and the similar one for isobaric functions, which enable us to write 

and
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328 Lectures on the Theory of Reciprocants [42

P thus becomes 
the same in form as either of our generators, except that the arithmetical coefficients are all made units; a,b, c, ... taking the place of the t, a, b, ... of the generator for mixed reciprocants.In like manner, Q becomes 
where the arithmetical series 1, 2, 3, ... takes the place of 3, 4, 5, ... or of 4, 5, 6, ... in the two Reciprocant Generators.The effect of P and of Q is obviously to raise the degree and the weight of the operand I each by one unit. But if we take R = 1/a(2wP — iQ), the aterms in Cayley’s original formulae containing b cancel, so that 2wP-iQ divides out by a and the weight is raised one unit without the degree being affected. This is mentioned in the Quarterly Journal (loc. cit.); but it may also be remarked that when I is a satisfied invariant, it is annihilated by the operation of R; when the invariant is unsatisfied, each of the three operators 
P, Q and R increases its extent by an unit, that is, introduces an additional letter. For let j denote the extent, then, writing a0,a1,a2, ... αj for a,b,c,..., we have 
whence we find

But for a satisfied invariant 
and substituting this value for 2w in the above expression for R, it becomes 
which, as is well known, annihilates any satisfied invariant.
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42] Lectures on the Theory of Reciprocants 329

LECTURE V.It will be desirable to fill up some of the previous investigations by discussing some points in them that have not yet received our consideration.There may be some to whom it may appear tedious to watch the com­plete exposition of the algebraical part of the Theory, who are impatient to rush on to its applications. But it is my duty to consider what may be expected to be most useful to the great majority of the class, and for that purpose to make the ground sure under our feet as I proceed. To the greater number it will, I think, be of advantage to have their memories refreshed on the kindred subject of invariants, and probably made acquainted with some important points of that theory which are new to them.I confess that, to myself, the contemplation of this relationship—the spectacle of a new continent rising from the waters, resembling yet different from the old, familiar one—is a principal source of interest arising out of the new theory. I do not regard Mathematics as a science purely of calculation, but one of ideas, and as the embodiment of a Philosophy. An eminent colleague of mine, in a public lecture in this University, magnifying the importance of classical over mathematical studies, referred to a great mathe­matician as one who might possibly know every foot of distance between the earth and the moon; and when I was a member, at Woolwich, of the Government Committee of Inventions, one of my colleagues, appealing to me to answer some question as to the number of cubic inches in a pipe, expressed his surprise that I was not prepared with an immediate answer, and said he had supposed that I had all the tables of weights and measures at my fingers’ ends.I hope that in any class which I may have the pleasure of conducting in this University, other ideas will prevail as to the true scope of mathematical science as a branch of liberal learning; and it will be my endeavour to regulate the pace in a manner which seems to me most conducive to real progress in the order of ideas and philosophical contemplation, thus bringing our noble science into harmony and in a line with the prevailing tone and studies of this University. Faraday, at the end of his experimental lectures, was accustomed to say—I have myself heard him do so—“We will now leave that to the calculators.” So long as we are content to be regarded as mere calculators we shall be the Pariahs of the University, living here on sufferance, instead of being regarded, as is our right and privilege, as the real leaders and pioneers of thought in it.
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330 Lectures on the Theory of Reciprocants [42That Cayley’s two operators, which have been called P and Q, are in fact generators, may be proved as follows +:Let and where κ,λ, μ, v, ... are numbers.When κ is the degree of the operand, and λ = μ = v = ... =1, the operator Θ is identical with P; but Θ is identical with Q when κ is twice the weight of the operand and λ = 0, μ = 1, v = 2, ....If now we use * to signify the act of pure differential operation, it is obvious that 
so thatBut since we have andHence now if the operand I be any invariant (satisfied or unsatisfied), we have ΩI=0, and therefore ΘΩI = 0 ; so that we find

If in this we write λ = μ = v = ... =1, and κ = i, where i is the degree of the operand, Θ becomes P and we have
But, by Euler’s theorem, the right-hand side of this vanishes, and therefore
Similarly, by means of the corresponding theorem for isobaric functions, we may prove thatFor if, in the general formula, we write λ = 0, μ = 1, v = 2, ... and κ = 2w, where w is the weight of the operand, we find
Thus, when Θ stands either for P or for Q, it is either an annihilator or a generator (that is, ΘI is either identically zero or else an invariant). But it 

I be the most advanced, or say the radical letter of I, no term of m∂ιl can cancel with any other term of ΘI; and since, for this reason, ΘI cannot vanish identically, it must be an invariant, and the operators P and Q must be generators.
+In the Quarterly Journal (Vol. xx. p. 212) Prof. Cayley only considers a special example, 

and has not given the proof of the general theorem.
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42] Lectures on the Theory of Reciprocants 331The generators previously given for reciprocants also possess this property of introducing a fresh radical letter at each step. The radical letter, on its first introduction, enters in the first degree only, and in the case of the educts of log t, whose values have been calculated, its multiplier is seen to be a power of t. The form of the generator for mixed reciprocants
shows this, or it may be seen by considering the successive values of

For let denote this expression, and let its radical letterbe an ; then, on differentiating again with respect to x, the new letter intro­duced arises solely from a term in the numerator
ButHence, if when an is the radical letter, it occurs in the first degree only and multiplied by a power of t, it follows that, since dF/da will be a power of 

t, the derived expression which contains the radical letter an+1 will contain it in the first degree only and multiplied by a power of t. And since this is true for the case i = 1, when 1/√t . d/dx log t =a0/t3/2, it is true universally.
Observe that for i = 1, 2, 3, ... the radical letter is α0, a1, a2, ... respec­tively.It will be remembered that  . log t is an absolute reciprocant. It may be called the ith absolute educt, to distinguish it from the rational integral educts E1, E2, E3, ... -whose values have already been calculated.Let R(t, a0, a1, a2, ... an) be any homogeneous rational integral recipro­cant, and let the educts be Ao, A1, A2, ... An; then obviously
an may be expressed rationally in terms of An and an-1, an-2, ... a0, t,

where observe that the denominators in these expressions are all powers of t. Hence, by successive substitutions, R (t, a0, a1, ... an) may be expressed
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332 Lectures on the Theory of Reciprocants [42rationally in terms of An, ... A1, Ao, and t. Thus any rational integral homogeneous reciprocant is a rational function of educts, and is of the form EE/t0 , where E is a rational integral function of the educts. Does not this prove too much, it may be asked, namely, that any function 
F of the letters is a rational function of the educts, which are themselves reciprocants, and will therefore be a reciprocant? But this is not so; for observe that although F will be expressed as a sum of products of educts, such products will not in general be all of the same character, and their linear combination will be an illicit one, such as is seen in the illicit com­bination of α02 with the Schwarzian (α1t— α02).We have seen that by differentiating an absolute reciprocant, or by the use of a generator, we obtain a fresh reciprocant. But there are other methods of finding reciprocants ; as, for example, if the transform of 
isthat is, if thenWhence, by multiplication,

Thus φ . ψ is a reciprocant, and, moreover, an absolute one of even character, although neither φ, which is a perfectly arbitrary function, nor ψ, its transform, is a reciprocant.Herein a mixed reciprocant differs from an invariant, which cannot be resolved into non-invariantive factors. It is worth while to give a proof of this proposition ; but first I prove its converse, that if p, q, r, ... are all invariants, their product must be so too. This is an immediate consequence of the well-known theorem that is the necessary and sufficient condition that I may be an invariant where, as usual, Ω is the operator and the word invariant has been used in the same extended sense as formerly.ForBut since p, q, r, ... are all invariants, we have 
and thereforeNext, suppose that where I is but Q1 is not an invariant.

www.rcin.org.pl



42] Lectures on the Theory of Reciprocants 333To meet the case in which P1 and Q1 are not prime to one another, Q1, if resolved into its factors, must contain one Qi where Q is not an invariant.Suppose that P1 contains Qj, and let i +j = k ; then we may write 
where P is prime to Q. But since I is an invariant by hypothesis, 
and therefore, or, Now P is prime to Q, so that the fraction Q/P is in its lowest terms; there­fore ΩQ contains Q; but this is impossible, for the weight of ΩQ is less than that of Q. Hence I cannot contain any non-invariantive factor Q1.All this will be equally true for a general function J annihilated by any operator Ω which is linear in the differential operators ∂a, ∂b, ∂c, ... no matter what its degree in the letters a, b, c, ... themselves; that is, we shall still have 
and where P and Q are prime to each other, and, as before, ΩQ will contain Q as a factor. But if Ω is an operator which diminishes either the degree or the weight, ΩQ is either of lower degree or of lower weight than Q, and so cannot contain it as a factor. Hence J cannot contain a factor Q not subject to annihilation by Ω.If, however, Ω does not diminish either the degree or the weight, it may be objected that ΩQ might conceivably contain the factor Q; and were it so, there would be nothing to show the impossibility, in this case, of a function 
J subject to annihilation by Ω containing a factor Q, which is not so. But 
quaere: Is it possible, when J is a general homogeneous and isobaric function of a, b, c, ..., for ΩJ to contain J and at the same time the quotient to be other than a number*?  Valde dubitor. But I reserve the point. Setting aside this doubtful case, and considering only such linear partial differential operators as diminish either the degree or the weight of the operand, we see that there cannot exist any universal operator of this kind whose effect in annihilating a form is the necessary and sufficient condition of that form being a reciprocant. But this does not preclude the possibility of the existence of such annihilators for special classes of reciprocants, and in fact

ΩJ .
* If Ω = pa∂a +qb∂b + rc∂c+..., where p,q,r, ... are in Arithmetical Progression, ΩJ/J is a 

number; but then Ω could not be an annihilator.
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334 Lectures on the Theory of Reciprocants [42(as we have already stated and shall hereafter prove) Pure Reciprocants are definable by means of the Partial Differential Annihilator 
which is linear in the differential operators, and diminishes the weight.The generator for mixed reciprocants, which we have called G, will not assist us in obtaining pure reciprocants, but generates a mixed reciprocant in every case, even when the one we start with is pure. Thus, starting with the pure reciprocant R, our formula 
may be written thus

Here R being pure, that is, a function of α0, α1, α2, ∙∙∙ (without t), we see that 

where i is the degree and w the weight of R. Hence 
where it should be noticed that a0R is of opposite character to R (for a0 is of odd character), while GR has been proved to be of the same character as R. Thus we cannot infer that t (3a∂αo + 4α2∂αι + 5a3∂α2 + ...)R is a reciprocant. The mixed reciprocant GR cannot therefore be resolved into the sum of two terms, one of which is a pure reciprocant and the other a pure reciprocant multiplied by t.

LECTURE VI.Before proceeding to prove that, as was stated in anticipation in Lecture IV, the operator 
or, when the modified letters are used, 
will serve to generate a pure reciprocant from a pure one, it may be useful to briefly recapitulate what has been said concerning the character and
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4*2] Lectures on the Theory of Reciprocants 335characteristic of reciprocants. It will be remembered that the extraneous factor of any rational integral reciprocant is of the form (—)κtμ, that the character is determined by the parity (oddness or evenness) of κ, and that μ is what has been called the characteristic.For homogeneous reciprocants it has been proved that μ = 3i + w, where i is the degree of the reciprocant and w its weight, the weights of the letters 
t, a, b, c, ... being taken to be — 1, 0, 1, 2, ... respectively. The character is odd or even according as the number of lettetrs other than t in the principal term or terms is odd or even. By a principal term is to be understood one in which t is contained the greatest number of times. So that, in other words, the character is governed by the parity of the smallest number of non -letters that can be found in any term. For pure reciprocants, there being no 
t in any term, the character is determined by the parity of the number of letters in any one term.Let R be any pure reciprocant, and suppose its characteristic to be μ; 

Rthen R/t2 is an absolute reciprocant. If, however, we differentiate this with respect to x, and thus obtain another reciprocant, the resulting form will not be pure, for its numerator will be identical with the form obtained by the direct operation on R of the generator for mixed reciprocants, and its denominator will be a power of t. But, remembering that a/t3/2 , and therefore 
— , is an absolute reciprocant, we see that — , which is the quotient of the 
two absolute reciprocants and is so also. Hence ∣ is a recipro­
cant, and, since it no longer contains t, a pure one. Now, 

remains a reciprocant when multiplied by any power of the reciprocant a. Hence the numerator of this expression, or 
is a reciprocant. The general value of has been seen to be 
but, since R is supposed to be pure, ∂tR = 0.
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336 Lectures on the Theory of Reciprocants [42

We may therefore, in 3α d/dx— μb, replace d/dx by
Now, remembering that μ = 3i + w, and that by Euler’s theorem and the similar one for isobaric functions 

and we see that μ is equivalent to
Hence,

Thus, if R be any pure reciprocant, 
is also a pure reciprocant. If the type of R be w; i, j, that of the form derived from it will clearly be w + 1; i + 1, j + 1. Its character (which, for pure reciprocants, depends solely on the degree) will therefore be opposite to that of R, and its characteristic will be μ + 4, that of R being μ.Beginning with the form 3αc — 5b2, which was given as an example in Lecture II, a series of pure “educts” may be obtained by the repeated use of the above generator; and it will be noticed that the successive educts thus formed are alternately of even and odd character, whereas those previously given, namely, a, 2bt— 3α2..., were all negative. A reduction similar to that which formerly took place when the generator for mixed reciprocants was used, may be effected at each second step in the present case. For, since the characteristic of ^3α d/dx — μb) R is μ + 4, the next operation will give

Performing the indicated differentiations, this becomes
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42] Lectures on the Theory of Reciprocants 337Adding μ,(μ, + 4) (3αc — 5b2)R to 5 times the above expression, we obtain 
which, when divided by 3α, gives the pure reciprocant

This form is one degree lower than the second educt from R, the depres­sion of degree being due to the removal of a factor a by division.When the modified letters α0, α1, α2, a3, ... are used, the generator 
is easily transformed by writing in it 
and consequently 
when it becomes

Dividing each term of this by 2.3, and writing the numerical coefficients in their simplest form, we have 
which is the modified generator previously mentioned.The generators formerly used in the theory of mixed reciprocants were 
andThe memory will be assisted in retaining these formulae if we observe that (1) is obtainable from (3), or (2) from (4), by increasing at the same time each numerical coefficient and the weight of each letter by unity.It will, I think, be instructive to see how the form 3αc — 5b2 was found originally by combining mixed reciprocants. The degree alone of a pure reciprocant suffices, as we have seen, to determine its character; but when we are dealing with mixed reciprocants their character does not depend either on the degree or the weight, so that we require a notation to discri­minate between forms of the same degree-weight, but of opposite character. In what follows, (+) placed before any form signifies that it is a reciprocant of even character, while (—) signifies that its character is odd.s. Iv. 22
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338 Lectures on the Theory of Reciprocants [42I have previously given the three odd reciprocants
From these we obtain even reciprocants; thus the product of (A) and (C) is and the square of (B) isAfter subtracting the even reciprocant 9α4 from this, we may remove the factor 4i from the remainder without thereby affecting its character. These reductions give which may be combined with the even reciprocant (D) in such a manner that the combination contains a factor t. In fact, 

so that a legitimate combination of mixed reciprocants can be made to give the pure oneSimilarly we might find the known form 
which equated to zero expresses Sextactic Contact at a point x, y. But it is more readily obtained by operating with the generator on 3αc — 5b2; thus,

An orthogonal reciprocant may be defined as a mixed reciprocant whose form remains invariable (save as to the acquisition of an extraneous factor when the reciprocant is not absolute) when any orthogonal substitution is impressed on the variables x and y. Concerning such reciprocants, we have the very beautiful theorem: If R and dR/dt are both of them reciprocants, then 
R is an orthogonal reciprocant.For suppose R to be an absolute reciprocant; that is, let 
where R is a function of t, a, b, c,... and R' the same function of τ, a, β, γ, ...; then, denoting by ΔR the variation of R due to the variation of y by ϵx, and by DR the variation of R due to the variation of x by — ey, we have
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42] Lectures on the Theory of Reciρrocants 339For the variation of t is ϵ and the variations of a, b, c,... vanish. Similarly
Now, since 

therefore that is, the total variation of R (due to the change of x into x — ϵy and of y into y + ϵx) vanishes if
Hence, if R be an absolute orthogonal reciprocant, dR/dt is also an absolute reciprocant (though it is not orthogonal) of the same character as R.If R be not absolute, suppose its characteristic to be μ; then it can be made absolute by dividing it by α3. The application of the foregoing 

d ∕R ∖method of variations will now prove that ∕ — ∖ is an absolute reciprocant 
of the same character as — . But                                    Hence dR/dt is a recιpro-cant whose characteristic is μ, and character the same as that of R.The simplest Orthogonal Reciprocant is the form(1 +t2) b — 3α2t,which occurs on p. 19 of Boole’s Differential Equations. When equated to zero it is the general differential equation of a circle. It is noticeable that although Boole obtains this form by equating to zero the differential of the radius of curvature 
he does not recognise the fact that it vanishes at points of maximum or minimum curvature of any plane curve, but says that the “geometrical property which this equation expresses is the invariability of the radius of curvature.”Taking this form as an example of our general theorem, let 
then 
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340 Lectures on the Theory of Reciprocants [42which is the familiar Schwarzian. Observe that 
and so that the characteristic and character are the same for both these forms.The form ct — 5ab, which we have called the Post-Schwarzian, when multiplied by 2 and integrated with respect to t, gives

In order that this may be a reciprocant, we must have
In this way the Orthogonal Reciprocant was obtained originally.It will be easy to verify that this is a reciprocant by means of the identical relations

We shall find that 
and comparing this with it will be noticed that both forms have the same character and the same characteristic.The complete primitive of the differential equation 
has been found by Mr Hammond and Prof. Greenhill. The solution may be written in the following forms :
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42] Lectures on the Theory of Reciprocants 341

whereand 
l, m, n1, n2 being arbitrary constants.The last two forms of solution are due to Prof. Greenhill.

LECTURE VII.I have frequently referred to, and occasionally dilated on, the analogy between pure reciprocants and invariants. A new bond of connection between the two theories has been established by Capt. MacMahon, which I will now explain. Let me, by way of preface, so far anticipate what I shall have to say on the Theorem of Aggregation in Invariants (that is, the theorem concerning the number of linearly independent invariants of a given type) as to remark that the proof of this theorem, first given by me in Crelle's 
Journal and subsequently in the Phil. Mag. for March, 1878, depends on the fact that if we take two operators, namely, the Annihilator, say 
and its opposite, say 
then (Ω0 - 0Ω) I is a multiple of I.Thus, if I stands for any invariant (that is, if ΩZ = 0), it follows imme­diately that ΩOI is a multiple of I, and consequently Ωm0mI is also a multiple of I. We may call Ω and 0, which are exact opposites to each other, reversing operators.Now, MacMahon has found out the reversor to V, the Annihilator of pure reciprocants. His reversing operator is no longer of a similar, though opposite, form to V, as 0 is to Ω, but is simply ; nor is the effect ofoperating with V d/dx , - on any pure reciprocant R equivalent to multiplication by a merely numerical factor, as was the case with Ω0I, but (Vd/dx)R is a numerical multiple of aR, and as a consequence of this (Vm dm/dxm)R is a numerical multiple of amR. Thus the parallelism is like that between the two sexes, the same with a difference, as is usually the case in comparing the two theories.
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342 Lectures on the Theory of Reciprocants [42This remarkable relation between the operators V and d/dx may be seen 
a priori if we assume that (as we shall hereafter prove) to each pure recipro­cant R there is an annihilator V of the form 
not containing δα and linear in the remaining differential operators δb,δc,δd, ∙∙∙ ∙ For if we call the characteristic μ, by differentiating the absolute pure reci- _Rprocant — with respect to x we obtain, as was shown in the last lecture, the a®pure reciprocant

Since this is annihilated by V, we have
But, since R is a pure reciprocant, VR = 0; and from the assumed form of V it follows that
Hence or Thus the operation of V d/dx is equivalent to multiplication by μa, so that (barring the introduction of α) V restores to the form it had antecedent to the operation of , and may be called a qualified reversor to .For example, suppose thatSince we are using natural letters for the derivatives of y with respect to 

x, we have 
and, as we shall presently see,

Now,Operating on this with V, we find 
that is
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42] Lectures on the Theory of Reciρrocants 343Let us now inquire whether it is possible so to determine an operator V that the relation 
may be satisfied identically when F is any homogeneous isobaric function of the letters a,b,c, ... of degree i and weight w. If so, we must be able to satisfy each of the equations 

which are found by writing a, b, c, d, ... successively in the place of F.Now so that the above equations may bewritten

These equations are sufficient to completely determine V on the supposi­tion previously made that it is linear in the differential operators and does not contain δα; for, since V is linear, it must be of the form 
and, since it does not contain ∂a, we must have Va = 0, and therefore

Hence
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344 Lectures on the Theory of Reciprocants [42When the modified letters α0, α1, α2, ∙∙∙ are used, we shall have, in con­sequence of the change of notation, (V d/dx) R = 2μa0R (instead of μaR). If, as before, we seek to satisfy the equation 
we shall find, on writing an in the place of F,

This condition will be sufficient, as well as necessary, for the satisfaction of (1) when V is linear ; for then 
will also be linear, its general term being 
which is equal to 2 (3 + n) a0an∂an by equation (2). Hencesum of terms of the form 2 (3 + n) a0andanF

that is, equation (1) is satisfied whenever (2) is. Writing in (2) 
we obtainfrom which the values of Van may be successively determined. When Va0 = 0, the value of Van, which satisfies (3), is
thus and the value of V is therefore

Now that we are on the subject of parallelism between the old and new worlds of Algebraical Form, I feel tempted to point out yet another very interesting bond of connection between them. There is a theorem concerning Invariants which I am not aware that any one but myself has noticed, or at 
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42] Lectures on the Theory of Reciprocants 345all events I do not remember ever seeing it in print*,  which is this: If we take any “ invariant ” and regard its most advanced letter as a variable, or say rather as the ratio of two variables u : v, by multiplying by a proper power of v we obtain a new Quantic in u, v; or, if we take any number of such invariants with the same most advanced letter (or, as we may call it in a double sense, the same radical letter) in common, we shall have a system of binary Quantics in u, v. My theorem is, or was, that an Invariant of any one or more of such Quantics is an Invariant of the original Quantic. I recently found a similar proposition to be true for Reciprocants, namely, forming as before a system of pure Reciprocants into Quantics in u, v, any “ Invariant ” of such system is itself a Reciprocant.The two theorems may be stated symbolically thus:
On mentioning this to Mr L. J. Rogers, he sent me next day a proof which, although only stated as applicable to Reciprocants, is equally so, 

mutatis mutandis, to Invariants. Although given for a single invariant, it applies equally to a system.I give Mr Rogers’ proof that any invariant of a pure reciprocant (the proof will not hold for impure ones) is a pure reciprocant; or rather I use his method to prove the analogous theorem that any invariant of an invariant is itself an invariant. It will be seen hereafter that this same proof applies to 
pure reciprocants with only trifling changes; but the proof as given by Mr Rogers requires some further considerations to be gone into for which we are not yet ripe.Consider, for the sake of simplicity, the binary Quintic 
and let I be any invariant of it (satisfied or unsatisfied); then 
where a0, a1. a2, ... an do not contain f, but are functions of a, b, c, d, e alone. Let the Protomorphs for our Quintic be denoted by A, B, G, D, E, F; then

Eliminating f from I by means of this equation, we have 
where Ao, A1, A2, ... An are all of them invariants (not necessarily integral

* The theorem is, however, given in Vol. xι. p. 98 of the Bulletin de la Societe Mathematique 
de France, in a paper by M. Perrin, which has only recently come under the lecturer’s notice. 
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346 Lectures on the Theory of Reciprocants [42forms, but this is immaterial to the proof, for Ω annihilates fractional and integral invariants alike). For 
and, in consequence of Ia2n and F being invariants, so that, as regards Ω, 
F may be treated as if it were a constant, this becomes 
in which the coefficients of the several powers of F must be separately equated to zero. In other words, Ao, A1, A2,... An are all of them invariants. Now, any invariant of 
is a function of Ao, A1, A2, ... An, and therefore an invariant.(N.B.—We cannot assume that any function of general reciprocants is itself a reciprocant.)Again, since are connected by the substitution 
which is linear in respect to the letters F and f, any invariant of 
is (to a factor pres, that factor being a power of a which is itself an invariant) equal to the corresponding invariant of

But every invariant of the former has been shown to be an invariant of the original quantic, and therefore every invariant of the latter is so also.I add some examples in illustration of this theorem :
Ex. 1. Take the invariant of the Quintic
The discriminant of this, considered as a quadratic in f, is

It will be found on trial that this is divisible by the invariant the quotient being
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42] Lectures on the Theory of Reciprocants 347Thus the discriminant of the quadratic in f, that is, of the invariant 
is shown to be an invariant. It will further illustrate the proof of the theorem if we remark that precisely the same invariant is obtained by eliminating f between the above form and the protomorph

Ex. 2. If we take the pure reciprocant 
which, from its similarity to the Discriminant of the Cubic, I have called the Quasi-Discriminant, and form its discriminant, when regarded as a quadratic in d, we find

If, in this expression, we write P = 3ac — 5b2, so that 3ac = P + 5b2, it becomes
On performing the calculation it will be found that all the terms involv­ing b will disappear from this result, and there will remain the single term 320α2P3, that is, 320α2 (3ac — 5b2)3, which is a reciprocant.

LECTURE VIII.In my last lecture the complete expression, both in terms of the modified and unmodified letters, was obtained for V, the annihilator for pure recipro­cants assuming its existence and its form. These assumptions I shall now make good by proving, from first principles, the fundamental theorem that the satisfaction of the equation 
is a necessary and sufficient condition in order that R may be a pure reciprocant.It will be advantageous to use the modified system of letters, in which 
and respectively. Let the variation due to the change of x into x + ey, where e 
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348 Lectures on the Theory of Reciprocants [42is an infinitesimal number, be denoted by Δ. Obviously this change leaves the value of each of the quantities α0, α1, α2, ... unaltered, and therefore 
whatever the nature of R may be. But when R is a pure reciprocant, 
whence it immediately follows that

Before proceeding to determine the values of 
it will be useful to remark that since 
we have 
and generallyNow let [t] denote the augmented value of t, and in general let [ ] be used to signify that the augmented value of the quantity enclosed in it is to be taken. Then 
so also 
that isReasoning precisely similar to that which gave 
leads to the formula

* It has been*suggested  by Mr J. Chevallier that the proof might be simplified by considering 

the variation instead of
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42] Lectures on the Theory of Reciprocants 349from which the augmented values of α1, α2, α3 ∙∙∙ may be found by giving to 
n the values 0, 1, 2, ... in succession. Thus, writing n = 0, we have 
or Similarly, when n=l, 

and 

so thatIn like manner we shall find
These results may be written in a more symmetrical form ; thus :

The general law 
or, as it may also be written, 
admits of an easy inductive proof.Assuming the truth of the theorem for [αn], and writing for brevity in what follows, 
we have
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350 Lectures on the Theory of Reciprocants [42

Now,

HenceBut, as we have already seen, 
consequently, 
that is, the theorem holds for [αn+1] when it holds for [αn]. But we know that it is true for the cases n=0,1, 2, 3, 4, and therefore it is true universally.Resuming the proof of the main theorem, it has been shown that 
that isor But 

and consequently
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42] Lectures on the Theory of Reciprocants 351This is equivalent to the two conditions 
andwhere

For greater simplicity I coniine what I have to say to the only essential case, to which every other may be reduced, of a homogeneous pure reciprocant. The equation shows that for every term w + 3i is constant; that is, w is constant and therefore the function R is isobaric. This is also immediately deducible from the form of the relations between a0, a1, a2, ...; α0, α1 α2, ∙∙∙, and, what is important to notice, for future purposes, 
when F is a homogeneous isobaric function, and μ = w + 3i is itself a homo­geneous function of (α0, α1, α2, ∙∙∙)> whose degree is the same as that of F.The only condition affecting R, a function of a0, a1, a2, ..., supposed homogeneous and isobaric, isI shall now prove the converse, that if R=F(a0, α1, α2, ...) (being homo­geneous and isobaric) has V for its annihilator, then R is a pure reciprocant. Let D be the value of F(α0, α1, a2, ...)-tu-F(a0, α1, α2, ..,) expressed as a function of α0, α1, α2, ... alone. Then D will be a function of the same type as F(α0, a1, a2, ...).Suppose that that is, that the variation of D due to the change of x into x + ϵy vanishes in virtue of the equation VR = 0.Let D become D' when y receives an arbitrary variation y + ηu, where η is an infinitesimal constant and u an arbitrary function of x; then the varia­tion of D' will vanish when x is changed into x+ ϵy + ϵηu, and consequently when x is changed into x + ϵy the variation of D' will also vanish. Hence 
and if we take the difference of the variations of D and D', we shall find

Now, the arbitrary nature of the function u shows that we must have
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352 Lectures on the Theory of Reciprocants [42

and if we reason on d/da D, d/da D, ... in the same way as we have on D, we see that the variation Δ of each of the second differential derivatives of D will also vanish; and, pursuing the same argument further, it will be evident that the Δ of any derivative of 2), of any order whatever, with respect to α0, α1, α2, ∙∙∙ will vanish. Hence for if this is not so we may, supposing D to be a function of degree i in the letters a0, a1, a2, ..., take the Δ of each of the differential derivatives of D of the order i — 1; each of these variations would vanish by what precedes; that is, the variation due to the change of x into x + ϵy of each of the letters 
a0, a1, a2, ... contained in D would be identically zero, which is absurd. We see, therefore, that when ∆D = 0 (that is, when R is annihilated by V), 
D = 0, or which proves the converse proposition.It will not fail to be noticed how much language, and as a consequence algebraical thought (for words are the tools of thought), is facilitated by the use of the concept of annihilation in lieu of that of equality as expressed by a partial differential equation.It is somewhat to the point that in the recent two grand determinations of the order of precedence among the so-called fixed stars relative to our planet, as approximately represented by the intensities of the light from them which reaches the eye, the one is directed by the principle of annihila­tion, the other by that of equality. Prof. Pritchard’s method essentially consists in determining what relative thicknesses of an interposed glass screen, effected by means of a sliding wedge of glass, will serve to extinguish the light of a star; that employed by Prof. Pickering depends on finding what degree of rotation of an interposed prism of Iceland spar (a Nicol Prism) will serve to bring to an equality the ordinary image of one star with the extraordinary one of another. As these intensities depend on the squared sines and cosines of this angle of rotation measured from the position of non-visibility of one of them, it follows that the tangent squared of the twist measures the relative intensities by this method.Hereafter it will be shown that if F is a homogeneous isobaric function of whose weights are reckoned as then, when x becomes x + hy, where h is any constant quantity, F becomes 
where 
i being the degree and w the weight of F.
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42] Lectures on the Theory of Reciprocants 353From this, by an obvious course of reasoning, could be deduced as a particular case the condition of F(α0, α1, α2, ...) remaining a factor of its altered self when any linear substitutions are impressed on x and y; namely, the necessary and sufficient condition is that F has V for its annihilator.
LECTURE IX.The prerogative of a Pure Reciprocant is that it continues a factor of its altered self when the variables x and y are subjected to any linear substitu­tion. Its form, like that of any other reciprocant, is of course persistent when the variables are interchanged; that is, when in the general substitution, in which y is changed into and x into we give the particular values h = 0, h' = 0, f= 0, g' = 0,f' = 1, g = 1, to the constants. Stated geometrically, the theorem is that the evanescence of any pure reciprocant R indicates a property independent of transformation of axes in a plane. We suppose R to be homogeneous and isobaric in a, b, c,.... (If it were not, the theorem could not hold, for either the change of y into κy or that of x into ∖x would destroy the form.)The persistence, under any linear substitution, of the form of pure recipro­cants may be easily established as follows:By a semi-substitution understand one where one of the variables remains unaltered. There are two such semi-substitutions, namely, where x remains unaltered, and where y does.(1) Let x remain unaltered and y become fy + gx + h ; then a,b,c,... becomefa,fb,fc, ... respectively; and therefore 

where i is the degree of R.(2) Let y remain unchanged and x become f'y+g'x + h'. Then, instead of R, I look to its equal that is, to which becomesSince R is a reciprocant, this is equal to 
or, replacing τ by its equivalent 1/t ,

S. IV. 23
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354 Lectures on the Theory of Reciprocants [42Thus we see that the proposition is true for a semi-substitution of either kind. Consider now the complete substitution made by changing y into 
and x into If f= 0 and G = 0, then become sothat R(a,b,c, ...) becomes and since this is equal to
the proposition is true.But if either of the two letters f, G (say f) is not zero, we may combine two semi-substitutions so as to obtain the complete substitution, in which y changes into and x changes into(1) Substitute y1 (=fy + gx + h) for y, and x1(=x) for x.(2) Then substitute y2(=y1) for y1, and x2 (=f'y1 + g'x1 + h') for x1. By the first of these semi-substitutions
takes up an extraneous factor fi. By the second it acquires the factor

Hence we see that the extraneous factor is a negative power of a linear function of t, which we shall presently particularize, though it is not essential to the present demonstration to do so.It only remains to show how the combination of these two semi-substi­tutions can be made to give the complete one in question. We have 
and

In order that this may be equal to Fy + Gx + H, we must be able to satisfy the equations 
which is always possible, since by hypothesis f is not zero. Similarly it may be shown that when f vanishes, but G does not, by substituting 
we may so determine f", g'', h'' as to get the complete substitution as before.
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42] Lectures on the Theory of Reciprocants 355In every case, therefore, any linear substitution impressed upon the variables x and y will leave R (a, b, c, ...) unaltered, barring the acquisition of an extraneous factor which is a negative power of a linear function of t.Now, the first semi-substitution introduces, as we have seen, the constant factor the second introduces the factor 
whereThe complete extraneous factor is the product of these two, and is thereforeTo express f' and g' in terms of the constants of the complete substitu­tion we have

Writing these values for f 'and g' in the expression just found, we obtain 
which is the extraneous factor acquired by R when the complete substitution is made. For example, if x becomes 
and y becomes the altered value of a

Corresponding to the simple interchange of the variables, we have 
so that and the altered value of a is 
which is right. In this case the general value of the acquired extraneous factor thus showing, what we have already proved from other considerations, that the character of a pure reciprocant is odd or even according as its degree is odd or even.

23—2
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356 Lectures on the Theory of Reciprocants [42We saw in the last lecture that every pure reciprocant necessarily satisfied the two conditions(where μ is the characteristic), and
We also saw that VR = 0 was a sufficient as well as necessary condition that any homogeneous function R of a0, a1, a2, ... should be a pure reciprocant. It will now be shown that every pure reciprocant is either homogeneous and isobaric, or else resoluble into a sum of homogeneous and isobaric recipro­cants. Non-homogeneous mixed ones, it may be observed, are not so resoluble, so that the theorem only holds for pure reciprocants.(1) Let us suppose that R (a pure reciprocant) is homogeneous in α0, αι, α2 ; then it must be isobaric also. For, if i is the degree of R, Euler’s theorem shows that

and since R is a pure reciprocant, the condition
is necessarily satisfied. Hence a constant multiple of R,which is the distinctive property of isobaric functions.And, vice versa, if R is homogeneous and isobaric of weight w and degree
i, thenThus homogeneous pure reciprocants are also isobaric and their character­istic is 3i + w. (This property is also true for mixed reciprocants, as we have previously shown.)(2) Suppose that R is not homogeneous, but made up of the homo­geneous partsThen, sinceis satisfied identically, it is obvious that
must also be satisfied identically.But since all the terms are of different degrees, the only way in which this can happen is by making VR,, VR,,, VR,,,, ∙∙∙ separately vanish. Now, 
R,, R,,, R,,,, ... are by hypothesis homogeneous functions of α0, α1, α2, ..., and it has just been shown that each of them is annihilated by V, which has been shown to be a sufficient condition that any homogeneous function of α0, α1, α2, ... may be a pure reciprocant. Thus each part R,, R„, R,,,, ... of R is a pure reciprocant.
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42] Lectures on the Theory of Reciprocants 357Also, the condition
shows that if i1, w1; i2, w2; i3, w3; ... are the deg. weights of R,, R,,, R,,,, ..., 
we must haveThus non-homogeneous pure reciprocants are severable into parts each of which is a homogeneous and isobaric pure reciprocant, the characteristic of each part being equal to the same quantity μ, which is the characteristic of the whole.I will now explain what information concerning the number of pure reciprocants of a given type is afforded by the equation VR =0. Let
be a term of a homogeneous isobaric function (with its full number of terms) of a0, a1, a2, ... aj, whose degree is i, extent j, and weight w, and which we will call R.Then in the entire function there are as many terms as there are solutions in integers of the equations

In other words, the number of terms in R is equal to the number of ways in which w can be made up of i or fewer parts, none greater than j. This number will be denoted by
Since the function R is the sum of every possible term of the form

each multiplied by an arbitrary constant, the number of these arbitrary constants is alsoNow, suppose R to be a reciprocant; this imposes the condition
Consider the effect produced by the operation of any term of

say (rejecting the numerical coefficient 6).Operating on R with ∂a3 decreases its weight by 3 and its degree by 1unit. The subsequent multiplication by a0a2 + a12/2, on the other hand, in- creases the weight by 2 and the degree by 2 units. Hence the total effect
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358 Lectures on the Theory of Reciprocants [42

of is to increase the degree by 1 and to diminish the weightby 1 unit. The same is evidently true for any other term of V. Thus the total effect of V operating on the general homogeneous isobaric function R of weight w, degree i, extent j, is to change it into another homogeneous isobaric function whose weight, degree and extent are respectively w — 1, 
i + 1,j. Observe that the extent is not altered by the operation of V.It is easily seen that the coefficients of VR are linear functions of the coefficients of R; for example, if

Hence the condition VR = 0 gives us (w—1; i+1,j) linear equations between the (w; i, j) coefficients of R ; so that, assuming that these equations 
of condition are all independent, after they have been satisfied the number of arbitrary constants remaining in R (that is, the number of linearly inde­pendent reciprocants of the type w, i,j) is equal to 
when this difference is positive ; but when it is zero or negative there are no reciprocants of the given type.If, however, any r of the (w — 1; i + l,j) equations of condition should not be independent of the rest, these equations would be equivalent to (w — 1 ; i + l,j)-r independent conditions, and therefore the number of linearly independent reciprocants of the type w ; i, j would be

It is therefore certain that this number cannot be less than
We shall assume provisionally that r = 0, or in other words that the above partition formula is exact, instead of merely giving an inferior limit. Though it would be unsafe to rely on its accuracy, no positive grounds for doubting its exactitude have been revealed by calculation.Such attempts as I have hitherto made to demonstrate the theorem have proved infructuous, but it must be remembered that more than a quarter of a century elapsed between the promulgation of Cayley’s analogous theorem and its final establishment by myself on a secure basis of demonstration.
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42] Lectures on the Theory of Reciprocants 359

LECTURE X.I will commence this lecture with a proof of Capt. MacMahon’s theorem that if R is any pure reciprocant and μ its characteristic (that is, its weight added to three times its degree), 
where y' may be replaced by either 2α0 or a, according as the modified or unmodified system of letters is employed.Instead of a pure reciprocant, let us consider any homogeneous isobaric function F of degree i and weight w; and (for the sake of simplicity writing 8x for d/dx) instead of the operator Vm∂xm let us consider Vm∂xn — ∂xnVm. We have identically

Now, the operation of (V∂x - ∂xV) on any homogeneous isobaric function whose characteristic is μ1 is equivalent, as we have seen in Lecture VII, to multiplication by μ1y''; so that if the characteristics of 
areit follows that
Observe that 
where the transposition of the y" is permissible because V does not act on it; but if y" were preceded by ∂x it could not be similarly transposed.The numbers μ1, μ2, μ3,.. form an arithmetical progression, for each operation of V increases the degree by unity and diminishes the weight by unity, so that
Similarly
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360 Lectures on the Theory of Reciprocants [42The characteristic of F being 
for each operation of dx leaves the degree unaltered, but adds an unit to the weight; hence so that
When F=R, a pure reciprocant, so that VR = 0, our formula becomes
Suppose that in (2) m > n, then Vm^∂xnR = 0. This is obviously true when 
n = 0, and when n = 1. When n = 2 we find
Similarly the case n = 3, m > 3 can be made to depend on n = 2, m > 2, and in general each case depends on the one immediately preceding it. Next let 
n = m in (2); then, remembering that Vmbxm-1R = 0, we have 
from which MacMahon’s theorem that 
is an immediate consequence.Another special case of Formula (1) is worthy of notice, namely, that in which we take n = l, when we obtain the simple formula
If in this we write an in the place of F, and (the modified system of letters being used) 2α0 for y", μ becomes 3 + n, and we have 
or, as it may also be written,

Mr Hammond remarks that this last formula may be used to prove the theorem which was given without proof in Lecture II. Assuming that 
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42] Lectures on the Theory of Reciprocants 361we have to prove that the theorem is also true when n is increased by unity. Differentiating both sides of the assumed identity with respect to x, we find 

the general term being 
which, by means of (4), reduces to
Hence or, more concisely,
But and therefore 
orThe theorem is easily seen to be true, for n = 0, 1, 2, and is thus proved to be true universally.I will now return to the point at which I left off in my previous lecture. We saw that the exactitude of the formula 
for the number of pure reciprocants of the type w; i,j could not be inferred with certainty unless we were able to prove that the (w — 1; i + 1, j) linear equations between the coefficients of R, found by equating VR to zero, were all of them independent. A similar difficulty presents itself in the proof of the corresponding formula (w; ι, j)-(w —1; t,j) in the invariantive theory; but in that case I succeeded in making out a proof of the independence of the equations of condition founded on the fact that Ωm0mI is a numerical multiple of I, where I is any invariant, and Ω, 0 are the well-known operators
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362 Lectures on the Theory of Reciprocants [42I have since discovered a second proof of the theorem for invariants which, though very interesting, is less simple than my first; but neither of these methods can be extended to the case of reciprocants.It was suggested by Capt. MacMahon that the fact that Vm∂xmR is a numerical multiple of amR ought to lead to a proof of the theorem for reciprocants similar to that obtained for invariants by my first method, alluded to above, but this I find is not the case; and indeed it is capable of being shown a priori that it cannot lead to a proof. One great distinction between the two theories, which is fatal to the success of the proposed method, is well worthy of notice.If (I shall sometimes call this positive), then 
for all values of w' less than w; the condition that this difference, say Δ(w;i,j) shall be positive being simply that ij-2w is positive (that is, 
ij — 2w = > 0). This is not the case with the difference 
say E(w,i,j); it by no means follows that if this is positive for a given value of w (i, j being kept constant), it will be so for any inferior value of w.We may illustrate geometrically the condition ij — 2w = > 0, which holds when Δ (w; i, j) is non-negative.Let (i, j) be co-ordinates of a point in a plane and draw the positive branch of the rectangular hyperbola

Then, ij — 2w < 0 for all points in the area 
YOXBA between the curve and its asymptotes; but for points on the curve AB, 
and for all points of the infinite area on the side of AB remote from the origin,
Thus, for all points which lie either on or beyondthe curve AB, Δ (w; i, j) is non-negative, and for all points between the curve and the asymptotes Δ (w; i, j) is non-positive.We have here considered w as constant and i, j as variable, but in the case where all three are variable we should have to consider the hyperbolic paraboloid of which the curve AB is a section, by the plane w = const.; and the condition 
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42] Lectures on the Theory of Reciprocants 363of Δ (w; i, j) being non-negative or non-positive depends on the variable point (i, j, w) lying in the one case on or beyond the surface, and in the other between the surface and the planes of reference.The function of i,j, w, whose positive or negative sign determines in like manner that of E (w; i, j), cannot be linear in w. What its form is, or whether it is an Algebraical or Transcendental function, no one at present can say. Indeed, except for the light shed on the subject by the Algebraical Theory of Invariants, it would have been exceedingly difficult (as I know from vain efforts made by myself and others in Baltimore) to prove the much simpler theorem that ∆(wj i, j) is positive (that is, non-negative) when ij — 2w is so. It amounts to the assertion that the coefficient of 
aixw in the expansion of 
is always non-negative, provided that ij — 2w is non-negative.This is a theorem of great importance in the ordinary Theory of Invariants, and may be seen to be a consequence of the fact, which I have proved, that (using [w; i, J] to denote a function of the type w; i, j having its full number of arbitrary coefficients) there are no linear connections between the coefficients of Ω [w; i, j] when ij — 2w = > 0; but no one, as far as I know, has ever found a direct proof of it.Viewing the connection between the two theories of Invariants and Reciprocants, I think it desirable to recapitulate with some improvements the proof, given in the Phil. Mag. for March, 1878, of the theorem that the number of linearly independent invariants of the type w; i, j is exactly Δ (w; i, j) when this quantity is positive, and exactly zero when it is 0 or negative.As regards reciprocants, at present we can only say that the number of linearly independent ones of the type w,i,j is never less than E(w∖i,j), leaving to some gifted member of the class to prove or disprove that the first is always exactly equal to the second. The exact theorem to be proved in the theory of invariants is as follows:If ij — 2w = > 0, the number of linearly independent invariants of the type w; i,j is Δ (w,i,j).If ij — 2w < 0, the number of such invariants is zero; that is, there are none. The proof is made to depend on the properties of 
and ofIf U be any homogeneous isobaric function of degree i and weight w in the letters α0, a1, a2,... aj, it is easy to prove that
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364 Lectures on the Theory of Reciprocants [42and consequently, if U is an invariant I, so that ΩI = 0,
I call ij — 2w the excess and denote it by η, and shall first show that if η is negative I = 0; that is, there exists no invariant with a negative excess. This will prove that when ∆(w ; i,j) is negative, that is, when 

the number of independent functions of the coefficients of [w; i, j] which appear in Ω [w; i,j] is exactly equal to (w; i, j) which is the number of the coefficients themselves. Clearly it cannot be greater; for, no matter what the number of linear functions of n quantities may be, only n at the utmost can be independent; there might be fewer, there cannot possibly be more. The complete theorem is that the number of independent coefficients in Ω [w; i, J] is the subdominant of two numbers: one the number of terms of the type w,i,j, the other the number of terms of the type w — 1;i,j.N.B. That one of two numbers which is not greater than the other is called the subdominant.
LECTURE XΓ.We may write for the Annihilator of an Invariant 

and for its opposite 
where the pointed letters α0, α1, α2, ... αj stand for the partial differential operators

Suppose Ω and 0 to operate on any function U(α0, α1, a2, ... αj); then 
and where the full stop between 0 and Ω signifies multiplication, and the asterisk operation on the unpointed letters only. Thus, 
and, consequently,Now, 
and
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42] Lectures on the Theory of Reciprocants 365whence we readily obtain
Introducing the conditions of homogeneity and isobarism, namely, 

and where i and w denote the degree and weight of U, supposed now to be a rational integral homogeneous and isobaric function (or, to avoid a tedious periphrasis, say a gradient), we see that if the complete type of the gradient 
U is w, i, 7, where η is the excess.Since the operation of 0 increases the weight of the operand by unity, but does not alter either its degree or its extent, it is clear that the type of 
0θU is w + θ; i, j. The excess of OθU is therefore 
and the theorem just proved shows that

From this we pass on to prove that Ω0q — 0qΩ, acting on any gradient as its objective, is equivalent to q (η — q + 1) 0q-l; that is, when q is any positive integer, we shall show that
The subsequent consideration of a special case of this formula, in which 

U is replaced by any invariant I, will enable us to prove that there can be no invariants for which the excess ij — 2w is negative. Let 
thenand thereforeSubstituting in this for 
we haveHence

But since Pq= Ω0q and Po = 0qΩ, this result may be written
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366 Lectures on the Theory of Reciρrocants [42If now U=I, an invariant, we have ΩU=O, and our formula becomes
Writing in succession q = m, m — 1, ... 1, we obtain

By assigning to m a sufficiently large value we are able to make 0mI vanish as well as ΩI; for, the type of I being w; i, j, that of 0mI is 
w + m; i,j. But it is evident that no gradient can have a greater weight than ij, the product of its degree and extent, for each term is a product of 
i letters none of them having a weight greater than j. If, then, we suppose that m = ij — w + 1, the weight of 0mI is

ThereforeAgain,If, then, η is negative, every term in the series 
is negative and can never vanish. Hence we have successively 
that is, when ij — 2w < 0 no invariant of the type w; i, j exists.Observe that the elenchus of the demonstration consists in the fact that the successive numerical factors η — m + 1, η —m+ 2, η — m + 3, ...η are allnon-zero on account of η being negative; but if η were positive we should eventually come to a factor η — μ which would be zero, and we could not conclude from (μ + 1) (η — μ)0μΙ being zero that OμI = 0. Since η — (m — 1) passes from η — (ij — w) to η, that is, from — w to η, it passes through zero when η is positive.The second part of Cayley’s completed theorem remains to be proved, namely, that when ij — 2w = > 0, the number of linearly independent in­variants of the type w, i,j is precisely equal to Δ (w; i,j); that is, to
I show this by proving that if D(w; i,j) is the number in question, keeping 
i and j constant and taking w < = ij/2, 
cannot be greater than 
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42] Lectures on the Theory of Reciprocants 367and consequently, since we know that no single D(w∖i,j) can possibly be less than the corresponding Δ (w; i, j), it follows that 
and, furthermore, that each
For if any D were greater than its corresponding Δ, some other D would have to be less, which is impossible.This principle of reasoning may be illustrated by imagining a row of ballot-boxes and supposing it to be ascertained that no single box contains fewer white balls than black ones. If, then, there are not more white than black balls altogether, the total number of whites must be the same as that of the blacks. And since there are just as many whites as blacks distributed among the ballot-boxes, the number of white and black balls must be the same in each box; for otherwise some box must contain fewer whites than blacks, which is contrary to the hypothesis.Observe that the sum of these ∆'s is (w; i, j); for 
and since there is no way of composing — 1 with parts 0, 1, 2, ...j. Hence what I have to show is that

I want preliminarily to express Ωq0qI as a multiple of I*.  This can be done by a formula previously demonstrated, namely,which gives 
similarly 
and finally, changing the order of the numerical factors,
This shows that Ωq0qI and a fortiori 0qI can never vanish unless η — q + 1 becomes negative.

* The result of operating on I with O and Ω each q times, the two operations following each 
other according to any law of distribution whatever, will always be a numerical multiple of I; 
but the value of this multiple will differ for different laws of distribution.
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368 Lectures on the Theory of Reciprocants [42Suppose now that Iq means an invariant of the type w — q; i,j; its excess is ij — 2(w-q), and consequently 0qIq cannot vanish unless 
becomes negative, which is impossible. For 
and ij — 2w = > 0 by hypothesis.By taking 0qlq as an image, so to say, of Iq we shall be able to obtain a limit to the number of Iq's by obtaining a limit to the number of their images. In fact, taking the image 0qIq of each of the D(w — q; i,j) linearly independent invariants of the type w-q; i,j (this is what is meant by the 
Iq,s) and giving q all possible values from 0 to w inclusive, the total number of these images is obviously
Each of them will be a gradient of the weight w — q + q (that is, of weight w), and will consist of terms of weight w, degree i, and extent j. The total number of such terms will be the number of ways of making up w with i of the numbers 0, 1, 2, 3, ... j, or with the usual notation (w; i, j). If, then, it can be shown that none of these forms are linearly connected, then, inasmuch as they are all functions of the same (w;i,j) arguments, it will follow that their total number cannot exceed (w; i, j). That is, we shall have shown that 
cannot exceed 
and by the ballot-box principle, as already stated (inasmuch as no D is less than its corresponding Δ), it will follow that each D is the same as the corresponding Δ, and the theorem to be proved is established.The proof of this independence is easy. For (1) suppose that there is any linear relation between the forms 
for each of which the value of q is the same. Denoting these forms by 
let the relation in question be

ThenBut each argument ΩqPq is of the form Ωq0qIq, and since this is equal 
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42] Lectures on the Theory of Reciprocants 369to Iq multiplied by a number which does not vanish*,  we have a linear relation between Iq, Iq', Iq'', ..., namely 

* In fact, remembering that the excess of the type w-q; i,j is ij -2(w-q)=η + 2q, we find 
ΩqΟqIq = 1.2.3 ...q{(η + 2q) (η + 2q-l) ... (η + q + l)}Iq,

in which both η and q are positive integers.
S IV. 24

that is, the Iq's would not be linearly independent, contrary to hypothesis. Thus the images (0qIq, 0qIq', 0qIq'' ...) belonging to invariants of the same type w — q;i,j cannot be linearly connected.(2) I say that the images of invariants of different types cannot be linearly connected. For let q, q', q", ... arranged in descending order of magnitude, be the different values of q in the images supposed to be linearly related. The result of operating with Ωq on any image of the form 0q'Iq' is to bring it to the form Ωq-q'Ωq'Oq'Iq', which is a multiple of Ωq-q'Iq', and therefore vanishes. But Ωq, acting on any of the images 0qIq, 0qIq', .... will, as we have seen, bring back the multiple of Iq; thus the operation of Ωq on the supposed relation will give a linear equation connecting Iq, Iq', Iq'',..., and for the same reason as before this is impossible. Hence there can be no linear relation whatever between the images of the invariants whose types extend from w; i, j to 0; i, j, and the number of these images will accordingly be not greater than (w; i,j), as was to be proved.It is well worthy of notice that D (w; i, j) may be zero, but obviously cannot be negative, as it denotes a number of things which may have any value from zero upwards. Hence follows a remarkable theorem in the pure theory of partitions which it would be extremely difficult to prove from first principles, namely, that the difference between the two partition numbers
can never be negative when ij — 2w = > 0. It may be zero, but cannot be less than zero. This explains what I said about the hyperbolic paraboloid 
ij — 2w = 0, where i, j, w are treated as co-ordinates of a point in space. We might call the value of (w; i, ;) — (w — 1; i, j) the density of any point i, j, w, and the theorem may then be expressed by saying that at points within or upon the hyperbolic paraboloid the density can never be negative; for points outside this surface it can never be positive.As regards the analogous formula in the Theory of Reciprocants
we do not know that any algebraical surface can be constructed which will enable us to discriminate between the cases in which this difference, say 
E(w∙, i, j), is positive or negative. Should such a surface exist, its equation must contain w in a higher degree than the first. Supposing that the above 
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370 Lectures on the Theory of Reciprocants [42formula represents the actual number of reciprocants, it will follow (and this is confirmed by experience) that there can be no reciprocants to a type of negative excess. For
But if ij — 2w is negative, (w; i, y) — (w — 1; i, j) is zero or negative. Hence (w; i, j) — (w — 1; i + 1, j) is non-positive.For satisfied invariants (those ordinarily so called) w = ij/2, and the formula for their number becomes (ij/2; i,j) —(ij/2— 1; ; i,j).As these form a well-defined class apart, it would have seemed very natural to begin with them in endeavouring to establish the theorem, reserving the theory of unsatisfied invariants (sources of covariants) for future consideration. But to all appearance it would have been very difficult, if not impossible, to have succeeded in dealing with them alone.This is another example of the law in Heuristic that the whole is easier of deglutition than its part.

LECTURE XII.Before proceeding further with the development of the pure analytical theory of reciprocants, it may be useful to point out some instances of its relations and applications to geometrical questions.Using y1, y2, y3, ... yn to denote the successive derivatives of y with respect to x*,  let the complete primitive of the differential equation 
be We can in general so determine the n constants λ, μ, v, ... that the curve φ may pass through n given points, and if we take these to be consecutive points on the curve 
φ and Φ will have a contact of the (n — l)th order at a given point of Φ.In order that the curves may have a contact of the nth order at a point

* In future y1, y2, y3, ... yn will always have this meaning, the derivatives of x with respect 
to y will be denoted by x1, x2, x3, ..., and whenever the letters t, a, b, c, ... are used they will 

stand for y1, respectively.
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42] Lectures on the Theory of Reciprocants 371whose abscissa is x, the ordinates of Φ and φ at that point and their 1st, 2nd, ... nth derivatives with respect to x must be the same for both curves. But at every point of φ its differential equation 
has to be satisfied, and therefore the x, y, y1, y2, ... yn of any point on Φ, at which contact of the nth order with φ is possible, must also satisfy the same equation.Now, suppose that for x and y we substitute given functions of them, 
X and Y; the curves ϕ and Φ become
Contact of the nth order with the transformed φ will therefore be possible at any point of the transformed Φ for which * 
where Y1, Y2, Y3, ...Yn are the derivatives of Y with respect to X.But, unless the function F and the substitutions X =f1(x, y), Y=f2 (x, y) are so related that the transformed differential equation 
is identical with the untransformed one, the property marked by the contact of the transformed curves will not be identical with that marked by the contact of the untransformed ones.For example, let F = y2; then the relation between ϕ≡y + λx + μ, = Q (the complete primitive of y2 = 0) and an arbitrary curve Φ is that the constants λ and μ may be so chosen that the line y + λx + μ = 0 may have a contact of the second order at any point of Φ for which y2 = 0; and the property marked is an inflexion on Φ. But if we make the substitution 
X = x2, Y = y2 so that the differential equation y2 = 0 is transformed into 
∖dx2) y2 = 0 and its complete primitive into y2 + λx2 + μ = 0, it will still be possible so to choose λ and μ that y2 + λx2- + μ = 0 may have a contact of the

(d/dx2)2 y2 = 0, but the property marked, instead of being an inflexion, will be a contact of the 
second order with a conic having a pair of conjugate diameters coincident with 
the co-ordinate axes.The property remains unaltered when the co-ordinate axes are inter­changed, and therefore the differential equation (d/dx2)2 y2 = 0 will be identicalwith (d/dy2)2 x2 = 0, in which the variables x and y have changed places. The24—2
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372 Lectures on the Theory of Reciprocants [42identity of the two differential equations is easily verified, for
so that the differential equation may be written

Interchanging x and y in this, we have 
in which, if we write and it follows immediatelythat 
and the identity in question is established.Such a form as the above, which merely acquires an extraneous factor when the variables are interchanged, might be called a reciprocant, if it were not convenient to restrict the use of the word to forms in which the variables 
x and y do not appear explicitly. With this limitation, the geometrical property indicated by the evanescence of a reciprocant will be independent of the position of the origin, but not in general independent of the directions of the co-ordinate axes. Thus, we may prove that the equation 
indicates the possibility of 4-point contact with a hyperbola whose asymptotes are parallel to the co-ordinate axes. To do this it is sufficient to show that its complete primitive is the equation to such a hyperbola.Writing the equation in the form 
we see that its first integral is 
or, when prepared for a second integration,

Hence 
and finally we obtain the complete primitive 
which proves the proposition.
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42] Lectures on the Theory of Reciprocants 373With the notation previously explained, in which y1 = t, y2= 2a, y3 = 6b, the differential equation is bt — α2 = 0. We have therefore proved that at all points of a general curve for which the Schwarzian (bt — α2) vanishes, 4-point contact with a hyperbola whose asymptotes are parallel to the co-ordinate axes is possible.We now consider the important case in which the conditioning differential equation remains unchanged when the axes are orthogonally transformed, and is therefore found by equating to zero an orthogonal reciprocant. The simplest example of this class of equations is that which marks the points of maximum or minimum curvature on a curve. Since these points are points of 4-point contact with a circle, the conditioning differential equation will be that of the circleDifferentiating this three times in succession, we have
Eliminating μ from the last two of these equations, y will disappear at the same time, and the condition for points of maximum or minimum curvature is found to beIn Salmon’s Higher Plane Curves (2nd edition, p. 357) the “ aberrancy of curvature” is given by the formula
The above differential equation is therefore equivalent to δ = 0.If we differentiate the radius of curvature ∣ we find
Hence it follows that
The conditioning equation for points at which dp/dq or tan δ is a maximum or minimum is d2p/dx2 = 0 ; or the same condition may be expressed by
Now
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374 Lectures on the Theory of Reciprocants [42is an orthogonal reciprocant, for it can be expressed in terms of legitimate combinations of 1 + t2, which is an orthogonal reciprocant of even character, with the three orthogonal reciprocants of odd character,
d tan δIn fact, the above expression for —d tan δ/dx , when multiplied by α3 to clear offractions, becomes 

where the right-hand side is a linear function of orthogonal reciprocants of the same (even) character, so that the combination is legitimate.Quantities such as or where dφ is theangle subtended by the arc ds at the centre of curvature, have values independent of the particular position of the co-ordinate axes (supposed rectangular), and consequently these values, expressed in terms of t, a, b, c, ... will be absolute orthogonal reciprocants. A differential equation expressing the condition that any one of these quantities vanishes, or that any one of them has a maximum or minimum value, will also be independent of the position of the rectangular axes, and must therefore be expressible in the form of an orthogonal reciprocant equated to zero.Mr Hammond remarks that, since the radii of curvature at corresponding points of a curve and its evolute are p and , the radius of curvature of its 
dnp .nth evolute is dnp/dϕn. The radius of curvature of the nth evolute of any nth 

 involute of a circle is constant, and, consequently, the differential equation of an nth involute to a circle is
Writing this in the form 

to which it is easily reduced, since 
we see by what precedes that the left-hand member of the differential equation is an orthogonal reciprocant.As an example of the class of singularities which next presents itself for consideration, let us find the differential condition which holds at points of 
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42] Lectures on the Theory of Reciprocants 375contact of the fourth order with a common parabola. This condition is expressible by the differential equation whose complete primitive is
Differentiating three times in succession, we obtain
The arbitrary constants v and λ do not appear in the last two of these equations, from which, if we eliminate μ, the variables x and y disappear at the same time, and we find
A final differentiation and elimination give
Points of 5-point contact with a parabola are therefore indicated by the evanescence of the pure reciprocant 4ac — 5b2. And in general the differential equation R=0, where R is any pure reciprocant, indicates a property of a curve which may be called a descriptive singularity, since it is totally unaffected by the arbitrary choice of any two lines on the plane for the axes of co-ordinates. For it was proved in Lecture IX of the present course that if i be the degree and μ the characteristic of R. the substitution of 

ly + mx + n for x and l'y + m’x + n for y changes R into (I'm — lm')(lt + m)-μR, so that the differential equation R = 0 and the geometrical property corre­sponding to it are left unchanged by the substitution.Six-point contact with a cubical parabola is another example of a descrip­tive singularity. Its defining differential equation may be written in any of the following forms: 

or, if we make a2d — 3αbc + 2b3 = A and ac — 5/4 b2 = M, the equation may be put in the form
In the theory of Binary Forms, when the numerical parameter κ in

www.rcin.org.pl



376 Lectures on the Theory of Reciprocants [42is so chosen that the highest powers of b cancel each other, the form divides by α2 and gives the Discriminant of the Cubic
In the parallel theory of Reciprocants the form 

is divisible by a (instead of by α2), giving 
which may be called the Quasi-Discriminant.A complete discussion of the differential equation 
is reserved for the next ensuing lecture, in the course of which it will appear that the Quasi-Discriminant equated to zero is the differential equation of the cubical parabola.

LECTURE XIII.We may integrate the general homogeneous equation in reciprocants extending to d, inclusive, as follows:Calling the equation in question will be of the form
But if we write where β, a are general linear functions of the co-ordinates, say 

we may eliminate the five constants m, n, m', n', Λ, and the result will evidently be a pure reciprocant extending to d, inclusive, and, being homo­geneous and isobaric, can only be of the form 
so that it remains only to determine κ in terms of λ, or, which is the same thing, λ in terms of k.The solution β = Λαλ implies α = Λ λβλ. Hence the equation between 
M and A must be of the form 
where θ is a constant, for otherwise there would be more than one general solution to it. It only remains then to determine the values of p, q, θ, i, j, which may be affected by considering the particular solution y = xλ.
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42] Lectures on the Theory of Reciprocants 377When λ = 2, M and A both vanish, and if λ = 2 + ϵ, where ϵ is an infini­tesimal, M and A will each be of the same order as ϵ (that the first power of ϵ does not vanish in M or A may be easily verified). Hence 2 + q + ϵ is of the order ϵ, and therefore q = — 2 and j = 1.When λ = — 1 + ϵ, M remains finite and A is of the order ϵ. Hence 
p = 1 and i = 1. Thus, the equation is

To find θ, let λ = 3 and y = x3; then 
so that and finally has for its integralIf λ = ∞ , we may make 
and, consequently, β = ela, which contains five independent arbitrary constants, will be the general integral.For a parallel method of deducing the Integral of A8 + κΔ3 = 0, where Δ (our future AG— B2) is the projective reciprocant whose letters go up to f, see Halphen’s These sur les Invariants Differentiels, Paris, 1878.Mr Hammond has succeeded in deducing the equation between A and M from the primitive β = Λaλ by direct elimination, as shown in what follows. Possibly he, or some other algebraist, may eventually succeed in the more difficult task of obtaining the Differential Equation to γ = βλα1-λ (that is, the linear relation between A8 and Δ3) by some similar direct process.Differentiating the equation βα-λ = Λ three times in succession, and observing that, since α = y + mx + n and β = y + m'x + n', 
we have

From the last two of these three equations we obtain, by eliminating (α- - λβ),or, writing 
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378 Lectures on the Theory of Reciprocants [42and dividing by a'β', the equation assumes the form
Differentiating again, remembering that 

we findThe elimination of β' between this and the equation immediately pre­ceding it gives
Writing in this 4αc — 5b2 = 4M, we obtain by an easy reduction 

and, taking the square root of each side,
A final differentiation gives
Finally, eliminating α', we obtain
Hence or, Now and, consequently, 

so that we may write 
or, whereReplacing q2 and r2 by their expressions in terms of λ, the differential equation becomes

Some special cases may be noticed.
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42] Lectures on the Theory of Reciprocants 379

When λ = 2 or , the equation reduces to M = 0, which is the differential equation of the common parabola previously obtained.When λ = 3 or 1/3, we obtain 256M3 + 125A2 = 0 for the equation of the ocubical parabola, where the expression on the left-hand side is the Quasi­Discriminant.When λ = — 1, we find A = 0 for the differential equation of the general conic.When λ is an imaginary cube root of negative unity, so that λ2 — λ + 1 = 0, we have and the differential equation becomes
We shall subsequently avail ourselves of this result in finding the complete primitive of the Halphenian Δ.In the case where λ is infinite, from the complete primitive β = ela we first eliminate the exponential function and afterwards the arbitrary constant l.Thus we find or, HenceThe elimination of β gives 

or, Comparing this with the equation previously obtained, 
we see that q2 = 1 and r2 = — 2. Substituting these values in the differential equation it becomes which is the differential equation corresponding to the complete primitive 
β = ela.We shall hereafter consider in detail the theory of that special class of pure reciprocants (M. Halphen’s Differential Invariants) which retain their form when any homographic substitution is impressed on the variables; that is, when, instead of x and y, we writeand
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380 Lectures on the Theory of Reciprocants [42Since perspective projection is the geometrical equivalent of homographic substitution, it follows from the definition of Differential Invariants that they are connected with the properties and relations of curves which remain unaffected by perspective projection. For this reason Differential Invariants are sometimes called Projective Reciprocants. Two reciprocants with which we are familiar belong to this important class. One of them, y2 or a, vanishes at points of inflexion on the curve y = f(x); the other, 
which, for reasons given below, we shall call the Mongian, vanishes at sextactic points; that is, at points where a conic can be drawn having 6-point contact with the given curve.To illustrate the distinction between a projective and a merely descrip­tive singularity, consider for an instant the pure reciprocant 4αc — 5b2, which, as we have seen, vanishes at all points of a general curve where 5-point contact with a parabola is possible. Now, 5-point contact with a parabola is a descriptive but not a projective singularity; after projection the parabola becomes a general conic, and 5-point contact with it becomes 5-point contact with a general conic, which is not a singularity at all. But inflexions and sextactic points are indelible by projection, and thus belong to the class of projective singularities.The differential equation to a conic was originally obtained by Monge in the form (see Monge, “ Sur les Equations differentielles des Courbes du Second Degre,” 
Corresp. sur l'Ecole Polytech., Paris, II. 1809-13, pp. 51-54, and Bulletin de 
la Soc. Philom., Paris, 1810, pp. 87, 88). At the end of the first chapter of his Differential Equations, Boole mentions this form of equation as due to Monge, but without any reference, and adds the remark: “ But here our powers of geometrical interpretation fail, and results such as this can scarcely be otherwise useful than as a registry of integrable forms.” The theory of Reciprocants, however, furnishes both a simple interpretation of the Mongian equation and an obvious method of integrating it.To see that the differential equation of a conic is satisfied at the sextactic points of a given curve, we have only to remember that at such points the derivatives of y with respect to x, up to the fifth order, inclusive, are the same for the given curve as for a conic.We proceed to show how the Mongian may be integrated. Writing in the above equation 
it becomes 
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42] Lectures on the Theory of Reciprocants 381where it can hardly fail to be noticed that the left-hand member of the equation is an ordinary Invariant as well as a Reciprocant. It will be proved hereafter that all Differential Invariants possess this double nature.Now, if μ = 3i + w, where i is the degree and w the weight of any pure reciprocant R, the ordinary theory of eduction shows that 
is another pure reciprocant.When we consider the letters a, b, c, ... in any invariant I to mean ∙∙∙ the parallel theory of generation for Invariants gives the corresponding theorem that if v = 3i + 2w, where i is the degree and w the weight of I, 
is also an invariant.A strict proof of this theorem will subsequently be given. For present purposes it is sufficient to notice the easily verified special cases of the two theorems 
andIt follows as an immediate consequence that the equation 
admits of the two first integrals 
andNow, so that the Mongian equation is equivalent to

We thus obtain an integral of the form 
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382 Lectures on the Theory of Reciprocants [42from which the complete primitive may be found by two easy integrations. Thus, 
gives which is the equation of a general conic.By first interchanging the variables x, y in the Mongian equation (whose form remains unaltered by this interchange, since a2d — 3abc + 2b3 is a reciprocant) and then integrating three times with respect to x, we should find another integral of the form

The solution may be completed by two integrations, as in the former method.Mr Hammond remarks that     where t = y1. For, since
we have and, consequently,

Hence the integral a -10/3 (αc — b2) = const. previously obtained for theMongian is equivalent to d2/dt2 (α2/3) = constant; that is, to d2/dy2(y22/3) = const. Thus we have another integral of the form 
from which it is also easy to pass to the complete primitive.I add a few general remarks relating to the subject-matter of this and the preceding lecture. Instead of the cumbrous terms Projective Recipro­cants or Differential Invariants, it may be better to use the single word Principiants to denominate that crowning class or order of Reciprocants which remain, to a factor pres, unaltered for any homographic substitutions impressed on the variables. This is the species princeps. If we go back to the species infima, we see the beginning of life in the subject. In general Reciprocants, all that is affirmed is that there exist forms-functions of the derivatives of y in regard to x which (to a factor pres) remain unaltered when the variables x and y are interchanged, so that f (y1, y2, y3, ...) becomes 
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42] Lectures on the Theory of Reciprocants 383ϕ(x1, x2, x3, ...). The function ϕ only differs from f by the acquisition of an extraneous factor (—)κy1μ; that is,
A particular species of these general (mixed) reciprocants arises when 

f (y1, y2, y3,...), differentiated in regard to y1, gives a reciprocant. These are Orthogonal Reciprocants, and in them we see the first dawn of free con­tinuous motion as distinguished from mere displacement (or mere interchange of axes). Orthogonal Reciprocants, when x, y are rectangular co-ordinates, remain unaltered (save as to a factor) when the orthogonal axes are moved continuously. A quarter of a revolution of course will reverse their original positions, so that we see the condition of mutual displacement is fulfilled. Thirdly, Reciprocants into whose form the first derivative y1 does not enter are called Pure. Their form is invariable when the axes (now taken generally) undergo separate displacement (instead of turning round together) in a plane. Here there is a further development, so to say, of life in the subject.Finally, in Principiants, a particular species of Pure Reciprocants, the invariance remains good, not merely for any position of the axes of reference, but for any homographic deformation of the plane in which they lie, so that the evanescence of a Principiant corresponds to some property of a curve not only intrinsic but indelible by projection, as, for example, an inflexion, or a double point, or a sextactic point, and so on.It is clear from this review that the Theory as we have given it goes to the root of the subject, and that the word Reciprocant is rightly chosen as conveying the notion of a property which is common to the entire continuous series of forms bearing that name. All the links of this connected chain are thus comprehended under the general name of Reciprocants.
LECTURE XIV.The remaining lectures of the course will be devoted to the theory of Pure and Projective Reciprocants. I shall first treat of the existence and properties of the Protomorphs of Invariants and Reciprocants, using the latter system of protomorphs to obtain all the fundamental forms of Reciprocants in the letters a, b, c, d, e. I shall then pass on to the theory of Projective Reciprocants, or Principiants, with its applications contained in M. Halphen’s These pour obtenir le grade de docteur es sciences (Paris, Gauthier-Villars, 1878). It will be seen that M. Halphen’s very ingenious methods become greatly simplified when his results are read by the light of an important discovery in the theory of Principiants recently made by myself and Mr Hammond working conjointly, arising out of a theorem put 
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384 Lectures on the Theory of Reciprocants [42forward by one of my hearers. This theorem, on examination, we found was necessarily erroneous and would fail at the very first step of its application. But although the proposition stated was wrong, it contained an Idea which survives and may be incorporated in a valid and extremely important theorem, which I will endeavour to explain.A Principiant, besides being an Invariant in the original letters 
a, b, c, d, ... is also an Invariant in the letters a, A, B, G, D, ... where each capital letter is itself a Reciprocant; and, conversely, every invariant in the capital letters A, B, G, D, ... is a Principiant. The invariants in the capital letters form a system of protomorphs for Principiants, so that every Prin­cipiant is either some such invariant simply, or a rational integral function of such invariants provided by some power of a. Thus, for example, it will be proved that the Cubic Criterium (that is, the Principiant which gives, when equated to zero, the differential equation of a cubic curve) may be expressed as the quotient of 
by the fifth power of a.The proof of this theorem is based upon the fact that we can form a series of terms beginning with the Mongian (namely, a2d — 3abc + 2b3), say 
A, B, C, D, ... such that 

where coupled with the fact that every Principiant must be a function of the letters in such series and the small a.Each consequent of the series A, B, C, D, ... is, so to say, an Invariant relative to its antecedent; it becomes an actual Invariant when its ante­cedent vanishes.In the theorem as originally proposed, each letter of the series was derived by the operation of an eductive generator upon the one which precedes. In the true theorem the scale of relation is between three and not two consecutive terms. Calling the letters u0, u1, u2, ... ui, we have 
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42] Lectures on the Theory of Reciρrocants 385where G is the ordinary edιιctive generator,
M is the first pure reciprocant after the monomial a, namely,

But although, as I have said, the theorem in the form proposed was absolutely erroneous, its proposer has rendered an invaluable service to the theory by the mere suggestion of what turns out to be true, namely, that every Principiant is an Invariant in regard to a known series of R>eciprocants considered as simple elements.To this theorem there is a correlative one, for it will be shown that there exists a series of invariants Ao, A1, A2, ..., the first term of which, Ao, is the same as the Mongian A, each of the other terms of the series being a Reciprocant relative to the one that precedes it. In fact, we have 

where and, as a consequence, every Principiant will be an Invariant in respect to these Invariants and the first small letter a.Thus, speaking symbolically, we have not only 
(a logical equation meaning that P has the same qualities as both R and I, or that a Principiant is both a Reciprocant and an Invariant), but also 
meaning that a Principiant is an Invariant of Reciprocantive elements, and an Invariant whose elements are themselves Invariants.I may add that the invariantive elements Ao, A1, A2, A3, ... are defined by the equations

s. IV. 25
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386 Lectures on the Theory of Reciprocants [42so that any invariant in the reciprocantive elements A, B, C, D, ... is equal to the corresponding invariant in A0, A1, A2, A3, .... Thus,

M. Halphen appears not to have noticed the Principiant AE — 4BD + 3C2, which presents itself naturally when the theory is viewed from our present ground of vantage, but A, AC — B2 and A2D — 3ABC + 2B3 occur in his These in connection with the curve 
in which α, β, γ are any linear functions of x,y, 1.When λ = — 1 the differential equation of this curve (the conic aβ = γ2) is A = 0, but it is 
when λ is a cube root of negative unity, and 
when λ has an arbitrary value.Before making out an exhaustive table of all the irreducible forms of pure reciprocants in the letters a, b, c, d, e similar to, but not identical with, the corresponding table for invariants, it seems to me desirable to say something of Protomorphs in general; and this will be better understood if we devote a short space to the protomorphs of Invariants. The simplest forms of these are the following well-known ones of alternately the second and third degrees:

The quadratic Protomorphs P2, P4, P6, ..., are absolutely unique, for the number of invariants of the type j; 2, j is (j ; 2, j) — (y — 1; 2, j) = 1 if j is even, and =0 if j is odd. Their form is so well known that there is no need to dilate upon it here.
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42] Lectures on the Theory of Reciprocants 387The cubic ones P3, P5, P7, ..., may be derived from the quadratic ones by means of Cayley’s generators, given early in the course, namely,
Let us first use the P generator
Similarly, we find 

and so on.Let I be any invariant whatever of the type w; i, j (satisfied or un­satisfied) ; then using the original forms of the generators P and Q as given by Cayley (see Lecture IV), we have 
and, consequently,

If in this formula we write 
it becomes which, when I is a satisfied invariant, so that ij — 2w = 0 and 0I= 0, reduces to showing that the forms obtained by operating with either P or Q on any satisfied invariant are the same to a numerical factor pres.Now, each quadratic protomorph is a satisfied invariant (for when w =j and i = 2, ij — 2w = 0), and therefore the cubic protomorphs found by operating on the quadratic ones with Q will only differ by a numerical factor from those already obtained by the operation of P. But we must not conclude from this that the cubic protomorphs are unique. Their number is in fact given by the formula 
where it is obvious that 
so that the above formula may be written
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388 Lectures on the Theory of Reciprocants [42Now, there is a simple rule for finding (j; 3, j); it is the nearest integer to (j+3)2/12. From the following table, obtained by the use of this rule, 
it may be seen that for any odd number j = > 9 there are two or more forms of extent j equally entitled to rank as protomorphs. If l be the last letter which occurs in one of these forms, its first term will of course be a2l; the difference between any two such forms will not involve the letter l, and will only extend to k, but will still be of the same (potential) extent as l.The property of the protomorphs a, P2, P3, P4, ... is that every invariant is a rational integral function of them divided by some power of α, as appears from the fact that Q, any given rational integral function whatever of the letters α, b, c, d, e, ..., may obviously be expressed as a rational integral function of a, b, P2, P3, P4, ... divided by some power of a. Thus,

Suppose Q to be an invariant I; then 
and, consequently, 
where Ω is the annihilator for invariants; so that

We have therefore
Hence ϕ does not contain b, but is a rational integral function of the protomorphs alone, and
I shall show how to obtain a similar scale of forms possessing like properties for pure reciprocants.

LECTURE XV.A Protomorph may be defined as a form whose weight is equal to its actual extent, so that its type is j; i,j. The first protomorph is a, which corresponds to j = 0. For higher values of j it follows immediately from the definition that every protomorph will contain a term αi-1l, in which the letter of highest extent appears only in the first degree multiplied by a 
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42] Lectures on the Theory of Reciprocants 389power of the first letter. The existence of this term enables us to instantly recognize a protomorph. As in the case of invariants, it will be shown that every pure reciprocant is either a rational integral function of protomorphs or else such a function divided by some power of α. But first it will be better to prove a priori their existence and exhibit examples of them for the earlier values of j.It was proved, in Lecture IX, that the number of pure reciprocants of the type w; i, j is at least equal to
Now, obviously, the number of partitions of w into i parts not exceeding 

w + ϵ is the same as the number of partitions of w into i parts not exceeding w, so that and since, by a well-known theorem, (w; i,j) = (w;j, i), we see that 
a result which follows more immediately from the consideration that the partitions of w; w + ϵ, j differ only from those of w; w, j by ϵ columns of zeros, as we see in the annexed example:

Hence, if w =j, and i = >j, we have 
and Thus, the number of pure reciprocants of the type j; j, j is 
in other words, the difference between the indefinite partitions of j and those of j — 1. Expressed by means of generating functions, this difference is the coefficient of χj in
= coefficient of χj in the expansion of

This coefficient is a positive integer for all values of j (except j= 1, when it is zero), which proves the existence of reciprocants of the type j; j, j when j has any value except unity.But we wish to prove the existence of one or more reciprocants of the type j; j,j which actually contain a term of the form aj-1l, where the letter l 
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390 Lectures on the Theory of Reciprocants [42is of extent j. The number of such forms is the difference between the number of pure reciprocants of the types j; j, j and j;j,j — 1.Now, the number of linearly independent pure reciprocants of the type 
j;j,j has just been shown to be
And, in like manner, that of the linearly independent reciprocants of thetype j,j,j- 1 is

The difference between these two numbers is therefore
For the only partition not common to the two types is j. 0j-1, made up of one j and j — 1 zeros, which belongs to the first type, but not to the second. Hence reciprocants of the type j; j, j contain one term which those of the type j; j, j — 1 do not, and which can only be aj-1l. This proves the existence of protomorphs.In the latter part of the above proof we have assumed the truth of the theorem, which, however probable, is not demonstrated, that the number of reciprocants of the type w; i, j is (w; i, j) — (w — 1; i + 1, j) and no more [that concerns the subtrahend, namely, (j; j, j — 1) — (j— 1; j — 1, j — 1)].We shall, however, have an independent method of arriving at Proto­morphs by direct generation, just as we saw that all the cubic protomorphs to invariants were derivable by direct operation of generators from the quadratic ones.The difference between the two cases is that the lowest degree of Invariantive Protomorphs fluctuates alternately between 2 and 3. For Reciprocantive Protomorphs the lowest degree corresponding to a given extent fluctuates, but has a tendency to rise, and goes on progressing until it exceeds any assignable number.It is interesting to find what the degrees are for successive values of j. The calculations required are greatly facilitated by an extensive table of partitions given by Euler in 1750, and partly reproduced by Cayley in the 

American Journal of Mathematics, Vol. Iv., Part Ill. In the table as presented by Cayley, the number in column j and line i means the number of ways of partitioning j into exactly i parts (zeros excluded). Hence, to find the number of ways of partitioning j into i parts or fewer, that is, to find (j; i, ∞ ) or its equivalent (j; i, j), we must add up the numbers in the 1st, 2nd, 3rd, ... ith lines of column j.
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42] Lectures on the Theory of Reciprocants 391When these summations are made we obtain the subjoined table:
Extent j =

The number of pure reciprocants of the type j; i,j is
To find the minimum degree for protomorphs of extent j we have there­fore only to see for what value of i any figure in the j column first becomes greater than the figure in the column to the left one place lower down. The fluctuations of the minimum degree are indicated by the dark irregularly waving line which runs through the table.Accordingly, we find that the types of the protomorphs, omitting w, which is always equal to j, are as follows: 

whereas for invariants they are
Corresponding to the extents 

the lowest degrees of the Reciprocantive Protomorphs are
Contrast this with the regularly fluctuating series 

which shows the minimum degrees of invariantive protomorphs for successive extents.It may be proved, from known formulae in the theory of partitions, that as the extent increases the minimum degree of reciprocantive protomorphs increases (on the whole) and ultimately becomes infinite when the extent is so.
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392 Lectures on the Theory of Reciprocants [42The apparent number of protomorphs to the several types is
The explanation of this multiplicity is the same as that previously given for the case of invariants: the difference between any two protomorphs of a given type j; i, j will be a reciprocant (no longer a protomorph) of the type
For the only term containing the letter l (of extent j) will disappear from the result of subtraction; and, accordingly, the above numbers, each diminished by unity, will give the numbers of a set of reciprocants of the same degree-weight as the protomorphs, but of a smaller (actual) extent.Assuming that the number of pure reciprocants of the type w; i, j is correctly given by the formula

Euler’s great table of partitions, already referred to, enables us to carry on the determination of the minimum degree and multiplicity of protomorphs for all extents as far as 59.If m is the multiplicity corresponding to the minimum degree i of a reciprocantive protomorph whose extent is j, we form without difficulty, using only the principles explained above, the following table:

Notice the repetitions of i indicated by the series
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42] Lectures on the Theory of Reciprocants 393It will be observed that there is a general tendency of the number of equal values of i to increase, but that this is subject to occasional fluctua­tions. When j = 5, i = 4; but when j =6, i = 3, so that the minimum value of i recedes. After this point is reached, i either advances or remains stationary, but never recedes.In order actually to find the protomorphs, we may use the annihilator V. This was my original method of obtaining them; a shorter way, analogous to that used by Halphen for differential invariants (principiants), has been previously mentioned, but it will be instructive to begin with the method of indeterminate coefficients. In the first place we have the form a of weight 0, which is annihilated by
For weight 1 there is no pure reciprocant. We could not make R = λai-1b, for then VR = 2λai+1, which cannot vanish unless λ = 0 and consequently 
R = 0.To find the Protomorph of extent 2, assume R = λac + μb2; then

Hence λ and μ are proportional to 4 and — 5, and we may write
For extent 3, assuming R = λa2d + μabc + vb3, we have which vanishes whenWe may therefore write λ = 1, μ = — 3, v = 2, and thus obtain
For extent 4 the table of minimum degrees indicates the existence of a protomorph of degree 3. To find its value we assume
Operating with V, we find

In order that VR may vanish, we must have
To avoid fractions, let k = 50 ; then λ = — 175, v = 105, and μ = 28 ; thus, 

whereas, the protomorph of extent 4 for Invariants is ae — 4bd + 3c2. There is no reciprocant of degree 2 weight 4 to correspond to this.
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394 Lectures on the Theory of Reciprocants [42

LECTURE XVI.By using the generator for pure reciprocants instead of the annihilator V, we readily obtain the protomorph of extent 5 and of the fourth degree whose existence is indicated in the previously given table of minimum degrees. We have only to operate on the protomorph of degree 3 and extent 4 with
Thus,

Rejecting the numerical factor 35, which is common to all the terms in the result, and at the same time writing the terms themselves in reverse order, we have 
which is the protomorph in question.The form just found is irreducible, as indeed it ought to be, since the minimum degree for extent 5 is greater than that for extent 4 by unity, which exactly corresponds with the unit increase of degree due to the operation of G. But if we use G to generate a protomorph of extent 4 from that of extent 3, the resulting form will be reducible. In fact

If now we write 

we have shown thatBut 
so that B is reducible, being expressible as a rational integral function of 
a, M, and the previously obtained protomorph of degree 3 and extent 4.
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42] Lectures on the Theory of Reciprocants 395The general theory of the generator G is contained in that of the differentiation of absolute reciprocants, in which, if μ, = 3i + w, where w is the weight and i the degree of any pure reciprocant R, we have 
and, consequently, 
where R1 and a1 are what R and a become when x and y are interchanged. Hence
and therefore also the numerator of this fraction is a reciprocant. Remembering that
the numerator may be written

The ordinary expression for G is found by writing
If the actual extent of R is j, that of GR is j + 1; for the operation of G introduces an additional letter. Both the weight and degree are also increased by unity. Thus, the type of R being w; i, j, that of GR is

Suppose the weight of R to be equal to its actual extent; then R is a protomorph of the type j; i, j, and GR, whose type is j + 1; i + 1, j + 1, is also a protomorph. This proves the existence of protomorphs for every possible extent. Starting with the form 4αc — 5b2 we obtain, by successive eduction, a series of protomorphs of the type j; j, j for which the general expression is where j has any of the values 2, 3, 4, ....If J? is a protomorph of minimum degree, GR (if irreducible) will also be a protomorph of minimum degree. Hence the minimum degree can never increase by more than one unit when the extent is increased by unity.

www.rcin.org.pl



396 Lectures on the Theory of Reciprocants [42The second educt G2R is always reducible; for

5Combining this with M = ac — 5/4b2, we have 
where the right-hand side is divisible by a, showing that the degree of G2R is always depressible by unity. R being a protomorph of degree i and extent j, 
is one of degree i + 1 and extent j + 2. Hence we may conclude that an increase in the minimum degree for protomorphs cannot be immediately followed by another increase; for, if this were possible, the minimum degree for extent j + 2 would be i + 2, instead of being i + 1 at most.This conclusion is in accordance with the sequence of the values of i in the table of minimum degrees, and as far as it goes confirms the exactitude of the formula (w; i,j) -(w — 1; i + 1,j) for the number of pure reciprocants which was assumed in calculating the table.The method previously employed to prove that every invariant is a rational integral function of protomorphs, or such function divided by a power of a, may be very easily extended to the case of reciprocants.In the first place, it is obvious that every rational integral function of the letters a, b, c, d, ... is by successive substitutions reducible to the form 
where Pj means the protomorph of extent j.Let any reciprocant R be put under this form; then and, consequently,

Now, V annihilates R, a, P2, P3, ... Pj, since these are all pure recipro­cants. Hence the above identity reduces to dϕ/db Vb = 0, from which (since 
Vb does not vanish) we conclude that Φ does not contain b explicitly. Thus, 
and the theorem is established for reciprocants.

www.rcin.org.pl



42] Lectures on the Theory of Reciprocants 397The Protomorphs for Reciprocants as far as extent 8 are as follows:

The work necessary for obtaining the first four of these, P2, P3, P4, P5, has been fully set out. Since P4 is of degree 3, its second educt, G2P4, is of degree 5 and its reduced second educt of degree 4. A linear combination of this with a form whose leading term is a2ce becomes divisible by a and gives 
P6', but as this requires the preliminary calculation of the form (a2ce), it is simpler to find P6 directly by the method of indeterminate coefficients, and thence by eduction to get P7 and P8. Thus (to a numerical factor pres) P7 is the educt and P8 the reduced second educt of P6. Beyond this point the calculation of protomorphs has not at present been carried.Referring to the table which gives the minimum degree and multiplicity for a Protomorph of any extent, we see that the multiplicity exceeds unity when the extent j = > 8, and is exactly equal to 2 when j = 8, 11, or 21.Hence the protomorphs as far as P7 inclusive are unique ; but there are two forms of extent 8 and degree 4, any linear combination of which (provided it contains the term a3i) may be regarded as a protomorph. One of these forms is P8, whose value is given above; the other is a linear combination of P8 with a form, whose leading term is a2cg, hereafter to be set forth.The irreducible forms for extent 2 are a and P2; every other form must be simply a power of P2 multiplied by a power of a. We proceed to the calculation of all the Irreducible Forms for the extents 3 and 4 respectively. When j = 3, we may combine the protomorphs and with one another.Adding 125 times the square of the latter to 4 times the cube of the former and dividing by a, there results the form
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398 Lectures on the Theory of Reciprocants [42This form is analogous to the discriminant of the cubic, but is of a higher degree by one unit. Its type is 6; 5, 3, whereas that of the discriminant is 6: 4, 3.In the case of invariants, we have to combine ac — b2 with a2d — 3abc + 2b3. The square of the second, added to 4 times the cube of the first, gives
Here the term 12ab4c is nullified by — 12ab4c, so that the result contains α2, the other factor being the discriminant 
which is of the type 6 ; 4, 3.We may show a priori, assuming the problematical but highly probable formula (w; i, j) — (w — 1; i + 1, j), that the type 6 ; 4, 3 does not belong to any reciprocant.For, as seen in the partitionments set out below,

We can by no other means combine the protomorphs with one another or with the Quasi-Discriminant (125α3d2...) so as to obtain additional fundamental forms. Every Rational Integral Pure Reciprocant of extent 3 is therefore necessarily a rational integral function of the four forms
deg. wt.

These are connected by a syzygy of degree-weight 6.6, namely 
analogous to the syzygy of the same degree-weight, in the Theory of the Binary Cubic, which connects the Discriminant with a and the Protomorphs of extent 2 and 3.It will be clearly seen from an inspection of the fundamental forms that there is no law for the coefficients of Reciprocants akin to that of their algebraical sum being zero in Invariants.
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42] Lectures on the Theory of Reciprocants 399

LECTURE XVII.The fundamental reciprocants for extent 3, given in the last lecture, agree with the irreducible invariants of a binary cubic both in number and type, with the single exception that the degree of the cubic discriminant is lower by unity than that of the reciprocant corresponding to it. When the extent is raised to 4, both the discriminant and its analogue cease to rank among the irreducible forms, the former being expressible as a rational integral function of invariants of lower degree, and the latter as a similar function of reciprocants. But the increase of extent introduces three addi­tional reciprocants whose leading terms are a2e, a2ce and a3e2, whereas the additional invariants are only two in number and begin with ae and ace respectively.The irreducible reciprocants of extent 4 are as follows: 
deg. wt.

The similar list of invariants for the quartic is

To obtain the fundamental forms of extent 4 we have to combine Μ, Λ and the Quasi-Discriminant 
with the additional Protomorph

* P4 is the protomorph of minimum degree; the other protomorph, B, which will be used 
when we treat of Principiants, is, when expressed in terms of the irreducible forms, 
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400 Lectures on the Theory of Reciρrocants [42in such a manner that the combination contains a factor a. The removal of this factor gives rise to a form of lower degree, and the process is repeated as often as possible.Calling that portion of any form which does not contain a its residue, the residue of 4M is — 5b2, that of (α3d2) being — 300b4c, and that of P4 being 105δ2c. Thus 
contains the factor a, and leads to (α2ce) of the type 6 ; 4, 4, which is the analogue to the Catalecticant

The form (α3d2) now ceases to be a groundform (= irreducible form) and is replaced by the Quasi-Catalecticant (α2ce), for
Similarly, the Cubic Discriminant, a groundform qua the letters a, b, c, d, becomes reducible when a new letter, e, is introduced, and is then replaced by the Catalecticant.We now come to an extra form which has no analogue in invariants. The residue of the Quasi-Catalecticant (α2ce) is — 35b2c2, and consequently 
divides by a numerical multiple of a (as it happens by 4α) and yields the form (α3e2), whose type is 8; 5, 4.Here the deduction of new fundamental forms comes to an end on account of the appearance of e in the residue of (α3e2). It would have ended sooner but for the apparently accidental non-appearance of the term bsd (of the same type 6 ; 4, 4 as b2c2) in the residue of (α2ce). Had this term appeared, no combination could have been made leading to a new groundform after (α2ce). We are able to show from a priori considerations that it cannot exist.For the arguments in the annihilator V, up to ∂e inclusive, are

If, now, the term μb3d were to form part of a Pure Reciprocant, b2∂a operating upon it would give μb5; but every other portion of the operator would necessarily give terms containing one or other of the letters a, c. Since such terms cannot destroy μb5, we must have μb5 = 0. Hence the term in question is necessarily non-existent.
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42] Lectures on the Theory of Reciprocants 401The method of combining the protomorphs which we have followed shows that the fundamental reciprocants of extent 4 are connected inter se by the two relations or syzygies
The invariants of the binary quartic are connected by only one syzygy, similar to the first of these; the second has no analogue in the theory of Invariants. It has been shown that the irreducible reciprocants of extent 3 are connected by the syzygy

Substituting in this for the Quasi-Discriminant (a3d2) its value expressed in terms of the fundamental forms of extent 4, by means of the equation 
we obtain the first of the above syzygies. By a precisely similar substitution, the syzygy connecting the invariants of the quartic is derived from the one which connects the invariants of the cubic.Every reciprocant of extent 4 is a rational integral function of the six fundamental forms given in the table; and, by means of the syzygies, powers, but not products, of A and P4 can be removed from this function. For the first syzygy gives A2 and the second gives P42 as a rational integral function of the four remaining forms a, M, (a2ce), and (α3e2). Hence every reciprocant of extent 4 is of one or other of the forms 
where Φ does not contain either A or P4, but is a rational integral function of the other four fundamental forms.Let the four forms which appear in Φ occur raised to the powers κ, λ, μ, v, respectively, in one of its terms. Since the degree-weights of these four forms are any such term may be represented by
Thus the totality of the terms in Φ will be represented by

Now, A, P4 and AP4 have the degree-weights 
and consequently the totality of terms in

s. IV. 26
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402 Lectures on the Theory of Reciprocants [42(that is, the totality of the pure reciprocants of extent 4) will be repre­sented by
Hence the number of Pure Reciprocants of the type w, i, 4 is the coefficient of aixw in the expansion of a fraction whose numerator is with the denominator·

This fraction is called the Representative Form of the Generating Function, in contradistinction to the Crude Form, which is a fraction with the numerator having for its denominator
The crude form expresses the fact that the number of pure reciprocants ofthe type isIts numerator is 1 — a-1x for all extents; for the general case in which the extent is j, its denominator consists of the j + 1 factors

The removal of the negative terms [corresponding to cases in which (w; i, j) < (w — 1; i + 1, j)] from the crude form would give either the repre­sentative form, or one equivalent to it, according as the representative form is or is not in its lowest terms. In the parallel theory of Invariants the terms to be rejected are those for which ij — 2w < 0; but we do not at present know of any similar criterion for reciprocants, and are thus unable to pass directly from the crude to the representative form of their generating function.Knowing both the crude and the representative form for reciprocants of extent 4, we may verify that the difference between these two forms of the generating function is omninegative. It will be found that

www.rcin.org.pl



42] Lectures on the Theory of Reciprocants 403Thus the crude form is seen to consist of an omnipositive part, equal to the representative form, and an omninegative part.There is no difficulty in obtaining the representative form of the generating function for pure reciprocants of extents 2 and 3. In the one case every reciprocant is a rational integral function of two forms of degree-weight, 1.0 and 2.2 respectively. The generating function is therefore
In the other case (that is, for extent 3) every pure reciprocant can be expressed as a rational integral function of four forms, of which the degree-weights are 1.0, 2.2, 3.3 and 5.6, no higher power than the first of the form 3.3 occurring in the function. Thus the representative form is

LECTURE XVIII.The number of Pure Reciprocants of a given degree is finite; the number of Invariants of the same degree is infinite. Thus, for example, we have the well-known series of invariants 
all of degree 2, but of weights and extents proceeding to infinity. This may be proved from the theory of partitions (see American Journal of Mathematics, Vol. v., No. 1, “On Subinvariants,” Excursus on Rational Fractions and Parti­tions). It will be seen in that article that if N (w: i) is the number of ways in which w can be divided into i parts, and if P is the least common multiple of 2, 3, 4, ..., i, then N(w:i) can be expressed under the form 
where p is the residue of w in respect of P.Writing
F(w, i) is of the form 
all the succeeding indices of the powers of v in F(w,i) decreasing by 2, and their coefficients being transcendental functions of i which involve Bernoulli’s Numbers.In F'(w, i, p) the highest index of v is one unit less than the number of times that i is divisible by 2, that is, is i-2/2 or i-3/2 , according as i is even or odd. 26—2
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404 Lectures on the Theory of Reciprocants [42Thus, for the partitions of w into 3 parts, we have the formula
whereAnd, for the partitions of w into 4 parts,

whereand
in other words, p1 and p2 are primitive cube roots, and i1, i2 primitive fourth roots of unity.The principal term of N (w: 3), regarded as a function of w, is, that of N beingAnd in general the principal term of N (w: i) is

Hence it follows, from a general algebraical principle, that for all values of w above a certain limit, which depends on the value of i and may be determined by the aid of partition tables, (w; i, ∞ ) — (w — 1; i + 1, ∞ ) must become negative.Ultimately. which must eventually be greaterthan unity. This shows that beyond a certain value of w there can be no pure reciprocant, and consequently that the number of pure reciprocants of a given degree i is finite.Mr Hammond remarks that the formulae for N(w : 3) and N (w : 4) may, by the substitution of trigonometrical expressions for the roots of unity, accompanied by some easy reductions, be transformed into
andwhere, in the first formula, v = w + 3, and in the second v= w + 5. He also obtains the principal term of N (w:i) from first principles as follows:
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42] Lectures on the Theory of Reciρrocants 405The partitions of w into i parts may be separated into two sets, the first containing at least one zero part in each of its partitions, the second consist­ing of partitions in which no zero part occurs.Suppressing one zero part in each partition of the first set, we see that the number of partitions in which 0 occurs is N(w:i — 1). Diminishing each part by unity in those partitions which contain no zeros, their number is seen to be N(w — i : i). The sum of these two numbers is N(w : i), which is the total number of partitions, and consequently
Let the principal term of N(w :i — 1) be awi-2, where α is independent of w, and write
ThenHence, by a simple summation, we find
But, since only the principal term of ux is required, this summation may be replaced by an integration. Thus the principal term of ux is
Restoringowe see that the principal term of N (w:i) is Thus the principalterm of N (w : i) is found from that of N(w : i - 1) by multiplying it by
When i = 3, the principal term is it is therefore wheni = 4; and for the general case it isThe value of N (w :i) is given in line i and column w of the following table:
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406 Lectures on the Theory of Reciprocants [42From an inspection of the tabulated values of N (w: i) we see thatis negative or zero when
Hence for pure reciprocants of indefinite extent, whose degrees are 

the highest possible weights are 2, 6, 8 and 12, respectively.In like manner, from Euler’s table, in his memoir “De Partitione Numero­rum ” (published in 1750), it will be found thatfor degrees the highest weights areFurther than this the table, which goes up to w = 59, will not enable us to proceed.The actual number of pure reciprocants of degree i, weight w, and of indefinite extent, is seen in the following table, which gives the value of 
N (w: i) — N (w — 1 : i + 1) when positive, blank spaces being left in the table when this difference is zero or negative.

Thus, for degree 2, there is only one pure reciprocant, namely
For degree 3 the table shows that, in addition to the compound form
there are three others whose weights are 3, 4 and 6 respectively. These are the three protomorphs,
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42] Lectures on the Theory of Reciprocants 407With the above forms and a we are able to form the following compounds of degree 4:
vhose weights areThe forms of degree 4 and weights 5, 7, 8, and one of the forms of weight 6, cannot be similarly made up of forms of inferior degree, and are therefore groundforms. Three of them are the protomorphs (a3f), (a3h) and (α3i) of weights 5, 7 and 8, whose values were given in Lecture XVI. The ground­form of weight 6 is the Quasi-Catalecticant given in the last lecture. All the forms of degree 4 have thus been accounted for except one of the two forms of weight 8, which will be seen to be of extent 6, and to have a2cg for its leading term.We know from Euler’s table that N(8 : 4) — N(7 : 5) = 2 ; that is,
Now, the omitted partition being 8.0.0.0,the partition 7.1.0.0 being also left out,[for 6.2.0.0 and 6.1 .1.0 are excluded from ((8; 4, 5), but make their appearance in (8; 4, 6).Similarly,
We have, therefore,

Hence we may draw the following inferences:(1) No pure reciprocant exists whose type is 8 ; 4, 5.(2) The one whose type is 8; 4, 6 must contain the letter g.(3) No fresh form is found by making the extent 7 instead of 6, so that there is no pure reciprocant of weight 8 and degree 4 whose actual extent is 7.(4) There is a pure reciprocant (the Protomorph whose leading term is α⅛') whose actual extent is 8.(5) This, with the one whose actual extent is 6, makes up the two given by(8;4, 8)-(7j5, 8) = 2.
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408 Lectures on the Theory of Reciprocants [42

LECTURE XIX.The following is a complete list of the irreducible reciprocants of indefinite extent for the degrees 2, 3 and 4:

The values of all of them except (a2cg) have been given in previous lectures, and the method of obtaining them sufficiently indicated. Thus (αc), (a2d), (α2e), (a3f), (a2g), (α3h) and (a3i) are the Protomorphs of minimum degree 
P<i, P3, P4, P5, P6, P7 and Pa, respectively; and (α2ce) is the Quasi-Cata- lecticant whose value has been set forth in the table of irreducible forms of extent 4. It will be remembered that (α2ce) was found by combining the Quasi-Discriminant (a3d2) with P2P4 linearly in such a manner that the combination, which is of the 5th degree, divides by a and gives (α2ce) of the 4th degree. If we try to find (a2cg) by a similar process, it will be necessary to rise as high as the 7th degree, and then to drop down by successive divisions by a to the fourth.In fact, since to a numerical factor pres the residues of 
arethat ofand that ofThus a linear combination of P3P5 and P22P4 will be divisible by a, and, taking account of the numerical coefficients, we shall find

As a result of calculation, it will be seen that the above combination of the protomorphs divided by a, 
has (to a numerical factor pres) the same residue as P42.
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42] Lectures on the Theory of Reciprocants 409Making a second combination and division by a, we find(mod. α) = aS, suppose.Then, by actual calculation, the residue of is found to be
Two reductions have already been made in obtaining this form S of the 5th degree. A final combination of S with P2P6 and the form (α3e2), whose value was given in a former lecture, enables us to divide out once more by a and thus get the form (α2cg) of the 4th degree.It is the fact that P2P6 and (α3e2) have residues which are net the same to a numerical factor pres which necessitates the long calculation above described. No linear combination of P2P6 and (α3e2) with one another is divisible by a, and it is necessary to find a third form S a linear combination of which with both P2P6 and (α3e2) will divide by a.There is, however, another way of arriving at the form (a2cg) by using the eductive generator
Starting with the Quasi-Catalecticant 
and operating on it with G, we have

The terms of this expression contain the common numerical factor 10, which may be rejected ; thus we have 
where
This form (α3cf) is the first educt of (α2ce), and is irreducible (but, being of the fifth degree, does not appear in our list, which contains no forms of higher degree than the fourth). Operating on it with G, we obtain the educt of (α3cf), which is the second educt of (a2ce). This second educt will be of the 6th degree (its leading term will be a4cg), but is reducible to the 5th when combined with as we know from the general theorem concerning the reduction of second educts. We shall thus obtain a form (α3cg), the reduced second educt of (α2ce), of the 5th degree, and a final combination of (α3cg) with one or both of 
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410 Lectures on the Theory of Reciprocants [42the forms P2P6 and (α3e2) will enable us to divide once more by a and thus arrive at (α2cg) of the 4th degree.By either of these methods we obtain 
but the second way, besides being more direct, gives us at the same time the value of the irreducible form (α3cf).Every Pure Reciprocant is an Invariant of a Binary Quantic whose coefficients A, B, C, D, ... are functions of the original elements α, b, c, d, ... such that 

and conversely, every Invariant of this Binary Quantic, or of a system of such Binary Quantics, is a Pure Reciprocant.This is a particular case of the more general theorem, due to Mr Ham­mond, that if Θ is the operator, 
where ϕ1, ; ϕ2, ϕ3, ... are arbitrary rational integral functions, and if 
be any rational integral functions of the original letters a, b, c, ... which satisfy the conditions 

then every invariant in respect to the elements 
is a rational integral solution of the equation

Obviously, every rational integral solution of Θ = 0 is an invariant in the above elements, so that the converse of the proposition is true. For the only 
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42] Lectures on the Theory of Reciprocants 411conditions imposed upon A, A', A", ... are that they shall be rational integral functions of a, b, c, d, ... annihilated by Θ. Let 
be any invariant in the large letters. We have to show that

Now,
Hence, writing for ΘA, ΘB, ΘC, ..., their values given above, we have 

which proves the proposition.Confining our attention to a single set of letters, the Binary Quantic 
whose coefficients are formed from one another by the successive operation of Θ as above, may be called a Quasi-Covariant; and it will follow immediately from the Theory of Binary Forms that every Covariant of a Quasi-Covariant is itself a Quasi-Covariant, and that every Invariant of any Quasi-Covariant (or system of Quasi-Covariants) is an Invariant in respect to the letters 
A, B, C, ..., and therefore, by what precedes, a rational integral solution of Θ = 0.Writing the terms of 
in reverse order, we have 
whereThus the Quasi-Covariant may be written 
whereThis is the general symbolic expression for a Quasi-Covariant. An example of a Quasi-Covariant has already been given in Lecture II. [p. 310, above], 
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412 Lectures on the Theory of Reciprocants [42where it was stated, and afterwards proved [p. 360], that the reciprocal of the nth modified derivative could be put under the form
The numerator of this reciprocal expression, which may be called the reciprocal function, is 

which is identical with the general expression 
ifHence every Invariant of the reciprocal function is a Pure Reciprocant.This property of the reciprocal function was discovered independently by Mr C. Leudesdorf, who published his results in the Proceedings of the London 
Mathematical Society (Vol. xvII. p. 208). Mr Hammond’s results were given in two letters to me dated January 15th and January 20th, 1886, and were briefly alluded to by him at a meeting of the London Mathematical Society. They are here published for the first time.Recalling the form of the operator 
where ϕ1, ϕ2, ϕ3, ... are rational integral functions, we can form a Quasi­Covariant of extent j by a finite number of successive operations on a single letter of that extent.To fix the ideas, take the letter d of extent 3, and operate on it with Θ; then

Since ϕ1, ϕ2, ϕ3, ... are by definition rational integral functions, we can, by operating a finite number of times with 0, remove first c and then b from ϕs (a, b, c), and thus obtain where n denotes a finite number of operations. Since Θα = 0, we have
In this manner we form the Quasi-Covariant of the nth order
If ϕ2, ϕ3, ϕ4, ... do not contain higher powers than the first of the last letter in each, the order of the above Quasi-Covariant will be the same as its extent. This is the case with the reciprocal function, which is a co-recipro­cant (that is, a Quasi-Covariant relative to V).
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42] Lectures on the Theory of Reciprocants 413

Ex.The discriminant of this is the pure reciprocant
As an additional example, consider the pair of linear co-reciprocants
The resultant of this pair is 

that is, is the Quasi-Discriminant multiplied by 2α.
LECTURE XX

“ Quintessenced into a finer substance.”—Drummond of Havrthornden.Before proceeding with the proper subject of this day’s lecture, I should like to mention a geometrical theorem which has fallen in my way, and which, inter alia, gives an immediate proof of the existence of 27 straight lines on a general cubic surface. It is proved by means of a Lemma (itself of quasi-geometrical origin) which finds its principal application in an ex­tension of Bring’s or Tschirnhausen’s method, and shows how any number of specified terms, reckoning from either end, can be taken away from any equation of a sufficiently high degree *.

* I recover ail Hamilton’s results contained in his Report to the British Association, 1836, 
“ On Jerrard’s Method,” in a much more clear and concise manner, and make important additions 
to his theory.

Subjectively speaking, I was led to the Lemma by considering the question, closely connected with Differential Invariants, of the method of depriving a linear differential equation of several terms.Let φ be a cubic and u a linear function in x, y, z, t, say
Then, if ψ is a scroll which contains all the straight lines on ϕ + λu3, when the parameter λ has any arbitrary numerical value from + ∞ to — ∞ , I prove that
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414 Lectures on the Theory of Reciprocants [42where ψ is of the degree 15 in the variables x, y, z, t,

Or, more briefly, inψ is of degree and consequently
G. The intersections of ϕ with ψ are its intersections with u6 and with C, of which the intersections with the arbitrary plane u6 are clearly foreign to the question, but the cubic ϕ and the 9cG intersect in 27 straight lines, which are the 27 ridges on φ.

C is identical with the covariant found by Clebsch and given in Salmon’s 
Geometry of Three Dimensions at the end of the chapter on Cubic Surfaces. It may with propriety be called the Clebschian.By giving the parameter λ (which occurs in ϕ + λu3) an infinitesimal variation, it is easily proved that 
where E is the operator l3∂a + ... + 3l2m∂f + ..., which may be simply and completely defined by its property of changing the general cubic φ into 
(lx + my + nz + pt)3.The equation E3C=0 expresses a new property of the Clebschian: it shows that if a,f are the coefficients of x3 and any other term in φ containing 
x2, neither α3 nor a2f can occur in any one of the terms of G. Defining a principal term in φ as one which contains the cube of one of the variables, and a term adjacent to it as one which contains the square of the same variable, this is equivalent to saying that neither the cube of the coefficient of a principal term nor its square multiplied by the coefficient of any adjacent term can appear in any of the terms of G.An interesting special case of the general theorem is when the arbitrary plane u is taken to be one of the planes of reference, say u = x. Then 
and the operator E becomes simply d/da. Thus we learn that 
is a Scroll of the fifteenth order which contains all the Ridges on 
for any arbitrary value of the parameter λ.It also contains 6 times over the curve of intersection of ϕ = 0 with x = 0.
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42] Lectures on the Theory of Reciprocants 415I now propose to give the substance, with a brief commentary, of some very interesting letters I have recently received from Capt. MacMahon. I abstain from giving a proof of his results, as I am informed that he intends to do this himself at an early meeting of the London Mathematical Society.Using V to signify the Reciprocant Annihilator and Ω the Annihilator of Invariants, we have studied the properties of
and those ofThese may be written in the form

and may be called alternants to and to respectively.It has been shown in Lecture VII. [p. 341, above] that
The corresponding formula is
as may be seen by writing κ = 0, λ = 3, μ= 4, v=5, ... in a more general formula given in Lecture V. [p. 329, above].Observe that operating with the alternant to is equivalent tomultiplication by a number, and that operating with the alternant tomerely introduces a numerical multiple of a as a factor. No such property exists for the Alternantbut one much more extraordinary.MacMahon has found that this alternant, which he calls J, is a generator to a Reciprocant and a generator to an Invariant; that is, it converts a Reciprocant into another Reciprocant, and an Invariant into another Invariant. As regards a Differential Invariant, which is at once an Invariant and a Reciprocant, it is an Annihilator. He shows, in fact, that
and

www.rcin.org.pl



416 Lectures on the Theory of Reciprocants [42If, then, ΩR = 0, it follows immediately that Ω(JR) = 0; that is, if R is an invariant, JR is so too. And in like manner, if 
that is, if R is a reciprocant, so is JR.Of course, if M is a Differential Invariant,

Let me here give a caution which may be necessary : The fact that a form is annihilated by J is not sufficient to show that it is a Differential Invariant, though all Differential Invariants are necessarily annihilated by J. Forms exist which are subject to annihilation by 
but are, notwithstanding, neither invariants nor reciprocants.Such a form is the monomial b, which is obviously annihilated by J. Another is ad-3bc. For, since 
is a Differential Invariant, we have
But therefore, also,The general theorem is as follows, and is a most remarkable one: If we write 

where the coefficients of the terms inside the brackets are the same as those of the corresponding terms in the expansion of (α + b + c + ...)m, and where an stands for the nth letter of the series a, b, c, d, ..., then Capt. MacMahon establishes that the alternant of any two P’s is another P.A question here suggests itself naturally : What would be the alternant of three or more P’s ? For instance, would the alternant 
be another P?*

* In my Multiple Algebra investigations, which I hope some day to resume, I have made 
important use of similar Alternants, which, it may be noticed, do not vanish when their elements
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42] Lectures on the Theory of Reciprocants 417Moreover, he obtains expressions for the parameters m, μ, v, n of the resulting P in terms of the parameters of its two components. He proves that if P1, P2 are the two components whose alternant is P, supposing 
m1, μ1, υ1, n1 to be the parameters of P1, 
m2, μ2, v2, n2.............................. P2,then the parameters m, μ, v, n of their resultant P are given by the equations

It will be seen that Ω and V are special forms of P. Thus,
Now, if the second and third parameters are zero, every term of P vanishes, and MacMahon finds that in the following two cases the second and third parameters of the resultant above given vanish.(1) Supposing μ1/mv to be an integer, this takes place when the twocomponent systems of parameters are

(2) When they are
Now,
and by the law of composition
Also, will be found to come under the first case;. the second.
are non-commutative. In this connection it is well worthy of observation that the P’s (as 
indeed would be true of any operators linear in the differential inverses) obey the associative law.

It would be interesting to ascertain under what arithmetical conditions, if any, other than 
MacMahon’s, any two linear operators of the same general form as his P’s become commutative.

Perhaps it would also be worthy of inquiry whether the P theory might not admit of extension 
in some form to operators non-linear in the differential inverses, and whether to every such 
operator of degrees i and j in the letters and their differential inverses there is not correlated 
another in which i and j are interchanged.s ιv. 27
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418 Lectures on the Theory of Reciprocants [42Hence,The above theorem is one of extraordinary beauty, and must play an important part in the future of Algebra.In another letter Capt. MacMahon calls my attention to the fact that the operator called by me Cayley’s generator P, in Lecture IV. of this course [p. 323, above], is a particular case of one of a much more general character given by him in the (Quarterly Mathematical Journal (Vol. xx., p. 362).He also states that every pure reciprocant, when multiplied by the needful power of a, is an invariant of the binary quantic

which I have written in the non-homogeneous form.But this expression is (to a numerical factor pres) identical with thenumerator of when t, a, b, ... are taken to be the modified differentialderivatives See my note on Burman’s law for theInversion of the Independent Variable [Vol. II. of this Reprint, p. 44],The property that its invariants are pure reciprocants has already been proved in the lectures [above, p. 412].

LECTURE XXI.
I take blame to myself for not earlier communicating to the class the substance of a note of Mr Hammond’s under date of January 20th, 1886, in which he makes an interesting application of the theorem that any invariant of the form

in which the function F is subject to the condition
or of any combination of such forms, is a pure reciprocant.
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42] Lectures on the Theory of Reciprocants 419Forms such as the above, whose invariants are pure reciprocants, be calls 
co-reciprocants. It follows that any covariant of one or more co-reciprocants is itself a co-reciprocant, for any invariant of a covariant is an invariant.Taking F to be a single letter b, c, d, he forms the functions 
in which

On writing y = t, x = — 1, it will be observed that these three forms are the numerators of
The Jacobian of (1) and (2) is 

the coefficient of ay is the familiar pure reciprocant 4αc — 5b2.The Jacobian of (1) and (3) is the determinant 
which is divisible by y, giving the quotient
This isthe terms involving vanishing identically.Looking at 2a2d- 2abc-b3 as the anti-source to a Co-reciprocant*,  we might at first sight expect that it would give rise to a co-reciprocant of the third order in x, y, whereas we see it is the anti-source of a linear co­reciprocant.

* What differentiates Reciprocants from Invariants is that we have no reverser to V as 0 is 
to Ω in the theory of Invariants, that is, no reverser which does not introduce an additional 
letter.

The coefficients of a covariant are obtained either from the source by continually operating 
with 0, or from the anti-source by continually operating with Ω. But in the case of a co-recipro­
cant, we are only able to proceed in one direction (namely from the anti-source, or coefficient of 
the highest power of y, to the source), as we have only one operator, V, at our disposal.27__ 2
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420 Lectures on the Theory of Reciprocants [42We haveCombining this with and dividing by a, he obtains
Henceis a co-reciprocant.The Jacobian of (5) and of cy2 + 5abxy + 5α3x2, that is, 
will divide by a, and gives the new linear co-reciprocant

The coefficient of y is of weight 4, but instead of giving rise to a co­reciprocant of the 4th order, we see that this again is the anti-source of a linear co-reciprocant.The resultant of the two linear co-reciprocants (4) and (6) divided by a numerical multiple of a gives the well-known Quasi-Discriminant 125αsd2 + ..., as was stated at the end of Lecture XIX [above, p. 413].The noticeable fact is that (including by + 2α2x) there exist 3 linear independent co-reciprocants of extent 3. Probably there are no more, but this requires proof.The promised land of Differential Invariants or Projective Reciprocants is now in sight, and the remainder of the course will be devoted to its elucida­tion. Twenty lectures have been given on the underlying matter, and probably ten more, at least, will have to be expended on this higher portion of the theory.One is surprised to reflect on the change which has come over the face of Algebra in the last quarter of a century. It is now possible to enlarge to an almost unlimited extent on any branch of it. These thirty lectures, embracing only a fragment of the theory of reciprocants, might be compared to an unfinished epic in thirty cantos. Does it not seem as if Algebra had attained to the character of a fine art, in which the workman has a free hand to develop his conceptions as in a musical theme or a subject for painting? Formerly it consisted almost exclusively of detached theorems, but nowa­days it has reached a point in which every properly developed algebraical composition, like a skilful landscape, is expected to suggest the notion of an infinite distance lying beyond the limits of the canvas.It is quite conceivable that the results we have been investigating may be descended upon from a higher and more general point of view. Many 
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42] Lectures on the Theory of Reciprocants 421circumstances point to such a consummation being probable. But man must creep before he can walk or run. and a house cannot be built downwards from the roof. I think the mere fact that our work enables us to simplify and extend the results obtained by so splendid a genius as M. Halphen, is sufficient to convey to us the assurance that we have not been beating the wind or chasing a phantom, but doing solid work. Let me instance one single point: M. Halphen has succeeded, by a prodigious effort of ingenuity, in obtaining the differential equation to a cubic curve with a given absolute invariant. His method involves the integration of a complicated differential equation. In the method which I employ the same result is obtained by a simple act of substitution in an exceedingly simple special form of Aronhold’s S and T, capable of being executed in the course of a few minutes on half a sheet of paper, without performing any integration whatever. This will be seen to be a simple inference from the theorem invoked under three names, to which allusion has been made in a preceding lecture and the demonstration of which will shortly occupy our attention.Before entering upon the theory of Differential Invariants, I think it desirable to bring forward the exceedingly valuable and interesting com­munication with which I have been favoured by M. Halphen establishing 
a priori the existence of invariants in general.

Sur l’Existence des Invariants.
(Extracted from a Letter of M. Halphen to Professor Sylvester.)Dans des theories diverses on a rencontre des Invariants sans qu’on ait penetre la cause generale de leur existence. C’est cette lacune qu’il s’agit ici de faire disparaitre.1. Soient A, B, ..., L des quantites auxquelles on puisse attribuer des valeurs ad libitum.Une substitution consiste a remplacer ces quantites (A, B, ...,L) par d’autres (a, b, ..., l).Les substitutions, que l’on doit considerer ici, sont definies par des rela­tions algebriques, de forme supposee donnde, mais contenant des parametres arbitrairesp, q, ....

Soit maintenant une seconde substitution, de meme espece, mais avec d’autres parametres π, χ, .... et donnant lieu a (a, β, ..., λ), en sorte qu’on ait
(1 bis)
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422 Lectures on the Theory of Reciprocants [422. Definition. Les substitutions dont il s’agit forment un groupe, si, quels que soient les parametres p, q, ..., π, χ, ..., ainsi que A, B, ..., L, il existe des quantites P, Q, ... verifiant les egalites semblables
(1 ter)

Les invariants sont l,apanage exclusif des substitutions formant groupe. On va le montrer. Mais auparavant, pour eviter toute confusion, on doit faire une remarque sur la definition.3. Dans les diverses theories ou l'on a rencontre des Invariants, les sub­stitutions forment groupe, en effet, suivant cette definition; mais il s’y rencontre encore une circonstance particuliere de plus, c’est que les parametres 
P, Q, ... de la substitution composee (1 ter) dependent uniquement des parametres ρ, q, ..., π, χ, ... des substitutions composantes (1) et (1 bis). Cette propriety nest pas necessaire a l'existence des Invariants, et nous ne la supposerons pas ici. Il sera donc entendu que P, Q, ... peuvent dependre, non seulement de p, q, ..., π, χ, ..., mais aussi de A, B, ..., L.Exemples :

P et Q ne dependent pas de A, B, C.

P et Q dependent de A.Dans ces deux exemples, il y a un invariant absolu,
4. Dans la substitution (1) nous supposerons que le nombre des para­metres soit inferieur au nombre des quantites A, B, ..., L.Soient ainsi m le nombre des parametres p, q, ...,

n le nombre des quantites A, B, ...,L,on suppose m < n.
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42] Lectures on the Theory of Reciprocants 423Cela etant, on peut eliminer les parametres entre les equations (1), et il reste (n — m) equations
ThEorEme : Si les substitutions considerees forment groupe, les (n — m) 

equations (2) peuvent etre mises sous la forme 
en d’autres termes, il y a (n — m) invariants absolus.

Reciproquement, s’il y a (n — m) invariants absolus (distincts), les substitu­
tions forment groupe.5. Demonstration. Prouvons d’abord la seconde partie, ou reciproque. Voici l'hypothese : des equations (1), par Elimination de p, q, ... resultent les equations (3).Par consequent, A, B, ..., L et α, b, ..., l Etant quelconques, mais satisfaisant aux equations (3), on peut determiner p, q, au moyen des Equations (1).Soient A, B, ..., L, p, q, ..., π,X ... pris arbitrairement, et a,b, ...,l, α, β, ..., λ determines par (1) et (1 bis). Suivant l'hypothese, on aΦ(α, b, ..., l) = Φ(A, B, ..., L) et Φ(α, β, ..., λ) = Φ(A, B, ..., L); donc Φ (a, b, ...,l) = Φ (a, β, ..., λ), etc.Donc on peut dEterminer P, Q, ... par les equations (1 ter), ce qu’il fallait demontrer.Demontrons main tenant la premiere partie, ou theoreme direct. Par hypothese, A, B, ..., L, p, q, ..., π, χ, ... etant pris a volonte et a, b, ..., l, 
a, β, ..., λ determines au moyen de (1) et (1 bis), il en resulte les relations (1 ter).Des Equations (1) rEsulte le systeme (2); de meme, de (1 bis) et de (1 ter) resultent

Je dis que le systeme (2 ter) resulte de (2) et de (2 bis).
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424 Lectures on the Theory of Reciprocants [42En effet, a,b,...,l et a, β, ..., λ n’etant definis que par (1) et (1 bis), le systeme (2 ter) resulte de (1) et de (1 bis) par l'elimination de p, q, ..., 
π, χ, ... et  A, B, ..., L. Mais l’elimination de p, q, ... remplace le systeme (1) par le systeme (2), celle de π, χ, ... remplace le systeme (1 bis) par (2 bis); donc (2 ter) resulte de l’elimination de A, B, ..., L entre (2) et (2 bis).Le systbme (2), (2 bis) est forme par 2 (n - m) equations, et cependant l’elimination de n lettres A, B, ..., L, au lieu de donner (n- 2m) equations, en donne (n — m), les equations (2 ter). Si donc on elimine seulement (n — m) lettres A, B, ..., G, les m autres H, ..., L disparaitront d’elles-memes. Tirons 
A, B, ..., G des equations (2), et nous aurons
Tirons de meme A, B, ..., G des equations (2 bis), et nous aurons
Le resultat de l’elimination est donc represents par (n— m) equations telles que 
et l'on sait que H, ..., L disparaissent, d’eux-memes, de ces Squations.En assignant donc a H, ..., L des valeurs numeriques a volonte, on voit done bien que les equations resultantes, equivalentes a (2 ter), ont la forme
C’est ce qu’il fallait demontrer.6. Remarques. Si les equations (4) sont rationnelles, la disparition de 
H, ..., L exige que Ψ ait la forme suivante 
et de meme pour Ψ1, etc. Sous cette forme, on voit que Θ et θ disparaissent dans les equations (4), et l'invariant resultant est Φ.Mais, si les equations (4) sont irrationnelles, la disparition de H, ..., L peut n’etre pas immediate. En assignant a H, ..., L des valeurs numeriques a volontd, comme on l'a dit dans la demonstration, c’est-a-dire en considerant 
H,...,L comme des constantes arbitraires, on voit les invariants se presenter

www.rcin.org.pl



42] Lectures on the Theory of Reciprocants 425avec des constantes arbitraires. Ceci ne doit pas etonner, puisqu’il s’agit ici d’invariants absolus, que l’on peut effectivement modifier en leur ajoutant des constantes arbitraires ou en les multipliant par des constantes arbitraires, sans troubler la propriete d’invariance.L’analyse employee dans la demonstration fournit un moyen regulier de former les invariants; ce moyen consiste a eliminer les parametres dans les equations (1), puis a resoudre par rapport a (n — m) quantites A, B, ..., G. Mais, les substitutions formant groupe, on peut aussi resoudre par rapport a a, b, ...,g, en eliminant les parametres.Exemple :En resolvant par rapport a c, c’est-a-dire en tirant p, q des deux premieres, on obtient
Voici l'invariantEn resolvant par rapport a b, on trouve ce quidonne l’invariant ou c est une constante arbitraire.

LECTURE XXII.
E pur si muove.The theory still moves on. We have now emerged from the narrows and are entering on the mid-ocean of Differential Invariants, or of Principiants, as I have called them. These, it will now be seen, are perfectly defined by their property of being at one and the same time invariants and pure reciprocants. In other words, if P be a Principiant, it has both Ω and V for its annihilators. Thus, for example, the Mongian

is necessarily a Principiant. For
and at the same time

Among Pure Reciprocants, those only are entitled to rank as Principiants whose form is persistent (merely taking up an extraneous factor, but other­wise unchanged) under the most general homographic substitution (see
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426 Lectures on the Theory of Reciprocants [42Lecture XIII. [pp. 379, 382 above]. We have therefore to show that such reciprocants and no others are subject to annihilation by Ω.With this end in view, let us consider the effect of substituting for
x and for y in any rational integral function of y and its derivativeswith respect to x. Suppose that, in consequence of this substitution, the functionbecomes changed into
then the transformed function will be
where are the successivederivatives of Y with respect to X.If, for the moment, we agree to consider h as an infinitesimal (we shall afterwards give it a finite value), neglecting squares and higher powers of h, we may write

Hence, by n successive differentiations of Y with respect to X, neglecting squares of h whenever they occur, we deduce

The last of these, for instance, is obtained as follows:We have
But

and
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42] Lectures on the Theory of Reciprocants 427

Consequently,
On substituting the above values of Y, Y1, Y2, ∙∙∙ Yn in the transformed function, we find immediately 

where v and Θ are the partial differential operators
Changing to our usual notation, we write

and then if F1 is what F (a rational integral function of a,b, c, ...) becomes when we substitute —- , , —for x, y (regarding h as infinitesimal), wehave 
whereandIn general v is merely the partial differential operator written above ; but when its subject, F, is homogeneous, of degree i, and isobaric, of weight w, in the letters y, t, a, b, c, d, ... supposed to be of degrees and of weights its operation is equivalent to multiplication by the number 3i + 2w. For in this case we have 
and so that we may regard v as a number, simply writing 
when we have occasion to do so.We are now able to show that if F is a persistent form, we must neces­sarily have

For
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428 Lectures on the Theory of Reciprocants [42and consequently, if F1 is divisible by F (this is what is meant by saying ΘFthat F is a persistent form), unless ΘF vanishes, ΘF/F must be a rational integral function of y, t, a, b, c, .... But since the operation of Θ diminishesΘ7τthe weight by unity without altering the degree, ΘF/F must be of degree 0 and weight — 1. The impossibility of the existence of such a function leads to the necessary conclusion that
Let us apply this result to the case of a pure reciprocant. We have

Thus when F is a pure reciprocant, or indeed any function in which t does not appear, y∂tF = 0 and Θ reduces to Ω. We have therefore shown, in what precedes, that the condition
is necessary to ensure the persistence of the form of F under a particular homographic substitution ; a fortiori, this condition is also necessarily satisfied when the form of F is persistent under the most general homographic sub­stitution in which x, y are changed into

The satisfaction of ΩF = 0 is of itself inadequate to ensure persistence under the general homographic substitution; the necessary and sufficient condition of pure reciprocants
must also be satisfied. This follows from the fact that the general linear substitution, for which all pure reciprocants are persistent, is merely a particular case of the most general homographic substitution.It only remains to be proved that the two conditions VF = 0, ΩF = 0, taken conjointly, are sufficient as well as necessary.In what follows I use a method which may be termed that of composition of variations. Its nature and value will be better understood if I first apply it to the rigorous demonstration of the theorem that the substitution of 
x + hy for x in the Quantic
changes any function whatever of its coefficients, say
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42] Lectures on the Theory of Reciprocants 429This is not proved, but only verified up to terms of the second order of differentiation, in Salmon’s Modern Higher Algebra (3rd ed. 1876, p. 59). Remembering that, whatever the order n of the Quantic may be, the changed values of the coefficients a, b, c, d, ... are 

what we have to prove is that, for all values of h,

Tn other words, if for brevity we write 
and it is required to show that 
whereWhen h is infinitesimal, it is obvious that
Hence, when h has a general value, we may assume

Let h be increased by the infinitesimal quantity ϵ; then, considering this increase as resulting from a second substitution similar to the first, we see that F1 becomesBut it also becomes

Equating this to F1 + eΩF1, we obtain
But
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430 Lectures on the Theory of Reciprocants [42The comparison of these two expressions gives

Substituting these values in the assumed expansion for F1, there results
which is the expanded form of

A similar method of procedure will enable us to establish the corresponding but more elaborate formula
in which F is any homogeneous and isobaric function*  of degree i and weight 
w in y and its modified derivatives (t, a, b, c, ...) with respect to x∖ the operator Θ = — y,∂t + αθb + 2b^∂c + 3c∂d + ...; the function F1 is what F becomesin consequence of the substitution of for x, y∖ h is any finitequantity, and v = 3i + 2w.Before giving the proof of this theorem, I will show that, upon the assumption of its truth, two inverse finite substitutions will, as they ought, nullify each other, leaving the function operated upon unaltered in form.To avoid needless periphrasis, we call the substitution of for x, y the substitution h.Either of the two substitutions, h, — h, reverses the effect of the other; for the substitution — h turns

andThe two substitutions h, — h, performed successively on F, ought there­fore to leave its value unaltered. But by hypothesis the substitution h converts F into F1; consequently the substitution — h performed on F1 ought to change it back again into F.

* F need not be integral or even rational; whenever it is homogeneous or isobaric, v will be 
a number.

www.rcin.org.pl



42] Lectures on the Theory of Reciprocants 431It must be carefully observed that (since the operation of Θ decreases the weight by unity, leaving the degree unchanged) the weight of ΘκF is κ units lower than that of F, whilst the degree is the same for both.Thus for and forHence the substitution — h, which changes 
also changes 
and in generalMoreover, 1 + hx becomes so that

becomes
(since Θ does not act on x).Consequently, becomes

And since, by the formula to be verified,
becomes
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432 Lectures on the Theory of Reciprocants [42

LECTURE XXIII.We now proceed to show how the composition of variations can be made to furnish a strict proof of the formula 
which was set forth in the preceding lecture.As before, calling the change of x, y into , the substitution
h, it is easy to see that the product of two substitutions, h, ϵ, is the substitution 
h + ϵ. For
This shows that if

F1 is what F becomes on making the substitution h,andthenThus we can find two expressions for F2, the comparison of which will enable us to assign the coefficients of all the powers of h in the expanded values of F1.The first two terms of this expansion were obtained, in the preceding lecture, by treating h as an infinitesimal. We may therefore write
Changing h into h + ϵ, we deduce
For greater simplicity, let ϵ be an infinitesimal, and write
ThenNow look at each term in the expansion of F1 and find its increment (that is, its Δ) when x, y undergo the substitution ϵ. We thus obtain
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42] Lectures on the Theory of Reciprocants 433Comparing these two values of ΔF1, we find 

and generallyThese equations are sufficient to determine all the coefficients of F1 ; it only remains to show how the operations Δ may be performed.We have in fact 
whereBut we must not from this rashly infer that
To do so would be tantamount to regarding v as a constant number, whereas its value depends on the degree and weight of the subject of operation.This will be clearly seen in the calculation which follows*.  We first generalize the formula 
by making ΘκF the operand instead of F.Then, since i is the degree and w — κ the weight of ΘκF, instead of 
we haveThus,Again, since we find
Hence we obtain the general formula

* If our sole object were to show that ΘF=0 is a sufficient as well as necessary condition of 
the persistence of F, we might dispense with all further calculation. Thus it is obvious that, 
since ΔF,=(vx + θ) F, ΔnF must be of the form (x, θ)n F; for the dependence of v on the degree­
weight of the operand will not affect the form of ∆n, but only its numerical coefficients. Hence 
we conclude that F1 is of the form ϕ (x, θ) F; and remembering that θ2F=0, Θ3F=0, ... when­
ever ΘF=0, it is at once seen that not only (as was shown in the last lecture) must ΘF vanish 
when F is persistent under the substitution h, but, conversely, that when QF=0, the altered 
value of F contains the original value as a factor (the other factor being in this case a function 
of x only); that is, F is persistent.

S IV. 28 
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434 Lectures on the Theory of Reciprocants [42by means of which we calculate in succession the values of Δ2F, Δ3F, .... Thus,
Hence

If [v]n is used to denote v(v- l)(v- 2) ... to n factors ([v]1 will of course mean v∖ we have shown that 
and by induction it may be proved that in general
That the last term of this expression is ΘnF is sufficiently obvious; what we wish to prove is that, when m is any positive integer less than n, the term in 
ΔnF which involves Θm will be
To find the term involving Θm in Δn+1F, we need only consider the operation of Δ on two consecutive terms of ΔnF; none of the remaining terms will affect the result. Suppose, then, that
Operating with Δ, we find

Now, assuming the general term of ΔnF to be as written above, we have 

so that
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42] Lectures on the Theory of Reciprocants 435Thus the general term of Δn+1F has for its numerical coefficient 

which shows that the numerical coefficients in Δn+1F obey the same law as those in ΔnF; and as this law is true for n = 1, 2, 3, it is also true universally.We have thus shown that the general term in ΔnF is 
and, consequently, the corresponding general term in
Now, as we have already seen, 
which, by merely expressing the symbolic factor as a series of powers of Θ, may be transformed into

where, remembering that [v]n stands for v(v — 1) (v — 2) ... to n factors, it is evident that the functions of x which multiply F, hΘF, —Θ2F, ... are all of them binomial expansions. Hence we immediately obtain 

and finally,Mr Hammond has remarked that, with a slight modification, the foregoing demonstration will serve to establish the analogous theorem, that 
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436 Lectures on the Theory of Reciprocants [42where, as before, F means any homogeneous and isobaric function of degree i and weight w in the letters y, t, a,b, c, ... ; and F1 is what F becomes when, leaving y unaltered, we change x into x + hy, where h is any finite quantity. Instead of the operator 
we have and instead of v = 3i + 2w, a different number, μ = 3i + w (which I have called the characteristic), taken negatively.If we suppose that

F1 is what F becomes on changing x into x + hy,andthenHence, if 
we must have
Thus, if ϵ be regarded as infinitesimal, and we write 
it follows thatBut, by the direct operation of Δ, we find 
and, comparing these two values of ΔF1,

Hence it follows that
* This theorem was stated without proof in Lecture VIII, where, through inadvertence, the 

term yt∂y in the expression for V1 was omitted [p. 352, above].
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42] Lectures on the Theory of Reciprocants 437It remains to find the value of ΔnF. This can be effected by means of formulae given in Lecture VIII. [p. 350, above], where it is shown that

We now show that where just as in the cognate theorem we had
Since F is a function of y, t, a, b, c, ... without x, it is evident that 

where the part of ΔF which is independent of t is — VF.Now.and so thatHence, writing
whereObserving that V1κF is of degree i + κ and weight w - κ; since 
we see thatAgain,
We thus obtain the formula 
analogous to the one previously employed,

www.rcin.org.pl



438 Lectures on the Theory of Reciprocants [42The remainder of the work will be step for step the same for this as for the previous theorem. In fact, by using (1) just as we used (2), we shall deduce 
just as we deduced the analogous formula

The reason of this is obvious: by interchanging x and t, μ and — v, Θ and — V1, we interchange the formulae (1) and (2), (3) and (4).It may be well to observe that if we use Sh to denote a substitution of such a nature that and if (regarding e as an infinitesimal) we write 
then in generalThe proof of this proposition is virtually contained in what precedes.

LECTURE XXIV.Whenever a rational integral function of x, y, t, a, b, c, ... is persistent in form under the general linear substitution, it cannot contain explicitly either x, y or t, but must be a function of the remaining letters a,b,c,... (the successive modified derivatives, beginning with the second, of y with respect to x) alone.For if, keeping y unaltered, we change x into x + a, where a is any arbi­trary constant which may be regarded as an infinitesimal, the derivatives 
t, a, b, c, ... are not affected by this change, and consequently the functionbecomeswhich cannot be divisible by F unless

(The alternative hypothesis of being divisible by F is inadmissible, because F is a rational integral function.)Hence F cannot contain x explicitly; and if we write y + β for y, keeping 
x unchanged, we see, in like manner, that F cannot contain y explicitly.
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42] Lectures on the Theory of Reciprocants 439Again, if in the function 
we change x, y into x + α, y + βlx + β, the effect of this substitution will be to increase t by the arbitrary constant βi, without altering any of the remain­ing derivatives a, b, c, ....Hence, in order that the form of F may still be persistent, we must have 
dF dFthe reasoning being just the same as that by which was seen to vanish. Thus, F does not contain t explicitly. Moreover, the function 
must be both homogeneous and isobaric.For the substitution of a,x + a, β,,y + β,x + β for x,y, respectively, will multiply the letters 
byEach term of F will therefore be multiplied by a positive power of β,, and a negative power of α,.Let one of the terms of F be αλ°bλ1cλ2dλ3.... It will be multiplied by

In order that F may retain its form, this multiplier must be the same for every term of F, no matter what arbitrary values are assigned to α, and β,,. This can only happen when, for all terms of the function F, we have 
and that is, when F is homogeneous and isobaric.We have thus proved that among all the rational integral functions of 
x, y, t, a, b, c, ... the only ones persistent under the substitution of a + a,x, 
β + β,x + β,,y for x, y, respectively, are such as simultaneously satisfy the conditions of not explicitly containing x, y or t, and of being homogeneous and isobaric in the remaining letters a,b,c,....If F, any function satisfying these conditions, merely acquires an extra­neous factor when, leaving y unaltered, we change x into x + hy, the form of 
F will be persistent under the general linear substitution. For both 
a + a,(x + hy) and β + β,(x + hy) + β,,y are general linear functions of 
χ, y, 1.Now, the change of x into x+hy converts (as was shown in the preceding lecture) F into 
where
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440 Lectures on the Theory of Reciprocants [42But, since neither y nor t occurs in F, we must have
Consequently, and so on. Hence
Unless VF, V2F, V3F, ... all of them vanish, F1 cannot contain F as a factor. If it could, VF, V2F, ... would all have to be divisible by F. But this is impossible; for VF, a rational integral function of a, b, c, ... whose weight is w — 1, cannot be divisible by F, a rational integral function of weight w.We must therefore have (which implies V2F=0, etc.) as the necessary and sufficient condition of the persistence of the form of F under the general linear substitution. In other words, F must be a pure reciprocant.In order that F may also be persistent in form under the general homo­graphic substitution, it must (besides being a pure reciprocant) be subject to annihilation by the operator
For it was seen, in the preceding lecture, that the special homographic substitution in which x/1+hx , y/1+bx are written instead of x, y. respectively,1 + hx 1 + hxhas the effect of changing any homogeneous and isobaric function F into F1, where
When the letter t does not occur in F, we may write ∂tF=0, so that Θ becomes simply Ω, and the above formula becomes
Hence it follows immediately that, when F is a rational integral function of the letters a, b, c,..., the condition ΩF=0 is sufficient as well as necessary to ensure the persistence of the form of F under the special homographic substitution we have employed.But when F is a pure reciprocant it also satisfies the condition VF = 0, and it is the simultaneous satisfaction of ΩF = 0 and VF = 0 that ensures
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42] Lectures on the Theory of Reciprocants 441the persistence of the form of F under the most general homographic substi- tution. This may be shown by combining the substitution     (forwhich F is persistent when, and only when, ΩF =0) with the general linear substitution (for which VF = 0 is the necessary and sufficient condition of the persistence of the form of F), so as to obtain the most general homo­graphic substitution. Thus the linear substitution 
when combined with 
gives the substitution 
in which both the numerators are general linear functions.By combining the substitution just obtained with the linear substitution 
the denominator of each fraction is changed into a general linear function, and thus, by combining the special homographic substitution with two linear substitutions, we arrive at the most general homographic substitution.This proves that the necessary and sufficient condition of F being a 
homograρhically persistent form is the coexistence of the two conditions

Thus a Projective Reciprocant, or Principiant, or Differential Invariant, combines the natures of a Pure Reciprocant and Invariant in respect of the 
elements.Notice that every Pure Reciprocant is an Invariant of the Reciprocal Function (that is, the numerator of the expression for dnx/dyn in terms of dy/dx, ..., or what is the same in terms of the modified derivatives t, a, b, ...), but the elements of such invariants are not the original simple elements, but more or less complicated functions of them.What has just been stated is obvious from the fact that all invariants of the “reciprocal function” have been shown to be pure reciprocants (vide*  Lecture XIX.). The ordinary protomorph invariants of this function will

[*  above, p. 412.]
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442 Lectures on the Theory of Reciprocants [42have for their leading term a power of a multiplied by a single letter. Con­sequently, by reasoning previously employed in these lectures, every pure reciprocant will be a rational function of invariants of the Reciprocal Func­tion divided by some power of a. Thus, for example, the Reciprocal Function
if The two protomorph invariants of this reciprocal function are
andAll other pure reciprocants of extent 3 may be rationally expressed in terms of a and the two protomorphs 4ac-5b2, a2d-3abc + 2b3; that is, all pure reciprocants of extent 3 are invariants of the reciprocal function of extent 3.The reasoning employed can be applied with equal facility to the general case of extent n.Instead of , let us consider the special homographic sub­stitution employed by M. Halphen.

Writinglet Y1, Y2, Y3, ... denote the successive derivatives of Y with respect to X, and y1, y2, y3, ... those of y with respect to x. Then

Hence, if a, b, c, d, ... are the successive modified derivatives (beginning with the second) of y with respect to x, and α', b', c,, d', ... the corresponding
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42] Lectures on the Theory of Reciprocants 443modified derivatives of Y with respect to X, it follows immediately that

Attributing the weights 0, 1, 2, 3, ... to the letters a, b, c, d, ..., it is very easily seen that if F is any homogeneous and isobaric function of degree i and weight w,

But we proved (in Lecture XXII.) [above, p. 429] that for all values of h 
Hence, making we obtain

which proves that the satisfaction of 
is the necessary and sufficient condition for the persistence of the form of F under the Halphenian substitution 1/x, y/x.Similarly we might prove that F(y, t, a, b, c, ...), which contains y and t, but not x, is changed by the substitution -, - into
where or we may deduce this result from the formula, demonstrated in the preced­ing lecture of this course, 
in which F1 is what F becomes in consequence of the substitutionimpressed on the variables.
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444 Lectures on the Theory of Reciρrocants [42Let i be the degree and ω the weight measured by the sum of the orders of differentiation in each term of
If we measure the weight by the sum of the orders of differentiation of every term of F diminished by 2 units for each letter in the term, then
Let becomewhen we change

thenA further substitution impressed on the variables in F',will convert the original variables into
that is, intoThe function F' is at the same time changed into

If now, in the above, we write p = h, q = — h2, r = h, we shall have changed the original variables x, y into   and original function F into
Let h become infinite; then andbecome and (—)w showing that the substitution changes Finto (—)w xv ex F.
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42] Lectures on the Theory of Reciprocants 445

LECTURE XXV.In a letter to me dated June 14th, 1886, M. Halphen calls forms whichare persistent under the substitution Invariants d'homologie. He usesthe letters to denote y and its successive modified derivatives with respect to x; and, supposing them to become
in consequence of the substitution , , gives, in the briefest possible man­ner, two very ingenious proofs of the formula 
from which he deduces the theorem that the substitution in question changes any homogeneous and isobaric function f, of degree i and weight ω in 
into where Θ is the partial differential operator

I give the two proofs mentioned above in M. Halphen’s own words, adding occasional footnotes, and making slight changes in the literation of his formulae when it seems desirable to do so.SoientPar une formule connue (Schlomilch, Compendium II.)
* An easy inductive proof of this may be obtained as follows :

Since

Hence, assuming the truth of the formula when n=κ, we find

Thus, if the formula is true for n=κ, it will be equally so when n=κ +1. But it is obviously 
true when n = l (when it becomes dy/dX=x2dy/dx), and therefore holds universally.
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446 Lectures on the Theory of Reciprocants [42et puisqueil en resulte

Si l’on poseil vient
Soit on aura

Par consequent, pour une fonction contenant a0, a1, a2, ..., de degre i et de poids ω, a chaque terme, on aura
* For, expanding by Leibnitz’s Theorem,

+ The summation extending to all positive integral values of n, from 1 to ∞ , so that

Remembering that Halphen’s a0, a1, a2, a3, ... have the same meaning as our y, t, a, b, ..., 
this operator is -y∂t + a∂b + 2b∂c + 3e∂d+ ... identical with the θ used in previous lectures.

+ We may show without much difficulty that, when θ1, θ2, Θ3, ... are each of them equivalent 
to θ, but θ1 acts on u only, θ2 on v, θ3 on w, and so on, θuvw ... = (θ1 + θ2 + θ3+ ...) uυw .... 
From this it can be deduced that θκuvw ... = (Θ1 + Θ2 + Θ3 +...)κuυw ..., when κ is any positive 
integer. Now let the number of the functions u, v, w, ... be i, and suppose that 

suppose, also, that the weight n +p + q + ... = ω. Then

(for by what precedes θ1 + θ2 + θ3+ ... may be replaced by θ). Taking anapaq ... and AnApAq ... 
to be corresponding terms of f and F, we see at once that
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Autre Demonstration de la Formule (I)*.Si Γon change X et x en X + H et x + h, on a
Maintenant la formule 

ecrite symboliquement + 
devientD’ailleurs donc symboliquement

Si l'on developpe le second membre (II) suivant les puissances ascendants de H, le coefficient de Hn est An. Or ce developpement est

* If x becomes x + h in consequence of the augmentation of X by an arbitrary quantity H, 
the increment of x will not be a constant, but will depend on X as well as on H. The 
value of h may be found at once by eliminating x between X=1/x and X+ H=1/x+h, when we

X ITobtain X + H=X/1+hX, and consequently h= H/X(X+H).

This increase of X also changes y and Y (functions of x and X, whose original values were α0 
and Ao before the augmentation of X took place) into

y = α0+hα1 + h2a2 + ... + hnan +...
and into Y=A0 + HA1 + H2A2 + ... + HnAn+ ....
These altered values of y and Y are the ones used in this second proof; the other letters retain 
their original signification.

+ The word symboliquement indicates, whenever it is used, that powers of a are to be replaced 
by suffixes of corresponding value. For example, in the final result 

is to be replaced by

In our notation the final result is
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448 Lectures on the Theory of Reciprocants [42donc symboliquement 
ce qui est justement la formule (I).We may regard the coefficients a,b,c,... of the ordinary binary Quantic in u, v, 
as the successive modified derivatives, beginning with the second, of a new variable y with respect to another new variable x.Any invariant I of this Quantic will then retain its form unaltered, or at most merely acquire an extraneous factor, if(1) leaving x, y, v unaltered we change u into u + λv, 

where λ and h are arbitrary constants.For we have seen that these three substitutions will severally convert any homogeneous and isobaric function F, of degree i and weight w in the letters a, b, c, ..., into 
where, in each case, Ω = α∂b + 2b∂c + 3c∂d ..., and v =3i + 2w. From our point of view an invariant is defined as a homogeneous and isobaric solution of the equation
Hence the above substitutions convert the invariant I into

An absolute invariant with respect to any substitution is one which, dis­regarding its sign, remains unchanged in absolute value by that substitution. Thus, any invariant for which 
is an absolute invariant with respect to each of the three substitutions here considered.An invariant is of odd or even character with respect to any substitution according as its sign is or is not changed by that substitution. Thus, 1 V invariants are of odd or even character with respect to the substitution -, - according as their weights are odd or even.
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42] Lectures on the Theory of Reciprocants 449This corresponds to the theorem that the character (with respect to the interchange of x and y) of a pure reciprocant is odd or even according as its degree is odd or even [p. 316, above].From any two invariants for which v has the same value we can form an absolute invariant (that is, one for which v = 0) by taking their ratio, and then by differentiating the absolute invariant thus formed obtain another invariant.Suppose I1 to be an invariant of degree i1 and weight w1, 
and letthen the v for I1v2 is the same as that for I2v1, and consequently is anabsolute invariant.We proceed to show that is an invariant, though not anabsolute one.Using accents to denote differential derivation with respect to x, we have

If, then, we can prove that v2I1'I2 — v1I2I'2 is an invariant, it will follow that  will be one also, and the proposition will be established. It may be very easily shown that this is the case by using Cayley’s generators 
P and Q. For [p. 327, above], I being any invariant of degree i and weight 
w, PI and QI are also invariants where
and Hence is an invariant.Now, sinceand

Consequentlyare both of them invariants. Hence the combination
is also an invariant; that is
is one; which is the theorem to be demonstrated.

S. IV.
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450 Lectures on the Theory of Reciprocants [42The invariant aI' — vbI, which we generated from I, is of degree i + 1 and weight w + 1; its v is therefore the original v increased by 5 units, three for the unit increase in the degree and two for the unit increase in the weight. Hence, on repeating the process of generation, we obtain the invariant
By adding on the invariant v (v + 5) (αc — b2) I and dividing the sum by 

a, the above invariant is reduced to
which is an invariant of lower degree by unity than the unreduced form.The results obtained above may be compared with the corresponding ones in the theory of reciprocants.Thus to the invariants correspond the reciprocants
where whereDefining a plenarily absolute form to be one whose degree and weight are both zero (i = 0, w = 0), the theorem I shall now prove may be stated as follows:By differentiating a plenarily absolute principiant we obtain another 
principiant.Let P be any principiant of degree i and weight w. Then, by what pre­cedes, since P is both an invariant and a reciprocant,is an invariant,and  is a reciprocant.Hence, when v = 0 (that is, when 3i + 2w = 0),is an invariant,and when μ = 0 (that is, when 3i + w = 0),is a reciprocant.When both μ = 0 and v = 0 (which happens when i = 0, w = 0),is both a reciprocant and an invariant;that is, is a principiant.
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42] Lectures on the Theory of Reciprocants 451

LECTURE XXVI.In the theory of Invariants the annihilator Ω has two independent reversors any linear combination of which will also be a reversor. To each of these reversors there corresponds a generator for invariants. Thus Cayley’s two generators 
correspond to the two reversors

The only linear combination of these which does not increase the extent 
j as well as the weight of the operand is

It is convenient to take this for one of our reversors, and for the other 
which is a reversor to V, the annihilator for reciprocants, as well as to Ω, the annihilator for invariants.We saw in Lecture XI. [p. 364, above] that when F is any homogeneous and isobaric function of degree i and weight w in the j + 1 letters a,b,c,...

The method employed in proving this can also be applied to show that 
where v = 3i + 2w.Corresponding to the reversors 0 and d/dx we have the two generators for invariants
which are linear combinations of Cayley’s generators. Thus, if I be any invariant,
are also invariants.
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452 Lectures on the Theory of Reciprocants [42

The operator d/dx has, but 0 has not, analogous properties in the theory of Reci procants ; namely, is a reversor to V and a — μb is a generator for reciprocants. Thus, we have shown in previous lectures that 
where F is any homogeneous and isobaric function, and μ = 3i + w, and that if R is any pure reciprocant (a d/dx-μb)R is one also.Now, Mr Hammond has found that if
W is a reversor to V, and a2W — ib is a generator for pure reciprocants. In fact we have

But, since 

and 
it follows that

Thus W is a reversor to V. Moreover, a2W-ib acting on any pure reciprocant generates another.Let R be a pure reciprocant of degree i; then, by what precedes,
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42] Lectures on the Theory of Reciprocants 453But, since R is a pure reciprocant, VR = 0, and consequently VWR = 2iR. Now, V(a2 W — ib) R = a2VWR — iR Vb = a2.2iR — iR. 2a2 = 0.Hence (a2W — ib) Ris a pure reciprocant; that is a2W- ibis a generator for pure reciprocants.Mr Hammond shows that W is a reversor to V in the following manner :Let 
and consider the operators

Regarding eθ as an operative symbol defined by the equation 
we may write

Similarly,
Now, _
For so that 

and 
so that

Similarly,
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454 Lectures on the Theory of Reciprocants [42Moreover,

Similarly,Hence

If in this we write
we have

Now,
Also

whereandEquating coefficients, we have
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42] Lectures on the Theory of Reciprocants 455It is easily seen by expanding the logarithm that the general value of A n' is (—)n+1Sn/n where Sn denotes the sum of the nth powers of the roots of
Thus we have shown that if 

andthenThe general formula obtained for PQ — QP is an extension of a result of Capt. MacMahon’s, who considers the case in which
When φ (u) and ψ (u) have these values, the general formula becomes

But
Consequently
In Capt. MacMahon’s notation 

in our notation
If now we write 

which is equivalent to
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456 Lectures on the Theory of Reciprocants [42

we have
Hence we obtain

This agrees with Capt. MacMahon’s result, a statement of which was given in Lecture XX. [above, p. 417].Let Q be a reversor to the operator P = λam∂b + (...)∂c + (...) ∂d + ..., and suppose thatwhere F is any homogeneous and isobaric function and κ some number depending on its degree and weight. Then λaQ — κb will be the generator corresponding to Q. In other words, we have to prove that
Now, by hypothesis, Pa = 0, Pb = λam, and when PF = 0,
Thus,
As an example, consider the case of the reversor in the theory of recinrocants. Here

and sincewe have κ = 2μ. Hence the corresponding generator is or, dis­regarding the numerical factor 2, we may take aa/dx-μb for the generator in question, which is usually denoted by the letter G.We may also write G in the equivalent form
which it is sometimes more convenient to use.I shall now show that
where w is the weight of the operand.
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42] Lectures on the Theory of Reciprocants 457It is very easily seen that

Hence it follows, by a direct and very simple calculation, that
But, since and
ConsequentlyThe use of this formula will be seen in a subsequent lecture.We may also prove an analogous theorem relating to the invariant generator a d/dx-vb, which we shall call G'.Let the operand be F, a homogeneous and isobaric function of degree i and weight w. Then VF is of degree i +1 and weight w — 1; its v is therefore
Thus,
But andConsequently
It is perhaps worthy of notice that if I is an invariant of weight w and R a pure reciprocant, also of weight w, then 

whereas
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458 Lectures on the Theory of Reciprocants [42

LECTURE XXVII.I should like to make a momentary pause in the development of the theory which now engages our attention and to revert to the proof of Cayley’s theorem for the enumeration of linearly independent invariants contained in Lecture XI. and expressed by the formula (w; i, j) — (w — 1 ; i,j).Since that proof was written out I have endeavoured to obtain one that might be capable of being extended to the supposed analogous theorem, regarding pure reciprocants, expressed by the formula (w; i,j)-(w —1; i + l,j), but all my efforts and those of another and most skilful algebraist in this direction have hitherto proved ineffectual.In aiming at this object, however, I obtained a second proof of Cayley’s theorem, less compendious than the previous one, and subject to the drawback that it assumes the law of Reciprocity, but which possesses the advantage over it of being more direct and of looking the question, so to say, more squarely in the face. The forms of thought employed in it seem to me too peculiar and precious to be consigned to oblivion. I am not one of those who look upon Analysis as only valuable for the positive results to which it leads, and who regard proofs as almost a superfluity, thinking it sufficient that mathe­matical formulae should be obtained, no matter how, and duly entered on a register.I look upon Mathematics not merely as a language, an art, and a science, but also as a branch of Philosophy, and regard the forms of reasoning which it embodies and enshrines as among the most valuable possessions of the human mind. Add to this that it is scarcely possible that a well-reasoned mathematical proof shall not contain within itself subordinate theorems— germs of thought of intrinsic value and capable of extended application.That such was the opinion of our High Pontiff is shown by the publica­tion of his seven proofs of the Theorem of Reciprocity, a number to which subsequent researches have made almost annual additions (like so many continually augmenting asteroids in the Arithmetical Firmament) to such an extent that it would seem to be an interesting task for some one to undertake to form a corolla of these various proofs and to construct a reasoned bibliography, a catalogue raisonnee, of this one single theorem. For these reasons, I shall venture to put on record (valeat quantum) the following Second Proof of Cayley’s Theorem.The notation which I proceed to explain will be found very convenient. A rational integral homogeneous isobaric function will be called a gradient; its weight, degree, extent (extent meaning the number of letters after the first) will be denoted by w; i, j and spoken of as the type of the gradient. Either a single letter, such as ϕ, will be employed to denote a gradient, or 
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42] Lectures on the Theory of Reciprocants 459else its type enclosed in a parenthesis thus [w;i, j]. The abbreviation Tϕ signifies the type of ϕ; thus, Tϕ = w; i, j.The number of terms in the most general gradient whose type is the same as that of φ will be spoken of as the denumerant of ϕ. The letter N will be used to denote such a denumerant; thus, Nϕ signifies the denumerant of ϕ.In like manner, the letter Δ will be used to denote the number of linear relations between the coefficients of any gradient, whenever such relations exist. Hence Nϕ-∆ϕ expresses the number of terms in ϕ whose coefficients are left arbitrary. Obviously, when φ is the most general gradient of its type, we haveWe also use E to denote the ij — 2w, which may be called the excess, of the gradient of type w; i, j. Thus, if Tϕ = w; i, j, we write Eϕ = ij — 2w.The operators which we shall employ, namely, Ω and Ω', are defined by the equations
The first of these is of course an equivalent, but for present purposes more convenient, form of a∂b + 2b∂c+ 3c∂d +..., the ordinary invariant annihilator Ω as will be evident on writing a0 = a, a1 =b/1, a2=c/1.2 , ...);the second of them, Ω', is merely Ω deprived of its first term.We may now give the following enunciation of the theorem to be proved:If ϕ is the most general gradient of its type, Ωϕ is also the most general 

gradient of its type whenever Eφ is not negative. In other words, we shall prove that, subject to the condition stated above, ΔΩϕ = 0 whenever ∆ϕ = 0. This is equivalent to Cayley’s Theorem on the number of linearly independent invariants. For the number of forms of the same type as φ, and subject to annihilation by Ω, is and Cayley’s Theorem states that the number of such forms is Nϕ — NΩϕ, which will be the case whenThe theorem of Reciprocity enables us to dispense with the discussion of those cases in which the extent j is greater than the degree i. For since [Vol. III. of this Reprint, p. 151] the number of linearly independent invariants for the type w,j, i is the same as for the type w; i, j, we can substitute the first of these types for the second, using ψ, whose type is w; j, i, instead of ϕ, whose type is w; i,j. Thus we have
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460 Lectures on the Theory of Reciprocants [42But by Ferrers’ proof of Euler’s Theorem (vide “A Constructive Theory of Partitions” [p. 1, above]),
It obviously follows that
Cases for which the extent is greater than the degree may therefore be made to depend on those for which the degree is greater than the extent. Hence Cayley’s Theorem depends on the proof that ΔΩϕ = 0 when i = >j and ij = > 2w.In the course of the demonstration, the following Lemma will be used :IfThe types of the two gradients we are now considering may be said to be 

complementary, and then the Lemma may be enunciated in words as follows:
The denumerants of two gradients are equal when the types of the gradients 

are complementary.The proof consists in showing that to each term of the type w; i, j there corresponds a term of the type ij-w; i,j. Let α0λ0α1λ1α2λ2 ... ajλj be any term of the type w; i, j; then 
andWriting the suffixes of the letters a0, a1, a.2, ... aj in reverse order, every­thing else being kept unchanged, we obtain the term ajλ0aj-1λ1aj--2λ2... α0λj, whose weight we will call w'. Then

The degree of the transformed term is still i, and its extent is still j, while its weight has become ij— w; its type is therefore complementary to that of the original term. Hence to each term of any given type there corresponds a term of the complementary type, and consequently the total number of possible terms (that is, the Denumerant) for each type is the same.By means of this Lemma it can be shown that ΔΩϕ = 0 when Eϕ = — 1. Let then, since TΩϕ'w=1; i,j, the types Tϕ and TΩϕ are complementary (the sum of the weights being w + w — 1 = ij).It follows from the Lemma that the Denumerants of φ and Ωφ are equal. Hence
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42] Lectures on the Theory of Reciprocants 461For if not, the number of independent terms in Ωφ being less than the denumerant of Ωφ, will also be less than its equal, the denumerant of φ, and therefore there will be one or more invariants of the type w; i,j for which the excess is negative. Since this is known to be impossible, we must have
We next prove that, in all cases for which i=>w, the number of linearly independent invariants of the type w, i, j is correctly given by the formula 

which is equivalent (as we showed at the beginning of Lecture XV.) to 
or, what is the same thing, to the coefficient of awxw in the expansion of
Let the expansion of 
be The expansion of F is obtained by multiplying that of G by the infinite geometrical series

But we only require the coefficient of awxw in the expansion of F, so that we need only retain the portion 
of the above product instead of its complete expression.It is of importance to notice here that Aw, which is independent of x, cannot contain any higher power of a than αw. (That this is so will be evident from the constitution of the fraction G, for clearly no power of a in the expansion of G can be associated with a lower power of x.) Thus we see that and consequently

Hence the coefficient of awxw in the expansion of F is 
which is the value assumed by Aw when in it we write a= 1. Call this value 
Aw', and let the value of G when α=l be denoted by G'. Then Aw' is the coefficient of xw in
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462 Lectures on the Theory of Reciprocants [42Hence we see that, when i = >w, the value of (w; i, j) — (w — 1; i, j) is the total number of ways in which w can be made up of the parts 2, 3, ... j.We have yet to show that this number is the same as that of the linearly independent invariants of the type w; i, j when i = > w.This follows from the known theorem that every invariant is either a rational integral function of the Protomorphs a, P2, P3, ... Pj (meaning the invariant a and those of the second and third degrees alternately whose first terms are ac, a2d, ae, a2f ...), or can be made so by multiplying it by a suit­able power of a. Thus, if I be any invariant of degree i and weight w, 
where Φ, which is of degree-weight w.w when expressed in terms of a,b,c,..., is rational and integral as regards the protomorphs.When i= >w, writing
Φ consists of a series of terms of the form AaθP2λP3μ- ... Ppj, each with an 
arbitrary coefficient, where, since 
the number of arbitrary constants in Φ is the total number of partitions of w into parts 2, 3, ... j. Hence the number of linearly independent invariants of the type w; i, j is also this number of partitions, that is, by what precedes is (w; i,j)-(w—1; i,j). This proves Cayley’s theorem for cases in which 
i = >w.But when i < w, the equation 
shows that the coefficients of Φ are not all arbitrary, but must be so chosen that Φ may be divisible by aw-i, and the reasoning employed in the case of 
i = > w no longer holds.It will be convenient at this point of the investigation to review the results we have hitherto obtained and to see what remains to be proved.Cayley’s Theorem has been demonstrated for cases in which the degree is not less than the weight. This will be expressed by saying that

We have also proved that
The law of reciprocity has been expressed in the form 

where [w; i,j] denotes the most general gradient of the type w, i,j.
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42] Lectures on the Theory of Reciprocants 463The theorem to be proved is that 
but we may at once dismiss those cases in which i = > w, and (assuming the theorem to have been proved for Quantics of order inferior to j) those in which i < j, for these depend on the truth of the theorem for a Quantic of order i.It remains, then, to prove that, when ij — 2w = > 0, ΔΩ [w; i, j] = 0 for values of i inferior to w, but not inferior to j. This may be effected as follows :Let φ be the most general gradient of the type w; i + 1,j, and suppose 
where P, Q and R do not contain the letter a, though S may do so. Then, writing 
φ1 is the most general gradient of the type w; i,j.Now, if Ω = a∂b + b∂c + c∂d + ..., and Ω' = b∂c + c∂d + ..., we have 
andConfining our attention for the present to Ωφ1, it is clear that if no linear relations exist among the coefficients of Ω'R (that is, if ΔΩ'R = 0) the coeffi­cients of Ω'Q are not connected with those of Ω'R + by any linear relation.For the coefficient of each term of Ω'R + dQ/db is the sum of a single coefficient  of Q and an independent linear function of the coefficients of R. Moreover, obviously the coefficients of Ω'Q are unconnected with those of ΩS + .If, then, the coefficients of Ω'Q are not related inter se (that is, if ΔΩ'Q = 0), we have

Looking now to the expression (1) for Ωφ, we see immediately from (2) that any linear relation subsisting between the coefficients of Ωφ1 will also subsist between those of Ωφ, and therefore that ΔΩφ1 is not greater than ∆Ωφ.If, then, ΔΩφ = 0, it follows that ΔΩφ1 = 0, provided that both the supplementary conditions ΔΩ'Q = 0 and ΔΩiR = 0 are also satisfied.
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464 Lectures on the Theory of Reciprocants [42Now, since φ1 = Q + Ra + Sa2 is the most general gradient of the type w; i,j,
Q will be the most general gradient of the type w — i; i,j- 1, and R „ „ „ „ „ w - i + 1; i - 1, j - 1,when in Q and R we change b, c, d, ... into a, b, c, .... This change converts 

Ω'= b∂c +c∂d+... into Ω = a∂b+b∂c + .... Hence the conditions ΔΩ'Q = 0 and ΔΩ'R=0 are respectively equivalent to
Supposing these supplementary conditions to be satisfied, what we have proved is that when 

then alsoNow,

Thus, when ij — 2w = > 0 and i = > j,
Eφ and EQ are both positive.

ER is in general = > 0, but in the special case where ij-2w = 0 and i =j, we have ER = — 1. Except in this case (which gives us no trouble, since we have seen that ΔΩR = 0 in consequence of ER = — 1), we have never to deal with a type of which the excess is negative.Hence, if we assume Cayley’s Theorem to have been proved for all extents up to j — 1 inclusive, we have 
and(that is, the two supplementary conditions are satisfied). We wish to extend the theorem to the extent j.Subject to the conditions i=>j and ij — 2w = > 0, we have

But we need consider no value of i greater than w, as we have proved that therefore
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42] Lectures on the Theory of Reciprocants 465As previously shown, the theorem is true for all values of i inferior to j if it is true for all Quantics of inferior order. Thus the theorem is true for a Quantic of order j and for every value of i if it is true for all Quantics of order inferior to j. But it is true for the Quadric (where j = 2)*;  therefore also for the Cubic (j = 3); therefore also for the Quartic (j = 4), and so universally. Hence the theorem to be proved is demonstrated.

* When j = 2 the condition ij=>2w becomes identical with i=>w; but we have already 
seen that the theorem is true whenever i — > w.

S. IV. 30

LECTURE XXVIII.We now resume the theory of Principiants and proceed to prove the important theorem that every Principiant is either simply an invariant in respect to a known series of pure reciprocants, which we call A, B, C, D, ..., or else becomes such an invariant when multiplied by aw-i, where w is the weight and i the degree of the Principiant in question. Using the letter M to denote the pure reciprocant ac-5/4 b2, and G the ordinary eductive generator, 
(which, it will be remembered, is only another form of a d/dx— μb, with the advantage of the μ being suppressed, that is, only implicitly contained), we obtain in succession the values of A, B,C, D, ... from the following equations:

On performing the calculations indicated by these equations we shall find
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466 Lectures on the Theory of Reciprocants [42The fact that D is a pure reciprocant enables us to calculate the terms in 
E which are independent of b without a previous knowledge of the values of those terms in D which involve b. For, since

Hence the operation of a2G — 2 (ac — b2) V on terms involving b cannot give rise to terms independent of b. But,
D being a pure reciprocant, VD = 0;so that and the terms of a2GD which do not involve b are found by operating with 

on the terms of D which do not involve b.If, now, we use Jf0, Ao, Bo, Co,... to denote those portions of M,A, B,C,... which are independent of b, and write 
we shall still have and in general the law of successive derivation for Ao, Bo, Co, Do, ... is the same as that for A, B, C, D, ... except that Go takes the place of G.We have 
so that 
and consequently (since M0 = αc),gives
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42] Lectures on the Theory of Reciprocants 467Thus, for example, 
whence

Again, 

givesSimilarly, from the known values of Do and Eo we may deduce that of the next letter, Fo, and so on to any extent.It may be noticed that each of the pure reciprocants A, B, C, D, ... can be determined without ambiguity, by means of the annihilator V, when the portions of them, Ao, Bo, Co, Do, ... independent of b are known.For suppose R and R' to be two reciprocants, of weight w, for each of which the terms independent of b are the same. Then their difference is divisible by b. Let
Hence φ is divisible by b, and R-R, is divisible by b2; say R — R' = b2φ Then 

showing that ψ is divisible by b, and R— R' by b3.By continually reasoning in this manner, we prove that R — R' must be divisible by bw', and then the remaining factor (being of weight 0) is neces­sarily of the form λaθ, where λ and θ are numerical constants. Thus
This is impossible unless λ = 0, when the two reciprocants R, R' become equal, showing that there cannot be two different reciprocants for which the terms independent of b are the same. When, therefore, the terms which do not involve b of any pure reciprocant are known, the complete expression of that reciprocant can be determined without ambiguity.Each reciprocant of the series A, B, C, D, ... possesses the property of being, so to say, an Invariant relative to the one which precedes it, meaning that the operation of Ω =a∂b+2b∂c + 3c∂d + ... on any letter gives (to a

30—2
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468 Lectures on the Theory of Reciprocants [42factor pres) the one immediately preceding it. The first letter, A, is an Invariant in the ordinary sense. We can in fact show that

The proof depends on a formula established in Lecture XXVI. of this course [p. 457, above], namely 
where G is the generator 4 (ac — b2)∂b + 5 (ad — bc) ∂c + ..., and w is the weight of the operand.Thus, observing that the weights of A, B, C, D, ... are 3, 4, 5, 6, ... respectively, we have

Now, since A is the well-known invariant a2d — 3abc + 2b3, we may write 
ΩA = 0 in the first of these equations, which then reduces to

But, since we haveThusAgain, substituting for flB in the formula 
we find where, since G (which is linear in ∂b, ∂c, ... and does not contain ∂a) does not operate on a, 
and consequently
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42] Lectures on the Theory of Reciprocants 469Now,so thatBut, since
ThusWe may, in exactly the same way, prove that 

and so on to any extent.In the following inductive proof it will be convenient to denote the letters by and then the theorem to be proved is that
When this notation is used, the law of successive derivation which defines the capital letters is expressed by the equation 

where G is the generator
Operating with Ω on the above equation, we obtain
Now, the weights of u0, w1, w2, ... are 3, 4, 5, ... respectively, and conse­quently the operation of on un+1 (whose weight is n + 4) gives
Or, assuming that Ωuκ = κuK_1 × a/2 for all values of κ as far as n + 1 inclu­sive (it has previously been shown that ΩB=Axa/2 and ΩC=2B×a/2, so that the theorem is true for κ = 1 and κ = 2),
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470 Lectures on the Theory of Reciprocants [42
CL CLBut (remembering that G does not operate on a, so that G a/2un= a/2Gun) we have, in virtue of equation (1),

Hence it follows that

On substituting this in (2) we obtain

This reduces toFor, according to the assumption previously made in the course of the demonstration, 
so that the second term vanishes; and the third term vanishes because

We have therefore proved that if the theorem is true for Ωuκ, when κ has any value up to n + 1 inclusive, it is also true for Ωun+2. But the theorem holds for κ = 1, and for κ = 2. It therefore holds universally for any positive integer value of κ.Recalling the known values of the reciprocants M, A, B, C, D, ... we observe that their principal terms are ac, a2d, a3e, a4f, a5g, ..., where it is to be noticed that the most advanced of the small letters in the expression for any capital letter occurs only in the first degree multiplied by a power of 
a. In other words, M, A, B, C, D, ... form a series of Protomorphs, and consequently every Pure Reciprocant can, as we have already seen (vide [p. 384, above]), be expressed as a function of a, M, A, B, C, D, ... rational in all of them and integral in all except a.
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42] Lectures on the Theory of Reciprocants 471But it is further to be noticed that whereas
a is of degree 1 and weight 0, M „ 2 „ 2,
A „3 „ 3,
B „ 4 „ 4,and in fact that every capital letter is of equal weight and degree.From this it will follow that every Pure Reciprocant will be the product of a power of a into a function of the capital letters alone.For let i be the degree and w the weight of any pure reciprocant ex­pressed in terms of a, M, A, B, C, ..., and suppose one of its terms to be 

thenand Hence which is the same for every term of the pure reciprocant in question. Thus each term contains ai-w as a factor, and the reciprocant is of the form
Let us now consider any Principiant P; since P is a pure reciprocant, we must have
But Principiants are subject to annihilation by Ω, and consequently ΩP = 0, which gives

On writing for their values 
we obtainFrom this it would follow that Φ is an invariant in the two sets of letters

— b, M and A, B, C, D, ...;but it is easy to see that it is an invariant in the latter set exclusively. For 
M and A, B, C, D, ... being all of them pure reciprocants, 
which are functions of M, A, B, C, ... exclusively, must also be pure reciprocants.
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472 Lectures on the Theory of Reciprocants [42If, then, we operate with V on 
we shall find V(- b∂M)Φ = 0 (every other term being annihilated by F). Thus 
and consequently ∂MΦ = 0. Hence

The equation ∂mΦ = 0 shows that M does not appear in the expression for any principiant in terms of the capital letters, while 
shows that Φ is an invariant in A, B, C, D, ....We have thus shown that every invariant of 
is a principiant, and conversely that every principiant is an invariant of 
or such an invariant multiplied by a power of a.

LECTURE XXIX.From the theorem that every Principiant is (to a power of a pres) an Invariant in the reciprocantive elements A, B, C, ... we readily deduce its correlative in which, everything else remaining unchanged, the reciprocantive elements A, B, C, ... are replaced by a set of invariantive elements which we call Ao, A1, A2, .... The equations connecting the new elements with the old ones are as follows:
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42] Lectures on the Theory of Reciprocants 473We have, in the first place, to prove that Ao, A1, A2, ... are all of them invariants in the small letters a, b, c, .... This is an immediate consequence of the identities

established in the preceding Lecture, coupled with the fact that Ωb = a. Thus

and in general, writing the equation which gives An in the form

and operating on it with Ω, we find

= 0 (each term vanishing separately).We next observe that being equal to (is a linear transformation of (A, B, C, ...) (x, y)j,

and that the determinant of the transformation is equal to unity.
Hence every invariant in Ao, A1, A2, ... is equal to the corresponding invariant in A, B, C, ..., which proves the theorem in question.
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474 Lectures on the Theory of Reciprocants [42Each of the invariantive elements Ao, A1, A2, ... is, so to say, a recipro­
cant relative to the one which immediately precedes it, just as in the cognate theorem each of the capital letters A, B, C, ... was an invariant relative to its antecedent. It is in fact easily seen that

and in generalThus, for example, if we operate with V on
remembering that A, B, C, D are pure reciprocants, we shall find
But andso thatIn like manner, operating with V on
we obtain

This property enables us to give a proof (exactly similar to the proof of the cognate theorem in the preceding Lecture) of the theorem that every principiant is expressible as the product of an invariant in Ao, A1, A2, ... by a suitable power of a. We first observe that, using N to denote ac — b2,
form a series of invariantive protomorphs of equal degree and weight.Hence it follows that any invariant of degree i and weight w can be expressed in the form
and consequently that every Principiant can be expressed in this form, pro­vided only that
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42] Lectures on the Theory of Reciprocants 475Substituting for VAo, VA1, VA2, ... their values given above, and at the same time observing that 
we findFinally, we prove that Φ does not contain N, but is an invariant in A0, A1, A2, ... alone, by operating with Ω on 
when it is easily seen that every term vanishes except the first, which gives 
where, Ωb = a being different from zero, we must have ∂Nϕ= 0.The invariants N, Ao, A1, A2, ... obey a law of successive derivation similar to that which holds for the reciprocants M, A, B, C, ....Starting with N = ac -b2 and operating continually with 
we shall find 

and generallyThese equations are exactly analogous to

in which M = ac — 5/4 b2, and GM, GA, GB, ... are the educts of M, A, B, ... 4obtained by operating with
It should be noticed that the two generators G and G' are connected by the relation where w is the weight of the operand.
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476 Lectures on the Theory of Reciprocants [42Also, that
We may easily verify that

by operating with onTo prove thatwe operate onfor which the weight is 3, with
ThusFor by definitionIn general, to find G'An, we have by definition

and, since the weight of An is n + 3,
Now

Substituting for GA, GB, GC, ... their known values, and rememberingthat Gb = 4N and that (A, B, C, — we have

But
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42] Lectures on the Theory of Reciprocants 477and similarly
Hence
Now let then 

and whence it follows that
Similarly, we see that
Writing u = —b/2 and v= 1 in the above equations, and remembering that 

we obtain immediately from (1) 
and then (2) gives

But it has been shown that
Hence, by substitution,
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478 Lectures on the Theory of Reciprocants [42

Now, 
whereThus which proves the law of successive derivation for the invariantive elements 
A0,A1,A2, ...*.

* The establishment of the scale of relation between the terms of the Ao, A1, A2, ... series, 
and the above proof of it, is due exclusively to Mr Hammond.

We now proceed to explain the method of transforming a Principiant, given in terms of the small letters a, b, c, .... into one expressed in terms of α, A, B, C, ....Remembering that the expressions for 
have for their most advanced small letters 
and that, in each capital letter, the most advanced letter occurs only in the first degree, multiplied by a power of a, it follows, as an immediate conse­quence, that we may, by continually substituting for the most advanced letter, eliminate d, e,f, g,h, ... from any rational integral function 
and thus transform it into another function whose arguments are 
and which is rational in all its arguments, and integral in all of them, with the possible exception of the first argument, a.But (see Lecture XXVIII.) [above, p. 471] the result of this elimination is known to be 
in the case where φ is a Principiant of known degree i and weight w. Hence 
b and c must disappear spontaneously during the process of elimination.This being so, we can give b and c any arbitrary values, without thereby affecting the result, and it will greatly simplify the work to take 6 = 0 and c=0.It is also permissible to take α = 1; for, although the factor ai-w is thereby lost, it can always be restored in the final result because both i and 
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42] Lectures on the Theory of Reciprocants 479

w are known numbers. Now, if we write a = 1, b = 0, c = 0 in the known expressions for A, B, C, D, ..., we shall find

Hence we have to eliminate d, e,f g, h, ... between the above equations and where P stands for the given Principiant. In other words, we have to substitute for 
in The result of this substitution will be 
where, to compensate for the factor lost by taking a = 1, we must multiply Φ by ai-w. As an easy example, consider the Principiant which Halphen calls Δ, and for which he obtains the expression

Here the degree i = 8 and the weight w=8; so that i — w = 0, and no factor has to be restored. On making the substitutions spoken of, the determinant becomes 

which immediately reduces to AC-B2 by striking out the first three columns and the last three rows.Of this Principiant we shall have more to say hereafter.
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480 Lectures on the Theory of Reciprocals [42LECTURE XXX.The method of substituting large letters for small ones will be better understood if we employ it to obtain an expression of the form for any pure reciprocant of known degree i and weight w in the small letters.The transformation is effected by substituting in φ for c, d, e,f, g,h, ... their values (which are perfectly definite) in terms of a, b, M, A, B, C,D, E,... But since b does not appeal' in the final result, we are at liberty to give it any arbitrary value, and it will be convenient to take b = 0, for then (see Lecture XXVIII.) [above, p. 465] we have

There is an additional advantage in taking b = 0, namely, that then the values of the invariants N, Ao, A1, A2, ... (see their definition at the begin­ning of*  Lecture XXIX.) exactly coincide with those of the reciprocants 
M, A, B, C, ... set forth above. Hence, merely interchanging the capital letters, the same substitutions enable us to express any invariant in terms of 
a, N, Ao, A1, ..., as well as any reciprocant in terms of a, M, A, B, ....

odeThe solution of the above equations will give -, -, -, ... in terms of — , , , ...; but we can, without loss of generality, put α=l, when we
a2 a3 ai shall find

[*  p. 472, above.]
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42] Lectures on the Theory of Reciprocants 481The substitution of these values in the pure reciprocant will convert it intoWe have written a = 1 for the sake of simplicity ; but without doing this we have, since φ is homogeneous of degree i, 
Hence, substituting for . in terms of

or, since M, A, B, ... are of weights 2, 3, 4, ... and Φ is of weight w,

Thus, in consequence of writing a=1, the factor ai-w has been lost; but this factor can always be restored, both i and w being known numbers.When φ is a Principiant, M will not appear in the final result, which will be identical with that obtained by the simpler substitutions of the preceding Lecture. If, for example, we substitute for 
instead of in the determinant expression for Halphen’s Δ, previously given, it becomes

Subtracting the 4th row multiplied by M from the first, the determinant reduces to

Again, subtracting the 2nd column multiplied by 3 M from the last, and reducing, the determinant becomes 
where M disappears, as it ought to do, because Δ is a Principiant.
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482 Lectures on the Theory of Reciprocants [42In what follows we shall have frequent occasion to make use of the fact that if Ra is an absolute pure reciprocant,  , which we know is a pure reciprocant, is also an absolute one.This is very easily proved. For let R be any pure reciprocant, of degree 
i and weight w, which becomes Ra when made absolute by division by a power of α, then 
and, using G as usual to denote the generator for pure reciprocants,

Hence
which is an absolute pure reciprocant because GR, which is of degree i + 1 μ+4and weight w+ 1, must be divided by a 3 in order to make it absolute. Thus, if Ma, Aa, Ba, Ca, ... are what M, A, B, C, ... become when each of them is made absolute by division by a power of a, we have

We shall use these results in deducing the complete primitive of the differential equation from that of the equation in pure reciprocants,
This equation may be written in the form 

whence, by differentiation, we obtain 
which gives that is,
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42] Lectures on the Theory of Reciprocants 483Differentiating this result, we find 
which givesWe now restore the non-absolute reciprocants M, A, B, C; that is, we writeHenceNow, the equation AC — B2 = 0 remains unaltered by any homographic substitution, so that it will be satisfied not only by any solution of the equation in pure reciprocants 25A2 — 16M3 = 0, but also by any homographic transformation of such solution. But it has been shown (in Lecture XIII., [p. 379, above]) that the complete primitive of 25A2- 16M3 = 0 is a linear transformation of y = xλ, where λ2 — λ + 1 = 0 (that is, where λ is a cube root of negative unity).Consequently any homographic transformation of y = xλ is a solution of

Moreover, this is its complete primitive ; for the highest letter,f, which occurs in AC — B2, corresponds to the seventh order of differentiation, and if we write 
where X, Y, Z are general linear functions of x, y, 1 (that is, if we make the most general homographic substitution), y = xλ becomes Y=XλZ1-λ, which will be found to contain exactly 7 independent arbitrary constants. Thus the complete primitive of AC — B2 = 0 is Y = XλZ1-λ, where X, Y, Z are general linear functions of x, y, 1, and λ is a cube root of negative unity,Observe that although any solution of M = 0 also makes A, B, C, ... all vanish, and so satisfies AC — B2 = 0, we cannot from this infer that a homo­graphic transformation of the parabola y=x2 will be the complete primitive of AC— B2 = 0. For, though YZ=X2 is a solution of AC — B2 = 0, it only contains 5 independent arbitrary constants, and therefore cannot be its complete primitive. Neither can YZ = X2 be obtained from the complete primitive by giving special values to the arbitrary constants. Hence YZ=X2 is a singular solution of AC — B2 = 0.We may also deduce the differential equation of the curve Y = XλZ1-λ, where λ has a general value, from the corresponding equation in pure reciprocants, which has (see [p. 377, above]) for its complete primitive any linear trans­formation of the general parabola y = xλ.
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484 Lectures on the Theory of Reciprocants [42Writing for shortness 
and at the same time making both A and M absolute, the above equation becomes

Hence, by differentiation, we obtain 
which givesAfter a second differentiation we find 
that is,We now replace the absolute reciprocants Ma, Aa, Ba, Ca by M, A, B, C, and thus write the original equation and its two differentials in the form

Hence we find 

and, eliminating M from the two last equations,
Now restoring and we have so that the final equation becomes
The same reasoning as before will show that, for a general value of λ, the complete primitive of this equation is the general homographic transforma­tion Y = XλZi-λ of the curve y = xλ.There is, however, a special exceptional case in which the differential equation becomes the corresponding value of the parameter λ being either 0, 1 or ∞ , as may be seen by solving the equation
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42] Lectures on the Theory of Reciρrocants 485In the case where λ = 0 or ∞ we can, in the same manner as before, show that the complete primitive is a homographic transformation of the curve y=ex by deducing the differential equation from the corresponding equation in pure reciprocants, 
whose complete primitive is (see Lecture XIII.) [p. 379 above] a linear transformation of y = ex.When λ = 1 the corresponding equation in pure reciprocants is 
whose complete primitive may be shown to be a linear transformation of 
y = xlogx. The reason why these two distinct equations in pure recipro­cants lead to the same equation in principiants is that the two curves 
y = ex and y = xlogx are homographically equivalent but not linearly trans­formable into one another. For we may write the equation y = x∖ogx in the 

yform x = ex, which is a homographic transformation of y = ex.Besides the special case just considered, in which the complete primitive 
γ Aof the equation in Principiants is -^ = ez, we may notice that in which the 
Zjparameter λ is either — 1, 2, or 1/2, the differential equation reducing to 

A = 0 simply, and its complete primitive Y = XλZ1-λ being the equation to a conic, as it should be. The case where λ2-λ + 1 = 0 and the differential equation reduces to AC—B2=0 has been considered already. There remains the case in which λ = 3, when the complete primitive becomes YZ2=X3 (the equation of the general cuspidal cubic) and the differential equation assumes the simnle form 
which is therefore the differential equation of cuspidal cubics.We shall hereafter show that in this case the Principiant 
which is apparently of the 24th degree, loses a factor α4 and so sinks to the 20th degree. It is, however, generally difficult to determine the power of a contained as a factor in a Principiant given in terms of the large letters.The results obtained in the present Lecture agree with those of M. Halphen contained in his These sur les Invariants differentiels (Paris, Gauthier-Villars, 1878), which contains a complete investigation of the properties of the Principiant AC — B2, which he calls Δ. But our point of 
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486 Lectures on the Theory of Reciprocants [42view is different from his. He obtains Δ in the form of a determinant from geometrical considerations. With him Δ = 0 is the differential equation which expresses the condition that, at a point x, y on any curve, a nodal cubic shall exist, having its node at x, y, and such that one of its branches shall have 8-point contact with the curve at that point. With us AC— B- is the simplest example, after the Mongian A, of au invariant in the capital letters A, B, C, ....

LECTURE XXXI.We may include λ among the arbitrary constants in the primitive equation Y = XλZ1-λ, which can also be written in the form 
or (X, Y, Z being general linear functions of x, y, 1) in the equivalent form λlog(y + ax + β) — log(y + a'x + β') + (1 — λ) log (y + a''x + β") = const., which evidently contains 8 independent arbitrary constants.One of these will be made to disappear by differentiation, and thus we shall obtain a differential equation of the first order, containing 7 arbitrary constants, identical (when the constants are rearranged) with 
which is known as Jacobi’s Equation.For, by differentiating the primitive equation, we obtain 
which, when cleared of negative indices by multiplication, becomes

Writing this equation in the equivalent form 
it is easily seen to be identical with Jacobi’s equation given above.The seven arbitrary constants which occur in Jacobi’s equation are the mutual ratios of the eight coefficients I, m, l', m , n', l", m'', n", any one of which may have an arbitrarily chosen value assigned to it.Taking m = — 1, the equation may be written in the form 
where
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42] Lectures on the Theory of Reciprocants 487In order to eliminate n'' and l'', we differentiate the above equation twice. The first differentiation gives
where and the second differentiation gives

Now, P'' so that, on substituting thisvalue, the above equation becomes
where

Differentiating (1) we have
where Q', suppose.Thus we haveDifferentiating this 4 times in succession, and at each step substituting fortheir valueswe obtain 4 more equations, from which, combined with the 2 previously obtained, we can eliminate

Thus, differentiating (2), we find
that is,and continuing the same process,

The result of elimination is

where the determinant equated to zero is a Principiant.
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488 Lectures on the Theory of Reciprocants [42In his These sur les Invariants differentiels, p. 42, M. Halphen states that this equation can be found by eliminating the constants from Jacobi’s equa­tion, but he does not set out the work. When in the above determinant twice the 3rd column is added to the second, it becomes exactly identical with the one given by Halphen, which he calls T.

We proceed to express the above result in terms of the capital letters, using the method explained in Lecture XXIX., and observing that the deter­minant is of degree 8 and of weight 12; so that in this case i—w=8—12=— 4, showing that the final result has to be multiplied by a-4.Substituting in the determinant for 
it becomes

Subtracting the last column multiplied by 5 A from the first, and the 4th column multiplied by 2 from the 5th, and then striking out rows and columns, we obtain
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42] Lectures on the Theory of Reciprocants 489If, using Halphen’s notation, we call the principiant now under considera­tion T, what we have proved is that 
and consequently that A2D — 3ABC + 2B3 is divisible by α4.The differential equation T=0 corresponds, as we have seen, to the com­plete primitive Y = XλZ1-λ, in which λ is counted as one of the arbitrary constants.This result may be otherwise obtained. For we have shown in the pre­ceding Lecture that the differential equation of the seventh order, from which all the arbitrary constants except λ have disappeared, has the form 
where κ depends solely on λ.Writing this equation in the form 
and differentiating with respect to x, we remove the remaining arbitrary con­stant, and thus obtain the differential equation of the 8th order free from all arbitrary constants, a result which, to a factor pres, must coincide with

We proceed to show how this differentiation may be performed without introducing any of the small letters. In the first place, it is clear that since 
does not contain ∂a and is linear in the other differential reciprocals ∂b, ∂c, ...,

And since we have 
it follows immediately that

This is true for any function of the capital letters, whatever its nature may be; but when Φ is a principiant, it is also an invariant in the large letters ; so that in this case we have 
and
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490 Lectures on the Theory of Reciprocants [42Now, the operation of G on a function of degree i and weight w is equi­valent to that of α d/dx— (3i + w) b, or to that of a d/dx, when both i = 0 and 
w = 0 (which happens in the case of a plenarily absolute form). Hence, if we suppose Φ to be a plenarily absolute principiant, GΦ is also a principiant, though not a plenarily absolute one.For a is a principiant, and dϕ/dx is a principiant; therefore or GΦone also*.  Thus 
acting on any plenarily absolute principiant, generates another principiant, but not a plenarily absolute one.We now resume the consideration of the equation

Differentiating and multiplying by a, we have
Hence, by what precedes, 

or, using Θ to denote the operator, 
or, observing that

This gives or finallyWe may find a generator for principiants expressed in terms of the large letters similar to the expression for the reciprocant generator G in terms of
* See the concluding paragraph of Lecture XXV. [p. 450 above], where it was shown that P,

being a principiant (of degree i and weight w), a dP/dx-(3i + w)bP is a reciprocant, and 
dP

a ^dx ~ + b? an invariant. This proves, what we omitted to mention there, that P
being a zero-weight principiant,

is a principiant.

It may here be remarked that a principiant of degree i and of zero weight is equal to the 
corresponding plenarily absolute principiant (which is a function of the large letters only) 
multiplied by the factor ai, on which the operator G does not act.
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42] Lectures on the Theory of Reciprocants 491the small letters. For let P be any principiant, of weight w, which, whenreduced to zero weight by division by A 3, becomes PA 8 ; then
is a principiant. But
where, remembering that is a principiant, (AΘ — 2wB) P is one also.Now, the weights ofbeingwe may writeand consequently

which is the generator in question.As an easy example of its use, suppose it to operate on AG — B2; then

The generator j ust obtained,
is a linear combination of Cayley’s two generators (given in Lecture IV., [p. 327, above]), which, when we write A, B, G,... instead of the correspond­ing small letters, become
andThus we shall obtain the principiant generator by adding the second of Cayley’s generators to six times the first. Either of Cayley’s generators acting on a principiant would of course give an invariant in the large letters (that is, a principiant), but the combination we have used has special relation to the theory of the generation of principiants by differentiation.

www.rcin.org.pl



492 Lectures on the Theory of Reciprocants [42

LECTURE XXXII.I will now pass on to the consideration of the Principiant which, when equated to zero, gives the Differential Equation to the most general Algebraic Curve of any order.The Differential Equation to a Conic (see the reference given [p. 380, above]) was obtained by Monge in the first decade of this century. This was followed by the determination, in 1868, by Mr Samuel Roberts, of the Differential Equation to the general Cubic (see Vol. X. p. 47 of Mathematical Questions and Solutions from the Educational Times'). I do not consider that any substantial advance was made upon this by Mr Muir, in the Philosophical Magazine for February, 1886, except that he sets out explicitly the quantities to be eliminated in obtaining the final result. These may, of course, be collected from the processes indicated by Mr Roberts, but are not set forth by him. In speaking of the history of this part of the subject, I pass over M. Halphen’s process for obtaining the Differential Equation to a Conic. It is very ingenious, like everything that proceeds from his pen, but, being founded on the solution of a quadratic equation, does not admit of being extended to forms of a higher degree, and consequently, viewed in the light of subsequent experience, must be regarded as faulty in point of method.Let the Differential Equation to a curve of any order, when written in its simplest form, containing no extraneous factor, be χ = 0. It is convenient to give χ a single name ; I call it the Criterion. The integral of the Criterion to a curve of order n must contain as many arbitrary constants as there are ratios between the coefficients of a curve of the nth order. The number of these ratios being ——----------- 1, the order of the Criterion ought to be
It must be independent of Perspective Projection, because projection does not affect the order of a curve. Hence it is a Principiant, and as such ought not (when y is regarded as the dependent and x as the independent variable) to contain either x, y or (see Lecture XXIV. [p. 438, above]).Let U = 0 be an algebraical equation of the nth order between y. I write symbolically 

where the different powers and products of p, q, 1 which occur in the expan 
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42] Lectures on the Theory of Reciprocants 493sion of un are considered as representing the different coefficients in U; so that, for example, if n = 3 the coefficients of 
are represented by
The number of terms in U is
The number of these containing y is

To obtain the Differential Equation we equate to zero the Differential Derivatives of U of all orders from n + 1 to 1/2(n2+3n) inclusive, and from the 1/2(n2 + n) equations thus formed eliminate the 1/2(n2+n) coefficients of the terms in U containing y:All the coefficients of pure powers of x will obviously disappear under differentiation; for no power of x higher than xn occurs in U, and no differential derivative of U of lower order than n + 1 is taken.We thus find a differential equation of the order 1/2 (n2 + 3n), free from all the 1/2(n2 + 3n + 2) coefficients of U. This equation might conceivably contain 
x, y and all the successive differential derivatives of y with respect to x. But we know a priori that it ought not to contain either x, y or dy/dx; and in fact we shall be able so to conduct the elimination that x, y and appear only in the quantities to be eliminated and not in the final result.Treating u = p + qx + y as an ordinary algebraical quantity, we have, by Taylor’s theorem,
where u1,u2, u3, ... are the successive differential derivatives of u with respect to x. And this result will remain true when for un we write U, meaning thereby that —------. ~r-r will be the quantitative interpretation of thefunction of u, u1, ιι2, ... which multiplies hr in the expansion of
subject to the condition that this function shall be linear in the coefficients 
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494 Lectures on the Theory of Reciprocants [42of U. This condition can be fulfilled in only one way, so that there is no ambiguity in such interpretation. Hence the equations obtained by equating to zero the successive differential derivatives of U of all orders from n + 1 to 1/2 (n2 + 3n) inclusive may be written under the form 
whereNow, using y1, y2, y3, ... to denote the successive differential derivatives of 
y with respect to x, we have 
and, in general, ui = yi when i is any positive integer greater than 1. Thus 
or, employing the usual modified derivatives a, b, c, ...,

Writing now and expanding (u + u1h + Q)n in ascending powers of Q, we have 
where, remembering that r > n, the value of co. hr in (u + u1h)n is zero; so that, omitting this term, we may write
The quantities to be eliminated will now be combinations of the various powers of u, u1 and 1. Their number will be the same as that of the terms in (u,.u1, l)w^^1, which is ⅜ (n2 + n), the same number as that of the equations between which the elimination is to be performed.We now use (m.μ) to denote the coefficient of hm in Qu (which, since 
will be independent of the combinations of u and u1 to be eliminated), and in writing out the 1/2(n2+n) equations which result from making the coefficients of in
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42] Lectures on the Theory of Reciprocants 495vanish, we arrange their terms according to ascending values of m and μ. Thus, making the coefficient of hn+1'vanish, we find 
and similarly, making the coefficient of hn+2 vanish,
So in general the equation obtained by making the coefficient of hn+κ vanish consists of a series of numerical multiples (which are independent of the value of κ) of u1n-θuθ-n (θ + κ, η) where η has all values from 1 to θ inclusive, and θ all values from 1 to n inclusive. Hence, by elimination, we find 

where the determinant on the left-hand side, consisting of 1/2(n2 + n) rows and columns, is the Criterion of the curve of the nth order.Thus in the case of the Cubic Criterion, which we shall specially consider, we have n = 3, and the elimination of 3u12, 6u1u, 3u1, 3u2, 3u and 1 between the six equations 

gives the Cubic Criterion in the form of the determinant
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496 Lectures on the Theory of Reciprocants [42Remembering that 
it is easy to express the Criterion explicitly in terms of a, b, c, ....Thus, since 
and 
the Cubic Criterion may be written in the form 

in which it was originally obtained by Mr Roberts.M. Halphen has remarked that the minor of h in the Cubic Criterion is the Principiant which he calls Δ (our AC — B2) multiplied by a (see p. 50 of his These).We proceed to determine the degree and weight of the Criterion of the curve of the nth order. These are the same as the degree and weight of its diagonal 
which consists of 1/2 (n2 + n) factors, separable into n groups, 
containing 1, 2, 3, 4, ... n factors respectively. Now, 
and consequently (m. μ) is of degree μ and weight m-2μ. Hence the degree of the Criterion (found by adding together the second numbers of the duads which occur in the diagonal) is
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42] Lectures on the Theory of Reciprocants 497To find the weight of the Criterion, we begin by arranging the factors of its diagonal according to their weight. This is done by writing each group of factors in reverse order, so that the diagonal is written thus:
The weights of the factors are now seen to be 0, 1, 2, 3, there being 1/2(n2+n) factors in the diagonal, one of them of zero weight. Hence the weight of the Criterion is

If, in the above formulae, we make n = 2, we shall find that the degree is 4 and the weight 3, whereas the Mongian a2d — 3abc + 2b3 (which is the Criterion of the second order) is of degree 3 and weight 3.To account for this discrepancy, observe that in this case 
which is divisible by a, the other factor being the Mongian, as may easily be verified. This is the only case in which the determinant expression for the Criterion contains an irrelevant factor.To express the Cubic Criterion in terms of a, A, B, C, D, E, we firstremark that its degree is and its weight Thus

deg. wt.the Cubic Criterion is expressible as the product of α-5(10 — 15 = — 5) into a function of the capital letters, which we determine by the usual method of substituting for
When these substitutions are made, the Cubic Criterion becomes 
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498 Lectures on the Theory of Reciprocants [42Subtracting the first column of this determinant from the fifth and reducing, we obtain

Again, subtracting the second column multiplied by A from the third and reducing, there results 

which, after subtracting the first row multiplied by 3A from the last and reducing, becomes

This expression, which is of degree-weight 15.15, instead of 10.15, must be divided by a5 to give the correct value of the Cubic Criterion.
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42] Lectures on the Theory of Reciprocants 499

LECTURE XXXIII.In this Lecture it is proposed to investigate the differential equation of a cubic curve having a given absolute invariant .
Since the value of is the same for any homographic transformation of the cubic as for the original curve, the differential equation in question must be of the form

... S3Plenarily absolute principiant = .This equation is (as we see at once by differentiating it) the integral of another of the form Principiant = 0,which is satisfied, independently of the value of the absolute invariant, at all points on a perfectly general cubic.Now, the differential equation of the general cubic is of the 9th order, and when expressed in terms of A, B, C, ... contains no letter beyond E. Hence the integral of this equation, which we are in search of, will be of the 8th order and will contain no capital letter beyond D.When no letters beyond D are involved, all plenarily absolute principiants are functions of the two fundamental, or protomorphic, ones,
Thus the differential equation of a cubic with a given absolute invariant is of the form

M. Halphen actually integrates the differential equation of the general cubic, which he shows (on p. 52 of his These sur les Invariants Differentials) may be put under the form 
where, in our notation, 
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500 Lectures on the Theory of Reciprocants [42The integral of this equation, which M. Halphen obtains partly from geo­metrical considerations, involves an arbitrary parameter depending on His result is as follows : where 
and (Two misprints, which are here corrected, occur in the expression for R as given on p. 54 of the These.)In this result the invariant £ differs in sign from the invariant usually denoted by that letter. Thus the discriminant is T2 — 64S3 instead of 
T2 + 64S3.When h = 1 the discriminant vanishes and the differential equation becomesThis is divisible by a numerical multiple of ζ3; in fact, 
where is the differential equation of a nodal cubic, previously obtained by Halphen.It is from a knowledge of the fact that P = 0 and another algebraic relation between ξ and ζ, which he finds by trial to be Q = 0, constitute two particular integrals of the differential equation to the general cubic, that he arrives, not by any regular method but by repeated strokes of penetrative genius, at the general integral

In establishing the relation T2 — 64hS3 = 0 he supposes that, by means of the equation to the cubic and its differentials as far as the 8th order inclusive, the coefficients of the cubic have been expressed in terms of the variables x, y and the derivatives of y with respect to x up to the 8th order, and that the values thus obtained for the coefficients have been substituted in Aronhold’s S and T.The abbreviations introduced by the use of our notation enable us to actually perform this calculation, which would otherwise be impracticable in consequence of the enormous amount of labour required; and we shall use this method to obtain the plenarily absolute principiant which, equated S3 .to gives the differential equation to a cubic with a known absolute invariant.
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42] Lectures on the Theory of Reciprocants 501Using the symbolic notation explained in Lecture XXXII. [above, p. 492], the equation of the cubic and its first eight differentials are 

where as usual, 
(m. μ) denotes the coefficient of hm in (ah2 + bh3 + ch4 + ...)μ; and if, as in Salmon’s Higher Plane Curves (2nd edit., p. 187), the equation of the cubic is taken to be 
then, in the above equations, the symbols 
stand forThese nine equations are sufficient to determine the values of the

S3coefficients of the cubic which have to be substituted in in order to obtain our differential equation, which will be, as we have seen, of the form
Since this equation contains nothing which involves x, y, or t, these letters must have disappeared spontaneously in the process of forming it, and con­sequently we may, at any stage of the work, give x, y, and t any arbitrary 

values without thereby affecting the result. Let, then, 
and the first four equations become
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502 Lectures on the Theory of Reciprocants [42Writing in the last five equations 

we have

. S3Substituting in for r, α0, b0, c0 their values given by the equations 
and for the mutual ratios of a1, b1, b2, c1, c2, c3 their values found by solving the last five equations, we obtain the differential equation required.Referring to Salmon’s Higher Plane Curves, p. 188, we see that, when 
r = 0, 
where (c2α2), (cb2α),... are functions of α0, α1, b3, b1, b2, c0, c1, c2, c3, which, when a0 — 0, become

We have now reached a point at which the work will be greatly facilitated by the introduction of the capital letters A, B,C, D. This is usually done by writing for
* These equations are only set out for the sake of distinctness ; when our abbreviations are 

introduced, only two terms survive in the first three, and only three terms in the last two of 
these five equations.
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42] Lectures on the Theory of Reciprocants 503But in the present instance we may make a further simplification by writing 
for the only effect of this will be to make the final result take the form 
instead ofThe form of the function will not be affected by writing in it A = 1, B = 0, and the letters A, B can be restored at pleasure by making
Hence we may write for

Instead of the coefficient of 
(m. μ) will now signify
Thus we have

Hence the equations which give a1, b1, b2, c1, c2, c3 become

From the first four of these, coupled with the equations 
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504 Lectures on the Theory of Reciprocants [42obtained by making a = 1 and b = 0 in the original equations which give b0,c0, we find 
by assuming a1≈-C1 (which we are at liberty to do since any one of the coefficients may be chosen arbitrarily).The last equation then gives
Substituting these values in the previously given expressions for (c2α2), (cb2α),... we have

Hence 
and

To express S and T in terms of A, B, C, D, we write 
or, if we use Halphen’s notation in which 
we have and consequently,
Hence 
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42] Lectures on the Theory of Reciprocants 505where the expressions on the right-hand side are 26Q and 29R in Halphen’s notation. Thus 
so thatThis result agrees exactly with Halphen’s, if we remember that his 8 is taken with a different sign from ours.Since we may write 
and in like mannerNow which is divisible by A2. Hence if 
we have
The equations which give S and T in terms of b1 and C1 may be written 
and consequently, 
where Θ, Φ, Ψ are the rational integral principiants 

which, as we have seen, are connected by the relation
The differential equation of cubics with a given absolute invariant is 

or, as it may also be written, 
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506 Lectures on the Theory of Reciprocants [42For a nodal cubic, the discriminant T2+ 26S3 vanishes. Hence the differential equation of a nodal cubic is
When expanded, and divided by 222.33Ψ2, this reduces to 
which (since A2Θ — Φ2 = 28Ψ) divides out by 28Ψ, giving 
or, what is the same thing,
This may also be written in the form 
or, replacing Θ and Φ by their values in terms of A, B, C, D,

For a cubic whose invariant S vanishes, the differential equation is 
and for a cubic whose invariant T vanishes,
For the cuspidal cubic, both S and T vanish, so that the algebraic equation of the cuspidal cubic is a particular solution of each of these equations. We can, however, replace the system 
by another pair of equations, for one of which the cuspidal cubic is a particular solution, and for the other the complete primitive.Multiplying the first equation by Θ and subtracting the second from it, we have, after dividing by 211. 3Ψ,
From (1) and (3) we obtain
HenceButso thatSubstituting in this the values of ΘΦ and Φ3 found from (3) and (4) and dividing by Ψ, we have 
which gives 
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42] Lectures on the Theory of Reciprocants 507Substituting this value of Φ in (4) and rejecting the factor 33√44, we obtain 
that isIn the course of the work we have only rejected powers of Ψ (that is of 
AC — B2) and of A, of which neither corresponds to the cuspidal cubic.Since Φ= 32A4, it follows that A2D — 3ABC + 2B3 = 0. The equation to the cuspidal cubic above obtained is a particular solution of this, its complete primitive being (see Lecture XXXI. [above, p. 486]), Y = XλZ1-λ, where λ is an arbitrary constant.

LECTURE XXXIV.
The preceding 33 lectures contain the substance of the lectures on Reciprocants 

actually delivered, entire or in abstract, in the course of three terms, to a class at the 
University of Oxford.

A good deal of material remains over which the lecturer has lacked leisure or energy 
to throw into form, which he hopes to be able to recover and annex to what has gone 
before as supplemental matter in the convenient form of lectures numbered on from those 
which have already appeared.

The one that follows is entirely due to Mr Hammond, who has rendered invaluable aid 
in compiling, and in many cases bettering, the lectures previously published.

It constitutes probably the most difficult problem in elimination which has been 
effected up to the present time. J. J. S.The problem in question is to obtain the differential equation correspond­ing to the complete primitive 
(say Y = XλZ1-λ) by the process of eliminating all the arbitrary constants except λ.The eliminations to be performed become greatly simplified by aid of the following Lemma. If X be any linear function of x and y, and Ma the absolute pure reciprocant corresponding to M', then 
whereFor if we suppose two successive differentiations give 
and
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508 Lectures on the Theory of Reciprocants [42Writing the second of these equations in the form 
and differentiating again, we find 
or, since

N.B.—Throughout the following work all letters with numerical suffixes are to be considered as derived from the corresponding unsuffixed letters in the same way as, in what precedes, X1, X2, and X3 are derived from X; namely by successive differentiations, each of which is accompanied by a division by αKWriting the equation 
(in which X, Y, Z denote any three linear functions of x, y) in the form 
we obtain by differentiation and division by α 1/3,
Let now 
so that (1) takes the form 
and consequently

By means of the Lemma it can be shown that
For, since we have andSubstituting these values for X1 and X3 in 
we obtain
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42] Lectures on the Theory of Reciprocants 509which proves equation (2). The equations (3) and (4) connecting v, v1, v2 and 
w, w1, w2 are similarly established. We now write
These, combined withgive
which, when operated on by α-1/3  d/dx twice in succession, yield
When expressed in terms of ω, ω1, ω2 and z, z1, z2, equations (2), (3), and (4) become transformed into
where, for the sake of brevity, we write

In order to simplify (5), (6), and (7), we multiply the first of them by λ, the second by — 1, and the third by 1 — λ, and take their sum, which is obviously independent of P, and from which it is easily seen that the terms containing Q and z3 will also disappear. For
andWe are thus left with
which, on restoring the value of R and reducing, becomes
Now the values of u, v, w, which are equal to - respectively, beingdistinct from each other, z cannot vanish ; for z = 0 would imply u = v= w. Hence, considering λ to have any finite numerical value except 1 or 0, we may write
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510 Lectures on the Theory of Reciprocants [42in equations (5), (6), (7), which will then become
Adding these together, we find
Restoring the value of P, and writing for shortness 
there resultsFrom any pair of the equations (8), (9), (10) we obtain by subtraction
Thus, for example, subtracting (10) from (8), we have

Collecting our results, we see that equations (5), (6), (7) may be replaced by 
whereandDifferentiating (13), we obtain
Subtracting this from (12) and adding (13) multiplied by ω, the result divides by z, and we find 
which, when multiplied by ω and subtracted from (11), reduces it to
Now it has been shown in Lecture XXX. [above, p. 482] that 

whence it follows that (14) gives on differentiation 
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42] Lectures on the Theory of Reciprocants 511Combining this with (15) we have 
or, finally, since ωz + z1 = 0,Differentiating this, we have that is whence, by differentiation,
Subtracting (14) multiplied by Aa from the double of this, we have2jBSubstituting in this for ω its value —found from (16), there results
But it has been shown thatHence the elimination of z gives

Or restoring for p and q their values in terms of λ, and replacing the absolute reciprocants Aa, Ba, Ca by the non-absolute ones A, B, C (which is effected by merely multiplying throughout by a power of a), we have
For other methods of obtaining this differential equation see Halphen’s 
These sur les Invariants Differentiels, p. 30, and Lecture XXX. of the present course. It corresponds in general (that is unless λ = 0,1, ∞ ) to the complete primitiveWhen λ = 0, 1, ∞ , the differential equation (17) becomes 
which corresponds to the complete primitive
This case has been discussed in the These and in Lecture XXX. [above,p. 480].We may obtain (18) from (19) by a method of elimination similar to that employed in deducing (17) from its complete primitive. Thus the first differential of (19) may be written 
which becomes when we assume
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512 Lectures on the Theory of Reciprocants [42By means of the Lemma we obtain
The first two of these are identical with (2) and (3) previously given ; the third is found as follows. Since
Hence
Thus we have

Equations (20), (21), and (22), of which we have just proved the last, are merely convenient expressions of the fact that X, Y, Z are linear functions of x,y. We combine them with the first, second, and third differentials of the primitive equation (19) by writing
When this is done (21) becomes 
which, in consequence of the identities (20) and (22), reduces to
Let now u = ω — z (so that ωz + z1 = 0). Substituting in (20) and (22) we find 
and respectively. Adding both equations together, and remembering that 
we obtain 
which, combined with replace the system (20), (21), (22).
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42] Lectures on the Theory of Reciprocants 513Comparing these equations with (11), (12), (13), we see that the two sets are identical if we make λ = 0, when p becomes 2 and q = 1. Hence, by performing exactly the same work as in the previous case, we shall find(instead of 10Aα = pzi)and (instead of 3qz2Aα2).And, finally, eliminating z between this pair of equations, at the same time replacing the absolute reciprocants Aa, Ba, Ca by the corresponding non-absolute ones A, B, C, we have
which is what (17) becomes when λ has any of the values 0, 1, or ∞ .
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