68.

ON AN ARITHMETICAL THEOREM IN PERIODIC
CONTINUED FRACTIONS.

[Messenger of Mathematics, X1x. (1890), pp. 63—67.]

THE well-known form of continued fraction for the square root of N, an
integer, is
(@; bye, d,...,d,c,b2a; b,¢d,...,d,c b 2a; indefinitely continued)
which, if we denote the type a, b, ¢, d, ..., d, ¢, b, @ by ¢, may be written under
the more convenient form
(t,0,¢0,¢0,...ad inf).

If now we use [¢] to signify the cumulant of which ¢ is the type, and ['¢],
[t], ['¢] respectively, the cumulants of the types got by cutting off @ from
either end and from both ends of ¢, it is easily shown that whatever numbers

a, b, ¢, ... represent, the value of the continued fraction {(z, 0)°} is [%,
so that if {(¢, 0)°} represents the square root of an integer, [¢] must be
divisible by ['¢].

At first sight one would imagine that it would be a difficult matter to
give a rule for determining whether such condition is fulfilled or not by any
assigned value of the symmetrical type #, but Mr C. E. Bickmore, of New
College, Oxford, has noticed that the case is quite otherwise, for that if we
put ¢ under the form a, 7, a, then, in order that {(a, 7, @, 0)”} may satisfy the
requirement of being the square root of an integer, the sufficient and necessary
condition is the equivalence

2a = (—)*[*][' 7] (mod. [7]),
where w is the number of elements in 7.

Consequently = may be taken quite arbitrarily, and then an infinite
number of values be assigned to a, except in the case where [7] is even, and
at the same time [7'] and ['7] are each of them odd.
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660 On an Arithmetical Theorem in (68

The proof in my notation is as follows:

[t]

Since t=a, 7, @, we have ‘t'=, and consequently [7] will be an
integer if
[@, 7, a]= 0 (mod. [7]).

Expanding and remembering that ['r]=[7"] (the type T being symmetrical),

we obtain
@?[7]+ 2a[7']+ ['7] = 0 (mod. [7]).

Hence 2a 7]+ ['7]= 0 (mod. [7]), (1)
and 2¢ [T+ [7][7] = 0 (mod. [7]). (2)
But [} = [r]['7] = (= 1,
so that - ["P= (=1 (mod. [1]),
and therefore (2) becomes
2a = (—)*[7"]['7'] (mod. [7]), : 3)

which is thus shown to be a necessary condition.
It is also a sufficiént condition, for multiplying (3) by ['] we have
2a[r']= (=) [*F['] (mod. [7]),
or, since [T = (—=)»+ (mod. [7]),
2a[7"] = — ['7'] (mod. [7]),
which is the same as (1).
Suppose now that ‘7’ is given and that we wish to ascertain if @ can be
found of such a value that the congruence (3) shall be soluble. This will

obviously be the case if [7] is odd. It will also be the case if [7] is even,
provided ['7] is also even, and only in that case; for, when [7] is even, then

by virtue of the equation
(1] -["F=+1,
[7'] must be odd.

We have, therefore, to find under what circumstances ['7'] will be odd
and [7] even; in all other cases but these the congruence (3) will be soluble,
and then the most general value of a will be any term in an arithmetical
series of which the common difference is [7], unless [7] and ['7] are both of
them even, in which case the common difference will be % [7].

I proceed now to give a rule for determining the possible and impossible
cases of the solution of (3), to explain the grounds of which the following
statement will suffice.

(1) The value of a cumulant is not affected by striking out any even
number of consecutive zeros from its type.

(2) The parity (that is the character qud the modulus 2) of any cumu-
lant will not be affected if we strike out three consecutive odd terms, whether
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68] Periodic Continued Fractions 661

they occur in the middle or at either extremity. For if ¢, T be any two types,
the cumulant
(61,1, 1, 7]=38[t][r] + 2[¢][r] + 2 [{] (7] + [¢]('r]
= [¢][r]+ [¢']['7] (mod. 2),
that is = [¢, 7] (mod. 2).
Also
[1,1,1,¢]=[¢ 1,1, 1]= 3 [¢] + 2['t] = [¢] (mod. 2).

(3) The value of any cumulant in the type of which 1, 0, 1 occurs any-
where is the same as if 2 is substituted for 1, 0, 1; and therefore its parity
is not affected if the units on each side of the 0 are omitted.

In what precedes in Nos. (1), (2), (3) the result, to modulus 2, is obviously
unaffected if for 0 we write any even and for 1 any odd number.

In order then to determine the parity of ['7] and of [7] we may proceed
as follows:

Let 7 be any assigned symmetrical type, ‘r" will then represent the type
divested of its two equal terminals.

Rules—(1) for each even number in ‘7’ write 0, and for each odd

number, 1;
(2) elide any even number of consecutive zeros, and any number
divisible by 3 of consecutive unats ;
(8) elide any pair of units lying on each side of a zero;
(4) repeat these processes as often as possible ;
then, I say, eventually we must arrive at one or other of the six following
irreducible types, namely
();0;1;1,1;0,1,0; 0,1, 1, 0%
where () means absolute vacuity ; accordingly ‘v’ may be said to be affected
with one or the other of these six characters.

If now the reduced form of ‘+"is 0; 1,1; 0,1, 0, ['7'] is even, and the
congruence (3) will be soluble. In the other three cases ['7'] is odd, but [7]
will also be odd unless its terminal elements are odd in the case where
the reduced form of ‘v’ is ( ), and even for the reduced forms 1, and
Ol a0

In the following exhaustive table the second column indicates the even-
ness or oddness of the terminals of 7 denoted by e and u respectively.

The third and fourth columns indicate the evenness or oddness (denoted
as above) of ['7'] and [7], along with the character of ‘7’ in the third column.
In the fifth column the answer is given as to the determining congruence

* BExcept for the symmetrical form of r there would be two additional (virtually undistin-
guishable) reduced forms 0, 1 and 1, 0.
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662 Arithmetical Theorem in Periodic Continued Fractions [68

being soluble or insoluble, denoted by s and ¢ respectively; and the last
column shows whether the common difference of the arithmetical series of the
values of either terminal, in the case of solubility, is equal to the modulus [7]
or its moiety. ' '

Cases | Terminals ‘7 [7] | Sol. or Insol. | C. D.
1 e () % | % s [7]
2 u (2= u| e 7
3 e it u | e z
4 % 1 U | u s [r]
5 e 0 T, R0 L el Jo X
6 % 0, 12,04 g VY s [7]
7 e 0 el e s 3 [7]
8 % 0 e| e ] 3[7]
9 e 11 el u ] []

10 % el el u s [7]
11 e 0,1,0 e| u s []
12 % 0,510 e| u s \I [7] i

The following examples are given to prevent the possibility of mis-
apprehension in the application of the Algorithm.

() Let
re=l, 970018 ST 408, %2 T8, 41T, 9 L.
Then ‘+¥= 1,1,1,1,0,1,1,0,0,0,0,0,1,1,0,1,1,1,1

Il

= L i LT
= 0, S | A 0
= 0.

This corresponds to case (8), which is a soluble one, and accordingly we
have from Degen’s Table
{(15, 7, 15, 0)°} = 4/(251),
15 being the first term of an arithmetical series whose common difference

is §[7].

(B) Let 7 =2-8. 1.9 415018115425k 8
Then = 1L A0 K00, 0L OS0S e

= 1,1, T AR 1

= i

This corresponds to the soluble case (1), and accordingly we find from
Degen’s Table {(10, 7, 10, 0)"} =4/(109); 10 being the first term of an
arithmetical series whose common difference is [7].
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