808.

NOTE ON A FORM OF THE MODULAR EQUATION IN THE TRANSFORMATION OF THE THIRD ORDER.

[From the Messenger of Mathematics, vol. xiI. (1883), pp. 173, 174.]
In my Treatise on Elliptic Functions, pp. 214-216, writing only $\frac{1}{J}, \frac{1}{J^{\prime}}$ instead of Ω, Ω^{\prime}, and α, β instead of $\alpha^{\prime}, \beta^{\prime}$, I have shown as follows: viz. if k, λ denote as usual the original modulus, and the transformed modulus, and if

$$
J=\frac{\left(k^{4}+14 k^{2}+1\right)^{3}}{108 k^{2}\left(1-k^{2}\right)^{4}}, \quad J^{\prime}=\frac{\left(\lambda^{4}+14 \lambda^{2}+1\right)^{3}}{108 \lambda^{2}\left(1-\lambda^{2}\right)^{4}},
$$

then the relation between J and J^{\prime} can be found by the elimination of α, β from the equations

$$
\begin{gathered}
\alpha+\beta=1 \\
J=\frac{(1+8 \alpha)^{3}}{64 \alpha(1-\alpha)^{3}}, \quad J^{\prime}=\frac{(1+8 \beta)^{3}}{64 \beta(1-\beta)^{3}} .
\end{gathered}
$$

By a very slight change we obtain the result given by Prof. Klein in his paper, "Ueber die Transformation der elliptischen Functionen, \&c.," Math. Ann. t. xiv. (1879), pp. 111-172; viz., see p. 143, the relation is to be obtained by the elimination of τ, τ^{\prime} from the equation $\tau \tau^{\prime}=1$, and the equations

$$
\begin{aligned}
& J: J-1: 1=(\tau-1)(9 \tau-1)^{3}:\left(27 \tau^{2}-18 \tau-1\right)^{2}:-64 \tau ; \\
& J^{\prime}: J^{\prime}-1: 1=\left(\tau^{\prime}-1\right)\left(9 \tau^{\prime}-1\right)^{3}:\left(27 \tau^{\prime 2}-18 \tau^{\prime}-1\right)^{2}:-64 \tau^{\prime} ;
\end{aligned}
$$

these last equations being equivalent to two equations only in virtue of the identity

$$
(\tau-1)(9 \tau-1)^{3}+64 \tau=\left(27 \tau^{2}-18 \tau-1\right)^{2},
$$

and the like identity in τ^{\prime}.
In fact, writing $\alpha=\frac{\tau}{\tau-1}, \beta=\frac{\tau^{\prime}}{\tau^{\prime}-1}$, the equation $\alpha+\beta=1$ becomes $\tau \tau^{\prime}=1$; and then for α, β substituting their values, we have

$$
J=\frac{(9 \tau-1)^{3}(\tau-1)}{-64 \tau}, \quad J^{\prime}=\frac{\left(9 \tau^{\prime}-1\right)^{3}\left(\tau^{\prime}-1\right)}{-64 \tau^{\prime}},
$$

which are the formulæ in question.

