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827.
ON THE NON-EUCLIDIAN PLANE GEOMETRY.

[From the Proceequs of the Royal Society of London, vol. XXXVIL (1884), pp. 82—102.
Received May 27, 1884.]

1. I conNsIDER the hyperbolic or Lobatschewskian geometry : this is a geometry such
as that of the imaginary spherical surface #*+3y*+2°=—1; and the imaginary surface
may be bent (without extension or contraction) into the real surface considered by
Beltrami, which I will call the Pseudosphere, viz. this is the surface of revolution
defined by the equations @ =logcot 40 —cos §, Vy*+z*=sinf. We have on the
imaginary spherical surface imaginary points corresponding to real points of the
pseudosphere, and imaginary lines (arcs of great circle) corresponding to real lines
(geodesics) of the pseudosphere, and, moreover, any two such imaginary points or lines
of the imaginary spherical surface have a real distance or inclination equal to the
corresponding distance or inclination on the pseudosphere. Thus the geometry of the
pseudosphere, using the expression straight line to denote a geodesic of the surface,
is the Lobatschewskian geometry; or rather I would say this in regard to the metrical
geometry, or trigonometry, of the surface; for in regard to the descriptive geometry,
the statement requires (as will presently appear) some qualification.

2. I would remark that this realisation of the Lobatschewskian geometry sustains
the opinion that Euclid’s twelfth axiom is undemonstrable. We may imagine rational
beings living in a two-dimensional space and conceiving of space accordingly, that is,
having no conception of a third dimension of space; this two-dimensional space need
not however be a plane, and taking it to be the pseudospherical surface, the geometry
to which their experience would lead them would be the geometry of this surface,
that is, the Lobatschewskian geometry. With regard to our own two-dimensional space,
the plane, I have, in my Presidential Address (B.A., Southport, 1883), [784], expressed
the opinion that Euclid’s twelfth axiom in Playfair’s form of it does not need demon-
stration, but is part of our notion of space, of the physical space of our experience;
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827] ON THE NON-EUCLIDIAN PLANE GEOMETRY. 221

the space, that is, which we become acquainted with by experience, but which is the
representation lying at the foundation of all physical experience.

3. I propose in the present paper to develope further the geometry of the
pseudosphere. In regard to the name, and the subject generally, I refer to two
memoirs by Beltrami, “Teoria fondamentale degli spazii di curvatura costante,” Annali
di Matem., t. 11. (1868—69), pp. 232—255, and “ Saggio di interpretazione della geometria
non-Euclidea,” Battaglini, Giorn. di Matem., t. V1. (1868), pp. 284—312, both translated,
Ann. de UEcole Normale, t. Vi (1869); in the last of these, he speaks of surfaces of
constant negative curvature as “ pseudospherical,” and in a later paper, “Sulla superficie
di rotazione che serve di tipo alle superficie pseudosferiche,” Battaglini, Giorn. dv Matem.,
t. X. (1872), pp. 147—160, he treats of the particular surface which I have called the
pseudosphere. The surface is mentioned, Note 1v. of Liouville’s edition of Monge’s
Application de UAnalyse o la Géométrie (1850), and the generating curve is there
spoken of as “bien connue des géometres.”

4. In ordinary plane geometry, take (fig. 1) a line Bz, and on it a point B;
from B, in any direction, draw the line BA; take upon it a point 4, and from

Fig. 1.

Y

this point, at right angles to Bz, draw Ay, cutting it at C. We have thus a triangle
ACB, right-angled at C; and we may denote the other angles, and the lengths of the
sides, by 4, B, ¢, a, b, respectively. In the construction of the figure, the length ¢ and
the angle B are arbitrary.

The plane is a surface which is homogeneous, isotropic, and palintropic, that is,
whatever be the position of B, the direction of Bz, and the sense in which the angle
B is measured, we have the same expressions for «, b as functions of ¢, B; these
expressions, of course, are

a=ccos B, b=csin B.

But considering Ay as the initial line and AB, =c, as a line drawn from 4 at an
inclination thereto = A4, we have in like manner

b=ccos A, a=csind,

and consequently cos 4 = sin B, sin 4 =cos B; whence sin (4 +B)=1, cos (4 +B)=0, and
thence 4 + B = a right angle, or 4 + B+ (= two right angles.
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222 ON THE NON-EUCLIDIAN PLANE GEOMETRY. [827

Hence also in any triangle ABC, drawing a perpendicular, say AD, from A4 to the
side BC, and so dividing the triangle into two right-angled triangles, we prove that
the sum A +B+(C of the angles is =two right angles, and we further establish the
relations

a=bcosC+ccosB, b=ccosA+acosC, c=acosB+bcos 4,

which are the fundamental formul® of plane trigonometry; that is, we derive the
metrical geometry or trigonometry of the plane from the two original equations
a=ccos B, b=csin B.

5. Supposing the plane bent in any manner, that is, converted into a developable
surface or torse, and using the term straight line to denote a geodesic of the surface,
then the straight line of the surface is in fact the form assumed, in consequence of
the bending, by a straight line of the plane. The sides and angles of the rectilinear
triangle ABC on the surface are equal to those of the rectilinear triangle ABC on the
plane, and the metrical relations hold good without variation. But it is not simpliciter
true that the descriptive properties of the torse are identical with those of the plane.
This will be the case if the points of the plane and torse have with each other a
(1, 1) correspondence, but not otherwise. For instance, consider a plane curve (such
as the parabola or one branch of the hyperbola) extending from infinity to infinity,
and let the torse be the cylinder having this curve for a plane section; then to each
point of the plane there corresponds a single point of the cylinder; and conversely to
each point of the cylinder there corresponds a single point of the plane; and the
descriptive geometries are identical. In particular, two straight lines (geodesics) on the
cylinder cannot inclose a space; and Euclid’s twelfth axiom holds good in regard to
the straight lines (geodesics) of the cylinder. But take the plane curve to be a closed
curve, or (to fix the ideas) a circle; the infinite plane is bent into a cylinder con-
sidered as composed of an infinity of convolutions; to each point of the plane there
corresponds a single point of the cylinder, but to each point of the cylinder an infinity
of points of the plane; and the descriptive properties are in this case altered; the
straight lines (geodesics) of the cylinder are helices; and we can through two given
points of the cylinder draw, not only one, but an infinity of helices; any two of
these will inclose a space. And even if instead of the geodesics we consider only the
shortest lines, or helices of greatest inclination; ye. even here for a pair of points on
opposite generating lines of the cylinder, there are two helices of equal inclination,
that is, two shortest lines inclosing a space. We have, in what precedes, an illustration
in regard to the descriptive geometry of the pseudosphere; this is not identical with
the Lobatschewskian geometry, but corresponds to it in a manner such as that in
which the geometry of the surface of the circular cylinder corresponds to that of the
plane.

6. The surface of the sphere is, like the plane, homogeneous, isotropic, and palin-
tropic. We may on the spherical surface construct, as above, a right-angled triangle
ABC, wherein the side ¢ and the angle B are arbitrary; and (corresponding to the
before-mentioned formule for the plane) we then have

tana =tanccos B, sinb = sincsin B,
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827] ON THE NON-EUCLIDIAN PLANE GEOMETRY. 223

whence also
tan b = tan ¢ cos 4, sina = sin ¢ sin 4.

We deduce from these
tan’a  sin®b _
tanzc¢ ' sin’c

’

leading to cos*c=cos’acos*b; and then

sin & =cos ¢ tan B, S G _ cos ¢ tan A4,
tana tanbd
giving
cos @ cos b =cos® ¢ tan 4 tan B ;
that is,
tan 4 tan B= (s , which is > 1.
cos @ cos b

Hence A + B>a right angle, or in the right-angled triangle ACB, the sum A4 + B+ (C
of the angles is >two right angles. Whence also in any triangle ABC whatever,
dividing it into two right-angled triangles by means of a perpendicular let fall from
an angle on the opposite side, we have the sum A + B+ C of the angles > two right
angles. And we obtain, moreover,

a =tan™ (tan ¢ cos B ) + tan~* (tan b cos C'),
b= tan™ (tan a cos ') + tan™ (tan ¢ cos 4),
¢ =tan~ (tan b cos 4) + tan™ (tan e cos B),

which lead to all the formule of spherical trigonometry.

7. Suppose the radius of the sphere to be 1/A: then a, b, ¢ being the lengths
of the sides, the lengths in spherical measure are Aa, Ab, Ac; and we must in the
formule instead of a, b, ¢ write Aa, Ab, Ac respectively. In particular, for the imaginary
sphere #*+9y*+2°=—1, we have A=1, and we must instead of @, b, ¢ write az, bi, ct
respectively. The fundamental formule for the right-angled triangle thus become

tanh ¢ = tanh ¢ cos B, sinh b= sinh ¢ sin B,

and these lead to all the trigonometrical formule, viz. any one of these is deduced
from the corresponding formula of spherical trigonometry by writing therein s, bi, ¢t
for @, b, ¢ respectively; or, what is the same thing, by changing the circular functions
of the sides into the corresponding hyperbolic functions.

In particular, for the right-angled triangle ACB, we have

1

tan 4 tan B = cosh @ cosh b’

which for ¢ and b real is <1, that is, 4+ B < a right angle, or 4 + B+ < two
right angles, and thence also in any triangle whatever 4 + B+ (' < two right angles.
But the points 4, B, ' of any such triangle ABC on the imaginary sphere, and the
lines BC, CA, AB which connect them, are imaginary: the meaning of the proof will
better appear on passing to the pseudosphere.
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224 ON THE NON-EUCLIDIAN PLANE GEOMETRY. [827

8. We have to consider the imaginary spherical surface as bent into a real surface.
This is, of course, an imaginary process, as any process must be which gives a trans-
formation of imaginary points and lines into real points and lines; but the notion is
not more difficult than that of the transformation of imaginary similarity, consisting
in the substitution of w, vy, iz for @, ¥, z respectively. We thus pass from imaginary
points of the imaginary sphere #°+3*+2°=—1 to real points of the real sphere
22+ 1y*+2*=1; or, again, from imaginary points of either of the real hyperboloids
BHypr—zr=—1, a*+9y*—22=1, to real points of the other of the same two real
hyperboloids.

9. I consider the formula for the flexure of the imaginary sphere X* + ¥* + Z2=—1,
into the pseudosphere z=1logcot 30 —cos @, Vi +2z=sinf: it would be allowable to
dispense with Beltrami’s subsidiary variables u, », but I prefer to collect here all the
formulee. We have
NI—w—

P g
N1 — w2 =2’

NI —ut—o2

values which give X®+V2+4+2Z2=—1. And observe that, taking u, v to be real
magnitudes such that w*+v*<1, we have X a pure imaginary, but ¥ and Z each
of them real. We consider on the imaginary sphere points having such coordinates
X, Y, Z; any such point corresponds as will immediately appear to a real point on
the pseudosphere, and (the distances and angles being the same for the pseudosphere
as for the original imaginary spherical surface) it hence appears that (notwithstanding
that the points on the imaginary spherical surface, and the lines joining such points,
are imaginary) the distances and angles on the imaginary spherical surface are real. Also

; 1—u v
Slne:ﬁtﬁﬂ’ ¢=m,
and thence
tX —Y=sin0, X+ YV =sin0(p*+ cosec*d), Z=sinb.do.
Further

¢* — 1 + cosec? 6 e 2¢
¢*+ 1 +cosec’ 8’ ~ ¢*+1 +cosec* 6’

U=

z=logcot 0+ cosf, y=sinfcos¢p, z=sinfsin ¢.

10. We have dX®+dY2+dZ* and da*+dy* + d2* each =cot® 6 d6 + sin? 6 d>
Writing P, Q=X -7, 1X + Y respectively, we in fact have

dX*+dY*+dZ*=—dPdQ+dZ?
where P, @, Z=sin 6, ¢*sin @+ cosec, ¢sin @ respectively; and thence

dZ = sin 0 d¢ + ¢ cos 6db,
dP = cos 8d0,
dQ =2 sin 0¢ dp + (¢* cos 0 — cosec € cot 0) db,
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827] ON THE NON-EUCLIDIAN PLANE GEOMETRY. 225

giving the formula
dX*+dY? 4 dZ* = cot? 6 d6* + sin® 0 d¢*;
and then also

dz® + dy* + dz*=da* + (d sin 0) + sin® 0 d¢?
= (cos? 0 cot? 6 + cos? @) d6* + sin? Odp* = cot® 0d6* + sin? O d>.
Joining to these the differential expression in w, », we have

1 —u? —?) (du? + dv*) + (udu + vdv)?
dX +d¥* + dz2 ={ ((1—u2—v2)’( ,

= cot?0 d@* + sin® 6 d¢?,
=da* + dy*+ dz?,

where the final equation dX*+dY*+dZ*=da*+ dy* + dz* shows that the imaginary
sphere X*+ Y2+ Z?=—1 can be bent into the pseudosphere.

Observe that to given values of 6, ¢ there corresponds a single point on the
pseudosphere, but not conversely; for it 6, ¢ be values corresponding to a given point,
then corresponding to the same point we have 6, ¢+mnm, where n is an arbitrary
integer.

11. The geodesics of the imaginary spherical surface are, of course, its plane
sections, any such section being determined by a linear equation aX +BY +4Z=0
between the coordinates X, ¥, Z. Since for a point corresponding to a real point of
the pseudosphere, X is a pure imaginary while Y and Z are real, we see that for a
geodesic corresponding to a real geodesic of the pseudosphere we must have a a pure
imaginary, 8 and 4 real; and, in fact, writing as above, P=1X—Y, @=1X+Y, and
therefore conversely X =}¢(—P—-@Q), Y=4}(— P+ (), the equation aX + BY +4Z=0
becomes (— 4ta —4B) P+ (—4ia+4B)Q+vZ =0, which will then be of the form
AP + BQ + CZ=0, with real coefficients 4, B, C': viz. we have

P, Q, Z=sin0, sin 6 (¢*+cosec’d), sinf.¢;
and the equation thus is

A + B(¢*+ cosect 0)+ Cp =0,

which is the equation for a geodesic (or straight line) on the pseudosphere. The
equation A4 + C¢ =0, that is, ¢ = const., is obviously that of a meridian.

12. If the geodesic pass through a given point 6,, ¢,, we have, of course,
A + B(¢:*+ cosec® 6,) + Up, =0,
and hence also the equation of a geodesic through the two points (6,, ¢,), (6, ¢.) is
1, ¢* +cosectf, ¢ |=0.
1, ¢2+cosectl;, o,

1, ¢+ cosec®f,, ¢,
CI T 29
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226 ON THE NON-EUCLIDIAN PLANE GEOMETRY. (827

We may for ¢,, ¢, write ¢, +2nym, ¢+ 2n,m respectively, n,, n, being arbitrary integers;
and it would thus at first sight appear that there could be drawn through the two
points a doubly infinite series of geodesics. There is, in fact, a singly infinite system
of geodesics: to show how this is, write for shortness A, A;, As, a, a;, a, for cosec®d,
cosec? ;, cosec®@,, 2mmw, 2mm, 2nym respectively; then the equation of the geodesic
through the two points may be written
|1: (¢ +a)2+A; ¢+a =O)
1, (4 a1)2 + Ay, ¢1 + o
1’ (¢2 + a2)2 o A21 ¢2 &+ o

where the constant a=2n7m may be disposed of so as to simplify the formula as
much as may be: it is what I have called an apoclastic constant. Taking B an
arbitrary value, this may be transformed into

1, (¢ +a+BP+A, ¢ +a+8 !=0,
15 (¢1+a1+B)’+A1, ¢l+al+ﬂ
1, (o+a+B8P+ A, %+%+ﬁ'

and then assuming a=a,, 8=—a, this becomes
1) ¢2 e A > ¢ i 0’
1: ¢12 ok Ax ’ ¢1

1L, (¢ +as—a )P+ Ay, ¢ota—a
which is what the equation
1, ¢*+A, ¢ [=0,
| 1, ¢24+ A, &
L, ¢+A ¢ |

becomes on changing only ¢, into ¢, + a,— a;, that is, ¢,+ 2ksm, where k, is an arbitrary
integer. We have thus through the two points a singly infinite series of geodesic
lines; in general, only one of these is a shortest line, but for points on opposite
meridians there are two equal shortest lines.

13. For the distance between two points (6, ¢,) and (6., ¢,) on the pseudosphere,
taking (X,, Y, %) and (X,, Y., Z,) for the corresponding points on the imaginary
sphere, and writing as above P, @ =X, - ¥,, i X, +Y,; P, Q=1:X,-Y,, 1 X,+ ¥, we
have

coshd=— X, X,-- VY, - 2,7,
=3 (PQ:+P.Q) - 2,2,
=sin 0,sin 6, {§ (¢, + cosec? 6,) + § (¢ + cosec? 6,) — b, .,

- i 0 i 62 -
% sin 6, sin 6, (¢, )+ 1+ sin 6, sin 6,
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Observe here that, writing 6., ¢.= 60, + d6,, ¢,+ d,, and therefore & small so that
cosh § =1+ 48 we obtain

8* =sin? 6,d¢,? + cot® 6,d06.?,

agreeing with the expression for da*+dy*+dz®. If in the form first obtained we write
A, =cosec?0,, A,=cosec?0,, we find

cosh 8 = Vﬁ {2+ A+ b + Ay — 2¢, o),
which is a convenient form.
In like manner, to find the mutual inclination of the two geodesics
A, + B, (¢* + cosec® 0) + C1¢p =0,
A, + B, (¢* + cosec? §) + C,¢p =0,
these correspond to the plane sections
AP+BQ+0CZ=0, AP+ BQR+0C,Z=0,
that is,
(4, +B)iX +(—4,+B)Y+0Z=0, (4d,+B,)iX +(—4,+B,)Y+C.Z=0,
of the imaginary sphere: and we thence find

0.0—2(4,B, + 4,8)

cos ) = :
NC2—44,B,NC?— 44,8,

14. Suppose that the two geodesics meet in the point 6,, ¢,: then writing for
shortness cosec®’d = A, and therefore cosec?d,= A,, we have

4, +B (¢02+ Ay + 0¢0=0
Ay + By (¢ + Ay) + Cogpy = 0.

Suppose that the meridian through this point is
A;+ By (¢*+ A)+Cs¢=0;

then B;=0, 4;,+ C;¢,=0. Take Q,, Q,, for the inclinations to this meridian of the
two geodesics respectively; then

C.C;—24;B, C+2Bq§0
cosi) = —
NO2—44,B,.C, NOp-44,B,’
whence

Sin Q] = &,
VO —44,B,

and similarly
cos Q — M.
V02 —44,B,’

29—2
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whence g

2B, VA,
VCp—44,B,

sin Q, =
We thence obtain

cos (0 — 0 = D10+ 20 (B.Cy+ B,C,) + 4B,B, (9 + A))

VCj— 44,B V03— 44,B,

which is
C’1 02 =2 (Ale & AzBl)

=—— =cos (2,

" WC2—44,B, V0 — 44,8,

as above, the equality of the two numerators depending on the identity
| (A, + B (¢ + M)+ Ciho) By + (A + By (66 + Au) + Caghe) B, =0.
In particular, if we consider the two geodesics
¢* + cosec® 8 — cosec’ 0, + C1p =0, ¢ =0,

the second of which may be considered as representing any meridian section of the
pseudosphere, and the first is an arbitrary geodesic meeting this at the point 6=46,
¢ =0, then the formula for the inclination-is

cos ) = WMA——F; .
VO + 4 cosec? 6,

Hence also, cos Q2 =0, or Q=90° if C;=0: viz. we have ¢*+ cosec® § — cosec?d, =0
for the equation of the geodesic through the point 6=6,, ¢ =0, at right angles to
the meridian section ¢=0.

15. Consider a right-angled triangle ACB, where the points 4, C' are on the
meridian ¢ = 0, and write (6,, 0; A, = cosec?6,), (6,, ¢.; A, =cosec? 8,), (65, 0; A, = cosec? ),
for the points 4, B, C respectively. Then if the equations are—

for the side BC, 4,+ B,(¢*+ A)+ (1 =0, we have C,=0,

A, + B, (¢*+ Ay)=0, 4, + B,A; =0, whence ¢+ A, = Ay;

for the side CA, 4.+ B;(¢*+ A)+ C,p =0, we have 4,=0, B,=0;

for the side AB, A;+ B;(¢p*+ A)+ C;p =0,

we have A;+ B; (¢ + As) + Copy =0, A3+ B;A, = 0.

Observing that ¢, =¢;=0, we have

1
cosha = ————(d2+ As + A),
2~/A2A3(¢2 i
1
coshb=————(A;+ A)),
2\/A1A3(3 1)
1
coshc= ——— (2 + A; + Ay) ;
5 2~/A1A2(¢2 1 2
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or, reducing these by the relation ¢+ A,=A,;, they become

cosh ¢ = via, whence sinh a = %—:_—Az , tanh @ = \/~A—s: A";
VA, VA, VA,
cosh b = —é’—.iﬁ, ;5 sinh'b = . :ﬁxl , tanh b = A A”;
2VAA, 2VA A, 8 A,
I o
cosh ¢ = A +4A, , ., sinhe= VAL AL4A1A2 , tanhe= VA + Ay 4A1A2.
2VAA, 2VAA, A+ A,
We have, moreover,
oin B C,C;—~2(A.B;+ 4;B) = —2(4,B;+ 4,B,)

NC7— 44,B VC7—44,B, ~—4A4,B,V0j— 44,B,
which, writing 4;=— B;A, and 4,=— B,A;, becomes

By (A + Ay)

cos B=—— s
NANCP — 44,B,

or, further reducing by means of

4’22 (032 47 4AsBs) e B32 (¢22 + A — Al)2 &t 4'(31’223321\12
=By (¢’ + Ao — AP + 47,
= B2 {(As+ A + 40, (A — Ay}

=B {(As+ A — 40, A},
this becomes
(A4 A VA, = A,

cos B=—— 1
VAV (A, + Ay — 4A, A,

whence
’\/Az (Al 7 - As)

sin B= —
VAN, + Ay — 4A, A,

and with these values we verify
tanh @ = tanh ¢. cos B,

sinh b = sinh ¢. sin B,

which are the expressions for the sides BC, U4, in terms of the length B4, =¢ and
angle B, which are arbitrary. I have not thought it necessary to give the direct
verification of these equations for a more general position of the right-angled triangle :
we already know, and it appears d posterior: by the following number, that the
verification really extends to any right-angled triangle whatever on the surface.

16. The pseudosphere is homogeneous, isotropic, and palintropic, viz. this is the
case when bending is allowed; in other words, the surface is applicable upon itself,
with three degrees of freedom. Considering any infinitesimal linear element Az, the
point A may be brought to coincide with an arbitrary point A’ of the surface, and
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the element Az to lie in an arbitrary direction A'z’ through A’; the area about 4 will
then coincide with the area about A’. The analytical theory is at once derived from
that for the sphere, viz. we have a rectangular transformation i

X X Z

X, @ B )4

Yl ar Bl 'y,

Zl 0.” BI/ 'y”

where the coefficients are such that identically
X+ Y+ 22=X"+ 1"+ 22
in fact, the coefficients are connected by six equations only, the system thus

depending on three arbitrary parameters. If, as before, we write P,, @, P, @, for
X, =V, iX,+ Y, iX =Y, X+ Y respectively, then the relation is readily found to be

P, Q Z

P| ja+id—iB+B) | b(a+id +iB—PB) | iy—vy

@ | 3(a—ia'—iB-f) | I(a—id +iB+p) wy+y

Z | }(—id"—pB) $(—ia"+B")

this being read according to the lines only P,=4 (a+1ia' -8 + 8) P + &c., not according
to the columns: in order that the coefficients may be real, we must have a, 8, v/, 8", ",

real, B, v, @/, @’ pure imaginaries.

Writing the equations in the form

Pyt B 7

Ql AI BI Cl -

Zl A'! Bll 0”

viz.

P,=AP+BQ+ CZ, &c.,
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it would be possible to deduce the equations which connect the new coefficients; but
these are more easily obtained from the consideration that we must have identically
P,Q,—Z2=PQ — Z*; the equations are thus found to be

A" - 44" =0, B"™— BB =0, " -00" =1,
24”"B" — AB' — A’'B=--1, 24"C" —AC'—-A4'C =0, 2B"C"”" —BC'—B'(C=0.

17. The general theory of the transformation of a quadric function into itself
enables us to express the coefficients in terms of three arbitrary parameters. There is
no difficulty in working out the formulz, and we finally obtain

QP =— (v+1pP - MQ + 22 (v+1) 7,

QQ=-  wP- (-1'Q+ E-1Z

QW=-p@+1) P=-A(@-1)Q +(—-1+2+M)Z;
and conversely

QP=— (v—1pP,— MG+ 2A(v-1)Z,

QQ =— WP - (v+12Q+ 2u(@+1)Z,

QZ=—pw—1)Pi=2(v+1)Q +(1 + v*+rp)Z,

where Q=—1+»*—Au: it can be at once verified that each of the two sets of
formule does, in fact, ‘give P,@Q,—Z?2=PQ — Z>

18. The pseudosphere is a surface of revolution having for its meridian section
- the curve z=logcot 40 —cosf, y=sinfd. This is a curve symmetrical in regard to the
axis of y; and we obtain the portion of it lying on the positive side of this axis, by
giving to 6 the series of values =0 to §=90°; for §=0, we have y=0, 2=, or
the axis of # is an asymptote; for §=90°, =0, y=1, the point being a cusp of
the curve. The geometrical definition is that the portion of the tangent included
between the curve and the axis of z has the constant length =1; the inclination of

Fig. 2.

Y

B

B, 32

Br
[¢] 0, 0, (1% z
P cos* 0 df

the tangent is in fact =6. We have dz= Sy L dy = cos 6d0; and thence ds=cot 6d#,
and the length in question is %:1. The curve may be constructed graphically :

take (fig. 2)- the distance BO=1, on OB, B, very near to B, and then B,0,=1; on
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232 ON THE NON-EUCLIDIAN PLANE GEOMETRY. [827

0,B,, B, very near to B,, and then B,0,=1, and so on; the curve is shown on a
larger scale in fig. 3, p. 235.

But the curve may also be laid down numerically; writing a=4m— 6, so that
a is the inclination of the tangent to the axis of y, we have x=logtan(}=+%a)—sina,
y =cosa, where logtan (}m+ }a), the hyperbolic logarithm (which has been the signi-
fication of log throughout), is the function tabulated Tab. IV., Legendre’s Traité des
Fonctions Elliptiques, t. 11. pp. 256—259.

We may hence obtain the values of the coordinates as follows:—

a=90°-0 | log tan (7 +4a) —sina x Y =C0S a

0 0-0000000 |- 00000000 0:0000000 1-:0000000
10° 0-1754258 01736482 0-0017776 0-9848078
20° 0:3563785 0-3420201 0:0143584 09396926
30° 05493061 0:5000000 0:0493061 0:8660254
40° 07629096 06427876 0-1201220 07660444
50° 10106831 | 0-7660444 02446387 06427876
60° 13169578 08660254 0:4509324 05000000
70° 17354151 09396926 0-7957225 03563785
80° 2:4362460 09848078 1-4514382 01754258
85° 3:1313013 09961947 21351066 0-0871557
86° 33546735 09975641 23571019 00697565
87° 36425333 09986295 26439038 0:0523360
88° 40481254 0-9993908 30487346 00348995
89° 47413487 0-9998477 37415010 0:0174524
90° ) - 1-000060v @0 0:0000000

Attending only to one-half of the surface, we may regard the surface as standing
on the circular base y*+2*=1: say this circle is the equator, or the unit-circle: the
horizontal section being always a circle, the radius diminishing at first rapidly and
then more and more slowly from 1 to O as the height increases from 0 to oo. It is
hardly necessary to remark that the radius of the equator is any given length
whatever, taken as unity: the equations might, of course, have been written

z=c {logcot 40 — cos 0}, Vy*+22=csiné,

but there would have been no gain of generality in this.

19. The geodesics are as already seen given by an equation

A + B (¢* + cosec? 6) + C'¢p = 0.
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If B=0, we have 4+ (C¢p=0, that is, ¢ =const., which belongs to the meridians; if
B be not =0, we may by a mere change of ¢, that is, of the initial meridian, reduce
the form to A + B(¢*+ cosec*d) =0, which is the equation of a geodesic cutting at

right angles the meridian ¢ =0; writing herein sin 6= %, we have A+ B <¢>2+ %) =0,

which is the equation in the polar coordinates 7, ¢ of the projection of the geodesic
on the equatorial plane #=0: putting herein for greater convenience B=-— Ak we

have 7= : we require only such portions of the curves as lie within the unit-

el
1—lk2p?”
circle, and need therefore attend only to those for which % is not greater than 1,
Vi-F

and in any such curve consider ¢ as extending from ¢=0 to ¢=1+ - i writing

-; if y<r, that is, k< , the curve 1is

2 1
V14 V147
a mere arc cutting at right angles (at the distance r=£% from the centre) the
meridian ¢ =0, and extending itself out on each side to meet the unit-circle in the

this last value =4+, we have k=

- % ! : 1
points ¢=r, ¢=—q respectively; in the case y=m, that is, k= Wiy the two
+ 7

points ¢ =+ come together at the point ¢=, or the curve becomes a loop; and

L to _IM_, we have the two branches crossing each
N1 + 72 N1 + 42
other on the meridian ¢ =7 at the distance r= '7\/1"@10“ - from the centre and then
g ™
extending themselves in the opposite semicircles, so as to meet the unit-circle at the
points ¢ =++. And we have thus another critical value‘k=*—1——, for which the
V1 + dm?

two branches having thus crossed each other come to unite themselves at the point

for larger values, k=

¢(=2m)=0 of the unit-circle; and in like manner the critical values LIS :
V1 + 97
1

V1+167
a determinate number of convolutions, and the two branches cross each other always
on the radii ¢ =0 and ¢ =7 respectively.

&c.: for a value of k between such limits, the branch is a spiral having

20. Let 4 denote the inclination of the radius vector to the normal, or, what

is the same thing, that of the element of the circular arc to the tangent; we have
dr dr k2

tan \1/‘—7%, and m—m’.z—&,
the unit section =1, and therefore tan+yr=¢; moreover putting k=cos«, so that
the equation of the curve now is r*= 1%(%?;’;5;;
and hence at the intersection with the unit-circle {r=x, that is, as %k decreases from
k=1, or k increases from k=0, the angle at which each curve cuts the unit-circle is

=7rp, that is, tanyr=7% At the intersection with

, then for »=1 we have ¢ =tanc;

always =«, and thus this angle continually increases from «=0; for k=%;—cos K,
~+

C.. X1, 30
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and therefore tan x=m, we have x=72°20" nearly: the complement hereof 17°40" is
thus the angle at which each branch of the loop cuts the meridian ¢ =

21. To obtain another datum convenient in tracing the curve, I write ¢ =¢,=tan «
for the value of ¢ at the unit-circle; and introducing for the moment the rectangular
coordinates X =rsin¢, ¥'=1— rcos ¢, then we easily find

dY rsing—r'dcos
dX rcos¢+ r'psin ¢’

and thence, for the equation of the tangent at the point on the unit-circle,

(y—1 + cos ¢,) = 2:; :i: I i‘; Z?; i: (z — sin ¢,).

For the tangent at the point of intersection with the radius ¢ =0, or say the
apse, we have y =1 —cosk; and hence, at the intersection of the two tangents,

€08 ¢, + b, Sin P,
sin ¢, — ¢, cos ¢,

o 1 — cos « (cos ¢, + ¢, sin ;)

Sin ¢, — ¢, cos ¢, g

which, putting therein ¢, = tan «, becomes

Z=sin ¢, + (cos ¢, — cos k)

__cos & {1—cos (¢,— )}
e sin (¢, — &)
where ¢, is given in terms of « by the just-mentioned equation ¢,=tanx. We have

y=1—cosk, #=cos « tan} (¢p,— ), for the locus of the intersection of the two tangents;
this is easily seen to be a curve having a cusp at the unit-circle.

=cos « tan § (¢, — «),

22. Fig. 3 shows the curves for the values

b= tan k K=

30°=3%r 05235988 a7° 38

60 1:0471976 46 19
90 1:5707963 57 31
120 20943941 64 29
150 26179939 69 5

180== 3:1415926 72 20

We construct and graduate the unit-circle; draw to it a tangent at 0° and
measuring off from 0 a distance equal to the semi-circumference, graduate this in like
manner in equal parts 0° to 180°; then to find the curve belonging, for instance, to
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¢$,=90°, we join with the centre of the circle the point 90° of the tangent, thus
determining on the unit-circle a point belonging to the angle x=257°31"; at this
point we draw parallel to the tangent a line which is the tangent at the lowest

Fig. 3.

150

\ Meriq,, P
B °

L

|

E 60 Q0 i ) 120 150 180

point; the curve passes through the point 90° on the unit-circle, and there cuts the
circle at the angle «=257°31" (or, what is the same thing, the radius at the com-
plementary angle), and we have thus the tangent at the point 90° of the unit-circle;
it will be noticed that this meets the tangent at the apse at a point near to this
apse, so that the arc as determined by the two tangents is for a large part of its
course nearly a right line; this is still more the case for smaller values of ¢, or «,
while for larger values the deviation increases, but in the neighbourhood of the unit-
circle the form is always nearly rectilinear.

I show in the same figure the form of the curve for ¢,=300°, = 52359877, = tan «,
that is, £ =79°11’, r=cos x = 01876670, the value at the apse: the construction for
the tangent at the unit-circle is the same as before, but in order to lay down the
curve with tolerable accuracy we require also the value of » at the node on the
cosiz’ that is, 7'=—CM, i
N1 —m*cos« COS a
7 cos k =sina; whence without difficulty »= 023236, the value at the node.

meridian ¢=180°; this is, of course, given by r=

23. The curves shown in the figure are projections upon the plane of the unit-
circle, viz. they are the projections on this plane of the geodesics, which cut at right
angles a given meridian; but bearing in mind the form of the meridian, it is easy,
by means of the projection, to understand the actual forms on the surface of the
pseudosphere. A point near the centre of the figure represents a point high up on
the surface; and in any radius the portions near the centre are the more fore-

shortened in the figure, and represent greater distances on the surface. Each geodesic
30—2
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cutting the meridian at right angles at the apse descends symmetrically on the two
sides, reaches ultimately—it may be after many convolutions—the unit-circle; the
meridian itself is a limiting or special form of geodesic. The unit-circle is not properly
a geodesic, but it is an envelope of geodesics.

24. To obtain all the geodesics, we have to consider the geodesics which cut at
right angles a given meridian; and then to imagine this meridian (with the geodesics
which belong to it) turned round so as to occupy successively the positions of all the
other meridians. The same remark applies of course to the projections; the figure
shows the projections cutting at right angles a given radius of the circle; .and this
radius (with the projections belonging to it) is then to be turned round so as to
occupy successively the positions of all the other radii. We may imagine the several
geodesics turned round separately, each through a different angle, so as to bring each
of them to pass through one and the same point of the surface; we have then the
geodesics drawn in all directions through this point of the surface; doing the same
thing with the projections, we have, it is clear, the projections of the geodesics drawn
in all directions through the point. It is easy, by drawing the projections each on
a separate circle of paper, and passing a pin through the centres, to form a model
by means of which an accurate figure of the projection may be constructed. But I
content myself with a mere diagram (fig. 4).

Fig. 4.

25. Taking a point ¢ so low down on the surface that the geodesic at right angles
to the meridian through @ is a simple arc A’A, then imagine the two extremities
A, A’ each moving in the same sense round. the circle, but A faster than A’, so as to
assume the positions B, B’; (f, C’; and so on to K, K’ coinciding with each other.
We have the arcs B'B, ('C, and so on until we come to the loop form K'K: after
which we have L’ in advance of L, and so on to curves of any number of con-
volutions. Considering any two arcs—B'B, ('C—and drawing the geodesic BC which
joins their extremities B and C, then any geodesic through  intermediate to B'B,
C’C, or, say, to @B, QC, will meet the arc BC; while the geodesics through @ extra-
mediate to @B, QC will not meet, or will only after a convolution or convolutions meet,
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the arc BC. This of course corresponds to the Lobatschewskian theory, according to
which we have through a point @ to the extremities at infinity of a line BC, two
distinet lines @B, QC, said to be the parallels through @ of the line BC'; and which
are such that any line through @ intermediate to @B, QC meets the line BC; while
any line through @ extramediate to @B, QC does not meet the line BC.

26. It is interesting to connect the theory of the geodesics of the pseudosphere
with the general theory of geodesics. Starting with the form

ds*=cot® 0 d6* + sin? 0 d¢p®, =EdO*+2F d0dd + G d¢?,

or E=l—

we have E =cot?f, F=0, G=sin0; and therefore E+ 1 =é, Q 1, and the

differential equation of the geodesic becomes

EY . 26G,0¢' — G§ (E,0° — G,¢™) + 2EG (8'¢" — 0'¢) =0,

that is,
¢ [(2BG, — GE,) 6" + GG.¢"] + 2BG (09" — 0"¢") = 0,
where ,
dE aG
Homigay Simog;
and writing here
1
E=g-1,
we have
Gy

1=—@,2E@—EG=G%%—@.

Moreover, from G =sin?6, we find G;=2VG.1—G; and the equation becomes
VG [/3
N ‘—'2 0’2 G /2 4 0’ ”—6” ,=0.
vig|(6=2) o+ oe]wrow o

Introducing here G in place of @ by the equation G =sin*6, we have

Gl
0, R e ey
2VGE. 1-G
/7 o 18 1 G /l_ 12 g4

and the equation thus becomes
(B-26G)G" +4(1-6G)¢*+2G(1-G)GFd"+{—26(1-G)GF" + (1 -2G)G*} ¢’ =0.

The whole term in ¢’ is thus ¢’ {—2G (1 — G) G”+ (4 —4G) G*}, which divides by
2(1—-@); the whole equation thus divides by 2(1 — &), and omitting this factor, the
equation becomes

¢ (267 - GG") + 266" + ¢" GG =0,

www.rcin.org.pl



238 ON THE NON-EUCLIDIAN PLANE GEOMETRY. (827

which is simplified by introducing H = sin® 6 = 1 instead of G. We, in fact, have

G’
, —H v —H" 2H?
G e |G it Gty

and substituting these values, the equation becomes
S TRER S R B
# (s + =)t =0
viz. this is

HI/¢I + 2¢/3_ H’¢//= 0.
Writing herein ¢+ a=#~K (a an arbitrary constant), we have

o BBl L R
AL A o G
and the equation becomes
e AN G _:}H’K”_}_iH’K"Z:
VK KNK W~VK KWVK

0

viz. this is
2(H'K'—-HK")K + (K'+ H') K* =0,
which is satisfied by K'+ H'=0 or K+ H=£, 8 an arbitrary constant. Substituting
for K, H their values, this is
(¢ +2)+sin*0=4,
that is,
o®— B+ (¢*+ cosec® 0) + 2a¢ =0,
or, what is the same thing,
A + B (¢*+ cosec® ) + Up =0,

where the ratios 4 : B : C are arbitrary.
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