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886.

ON THE SURFACES WITH PLANE OR SPHERICAL CURVES
OF CURVATURE.

[From the American Journal of Mathematics, vol. X1. (1889), pp. 71—98; pp. 293—306.]

THE theory is considered in two nearly cotemporaneous papers—Bonnet, “ Mémoire
sur les surfaces dont les lignes de courbure sont planes ou sphériques,” Jour. de
UEcole Polyt., t. xx. (1853), pp. 117—3806, and Serret, “ Mémoire sur les surfaces dont
toutes les lignes de courbure sont planes ou sphériques,” Liouwille, t. xvIiiL. (1853),
pp- 113—162. I desire to reproduce in a more compact form, and.with some additional
developments, the chief results obtained in these elaborate memoirs.

The basis of the theory is a theorem by Lancret, 1806. In any curve described
upon a surface, the angle between the osculating planes at consecutive points is equal
to the difference of the angles between the osculating planes and the corresponding
tangent planes of the surface.

This includes as a particular case Joachimsthal’s theorem, Crelle, t. XxXX. (1846):
If a surface have a plane curve of curvature, then at any point thereof the angle
between the plane of the curve and the tangent plane of the surface has a constant
value.

Bonnet and Serret each deduce the like theorem for a spherical curve of curvature,
viz.: If a surface have a spherical curve of curvature, then at any point thereof the
angle between the tangent plane of the sphere and the tangent plane of the surface
has a constant value. Bonnet (Mémoire, p. 235) says that this follows from Lancret’s
theorem. Serret (Mémoire, p. 128) obtains it, by the transformation by reciprocal radius
vectors, from Joachimsthal’s theorem.

I remark that the theorem for a spherical curve of curvature, and (as a particular
case thereof) that for a plane curve of curvature, are obtained at once from the most
elementary geometrical considerations, viz. if we have (in the same plane or in
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602 ON THE SURFACES WITH PLANE OR (886

different planes) the two isosceles triangles NPP’, OPP' on a common base PP’, then
the angle OPN is equal to the angle OP'N. For take P, P’ consecutive points on
a spherical curve of curvature; then at P, P’ the normals of the surface meet in a
point N, and the normals (or radii) of the sphere meet in the centre O, and we have
angle OPN =angle OF'N, that is, at each of these points the inclination of the normal
of the surface to the normal of the sphere has the same value; and this value being
thus the same for any two consecutive points, must be the same for all points of the
curve of curvature. The proof applies to the plane curve of curvature; but in this
case, the fundamental theorem may be taken to be, a line at right angles to the base
PP’ of the isosceles triangle NPP’ is equally inclined to the two equal sides

NP, NP

A surface may have one set of its curves of curvature plane or spherical. To
include the two cases in a common formula, the equation may be written

k(2 + 2 + 2°) — 200 — 2by — 2¢2 — 2u =0;

k=1 in the case of a sphere, =0 in that of a plane; and the expression a sphere
may be understood to include a plane. I write in general A, B, C to denote the
cosines of the inclinations of the normal of the surface at the point (2, y, 2) to the
axes of coordinates (consequently A2+ B*+ C2=1). Hence considering a surface, and
writing down the equations

k(2 + y* + 2°) — 202 — 2by — 2c2 —2u =0,
(kx—a) A+ (ky —b) B+ (kz—c) C =1,

where (a, b, ¢, u, I) are regarded as functions of a parameter ¢{. The first of these
equations is that of a variable sphere; and the second equation expresses that at
a point of intersection of the surface with the sphere, the inclination of the tangent
plane of the surface to the tangent plane of the sphere has a constant value I, viz
this is a value depending only on the parameter ¢, and therefore constant for all points
of the curve of intersection of the sphere and surface: by what precedes, the curve
of intersection is a curve of curvature of the surface, and the surface will thus have
a set of spherical curves of curvature.

Supposing the surface defined by means of expressions of its coordinates (z, y, 2)
as functions of two variable parameters, we may for one of these take the parameter ¢
which enters into the equation of the sphere; and if the other parameter be called 6,
then the expressions of the coordinates are of the form =, y, z=a(t, 0), y(¢, 0), z(¢t, 6)
respectively ; these give equations dz, dy, dz=adt+ a'df, bdt + b'df, cdt+ c'df, where of
course (a, b, ¢, @, U, ¢’) are in general functions of ¢, #; and we have 4, B, C pro-
portional to bc"—b'c, ca’ — c’a, ab’ —a’b, viz. the values are equal to these expressions
each divided by the square root of the sum of their squares. In order that the
surface may have a set of spherical curves of curvature, the above three equations
must be satisfied identically by means of the values of

a; by, wy LA B, Cuwmly, 2,
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886 ] SPHERICAL CURVES OF CURVATURE. 603

as functions of (¢, #); and it may be seen without difficulty that we are thereby led
to a partial differential equation of the first order for the determination of the surface.
But I do not at present further consider this question of the determination of a
surface having one set of its curves of curvature (plane or) spherical.

Suppose now that there is a second set of (plane or) spherical curves of curvature.
We have in like manner

k(B4 y? + 2°) — 202 — 2By — 29z —2v =0,
(kx—a) A + (ky—B) B+ (kz—y)C—A =0,

where « is =1 or =0 according as the curves are spherical or plane, and (a, B, v, v, \)
are functions of a variable parameter . We take the ¢ of the former set of equations
and the @ of these equations as the two parameters in terms of which the coordinates
(, y, z) are expressed. This being so (the former equations being satisfied as before),
if these equations are satisfied identically by the values of @, B, 4, v, N, 4, B, C, @, y, 2z
as functions of (¢, #), then the surface will have its other set of curves of curvature
also spherical. It will be recollected that by hypothesis @, b, ¢, u, ! are functions of
the parameter ¢ only, and that a, B3, v, v, A functions of the parameter & only. The
foregoing equations, together with the assumed relations

A+ B+ (02 =
Adz+ Bdy + Cdz=0

are the “six equations” for the determination of a surface having its two sets of
curves of curvature each of them (plane or) spherical.

Assuming now the values of @, b, ¢, I, u as functions of ¢, and a, B, y, N, v as
functions of 6, the question at once arises whether we can then satisfy the six equations.
These equations other than Adz+ Bdy+ Odz=0, or say the five equations, in effect
determine any five of the eight quantities 4, B, C, #, y, 2, t, 6, in terms of the
remaining three, say they determine 4, B, O, t, 0 as functions of #, y, z: we thus have
a differential equation Adz + Bdy+ Cdz=0, wherein 4, B, C are to be regarded as
given functions of (z, y, 2z). An equation of this form is not in general integrable;
and if the equation in question be not integrable, then clearly the system of equations
cannot be satisfied by any value of z as a function of (#, y), or, what is the same
thing, by any values of (z, y, 2) as functions of (¢, #). We thus arrive at the con-
dition that the equation may be integrable, viz. the condition is

dB dC dC dA dA dB
_A(dz dy>+B<%—%>+O(dy dw) e
If this be satisfied, then we have an integral equation /=0 (containing a constant
of integration which is an absolute constant) and which is, in fact, the equation of the
required surface. But it is proper to look at the question somewhat differently.
Supposing that the condition V =0 is satisfied, then we have the integral equation
I=0, and this equation, together with the five equations, in effect determine any six
of the quantities 4, B, C, @, 4, 2, ¢, 6 in teims of the remaining two of them, or, what

76—2
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604 ON THE SURFACES WITH PLANE OR [886

is the same thing, they determine a relation between any three of these quantities.
We can, from the five equations and their differentials, and from the equation
Adz+ Bdy+0dz=0, obtain a differential equation between any three of the eight
quantities: and it has just been seen that corresponding hereto we have an integral
relation between the same three quantities; that is, the condition V =0 being satisfied,
we can from the six equations obtain between any three of the quantities 4, B, C, », y, z, t, 0
a linear differential equation of the foregoing form (for instance Zdz+ T'dt+ ©df =0,
where Z, T, ® are given functions of z, ¢, €) which will dpso facto be integrable,
furnishing between z, ¢, 6 an integral equation which may be used instead of the
before-mentioned integral equation /=0. And we thus have (without any further
integration) in all six equations which serve to determine any six of the quantities
A4, B, C, z,y, 2, t, 0 in terms of the remaining two. It is often convenient to seek
in this way for the expressions of (4, B, C and) «, v, 2 as functions of ¢, 6, in pre-
ference to seeking for the integral equation 7=0 between the coordinates z, 7, 2.

The condition V =0 is in fact the condition which expresses that at any point
of the surface the two curves of curvature intersect at right angles. Serret (and after
him Bonnet) in effect obtain the condition by the assumption of this geometrical
relation, without showing that the geometrical relation is in fact the necessary con-
dition for the coexistence of the six equations. They give the condition in the form
dwdz + dydy + dz82 =0, where dz, dy, dz are the increments of (z, y, z) along one of
the curves of curvature, and &z, 8y, 8z the increments along the other curve of curvature.
The equations give

(kz— a) de + (ky — b) dy + (kz —c) dz =0,
Adz + Bdy + Cdz = 0,

and similarly
(kx —a) 8z + (ky — B) Sy + (k2 —y) 82 =0,

Adx + Béy + Céz=0.
We thence have

de : dy : dze=B(kz—c)— C(ky—20) : C(kw—a)—A (kz—c) : A(ky—"0b)— B (kz— a),
and
8z : 8y : dz=B(kz—q)—C(ky—PB) : C(kx—a)—A (kz—v) : A (ky—B)— B (kz— a).
We have thus the required condition, in a form which is readily changed into
(42 + B + ) (b2 — a) (kz — @) + (ky — b) (ey — B) + (k2 — ¢) (k2 — )}
— {4 (kz — a)+ B (ky —b)+ C (kz —c)} {4 (ke —a) + B (xky — B) + C (k2 — )} = 0,
and writing herein A2+ B2 4 (2=1, this becomes
b k(22 + o2 + 2°) — 2a2 — 2by — 2cz}
+ 3k {k (2* + o* + 2°) — 202 — 2By — 2yz}
+ (ao + b8 + ¢y) — IA=0,

that is,
ao+ bB + ¢y — IN+ ku + kv =0.
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886 SPHERICAL CURVES OF CURVATURE. 605

I proceed to show that this is the condition V=0 for the integrability of the
differential equation Adz+ Bdy + Cdz=0. Writing as before
dB d (dG df‘i) o <dA d?)

VedlG =l B o

we have from the six equations

AdA + BdB + CdC = 0,

(kz—a)dA + (ky —b)dB + (kz — ¢) dC = — k (Adz + Bdy + Cdz) + (Aa, + Bb, + Uc, + 1) dt,
(ke —a) dA + (ky — B) dB+ (k2 — y) dC = — k (Ada + Bdy + Odz) + (Ao’ + BB + Cy' +\')db,
(kx —a)dz + (ky —=b)dy + (kz — c¢)dz = (@ + by + ¢,z + ) dt,

(kx—a)dz + (ky — B)dy + (k2 —y)dz = (dz + B'y + &'z + ) d6,

where a,, b, ¢, l,, u, denote derived functions in regard to ¢, and o, B, &', N, v
derived functions in regard to 6. Putting for shortness

)ty e Sl o
kx—a, ky—05b, kz—c

ke —a, ky—pB, Kz—r
we readily obtain

A = [(ef = 18) € — (et~ ) B] {- k(Ade + By + Cdz)

Aa, + Bb, + Ce, + 1,
@+ by + ez +u

{(lcw—a)dw+(icy—b)dy+(kz—c)dz}}

— [(ky = b) O = (&= 6) B] {—/c(Adw+de+ Cdz)

Ad' + BB + Cy' + A
a/-T+B/y+fylZ+U'

(k= @) do + (g = B) dy + (2 = ) d3}}
say this is

QdA = [(xy = 8) C — (kz — ) B] {_ % (Adw + Bdy + Cds)
+}£, {(kw—a)dx+(ky—b)dy+(kz—c)dz}}
—[(ky—b) C = (ks —¢) B] {—x(Ada:+de+ Cdz)

+%{(/cx—a)da:+(xy—,8)dy+(lcz—ry)dz}},

or, introducing further abbreviations, and writing down the analogous values of QdB
and QdC, we have

Qdd =[(ey =) C = (ke —y) B] U~ [(ky—b) C — (kz—¢) B] T,
QB =[(kz—y) A — (k& —a) C )1 U—[(kz — ¢) A — (ke — a) C]T,
QdC =[(kz—a)B —(ky — B) A] U—[(kz —a) B — (ky—b) A] T.
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606 ON THE SURFACES WITH PLANE OR [886

We hence find

ol [(/cz—ry)A—(/cw—a)O']{ %kz—c)}
—-[(Icz—c)A—(kw—a)O]{ €0+ D (erm )},
08 (ko= 0) B -y = A A1 |- kB+ T, Gy 1)}

+[(ko—a) B - (by —b) A {~ kB +; ey = ol

Combining these two terms, in the resulting value of Q dB dO) first, the term
without Z or A is found to be
= — kA4 {A (kz —a)+ B(ky — B)+ C (kz — )}

—k(kz—a) (A% + B*+ (?)

+ k (kz—a) (42 + B>+ (?)

+ kd {A (kz — a)+ B (ky — b) + C (kz — c)},

which is
= — kAN +k (kz —a) — k (bz — a) + AL,

= Akl —I\) - ka+ ka.

Next, the coefficient of f—J is

A (kz —c) (k2 —y)—C (kx—a)(kz —c)
+ A (ky = b) (kg — B) ~ B xz —a) (by —b),
which is
= A [(kz— a) (kz — a) + (by — b) (ky — B) + (kz —c) (k2 = )]
— (ke —a) [A (kz —a) + B(ky — b) + C'(kz — ¢)]
=AM + (kz — a)l,

if for shortness

M = (kz — a) (kz — a) + (ky —b) (xky — B) + (ke —¢) (k2 = v);
and similarly, the coefficient of % is

—A(kz —c)(kz —9)+C (kz—a)(kx—a)
— A (ky —b) (ky— B) + B(kz—b) (cy — B),

which is
— — A (ko — a) (iew — &) + (ky — b) (ky — B) + (b2 = ¢) (k2 — )]

— (kz—a)[A (kx— a) + B (xy — B) + C (k2 — )]
=—AM — (kz—a)\.
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886] SPHERICAL CURVES OF CURVATURE. 607

We thus obtain

Q ‘”: d”) A (= R0) = k2t ka + 5 (AM + (e —a) [} = 3 (A + (ko — ) ],

and similarly

¢ d4
9(%5—32—) B (xl—k\)— k,3+/cb+ pBY +(ey—B) Y}~ fI{BM+(ky b) M,
Q(O(lzlj C(liB> C (kl —I\) — k’y+/cc+f){C'M+(xz—ry)l} %{C’M+(Icz—é)M;

hence multiplying by 4, B, ¢ and adding, we obtain

OV = ol — i\ — k (Ao -+ BB + Oy) +  (Aa + Bb + 00) + o5 (M — )~ B (U = 1),
where the first four terms are together
=«l— kN + k{x (Az + By + C2) = \} — « {k (Az+ By + C2) - 1},
viz. these destroy each other, and the equation becomes

L
Qv = (P‘ ﬁ> (M = 10,
But we have

M—INn= 4cik(@+y*+2*) — 200 — 2by — 2cz}

+ 3k {k (2* + y* + 2°) — 2a2 — 2By — 2yz} + (aa+bB +cy) —
which 1is
=aa+bB + ¢y —IN + ku+ kv,
or we find '

OV = (%—ﬁ> (aa+bB + oy —IN + ru + kv),

viz. the condition V =0 is
ao+b8 +cy—IN+ ku+ kv =0,
the result which was to be proved.

If we consider separately the cases where the two sets of curves of curvature
are each plane, the first plane and the second spherical, and each of them spherical;
or say the cases PP, PS and SS, then in these cases respectively the condition is

aa+bB+cy—In=0,
ao+bB+cy—IN+u=0,
an+bB+ecy—IN+u+v=0:

we have, in each case, to take the italic letters functions of ¢ and the greek letters
functions of 9, satisfying identically the appropriate equation, but otherwise arbitrary ;
and then, in each case, the six equations lead to a differential equation Adz+Bdy+Cdz=0
(or say Zdz+ Tdt+ ®d0=0) between three variables, which equation is ipso facto
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608 : ON THE SURFACES WITH PLANE OR [886

integrable; and we thus obtain a new integral equation which, with the original five
integral equations, gives the solution of the problem. The condition is, in each case,
of the form Zaa =0, the number of terms aa being 4, 5 or 6. Considering for instance
the form
aa+bB+cy +dd+ee+fp=0

with 6 terms, it is easy to see how such an equation is to be satisfied by values
of a, b, ¢, d, e, f which are functions of ¢, and values of a, B, v, 8, ¢ ¢ which are
functions of 6. Suppose that %, ¢, ... are particular values of ¢ and @, b,..., fi;
@y, bs, ..., fi, &c., the corresponding values of a, b, ..., f, these values being of course
absolute constants; we have a, 8, ..., ¢, functions of 6, satisfying all the equations

(aI: Oy et el f1§a; B, Y S, ¢ ¢)=O;
(a2’ bﬁ) 62’ d2) 82) fz}i » )=O’
&c.,

and if 6 or more of these equations were independent, the equations could, it is clear,
be satisfied only by the values a=B8=y=8=e=¢=0. To obtain a proper solution,
only some number less than 6 of these equations can be independent. Suppose, for
instance, that only two of the equations are independent; we then have a, B, v, 6, ¢, ¢
functions of @ satisfying these equations, but otherwise arbitrary; or, what is the same
thing, we may take a, B, v, 8, ¢, ¢ linear functions of 6 —2, =4 arbitrary functions,
say P, @, R, S of 0; say we have
a =(a, &, @, 3P, Q R, 8),

B (v, o olhidss ] " )

.........................................
.........................................

.........................................

I AR ] & )

where the suffixed greek letters denote absolute constants; and this being so, in
order to satisfy the proposed equation aa+ b8+ cy+dé+ ee + fp =0, we must have

(aO: Bo; 'YO: 80) €, ¢0§a” b! c’ d’ 6, f)=07

(AP SR L q " )=0,
(ol s i S 9 " =0
(A R ] R Pi=10

viz. @, b, ¢, d, e, f will then be functions of ¢ satisfying these four equations, but
otherwise arbitrary. The above is a solution for the partition 2+4 of the number 6.
We have in like manner a solution for any other partition of 6; or if we disregard
the extreme cases a=b=c=d=e=f=0 and a=B=y=06=e=¢=0, then we have
in this manner solutions for the several partitions 15, 24, 33, 42 and 51 of the
number 6.

But applying this theory to the actual problem, there is a good deal of difficulty
as regards the enumeration of the really distinct cases. I use the letters P, S to
denote that a set of curves of curvature is plane or spherical as the case may be,
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886 SPHERICAL CURVES OF CURVATURE. 609

the surfaces to be considered are thus PP, PS, and SS. First, for the PP problem
where the equation is aa+ bB8+cy—IN=0: the two systems (a, b, ¢, I) and (a, B, v, )
are symmetrically related to each other, and instead of the solutions 13, 22 and 31,
it is sufficient to consider the solutions 13 and 22. But here (a, b, ¢, ) are not a
system of four symmetrically related functions, (@, b, ¢) are a symmetrical system,
and [ is a distinct term: and the like for the system (a, B, v, A). In the PS
problem, where the equation is aa + 08 +c¢y —IN+u =0, and thus the systems
(a, b, ¢, I, u), (a, B, v, A, 1) are of different forms, we should consider the solutions
14, 23, 32 and 41: but here again, in each of the systems separately, the terms are
not symmetrically related to each other. Lastly, in the SS problem where the equation
is aa+b0B+cy—IN+u+v=0: the systems (a, b, ¢, I, w, 1) and (a, B, v, A, 1, v)
are of the same form, it is enough to consider the solutions 15, 24 and 33; but
in this case also, in each of the systems separately, the terms are not symmetrically
related to each other. I do mnot at present further consider the question, but simply
adopt Serret’s enumeration.

It is to be remarked that for a developable (but not for a skew surface) the
generating lines may be curves of curvature, and regarding the generating lines as
plane curves we might have developables PP or PS; but a straight line is not a
curve in a determinate plane, and it is better to consider the case apart from the
general theory. Again, the curves of curvature of one set or those of each set may
be circles; and a circle may be regarded either as a plane or a spherical curve;
regarding it, however, as a spherical curve, it is a curve not in a determinate sphere.
The cases in question, of the curves of curvature of the one set or of those of each
set being circles, are therefore also to be considered apart from the general theory.
The surfaces referred to present themselves for consideration among Serret's cases
PP, 1°, 2, 3°; PS, 1°, 29, 3, 49, 5°, 6°, 7°; and S8§, 1°, 2% 3°, 4°; but they are excluded
from his enumeration, and he in fact reckons in his “Conclusion,” pp. 161, 162, two
kinds of surfaces PP, three kinds PS, and two kinds SS.

It is very easily seen that, if a surface has a plane or a spherical curve of
curvature, then on any parallel surface the corresponding curve is a plane or a spherical
curve of curvature: and thus if a surface be PP, PS, or SS, then the parallel
surfaces are respectively PP, PS, or SS. The solutions obtained include for the most
part all the parallel surfaces, and thus there is no occasion to make use of this
theorem; but see in the continuation of the present paper the case considered under
the subheading post, PS, 4°=Serret’s third case of PS.

If a surface have a plane or a spherical curve of curvature, then transforming the
surface by reciprocal radius vectors (or inverting in regard to an arbitrary point),
then in the transformed surface the corresponding curve is a spherical curve of
curvature. Hence if a surface be PP, PS or SS, the transformed surface is SS.
Conversely, as shown by Bonnet and Serret, and as will appear, every surface SS is
~in fact an inversion of a surface PP or PS.

I proceed to the enumeration, developing the theory only in regard to the two,
three, and two, cases PP, PS and SS respectively.

Q. XII. 71/
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610 ON THE SURFACES WITH PLANE OR [886

PP, The Two Sets of Curves of Curvature each Plane.

The six equations are
A*+ B +(0* iy

ax+by +cz +u=0,

Aa+Bb +Cc +1 =0,

arz+ By +9z +v=0,

Aa+ BB +Cy +A=0,

Adz + Bdy + Cdz =l
the condition is
ae+bB+cy—IN=0,

not containing w or v, so that these remain arbitrary functions of ¢, € respectively.
The cases are

@ b c l o B v A
Vgl sl 1 0 0 0 0 1 0 A
20 0 1 0 —m a — mA v A
PP, 8 1 0 0 me 0 i} m N

m is an arbitrary constant; and in the body of the table, ¢ is an arbitrary function
of ¢, and a, y, A arbitrary functions of 6.

PP, 1° is Serret’s first case of PP, included in his second case.
PP, 2° gives a developable.
PP, 38" is Serret’s second case of PP.

I consider the case
PP, 3°=Serret’s Second Case of PP.

Writing for greater symmetry m =g, %: f, so that fg=1; also mr=r, and

consequently A =fy, we take ¢ and ¢ for the two parameters respectively, or write
¢=t, y=40; also changing the letters u, v, we write

and the six equations thus are
A*+ B2 +0C* =1,

z+tz —-P =0,
A+tC —gt =0,
y+6z —-1I =0,
B+6C —f0 =0,
Adz + Bdy + Cdz = 0.
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886 | SPHERICAL CURVES OF CURVATURE. 611

We seek for the differential equation in z, ¢, . We have
A+ B+ (=1, A=t(9—C), B=40(f-0),

and thence
PG ~O0r+(f-0r+ (=],
that is,
C*(1+8+6°) + 20 (gt + f6°) =1 — gt — 0,

or multiplying by 1+ #+6* and completing the square,
{(A+8+6) C—gt* — [0} = (1 - gt —f°6*) (1 + £ + 6°) — (g8* + fO°)

={f+(f-9 g+ (-F)&}
1

- e
if
1
m=S+(-9¢
1
=9t -f)&;
and thence, giving a determinate sign to the square root, say
1
2 2) (! = g2 A
(1+¢+46°)C=gt*+ fO 76"

an equation which may also be written
T — g0
C= st 3 .
e

In fact, observing that %2 - @lz =(f—9)(1+#+ 6*), we deduce from the original form
( 1 C=(f-9) (gt +s) -1
T @2) fO :
1 7 P el
el ( = > y (@2 ) 76
g _f
(T 2 (T i ®>

; A Hhaligt- | 5 ;
or' throwing out the factor 7t 6 and reducing, we have the required value; and

thence forming the values of A and B, we have

! f bl f -y L g
e o' Bt #1855, U2

we have, moreover,
z+tz=P, y+0z=T1
77—2
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or differentiating, and writing P, and II' for the derived functions in regard to
¢t and @ respectively,

dz = —tdz — zdt + P,dt, dy=—0dz— 2d0— 11'd6.
The equation Adz + Bdy + Cdz=0 thus becomes

— Ttde — ©8dy +Ji§—}§9 dz=0,

viz, this is
[T (- tdz — zdt + P,dt) — 00 (— 6dz — 2d0 + I1'dt)] (f—g) + (fT— g®)dz= 0,
or collecting,
{f+ (=9t} T = {g+ (9 — f 1)} Ol dz + (¢T2dt + 002d6) (f - g)
— (tT'P,dt + 6O11'd0) (f—g) =0,
that 1s,
<® T) dz+(f—g) z(@1Tdt + 60d0) — (f— g) ¢TP,dt + OII'dA) =0,

which is an integrable form as it should be; viz. the equation is

I ’
d (T—@>z —(f—g) (¢TP,dt + 6OT1'd) = 0,

and we obtain

(T @>z—(f g)f(tTPdHe@H'de) 0,

the constant of integration being considered as included in the integral. But it is
proper to alter the form of the second term. Take ¥, ® arbitrary functions of ¢, 0

I L o)

respectively : and writing #,, ®" for the derived functions: assume P = T e

we have

f (tTP,dt + 6OTII'd6) = f (gtT ) dt + /00 (q">'d9>

SO’
e

gtF,

e i

=—F+

In fact, this will be true if only
(~F+90) =97 (), (o +700 ) = pee (&),

which are equations of like form in ¢, € respectively; it will be sufficient to verify
the first of them. Effecting the differentiation, the terms in £} destroy each other,
and there remain only terms containing the factor #,; throwing this out, we obtain

gtT,
1 £ +55 =0,

170
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viz. this is

—l+g {f+(f-9t] -9t (f-9)=0,
which is identically true, and the equation is thus verified,

The foregoing result is

(T—%)z+(f—9){ﬁ'+<b y;‘ﬁ: ff;:,}=0;

we then have

F ’
x+tz—‘qT;=O, y+€z—f§=0,

and hence, repeating also the equation for z,

@’ ®>””+(f 9){"5(F+‘I’) ftg?}+(—1+(§—1,>%=o,
I AT W
B Besrmn| oo - -

equations which give the values of the coordinates #, y, z in terms of the parameters
t, 6. It will be recollected that fy=1 (f or g being arbitrary), then the values of 7, ®
are

F=F (=98 g=g+ -1

and that #, ® denote arbitrary functions of ¢, 6 respectively. I repeat also the
foregoing equations

A, B, C=—tTl=9 —o®f [E~g8

T- -6’ T-06"°

The equations ﬁay be presented under a different form; we have
—tTz— 60y +f§__ig@ 2+ F+®=0,

—fT? (z + tz) + F, =0,
—90°(y+02)+ P =0,

where it will be observed that the second and third equations are the derivatives
of the first equation in regard to ¢ and 6 respectively. We thus have the required
surface as the envelope of the plane represented by the first equation, regarding
therein ¢, @ as variable parameters. Moreover, the second equation (which contains
‘only the parameter ¢) represents the planes of the curves of curvature of the one
set; and the third equation (which contains only the parameter 6) represents the
planes of the curves of curvature of the other set. It 'is to be observed that, from
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614 ON THE SURFACES WITH PLANE OR (886

the equations for I, A, viz. 4 +¢C=gt and B+ 6C=jg, then for any plane of the

first set the inclination to a tangent plane of the surface is =cos™ Vi%tz , and that for

i._
V1+6

It may be remarked that the last-mentioned results may be arrived at by the
consideration of an equation Az + By+ Cz+ D=0, where the coefficients are functions
of t and 6 (4 a function of ¢ only, and B a function of 6 only), such that the
derived equations 4,z +Ciz+D,=0 and Bz + ('z+ D'=0 depend the former of them
upon ¢ only, and the latter of them upon 6 only.

any plane of the second set the inclination is = cos™

A very simple case of the equation is when f=g=1; here 7’'=0=1, and the
surface is the envelope of the plane z—tz— 6y + F+ P =0.

Returning to the general form

~tTo— 00y +/ "9 4 Fr oo,

I transform this, by introducing therein in place of ¢, 6 two variable parameters

a, B which are such that ka=—tT, kB = 00 (lc a constant which is presently put

=#"’>§ we find
s
an ence
2,2 1 P
1= V== P2, 0= JT=G=DFP,
or putting k= «/fl?’ these last values are
i
1 g bl
i —at, O=—V1+p8
Tel@ioe Soa 0

and we hence obtain

Lo M aad jgf VIR,

o el g
1 {«/f R Vg Vit g
PURIRI. A ST o+ 8
i “V—a Wi-g V=g s
say this is
=k(AV1—a—uV1+p5Y,
N _Ng g
where A= —=£—, u= ', and therefore A2 —u2=1 or u=VA2—1.
9" " Ni=g # i

Hence writing F'+ ®=Fk(A + B), k times the sum of two arbitrary functions of
a and B respectively, the equation becomes

ar—By+z AVl ——VN=1V1+8% + A+ B=0,
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viz. the surface is given as the envelope of this plane considering a, B as two
variable parameters. This is the solution given by Darboux, Legons sur la théorie
générale des surfaces, &c., t. 1, Paris, 1887, pp. 128—131. He obtains it in a very
elegant manner, starting from the following theorem : Take A4, A4,, &c., functions of the
parameter a, and B, B,, &c., functions of the parameter B; then, if we have identically

(Al o B1)2 - (Az i B2)2 o (As e B3)2 -~ (AA b B4>2:
the required surface will be obtained as the envelope of the plane

(4, - B)z+(A;— B)y+(4;— B))z= A — B,
where A, B are two new functions of a, B respectively.

The foregoing identity is the condition in order that each sphere of the one
series (z— 4,0+ (y — A, + (2 — A, =A2 may touch each sphere of the other series
(@ B,)*+(y — B.)* + (2 — B;)*=B?; the two series of spheres thus envelope one and
the same surface which will have its curves of curvature of each set circles: viz. this
will be the surface of the fourth order called Dupin’s Cyclide, the normals whereof pass
through an ellipse and hyperbola which are focal curves one of the other, and which
contain the centres of all the spheres touching the surface along its curves of
curvature. The equations of the ellipse and the hyperbola may be taken to be

Z‘l

w2+%=1, y=0, and y'— s =-1 2=0,

1

respectively, and we thence obtain the required PP surface as the envelope of the plane

aw—8y+()\\/1-—a”——'\/)»“-l'\/l+ﬁ"’)z+A+B=0.

The Case PP, 1°=Serret’s First Case of PP.

We deduce this from the second case by writing therein m=0, that is, ¢g=0,
f=o; but it is necessary to make also a transformation upon the parameter 6, viz.

- 2
in place thereof we introduce the new parameter ¢, where 02=—g¢;— This gives

f—9¢*
l=g+(g—f)92=g{1+(g_f)¢2 _yfd—-¢%) eg_Mg‘f’z

e G L T T S A
and thence

6= e = ¢?~~—~; i iid forig=0 i8.=1.

YoRlg 00 AV g
1 1 AR
We have also 7'= L ~ when ¢ =0, and substituting these values,
Vi+(f-g)tt NfVl+e g .

considering @ as a function of ¢, and for F+® writing as we may do %q), the

- equation becomes
-1 . by 3 z A i
VAIVTEP. U i—g VfVise Nf

0,
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where the divisor 4/f is to be omitted. Hence finally, instead of ¢ restoring the
original letter #, and again considering ® as a function of 6, the equation is

z2—tx Oy

gL —2 _ 4+ F+®=0,
Nite «/1- il

viz. here F, ® are arbitrary functions of # 6 respectively, and the surface is the
envelope of this plane considering ¢,  as variable.

We obtain an imaginary special form of PP, 1°, by writing in this equation k€ for
0 and then putting k=0 ; the ® remains an arbitrary function of the new 6, and the
equation is

N/__tm +iy+F+P=0,

(#=V—1 as usual). This is, in fact, the equation which is obtained from PP, 3* by
simply writing therein g =0 without the transformation upon 6.

PS, The Sets of Curves of Curvature, the First Plane, the Second Spherical.

The six equations are

A* + B+ C® =1
ar +by +cz +u =1,
Aa+ Bb+ Ce+1 =0,

2 +y +2 —2a0—-2By—2yz—2v=0,
A(@—a) +B@y—B+0(z—y)—r =0,
Adz + Bdy + Cdz =0,
The condition is

ao+bB +cy—IN+u=0,

not containing v, so that this remains an arbitrary function of 6. The cases are

a b ; l u o B v A
P8 e a b 0 0 0 0 0 A
Vefop o a b c l ml 0 0 0 m
PS, 3 a b ¢ =m0 0 0 v %fy
PS, 4° a b 0 ! ml 0 0 v m
PS, 5° a b 0 0 0 0 0 v A
P8, 6° 0 b 0 l ml a 0 v m
P87 a b 0 ma 0 a 0 v —nlza,
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where m is an arbitrary constant; in the body of the table, the other italic letters are

arbitrary functions of ¢, and the greek letters arbitrary functions of 6.

P8, 1° is Serret’s first case of PS, included in his second case.
PS, 2° gives developable.

P8, 3° is Serret’s second case of PS.

PS8, 4° is Serret’s third case of PS.

PS8, 5° gives circular sections (surfaces of revolution).

P8, 6° gives circular sections (tubular surfaces).

PS8, 7° gives circular sections.

I consider

PS8, 3°=8erret's Second Case of PS.

The six equations are
A* +B +(C=1,

az +by +cz=0,

Aa +Bb +Cc=—cm,

@t 4y 4+ (z2—mp) =0 +m¢p
Az +By +C(z—m¢)=¢,
Adz + Bdy + Cdz =0,

where @, b, ¢ are assumed such that a*+0*+ ¢*=1. We easily obtain

(1=c)A=—ac(C+m)=byQ,
(1=¢)B=—-bc(C+m)+ayQ,

and thence
aB—b4 =4Q,
where
O0=01-1-0)—=c(C+m), =1—=c"—C*—2c20m — c*m?;
also
2Vl —cm? = APV1 —cm2 + (b0 —cB) VO + (m* —1) ¢°,
yNT = c*m? = Bep V1 —cm? +(cA —aO)VO+(m* = 1) ¢,

V1 —¢mi=(C +m) V1 —cm?+ (aB —bAYNO + (m* — 1) ¢~
We seek for the differential equation in C, ¢, 6. From the equation

Az+ By 4+ (C —me) z = ¢,
and attending to
Adz + Bdy + Cdz= 0,
we deduce
2zdA + ydB+ (z — m¢) dC — (1 + Cm) ¢'dd = 0,
o. XIL 78
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and we have herein to substitute for dA, dB their values in terms of dC, dt, df. We
have

AdA + BdB = — CdC,

adA +bdB =—cdC — Q,

if for shortness
Q= Ada + Bdb + (C + m) de.

Hence i
VQdA =(—c¢B +bC) dC — BQ,
VQdB = (—aC+cd)dC + AQ.
We find without difficulty,
(1=¢*) Q= (C +m)de + (adb —bda) VO,

an& consequently,
1=c)VQdAd={ b(C+cm)—acyQ}dC — B {(C+m)dec+ (adb— bda) v/Q,
(1=e)VQdB ={— a(C + ¢*m)— bc yQ} dC + A {(C + m) dc + (adb — bda) VQ)}.
Substituting these values, we have

{(bz—ay) (C + ¢*m) — (az + by) c ¥ O} dC
— (Bz — Ay) {(C + m) dc + (adb — bda) v/Q}
+(1 =)V {(z—me¢p) dC — (1 + Cm) ¢'db} =0,

viz. this is

(bz — ay) (C + c*m) — (az + by) c /Q + (1 — ¢*) (2 — mep) 4/ Q} dC
— (Bz— Ay) {(C + m) dc + (adb — bda) v Q}
—(1=¢&) (1 + Cm)VQg'do = 0.

The coefficient of dC contains a term — (az+ by+ cz)ca/Q which is =0. Moreover,

we have
bx—a?/=';¢\/§+~/Cl1+c'm;*/9+(m2—l)¢2,

— c*m

and then
(1= ¢*)(Bz—Ay) = — ¢ (C+m) (bz — ay) — cz /Q
v Ao
V1=
VOV + (m? —1) ¢2}
V1 —c*m? i
which, observing that the terms in C¢ /Q destroy each other, and that we have
(C+m) (O + m) + @ = (1 —¢) (1 + Om),

=-—c(C’+m){—¢\/§+ \/9+(1n2—1)(j;5’}

c*m?

—cVQ{(C+m)¢+

gives
_—c(1+0Om)

Bz — Ay = i VO +(m —1) ¢,
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and the equation becomes

{( &85 C’+cm

VO =) ) (C+ m) + 2/ = (1— ) mep «/Q}

\/9+(m 1)¢

cz

—e(l + Om) {(0+m)dc+(adb—bda)m}

—1=-)VO(+ Cm) ¢'df = 0.
Here the coefficient of dC is
=[z—=(C+m)p] vQ+

(C’+c‘~’m)2 ,\/—-—0 S

1 St 1 2’

¥ it e A i

VNG + (m*—1) ¢
V1 = ¢m?

Q + (0 + em)? = (1 — cm?) (1 — ¢?), this coefficient is found to be

=V1—cm (1 —)Vi+(m—1) ¢,

or, substituting for z—(C+m)«/Q its value = , and observing that

and we have
V1 —cm? (1 —*) VO +(m*—1) ¢2dC

@ {(04m) do + (adb - ba) v
Al

— (1 =) (1 + Om) yQ ¢'d6 =0,

—c(1+Cm)

or, as this may be written,

e e e [ ) ___ g8
VOl 1+0m (1 =c)V1 —cme

A=A Vi-em Vo+m-1¢
where from the foregoing value of { we have identically
Q@1 -m)=(1-¢) (1 + Om) - (1 - c*m?) (C + m).

’

Here a, b, ¢ are functions of #; and we have thus the required differential equation
e 0ot

It is convenient to multiply by the constant factor ¥1—m2 The first term is
an exact differential, viz. writing

NI—cm® C+m N1 —m?/Q

1 = — 5 d thel’efore o PR T ot e el
s Nl—¢® 1+Cm o ks V1 —¢ (14 Cm)
we have
d§_~/l—m2{'\/1—c2m2d0+ (C+ m) cde }
VQ 1+ 0Om 1 -V - em?)’

as may easily be verified. And the second and third terms are obviously the differentials
of a function of ¢ and a function of @ respectively. But to obtain the integral
functions, a transformation of each term is required.

78—2
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V1 —mc (adb — bda) :
A-)V1—cm
such that a*+ b*+c*=1; and then writing a,, by, ¢, for the derived functions so that

e take a, b, ¢ functions of ¢ which are

First, for the term

’ 4 ’ 1
aa, + bb, +ce, =0, we assume a’, b’, ¢’ = Va,, Vb,, Ve, where 7= a2+ b? +¢?; we have

therefore aa’+ bb’+cc’=0, and a”+b?+c¢?=1; and then writing a”, b”, ¢’ =be’ — b’e,
ca’— c’a, ab’—a’b respectively, we have

a'aill +bbl/+ Cc/l e 0’ a’/a‘//__‘l’_ b/bll + c/cl/ i 0’ 3;”2 + bl/g + c/l2= 1 ;

thus a, b, ¢, a’, b/, ¢/, a”, b”, ¢” are a set of rectangular coefficients. We then write
1 1 1
a, b, c==(a'+mb"), =(b'—ma”), =c,
p( ) p( s
determining p so that a*+b*+¢*=1 as above, viz. we thus have
p?= (14 cm)*+ c”*m2
Observe that we thus have p*(l —¢?)=p*—c” and p*(1—c¢'m?)= (1 +cm)

Writing now

7 ) 2‘
Pty S L I , and therefore sin 7’ 2 Lo ] T= M i
N1 —m? Vpr = ¢* P

we find that
7o V1 —mzc(adb—bda).
(1—)V1 = c'm?

The verification is somewhat long, but it is very interesting. We have

V1= {¢"de — (¢ +m) de”}

/2

ar

b

prP—c
or observing that ¢”=ab’—a’b, = V (ab, — a;b), de=c,dt, this is

dT = ,\22 __3:—2 {V (ab, — a,b) ¢, — (¢ + m) [V, (ab, — a;b) + V (aby, — a,,b)] d},

where we have

1 V.

7 a,.> + b2+ c2 and therefore — 733 =a,a, + b, by +cey;

also from aa, 4+ bb, +cc,=0, we have a2+ b2+ c?+aay, + bby;, +ce;; =0, and we thence

obtain

N1 —m2 Vedt
p2 P19 C/“

— (¢ +m) [~ (aray + by by + ¢;011) (aby — asb) + (2 + by + ¢;?) (aby, — bay,)]},

dT = {— (a‘bl 2% a’lb) Cy (a'au & bbu + ccn)
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the term in [ ] is found to be =—g, {a, (be,—b,c)+ by, (ca, —c,a)+ ¢y, (ab, — ab)},
hence ¢, appears as a factor of the whole expression; and reducing the part independent
of m, we find

N1 —m2 Vie,dt
 pi-c?

Next, calculating the value of adb—bda, we have

dT = {(a,by — 2y b,) + m [ay, (be, — bye) + by, (ca, — ca) + ¢y, (ab, —a,b)]}.

a= I—pf{a1 +m (ca, —c,a)}, b= —Ig{b1 —m (be, — bye)},

or, as these may be written,

a= I;f {a, (1 4+ cm) —ac,m}, b= %{bl (1 + em) — beym},

and we thence easily obtain

adb — bda = KP——t(l + cm) {(a;by — an by) + m [ay, (be, — bie) + by, (ca, — ca) + ¢y, (ab, — a;b)]},

viz. the factor in { } has the same value as in the expression for d7, and we thus
have
dr VIi-m*Vep*  cVNl—m?
adb—bda  (1+cm)(p*—c?) Vi—cmi(l- )’

that is,
_V1—mc(adb — bda)
1= V1 —cm?

the required equation.
g
Secondly, for the term AL— i.L—dtg-z , we introduce @ a function of 6, such that

writing @ for the derived function we have

Vi—a(l-m) B0 +4(l—m) D"  yy = PP
whence also :
NI+ (m—1) = o R D e
( )P NM VO +(m*—1) ¢ ‘\/0+(m2 1)(I>2
Then writing
: . ® VI —m? VO (i =T) @2
sin © AR cos © e 4T e
V1 —m R,
sin ©, = S e cos ®°__\/0\‘ ’
we find fadity
_ V1w (P —209)db
cos ® dO = G0 ’
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that is, il
—3VT —m2 (P — 209") db
de = ;
0N+ (m*—1) P
and similarly
—3VT—m2(¢p— 2€¢>)d9
cos ©,d0, = N
that is,
—3NT—m2(p— 204/)d6
de,= .
ONG+(m2—1) ¢
Hence

-200 ¢ -—20¢ }d@
VO +(m—1) D N+ (m—1)¢

'\/1—7n2{¢ (¢ —20¢") | 00 i V1 —m? ¢'dd
20 Wo+rm-1)¢) = Vo+(m-1)¢*"

V1 —m?
—d® +dB,=
il {

the required equation.
We find, moreover,

sin (0 —6,) = e D ;§”+ LAl (1)2, cos (0 — 0,) = b 2(1'\/_Mm2) e )

which will be presently useful.

The differential equation now is df— d7'+d® —d®,=0, hence the integral equation
(taking the constant of integration =0) is {=7—© + ®,, or say
sin { =sin (I'— O + ©,),

viz. substituting for sin 7' and cos 7' their values, and observing that

b !L—Ac?mZ C+m  l4+om C+m
Ni—¢ 1+Cm’ Vpr—c? 14+ 0m’
the factor ———— multiplies out, and we have
vp =
1+ cm) 7 =(c+m)cos (O —0,) — ¢’ ¥1 — m?sin (B — B,).

And I further remark here that a former equation is

QA =-m?*)=1-c) 1+ Cm)—(1—c*m?) (C+m),

that is,
LR R (1—-02m2)((7+7m)2 & %
T+ omp C){l A= (1+ G | = (A=) o'
We thus have
N = l;:ﬂg l\/p o cos &,
—m P

- 1+0m {¢” V1 —m? cos (Q — Q) + (¢ +m)sin (2 — Qy)}.
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We have thus C, and consequently also 4, B, #, y, 2z, all of them given as functions
of t, @; but the formule admit of further development.

Write
_C4+m
L T 3

8—m
whence also C = :
1—ms

8

We have C (1 —ms)+m =2+ and hence (14 cm){C(1—ms)+m}, =(1+cm)s,
=(c+m)cos (O — Q) —c’ V1 —m?sin (@ —O,). Using the value of C given by this
equation, and calculating from it those of A4, B; then writing for shortness

X =a V1 —m?cos (® — 0O,) — (a” — mb/) sin (@ — B,),

Y =b V1 —m?cos (O — 0,) — (b” + ma’) sin (® — ©,),

Z = (c+m)cos(®—0,)—c’V1—m?sin (0 — @,),
we have
A (1 =ms)(1 +cm)=V1—mX,

B (1 —ms) (1 +cm)=V1—-mY,

C (1—=ms)(1+cm)= Z —m (1 + cm),

to which I join
s8(14cm)= Z.

By way of verification, observe that A+ B*+ (C?=1, and that the equations give
(1 —me)>(1+cm)P=(1—m?) (X?+ Y2+ 2% +m?Z* — 2mZ (1 + cm) + m* (1 + em)?;

we have
X4+ Y2+ Z2°=(1+cm), Z==s(l+cm),

and hence the identity
(1 —ms)* (1 +cm)*=(1—m*+ m?** — 2ms + m*) (1 + cm)>

Proceeding to calculate the values of @, y, 2z recollecting that

VT = o ’1) .4 om),
we have '
z(1+cm)=A¢ (1 +cm)+p (bC —cB)VO + (m*—1) ¢?,

=A¢ (1 + cm)+ {(b' —ma”) C — ¢/B} VO + (m* — 1) ¢?,
that is,

o1+ cm) (1 —me)=p V1 —m?X +

i i {(b'—=ma”)(Z—m (1 + cm))

— V1 —m2Y} VO + (m? — 1) ¢*
1
+cm

= VT—miX + (¥ = ma") Z — ¢ NT =¥} VO + (i — 1) 4

—m (b' —ma’) VO + (m* — 1) ¢,
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where the term (b'—ma”) Z—c¢ ¥1 —m*Y contains the factor 1+ cm; in fact, this is
= ('—ma”){ (c+ m)cos(® —0,)—c’V1—m?sin (O — 6,)}
— /N1 —m? (b V1 — m?cos (@ — ©,) — (b” + ma’) sin (O — B,)}.

The coefficient of the cosine is (b’ —ma”)(c + m)—be’ (1 —m?), which is

=b’c—be’ +m (b’ —ca”) + m*(—a” + be’), =—a” + m (b’ — ca”) + m? (- b'c),
= (1 +cm) (—a” +mb’),
and similarly the coefficient of ¥1 —m? multiplied by the sine, is
—c” (b —ma”)+ ¢ (b” +ma’), =—b'c” +b"c¢’ +m (a’c’ +a"c”),
=—a+m(—ac), =(1+cm)(—a)
Calculating in like manner the values of  and 2z, and putting for shortness
X,=(—a"+mb’) cos(®—0,)—aV1l—m?sin(0 —0,),
Y, =(=b"—ma’) cos(®—80,)—b~1—m?sin(O—8,),
Z, =(=c’NVI—m?)cos (@ —0O) + (c+ m)sin (0 —0,),

we have
* = SV —m2X + Xy, VO + (m? — 1) ¢* — m (b’ — ma”) VO + (m? — 1) ¢,
s SN —m2Y + Vi VO + (m2 —1) ¢ +m (a' + mb”) VO + (m2—1) ¢*,

z=N1—m2 (pN1—m2Z + Z, VO + (m*—1) ¢7},
which are the required expressions of @, y, z in terms of ¢ and 6. It will be
noticed that X, X,, ¥, Vi, Z, Z,, each contain a term with cos(® —®,) and one with
sin(® —@,); but as the terms in X,, ¥, Z, are each multiplied by ¥+ (m*—1)¢?

the cosine and sine terms of X, X,, of ¥, ¥, and of Z, Z, do not in any case
unite into a single term.
I remark that we have identically

aX +b0Y +¢eN1—m2Z =0,

aX,+bY,+cVN1 —mZ,=0.
The foregoing values of #, y, z thus satisfy az+by+cz=0, which is one of the
six equations. The others of them might be verified without difficulty. I recall that
we have a, b, c=%(a'+mb"), %(b'—ma"), ’1—)(:' ; the six equations might therefore be

written
A2+ B 4 (2 =1,

(@ +mb”) z+ (" —ma”) y+cz =0,
(@' +mb”) A + (b — ma”) B + ¢'C = - c'm,

2+ y+ (2 — me)? = 0 + m¢?,
Az + By + C (z — m¢) = ¢,
Adz + Bdy + Cdz =0,
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The Case PS, 1° = Serret's First Case of PS.

This is at once deduced from PS, 3° by writing therein m =0; the formule are
a good deal more simple. We introduce, as before, the rectangular coefficients
a, b, c, a, b, ¢, a”, b”, ¢’; and the values of a, b, ¢ then are a’, b, ¢. The six
equations, using therein these values for a, b, ¢, are

A*+ B 4+ 0 =1,
az+by +cz =0,
a’A +b'B +cC =0,
2+y +22 =0,
Az + By + 0z = ¢,
Adz + Bdy + Cdz = 0.
The function & is such that

pL O — 200’ _P-200
T N1 —4DD + 40D M
We have
5 d Vo — o
sin G =Wcos® =—~79*~,
¢ _Vo-¢
sin ('-D()_\/Hcos®0 ) R T
and thence
20’ VG — D* 1 — 209’
sin (@ — 0,) = VI ; cos(0.—0)= N
Also
: 0 NG T c ¢’
SRR s R S e
§=T-0+0, (C(=ccos(®-0,)—c sin(O-06,),
NI =¢? = (?=c"cos (O —0,) + csin (O —6,).
We have

A=X=acos(®—0)—a’sin(®—-0,); X = a” cos (® -6, +asin (6 - 6,),

B=Y =bcos(®—0,)—b"sin (0 —0,); Y, =b"cos(®—0,)+bsin(O—0,),

C=Z=ccos(®—0)—c"sin(®—-0,); Z =c"cos(0—06,)+ csin (0 - 6),
and then

y=Y¢ + Yl'\/?_(f’g,
s B 4T NI

which are the expressions of the coordinates in terms of the parameters ¢ and 6.
C. XIL 79
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I consider next the case

P8, 4°= Serret’s Third Case of PS.

The six equations are

A4* + B+ (2 =1,
ax + by =Im,
Aa + Bb =L

2 +y*+22—202 =2v,
Az +By+C(z—0)=m,
Adz+ Bdy +Cdz =0 ;

where 6 has been written in place of y: m is a given constant; a, b, I are functions
of ¢t; v is a function of 6. The equation ax+ by =1Im evidently denotes that the
planes of the plane curves of curvature are all of them parallel to the axis of z,
or, what is the same thing, they envelope a cylinder; in the particular case m =0,
they all of them pass through the axis of 2z In the general case, the required
surface is the parallel surface, at the normal distance m, to the surface which belongs
to the particular case m=0. This is not assumed in the investigation which follows;
but it will be readily perceived how the theorem is involved in, and in fact proved
by, the investigation.

I obtain the solution synthetically as follows:
Taking 7, a, b functions of ¢ a*+b>*=1; 7}, a, b, their derived functions,

2
am, -+ bb=0: 10 = 4%12 +a2+b?; ® a function of 8, ® its derived function,

20 2470 T-0
9 farre: Q_T+®’

M=

and therefore P?+ (*=1; then writing

o= (o 5o0).
By =%< ag—f},—alQ>,

-1
C, = 70 (ab, — a;b) P,

where A2+ B2+ C2=1, we assume
z=md, +aMP,
y=mB, +bMP,
z=mC,+ 0+ MQ,
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equations which determine @, y, z as functions of the parameters ¢ and 6. As will
presently be shown, we have 4,dz+ B,dy+ C,dz=0; and we have thus 4, B, C= A4,, B,, C;
and this being so, we easily verify the six equations

Ar +B+C* =il
bz —ay =m<—2£,11,\/—19—>,
bd —aB - (—%%ﬂ)

2 +yPr+(z—0r =m*+ M+ 0
Az + By+C(z—6)=m,

Adz + Bdy + Cdz =0,
0.1 AR |

which are the six equations of the problem with the values a=b, b=—a, I=— T Ja’
Qu=m?+ M2 for a, b, I and 2v.
We in fact at once obtain the third equation bA""aB":‘%';/lT)’ and thence

the second equation bz —ay=m (b4, —aB,), =m (-—— —211—%, «_/1?)) ; then for the fifth equation,

we have
Az + By +Cy(2—0)=m+ M {(4d,a+ Bb) P +C,Q}, =m,

since (4,a+ Bb) P+ CQ=0; and for the fourth equation, we have
2+ Y+ (2 — 0P =m>+ 2m {M (4d,a + Byb) P + C,Q} + M?, =m?+ M>

It remains only to prove the assumed equation 4,dz+ B,dy+ Cydz=0. Writing

for a moment X, Y, Z=aMP, bMP, 0+ M@, we have
Aydz + Bydy+ Cydz= A4, (md A, + dX) + B,(md B, + dY) + C;, (md C, + dZ),
=A,dX + B,dY + C,dZ,

since A,d4,+ B,dB,+ C,dC, =0 in virtue of A2+ B2+ C2?=1.

We have thus to show that, if X, ¥, Z=aMP, bMP, 6+ M@, then
A dX +BdY + C,dZ=0;

dX = pdt + p'do,

dY = qdt + ¢'dé,

dZ = rdt + r'd0,

say we have

then the required values of 4,, B,, €, are proportional to g¢r'—q’r, rp’—7'p, p¢ —p'q
and the sum of their squares is =1. Writing for shortness MP =R, MQ=8, we have
p=aR +aR,, p =aR,
g=bR+DbR,, ¢ =DbR,

o= S]: T,=1+S,;
79—2
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hence
g —q¢r= Db[R,(1+8)-RS]+bR(1+8),
rp—r'p=—a[R (1+8)-RS]-a,R(1+58),
pq —p'q=— (ab, — a,p) RR".
Here
B =MP+MP, R =M,
=MQ +M'Q, S =MQ,
and hence

RS —R'S = M*(PQ - PQ),
RS'—R'S,= M*(P,Q — P'Q)+ MM (P, — PQ):

moreover, from the values of P and @, we have

' e’ P T,
P = QGPQ, = 1?, P1=" PQ
i Y iy R
Q’__%Pg _"F) Q‘.I._ '2T-P2,
and thence
Po-Po=-2F; pg-Po--L; pg_prg-
1 ol Zf’ U’ i
also
R'= PQ+MP, =P@+M), 1+8=1-P+MQ =Q(Q+I);
R,——EMPQ RS’ — R'S=— PM, R,s*_R*&:—;j‘,MPM’,

and consequently
R(1+8)-RS=- T‘ MP (Q+ M),
R (148 = MPQ(Q+ M),
RE - MP? (Q+ ).

Hence the foregoing expressions for ¢r'—gq'r, #p"—7'p, p¢’— p'q each contain the factor
MP(Q+ M’); omitting this factor, the expressions are

{ bT’+bQ} {jT B“QI = (ab,—ab) P;

Ly

i i
the sum of the squares of these values is =4‘i',,g+a12+bf, =1, and we have thus

the required values

R 5 Yo 18
O R 5 Sk

bl 1 Tl

B,= JO { a 2—T-31Q} s

=g @ —ab) P,

4,

which completes the proof.
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In the case m =0, the solution is

20 2VT® 20,2776 20 I'- 0

% =~ge7re’ o T+e’ 'te rve
Bonnet, in the paper (Jour. Ecole Polyt. t. XX.) referred to at the beginning of
this memoir, gives for this case (see p. 199) a solution which he says is equivalent
to that obtained by Joachimsthal in the paper “Demonstrationes theorematum ad
superficies curvas spectantium,” Crelle, t. XXX. (1846), pp. 347—350; viz. Joachimsthal's

form is
_ wpsinLsin A

1 +cos L cos M’

wsin L cos A

" 1+cosLcosM’

_ pcos Lsin M f i
~ 1+ cos L cos Tt sk i

where L, M denote arbitrary functions of the parameters A, x vespectively. To
identify these with the foregoing form, I write

: sy o 400
sinA = —a, cosL——T~+—i, cosM--®+1 , #—@'7(@)'4-71)’

i St L ] _ =248
cosA=—b, sinlL= T s1nM—®+1,
we thus have
sin Lsinh _2yT | _(T-1)®-1) dVT(@+1)
T+cosLeos M *T+1" ' YT 7 ) S - R
and thence
20,206 29 2018
CeiTre’ YT O Tror
Moreover,

cosLsin M VO (T-1)
l+cosLecosM T+0O °

20 20 (T'—1)
® @©+1)(T+6)

20 (T—1)=(®+1)(I'—0)+(6 — 1)(T+6),

and thence the first term of z is = ; or observing that

this is
_20T-0 2()(@—1)
CY T+0 @®O+1)’

or we have
_207-6  20((0-

e T+0 0'(®+1)

) 4 j cot M dp.
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Here
_ ©-1 40y0 (3@ @ e
ot Mdp=—5-g g@+1) {@_@H‘ '@"}"w
_®®-1) 3 2 20"
But writing
E_g@(@-l)
T e®+1)’
we have
_20(®-1) (@ @ ® @
%=goe+Dn {@+®-1"®—+1 @'}da
_®@®-1) (2 2 2 20"
287 Brezr-eri e

6+1
and thence '

and consequently

§+fcoth,u.=0,

and the value of z thus is
20 T-06

tmlte Tee;

which completes the identification.

Bonnet’s formule just referred to, making a slight change of mnotation and
correcting a sign, are
ot T sin 0
T cost(c+®)’
_ Icos @
Y= Cosi(c+0)’
z=T+"tant(c+09),
where T, ® are arbitrary functions of the par.meters ¢, 6 respectively. To identify
these with Joachimsthal’s, write

sinA=sin @, cos M = tcotic, cos L = icoti®, u=—1"cosecic,
cosh=cos @, sin M = cosecic, sin L = cosec 10,

cot M = icosic, cotL = icosi®;

we have :
_ pcosec!®sinf _—psinicsin§ Teanig
T —coticcoti® cosi(c+®) = cosi(c+0O)’
and similarly
25 IV cos 0
y= cosi (¢ + @)
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Moreover, the first term of z is

pi cot 1@ cosecic  — ui cos1® IV cos1®
1 —coticcott® cosi(c+®) sinidccose(c+ B)’

or since 70 =1 (¢ + ®)—i¢, and thence

cos 1@ = cos ic cos 7 (¢ + ®) + sindc sin s (¢ + O),
this is
= 1I" {cot ic + tan 1 (¢ + B)},
and we have

g=L" tani(c+®)+'£I"cotic+/cothy.

But from the equation p= —1I" cosecic, we obtain

dp = (=T cosec ic + I cosec zc cot ic) dc ;

whence
cot M du = (— I cot zc — I" cot? ic) de,
and thence
d (il" cot ic + f cot M d/.b) = (eI cot vc + I cosec® ic) de
+ (— oI cot ic — I cot? ic) de, = I"dc;
that is,

N f oot Mdu =T,

and consequently
z=T+I"tan s (c + 9),

which completes the identification of Bonnet’s formula with Joachimsthal’s.

- 88, The Sets of Curves of Curvature each Spherical.

The six equations are
A+ B2+ O =1,
2+ P+ 22— 2ax — 2by — 2c2—2u =0,
A@—a)+B@y—0b)+C(z—c)—1 =0,
2+ Y+ 22— 200 — 2By — 29z —2v =0,
A(@—a)+B(y—p)+C(z—y)-21=0,
Adz + Bdy + Cdz =0;

the condition being
: ao+bB +cy—IN+u+v =0,
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The cases are

a|b | e | l } % a|B| Y A ’ v
o paloaleibutle 1 I L P o i
S8S,1°10]|0|0| l L (ml +m') o | B v m ’ — im/
58,2100 ¢ ‘ ! } (i + m') a|B| O im i o
88,3 |0 |0 |c| me+im —im'c—m" a | B | mA+Em” A | FmA+m”
i i ’

88,410 b |c | me+ m | mmctrmm’—m” | a |0 y oy m g y+m'”,

‘ m | m

where m, m/, m”, m" are constants; b, ¢, [ functions of ¢; a, B, v, A functions of 6.

SS, 1° gives circles (i.e. the curves of curvature of one set are circles).
SS, 2° is Serret’s first case of SS.

S8, 3° gives circles.

SS, 4° is Serret’s second case of SS.

S8, 2°=Serret's First Case of SS.

Writing for convenience m’=— f3 the six equations are
A*+ B2+ C? =1,
2+ Y+ 22— 2cz —ml + f* =0,
Az+By+C(z—c)—1 =0,
2+ P+ 28 — 20z — 2By — f* =0,
A@-a)+B(y-B)+CE—2)=0,
Adz + Bdy + Odz =0,

where m, f are constants; ¢, ! are functions of ¢; a, B, A functions of 6. The first
set of spheres have mo points in common, but the second set have in common the
two points #=0, y=0, z=+f Hence inverting (by reciprocal radius vectors) with
one of these points, say (0, 0, /) as centre, the spheres of the first set will continue
spheres, but the spheres of the second set will be changed into planes, and the
required surface is thus the inversion of a surface PS, which is in fact PS, 3 :
say this surface PS is the “Inversion” of SS. We invert by the formule

KX pey {3 4 o B = 1)
== T T

iy e SN g 1 Vi
where Q=X+ Y2+ (Z—-f )
Writing the equation for the second set of spheres in the form
B+ +(e—f)—2aw—28y+ 2 (- f)=0,
the transformed equation is at once found to be

—2aX —28Y +2f (Z—f)+ K*=0,
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or say
aX+BY - fZ+f—1K*=0;

viz. this gives the planes of the Inversion.

Similarly for the first set of spheres, writing the equation in the form

@+y+ (= fP+2(f-)(e—f)+ % (f—0)-mi=0,
the transformed equation is found to be
f (f-o)-mi} {(X2+ P+ (Z-f)} +2(f-0) K*(Z—f)+ K'=0;

viz. this is '

2f (f—c) —ml} (X2+ Y2+ Z°)+2Z {(f—c) (— 2f* + K*) + finl}

+ {2f (f—0) (f*— K?) —frml+ K} =0,
which gives the spheres of the Inversion. The two eqﬁations take a more simple form
if we write therein K®=2f*; viz. they then become

aX +BY—fZ=0,
(21— 2fc— ml) (X* + Y2 + Z°) + 2Zfml + f* (2f* + 2¢f —ml) = 0;
or, say these are
«X+RY—f7_,
Vér e
2fml 221+ 2¢f —ml)
le+ LBt o e AT A Gl

Interchanging the parameters so as to have ¢ in the first equation and 6 in the
second equation, these are of the form '

aX +bY +¢Z=0,
X2 4+ V2 + 22— 297 — 20 =0,

where a2+ b*+c¢*=1; and the Inversion is thus a surface PS, 3°

S8, 4°= Serret’'s Second Case of SS.

Writing for convenience m’ = — mf, m"” =} (¢2 + f?), mm” = — g, and therefore m'm” = 19,
the six equations are
A? + B2+ (C* : =il
2 +P+22 =2y —2c(z—g)—2fg+E+f2=0,
Az +B(y—b)+C(z—c)+m (f—c) =0,
2 +YP+22=2a0—2y(z—f)=e—f? =0,
A@=a)+By+Ce—m = (g+y) =0,
Adz + Bdy + Cdz =10}

where e, f; g, m are constants; b, ¢ are functions of ¢; a«, v functions of 4.
C. XIL 80
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The spheres of the first set pass all of them through the two points

@ =tV2y—e—fi-g y=0, z=y,
and those of the second set pass all of them through the two points
@' =0, Ye=te 2=
where observe that these are such that
(z—2P+@Y—yr+@E-2y=0;

viz. the distance of each point of the first pair from each point of the second pair
is =0. The pairs of points are one real, the other imaginary: but this is quite con-
sistent with the reality of the spheres.

The first pair of points lies in a line parallel to the axis of #, meeting the axis
of z at the point z=g; and the second pair in a line parallel to the axis of y,
cutting the axis of z at the point z=f It is clear that we can, without loss of
generality, by moving the origin along the axis of z, in effect make g to be =—f;
the equations of the two sets of spheres thus become

AP+ 22— 2by—2 (z+f)+ e +3f=0,
BHyP+22—20—2y(z—f)—e— f2=0,
or, if in these equations for ¢* we write ¢*— 2f? the equations become
PP+ 2 =20y —2c(z+f)+e+ =0,
B+ —2u—2y(e—f)—e+f2=0,
which are very symmetrical forms.
The spheres of the first set pass through the two points
dotips o Ly,
and those of the second set through the two points
Dot ity el
where, of course, the two pairs of points are related as is mentioned above.

By taking as centre of inversion a point of the first pair, we invert the first set
of spheres into planes and the second set into spheres; and similarly, by taking a
point of the second pair, we invert the first set of spheres into spheres and the
second set into planes. By reason of the symmetry of the system, it is quite indifferent
which point is chosen; and taking it to be a point of the second pair, and writing
for convenience n=We*—2f? (n is, in fact, the quantity originally denoted by e), then
the points of the first pair are

tV—ni—4f2, 0, —f

0 e Yoy

and I take for centre of inversion the point (0, n, f).
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Observe that, if e=0, f=0, then the four points coincide at the origin, and taking
this as centre of inversion, the two sets of spheres are each changed into planes,
and the Inversion of the surface SS is thus a surface PP; this particular case will
be considered further on, but I first consider the general case.

The formule of inversion are

KX
&= —; y—-n:

K (Y —n) _KZ-f)
0 i i e fi et

where
Q=X +Y-np+(Z-fr
Writing the equation of the second set of spheres in the form
B+ @Y—nf+@—fy-2u0z+2m(@y—-n)+2(f-v)(-f)=0,
the transformed equation is :
—oaX+n(Y=n)+(f-y)(Z-f)+4K*=0,
which gives the planes of the Inversion.

Similarly, writing the equation of the first set of spheres in the form
P+ -nf+@E—fP+2m-b)(y-n)+2(f-0)(z-f)+ 20— 2bn+4f(f—c)=0,
the transformed equation is
{n2 =bn +2f (f = )X+ (Y —n)* + (Z - f )}
+KH{n-b) (Y =)+ (f-0) (Z-f)} +$K*=0,

which gives the spheres of the Inversion.

Changing the origin, the two equations may be written
—oaX+nY+(f—y)Z+3K=0,
0t = bnt % (f— O} (K04 Y2k 2+ K* (0 —b) T+ (F— 0) Z} + 4K+ = 0.
I stop to consider a particular case. Suppose n=0; the equations are
—aX +(f—y)Z+ 4K =0,

P P <

X2+ Y2+Z2_‘ S L7 =0)
D R VA T =)
or, interchanging herein ¥ and Z, they are
—aX +(f-y) Y +31K=0,
i bK* K
X2+ Y24+ 224+ Y - Z+ =1
2 (-0 Y-

80—2
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2
and if for ¥ we write Y—IL, then the equations become

af

—aX +(f=y) ¥+ K%ffth 0,

bK* K*(5f —4c)
X+ VP 2 — i — L+ =0,
gl 7O
viz. interchanging the parameters so as to have ¢ in the first equation and @ in the
second equation, these are of the form

aX +bY =1Im,
X2 4 Y24 22— 207 =2v,
which belong to PS, 4°. Hence, in this particular case, n=0; the Inversion is PS, 4"
Reverting to the general case, and to the two equations obtained above, observe
that, in the second of the two equations, the terms in ¥, Z have the variable

coefficients n —b and f—e¢, so that it does not at first sight seem as if these terms
could by a transformation of coordinates be reduced to a single term.

$K*

But if, again changing the origin, we write ¥ — < for Y, the two equations
become
—aX +n¥Y+(f-9)Z=0,
n*—bn+2f(f—o)} (X>+ Y2+Z2)+]§(f— ¢) (= 2fY +nZ)
K
+ = n+bn+ 2f(f—c) =0,

4n? L

where, in the second equation, the terms in ¥, Z present themselves in the com-
bination — 2fY + nZ with the constant coefficients — 2f and n. Hence writing

Vi + 472 Y = Y — 27,

i+ 4f°Z = 2fY' + nZ,

and consequently — 2fY +nZ =~n?+4f*Z’, and (cfter the transformation) removing the
accents, the equations become

1
—-aX+m;};[{n2+2f(f— MY —=n(f+v)Z]=0,
K (f— Vit df* . Kfn+bo+ 2/ (F=a)}
n {n? — bn + 2f (f— c)} nt (nt—=bn+2f(f—c)}

viz. interchanging the parameters so as to have ¢ in the first equation and @ in the
second equation, these are of the form

X+ Y2+ 22+

0,

aX +b0Y + ¢Z =0,
X2+ Y2+ 22— 2mpZ =0,
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which belong to the case PS, 3% Hence, in this general case, the Inversion is a
surface PS, 3°

I have spoken above of the particular case e=0, f=0: here the equations of
the two sets of spheres are
2+ y*+ 2 —2by —2cz =0,

2+ Y2+ 2 — 20w — 292 =0,

which have the origin as a common point. Taking this as the centre of inversion,
or writing
KX T 4 @ K:Z

r=——,

Q

T T A e where Q= X2+ Y2+ 22,

the transformed equations are
bY +c¢Z —1K*=0,
aX +yZ-4K*=0,
or, interchanging X and Y, say
bX +c¢Z-4K*=0,

aY+q9Z—-LK*=0,
which are of the form
X CtZ =P =0

Y+0Z-11 =0,
belonging to a surface PP, 3°. Hence, in this case, the Inversion is a surface PP, 3"

It thus appears that the surface SS, 4° has an Inversion which is either PS, 3,
PS, 4 or PP, 3. The inversion has in some cases to be performed in regard to an
imaginary centre of inversion.

It was previously shown that the surface SS, 3° had an Inversion PS, 3% and
we thus arrive at the conclusion that a surface SS, with its two sets of curves of
curvature each spherical, is in every case the Inversion of a surface PS with one set
plane and the other spherical, or else of a surface PP with each set plane. Serret
notices that the centre of inversion may be imaginary: this (he says) presents no
difficulty, but he adds that it is easy to see that the centres of inversion may be
taken to be real, provided that we join to the surfaces thus obtained all the parallel
surfaces.

It seems to me that there is room for further investigation as to the surfaces
SS: first, without employing the theory of inversion, it would be desirable to obtain
the several forms by direct integration, as was done in regard to the surfaces PP
and PS; secondly, starting from the several surfaces PP and PS considered as known
forms, it would be desirable to obtain from these, by inversion in regard to an
arbitrary centre, or with regard to a centre in any special position, the several forms
of the surfaces SS. But I do not at present propose to consider either of these
questions.
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In conclusion, I remark that I have throughout assumed Serret’s negative con-
clusions, viz. that the several cases, other than those considered in the present memoir,
give only developable surfaces, or else surfaces having circles for one set of their curves
of curvature. These being excluded from counsideration, there remain

PP, Serret’s two cases PP, 1°, PP, 3;
PS, his three cases PS, 19 PS, 3°, PS, 4°;
SS, his two cases SS, 2° and S8, 4°;

but PP, 1" is a particular case of, and so may be included in, PP, 3°; and similarly
PS8, 1° is a particular case of, and may be included in, PS, 3°; the cases considered thus
are

PP, 8; PS, &, PS, 4; S8, 2 and 88, 4°.

It would however appear by what precedes that the case SS, 4° includes several cases
which it is possible might properly be regarded as distinct; and the classification of
the surfaces SS can hardly be considered satisfactory; it would seem that there should
be at any rate 3 cases, viz. the surfaces which are the Inversions of PP, 3°, PS, 3
and PS, 4° respectively.

I regard the present memoir as a development of the analytical theory of the
surfaces PP, 3°, PS, 3° and PS8, 4°
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