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104 II. GENERAL METHOD IN DYNAMICS

Introductory Remarks.

The theoretical development*  of the laws of motion of bodies is a problem of such interest 
and importance, that it has engaged the attention of all the most eminent mathematicians, 
since the invention of dynamics as a mathematical science by Galileo, and especially since the 
wonderful extension which was given to that science by Newton. Among the successors of 
those illustrious men, Lagrange has perhaps done more than any other analyst to give extent 
and harmony to such deductive researches, by showing that the most varied consequences 
respecting the motions of systems of bodies may be derived from one radical formula; the beauty 
of the method so suiting the dignity of the results, as to make of his great work a kind of scientific 
poem. But the science of force, or of power acting by law in space and time, has undergone 
already another revolution,! and has become already more dynamic, by having almost dis
missed the conceptions of solidity and cohesion, and those other material ties, or geometrically 
imaginable conditions, which Lagrange so happily reasoned on, and by tending more and more 
to resolve all connexions and actions of bodies into attractions and repulsions of points: and 
while the science is advancing thus in one direction by the improvement of physical views, it 
may advance in another direction also by the invention of mathematical methods. And the 
method proposed in the present essay, for the deductive study of the motions of attracting or 
repelling systems, will perhaps be received with indulgence, as an attempt to assist in carrying 
forward so high an inquiry.

In the methods commonly employed, the determination of the motion of a free point in 
space, under the infiuence of accelerating forces, depends on the integration of three equations 
in ordinary differentials of the second order; and the determination of the motions of a system 
of free points, attracting or repelhng one another, depends on the integration of a system of 
such equations, in number threefold the number of the attracting or repelling points, unless we 
previously diminish by unity this latter number, by considering only relative motions. Thus, in 
the solar system, when we consider only the mutual attractions of the sun and of the ten known 
planets,! the determination of the motions of the latter about the former is reduced, by the 
usual methods, to the integration of a system of thirty ordinary differential equations of the 
second order, between the coordinates and the time; or, by a transformation of Lagrange, § to 
the integration of a system of sixty ordinary differential equations of the first order, between 
the time and the elliptic elements: by which integrations, the thirty varying coordinates, or the 
sixty varying elements, are to be found as functions of the time. In the method of the present 
essay, this problem is reduced to the search and differentiation of a single function, which 
satisfies two partial differential equations of the first order and of the second degree: and every 
other dynamical problem, respecting the motions of any system, however numerous, of attract-* [On the development of Theoretical Dynamics from Lagrange to Hamilton, see Cayley’s Report to the British 
Association, Dublin (1858), p. 1.]f [Hamilton is here referring to Boscovich’s hypothesis on the constitution of matter (1743). Cf. Graves, Life 
of Hamilton, Vol. i, p. 593, Vol. π, pp. 85-86, 88.]t [The planets known at the date of this paper were Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus and four asteroids Ceres, Pallas, Vesta and Juno, the last being discovered in 1807. Neptime was not discovered until 1846.]

§ [Mec. Anal. 3rd ed. Tome π, pp. 112-143.]
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1] IL GENERAL METHOD IN DYNAMICS 105

ing or repelling points, (even if we suppose those points restricted by any conditions of connexion 
consistent with the law of living force,) is reduced, in like manner, to the study of one central 
function, of which the form marks out and characterizes the properties of the moving system, 
and is to be determined by a pair of partial differential equations of the first order, combined 
with some simple considerations. The difficulty is therefore at least transferred from the 
integration of many equations of one class to the integration of two of another: and even if it 
should be thought that no practical facility is gained, yet an intellectual pleasure may result 
from the reduction of the most complex and, probably, of all researches respecting the forces 
and motions of body, to the study of one characteristic function,*  the unfolding of one central 
relation.

The present essay does not pretend to treat fully of this extensive subject,—a task which 
may require the labours of many years and many minds; but only to suggest the thought and 
propose the path to others. Although, therefore, the method may be used in the most varied 
dynamical researches, it is at present only applied to the orbits and perturbations of a system 
with any laws of attraction or repulsion, and with one predominant mass or centre of pre
dominant energy; and only so far, even in this one research, as appears sufficient to make the 
principle itself understood. It may be mentioned here, that this dynamical principle is only 
another form of that idea which has already been applied to optics in the Theory of systems of 
rays, and that an intention of applying it to the motions of systems of bodies was announced↑ 
at the publication of that theory. And besides the idea itself, the manner of calculation also, 
which has been thus exemplifi.ed in the sciences of optics and dynamics, seems not confined to 
those two sciences, but capable of other apphcations; and the peculiar combination which it 
involves, of the principles of variations with those of partial differentials, for the determination 
and use of an important class of integrals, may constitute, when it shall be matured by the 
future labours of mathematicians, a separate branch of analysis. J

William R. Hamilton.
Observatory, Dublin,

March 1834.
Integration of the Equations of Motion of a System, Characteristic Function of such 

Motion, and Law of varying Action.1. The known differential equations of motion of a system of free points, repelling or 
attracting one another according to any functions of their distances, and not disturbed by any 
foreign force, may be comprised in the following formula:

^Σ.m{x"bx + y"by + z"bz} = ^U. (1.)
In this formula the sign of summation Σ extends to all the points of the system; m is, for any* Lagrange and, after him, Laplace and others, have employed a single function to express the different forces of a system, and so to form in an elegant manner the differential equations of its motion. By this conception, great simplicity has been given to the statement of the problem of dynamics; but the solution of that problem, or the expression of the motions themselves, and of their integrals, depends on a very different and hitherto ιmimagined function, as it is the purpose of this essay to show.f Transactions of the Royal Irish Academy, Vol. xv, p. 80. [Mathematical Papers, Vol. i, p. 9.] A notice of this dynamical principle was also lately given in an article “On a general Method of expressing the Paths of Light and of the Planets,” published in the Dublin University Review for October 1833. [Mathenuitical Papers, Vol. ι,p.311.]f [Hamilton afterwards developed this suggestion in his Calculus of Principal Relations. See pp. 297^10.]

HMPΠ 14.
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108 II. GENERAL METHOD IN DYNAMICS [2, 3

Secondly, the group,

(D.)

and finally, the equation.

(E.)

So that if this function V were known, it would only remain to eliminate H between the 3n ÷ 1 
equations (C.) and (E.), in order to obtain all the 3n intermediate integrals, or between (D.) 
and (E.) to obtain all the 3n final integrals of the differential equations of motion; that is, ulti
mately, to obtain the 3n sought relations between the 3n varying coordinates and the time, 
involving also the masses and the Qn initial data above mentioned; the discovery of which 
relations would be (as we have said) the general solution of the general problem of dynamics. 
We have, therefore, at least reduced that general problem to the search and differentiation of a 
single function V, which we shall call on this account the characteristic function of motion 
of a system; and the equation (A.), expressing the fundamental law of its variation, we shall 
call the eqztation of the characteristic function, or the law of varying action.

3. To show more clearly that the action or accumulated living force of a system, or in other 
words, the integral of the product of the living force by the element of the time, may be regarded 
as a function of the 6n + 1 quantities already mentioned, namely, of the initial and final co
ordinates, and of the quantity H, we may observe, that whatever depends on the manner and 
time of motion of the system may be considered as such a function; because the initial form of 
the law of living force, when combined with the 3n known or unknown relations between the 
time, the initial data, and the varying coordinates, will always furnish 3n + 1 relations, known 
or unknown, to connect the time and the initial components of velocities with the initial and 
final coordinates, and with H. Yet from not having formed the conception of the action as a 
function of this kind, the consequences that have been here deduced from the formula (A.) for 
the variation of that definite integral appear to have escaped the notice of Lagrange, and of the 
other illustrious analysts who have written on theoretical mechanics; although they were in 
possession of a formula for the variation of this integral not greatly differing from ours. For 
although Lagrange and others, in treating of the motion of a system, have shown that the 
variation of this definite iiitegral vanishes when the extreme coordinates and the constant H 
are given, they appear to have deduced from this result only the well-known law of least action', 
namely, that if the points or bodies of a system be imagined to move from a given set of initial 
to a given set of final positions, not as they do nor even as they could move consistently with the 
general dynamical laws or differential equations of motion, but so as not to violate any supposed 
geometrical connexions, nor that one dynamical relation between velocities and configurations 
which constitutes the law of living force; and if, besides, this geometrically imaginable, but 
dynamically impossible motion, be made to differ infinitely little from the actual manner of 
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2] II. GENERAL METHOD IN DYNAMICS 107

{x', y', z', being here, according to the analogy of our foregoing notation, the rectangular com
ponents of velocity of the point m, or the first differential coefficients of its coordinates taken 
with respect to the time;) an easy and well-known combination of the differential equations of 
motion, obtained by changing in the formula (1.) the variations to the differentials of the 
coordinates, may be expressed in the following manner,

dT = dU, (5.)
and gives, by integration, the celebrated law of hving force, under the form

T=U + H. (6.)
In this expression, which is one of the seven known integrals already mentioned, the quan

tity H is independent of the time, and does not alter in the passage of the points of the system 
from one set of positions to another. We have, for example, an initial equation of the same 
form, corresponding to the origin of time, which may be written thus,

To=Ho + ^∙ (7.)
The quantity H may, however, receive any arbitrary increment whatever, when we pass in 

thought from a system moving in one way, to the same system moving in another, with the 
same dynamical relations between the accelerations and positions of its points, but with different 
initial data; but the increment of H, thus obtained, is evidently connected with the analogous 
increments of the functions T and U, by the relation

ΔT = ΔH + ΔH, (8.)
which, for the case of infinitesimal variations, may conveniently be written thus,

δΤ = δΗ + δΗ; (9.)
and this last relation, when multiplied by dt, and integrated, conducts to an important result. 
For it thus becomes, by (4.) and (1.), 

that is, by the principles of the calculus of variations.

if we denote by V the integral

(10.)

(A.)

(B.)

namely, the accumulated hving force, caUed often the action of the system, from its initial to 
its final position.

If, then, we consider (as it is easy to see that we may) the action F as a function of the initial 
and final coordinates, and of the quantity H, we shah have, by (A.), the foUowing groups of 
equations; first, the group.

(C.)

I4-2
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108 II. GENERAL METHOD IN DYNAMICS [2, 3

Secondly, the group,

and finally, the equation.

(D.)

(E.)

So that if this function V were known, it would only remain to eliminate H between the 3n + 1 
equations (C.) and (E.), in order to obtain all the 3w intermediate integrals, or between (D.) 
and (E.) to obtain all the 3n final integrals of the differential equations of motion; that is, ulti
mately, to obtain the 3w sought relations between the 3n varying coordinates and the time, 
involving also the masses and the 6n initial data above mentioned; the discovery of which 
relations would be (as we have said) the general solution of the general problem of dynamics. 
We have, therefore, at least reduced that general problem to the search and differentiation of a 
single function V, which we shall call on this account the characteristic function of motion 
of a system; and the equation (A.), expressing the fundamental law of its variation, we shall 
call the equation of the characteristic function, or the law of varying action.

3. To show more clearly that the action or accumulated hving force of a system, or in other 
words, the integral of the product of the hving force by the element of the time, may be regarded 
as a function of the 6w + 1 quantities already mentioned, namely, of the initial and final co
ordinates, and of the quantity H, we may observe, that whatever depends on the manner and 
time of motion of the system may be considered as such a function; because the initial form of 
the law of hving force, when combined with the 3w known or unknown relations between the 
time, the initial data, and the varying coordinates, will always furnish 3w + 1 relations, known 
or unknown, to connect the time and the initial components of velocities with the initial and 
final coordinates, and with H. Yet from not having formed the conception of the action as a 
function of this kind, the consequences that have been here deduced from the formula (A.) for 
the variation of that definite integral appear to have escaped the notice of Lagrange, and of the 
other illustrious analysts who have written on theoretical mechanics; although they were in 
possession of a formula for the variation of this integral not greatly differing from ours. For 
although Lagrange and others, in treating of the motion of a system, have shown that the 
variation of this definite integral vanishes when the extreme coordinates and the constant H 
are given, they appear to have deduced from this result only the well-known law of lecLst action', 
namely, that if the points or bodies of a system be imagined to move from a given set of initial 
to a given set of final positions, not as they do nor even as they could move consistently with the 
general dynamical laws or differential equations of motion, but so as not to violate any supposed 
geometrical connexions, nor that one dynamical relation between velocities and configurations 
which constitutes the law of hving force; and if, besides, this geometrically imaginable, but 
dynamically impossible motion, be made to differ infinitely little from the actual manner of
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3, 4] Π. GENERAL METHOD IN DYNAMICS 109

motion of the system, between the given extreme positions; then the varied value of the 
definite integral called action, or the accumulated living force of the system in the motion thus 
imagined, will differ infinitely less from the actual value of that integral. But when this well- 
known law of least, or as it might be better called, of stationary action, is applied to the deter
mination of the actual motion of a system, it serves only to form, by the rules of the calculus of 
variations, the differential equations of motion of the second order, which can always be 
otherwise found. It seems, therefore, to be with reason that Lagrange*,  Laplace, and Poisson 
have spoken lightly of the utility of this principle in the present state of dynamics. A different 
estimate, perhaps, will be formed of that other principle which has been introduced in the present 
paper, under the name of the law of varying action, in which we pass from an actual motion to 
another motion dynamically possible, by varying the extreme positions of the system, and (in 
general) the quantity H, and which serves to express, by means of a single function, not the 
mere differential equations of motion, but their intermediate and their final integrals.

Verifications of the foregoing Integrals.
4. A verification, which ought not to be neglected, and afthe same time an illustration of 

this new principle, may be obtained by deducing the known differential equations of motion 
from our system of intermediate integrals, and by showing the consistence of these again with 
our final integral system. As preliminary to such verification, it is useful to observe that the 
final equation (6.) of living force, when combined with the system (C.), takes this new form,↑

(F).

and that the initial equation (7.) of living force becomes by (D.)

(G.)

These two partial differential equations, initial and final, of the first order and the second 
degree, must both be identically satisfied by the characteristic function V: they furnish (as we 
shall find) the principal means of discovering the form of that function, and are of essential 
importance in its theory. J If the form of this function were known, we might eliminate 3n — 1 
of the 3n initial coordinates between the 3n equations (C.); and although we cannot yet perform 
the actual process of this elimination, we are entitled to assert that it would remove along with 
the others the remaining initial coordinate, and would conduct to the equation (6.) of final 
living force, which might then be transformed into the equation (F.). In like manner we may 
conclude that all the 3n final coordinates could be eliminated together from the 3n equations 
(D.), and that the result would be the initial equation (7.) of living force, or the transformed 
equation (G.). We may therefore consider the law of living force, which assisted us in discovering 
the properties of our characteristic function V, as included reciprocally in those properties, and 
as resulting by elimination, in every particular case, from the systems (C.) and (D.); and in 
treating of either of these systems, or in conducting any other dynamical investigation by the* [For Lagrange’s remarks on the principle of least action, see Λ[άί. Anal. 3rd ad. Tome i, pp. 229, 230.] f [These equations are exactly analogous to the equations Ω = 0, Ω' = 0 of the Third Supplement. Λιathematical
Papers, Vol. i, pp. 170, 485.]t [For Jacobi’s criticism, see Appendix, p. 613.]
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m et h o d  of  t his c h ar a ct eristi c f u n cti o n, w e  ar e at  li b ert y t o e m pl o y t h e p arti al  diff er e nti al  

e q u ati o ns  ( F.) a n d  ( G.), w hi c h  t h at f u n cti o n m ust  n e c ess aril y  s atisf y.

It wi U  n o w  b e  e as y  t o d e d u c e,  as  w e  pr o p os e d,  t h e k n o w n  e q u ati o ns  of  m oti o n  ( 3.) of  t h e 

s e c o n d or d er,  b y  diff er e nti ati o n  a n d  e h mi n ati o n  of  c o nst a nts,  fr o m o ur  i nt er m e di at e i nt e gr al 

s yst e m ( C.), ( E.), or  e v e n  fr o m a  p art  of  t h at s yst e m, n a m el y,  fr o m t h e gr o u p  ( C.), w h e n  c o m 

bi n e d  wit h  t h e e q u ati o n  ( F.). F or  w e  t h us o bt ai n

( 1 1.)

t h at is, w e  o bt ai n

( 1 2.)

A n d  i n li k e m a n n er  w e  mi g ht  d e d u c e,  b y  diff er e nti ati o n,  fr o m t h e i nt e gr als ( C.) a n d  fr o m ( F.) 

all  t h e ot h er  k n o w n  diff er e nti al  e q u ati o ns  of  m oti o n,  of  t h e s e c o n d or d er,  c o nt ai n e d  i n t h e s et  

m ar k e d  ( 3.); or,  m or e  c o n cis el y,  w e  m a y  d e d u c e  at  o n c e  t h e f or m ul a ( 1.), w hi c h  c o nt ai ns  all  

t h os e k n o w n  e q u ati o ns,  b y  o bs er vi n g  t h at t h e i nt er m e di at e i nt e gr als ( C.), w h e n  c o m bi n e d  wit h  

t h e r el ati o n ( F.), gi v e*
/ _ 7 C*  T 7  7 C ×  T T  7 C ∖  T T  ∖ ∖

( 1 3.)

. J

5 . A g ai n,  w e  w er e  t o s h o w  t h at o ur  i nt er m e di at e i nt e gr al s yst e m,  c o m p os e d  of  t h e e q u ati o ns  

( C.) a n d  ( E.), wit h  t h e 3 n  ar bitr ar y  c o nst a nts  Uj, Cj,  ... a „,  c „,  ( a n d i n v ol vi n g als o  t h e

w w w.r ci n. or g. pl



5] II. GENERAL METHOD IN DYNAMICS 111

auxiliary constant H,) is consistent with our final integral system of equations (D.) and (E.), 
which contain 3n other arbitrary constants, namely, a[, b[, c[, ... a'^, c'^. The immediate
differentials of the equations (C.), (D.), (E.), taken with respect to the time, are, for the first 
group.

(H.)

for the second group.

(I.)

(K.)

and finally, for the last equation.

By combining the equations (C,) with their differentials (H.), and with the relation (F.), we 
deduced, in the foregoing number, the known equations of motion (3.); and we are now to show 
the consistence of the same intermediate integrals (C.) with the group of differentials (I.), 
which have been deduced from the final integrals.

The first equation of the group (I.) may be developed thus:

(14.)

and the others may be similarly developed. In order, therefore, to show that they are satisfied 
by the group (C.), it is sufficient to prove that the following equations are true,

(L.)

the integer i receiving any value from 1 to n inclusive; which may be shown at once, and the
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112 II. GENERAL METHOD IN DYNAMICS [5,6

required verification thereby be obtained, if we merely take the variation of the relation (F.) 
with respect to the initial coordinates, as in the former verification we took its variation with 
respect to the final coordinates, and so obtained results which agreed with the known equations 
of motion, and which may be thus collected.

(M.)

The same relation (F.), by being varied with respect to the quantity H, conducts to the 
expression

(N.)

and this, when developed, agrees with the equation (K.), which is a new verification of the 
consistence of our foregoing results. Nor would it have been much more difficult, by the help 
of the foregoing principles, to have integrated directly our integrals of the first order, and so to 
have deduced in a different way our final integral system.

6. It may be considered as still another verification of our own general integral equations, 
to show that they include not only the known law of living force, or the integral expressing that 
law, but also the six other known integrals of the first order, which contain the law of motion 
of the centre of gravity, and the law of description of areas. For this purpose, it is only necessary 
to observe that it evidently follows from the conception of our characteristic function F, that 
this function depends on the initial and final positions of the attracting or repelling points of a 
system, not as referred to any foreign standard, but only as compared with one another; and 
therefore that this function will not vary, if without making any real change in either initial or 
final configuration, or in the relation of these to each other, we alter at once all the initial and 
all the final positions of the points of the system, by any common motion, whether of translation 
or of rotation.*  Now by considering three coordinate translations, we obtain the three following 
partial differential equations of the first order, which the function V must satisfy.

* [The function V is obviously independent of the choice of coordinate axes and the motions considered are ' equivalent to changes in the coordinate axes. Hence the value of V does not alter under such motions.]

(0.)

and by considering three coordinate rotations, we obtain these three other relations between 
the partial differential coefficients of the same order of the same characteristic function,
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6, 7] II. GENERAL METHOD IN DYNAMICS 113

(P.)

and if we change the final [differential] coefficients of V to the final components of momentum, 
and the initial coefficients to the initial components taken negatively, according to the 
dynamical properties of this function expressed by the integrals (C.) and (D.), we shall change 
these partial differential equations (0.), (P.), to the following.

and

In this manner, therefore, we can deduce from the properties of our characteristic function 
the six other known integrals above mentioned, in addition to that seventh which contains the 
law of living force, and which assisted in the discovery of our method.

Introduction of relative or polar Coordinates^ or other marks of position of a System.
7. The property of our characteristic function, by which it depends only on the internal or 

mutual relations between the positions initial and final of the points of an attracting or repelling 
system, suggests an advantage in employing internaΓor relative coordinates; and from the 
analogy of other applications of algebraical methods to researches of a geometrical kind, it may 
be expected that polar and other marks of position will also often be found useful. Supposing, 
therefore, that the 3n final coordinates , , ,... , , have been expressed as functions
of 3n other variables, , > ∙ ∙ ∙ V3n > θ-nd that the 3n initial coordinates have in like manner been
expressed as functions of 3w similar quantities, which we shall call , Cg»∙ ∙ ∙ «3^, we shall proceed 
to assign a general method for introducing these new marks of position into the expressions of 
our fundamental relations.

For this purpose we have only to transform the law of varying action, or the fundamental 
formula (A.), by transforming the two sums.

which it involves, and which are respectively equivalent to the following more developed 
expressions.

(17.)

(18.)

15HMPII
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114 II. GENERAL METHOD IN DYNAMICS '
Now being by supposition a function of the 3n new marks of position ,... Vsn variation 

δajf, and its differential coefficient a;^, may be thus expressed:

(19.)

(20.)

and similarly for and . If, then, we consider icj as a function, by (20.), of 17i, ∙ ∙ ∙ ^3n >
also in general ηι,..∙η3∏> θΙid if wθ f if≡ partial differential coefficients of the first order with 
respect to η[, ... η'sn, find the relations.

(21.)

and therefore we obtain these new expressions for the variations 3x^, ^y^, δz⅛,

(22.)

Substituting these expressions (22.) for the variations in the sum (17.), we easily transform 
it into the following.

(23.)

T being the same quantity as before, namely, the half of the final living force of the system, but 
being now considered as a function of η{, ... > involving also the masses, and in general
'’?!>··· V3n > and obtained by substituting for the quantities x', y', z' their values of the form (20.) 
in the equation of definition

In like manner we find this transformation for the sum (18.),
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7] Π. GENERAL METHOD IN DYNAMICS 115

The law of varying action, or the formula (A.), becomes therefore, when expressed by the 
present more general coordinates or marks of position,*

(Q∙)

and instead of the groups (C.) and (D.), into which, along with the equation (E.), this law 
resolved itself before, it gives now these other groups.

and

(R.)

(S.)

The quantities , Cg,... , and , Cg,... βg^, are now the initial data respecting the manner
of motion of the system; and the 3n final integrals, connecting these 6w initial data, and the 
n masses, with the time t, and with the 3n final or varying quantities , ,... η^n > which mark
the varying positions of the n moving points of the system, are now to be obtained by eliminating 
the auxiliary constant H between the 3n + 1 equations (S.) and (E.); while the 3n intermediate 
integrals, or integrals of the first order, which connect the same varying marks of position and 
their first differential coefficients with the time, the masses, and the initial marks of position, 
are the result of elimination of the same auxUiary constant H between the equations (R.) and 
(E.). Our fundamental formula, and intermediate and final integrals, can therefore be very 
simply expressed with any new sets of coordinates; and the partial differential equations (F.), 
(G.), which our characteristic function V must satisfy, and which are, as we have said, essential 
in the theory of that function, can also easily be expressed with any such transformed co
ordinates, by merely combining the final and initial expressions of the law of living force.

with the new groups {R.) and (S.). For this purpose we must now consider the function U, of 
the masses and mutual distances of the several points of the system, as depending on the new* [Equation (Q.) can be obtained most simply as follows without introducing the cartesian coordinates.Let T be a function of the η⅛ and η'⅛, being homogeneous of the second degree in the latter, and satisfying
T=U + H, where C7 is a function of the ηs, and H a constant along each of the curves considered. Writing
we have
Butand therefore 
so that we findThis, by the principle of least action, leads to the equations (Z.) and equation (Q.) follows immediately.]

i5-2
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116 II. GENERAL METHOD IN DYNAMICS [7, 8

marks of position ∙∙∙ V3n> the analogous function Z7θ, as depending similarly on the
initial quantities , eg, ∙.. we must also suppose that T is expressed (as it may) as a function 

of its own coefficients »—7, ,... x—r~, which will always be, with respect to these, homogeneous
OT)1 0^2

of the second dimension, and may also involve explicitly the quantities , ijg > ∙ ∙ ∙ V3n 5 that
hT 3T 8T

Tn is expressed as a similar fιmction of its coefficients , -=rr > ∙ ∙ ∙ > ≡θ thatδβj 062 δ⅜n

(25.)

and that then these coefficients of T and Tq are changed to their values (R.) and (S.), so as to 
give, instead of (F.) and (G.), two other transformed equations, namely.

(T.)

and, on account of the homogeneity and dimension of Tθ, (U.)
8. Nor is there any difficulty in deducing analogous transformations for the known differ

ential equations of motion of the second order, of any system of free points, by taking the 
variation of the new form (T.) of the law of living force, and by attending to the dynamical 
meanings of the coefficients of our characteristic function. For if we observe that the final 
living force 2T, when considered as a function of η^, ∙∙∙ ‰> θf ’ll> ⅞> ∙∙∙ 'Ι3n> ≡ neces
sarily homogeneous of the second dimension with respect to the latter set of variables, and must 
therefore satisfy the condition

we shall perceive that its total variation.

(26.)

(27.)

may be put imder the form

(28.)
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8] IL GENERAL METHOD IN DYNAMICS 117

and therefore that the total variation of the new partial differential equation (T.) may be thus 
written, (V.)
in which, if we observe that v' quantities of the form η are the only ones

which vary with the time, we shall see that

(29.)

because the identical equation δ<ZF = d3V gives, when developed.

(30.)

Decomposing, therefore, the expression (V.), for the variation of half the living force, into as 
many separate equations as it contains independent variations, we obtain, not only the equation(K.)
which had already presented itself, and the group

(W.)

which might have been at once obtained by differentiation from the final integrals (S.), but also 
a group of 3n other equations of the form (X.)
which give, by the intermediate integrals (R.),

that is, more fully,
(Y.)
(Z.)

These last transformations of the differential equations of motion of the second order, of an 
attracting or repelling system, coincide in all respects (a shght difference of notation excepted,) 
with the elegant canonical forms in the Mecanique Analytique of Lagrange*;  but it seemed* [J∕ec. Anal. 3rd ed. Tome i, pp. 290-292.]
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worth while to deduce them here anew, from the properties of our characteristic function. And 
if we were to suppose (as it has often been thought convenient and even necessary to do,) that 
the n points of a system are not entirely free, nor subject only to their own mutual attractions 
or repulsions, but connected by any geometrical conditions, and influenced by any foreign 
agencies, consistent with the law of conservation of living force; so that the number of indepen
dent marks of position should be now less numerous, and the force-function U less simple than 
before; it might still be proved, by a reasoning very similar to the foregoing, that on these sup
positions also (which, however, the dynamical spirit is tending more and more to exclude,*)  
the accumulated living force or action V of the system is a characteristic motion-function of the 
kind already explained; having the same law and formula of variation, which are susceptible of 
the same transformations; obliged to satisfy in the same way a final and an initial relation be
tween its partial differential coefficients of the first order; conducting, by the variation of one of 
these two relations, to the same canonical forms assigned by Lagrange for the differential 
equations of motion; and furnishing, on the same principles as before, their intermediate and 
their final integrals. To those imaginable cases, indeed, in which the law of living force no longer 
holds, our method also would not apply; but it appears to be the growing conviction of the 
persons who have meditated the most profoundly on the mathematical dynamics of the 
universe, that these are cases suggested by insufficient views of the mutual actions of body.9. It results from the foregoing remarks, that in order to apply our method of the cha
racteristic function to any problem of dynamics respecting any moving system, the known law 
of living force is to be combined with our law of varying action; and that the general expression 
of this latter law is to be obtained in the following manner. We are first to express the quantity T, 
namely, the half of the hving force of the system, as a function (which will always be homo
geneous of the second dimension,) of the differential coefficients or rates of increase η[, , &c.,
of any rectangular coordinates, or other marks of position of the system: we are next to take the 
variation of this homogeneous function with respect to those rates of increase, and to change 
the variations of those rates 3η[, δ7j2 > &c·» to the variations , δ172, &c., of the marks of position 
themselves; and then to subtract the initial from the final value of the result, and to equate the 
remainder to 8V-t3H.↑ A slight consideration will show that this general rule or process for 
obtaining the variation of the characteristic function V is apphcable even when the marks of 
position 172 > &θ· are not all independent of each other; which will happen when they have 
been made, from any motive of convenience, more numerous than the rectangular coordinates 
of the several points of the system. For if we suppose that the 3w rectangular coordinates 

’ 2/1 > > ∙ ∙ ∙ , y∏ > ≈≡n liave been expressed by any transformation as functions of 3n + k other
marks of position, 772» ∙∙∙ Ι3n+⅛> which must therefore be connected by k equations of 
condition,

(31.)

* [See Reference to Boscovich, p. 104.]
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giving k of the new marks of position as functions of the remaining 3n,

(32.)

(4.)the expression
will become, by the introduction of these new variables, a homogeneous function of the second 
dimension of the 3w + k rates of increase η[, t ∙ ∙ ∙ ^^!in+k involving also in general , ,... ηsn+k >
and having a variation which may be thus expressed:

or in this other way,

(33.)

(34.)

on account of the relations (32.), which give, when differentiated with respect to the time,

(35.)

and therefore, attending only to the variations of quantities of the form η',

(36.)

Comparing the two expressions (33.) and (34.), we find by (36.) the relations

(37.)
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which give, by (32.),

we may therefore put the expression (Q.) under the following more general form,

(δτj being formed by treating all the 3n + k quantities η[, η'2, ... r∣3n+k θ-s 

independent; which was the extension above announced, of the rule for forming the variation 
of the characteristic function V.

We cannot, however, immediately decompose this new expression (A^.) for δF, as we did 
the expression (Q.), by treating all the variations δ17, δe as independent; but we may decompose 
it so, if we previously combine it with the final equations of condition (31.), and with the 
analogous initial equations of condition, namely.

(39.)

which we may do by adding the variations of the connecting functions φγ, ... , Φ^, ... Φ⅛,
multiplied respectively by factors to be determined, , ... λ⅛, A^, ... A⅛. In this manner the 
law of varying action takes this new form. (Bb)
and decomposes itself into 6n + 2k + 1 separate expressions, for the partial differential coeffi
cients of the first order of the characteristic function F, namely, into the following,

and

(Cb)

(Db)
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besides the old equation (E.). The analogous introduction of multipliers in the canonical forms 
of Lagrange, for the differential equations of motion of the second order, by which a sum such as 

g J δC7
Σ. is added to y- in the second member of the formula (Y.), is also easily justified on the 

principles of the present essay.

Separation of the relative motion of a system from the motion of its centre of gravity ; 
characteristic function for such relative motion, and law of its variation.

10. As an example of the foregoing transformations, and at the same time as an important 
application, we shall now introduce relative coordinates, τ, ,y,, 2,, referred to an internal origin 
rr,,, y„, ; that is, we shall put

and in like manner
(40.)

(41.)

together with the differentiated expressions

and
(42.)

(43.)

Introducing the expressions (42.) for the rectangular components of velocity, we find that the 
value given by (4.) for the living force 2T decomposes itself into the three following parts.

if then we establish, as we may, the three equations of condition,

(44.)

which give by (40.),
(45.)

(46.)

so that , y„, z,, are now the coordinates of the point which is called the centre of gravity of 
the system, we may reduce the function T to the form

in which

and

(47.)

(48.)

(49.)

By this known decomposition, the whole hving force 2T of the system is resolved into the 
two parts 2T, and 2T„, of which the former, 2T,, may be called the relative living force, being 
that which results solely from the relative velocities of the points of the system, in their motions 
about their common centre of gravity a;,,, y„, z,,; while the latter part, 2T„, results only from the 
absolute motion of that centre of gravity in space, and is the same as if aU the masses of the 
system were united in that common centre. At the same time, the law of hving force,

HMPII l6
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T=U + H, (6.), resolves itself by the law of motion of the centre of gravity into the two 
following separate equations.

and
(50.)

(51.)
and being two new constants independent of the time <, and such that their sum

And we may in like manner decompose the action, or accumulated living force F, which is 
equal to the definite integral f 2Tdi, into the two following analogous parts,

J 0

determined by the two equations.
(El.)

(F^.)

(Gi.)

(53.)

and

The last equation gives by (51.),

a result which, by the law of motion of the centre of gravity, may be thus expressed,*

, , c„ being the initial coordinates of the centre of gravity, so that

(Hl.)

(54.)

And for the variation δF of the whole function F, the rule of the last number gives

(P.)
while the variation of the part F^, determined by the equation (Hi.), is easily shown to be 
equivalent to the part

the variation of the other part F, may therefore be thus expressed.

and it resolves itself into the following separate expressions, in which the part F, is considered* [If V is the velocity of the centre of gravity,
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as a function of the Qn + 1 quantities , , , which, however, only 6n — 5
are reaUy independent:
first group.

(Ml.)

(Ni.)
second group.

and finally.

With respect to the six multipliers , λg, λg, A^, Ag, which were introduced by the
3 final equations of condition (45.), and by the 3 analogous initial equations of condition, 

∑.mα, = 0, Σ.ίηά, =0, ∑.wc, = 0; (55.)
we have, by differentiating these conditions.

and

and therefore

and

(56.)

(57.)

(58.)

(59.)

11. As an example of the determination of these multipliers, we may suppose that the part 
' F,, of the whole action F, has been expressed, before differentiation, as a function of ∕f,, and 

of these other 6n — 6 independent quantities

and

(60.)

(61.)

i6-2
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124 II. GENERAL METHOD IN DYNAMICS [11

that is, of the differences only of the centrobaric coordinates*;  or, in other words, as a function of 
the coordinates (initial and final) of n — 1 points of the system, referred to the point, as an 
internal or moveable origin: because the centrobaric coordinates a,may
themselves, by the equations of condition, be expressed as functions of these, namely,

and in like manner.

(62.)

(63.)

in which we are to observe, that the six quantities , , , ‰ > βn > 7n must be considered as
separately vanishing. When V, has been thus expressed as a function of the centrobaric co
ordinates, involving their differences only, it will evidently satisfy the six partial differential 
equations,!

(Pb)

after this preparation, therefore, of the function , the six multipliers determined by (58.) and 
(59.) will vanish, so that we shall have

(64.)
and the groups (M^.) and (N^.) will reduce themselves to the two following:

and

(Q^∙)

(R^.)

analogous in all respects to the groups (C.) and (D.). We find, therefore, for the relative motion 
of a system about its own centre of gravity, equations of the same form as those which we had 
obtained before for the absolute motion of the same system of points in space. And we see that 
in investigating such relative motion only, it is useful to confine ourselves to the part V, of our* [The term centrotiaric v∣9s, first introduced by Mobius.]t If y, is expressed as a function of the ξ, η, ζ, α, y,
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whole characteristic function, that is, to the relative, action oi the system, or accumulated living 
force of the motion about the centre of gravity; and to consider this part as the chara,cteristic 
function of such relative motion, in a sense analogous to that which has been already explained.

This relative action, or part F,, may, however, be otherwise expressed, and even in an 
infinite variety of ways, on account of the six equations of condition which connect the 6w 
centrobaric coordinates; and every different preparation of its form will give a different set of 
values for the six multipliers , Ag, λg, A^, Ag, Ag. For example, we might eliminate, by a 
previous preparation, the six centrobaric coordinates of the point from the expression of F,, 
so as to make this expression involve only the centrobaric coordinates of the other n—1 points 
of the system, and then we should have (Sb)

t IV r IV ! IV r !v ∣ m r tu

and therefore, by the six last equations of the groups (M^.) and (N^.), the multipliers would 
take the values

and would reduce, by (60.) and (61.), the preceding 6n — 6 equations of the same groups (M^.) 
and (N^.), to the forms

(Tb)

(Ub)
and

12. We might also express the relative action F,, not as a function of the centrobaric, but 
of some other internal coordinates, or marks of relative position. We might, for instance, express 
it and its variation as functions of the 6w — 6 independent internal coordinates ξ, η, ζ, α, )8, γ 
already mentioned, and of their variations, defining these without any reference to the centre 
of gravity, by the equations

(66.)

For all such transformations of δF^ it is easy to establish a rule or law, which may be called the 
law of varying relative action (exactly analogous to the rule (B^.)), namely, the following:(Vb)
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w hi c h  i m p h es t h at w e  ar e  t o e x pr ess  t h e h alf  T  of  t h e r el ati v e li vi n g f or c e of  t h e s yst e m as  a  

f u n cti o n of  t h e r at es of  i n cr e as e η'  of  a n y  m ar ks  of  r el ati v e p ositi o n ; a n d  aft er  t a ki n g its v ari ati o n  

wit h  r es p e ct t o t h es e r at es, t o c h a n g e  t h eir v ari ati o ns  t o t h e v ari ati o ns  of  t h e m ar ks  of  p ositi o n  

t h e ms el v es; t h e n t o s u btr a ct t h e i niti al fr o m t h e fi n al v al u e  of  t h e r es ult, a n d t o a d d t h e 

v ari ati o ns  of  t h e fi n al a n d  i niti al f u n cti o ns w hi c h  e nt er  i nt o t h e e q u ati o ns  of  c o n diti o n,

if a n y,  of  t h e f or m =  0,  Φ,  =  0,  ( c o n n e cti n g t h e fi n al a n d  i niti al m ar ks  of  r el ati v e p ositi o n,)  

m ulti pli e d  r es p e cti v el y b y  u n d et er mi n e d  f a ct ors λ, , A, ; a n d  l astl y, t o e q u at e  t h e w h ol e  r es ult 

t o δ F,  —  Z δ H, , b ei n g  t h e q u a ntit y  i n d e p e n d e nt of  t h e ti m e i n t h e e q u ati o n  ( 5 0,) of  r el ati v e 

li vi n g f or c e, a n d  F,  b ei n g  t h e r el ati v e a cti o n,  of  w hi c h  w e  d esir e d  t o e x pr ess  t h e v ari ati o n.  It is 

n ot  n e c ess ar y  t o d w ell  h er e  o n  t h e d e m o nstr ati o n  of  t his n e w  r ul e ( V .̂), w hi c h  m a y  e asil y  b e  

d e d u c e d  fr o m t h e pri n ci pl es  alr e a d y  l ai d d o w n;  or  b y  t h e c al c ul us  of  v ari ati o ns  fr o m t h e l a w of  

r el ati v e h vi n g  f or c e, c o m bi n e d  wit h  t h e diff er e nti al  e q u ati o ns  of  t h e s e c o n d or d er  of  r el ati v e 

m oti o n.

B ut  t o gi v e  a n  e x a m pl e  of  its a p p h c ati o n,  l et us  r es u m e t h e pr o bl e m  alr e a d y  m e nti o n e d,  

n a m el y  t o e x pr ess  δ F,  b y  m e a ns  of  t h e 6 w  —  5  i n d e p e n d e nt v ari ati o ns  δf , δ η ^ , δ ζ ^ , δ α ^ , δ) 3 < , δ y ^ , 

δ H, . F or  t his p ur p os e  w e  s h all  e m pl o y  a  k n o w n  tr a nsf or m ati o n of  t h e r el ati v e h vi n g  f or c e 2 T, , 

m ulti p h e d  b y  t h e s u m of  t h e m ass es  of  t h e s yst e m, n a m el y  t h e f o U o wi n g: 

t h e si g n of  s u m m ati o n Σ  e xt e n di n g,  i n t h e s e c o n d m e m b er,  t o all  t h e c o m bi n ati o ns  of  p oi nts  

t w o b y  t w o, w hi c h  c a n  b e  f or m e d wit h o ut  r e p etiti o n. T his  tr a nsf or m ati o n gi v es,  b y  ( 6 6,),

( 6 8.)
. ---- ’ ≡ > K Z ∙ ∖∙∕ ⅛  ∕ Z C Z ∙ ∖  J  ' f

t h e si g n of  s u m m ati o n Σ,  e xt e n di n g o nl y  t o t h e first n — 1 p oi nts  of  t h e s yst e m. A p pl yi n g,  

t h er ef or e, o ur  g e n er al  r ul e or  l a w of  v ar yi n g  r el ati v e a cti o n, a n d  o bs er vi n g  t h at t h e 6 n  — 6  

i nt er n al c o or di n at es η,  ζ, α,  β,  γ  ar e  i n d e p e n d e nt, w e  fi n d t h e f o U o wi n g n e w  e x pr essi o n:

( Wi.)

w hi c h  gi v es,  b esi d es  t h e e q u ati o n  ( 0 .̂), t h e f o U o wi n g gr o u ps:

( X L)

w w w.r ci n. or g. pl
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and

(Yi.)
results which may be thus summed up:

(Zi.)
and might have been otherwise deduced by our rule, from this other known transformation 
of

(69.)

And to obtain, with any set of internal or relative marks of position, the two partial dififerential 
equations which the characteristic function F, of relative motion must satisfy, and which offer 
(as we shall find) the chief means of discovering its form, namely, the equations analogous to 
those marked (F.) and (G.), we have only to eliminate the rates of increase of the marks of 
position of the system, which determine the final and initial components of the relative velocities 
of its points, by the law of varying relative action, from the final and initial expressions of the 
law of relative hving force; namely, from the following equations:

and
(50.)

(70.)

The law of areas, or the property respecting rotation which was expressed by the partial 
differential equations (P.), will also always admit of being expressed in relative coordinates, 
and will assist in discovering the form of the characteristic function F,; by showing that this 
function involves only such internal coordinates (in number 6n — 9) as do not alter by any com
mon rotation of all points final and initial, round the centre of gravity, or round any other 
internal origin; that origin being treated as fixed, and the quantity as constant, in deter
mining the effects of this rotation. The general problem of dynamics, respecting the motions of 
a free system of n points attracting or repelling one another, is therefore reduced, in the last 
analysis, by the method of the present essay, to the research and differentiation of a function 
F,, depending on 6n — 9 internal or relative coordinates,*  and on the quantity , and satis
fying a pair of partial differential equations of the first order and second degree; in integrating 
which equations, we are to observe, that at the assumed origin of the motion, namely at the* [The relative configuration of the 2(n-1) initial and final positions of the planets is defined by 6n —12 mutual distances and in addition we have the three coordinates of any one of them relative to the Sun.]
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128 Π. GENERAL METHOD IN DYNAMICS [12, 13

moment when t = 0, the final or variable coordinates are equal to their initial values, and the 
δFpartial differential coefficient vanishes; and, that at a moment infinitely little distant, the 

differential alterations of the coordinates have ratios connected with the other partial differential 
coefficients of the characteristic function F,, by the law of varying relative action. It may be 
here observed, that, although the consideration of the point, called usually the centre of gravity, 
is very simply suggested by the process of the tenth number, yet this internal centre is even 
more simply indicated by our early corollaries from the law of varying action; which show that 
the components of relative final velocities, in any system of attracting or repelhng points, may 

1 δF 1 δF 1 δFbe expressed by the differences of quantities of the form — χ-, —er-, —s—: and therefore that m δx m oy m ∂z
in calculating these relative velocities, it is advantageous to introduce the final sums ∑mx, ∑my, 
∑mz, and, for an analogous reason, the initial sums ∑ma, ∑mb, ∑mc, among the marks of the 
extreme positions of the system, in the expression of the characteristic function F; because, in 
differentiating that expression for the calculation of relative velocities, those sums may be 
treated as constant.

On Systems of two Points, in general; Characteristic Function of the motion of any 
Binary System.

13. To illustrate the foregoing principles, which extend to any free system of points, how
ever numerous, attracting or repelling one another, let us now consider, in particular, a system 
of two such points. For such a system, the known force-function U becomes, by (2.),

U = mιmJ{r), (71.)
r being the mutual distance

between the two points Wj, Wg, and∕(r) being a function of this distance such that its derivative 
or differential coefficient/' (r) expresses the law of their repulsion or attraction, according as it 
is positive or negative. The known differential equations of motion, of the second order, are 
now, bv (1.). comprised in the folio wine formula:

they are therefore, separately.
(73.)

(74.)

The problem of integrating these equations consists in proposing to assign, by their means, 
six relations between the time t, the masses the six varying coordinates Xj, y^,

> y2> ^2i θ-nd their initial values and initial rates of increase a^, b^, , «g, ^2> ^2> > > ^'ι>
®2 > ^2 > ^'2 ∙ If we knew these six final integrals, and combined them with the initial form of the 
law of hving force, or of the known intermediate integral

(75.)
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that is, with the following formula,

(76.)

in which rθ is the initial distance

(77.)
and H is a constant quantity, introduced by integration; we could, by the combination of 
these seven relations, determine the time t, and the six initial components of velocity , , ,
«2, ⅛2»5 as functions of the twelve final and initial coordinates , , , ajg, , 2≈2, «1, , ,
a^, b2, c^, and of the quantity H, (involving also the masses:) we could therefore determine 
whatever else depends on the manner and time of motion of this system of two points, as a 
function of the same extreme coordinates and of the same quantity H. In particular, we could 
determine the action, or accumulated living force of the system, namely.

as a function of those thirteen quantities , , Zj, > 2/2 j ¾ j > ^2 > > ∙ might
then calculate the variation of this function.

But the essence of our method consists vα forming previously the expression of this variation, by 
our law of varying action, namely.

(C≡.)

and in considering V as a characteristic function of the motion, from the form of which may be 
deduced aU the intermediate and all the final integrals of the known differential equations, by 
resolving the expression (C≡.) into the following separate groups, (included in (C.) and (D.),)

and

HMPII

(D≡.)

(E≡.)

17
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besides this other equation, which had occurred before,

(E.)

By this new method, the difficulty of integrating the six known equations of motion of the 
second order (74.) is reduced to the search and differentiation of a single function F; and to 
find the form of this function, we are to employ the following pair of partial differential equations 
of the first order:

combined with some simple considerations. And it easily results from the principles already laid 
down, that the integral of this pair of equations, adapted to the present question, is

in which , y„, z,,, α,,, , denote the coordinates, final and initial, of the centre of gravity
of the system.

and ⅛ is the angle between the final and initial distances τ,ζθ: we have also put for abridgement

(79.)

the upper or the lower sign to be used, according as the distance r is increasing or decreasing; 
and have introduced three auxiliary quantities A, H H„, to be determined by this condition,*

combined with the two following.

(P.)

(K≡.)

which auxiliary quantities, although in one view they are functions of the twelve extreme 
coordinates, are yet to be treated as constant in calculating the three definite integrals, or 
limits of sums of numerous small elements.

* [Of. Appendix, Note 2, pp. 613-621.]
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The form (H≡.), for the characteristic function of a binary system, may be regarded as a 
central or radical relation, which includes the whole theory of the motion of such a system; so 
that all the details of this motion may be deduced from it by the application of our general 
method. But because the theory of binary systems has been brought to great perfection 
already, by the labours of former writers, it may suffice to give briefly here a few instances of 
such deduction.

14. The form (H≡.), for the characteristic function of a binary system, involves explicitly, 
when p is changed to its value (79.), the twelve quantities x„, y„, z,,, a„, b,,, c,,, r, Zq , θ∙, h, 
(besides the masses m^, m^ which are always considered as given;) its variation may therefore 
be thus expressed:

(L≡.)

In this expression, if we put for abridgement

we shall have

(80.)

(M2.)

and if we put

(81.)

the sign of the radical being determined by the same rule as that of p, we shall have

besides, by the equations of condition (i2.), (K2.), we have

and

(N2.)

(02.)

(P2.)

The expression (L2.) may therefore be thus transformed:

17-2
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and may be resolved by our general method into twelve separate expressions for the final and 
initial components of velocities, namely,

and

(R2.)

(S≡.)

(T≡.)

besides the following expression for the time of motion of the system:

which gives by (K≡.), and by (79.), (80.),

The six equations (R^.) give the six intermediate integrals, and the six equations (S^.) give 
the six final integrals of the six known differential equations of motion (74.) for any binary 
system, if we eliminate or determine the three auxiliary quantities Ti, H^, H^, by the three 
conditions (I≡.) (T^.) (U≡.). Thus, if we observe that the distances r, rθ, and the included angle ∙θ-, 
depend only on relative coordinates, which may be thus denoted.

(82.)
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we obtain by easy combinations the three following intermediate integrals for the centre of 
gravity of the system:

(83.)

and the three following final integrals,

(84.)

expressing the well-known law of the rectilinear and uniform motion of that centre. We obtain 
also the three following intermediate integrals for the relative motion of one point of the 
system about the other:

(85.)

(86.)

and the three following final integrals,

in which the auxiliary quantities h, are to be determined by (I≡.), (T≡.), and in which the 
dependence of r, rθ, θ-, on η, ζ, α, β, y, is expressed by the following equations:

(87.)

If then we put, for abridgement.

(88.)

we shall have these three intermediate integrals.

(89.)

(90.)

and these three final integrals.

of the equations of relative .motion. These integrals give.

and

(91.)

(92.)
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they contain therefore the known law of equable description of areas, and the law of a plane 
relative orbit. If we take for simplicity this plane for the plane ξη, the quantities ζ, ζ', γ, γ' will 
vanish; and we may put,

and

(93.)

(94.)

the angles θ, Θq being counted from some fixed line in the plane, and being such that their 
difference

These values give

and therefore, by (88.) and (91.),

(95.)

(96.)

(97.)
the quantity ∣A is therefore the constant areal velocity in the relative motion of the system; a 
result which is easily seen to be independent of the directions of the three rectangular coordinates. 
The same values. (93.), (94.), give

(98.)

and therefore, by the intermediate and final integrals, (89.), (90.),

results which evidently agree with the condition (T≡.), and which give by (79.) and (81.), for all 
directions of coordinates.

the other auxihary quantity is therefore also a constant, independent of the time, and enters 
as such into the constant part in the expression for + j the square of the relative velocity. 

The equation of condition (P.), connecting these two constants ⅛∙, , with the extreme lengths
of the radius vector r, and with the angle θ described by this radius in revolving from its initial 
to its final direction, is the equation of the plane relative orbit; and the other equation of 
condition (T≡.), connecting the same two constants with the same extreme distances and with 
the time, gives the law of the velocity of mutual approach or recess.

We may remark that the part F, of the whole characteristic function V, which represents 
the relative action and determines the relative motion in the system, namely.

may be put, by (I≡.), under the form

(V≡.)
(W2.)
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or finally, by (79.),

(X≡.)

the condition il^.) may also itself be transformed, by (79.), as follows:

(Y≡.)

results which all admit of easy yerifications. The partial differential equations connected with 
the law of relatiye liying force, which the characteristic function V, of relatiye motion must 
satisfy, may be put under the following forms:

(Z2.)

and if the first of the equations of this pair haye its yariation taken with respect to r and θ∙, 
attention being paid to the dynamical meanings of the coefficients of the characteristic function, 
it will conduct (as in former instances) to the known differential equations of motion of the 
second order.

On the undisturbed Motion of a Planet or Comet about the Sun: Dependence of the 
Characteristic Function of such Motion^ on the chord and the sum of the Radii.15. To particularize stiff further, let

(101.)

that is, let us consider a binary system, such as a planet or comet and the sun, with the New
tonian law of attraction; and let us put, for abridgement.

The characteristic function F, of relatiye motion may now be expressed as follows: 

in which p is to be considered as a function of the extreme radii yectores r, rθ, and of their 
included angle θ∙, inyolying also the quantity a, or the connected quantity , and determined 
by the condition

Cτ j_ z7∕*∙

that IS, by the de∏yatιye ot the lormula (A^.), taken with respect to p: the upper sign being 
taken in each expression when the distance r is increasing, and the lower sign when that distance 
is diminishing, and the quantity p being treated as constant in calculating the two definite 
integrals. It results from the foregoing remarks, that this quantity p is constant also in the 
sense of being independent of the time, so as not to vary in the course of the motion; and that
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the condition (B≡.), connecting this constant with r, rθ, θ, a, is the equation of the plane relative 
orbit; which is therefore (as it has long been known to be) an ellipse, hyperbola, or parabola, 
according as the constant a is positive, negative, or zero, the origin of r being always a focus of 
the curve, and p being the semiparameter. It results also, that the time of motion may be thus

and therefore thus:

(C≡.)

(D3.)

which latter is a known expression. Confining ourselves at present to the case a > 0, and intro
ducing the known auxiliary quantities called excentricity and excentric anomaly, namely.

and

(103.)

(104.)

(105.)

V being considered as continually increasing with the time; and therefore, as is well known,

(106.)

(107.)

and

we find that this expression for the characteristic function of relative motion.

(E≡.)

(F3.)

deduced from (A≡.) and (R3.), may be transformed as follows:

in which the excentricity e, and the final and initial excentric anomalies υ, Vq , are to be con
sidered as functions of the final and initial radii r, rθ, and of the included angle θ∙, determined 
by the equations (106.). The expression (P3.) may be thus written:

(G3.)
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if we put, for abridgement,

(108.)

for the complete determination of the characteristic function of the present relative motion, it 
remains therefore to determine the two variables υ, and e,, as functions of r, rθ, θ∙, or of some other 
set of quantities which mark the shape and size of the plane triangle bounded by the final and 
initial elliptic radii vectores and by the elliptic chord.

For this purpose it is convenient to introduce this elliptic chord itself, which we shall call 
± τ, so that

because this chord may be expressed as a function of the two variables υ,, e,, (involving also 
the mean distance a,) as follows. The value (106.) for the angle θ, that is, by (95.), for Θ-Θq, gives

w being a new constant independent of the time, namely, one of the values of the polar angle θ, 
which correspond to the minimum of radius vector; and therefore, by (106.),

expressions which give the following value for the square of the elhptic chord:

(111·)

(112.)

— ∙irCV —O, /

we may also consider τ as having the same sign with sin υ,, if we consider it as alternately 
positive and negative, in the successive elliptic periods or revolutions, beginning with the 
initial position.

Besides, if we denote by σ the sum of the two elliptic radii vectores, final and initial, so that

we shall have, with our present abridgements.
(113.)

(114.)
the variables υ,, e, are therefore functions of σ, τ, a, and consequently the characteristic function 
F, is itself a function of those three quantities. We may therefore put

w being a function of σ, τ, a, of which the form is to be determined by eliminating υ,, e, between 
the three equations.

HMPII

(I≡.)

ι8
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and we may consider this new function w as itself a characteristic function of elliptic motion; 
the law of its variation being expressed as follows, in the notation of the present essay* :

(K≡.)

In this expression, f, η, ζ are the relative coordinates of the point , at the time t, referred to the 
other attracting point as an origin, and to any three rectangular axes; ξ', η, ζ' are their rates 
of increase, or the three rectangular components of final relative velocity; α, β, γ, α', β', γ' are the 
initial values, or values at the time zero, of these relative coordinates and components of relative 
velocity; a is a quantity independent of the time, namely, the mean distance of the two points 
Wj, and μ is the sum of their masses. And all the properties of the undisturbed elliptic 
motion of a planet or comet about the sun may be deduced in a new way, from the simphfied 
characteristic function w, by comparing its variation (K≡.) with the following other form.

(L3.)

in which we are to observe that

(M≡.)

By this comparison we are brought back to the general integral equations of the relative 
motion of a binary system, (89.) and (90.); but we have now the following particular values for 
the coefficients Λ, B, C:

and with respect to the three partial differential coefficients 

relation between them:

we have the following

(03.)

the function w being homogeneous of the dimension ∣ with respect to the three quantities 
a, σ, t; we have also, by (P.),

and therefore

{P3.)

(Q≡.)

from which may be deduced the following remarkable expressions:

These expressions will be found to be important in the application of the present method to 
the theory of eUiptic motion.

I Λm So I
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16. We shall not enter, on this occasion, into any details of such application; but we may 
remark, that the circumstance of the characteristic function involving only the elliptic chord 
and the sum of the extreme radii, (besides the mean distance and the sum of the masses,) 
affords, by our general method, a new proof of the well-known theorem that the elliptic time 
also depends on the same chord and sum of radii; and gives a new expression for the law of this 
denendence, namelv,*

We may remark also, that the same form of the characteristic function of elliptic motion con
ducts, by our general method, to the following curious, but not novel property, of the elhpse, 
that if any two tangents be drawn to such a curve, from any common point outside, these 
tangents subtend equal angles at one focus; they subtend also equal angles at the other. 
Reciprocally, if any plane curve possess this property, when referred to a fixed point in its own 
plane, which may be taken as the origin of polar coordinates r, θ, the curve must satisfy the 
foilowing equation in mixed differences:

which may be brought to the following form.

(115.)

(116.)

(117.)

and therefore gives, by integration,

the curve is, consequently, a conic section, and the fixed point is one of its foci.
The properties of parabolic are included as limiting cases in those of elliptic motion, and 

may be deduced from them by making

and therefore the characteristic function w and the time i, in parabolic as well as in elliptic 
motion, are functions of the chord and of the sum of the radii. By thus making a infinite in the 
foregoing expressions, we find, for parabolic motion, the partial differential equations

and in fact the parabolic form of the simplified characteristic function w may easily be shown 
to be

τ being, as before, the chord, and σ the sum of the radii; while the analogous limit of the ex
pression (S≡.), for the time, is

which latter is a known expression.!* [Equation (S®.) is easily reducible to the well-known form of Lambert’s theorem. Cf. Whittaker, Analytical 
Dynamics (1927), p. 92.]I [This special case of Lambert’s theorem was given by Euler in 1742. Euler, Miscdl. Berolin. Tome vπ.]

i8-2
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The formulae (Kθ.) and (L≡.), to the comparison of which we have reduced the study of 

elhptic motion, extend to hyperbolic motion also; and in any binary system, with Newton’s 
law of attraction, the simplified characteristic function w may be expressed by the definite 
integral*

(W≡.)

this function w being stiU connected with the relative action F, by the equation while
the time Z, which may always be deduced from this function, by the law of varying action, is 
represented by this other connected integral,

(X≡∙)

provided that, within the extent of these integrations, the radical does not vanish nor become 
infinite. When this condition is not satisfied, we may still express the simplified characteristic 
function w, and the time t, by the foUowing analogous integrals:

and

in which we have put for abridgement

(Y≡.)
(Zθ.)

(119.)

and in which it is easy to determine the signs of the radicals. But to treat fully of these various 
transformations would carry us too far at present, for it is time to consider the properties of 
systems with more points than two. »

On Systems of three Points, in general; and on their Characteristic Functions.17. For any system of three points, the known differential equations of motion of the 2nd 
order are included in the foUowing formula:

the known force-function U having the form

(120.)

(121.)
in which ∕0.2)j ∕O.≡), y(2,3) functions respectively of the three foUowing mutual distances of 
the points of the system:

(122.)

* [Cf. p. 48.]
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the known differential equations of motion are therefore, separately, for the point

(123.)

with six other analogous equations for the points and m^∙, x'^, &c., denoting the component 
accelerations of the three points , , 'τn^, or the second differential coefficients of their co
ordinates, taken with respect to the time. To integrate these equations is to assign, by their 
means, nine relations between the time t, the three masses Wj, W3, the nine varying co
ordinates x^, y^, z^, X2, y^, 2≈2’ ’ 2/3J 2^3 > θΙid their nine initial values and nine initial rates of
increase, which may be thus denoted, a^, c^, a^, b^, c^, b^, c^, «ί, c^, a'^, b'^, C2,
b'.^, c'^. The known intermediate integral containing the law of living force, namely.

gives the following initial relation:

(124.)

(125.)

in which sere composed of the initial coordinates, in the same manner as
yd, 2)j yd. 3)j β2,3) composed of the final coordinates. If then we knew the nine final integrals of 
the equations of motion of this ternary system, and combined them with the initial form (125.) 
of the law of living force, we should have ten relations to determine the ten quantities t, a[,b[,c[, 
a'2,b2,c'2,a'^,b'^,c'^, namely, the time and the nine initial components of the velocities of the three 
points, as functions of the nine final and nine initial coordinates, and of the quantity H, in
volving also the masses; we could therefore determine whatever else depends on the manner 
and time of motion of the system, from its initial to its final position, as a function of the same 
extreme coordinates, and of H. In particular, we could determine the action V, or the accumu
lated living force of the system, namely.

as a function of these nineteen quantities, x^, , Zj, X2, > ¾, ⅝, > ⅞, «i, δχ, , , b^, C2
b^, H', and might then calculate the variation of this function.

(B^.)

www.rcin.org.pl



142 II. GENERAL METHOD IN DYNAMICS [17
But the law of varying action gives, vreviouslv, the following expression for this variation:

(C*.)

and shows, therefore, that the research of all the intermediate and all the final integral equations, 
of motion of the system, may be reduced, reciprocally, to the search and differentiation of this 
one characteristic function V; because if we knew this one function, we should have the nine 
intermediate integrals of the known differential equations, under the forms

(D< )

and the nine final integrals under the forms

(E4.)

the auxiliary constant H being to be eliminated, and the time t introduced, by this other 
equation, which has often occurred in this essay,

The same law of varying action suggests also a method of investigating the form of this 
characteristic function V, not requiring the previous integration of the known equations of 
motion; namely, the integration of a pair of partial differential equations connected with the 
law of living force; which are

and

(F^.)

(G*.)
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And to diminish the difficulty of thus determining the function V, which depends on 18 co
ordinates, we may separate it, by principles already explained, into a part depending only 
on the motion of the centre of gravity of the system, and determined by the formula (H^.), 
and another part V,, depending only on the relative motions of the points of the system about 
this internal centre, and equal to the accumulated living force, connected with this relative 
motion only. In this manner the difficulty is reduced to determining the relative action V,; 
and if we introduce the relative coordinates

and

(126.)

(127.)

we easily find, by the principles of the tenth and following numbers, that the function V, may 
be considered as depending only on these relative coordinates, and on a quantity analogous 
tc H (besides the masses of the system); and that it must satisfy two partial differential equa
tions, analogous to (F^.) and (G^.), namely,

and

(H^.)

(D.)

the law of the variation of this function being, by (Z^.),

(K<.)

which resolves itself in the same manner as before into the six intermediate and six final 
integrals of relative motion, namely, into the following equations:

(L^.)
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and

(M<)

which must be combined with our old formula,

(01.)

18. The quantity H, in F,, and the analogous quantity H,, in , are indeed independent 
of the time, and do not vary in the course of the motion; but it is required by the spirit of our 
method, that in deducing the absolute action or original characteristic function F from the 
two parts F, and F„, we should consider these two parts and H,, of the original quantity H, 
as functions involving each the nine initial and nine final coordinates of the points of the 
ternary system; the forms of these two functions, of the eighteen coordinates and of H, being 
determined by the two conditions.

However, it results from these conditions, that in taking the variation of the whole original 
function F, of the first order, with respect to the eighteen coordinates, we may treat the two 
auxiliary quantities and as constant; and therefore that we have the following expressions 
for the partial differential coefficients of the first order of F, taken with respect to the coordinates 
parallel to rr,

(0^.)

together with analogous expressions for the partial differential coefficients of the same order, 
taken with respect to the other coordinates. Substituting these expressions in the equations of 
the form (0.), namely, in the following.

(P^.)
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we find that these equations become identical, because

(Q<.)

But substituting, in like manner, the expressions (O*.)  in the equations of the form (P.), of 
which the first is, for a ternary system.

(R^)

and observing that we have

(S^.)

along with two other analogous conditions, we find that the part F,, or the characteristic 
function of relative motion of the ternary system, must satisfy the three following conditions, 
involving its partial differential coefficients of the first order and in the first degree.

(T4.)

which show that this function can depend only on the shape and size of a pentagon, not generally 
plane, formed by the point considered as fixed, and by the initial and final positions of the 
other two points and for example, the pentagon, of which the corners are, in order,
Wg, (wij), (Wg), Wig, ; {m,γ} and (wg) denoting the initial positions of the points and Wg, referred 
to Wg as a fixed origin. The shape and size of this pentagon may be determined by the ten 
mutual distances of its five points, that is, by the five sides and five diagonals, which may be 
thus denoted:

(128.)

the values of , ... as functions of the twelve relative coordinates being

H MPII

(129.)

19
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These ten distances V¾, &c., are not, however, all independent, but are connected by one 
equation of condition, namely,*

(130.)

they may therefore be expressed as functions of nine independent quantities; for example, of 
four hues and five angles, rθ  rθ<D, r<2), 0<ι  on which they depend as follows:* [This is the relation connecting the distances of five points in space. It can be written more symmetrically in determinant form (cf. Salmon, Oeometry of three Dimensione (1914), p. 47).
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(131).

the two line-symbols denoting, for abridgement, the same two final radii vectores which
were before denoted by r<2>θ  and representing the initial values of these radii;
while 0(^2) are angles made by these four radii, with the line of intersection of the two
planes η∣ι> /2). a∏d t is the inclination of those two planes to each other. We may therefore
consider the characteristic function F, of relative motion, for any ternary system, as depending 
only on these latter lines and angles, along with the quantity H,.

The reasoning which it has been thought useful to develope here, for any system of three 
points, attracting or repelling one another according to any functions of their distances, was 
aUuded to, under a more general form, in the twelfth number of this essay; and shows, for 
example, that the characteristic function of relative motion in a system of four such points, 
depends on the shape and size of a heptagon, and therefore only on the mutual distances of its 
seven corners, which are in number θ — j 21, but are connected by six equations of condition,

leaving only fifteen independent. It is easy to extend these remarks to any multiple system.

. General method of improving an approximate expression for the Characteristic 
Function of motion of a System in any Problem of Dynamics.

19. The partial differential equation (F.), which the characteristic function F must satisfy, 
in every dynamical question, may receive some useful general transformations, by the separa
tion of this function F into any two parts (U∖)
For if we establish, for abridgement, the two following equations of definition.

analogous to the relation

(V<.)
(W^.)

I9-2
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which served to transform the law of living force into the partial differential equation (F.); we 
shall have, by {U^.),

and this expression may be further transformed by the help of the formula (C.), or by the law 
of varying action. For that law gives the following symbohc equation,

the symbols in both members being prefixed to any one function of the varying coordinates of 
a system, not expressly involving the time; it gives therefore by (U^.), (V^.),

In this manner we find the following general and rigorous transformation of the equation (F.),

T being here retained for the sake of symmetry and conciseness, instead of the equal expression 
U + H. And if we suppose, as we may, that the part , like the whole function V, is chosen so 
as to vanish with the time, then the other part will also have that property, and may be 
expressed by the definite integral.

More generally, if we employ the principles of the seventh number, and introduce any 3n 
marks ηι,ηz> ∙-∙ Vsn > θf tli© varying positions of the n points of any system, (whether they be the 
rectangular coordinates themselves, or any functions of them,) we shall have

and may estabhsh by analogy the two following equations of definition.

(C≡.)

(D5.)

the function F being always rational and integer, and homogeneous of the second dimension; 
and being therefore such that (besides other properties)

and

(E )

(F )

(G≡.)
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By the principles of the eighth number, we have also, (H≡.)
(P.)and since the meanings of 77], ... 173^ give evidently the symbolical equation.

we see that the equation (A≡.) still holds with the present more general marks of position of a 
moving system, and gives still the expression (B≡.), supposing only, as before, that the two parts 
of the whole characteristic function are chosen so as to vanish with the time.

It may not at first sight appear, that this rigorous transformation (B≡.), of the partial 
differential equation (F.), or of the analogous equation (T.) with coordinates not rectangular, 
is likely to assist much in discovering the form of the part of the characteristic function V, 
(the other part V-^ being supposed to have been previously assumed;) because it involves under 
the sign of integration, in the term , the partial differential coefficients of the sought part . 
But if we observe that these unknown coefficients enter only by their squares and products, we 
shall perceive that it offers a general method of improving an approximation in any problem 
of dynamics. For if the first part be an approximate value of the whole sought function V, 
the second part will be small, and the term will not only be also small, but will be in 
general of a higher order of smallness; we shall therefore in general improve an approximate 
value Fl of the characteristic function F, by adding to it the definite integral.

though this is not, like (B®.), a perfectly rigorous expression for the remaining part of the 
function. And in calculating this integral (K≡.), for the improvement of an approximation Fj, 
we may employ the following analogous approximations to the rigorous formulae (D.) and (E.),

and

(L^)
(M≡.)

or with any other marks of final and initial position, (instead of rectangular coordinates,) the 
following approximate forms of the rigorous equations (S.),

together with the formula (M®.); by which new formulae the manner of motion of the system 
is approximately though not rigorously expressed.
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It is easy to extend these remarks to problems of relative motion, and to show that in such 
problems we have the rigorous transformation

and the approximate expression

F,ι being any approximate value of the function V, of relative motion, and F,2 being the 
correction of this value; and Ι , being homogeneous functions of the second dimension, 
composed of the partial differential coefficients of these two parts F^∣, F,g, in the same way as 

is composed of the coefficients of the whole function F,. These general remarks may usefully 
be illustrated by a particular but extensive application.

Application of the foregoing method to the case of a Ternary or Multiple System^ 
with any laws of attraction or repulsion, and with one predominant mass.

20. The value (68.), for the relative living force 2T, of a system, reduces itself successively 
to the following parts, 2T)i  2T)2  ... when we suppose that all the n — 1 first masses
vanish, with the exception of each successively; namely, to the part

(132.)

(133.)

(134.)

when only do not vanish; the part

when all but m», , vanish; and so on, as far as the part

which remains, when only the two last masses are retained. The sum of these n—1 parts is not, 
in general, equal to the whole relative hving force 2T, of the system, with all the n masses 
retained; but it differs httle from that whole when the first n—1 masses are small in comparison 
with the last mass zn„; for the rigorous value of this difference is, by (68.), and by (132.) (133.) 
(134.),*

an expression which is smaU of the second order when the n—1 first masses are small of the first 
order. If, then, we denote by F∫^  ... the relative actions, or accumulated relative
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living forces, such as they would be in the n—1 binary systems, (m^ m,J, m^),,..
without the perturbations of the other small masses of the entire multiple system of n points; 
so that 

the perturbations being neglected in calculating these n—1 definite integrals; we shall have, as 
an approximate value for the whole relative action V, of the system, the sum of its values 
for these separate binary systems.

This sum, by our theory of binary systems, may be otherwise expressed as follows:

if we put for abridgement

(R≡.)

(S≡.)

(T≡.)

(U≡.)

In this expression.

... being abridged expressions for the distances ... γ(.n-ι,n')^ being
abridgements for the functions ... of these distances, of which the derivatives,
according as they are negative or positive, express the laws of attraction or repulsion: we have 
also introduced 2n — 2 auxiliary quantities ... to be eliminated or determined
by the following equations of condition:*

* [The equations (V®.), (X®.) are obtained by equating to zero the partial derivatives of V with respect to the arbitrary constants ⅛<*∖ For this method of obtaining the characteristic function see Appendix, Note 2, p. 613.]

(V^)
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and

or

along with this last condition,

(W≡.)
(X≡.)
(Υδ.)

and we have denoted by ... θ<"-W the angles which the final distances ... /«-D, 
of the first n—1 points from the last or nth point of the system, make respectively with 
the initial distances corresponding, namely, ... The variation of the sum is,
by (S’.), (Z≡.)
in which, by the equations of condition, we may treat all the auxiliary quantities ξp-  ... 
⅛(n-i), as constant, if H, be considered as given: so that the part of this variation δlζι, 
which depends on the variations of the final relative coordinates, may be put under the 
form.

(Aθ.)

By the equations (T®.), (U^.), or by the theory of binary systems, we have, rigorously.

(Bθ.)

and the rigorous law of relative living force for the whole multiple system is

in which
(50.)

(Cβ.)
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and*

. (Dθ).

We have therefore, by changing in this last expression the coefficients of the characteristic 
function to those of its first part F,ι, and by attending to the foregoing equations,!

and consequently

(Eθ.)

(Fθ.)

The general transformation of the foregoing number gives therefore, rigorously, for the 
remaining part F,2 characteristic function F, of relative motion of the multiple system,
the equation

(Gθ.)

* [From p. 126, we haveexpression (69) for T, gives Consequently the
! [T,ι is formed from (D®.) by replacing F∕ by V,ι. For the binary system composed of the points τn,∙, we have

From equations (X^.), p. 126,

20
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and, approximately, the expression

(Hβ.)

with which last expression we may combine the following approximate formul0e belonging in 
rigour to binary systems only.

and

We have also, rigorously, for binary systems, the following differential equations of motion 
of the second order.

which enable us to transform in various ways the approximate expression (H®.). Thus, in the 
case of a ternary system, with any laws of attraction or repulsion, but with one predominant- 
mass W3, the disturbing part of the characteristic function F, of relative motion, may be put 
under the form = (Ν’.)

in which the coefficient W may approximately be expressed as follows: 

or thus:*  

or finally.

In general, for a multiple system, we may put 

and approximately.

or

* [Integrating by parts.]
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Rigorous transition from the theory of Binary to that of Multiple Systems, by means 
of the disturbing part of the whole Characteristic Function; and approximate 
expressions for the perturbations.

21. The three equations (K®.) when the auxiliary constant is eliminated by the formula 
(L®.) are rigorously (by our theory) the three final integrals of the three known equations of the 
second order (Mθ.), for the relative motion of the binary system rnfj', and give, for such a 
system, the three varying relative coordinates , , as functions of their initial values
and initial rates of increase α^, βi, γi, β'^, γ'i, and of the time t. In like manner the three 
equations (I®.), when (∕^'-Es eliminated by (E®.), are rigorously the three intermediate integrals of 
the same known differential equations of motion of the same binary system. These integrals, 
however, cease to be rigorous when we introduce the perturbations of the relative motion of 
this partial or binary system arising from the attractions or repulsions of the other
points m⅛, of the whole proposed multiple system; but they may be corrected and rendered 
rigorous by employing the remaining part θf the whole characteristic function of relative 
motion F,, along with the principal part of approximate value

The equations (X^.), (Y^.) of the twelfth number give rigorously

and

(U®.)
(V®.)

and therefore, by (A®,),

and similarly

(W®.)

(X®.)

the sign of summation Σ„ referring only to the disturbing masses w⅛, to the exclusion of and 
and these equations (W®.), (X®.) are the rigorous formulae, corresponding to the approximate 

relations (I®.), (K®.). In like manner, the formula (L®.) for the time of motion in a binary system, 
which is only an approximation when the system is considered as multiple, may be rigorously

20-2
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corrected for perturbation by adding to it an analogous term deduced from the disturbing part
V,2 of the whole characteristic function; that is, by changing it to the following: (Y«.)
which gives, for this other coefficient of the corrected and rigorous expression (Z«.) '
F,2 being here supposed so chosen as to be rigorously the correction of . If therefore by the 
theory of binary systems, or by eliminating between the four equations (Kθ.) (Lθ.), we have 
deduced expressions for the three varying relative coordinates as functions of the
time t, and of the six initial quantities (x.^, β^, γ^, β'^, γ'i, which may be thus denoted.

(A’.)

we shall know that the following relations are rigorously and identically true,*

(B’.)
and consequently that these relations will still be rigorously true when we substitute for the 
four coefficients of their rigorous values (Xθ.) and (Zθ.) for the case of a multiple system. We 
may thus retain in rigour for any multiple system the final integrals (A’.) of the motion of a 
binary system, if only we add to the initial components , β'^, yi of relative velocity, and to 
the time t, the following perturbational terms:

and

(σ.)

(D’.)

* [Otherwise we would get one or more equations connecting the initial and final points. Of coxrrse when the rigorous values are substituted, ξf, η^, ζf denote the actual coordinates at the time Z.]
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I n t h e s a m e w a y,  if t h e t h e or y of  bi n ar y  s yst e ms, or  t h e eli mi n ati o n  of b et w e e n  t h e f o ur 

e q u ati o ns  (I ®.) ( L θ.), h as  gi v e n  t hr e e i nt er m e di at e i nt e gr als, of  t h e f or m

( E’.)

w e  c a n  c o n cl u d e  t h at t h e f oll o wi n g e q u ati o ns  ar e  ri g or o us a n d  i d e nti c al.

( F Λ)

∖  u / J

a n d  m ust  t h er ef or e b e  still  tr u e, w h e n,  i n p assi n g  t o a  m ulti pl e  s yst e m,  w e  c h a n g e  t h e c o effi ci e nts  

of  v∕∙' ^  t o t h eir ri g or o us v al u es  ( W θ.) ( Z θ,), T h e  t hr e e i nt er m e di at e i nt e gr als ( E' .̂) of  t h e m oti o n  

of  a  bi n ar y  s yst e m m a y  t h er ef or e b e  a d a pt e d  ri g or o usl y t o t h e c as e  of  a  m ulti pl e  s yst e m, b y  

first a d di n g  t o t h e ti m e t t h e p ert ur b ati o n al  t er m ( D’.), a n d  aft er w ar ds  a d di n g  t o t h e r es ulti n g 

v al u es  of  t h e fi n al c o m p o n e nts  of  r el ati v e v el o cit y  t h e t er ms

( G .̂)

2 2. T o  d eri v e  n o w,  fr o m t h es e ri g or o us r es ults, s o m e us ef ul  a p pr o xi m at e  e x pr essi o ns,  w e  

s h all n e gl e ct,  i n t h e p ert ur b ati o ns,  t h e t er ms w hi c h  ar e  of  t h e s e c o n d  or d er,  wit h  r es p e ct t o t h e 

s m all m ass es  of  t h e s yst e m, a n d  wit h  r es p e ct t o t h e c o nst a nt  2 H,  of  r el ati v e li vi n g f or c e, w hi c h  

is e asil y  s e e n t o b e  s m all of  t h e s a m e or d er  as  t h e m ass es:  a n d  t h e n t h e p ert ur b ati o ns  of  t h e 

c o or di n at es,  d e d u c e d  b y  t h e m et h o d  t h at h as  b e e n  e x pl ai n e d,  b e c o m e

( H L)

*'* *t  *' rt  ''f % J

i n w hi c h  w e  m a y  e m pl o y,  i nst e a d of  t h e ri g or o us v al u es  ( O’.) f or Δ α ,̂ Δ yJ,  t h e f oll o wi n g 

a p pr o xi m at e  v al u es:

{ Γ.)

w w w.r ci n. or g. pl
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To calculate the four coefficients

which enter into the values (F.) (D’.), we may consider V,2, by (Rθ.) (Tθ.), and by the theory of 
binary systems, as a function of the initial and final relative coordinates, and initial components 
of relative velocities, involving also expressly the time t, and the n — 2 auxiliary quantities of 
the form and then we are to consider those initial components and auxiliary quantities and 
the time, as depending themselves on the initial and final coordinates, and on . But it is not 
difficult to prove, by the foregoing principles, that when t and are thus considered, their 
variations are, in the present order of approximation,*

(KΛ)

(L’.)and

the sign of variation δ, referring only to the initial and final coordinates; and also that

along with two other analogous relations between the coefficients of the two other coordinates 
¾, ζi; from which it follows that t and g'<*  and therefore α⅛, , ½, may be treated as constant, in
taking the variation of the disturbing part F,2> for the purpose of calculating the perturbations 
(H’.): and that the terms involving ∆i are destroyed by other terms. We may therefore put
simply-j∙

(Ni)

* [Wθ have = t∙ But depends on the initial and final coordinates and also on Thus
(L’,) follows immediately and then (K∖) by summation. Equation (M’.) is obtained by differentiating (B∖) partially with respect to gr<*∖]I [To obtain (Ν’.): Γ/«=Σ/ίη<ίη^ 1Γ<*>  where 1F<*>  ia given bv ίΤ®.). Three groups of terms come from

(i) From the integrated part of TF<*>  *≈>  we get — . This cancels against the first term of ∆α[ in (I’.), 'λ(ii) From t which occurs “expressly” (explicitly) in
Since Δ< - — , ^we see, by (M’.), that this group of terms is cancelled by the terms involving Δ<.(iii) The remaining terms which appear in (O’.).]
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employing for ∆α^ the foUowing new expression,

(O’.)

together with analogous expressions for ∆y^, in which the sign of summation Σ,, refers to 
the disturbing masses, and in which the quantity

is considered as depending on , , α ∙, , y<, α* , , , α⅛, , y* , t, by the theory of binary
systems, while αj, β'^, γ[ are considered as depending, by the same rules, on α^∙, βi,γi, ζ{, ηt, 
and t.

It may also be easily shown, that*  

with other analogous equations: the perturbation of the coordinates may therefore be thus 
expressed.

(R’.)

and the perturbations of the two other coordinates may be expressed in an analogous manner.

It results from the same principles, that in taking the first differentials of these perturbations 
(R’.), the integrals may be treated as constant; and therefore that we may either represent the 
change of place of the disturbed point , in its relative orbit about , by altering a little the 
initial components of velocity without altering the initial position, and then employing the 
rules of binary systems; or calculate at once the perturbations of place and of velocity, by 
employing the same rules, and altering at once the initial position and initial velocity. If we 
adopt the former of these two methods, we are to employ the expressions (O’.), which may be 
thus summed up, C∖ ∕*√

(S’.)
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and if we adopt the latter method, we are to make,

(Τ’.)

The latter was the method of Lagrange: the former is suggested more immediately by the 
principles of the present essay.*

* [If we give variations ∆α,∙, Δj8<, ∆y<, the new variations of αj, βf, will be 
since where ∆α< etc. mean the values given in (O’.). By giving the values of Δα^, ∆y< in (Τ’.) we get the values of ∆α< in the same set of equations. See Appendix, Note 3, p. 622. Cf. Lagrange, M0Mnique Analytique, Tome i, 2nd Part, Section v. Lagrange, “Sur la th0orie g6n6rale de la variation des constantes arbitraires,” Memoires de 
VInstitut (1808), p. 257. For a comparison of the methods of Lagrange, Poisson and Hamilton in the Theory of Perturbations, see Lovett, Quarterly Journal of Mathematics, xxx (1899), pp. 47-149.]t [Hamilton perceived at this stage that it was inconvenient to have H appearing in the characteristic function; so he transformed to another fιmction which contained t as a variable instead of H. The transformation to adopt is obvious from the following equations:

General introduction of the Time into the expression of the Characteristic Function 
in any dynamical problem.

23. Before we conclude this sketch of our general method in dynamics, it will be proper to 
notice briefly a transformation of the characteristic function, which may be used in all applica
tions. This transformation consists in putting, generally, ↑ 

and considering the part S, namely, the definite integral 

as a function of the initial and final coordinates and of the time, of which the variation is, by our 
law of varying action.

The partial differential coefficients of the first order of this auxihary± function *S  are hence,

ί [Hamilton changes the name “auxiliary” to “principal” in the Second Essay.]
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and

These last expressions (Z’.) are forms for the final integrals of motion of any system, corre
sponding to the result of elimination of H between the equations (D.) and (E.); and the expres
sions (Y’.) are forms for the intermediate integrals, more convenient in many respects than the 
forms already employed.24. The limits of the present essay do not permit us here to develope the consequences of 
these new expressions. We can only observe, that the auxiliary function /S' must satisfy the 
two following equations, in partial differentials of the first order, analogous to, and deduced 
from, the equations (Γ.) and (G.):

and

{A8.)

{B≡.)

and that to correct an approximate value of 8, in the integration of these equations, or to 
find the remaining part 8«, if

we may employ the symbolic equation

which gives, rigorously.

if we establish by analogy the definition

and therefore approximately

the parts 8^, being chosen so as to vanish with the time. These remarks may all be extended 
easily, so as to embrace relative and polar coordinates, and other marks of position, and offer 
a new and better way of investigating the orbits and perturbations of a system, by a new and 
better form of the function and method of this Essay.

∖
March 29, 1834.

H MPΠ 2’
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