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104 II. GENERAL METHOD IN DYNAMICS

Introductory Remarks.

The theoretical development* of the laws of motion of bodies is a problem of such interest
and importance, that it has engaged the attention of all the most eminent mathematicians,
since the invention of dynamics as a mathematical science by Galileo, and especially since the
wonderful extension which was given to that science by Newton. Among the successors of
those illustrious men, Lagrange has perhaps done more than any other analyst to give extent
and harmony to such deductive researches, by showing that the most varied consequences
respecting the motions of systems of bodies may be derived from one radical formula; the beauty
of the method so suiting the dignity of the results, as to make of his great work a kind of scientific
poem. But the science of force, or of power acting by law in space and time, has undergone
already another revolution, and has become already more dynamic, by having almost dis-
missed the conceptions of solidity and cohesion, and those other material ties, or geometrically
imaginable conditions, which Lagrange so happily reasoned on, and by tending more and more
to resolve all connexions and actions of bodies into attractions and repulsions of points: and
while the science is advancing thus in one direction by the improvement of physical views, it
may advance in another direction also by the invention of mathematical methods. And the
method proposed in the present essay, for the deductive study of the motions of attracting or
repelling systems, will perhaps be received with indulgence, as an attempt to assist in carrying
forward so high an inquiry.

In the methods commonly employed, the determination of the motion of a free point in
space, under the influence of accelerating forces, depends on the integration of three equations
in ordinary differentials of the second order; and the determination of the motions of a system
of free points, attracting or repelling one another, depends on the integration of a system of
such equations, in number threefold the number of the attracting or repelling points, unless we
previously diminish by unity this latter number, by considering only relative motions. Thus, in
the solar system, when we consider only the mutual attractions of the sun and of the ten known
planets,} the determination of the motions of the latter about the former is reduced, by the
usual methods, to the integration of a system of thirty ordinary differential equations of the
second order, between the coordinates and the time; or, by a transformation of Lagrange, § to
the integration of a system of sixty ordinary differential eyuations of the first order, between
the time and the elliptic elements: by which integrations, the thirty varying coordinates, or the
sixty varying elements, are to be found as functions of the time. In the method of the present
essay, this problem is reduced to the search and differentiation of a single function, which
satisfies two partial differential equations of the first order and of the second degree: and every
other dynamical problem, respecting the motions of any system, however numerous, of attract-

* [On the development of Theoretical Dynamics from Lagrange to Hamilton, see Cayley’s Report to the British
Association, Dublin (1858), p. 1.]

+ [Hamilton is here referring to Boscovich’s hypothesis on the constitution of matter (1743). Cf. Graves, Life
of Hamilton, Vol. 1, p. 593, Vol. 1, pp. 85-86, 88.]

i [The planets known at the date of this paper were Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus and
four asteroids Ceres, Pallas, Vesta and Juno, the last being discovered in 1807. Neptune was not discovered until

1846.]
§ [Méc. Anal. 3rd ed. Tome 11, pp. 112-143.]
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1] II. GENERAL METHOD IN DYNAMICS 105

ing or repelling points, (even if we suppose those points restricted by any conditions of connexion
consistent with the law of living force,) is reduced, in like manner, to the study of one central
function, of which the form marks out and characterizes the properties of the moving system,
and is to be determined by a pair of partial differential equations of the first order, combined
with some simple considerations. The difficulty is therefore at least transferred from the
integration of many equations of one class to the integration of two of another: and even if it
should be thought that no practical facility is gained, yet an intellectual pleasure may result
from the reduction of the most complex and, probably, of all researches respecting the forces
and motions of body, to the study of one characteristic function,* the unfolding of one central
relation.

The present essay does not pretend to treat fully of this extensive subject,—a task which
may require the labours of many years and many minds; but only to suggest the thought and
propose the path to others. Although, therefore, the method may be used in the most varied
dynamical researches, it is at present only applied to the orbits and perturbations of a system
with any laws of attraction or repulsion, and with one predominant mass or centre of pre-
dominant energy; and only so far, even in this one research, as appears sufficient to make the
principle itself understood. It may be mentioned here, that this dynamical principle is only
another form of that idea which has already been applied to optics in the 7"heory of systems of
rays, and that an intention of applying it to the motions of systems of bodies was announced
at the publication of that theory. And besides the idea itself, the manner of calculation also,
which has been thus exemplified in the sciences of optics and dynamics, seems not confined to
those two sciences, but capable of other applications; and the peculiar combination which it
involves, of the principles of variations with those of partial differentials, for the determination
and use of an important class of integrals, may constitute, when it shall be matured by the
future labours of mathematicians, a separate branch of analysis.]

Wirriam R. HAmMILTON.
Observatory, Dublin, :
March 1834.

Integration of the Equations of Motion of a System, Characteristic Function of such
Motion, and Law of varying Action.

1. The known differential equations of motion of a system of free points, repelling or
attracting one another according to any functions of their distances, and not disturbed by any
foreign force, may be comprised in the following formula:

Z.m(x"dx +y"dy +2"8z)=08U. (1.)
In this formula the sign of summation X extends to all the points of the system; m is, for any

* Lagrange and, after him, Laplace and others, have employed a single function to express the different forces
of a system, and so to form in an elegant manner the differential equations of its motion. By this conception, great
simplicity has been given to the statement of the problem of dynamics; but the solution of that problem, or the
expression of the motions themselves, and of their integrals, deperds on a very different and hitherto unimagined
function, as it is the purpose of this essay to show.

T Transactions of the Royal Irish Academy, Vol. xv, p. 80. [Mathematical Papers, Vol. 1, p. 9.] A notice of
this dynamical principle was also lately given in an article “On a general Method of expressing the Paths of
Light and of the Planets,” published in the Dublin University Review for October 1833. [Mathematical Papers, Vol.
1, p. 311.] ,

i [Hamilton afterwards developed this suggestion in his Calculus of Principal Relations. See pp. 297-410.]
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108 II. GENERAL METHOD IN DYNAMICS 2,3
Secondly, the group,
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So that if this function V' were known, it would only remain to eliminate H between the 3n + 1
equations (C.) and (E.), in order to obtain all the 3» intermediate integrals, or between (D.)
and (E.) to obtain all the 3» final integrals of the differential equations of motion; that is, ulti-
mately, to obtain the 3n sought relations between the 3n varying coordinates and the time,
involving also the masses and the 6n initial data above mentioned; the discovery of which
relations would be (as we have said) the general solution of the general problem of dynamics.
We have, therefore, at least reduced that general problem to the search and differentiation of a
single function V, which we shall call on this account the CHARACTERISTIC FUNCTION of motion
of a system; and the equation (A.), expressing the fundamental law of its variation, we shall
call the equation of the characteristic function, or the LAW OF VARYING ACTION.

3. To show more clearly that the action or accumulated living force of a system, or in other
words, the integral of the product of the living force by the element of the time, may be regarded
as a function of the 6n+ 1 quantities already mentioned, namely, of the initial and final co-
ordinates, and of the quantity /, we may observe, that whatever depends on the manner and
time of motion of the system may be considered as such a function; because the initial form of
the law of living force, when combined with the 37 known or unknown relations between the
time, the initial data, and the varying coordinates, will always furnish 3z + 1 relations, known
or unknown, to connect the time and the initial components of velocities with the initial and
final coordinates, and with H. Yet from not having formed the conception of the action as a
Junction of this kind, the consequences that have been here deduced from the formula (A.) for
the variation of that definite integral appear to have escaped the notice of Lagrange, and of the
other illustrious analysts who have written on theoretical mechanics; although they were in
possession of a formula for the variation of this integral not greatly differing from ours. For
although Lagrange and others, in treating of the motion of a system, have shown that the
variation of this definite integral vanishes when the extreme coordinates and the constant H
are given, they appear to have deduced from this result only the well-known law of least action;
namely, that if the points or bodies of a system be imagined to move from a given set of initial
to a given set of final positions, not as they do nor even as they could move consistently with the
general dynamical laws or differential equations of motion, but so as not to violate any supposed
geometrical connexions, nor that one dynamical relation between velocities and configurations
which constitutes the law of living force; and if, besides, this geometrically imaginable, but
dynamically impossible motion, be made to differ infinitely little from the actual manner of
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2] II. GENERAL METHOD IN DYNAMICS 107

(@', ¥, 2’, being here, according to the analogy of our foregoing notation, the rectangular com-
ponents of velocity of the point m, or the first differential coefficients of its coordinates taken
with respect to the time;) an easy and well-known combination of the differential equations of
motion, obtained by changing in the formula (1.) the variations to the differentials of the
coordinates, may be expressed in the following manner,

dT=dU, (5.)
and gives, by integration, the celebrated law of living force, under the form
T=U+H. (6.)

In this expression, which is one of the seven known integrals already mentioned, the quan-
tity H is independent of the time, and does not alter in the passage of the points of the system
from one set of positions to another. We have, for example, an initial equation of the same
form, corresponding to the origin of time, which may be written thus,

To=Uy+H. (7.)

The quantity H may, however, receive any arbitrary increment whatever, when we pass in
thought from a system moving in one way, to the same system moving in another, with the
same dynamical relations between the accelerations and positions ofits points, but with different
initial data; but the increment of H, thus obtained, is evidently connected with the analogous
increments of the functions 7' and U, by the relation

AT =AU +AH, (8.)
which, for the case of infinitesimal variations, may conveniently be written thus,
3T =08U +38H; (9.)

and this last relation, when multiplied by d¢, and integra,ted, conducts to an important result.
For it thus becomes, by (4.) and (1.),

fZ.m(dx.b‘x"+dy.8y’+dz.8z’)=f2.m(dx’.8z+dy'.8y+dz’.8z)+f8H.dt, (10.)

that is, by the principles of the calculus of variations,

V=2.m(x'8x+y'dy+232)—2%.m(a'da+b'0b+c'dc)+t6H, (A.)
if we denote by V the integral
t
V=f2 .m(x'dz+y'dy +2'dz) =f 27 dt, (B.)
0

! namely, the accumulated living force, called often the action of the system, frowa its initial to

its final position. ,

If, then, we consider (as it is easy to see that we may) the action ¥V as a function of the initial
and final coordinates, and of the quantity H, we shall have, by (A.), the following groups of
equations; first, the group,

a—V--m Zi; ——SV—-m 5 ——SV m,x.;
gtk TV Bep et YOMTRY () an_ Nk
gV ="MY1; 8‘ V‘=m2?/2: 8“‘V =My Y (C)
Y1 3Ys Yn
14 1% H P14 5
E—?nlzl, a—zz—mgzz, g;‘=mnzn-
: 14-2
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Secondly, the group,
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So that if this function V were known, it would only remain to eliminate H between the 37 + 1
equations (C.) and (E.), in order to obtain all the 3n intermediate integrals, or between (D.)
and (E.) to obtain all the 3» final integrals of the differential equations of motion; that is, ulti-
mately, to obtain the 3n sought relations between the 3n varying coordinates and the time,
involving also the masses and the 6n initial data above mentioned; the discovery of which
relations would be (as we have said) the general solution of the general problem of dynamics.
We have, therefore, at least reduced that general problem to the search and differentiation of a
single function ¥, which we shall call on this account the CHARACTERISTIC FUNCTION of motion
of a system; and the equation (A.), expressing the fundamental law of its variation, we shall
call the equation of the characteristic function, or the LAW OF VARYING ACTION.

3. Toshow more clearly that the action or accumulated living force of a system, or in other
words, the integral of the product of the living force by the element of the time, may be regarded
as a function of the 6n+ 1 quantities already mentioned, namely, of the initial and final co-
ordinates, and of the quantity H, we may observe, that whatever depends on the manner and
time of motion of the system may be considered as such a function; because the initial form of
the law of living force, when combined with the 3n known or unknown relations between the
time, the initial data, and the varying coordinates, will always furnish 3z + 1 relations, known
or unknown, to connect the time and the initial components of velocities with the initial and
final coordinates, and with H. Yet from not having formed the conception of the action as a
Sfunction of this kind, the consequences that have been here deduced from the formula (A.) for
the variation of that definite integral appear to have escaped the notice of Lagrange, and of the
other illustrious analysts who have written on theoretical mechanics; although they were in
possession of a formula for the variation of this integral not greatly differing from ours. For
although Lagrange and others, in treating of the motion of a system, have shown that the
variation of this definite integral vanishes when the extreme coordinates and the constant H
are given, they appear to have deduced from this result only the well-known law of least action;
namely, that if the points or bodies of a system be imagined to move from a given set of initial
to a given set of final positions, not as they do nor even as they could move consistently with the
general dynamical laws or differential equations of motion, but so as not to violate any supposed
geometrical connexions, nor that one dynamical relation between velocities and configurations
which constitutes the law of living force; and if, besides, this geometrically imaginable, but
dynamically impossible motion, be made to differ infinitely little from the actual manner of
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3, 4] II. GENERAL METHOD IN DYNAMICS 109

motion of the system, between the given extreme positions; then the varied value of the
definite integral called action, or the accumulated living force of the system in the motion thus
imagined, will differ infinitely less from the actual value of that integral. But when this well-
known law of least, or as it might be better called, of stationary action, is applied to the deter-
mination of the actual motion of a system, it serves only to form, by the rules of the calculus of
variations, the differential equations of motion of the second order, which can always be
otherwise found. It seems, therefore, to be with reason that Lagrange*, Laplace, and Poisson
have spoken lightly of the utility of this principle in the present state of dynamics. A different
estimate, perhaps, will be formed of that other principle which has been introduced in the present
paper, under the name of the law of varying action, in which we pass from an actual motion to
another motion dynamically possible, by varying the extreme positions of the system, and (in
general) the quantity H, and which serves to express, by means of a single function, not the
mere differential equations of motion, but their intermediate and their final integrals.

Verifications of the foregoing Integrals.

4. A verification, which ought not to be neglected, and at the same time an illustration of
this new principle, may be obtained by deducing the known differential equations of motion
from our system of intermediate integrals, and by showing the consistence of these again with
our final integral system. As preliminary to such verification, it is useful to observe that the
final equation (6.) of living force, when combined with the system (C.), takes this new form,

L[V \2 / [8V\% | (6V\2
L8 gt | ik N ki % 58 1
zz.m{(SZ) +(8y) +(8z) } U+ H; ().
and that the initial equation (7.) of living force becomes by (D.)
1((8V\2 (8V\2 (872
o yigin ol | Lol atal —} =
zz.m{(m) +(8b) +(80) } Uy+H. (@)

These two partial differential equations, initial and final, of the first order and the second
degree, must both be identically satisfied by the characteristic function V': they furnish (as we
shall find) the principal means of discovering the form of that function, and are of essential
importance in its theory.i If the form of this function were known, we might eliminate 3n — 1
of the 3n initial coordinates between the 3n equations (C.); and although we cannot yet perform
the actual process of this elimination, we are entitled to assert that it would remove along with
the others the remaining initial coordinate, and would conduct to the equation (6.) of final
living force, which might then be transformed into the equation (F.). In like manner we may
conclude that all the 3» final coordinates could be eliminated together from the 3n equations
(D.), and that the result would be the initial equation (7.) of living force, or the transformed
equation (G.). We may therefore consider the law of living force, which assisted us in discovering
the properties of our characteristic function V, as included reciprocally in those properties, and
as resulting by elimination, in every particular case, from the systems (C.) and (D.); and in
treating of either of these systems, or in conducting any other dynamical investigation by the

* [For Lagrange’s remarks on the principle of least action, see Méc. Anal. 3rd ed. Tome 1, pp. 229, 230.]

T [These equations are exactly analogous to the equations Q=0, Q'=0 of the Third Supplement. Mathematical
Papers, Vol. 1, pp. 170, 485.]

1 [For Jacobi’s criticism, see Appendix, p. 613.]
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110 II. GENERAL METHOD IN DYNAMICS [4, 5

method of this characteristic function, we are at liberty to employ the partial differential
equations (F.) and (G.), which that function must necessarily satisfy.

It will now be easy to deduce, as we proposed, the known equations of motion (3.) of the
second order, by differentiation and elimination of constants, from our intermediate integral
system (C.), (E.), or even from a part of that system, namely, from the group (C.), when com-
bined with the equation (F.). For we thus obtain
asv_ 8 3V d 8V i
Fof Phatch > Rt | X maerdiib ) =3 %

e 4 2V i R4
55y T Y sz oy, Yn Sz o0,
i 4 . ol 4 , 8V
g e tag et thne
i A 18V &V 1 8V &V
T my8a, 82§ T my b, Su,8m, " T m, bz, b2y 8,
13V &V 1 8V 8* 1 8V @8
st sttt
my 8Yy 02,8y, My By, 02, By, My, Y, 04 8Y,,
1 8V &FV 18V & e L b U
Ty 82, 82,52, my 2, 8,82, T m, 52, 52,5,

- ) (-

m,xy=s—-. (12.)

oz,
And in like manner we might deduce, by differentiation, from the integrals (C.) and from (F.)
all the other known differential equations of motion, of the second order, contained in the set
marked (3.); or, more concisely, we may deduce at once the formula (1.), which contains all
those known equations, by observing that the intermediate integrals (C.), when combined with

the relation (F.), give*
a8V d 8V d 8V Sz)

. m (2"82 + "8y +2°52) = E(dt&z Brrge Wy

=E'1(8V8 oV & SVS)E(SV 3V SV)

m\ew gy %)\ =ty e

=z(8x3+8y%+32§")2-i{(8_v) +(§?) +(§)}

—E(S:c—+8y8y+8z )(U+H)
~38T. _ :

5. Again, we were to show that our intermediate integral system, composed of the equations
(C.) and (E.), with the 3n arbitrary constants a,, b;, ¢y, ... a,, b,, ¢,, (and involving also the

* [ e gy doem=E it =2 0 S s =2 2 o (37 )} 80, =2 37 s a0

my @y =

! (11.)

E

that is, we obtain

. s

(13.)
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5] II. GENERAL METHOD IN DYNAMICS 111

auxiliary constant H,) is consistent with our final integral system of equations (D.) and (E.),
which contain 3n other arbitrary constants, namely, aj, b1, c1, ... @,, b, c,. The immediate
differentials of the equations (C.), (D.), (E.), taken with respect to the time, are, for the first

group,

iﬂj—mx"' éﬂ—mz‘”' o A a
FUE PR B 2 "V e di 5z, mw
.(_i_g-—m e EiK—m o dSV-— ”, (H)
di 8?/1— 1915 di 8:’/2_ 2Y25 a‘ts—%;—mnyn: s
iiv—m z"- és_V—m z"- iﬂ— ',
dide, YV Qi AW dt 5z, mem
for the second group,
e . Loty
O T TR T T Soe.. .
a8V d v d v
asv asv d v
T
and finally, for the last equation,
=l ()
didH }

By combining the equations (C.) with their differentials (H.), and with the relation (F.), we
deduced, in the foregoing number, the known equations of motion (3.); and we are now to show
the consistence of the same intermediate integrals (C.) with the group of differentials (I.),
which have been deduced from the final integrals.

The first equatioﬁ of the group (I.) may be developed thus:

ittt Bl g EF

19a,8x, " 28a, 0, " ™ Say S,

, 82V i O ; 1158%,
+y18a18y1+y28a18y2+"'+yn§arsa (14)
SRR A L o e o
TS Tl ih 08,02,

and the others may be similarly developed. In order, therefore, to show that they are satisfied
by the group (C.), it is sufficient to prove that the following equations are true,

) aV)z A% 8V)2
=50 o () *oy) ()

ool 1 ((8V\%  (8V\% (3V\?

5% 3 (3) *(3) *(5:) } 3

) 1 SV\2 [(8V\2 [8V\2
0“#%(8‘9 +(s‘D +(§) }’ ‘

the integer ¢ receiving any value from 1 to » inclusive; which may be shown at once, and the
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112 II. GENERAL METHOD IN DYNAMICS [5,6

required verification thereby be obtained, if we merely take the variation of the relation (F.)
with respect to the initial coordinates, as in the former verification we took its variation with
respect to the final coordinates, and so obtained results which agreed with the known equations
of motion, and which may be thus collected,

= () (o) () |
50> 3 () *(3) * (5’5)2}%% o)
23 () ) () |2

The same relation (F.), by being varied with respect to the quantity H, conducts to the

expression
3 L 1oV OV YR ;
s 3 () +(s9) *(32) | = it

and this, when developed, agrees with the equation (K.), which is a new verification of the
consistence of our foregoing results. Nor would it have been much more difficult, by the help
of the foregoing principles, to have integrated directly our integrals of the first order, and so to
have deduced in a different way our final integral system.

6. It may be considered as still another verification of our own general integral equations,
to show that they include not only the known law of living force, or the integral expressing that
law, but also the six other known integrals of the first order, which contain the law of motion
of the centre of gravity, and the law of description of areas. For this purpose, it is only necessary
to observe that it evidently follows from the conception of our characteristic function V, that
this function depends on the initial and final positions of the attracting or repelling points of a
system, not as referred to any foreign standard, but only as compared with one another; and
therefore that this function will not vary, if without making any real change in either initial or
final configuration, or in the relation of these to each other, we alter at once all the initial and
all the final positions of the points of the system, by any common motion, whether of translation
or of rotation.* Now by considering three coordinate translations, we obtain the three following
partial differential equations of the first order, which the function ¥V must satisfy,

8. .8
T +35=
SV SV
DETRRE Sl (0.)

and by considering three coordinate rotations, we obtain these three other relations between
the partial differential coefficients of the same order of the same characteristic function,

* [The function V is obviously independent of the choice of coordinate axes and the motions considered are
equivalent to changes in the coordinate axes. Hence the value of ¥V does not alter under such motions.]
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6, 7] II. GENERAL METHOD IN DYNAMICS 113

E(a:8—v S—I—I)+E(aﬂl bg)=0;

5y Yo 5 oa
V. oV 8V 8V
&V &V ol el al
Z(z -S—x‘*xg)-l-Z(C g—a§)=0,

and if we change the final [differential] coefficients of V to the final components of momentum,
and the initial coefficients to the initial components taken negatively, according to the
dynamical properties of this function expressed by the integrals (C.) and (D.), we shall change
these partial differential equations (O.), (P.), to the following,

T.mx'=X.ma’; Z.my'=X.mb'; X.mz'=3.mc; (15.)

and Z.m(xy —yx')=2%.m(ab" —ba’);
Z.m(y2' —zy') =E.m(bc’—cb');} (16.)

Z.m(e —az')=%.m(ca’ —ac’).

In this manner, therefore, we can deduce from the properties of our characteristic function
the six other known integrals above mentioned, in addition to that seventh which contains the
law of living force, and which assisted in the discovery of our method.

Introduction of relative or polar Coordinates, or other marks of position of a System.

7. The property of our characteristic function, by which it depends only on the internal or
mutual relations between the positions initial and final of the points of an attracting or repelling
system, suggests an advantage in employing internal or relative coordinates; and from the
analogy of other applications of algebraical methods to researches of a geometrical kind, it may
be expected that polar and other marks of position will also often be found useful. Supposing,
therefore, that the 3n final coordinates ,, ¥, , 2y, ... Z,,, ¥, , 2, have been expressed as functions
of 3n other variables, 9, , 7, ... 73, and that the 3» initial coordinates have in like manner been
expressed as functions of 3n similar quantities, which we shall call e, , e, ... 3, , We shall proceed
to assign a general method for introducing these new marks of position into the expressions of
our fundamental relations.

For this purpose we have only to transform the law of varying action, or the fundamental
formula (A.), by transforming the two sums,
S.m(x'dx+y'dy+2'82), and X.m(a'da+b'db+c'3c),
which it involves, and which are respectively equivalent to the following more developed
expressions,
S.m(x'8x+y'dy +2'8z) =my (w182, +y;0y; +2;02)
\ +my (238%, +y28Ys +2502,) (17.)
o+ &0+, (2,52, + Y180 +2,82,);
X .m(a’da+b'8b+c'8c) =my (ayda, +bydb; +c;dc,)
+my (ag day + by 8by + cy3c,) (18.)
+ &e. +m,, (a, da,+b,8b, +c, b¢,).

HMPII 15
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114 II. GENERAL METHOD IN DYNAMICS
Now z; being by supposition a function of the 3n new marks of position 7y, ... 73’ ite marinion
dz;, and its differential coefficient «;, may be thus expressed:
o, o, dx 19.)
Bty e Bt Be + 00+ B (
g o1y e 01)q " O13n, g
’ Sxi ’ Sxi ’ Sxi ’ (20 )
Th= o Myt e+ Mo ‘
i Ui 519 N2 an MN3n
.. 3 involving

and similarly for y; and z;. If, then, we consider x; as a function, by (20.), of 7y, - g
also in general »;, ... 73, , and if we take its partial differential coefficients of the first order with

respect to 7y, ... 13,, We find the relations,

Su; Ow, Ow bw,  dx  da (21.)

8—"7;=8")1, 517;—81)2’ g{i—n=8"l3n’

and therefore we obtain these new expressions for the variations dx;, 8y,, 8z;,

3 o Sy

!
0% = 0N+ ONg+ .oe + 5 Mgy
¢ oo 7 33 o Man e, ]
8y 8y; i
Y= Oy + =t Oyt oen + 7 Mg s (22.)
Y 87)1 M1 8772 M2 81)3” "3n

dz; oz} dz;
Szi—s—ni8m+8—né8-qz+ +m3'r)3n.

Substituting these expressions (22.) for the variations in the sum (17.), we easily transform

it into the following,
da’ , 0y’

&2’
Z.m(x'dx+y'dy +2'5 =2.m(x'—, ot 25w +z’—a,) .8
( y'dy ) 5y T Y ) -om

’ ’

3z’ Sy 32
+E.m(a:’——7 +y < +z'——,) .o
on3 d omy on, i

dx 3 2!
+&c.+2.m(z'—,+ "—;—+z'_,).
g 4 gy 15y, ¥n

(23.)

’

3 By 4 2B 0 R L S
R e R M

/

T being the same quantity as before, namely, the half of the final living force of the system, but
being now considered as a function of %j, ... 73,, involving also the masses, and in general
M1 ++« Nan, and obtained by substituting for the quantities ', y’, 2’ their values of the form (20.)
in the equation of definition

T=31Z.m(2"2+y?+2?). (4.)
In like manner we find this transformation for the sum (18.),
; - Wowg. g 3T, 3T,
Z.m(a’da+b 8b+c86)—8—61861+—Se—;8e2+...+@863n. (24.)
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7] II. GENERAL METHOD IN DYNAMICS 115

The law of varying action, or the formula (A.), becomes therefore, when expressed by the
present more general coordinates or marks of position,*
5.2 05 4150, Q)
and instead of the groups (C.) and (D.), into which, along with the equation (E.), this law
resolved itself before, it gives now these other groups,

8T
V=25 8%

¥ _oT W _oT 8 _aT !
Sm omy Sy Oma’ T Bng, Oman’ ;

and
B B U 8Ty . S 5T, i
0, em T et AR T e 8, :

The quantities e, e, ... €5, , and €7, €3, ... €3, , are now the initial data respecting the manner
of motion of the system; and the 3n final integrals, connecting these 6n initial data, and the
n masses, with the time ¢, and with the 3n final or varying quantities ,, 1, ... 73, , Which mark
the varying positions of the » moving points of the system, are now to be obtained by eliminating
the auxiliary constant H between the 3n + 1 equations (S.) and (E.); while the 3n intermediate
integrals, or integrals of the first order, which connect the same varying marks of position and
their first differential coefficients with the time, the masses, and the initial marks of position,
are the result of elimination of the same auxiliary constant H between the equations (R.) and
(E.). Our fundamental formula, and intermediate and final integrals, can therefore be very
simply expressed with any new sets of coordinates; and the partial differential equations (F.),
(G.), which our characteristic function V must satisfy, and which are, as we have said, essential
in the theory of that function, can aiso easily be expressed with any such transformed co-
ordinates, by merely combining the final and initiai expressions of the law of living force,

T=U+H, (6.)

To=U,+H, (7.)
with the new groups (R.) and (S.). For this purpose we must now consider the function U, of
the masses and mutual distances of the several points of the system, as depending on the new

* [Equation (Q.) can be obtained most simply as follows without introducing the cartesian coordinates.
Let 7' be a function of the n’s and %"s, being homogeneous of the second degree in the latter, and satisfying
T=U+H, where U is a function of the 5’s, and H a constant along each of the curves considered. Writing

¢ t_ 5T
V=2/ Tdt=f Y —d
0 0o O 7

1 13
we have 3V=/ 55 8—T,>d7,+[ 2161:3(}:’]
8T 8T
x °s+fzs( ) —/ Ed( =)
311 o o) 5n)
But . 23?1’ =2T=T+U+H,
3T
and therefore 28< ) —E = +Z +08H,
) 7 E gy I o
ol STO a8T 8T sU
so that we find V=X 8?817 de+t8H / Z(d—w?—g-—sn>8-th
This, by the principle of least action, leads to the equations (Z.) and equation (Q.) follows immediately.]
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116 II. GENERAL METHOD IN DYNAMICS [7,8

marks of position 7,, 7,, ... 13,; and the analogous function U,, as depending similarly on the
initial quantities e, , e,, ... ey,; we must also suppose that 7' is expressed (as it may) as a function

of its own coefficients gq: 4 21: i 8?71’1 , which will always be, with respect to these, homogeneous
3n
of the second dimension, and may also involve explicitly the quantities ,, 7,, ... 73,; and that

8T, 8T, 38T,

T, is expressed as a similar function of its coefficients —°, <, ... = ; so that
8‘)’1 882 Ses'n

oy’ Oy M3y (25.)
ro-r (%, 20, . ), '
B ae;’se;""ae;,,,)’

and that then these coefficients of 7' and 7', are changed to their values (R.) and (8.), so as to
give, instead of (F.) and (G.), two other transformed equations, namely,

3V 8V 14 )
> U+H, i
Rt 4t
and, on account of the homogeneity and dimension of 7',
3V &V 3V
A (8_51 > ey’ 8331;) o (T

8. Nor is there any difficulty in deducing analogous transformations for the known differ-
ential equations of motion of the second order, of any system of free points, by taking the
variation of the new form (T.) of the law of living force, and by attending to the dynamical
meanings of the coefficients of our characteristic function. For if we observe that the final
living force 27, when considered as a function of 7y, 75, ... 73, , and of 91, 53, ... 13, , is neces-
sarily homogeneous of the second dimension with respect to the latter set of variables, and must
therefore satisfy the condition

iy 20T R &
2T 7’18 I+7728 ’+.“+7'3n8_7];;’ P (26)
we shall perceive that its total variation, i
8T 3T ST )
8T 8 87]1 8 87’2'*' 8 87]81&
ST s;’" ’ £
5 Ony+ l 8772'! +.. 7 87]31\’
8 Me 8 )
may be put under the form
ST =} 3 ST i 88T VG ST
1 81) 72 81), - 7300 8"731;
_8T S _Es = ST
o1y g 3y y B 3’73» 28
SRS o
g &' )
8V 8T
—2( S——<—8 ),
& oy )
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8] II. GENERAL METHOD IN DYNAMICS 117

and therefore that the total variation of the new partial differential equation (T.) may be thus
written,
¥ 3V 8T U [

in which, if we observe that 7 —‘fl , and that the quantities of the form » are the only ones

which vary with the time, we shall see that
8V (dSV d8V8)+d8V

bbb ey T e I S o BT

because the identical equation 8dV =d 3V gives, when developed,
SV 14 14
P B de)+8

.8H, (29.)

8 d‘q+38 SH

N4 5V
——E(dan S )+d SH[

Decomposing, therefore, the expression (V.), for the variation of half the living force, into as
many separate equations as it contains independent variations, we obtain, not only the equation

dH ]
(30.)

a v
Zisa= b (K.)
which had already presented itself, and the group
asv asv d 8V

"‘i'is—el—-— ) d_t8_62=0, ses %&jb:O,

which might have been at once obtained by diﬁerentiation from the final integrals (S.), but also
a group of 3n other equations of the form

(W.)

dioVi. a1 ol
di 31} _3; % 87) y (X)
which give, by the intermediate integrals (R.),
d ST ST 8U
di 31) 87) 817 (9
that is, more fully,
43T 38T 38U,
di Sy, Bny omy
48T 3T U
B, By Tong | (2.)

------

Lol L LI L
N dt 8’72’31& 8773% 8"73n.

These last transformations of the differential equations of motion of the second order, of an
attracting or repelling system, coincide in all respects (a slight difference of notation excepted,)
with the elegant canonical forms in the Mécanique Analytique of Lagrange*; but it seemed

* [Méc. Anal. 3rd ed. Tome 1, pp. 290-292.]
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118 II. GENERAL METHOD IN DYNAMICS [8,9

worth while to deduce them here anew, from the properties of our characteristic function. And
if we were to suppose (as it has often been thought convenient and even necessary to do,) that
the n points of a system are not entirely free, nor subject only to their own mutual attractions
or repulsions, but connected by any geometrical conditions, and influenced by any foreign
agencies, consistent with the law of conservation of living force; so that the number of indepen-
dent marks of position should be now less numerous, and the force-function U less simple than
before; it might still be proved, by a reasoning very similar to the foregoing, that on these sup-
positions also (which, however, the dynamical spirit is tending more and more to exclude,*)
the accumulated living force or action V of the system is a characteristic motion-function of the
kind already explained; having the same law and formula of variation, which are susceptible of
the same transformations; obliged to satisfy in the same way a final and an initial relation be-
tween its partial differential coefficients of the first order; conducting, by the variation of one of
these two relations, to the same canonical forms assigned by Lagrange for the differential
equations of motion; and furnishing, on the same principles as before, their intermediate and
their final integrals. To those imaginable cases, indeed, in which the law of living force no longer
holds, our method also would not apply; but it appears to be the growing conviction of the
persons who have meditated the most profoundly on the mathematical dynamics of the
universe, that these are cases suggested by insufficient views of the mutual actions of body.

9. It results from the foregoing remarks, that in order to apply our method of the cha-
racteristic function to any problem of dynamics respecting any moving system, the known law
of living force is to be combined with our law of varying action; and that the general expression
of this latter law is to be obtained in the following manner. We are first to express the quantity 7',
namely, the half of the living force of the system, as a function (which will always be homo-
geneous of the second dimension,) of the differential coefficients or rates of increase »;, 9;, &ec.,
of any rectangular coordinates, or other marks of position of the system: we are next to take the
variation of this homogeneous function with respect to those rates of increase, and to change
the variations of those rates 87y, 315, &c., to the variations 8», , 87, , &c., of the marks of position
themselves; and then to subtract the initial from the final value of the result, and to equate the
remainder to 8V —t8H.T A slight consideration will show that this general rule or process for
obtaining the variation of the characteristic function V is applicable even when the marks of
position 7, 7., &ec. are not all independent of each other; which will happen when they have
been made, from any motive of convenience, more numerous than the rectangular coordinates
of the several points of the system. For if we suppose that the 3n rectangular coordinates
Xy, Y1y 215 oee T Yn» 2, have been expressed by any transformation as functions of 3n + & other
marks of position, 7, 79, .. Ngn., Which must therefore be connected by k equations of
condition,

0=y (M1:725 -+ Man4k)s
0=¢g("h”7m---")sn+k): (31.)

0= (015 M25 +++ Mansk)>
* [See Reference to Boscovich, p. 104.]
t [zg—:',sq—zz—g Se=8V—t8H.:|
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9] II. GENERAL METHOD IN DYNAMICS 119

giving k of the new marks of position as functions of the remaining 37,

N3n+1= Y1 (13 M2 -+ N3n)s
"73n+2=‘/‘2 (M1, Ma> vee T3n)s (32.)

Nantke =P (01525 -+ Nsn)>
the expression T=%%.m(x'?+y'2+2'?) (4.)

will become, by the introduction of these new variables, a homogeneous function of the second
dimension of the 3n + & rates of increase 9y, 93, ... 93,5, involving also in general », ,7,,

<o+ Man+k>
and having a variation which may be thus expressed.:
3T T
8= (5 ) i + (5o ) 7+ o+ (55— Brinc
oy O1; Mgk (33.)
+(5r)om+ (55 0+ o+ (5 Bromsas '
: o) T g T Mamish.
- or in this other way,
3T 4 3T T
8T=8_i8 8 ;37]2'*' +8 7 81’37&

o7 5T 5T (3¢:}

8 8"71+8 8772+ +81] 8773n»‘

on account of the relations (32.), Wh.lch g1ve when differentiated with respect to the time,

Nan41= 771 8 Lbng 8‘/’1 T o {/ﬁ
; it 7iog
Nans2 =11 8'/'2 +m3 8—¢? H o T 2 5a % | (35.)
...... .
773n+k M Slpk + 72 S'ﬁk +...+ ’73n8 ¢k

and therefore, attending only to the variations of quantities of the form »’,

Snsnﬂ—ilS S SERNL | W
1, Slen
’ 8‘/‘2 ’ 850 l)[’2 ’
8”’13n+2=§17187)1+$:8 Mo+ - +8 8 M8n> | (36.)
...... . W
811 = 5¢k5m+ 8"”‘8 2t et 8";"8

Comparing the two expressions (33.) and (34.), we find by (36.) the relations

8T_(8_T)+( ST )%+( ST )8_¢2+ +( 8T )Sﬂc
ony  \omy). \mauia) Omy  \Omguie) O 7 \Omanan/ Om’

) ) B o) () 2
ony  \Omy) " \Omauia) Smg  \Omguie) Sme T \Omgasr/ Omp’ (37.)

3T_(3T)+( o7 )%_}_( T )%_{_ +( 8T )Ex/;i
877:371, 877:;7» 8"7.‘131&1 87’3n 877:;1;+2 8773n £ \Sn:;n-ﬂc 87731;,

~
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120 II. GENERAL METHOD IN DYNAMICS 9
which give, by (32.),
8T 3T 3T 3T 3T
3 - ony + 8 LR 51 gy = ( ) omy + (81)2) omyt ... + (8")3n+k) Mgnins  (38.)
we may therefore put the expression (Q.) under the following more general form,
e 8T, .
SV=%. (Sn)sn (s )8e+t8H (AL)

the coefficients (8
on’

independent; which was the extension above announced, of the rule for forming the variation
of the characteristic function V.

) being formed by treating all the 3n+k quantities 17, 73, ... %4gn4> a8

We cannot, however, immediately decompose this new expression (Al.) for 8V, as we did
the expression (Q.), by treating all the variations 87, 3¢ as independent; but we may decompose
it so, if we previously combine it with the final equations of condition (31.), and with the
analogous initial equations of condition, namely,

0=2, (1,85, .-+ C3p1k)>
0=¢2V(el7e2’ "'ean-Hc): (39.)
0=y (1, €5, ... €3n i)

which we may do by adding the variations of the connecting functions ¢, , ... ¢;, @5, ... Dy,

multiplied respectively by factors to be determined, A,, ...

law of varying action takes this new form,

T

3T,
de’

Aes Ay, ..o Ay. In this manner the

(BL)

SV=3. (

i) 1= (5"

and decomposes itself into 6n + 2k + 1 separate expressions, for the partial differential coeffi-
cients of the first order of the characteristic function ¥V, namely, into the following,

)Se+t8H+Z ASp+X. A5

3V TRER R TR 5y
8’71 (8"11)-'-)‘1 +A287+m+)‘k8_,
SV _ (3T ) 31, B4 Sy
ony (5772) et 7 14 A Snet -Hheg e (CL)
5V ( ST ) 5, Y
= . +A +...+A :
3"73n+k 87)8n+k 87]3n+k ’ 3")3n+k
and
SV (3T, 56, . 80, 50,
e R o R
3V _ (3T, 50, | 30, 50,
s—e;“(Se;)*Alsz*A”S 4 (D)
Y4 ( 8T, ) 5b, 5,
=—| $A. ol 1 /
8e3n+k 863n+lc . 5 n+k - 8e3n+k
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9, 10] II. GENERAL METHOD IN DYNAMICS 121

besides the old equation (E.). The analogous introduction of multipliers in the canonical forms
of Lagrange, for the differential equations of motion of the second order, by which a sum such as

Z.A 2 is added to 24 in the second member of the formula (Y.), is also easily justified on the

on on
principles of the present essay.

Separation of the relative motion of a system from the motion of its centre of gravity ;
characteristic function for such relative motion, and law of its variation.

10. Asan example of the foregoing transformations, and at the same time as an important
application, we shallnow introduce relative coordinates, z, ,¥, , 2, , referred to an internal origin
z,,Y,,%,; that is, we shall put

3 : xi=x/i+x”’ y’l:=yli+yll’ zi=zli+zll’ (40')
and in like manner

n? ”? ci=cri+cll; (41')

together with the differentiated expressions

’

x;l=x:i+x”9 y'::=y:'i+ylll’ Z;:=z:i+zlln (42')
and
a;=a,+a,, b;=b,+b,, ci=cl;+c,. (43.)

”n? ”?

Introducing the expressions (42.) for the rectangular components of velocity, we find that the
value given by (4.) for the living force 27" decomposes itself into the three following parts,
2T=%.mx'%+y"?+2'?)=2.m(x2+y,2+2,?)
+2(x, X .ma. +y, X .my, +z,%.mz,)+ (x,%+y,%+2,%) Zm; (44.)

4

if then we establish, as we may, the three equations of condition,

2.mx,=0, X.my,=0, X.mz, =0, (45.)
which give by (40.),
: Z.mx X .my Z.mz
x”'—W’ y//_W’ 2,= >m (46)

so that z,, y, , 2, are now the coordinates of the point which is called the centre of gravity of
the system, we may reduce the function 7' to the form

144 Al L R (47.)
in which
T,=3Z.m(x*+y,2+2?), (48.)
and
T,=%(2+y,2+2,}?) Zm. (49.)

By this known decomposition, the whole living force 27" of the system is resolved into the
two parts 27", and 27, of which the former, 27", , may be called the relative living force, being
that which results solely from the relative velocities of the points of the system, in their motions
about their common centre of gravity «, , ¥y, , z,; while the latter part, 27", , results only from the
absolute motion of that centre of gravity in space, and is the same as if all the masses of the
system were united in that common centre. At the same time, the law of living force,

HMPII 16
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122 II. GENERAL METHOD IN DYNAMICS [10

T=U+H, (6.), resolves itself by the law of motion of the centre of gravity into the two
following separate equations,

T,=U+H,, (50.)
and
T” = H ”; (51.)
H, and H, being two new constants independent of the time ¢, and such that their sum
H,+H,=H. (52.)

And we may in like manner decompose the action, or accumulated living force V', which is

t
equal to the definite integral f 27'dt, into the two following analogous parts,
Jo

V=Y,+7,, (EL)
determined by the two equations,
Pa j ‘o1 a1, (¥
and !
Viw f ‘o1 at. (GL)
The last equation gives by (51.), ;
V,=2H,t; (53.)
a result which, by the law of motion of the centre of gravity, may be thus expressed,*
V,=V@,—a,7+ @y, —b, +(z, —c,)*.V2H,Em: (HL)
a,,b,, c, being the initial coordinates of the centre of gravity, so that
a,,=}:‘2';—::—a, b,,=%::—b, c,=§:—z¢%c—. (54.)
And for the variation 8V of the whole function V, the rule of the last number gives
V=X.m(xzdx,—ada,+y,8y,—b,3b, + 2,8z, —c,dc,)
+ (2, 8z, —a, da, +y,dy,—b,db, +2,8z,—c,dc,) Zm (L)

+ESH + A2 . mdx, + A, 5. mdy, + A3 % . mdz,
+AZ.mda, + AyZ.mdb, + AgZ .mdc,;

while the variation of the part V,, determined by the equation (H!.), is easily shown to be
equivalent to the part ’

oV, = (. 8x,—a,da,+y,dy,—b,8,+2,8z,—c,dc,) Zm+t3H ,; (K1)
the variation of the other part V, may therefore be thus expressed,
&, =% .m(x,dx,—a,da,+y,8y,—b,8,+2,8,—c,3¢,)
+18H, + A\ Z.mdx, + A, X .mdy, + A, X .mdz, (L)
+AZ.mda,+ A, X .mdb, + AgZ . mbe,:
and it resolves itself into the following separate expressions, in which the part V, is considered

* [If v is the velocity of the centre of gravity,
(@) — a2+ (Yn—by)*+(2p—C4)*= v} =2H,#*[Zm.]
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10, 11] II. GENERAL METHOD IN DYNAMICS 123

as a function of the 6n + 1 quantities #,;,9,;,2,;, @5, b,s,¢,;, H, , of which, however, only 6n — 5
are really independent:

first group,
4

’ .
S L =My, T+ A My

174
7 ’
T =M X+ A My
17,1+ My
erl m

SK by ’ . 817’ — . " =
gﬁ—m1y,1+)‘am1, @;— nYin+AsMy; (M)
L=y 2, + Agmy; L +Asm
| Bl S Tt e
second group,
8V, . oV,
8a,1= _m1a11+A1m1; e Sa,n= n ln+A1m’n’
&V, ; st R 4
8b,1= ——mlb,1+A2m1; 86 m'nb/n+A2mn; (Nl)
SV, ¢ 8V, /
86,1= —m10,1+A3m1; 86,n= —mnc:n+A3mn;
and finally,
3V, 1
I i

’

With respect to the six multipliers A;, Ay, Ay, Ay, Ay, Ay, which were introduced by the
3 final equations of condition (45.), and by the 3 analogous initial equations of condition,

2i.ma,—=0; "Z.mb, =0, T.mc, =0; (55.)
we have, by differentiating these conditions, -

Z.mz.=0, X.my, =0, 2.mz =0, (56.)
and

Z.mai=0, X.mb =0, %.mc, =0; (57.)
and therefore

ok o’ e Zm, Aa= S’ e
and
53 S_Ii 3 gjf. 3 &,
& da, 510, 3¢, (59.)
il St S " ek bR " ]

11. Asan example of the determination of these multipliers, we may suppose that the part
V,, of the whole action V, has been expressed, before differentiation, as a function of H,, and
of these other 6z — 6 independent quantities

xll—xl’n=£1’ xlz"'xln=§2’ Be z k.

m—1 m= Sn—1>
Ya—Yn=M> Y2=Yn=M2 - Ymna— y;n Nn-1> (60.)
zll—zln =§1’ 2,27 % =§2’ e sl &y T _Cn—ls
and
1=y =0, Q—Qp=0y, 0 Qp 1—0,=0% 1,
bm——'Bl’ b,z"'bm=ﬁz’ bm—l —IBn—l (61.)
GOm0y C ATl ™Yy e Cipg™ 71»-—1’J’
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124 II. GENERAL METHOD IN DYNAMICS (11

that is, of the differences only of the centrobaric coordinates*; or, in other words, as a function of
the coordinates (initial and final) of » — 1 points of the system, referred to the »2 point, as an
internal or moveable origin: because the centrobaric coordinates z,;,¥,;, 2,4, @,, 0,4, €,; May
themselves, by the equations of condition, be expressed as functions of these, namely,

z.m 2.m x.m
z,=&— sz» Yi=m— Zm"), 2,=0;— zml, (62.)
and in like manner,
2. ma z.m . m
a,;=0y— R b,i=PBi— zmﬁ, 0,i=7~;"—z‘m—y$ (63.)

in which we are to observe, that the six quantities ¢,, 9,,, ,, ®,, Bn, ¥, must be considered as
separately vanishing. When V, has been thus expressed as a function of the centrobaric co-
ordinates, involving their differences only, it will evidently satisfy the six partial differential
equations, T

2V no B0 BNiamo,
dx, 3y, oz, (1)
o, A Al ,
e =0, "Ggiel, Nl

after this preparation, therefore, of the function V, , the six multipliers determined by (58.) and
(59.) will vanish, so that we shall have

Ay=0, A=0," Aee=0, . Apem O AL=10 . Az, (64.)
and the groups (M*.) and (N*.) will reduce themselves to the two following:
3V, A, . : 37, ;
Sz 1=mlx/1; Sz 2=m2x;2; Sz =Mp 3
’ ’ m
8V 3 3V, , oV, i
37’1':7”'1?/,13 5y a=mzy,z; 9 =MpY,ns (Q-)
! ’ m
3V, I ' oV, ,
E=m1z,1; 2 2='m,z,,; g;-:mnzm;
and
3V, s SOW, ' 3V, y
Sa 1= —myQ,y; Sa 2= —MyQ,5; 3a =—M,Q,n;
’ !’ m
3V, 5 3V, " 3V, X
Sb 1= —mlbll; STa= "'mﬂbiz; 5b g —mnb,n; r (Rl)
’ ’ m
oV, PR A ' 3V, ‘
Sc 1= —MmMyC,q; 3¢ 2= —MyC,0; S¢ =—M,C,n;
’ ’ m 7

analogous in all respects to the groups (C.) and (D.). We find, therefore, for the relative motion
of a system about its own centre of gravity, equations of the same form as those which we had
obtained before for the absolute motion of the same system of points in space. And we see that
in investigating such relative motion only, it is useful to confine ourselves to the part V, of our
* [The term centrobaric was first introduced by Mébius.]
T I:If V, is expressed as a function of the &, 9, {, o, B, y,

OV "8 jui” . BV, 5" O,
52, B¢, (s=1, 2, ..., n—1), =-X =L

3, 3 °
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11, 12] II. GENERAL METHOD IN DYNAMICS 125

whole characteristic function, that is, to the relative action of the system, or accumulated living
force of the motion about the centre of gravity; and to consider this part as the characteristic
Junction of such relative motion, in a sense analogous to that which has been already explained.

This relative action, or part V,, may, however, be otherwise expressed, and even in an
infinite variety of ways, on account of the six equations of condition which connect the 6n
centrobaric coordinates; and every different preparation of its form will give a different set of
values for the six multipliers A;, Ay, A3, Ay, Ay, Ag. For example, we might eliminate, by a
previous preparation, the six centrobaric coordinates of the point m,, from the expression of V,,
so as to make this expression involve only the centrobaric coordinates of the other n — 1 points
of the system, and then we should have

- 8, | ari | A A 2

m—O’ m—oy 827—0, %";—O) gbj;_(h m_o’ (S ')
and therefore, by the six last equations of the groups (M!.) and (N'.), the multipliers would
take the values

A1=_x:n’ )‘2=_y:n, A3=—z:n, A1=a’:n’ A2=b:n’ A3=c:n’ (65.)

and would reduce, by (60.) and (61.), the preceding 6n — 6 equations of the same groups (M?*.)
and (N'.), to the forms

S.V, ’ SVI ’ SVI £
Sx-l‘—'mlfl, S 2=m2§2, V—l=mn~1§hn-v
" ’ 1n—
SV ’ SK ’ 817/ ’
Sy ’1=m1'r)1, m=mz%, o 1=mn—17)n—1s (T)
&, g Bty et o o, '
gz—’—l—-ﬂuCl: Sz’z—mzzz, see m—mn—lc'n—l’
and
Q. Mgt 4 oV, '
gl= b ol 2= b o T ekl 1=— n—1%n—1>
!’ 7 Mm—.
vV i oV, A oV, ; 5
b '1= _mlﬁls Sb 2= _m2B2! SR NRT 1= _mn—lﬁn—l’ (Ll)
’ ’ "Mm—
8]7, ’ el ’ 817/ R ’
Scll_ —ml)’l, 86/2— _m272’ Sc/n—l_ —mn_l’y""'—l'

12. We might also express the relative action V,, not as a function of the centrobaric, but
of some other internal coordinates, or marks of relative position. We might, for instance, express
it and its variation as functions of the 6z — 6 independent internal coordinates &, 9, {, «, B, ¥
already mentioned, and of their variations, defining these without any reference to the centre
of gravity, by the equations
Ei=2 =Ty =Yi—Yn §i=zi—zm} (66.)

==y, Bi=b;—b,, y;=¢;—cy.
For all such transformations of 8V, it is easy to establish a rule or law, which may be called the
law of varying relative action (exactly analogous to the rule (B.)), namely, the following:

ST, 5T,

’ ’

)Be, +t8H, +3.1,84,+3.A,80,; (V1)
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126 II. GENERAL METHOD IN DYNAMICS [12

which implies that we are to express the half 7', of the relative living force of the system as a
function of the rates of increase 5/ of any marks of relative position; and after taking its variation
with respect to these rates, to change their variations to the variations of the marks of position
themselves; then to subtract the initial from the final value of the result, and to add the
variations of the final and initial functions ¢, , @, , which enter into the equations of condition,
if any, of the form ¢, =0, ®, =0, (connecting the final and initial marks of relative position,)
multiplied respectively by undetermined factors A, , A, ; and lastly, to equate the whole result
to 8V, —t3H,, H, being the quantity independent of the time in the equation (50.) of relative
living force, and V, being the relative action, of which we desired to express the variation. It is
not necessary to dwell here on the demonstration of this new rule (V1.), which may easily be
deduced from the principles already laid down; or by the calculus of variations from the law of
relative living force, combined with the differential equations of the second order of relative
motion.

But to give an example of its application, let us resume the problem already mentioned,
namely to express 8V, by means of the 6n — 5 independent variations 8¢;, 87;, 8(;, d«;, 88;, dy;,
8H,. For this purpose we shall employ a known transformation of the relative living force 27’,,
multiplied by the sum of the masses of the system, namely the following:

2T, Zm =X . mymy {(a; — 21)* + (i — yi)* + (2 — 2% (67.)

the sign of summation ¥ extending, in the second member, to all the combinations of points
two by two, which can be formed without repetition. This transformation gives, by (66.),

2T, Em=m, %, .m (£ +42+{?)
+Z, .mgmy {(€ — £+ (i —me)* + (L — Ci)’};}

the sign of summation £, extending only to the first n—1 points of the system. Applying,
therefore, our general rule or law of varying relative action, and observing that the 6n—6
internal coordinates £, 1, {, «, B, y are independent, we find the following new expression:

(68.)

Al

oV, =t3H, +;"—;.E, . (£'8¢ — o'Sa+ '8 — B3P+ '8 —y'By)

&

tg - B, mymy (6 — £i) (36— 8€x) + (i —me) (B —8n,) + (&= &) (BL—84)}; o (Wh)
—21;‘ X, gy, {(o — o) (8o — o) + (B — Br) (3B — 8) + (yi—vi) Byi—dyp)}:
which gives, besides the equation (O.), the following groups:

SV; A m, 4 "o l_Eme' 9
Sgi—zf,:%-z-m(fi—f)—mc(fi >m ):
SV, , Z,mn’
= s S om =) =il ) (X1)
SV, e m ] g o ’ Ermc,
gz—ﬁ-z-m@i -ﬁ)—mi(le——}:;'):‘
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and

SIII_'—mi ’ 7T ’ z/ma’

S Zom (g —a') = —'m,;(oci-—- S ),

SK_—mi / il ’ Z/mﬁ' 1
55~ T T m (Bim )= —mi (BT, (Y1)
oV, —m, {

it ,_E,my',
8—%— , 390 Zom(yi—y)=—m; ('Yi— T )’
results which may be thus summed up:
OV, =t8H,+ X, .m(£'86 — oS +7'0n— B'SB+ '8, —v'8y)

1 ’ ’ ’
_%(Z,mf Z,m8+Z, my ., mén+2Z ml .Z,mdl) (Z1)

1
o m(Z,ma' Z,mda+2Z, mp X, méB+Z my' .Z, mdy),

and might have been otherwise deduced by our rule, from this other known transformation
ot T

T, o %Z, m (§’2+7112+ clz) i (Z, mé')?+ (2, m"?’)z +(Z, mcl)z.

22Xm

And to obtain, with any set of internal or relative marks of position, the two partial differential
equations which the characteristic function V, of relative motion must satisfy, and which offer
(as we shall find) the chief means of discovering its form, namely, the equations analogous to
those marked (F.) and (G.), we have only to eliminate the rates of increase of the marks of
position of the system, which determine the final and initial components of the relative velocities
of its points, by the law of varying relative action, from the final and initial expressions of the
law of relative living force; namely, from the following equations:

(69.)

T,=U+H,, (50')
and
To=UstH (70.)

The law of areas, or the property respecting rotation which was expressed by the partial
differential equations (P.), will also always admit of being expressed in relative coordinates,
and will assist in discovering the form of the characteristic function V,; by showing that this
function involves only such internal coordinates (in number 6n — 9) as do not alter by any com-
mon rotation of all points final and initial, round the centre of gravity, or round any other
internal origin; that origin being treated as fixed, and the quantity H, as constant, in deter-
mining the effects of this rotation. The general problem of dynamics, respecting the motions of
a free system of n points attracting or repelling one another, is therefore reduced, in the last
analysis, by the method of the present essay, to the research and differentiation of a function
V,, depending on 6n— 9 internal or relative coordinates,* and on the quantity H,, and satis-
fying a pair of partial differential equations of the first order and second degree; in integrating
which equations, we are to observe, that at the assumed origin of the motion, namely at the

* [The relative configuration of the 2(n— 1) initial and final positions of the planets is defined by 6n—12
mutual distances and in addition we have the three coordinates of any one of them relative to the Sun.]
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128 II. GENERAL METHOD IN DYNAMICS [12, 13

moment when ¢= 0, the final or variable coordinates are equal to their initial values, and the
partial differential coefficient g;’ vanishes; and, that at a moment infinitely little distant, the
differential alterations of the coordinates have ratios connected with the other partial differential
coefficients of the characteristic function V,, by the law of varying relative action. It may be
here observed, that, although the consideration of the point, called usually the centre of gravity,
is very simply suggested by the process of the tenth number, yet this internal centre is even
more simply indicated by our early corollaries from the law of varying action; which show that
the components of relative final velocities, in any system of attracting or repelling points, may
X S—V 3 % y 3 iﬂ/ and therefore that
mox ' m 8y’ m &z
in calculating these relative velocities, it is advantageous to introduce the final sums Zma, Zmy,
Zmz, and, for an analogous reason, the initial sums Xma, Zmb, Zmc, among the marks of the
extreme positions of the system, in the expression of the characteristic function V; because, in
differentiating that expression for the calculation of relative velocities, those sums may be

treated as constant.

be expressed by the differences of quantities of the form

On Systems of two Points, in general ; Characteristic Function of the motion of any
Binary System.

13. To illustrate the foregoing principles, which extend to any free system of points, how-
ever numerous, attracting or repelling one another, let us now consider, in particular, a system
of two such points. For such a system, the known force-function U becomes, by (2.),

U=mymyf(r), (71.)
r being the mutual distance

r=V (2= 2,)* + (11— Y + (21— 22)* (72.)
between the two points m,, m,, and f (r) being a function of this distance such that its derivative
or differential coefficient f’ (r) expresses the law of their repulsion or attraction, according as it
is positive or negative. The known differential equations of motion, of the second order, are
now, by (1.), comprised in the following formula:

my (@] 82, + y1 8y + 21 82, ) + My (X5 8%y + Yy Sy p + 25 825) = My My 8 (7); (73.)

they are therefore, separately,
of (r) of(r) ,_  8(r)

Ty=Mmy 8z, ° Yi=my Sy, ° 1 25;"

Sgci:)’ y;=m1§£_@, z;‘:ml?fS_Z) .

The problem of integrating these equations consists in proposing to assign, by their means,
six relations between the time #, the masses m,, m,, the six varying coordinates z;, ¥;, %,
Zy, Y2, %9, and their initial values and initial rates of increase a,, by, ¢;, a,, by, ¢,, a3, by, ¢1,
ay, by, cy. If we knew these six final integrals, and combined them with the initial form of the
law of living force, or of the known intermediate integral

dmy (2% + 1%+ 2%) + dmg (@2° +95° + 25%) =mymy f (r) + H; (75.)

(74.)

”
xz o ml
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13] II. GENERAL METHOD IN DYNAMICS 129
that is, with the following formula,
3y (@1°+ 012+ €1%) + dmy (a5 + b3 + ¢3%) =mymy f (ro) + H, (76.)

in which 7, is the initial distance

o=V (@ — a5)2+ (b; — by)2 + (¢, —¢5)?, (77.)

and H is a constant quantity, introduced by integration; we could, by the combination of
these seven relations, determine the time ¢, and the six initial components of velocity a1, by, c1,
ay, by, c;, as functions of the twelve final and initial coordinates ,, ¥y, 2,, %5, ¥s, 25, @1, by, ¢;,
@y, by, ¢y, and of the quantity H, (involving also the masses:) we could therefore determine
whatever else depends on the manner and time of motion of this system of two points, as a
function of the same extreme coordinates and of the same quantity H. In particular, we could
determine the action, or accumulated living force of the system, namely,

t t
Ve gt dem, [ @, (a2)
0

as a function of those thirteen quantities @;, ¥, 2;, 5, ¥s, 23, @1, by, €1, @5, by, ¢y, H: and might
then calculate the variation of this function,

14 14 14 3V 3V oyl
8V=8—%8x1+@18y1+8—21 821+8—x28$2+8—yz$y2+8—z2 822
3V oV oV 3V 14 14 5
+8718a1+5518b1+§a 801+$28a2+_8?28b2+8—02862’ (B2)
14 i
-}-EESH. )

But the essence of our method consists in forming previously the expression of this variation, by
our law of varying action, namely,
3V =my, (@182, — a1 8a, + y; 8y, — by b, + 21 82, — €1 3¢,)
+ My (25 3y — 5 3y + Yy 0Yy — by 8y + 25 825 — €5 3¢,) (C2)
+t8H,;
and in considering V as a characteristic function of the motion, from the form of which may be

deduced all the intermediate and all the final integrals of the known differential equations, by
resolving the expression (C2.) into the following separate groups, (included in (C.) and (D.),)

g—m @ 8—V«—m /! §—I{—m %
le—' 121> 3?/1_ 1Y1> Szl— 1?15 %)
LA ﬂ—m g -S—K—m 2
sz—mzxza syz— 2Y2 g RV
and

B 4 y——mb’ §z——mc’
Sal_ myQy, Sbl_ 191 361_ 1 1,1 (Ez)
§K— 4 B_V——m b y—-—m 6oy :
Saz_—mz%’ 7 Wy 292 5o T 2 2:)

HMPII 17
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130 II. GENERAL METHOD IN DYNAMICS [13

besides this other equation, which had occurred before,

L6

oH

By this new method, the difficulty of integrating the six known equations of motion of the
second order (74.) is reduced to the search and differentiation of a single function V; and to

find the form of this function, we are to employ the following pair of partial differential equations
of the first order:

g ) * 65) *(55) o () () + 3]} =mems 042 e

e e B

combined with some simple considerations. And it easily results from the principles already laid
down, that the integral of this pair of equations, adapted to the present question, is

=1, : (B.)

V=V, = G, =5 Gy =,V G+ (ko [ par)s i)
2 To

in which z,,y,,%,,a,,b,, ¢, denote the coordinates, final and initial, of the centre of gravity

of the system,

_ M %y + My Ty Uy h ey ! ey Aty
My + My A my+my > " myt+my

M+ mydy _ My by +myby o = M1t MyCy
my+my myt+mg " my+my

” 3

(78.)

” b

and & is the angle between the final and initial distancesr,,: we have also put for abridgement

p=t [2mtmy) (1) + e ) -2

mymy) ¥ (1)
the upper or the lower sign to be used, according as the distance 7 is increasing or decreasing;
and have introduced three auxiliary quantities 2, H,, H, , to be determined by this condition,*

0=9+ f 8” dr, (12.)

combined with the two following,

mymy (7 3p g fg o — e [Tatmy
e S EV(ORIN 23 TN I b oot i 4

H,+H,=H;

which auxiliary quantities, although in one view they are functions of the twelve extreme
coordinates, are yet to be treated as constant in calculating the three definite integrals, or
limits of sums of numerous small elements,

dp dp
[t [, [ 3rar

* [Cf. Appendix, Note 2, pp. 613-621.]
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13, 14] II. GENERAL METHOD IN DYNAMICS 131

The form (H?2.), for the characteristic function of a binary system, may be regarded as a
central or radical relation, which includes the whole theory of the motion of such a system; so
that all the details of this motion may be deduced from it by the application of our general
method. But because the theory of binary systems has been brought to great perfection
already, by the labours of former writers, it may suffice to give briefly here a few instances of
such deduction.

14. The form (H?2.), for the characteristic function of a binary system, involves explicitly,
when p is changed to its value (79.), the twelve quantities 2,,y,,2,,4,,b,,¢,, 7,79, %k, H,, H ,
(besides the masses m,, m, which are always considered as given;) 1ts variation may therefore
be thus expressed:

dx, 3y, oz, 3a, Sb deg °" (L)
14 8V 14 SV 8V 14 '
+5r or 808°+§8&+8_h% SH +8H SH . .
In this expression, if we put for abridgement
2H¢/ m1+m2)
AL A/(.v a4y, —0 ) +{z,—c, 4l
we shall have

g: T _a’ll)a 8§—K=A(yll _bll)’ 2717=A(Z”—C”),
8a,,=A(a"—x”)’ g—”'—}‘(b ~Yu)s 8—6”=A(C”—-Z,,);

and if we put

Po= ;I-_A/2(m1+m2)(

the sign of the radical being determined by the same rule as that of p, we shall have

2
£ )—h_ (81.)
My My

ra

8V _mymgp SV _ —mymepy OV _mymyh (N2.)

o mit+my Sy mytmy * 8% my+my

besides, by the equations of condition (I2.), (K2.), we have

v 2
and
o o] e AT T (P2)

ol - Tt T ] SR
The expression (L2.) may therefore be thus transformed:
8V =x{(x,-a,) (32, —da,) + (y,~b,) By, — 8b,) + (z,—¢,) (32, — 3¢, )}
M S o Sro+h5Y) + f‘%’ SH; (Q2)

my+my
17-2
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and may be resolved by our general method into twelve separate expressions for the final and
initial components of velocities, namely,

-

138V A My ( or 83)
AT =S e o 037 LS B, TURE k"'— 1
% my 8%, m1+m2(z” a”)+m1+m2 R 8x1+ oz,
18V A m or 39
N LA TG (st
o my 8Yy m1+mz(y” ”)+m1+m2 Poy,” " oy
soieladl A m or 59
A i IR R (zﬂ_cﬂ) a5k 2 (p8_+k8—)’
My 02y My+my my+my ' 02y 2y (R2)
LS S e g vt ‘
2 gy mytmg T mytmg\ S, Oy)’
18V A m, &r 8%)
T dve § AR ot ol JgREC L
o My Yy My +my W, =2) m1+m2( Byz+ Y3
i TR my & 8%
ot e A -
and
" _18V_ A m2 87‘0 i&_ 8
omy S;1_"”1'*'"’/2(95” ”)+""'1+mz(p03a1 h&h g
N o R My o, 81‘))
b my by m1+m2( £ ”)+m +my (Poa_b1—h3b1 ;
—18V A My 7, 8«‘}.)
I= s ____k_l .
1 my 8¢, m1+m2( 10T +m, (p°801 8¢, )
F. B 1 SV__ A ( “ )+ My % hb‘_) .
2T g 0ag matmg " " mytmg\Sa,  oay)’
¢ =18F A m, 37y 8«‘})
o my 8by My +m. @, ”)+ml+m (P"‘é_bz th2 :
Pt A A m, ory , 8%
- my 80_2—m1+m2( v 0) +m1+m2( og;—ks_cz)’
besides the following expression for the time of motion of the system:
V. [(rdr
= ———= — 2
t=sg <! - (T2)
which gives by (K2.), and by (79.), (80.),
_my+my :
t——/\ . (U%)

The six equations (R2.) give the six intermediate integrals, and the six equations (S2.) give
the six final integrals of the six known differential equations of motion (74.) for any binary
system, if we eliminate or determine the three auxiliary quantities 4, H,, H,, by the three
conditions (I2.) (T2.) (U2%). Thus, if we observe that the distances r, 7, and the included angle 9,
depend only on relative coordinates, which may be thus denoted,

@ —2y=§, Y1—Ya="7, zl—za=§,}
4 —ay=a, b—by=B, ¢,—cy=y, (82.)
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we obtain by easy combinations the three following intermediate integrals for the centre of
gravity of the system:

x,’,t=x,,—a,,, yl’lt=yﬂ_b”’ z/’lt=zll_cll’ (83')
and the three following final integrals,
a,t=2,—a,, bt=y,-b,, cit=z,—c,, (84.)

expressing the well-known law of the rectilinear and uniform motion of that centre. We obtain
also the three following intermediate integrals for the relative motion of one point of the
system about the other:

o 8%
o 8%
U 4 +h8 ; (85.)
; Sr . 89
and the three following final integrals,
1By, B8
e ¢ e
" 3, 8&
B =p08_15 SB (86.)
el i 529,
Y =Po Sy Sy’

in which the auxiliary quantities 4, H, are to be determined by (I2.), (T2.), and in which the
dependence of 7, 7y, 9, on &, m, {, «, B, y, is expressed by the following equations:

r=VE&+pP+ %=V?:???} (87.)
rrocos &= Ea+nB+ Ly. )
If then we put, for abridgement,
e h & __h_. D27 Re h
r+7‘2tan&’ B—rrosiné}’ O_r—o+r§ta,n%’ (88.)
we shall have these three intermediate integrals,
§I=A§_Bas 7)’=A7)—Bﬁ, ZI=A§_BY’ (89)
and these three final integrals,
o'=B¢{—Cu, pB'=By—CB, y'=B{—Cy, (90.)
of the equations of relative motion. These integrals give,
én' —né'=ap’ —pou' =B (om Bé)
08’ =" =By’ —yB' =B (B —yy), (9L
(' — &0 =yo' —ay' = B (yé - al),
and
E(@B - Bo) +£(BY' —vB) +n (ye' —oy') = 0; (92.)
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they contain therefore the known law of equable description of areas, and the law of a plane
relative orbit. If we take for simplicity this plane for the plane ¢z, the quantities £, {’, y, " will
vanish; and we may put,

é=rcosb, n=rsinb, (=0,
: (93.)
a=rgcosfy, PB=rysinf,, y=0,
and
& =1r"cos—0'rsinb, 7' =7"sin 0+ 0'r cos 0, U'=0,
’ ’ ’ s ’ ! U ’ (94')
o' =rgcos Oy —Oyresin by, B’ =rgsinby+6yrycosb,, =0,

the angles 6, 6, being counted from some fixed line in the plane, and being such that their
difference

0—06,=49. (95.)
These values give
En'—mé' =1, af’—Ba’'=130;, on—PE=1rrysin, (96.)
and therefore, by (88.) and (91.),
720’ =136, =h; (97.)

the quantity 34 is therefore the constant areal velocity in the relative motion of the system; a
result which is easily seen to beindependent of the directions of the three rectangular coordinates.
The same values, (93.), (94.), give

£cosO+nsinb=r, £ cosf+7'sinf=1r, acosﬂ+Bsin6=rocoss,} (98.)
acos Oy+ Bsinby=7r,, o' cosby+ B'sinbfy=r;, &cosb,+nsinb,=7rcosd, ;
and therefore, by the intermediate and final integrals, (89.), (90.),

¥ =p, (¥o=py; (99.)
results which evidently agree with the condition (T2.), and which give by (79.) and (81.), for all
directions of coordinates,

h? h? 4
P42k m)f () =i g — 2 ) f () =28, ()i (100)
r 3 my;  my
the other auxiliary quantity #, is therefore also a constant, independent of the time, and enters

2
as such into the constant part in the expression for (r’” + %) the square of the relative velocity.

The equation of condition (I%.), connecting these two constan’s A, H, , with the extreme lengths
of the radius vector », and with the angle § described by this radius in revolving from its initial
to its final direction, is the equation of the plane relative orbit; and the other equation of
condition (T2.), connecting the same two constants with the same extreme distances and with
the time, gives the law of the velocity of mutual approach or recess.

We may remark that the part V, of the whole characteristic function ¥, which represents
the relative action and determines the relative motion in the system, namely,

AT R (h,a+ J ; pd’r), (V2)
My + My 7o
may be put, by (I2.), under the form
i ke 5 3p 2
v m1+m8fr. (P hSh)d (W2)
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or finally, by (79.),
"mymyf (r)+H

V,=2 ——p—————’ dr; (X2)
To
the condition (I2.) may also itself be transformed, by (79.), as follows:
rdr i
9="h T (Y2)

results which all admit of easy verifications. The partial differential equations connected with
the law of relative living force, which the characteristic function V, of relative motion must
satisfy, may be put under the following forms:

V\2 1 (8V\2  2m m,
(5) +5(55) =mrm @+ 2 1

m1+m2 (Zz)
3V \2 1 (&, 2m,my ’
(3"0) +_2(—8_§) m1+m2(U0+H')’J

and if the first of the equations of this pair have its variation taken with respect to » and &,
attention being paid to the dynamical meanings of the coefficients of the characteristic function,
it will conduct (as in former instances) to the known differential equations of motion of the
second order.

On the undisturbed Motion of a Planet or Comet about the Sun : Dependence of the
Characteristic Function of such Motion, on the chord and the sum of the Radis.
15. To particularize still further, let
1 .
{O=2 (10L.)

that is, let us consider a binary system, such as a planet or comet and the sun, with the New-
tonian law of attraction; and let us put, for abridgement,

2
h —mymy _

my+my=p, ;=P, oH, (102.)
The characteristic function V, of relative motion may now be expressed as follows:
<y : JE_} 2t A
V’—\/ﬁ (ax/fo+ 8 2 -dr); (A3.)

in which p is to be considered as a. function of the extreme radii vectores r, r,, and of their
included angle &, involving also the quantity a, or the connected quantity H,, and determined
by the condition

4
(g i et (B.)
o2 1 1
r NTp ap 1

that is, by the derivative of the formula (A3.), taken with respect to p: the upper sign being
taken in each expression when the distance 7 is increasing, and the lower sign when that distance
is diminishing, and the quantity p being treated as constant in calculating the two definite
integrals. It results from the foregoing remarks, that this quantity p is constant also in the
sense of being independent of the time, so as not to vary in the course of the motion; and that
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the condition (B3.), connecting this constant with 7, 7y, 9, a, is the equation of the plane relative
orbit; which is therefore (as it has long been known to be) an ellipse, hyperbola, or parabola,
according as the constant a is positive, negative, or zero, the origin of » being always a focus of
the curve, and p being the semiparameter. It results also, that the time of motion may be thus
expressed:

3V, 2a% &V, .
t_STI_,_mlng’ (9
and therefore thus:
-
t= —-i——_L_—' (Ds-)

J%_&_&B
s PR Sh

which latter is a known expression. Confining ourselves at present to the case a> 0, and intro-
ducing the known auxiliary quantities called excentricity and excentric anomaly, namely,

PN /1_1_:, (103.)

a=7

and
: AP il : 0
v =CO8" ( ), (104.)

which give
+V 2ar —r?— pa=aesinv, (105.)

v being considered as continually increasing with the time; and therefore, as is well known,

r=a(l—ecosv), r,=a(l—ecosyy),

l+e, v l+e, v, (106.)
- L = i g e 20
9=2tan {A/l eta,n2} 2 tan {A/l etan2},

%8
t=A/.a’_,(v_uo—esinv+esinvo); (107.)
n

and

we find that this expression for the characteristic function of relative motion,

(e
A L R U (E2.)

deduced from (A3.) and (B3.), may be transformed as follows:
V,=mlm2A/%(v—vo+esinv—esinvo): (F3.)

in which the excentricity e, and the final and initial excentric anomalies v, v,, are to be con-

sidered as functions of the final and initial radii r, r,, and of the included angle %, determined

by the equations (106.). The expression (F3.) may be thus written:

v, =2m1m2J3 (v, +e,sinv,), (G3.)
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if we put, for abridgement,
3D iy L] G Wb,
’ 2 ° ' 9
for the complete determination of the characteristic function of the present relative motion, it
remains therefore to determine the two variables v, and e, , as functions of 7, 7, &, or of some other
set of quantities which mark the shape and size of the plane triangle bounded by the final and
initial elliptic radii vectores and by the elliptic chord.

(108.)

For this purpose it is convenient to introduce this elliptic chord itself, which we shall call
+ 7, so that
T2=7r2 4+ 12— 2rrycos d; (109.)
because this chord may be expressed as a function of the two variables v, , e,, (involving also
the mean distance a,) as follows. The value (106.) for the angle &, that is, by (95.), for 6 — 6, gives

1+e 1
0—2tan‘1{A/%—t—Ztant—2j}=90—2tan—1{A/1—-_l__Ztany29}=w, (110.)

@ being a new constant independent of the time, namely, one of the values of the polar angle 0,

which correspond to the minimum of radius vector; and therefore, by (106.),
rcos (0 —m)=a(cosv—e), rsin(f—wm)=aVv1—e?sinv,

7¢c08 (0 — w)=a (cosvy—e), 7,8in (0,— @)= a\/l-——gisinvo;}

expressions which give the following value for the square of the elliptic chord:
72={rcos (0 — w) —r,ycos (6 — ®)}*+ {rsin (0 — @) — 7, sin (§, — @)}

=a?{(cos v —cosvy)?+ (1 —e?) (sin v —sin v)%}
v+ 1,2 v+v0)2} (112.)

) +(1—e?) (cos—z—

(111.)

=4a?gin v? {(sin
=4a?(1—e?)sinvi:
we may also consider = as having the same sign with sinv,, if we consider it as alternately
positive and negative, in the successive elliptic periods or revolutions, beginning with the
initial position.
Besides, if we denote by o the sum of the two elliptic radii vectores, final and initial, so that

o=7+1y, (113.)
we shall have, with our present abridgements,
o=2a(l—e,cosv,); (114.)

the variables v, , e, are therefore functions of o, 7, a, and consequently the characteristic function
V, is itself a function of those three quantities. We may therefore put
_mymyw

= B
i (H?.)

’

\

w being a function of ¢, 7, a, of which the form is to be determined by eliminating v, , ¢, between
the three equations,

w=2Vpa(v,+e,sinv,),
o=2a(l—e, cosv,), (I3.)
r=2a(l—e)sinv ;

HMPII 18
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and we may consider this new function w as itself a characteristic function of elliptic motion;
the law of its variation being expressed as follows, in the notation of the present essay*:

Su= '8¢ — 'S0t + 7 — B'OB+ L', — y'ay+"‘3a (K2.)

In this expression, &, 7, { are the relative coordinates of the point m,, at the time ¢, referred to the
other attracting point m, as an origin, and to any three rectangular axes; £’, o', {’ are their rates
of increase, or the three rectangular components of final relative velocity; «, B, v, ', B’, ¥ are the
initial values, or values at the time zero, of these relative coordinates and components of relative
velocity; a is a quantity independent of the time, namely, the mean distance of the two points
my, My; and p is the sum of their masses. And all the properties of the undisturbed elliptic
motion of a planet or comet about the sun may be deduced in a new way, from the simplified
characteristic function w, by comparing its variation (K3 ) with the following other form,
_dw dw (13

in which we are to observe that
o=VE+pP+ P+ Val+ 4y, } (M3,)
T=+V(E-a)?+(—BP+ -y
By this comparison we are brought back to the general integral equations of the relative
motion of a binary system, (89.) and (90.); but we have now the following particular values for
the coefficients 4, B, C:
16w 13w 18w 18w 18w

g, o, il e joui 3
Cimd % o Wbt ok s ke

and with respect to the three partial differential coefficients, gw 88?: E;w , we have the following

relation between them:

dw dw dw w 5
a$+o$+7§~§’ (O ')

the function w being homogeneous of the dimension } with respect to the three quantities
a, o, 7; we have also, by (I3.),

dw [p  sinv, Sw_JE V1-e? (P2

a corv,—e,’

8¢ N a'e —cosv,’ &

and therefore '
dwdw  —2ur (Sw)z " (3_71_))2 p_ 4po Q%)

S0 87 o*—12" \8¢ ot a o?—7%
from which may be deduced the following remarkable expressions:

dw dw\® 4p p
(g"“g) .

“ot+7 @’
dw dw Ap p
( 8o 87) o—7 a
These expressions will be found to be important in the application of the present method to
the theory of elliptic motion.
I:S Hir mlm,Sa.]

2a?

(R?.)
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16. We shall not enter, on this occasion, into any details of such application; but we may
remark, that the circumstance of the characteristic function involving only the elliptic chord
and the sum of the extreme radii, (besides the mean distance and the sum of the masses,)
affords, by our general method, a new proof of the well-known theorem that the elliptic time
also depends on the same chord and sum of radii; and gives a new expression for the law of this
dependence, namely,*

_ 2a%dw

N
We may remark also, that the same form of the characteristic function of elliptic motion con-
ducts, by our general method, to the following curious, but not novel property, of the ellipse,
that if any two tangents be drawn to such a curve, from any common point outside, these
tangents subtend equal angles at one focus; they subtend also equal angles at the other.
Reciprocally, if any plane curve possess this property, when referred to a fixed point in its own
plane, which may be taken as the origin of polar coordinates r, 6, the curve must satisfy the
foillowing equation in mixed differences:

(S°%)

A6 1 d1
cotan(—E).A;=(A+2)d—0;, (115.)
which may be brought to the following form, :
d dd\1
(Eé+d_03);=o, (116.)
and therefore gives, by integration,
P (117.)

e 1+ecos(0——w),;
the curve is, consequently, a conic section, and the fixed point is one of its foci.
The properties of parabolic are included as limiting cases in those of elliptic motion, and
may be deduced from them by making
H,=0, or a=o0; (118.)
and therefore the characteristic function w and the time ¢, in parabolic as well as in elliptic
motion, are functions of the chord and of the sum of the radii. By thus making a infinite in the
foregoing expressions, we find, for parabolic motion, the partial differential equations
dw dw\? 4 dw dw\* 4
i) e e o )
and in fact the parabolic form of the simplified characteristic function w may easily be shown
to be
w=2Vu(WVo+rFVo—1), (U3.)
7 being, as before, the chord, and o the sum of the radii; while the analogous limit of the ex-

pression (S3.), for the time, is
t=6—\1/;_1.{(a+7)%¢(0—7)%}: (V3.)

which latter is a known expression.

* [Equation (S3.) is easily reducible to the well-known form of Lambert’s theorem. Cf. Whittaker, dnalytical
Dynamics (1927), p. 92.]
+ [This special case of Lambert’s theorem was given by Euler in 1742. Euler, Miscell. Berolin. Tome VIL.]

18-2
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The formule (K3.) and (L®.), to the comparison of which we have reduced the study of
elliptic motion, extend to hyperbolic motion also; and in any binary system, with Newton’s
law of attraction, the simplified characteristic function w may be expressed by the definite
integral*

Al Bl b ik 3
w—f_r i o 4a.d1, (W3.)

this function w being still connected with the relative action V, by the equation (H3.); while
the time ¢, which may always be deduced from this function, by the law of varying action, is
represented by this other connected integral,

pdf Tofum o By :
t—4j_,(a+7 4&) g il

provided that, within the extent of these integrations, the radical does not vanish nor become
infinite. When this condition is not satisfied, we may still express the simplified characteristic
function w, and the time ¢, by the following analogous integrals:

w=f ‘i g&—&da, ’ > (Ya)
r No a
and 3
=" (Eff_&) do,, (%)
r \0, &
in which we have put for abridgement
O g+
0, S (119.)

and in which it is easy to determine the signs of the radicals. But to treat fully of these various
transformations would carry us too far at present, for it is time to consider the properties of
systems with more points than two. p

On Systems of three Points, in general; and on their Characteristic Functions.

17. For any system of three points, the known differential equations of motion of the 2nd
order are included in the following formula:

my (€82, + Y 8y, + 71 821) + my (5 025 + Y5 8y, +25 625) } © (120.)
+mg (@3 85+ Y5 Oy 5 + 23 025) = 38U,

the known force-function U having the form
U = mymaf® D+ mymg fO + mymg f®9, (121.)
in which f@.2 f0.9 3 are functions respectively of the three following mutual distances of
the points of the system:
D=V () —29)2 + (Y — Y)? + (2 — 20)%,
U=V (@) —23)2 + (¥, — ¥5)* + (21— 23)%, (122.)
723 =V (g — 25)? + (Yo — Y5)* + (22— 23):

* [Cf. p. 48.]
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the known differential equations of motion are therefore, separately, for the point m,,
8702 Sf @9 ]

xl—m28 -l—m?,—8 ’

f(l 2) f(l ,3)
m +m,
— .

f(l ,2) f(l )

zl_‘m2 8 +m3 Sz ’
X

with six other analogous equations for the points m, and m,; z7, &c., denoting the component
accelerations of the three points m,, m,, m,, or the second differential coefficients of their co-
ordinates, taken with respect to the time. To integrate these equations is to assign, by their
means, nine relations between the time ¢, the three masses m,, m,, m;, the nine varying co-
ordinates z,, ¥, 21, %3, Ys, 2a, &3, Y3, 25, and their nine initial values and nine initial rates of
increase, which may be thus denoted, a,, b;, ¢;, @,, b,, ¢,, @3, bs, ¢35, a1, by, ¢y, a3, by, ¢35, ag,
by, c5. The known intermediate integral containing the law of living force, namely,

(123.)

Imy (@12 + 412+ 21%) + dmg (5% + 4 + 257) + dmg (25 + y3® + 257) (124.)
=My My fOD + My Mg fOD + mymg f &9 + H, X
gives the following initial relation:
Im, (@32 + 012+ ¢12) + dmy (@32 + b2 + ¢32) + dmyg (a2 + by + c3?) (125.)
=My Mo f 52 +mymy f§19 +mamg f§*% + H, :

in which f{t?, f(L3, f(%9 are composed of the initial coordinates, in the same manner as
fod, f@.3) 23 are composed of the final coordinates. If then we knew the nine final integrals of
the equations of motion of this ternary system, and combined them with the initial form (125.)
of the law of living force, we should have ten relations to determine the ten quantities ¢, a;, b1, ¢q,
aj,b;, ¢y, ay, bs, c;, namely, the time and the nine initial components of the velocities of the three
points, as functions of the nine final and nine initial coordinates, and of the quantity H, in-
volving also the masses; we could therefore determine whatever else depends on the manner
and time of motion of the system, from its initial to its final position, as a function of the same
extreme coordinates, and of H. In particular, we could determine the action V, or the accumu-
lated living force of the system, namely,

t i t
Vem, [ ey satdem [ @y andeem, [ @reo e, @)
; 0

as a function of these nineteen quantities, 2y, ¥;, 21, T3, ¥z, %, X3, Y3, 23, Gy, Oy, €1, A, by, g,
@y, by, ¢3, H; and might then calculate the variation of this function,

W s skt By BV V. )
BV =gy Bt b Bt et dbt By
+§f- 8x2+§28y2+ﬂ8z2+8v8 8VSb +8V
Sy Yy 02y da, 3¢, | (Bt
S T L E LAV Wab PLLEW
o, Al by W e T ey P, T T e
N4
+ 5778 ;
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But the law of varying action gives, previously, the following expression for this variation:
8V =m, (x1 82, — ayda, +y; 8y, — b3 8b, + 2182, — ¢ 8¢;)
+ My (5 00y — a3 80y + Y5 8Y 5 — by 8by + 25825 — 5 8C,)
+ Mg (0 025 — g Oag -+ Y5 8y — by 8by + 25 825 — c3 8¢)

+t3H;
and shows, therefore, that the research of all the intermediate and all the final integral equations,
of motion of the system, may be reduced, reciprocally, to the search and differentiation of this

one characteristic function V; because if we knew this one function, we should have the nine
intermediate integrals of the known differential equations, under the forms

14 Pt ) A L

. ’
=M%, §-=MY, gz—=m1z1:
1

(C4)

oz, o1
SV_ ’ SV__ ' SV_ ’ 4
E—mz%’ S_yz—mz?lza ng—mzzzs (D%)
B bt (SR S ) B o o)
B & 2L Sys‘msys, 8z3_m3z3’
and the nine final integrals under the forms
§Ij——m a; ﬂ7———m by §I—7~-—m ¢
8V v [ W o Deilkia 3 "
8T“.},——'n'l«‘,az, v —myby, g —MyCy, (E4)
§K——ma’ A bos: bq §I—,——mc’
Bag oo a2 Bbyaci ok ioBayd ettt

the auxiliary constant H being to be eliminated, and the time ¢ introduced, by this other
equation, which has often occurred in this essay,

3V
t= ‘S—E . (E.)
The same law of varying action suggests also a method of investigating the form of this
characteristic function ¥, not requiring the previous integration of the known equations of
motion; namely, the integration of a pair of partial differential equations connected with the
law of living force; which are

124 0W §Z)2+ 3_ 2 g SV \2 S_V)z S_V)ﬁ} .
2"7’1 {(8“’1) 7 (8?/1 (Sz } ¥ 2my {(8—“—’;) . (3?/:4 1 (322 (F4)

[t o {(Sx )2 (Sy ) (Sz )2} =my My fOD +mymg fO3 + mymg f@3 + H,

3 3 3, 3 1

and »

1 BV) ( ) } 1 SV) +(§K)2+(ﬂl)z} :

2m, {(8a1) L 8by 8¢, 2m2{(8a2 b, 3¢y (G4.)
AN TSR
* omg |\5as) T ol b 3+ mgm, &N
2mg {(8(13 dbg d¢q mymafy mlmiif 0 2 M3 [ )
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And to diminish the difficulty of thus determining the function ¥, which depends on 18 co-
ordinates, we may separate it, by principles already explained, into a part V, depending only
on the motion of the centre of gravity of the system, and determined by the formula (H.),
and another part V,, depending only on the relative motions of the points of the system about
this internal centre, and equal to the accumulated living force, connected with this relative
motion only. In this manner the difficulty is reduced to determining the relative action V,;
and if we introduce the relative coordinates

Dmpia g LB/ ) Bt tipels §1=z1—z3,} (126.)

E2=T3—%3, My=Ys—Y3, L2=%—2, 4

and oy =a;—as, P;=b—bs, ‘)’1=01_63’} (127.)
Uy=0y—a3, Pa=by—by, yy=Cy—c;, .

we easily find, by the principles of the tenth and following numbers, that the function V, may
be considered as depending only on these relative coordinates, and on a quantity H, analogous
to H (besides the masses of the system); and that it must satisfy two partial differential equa-
tions, analogous to (F*.) and (G%.), namely,

1 ((SV\R (SV\E (V%) 1 ({SV)\E (SV)\? (SV)?
s 52) + () *(a) }ram ) + () + ()}

NS AN A AT
2mg (\3&, 8¢, oy Oy 8Ly 8Ly \
=My My fO D+ my mg fO3 + mymy &9+ H 5 /

1 ([SV\R (SV\B (SV\R) 1 ((V)\2 (SV\* (8V\2
a3 *(65) +(55) | ma5e) +(a5) +(5)
)
2mg (\Oat; * Oaty 6By 6B, Oy, dys
=My My f§ 2 +mymg f§2 +moms f§* + H - :

and

the law of the variation of this function being, by (Z*.),
8V, =t8H , +my (£18¢, — o Sy + 13 8my — B1 8By + £33, — v1971))
+ My (€5,8€, — oy S0ty + 13 89 — B30y + L5805 — v5 y3) l
j(mlfi +mig€y) (M 8¢ +my8E,) — (my oty + My ory) (M Soty +mgdary)
+ (my 3 +Mgm3) (Mg 8y + My 8ng) — (my By +my By) (M1 3B +my3P,) |
+ (my L+ my L) (my 8, 4+ my 8L,) — (myyy +myys) (my Sy; 4+ mydy,) J
which resolves itself in the same manner as before into the six intermediate and six final
integrals of relative motion, namely, into the following equations:

(K4)
A R
my +my+mg l

_1_8_13__‘ L L m1££+mg§. _]'_SVI= I_ml§i+m2§é_
my & ' mytmgtmy mydEy TP my+mgt+my’
,1_§Z'_= ’ ml")i"'mZ")_é. iS_V,_ r_””ﬂli"‘mz")é. (L4)

my Ony Yomytmytmy’ madn, 0 my+myt+mg’
L, mbtml L, mltml
mydl ' mytmgt+my mydly 2omy+mg+mg’
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=18V, , moy+mgay —13V, ,— My oy +Myoty )
and =y ——2__22, g 11 23
‘my Sy My+Mg+Mmy My S0ty my+ My +mg
3.9V, M Bt myfs gt A 3 , My Bitmyfy [ (M%)
my 8By Tt mytmytmg my 8By 2 myt+my+my
—Aor, L myyitmey, =18V, ,  myyi+mays
my 3’)’1 Lomgtmatmg’ my Sy, P mytmg+my’
which must be combined with our old formula,
sV
L = . 1.
=t (or)

18. The quantity H, in V,, and the analogous quantity H, in V,, are indeed independent
of the time, and do not vary in the course of the motion; but it is required by the spirit of our
method, that in deducing the absolute action or original characteristic function V from the
two parts ¥, and V,, we should consider these two parts H, and H, of the original quantity #,
as functions involving each the nine initial and nine final coordinates of the points of the
ternary system; the forms of these two functlons of the eighteen coordinates and of H, being
determined by the two conditions,

SV, _ 9V, it "
S_H—:—S—H—”, H,+.H”—H- (N ')

However, it results from these conditions, that in taking the variation of the whole original
function V, of the first order, with respect to the eighteen coordinates, we may treat the two
auxiliary quantities /, and H, as constant; and therefore that we have the following expressions
for the partial differential coefficients of the first order of V, taken with respect to the coordinates
parallel to x,

3V 3V, m, 3V, 3V 81 my 3V, )

dx, 8,  my+my+myda,’ da, Oduy  my+my+myda,’

AL AR T/ SV Ol o oty oy OV, (0%.)
dxy Of, mMy+my+mydz,’ da, OSay my+my+myda,’ E
VW, W, m W W m W,

dxy 8¢ 8& my+ma+mydx,’ Sag  Say By my+my+myda,’

together with analogous expressions for the partial differential coefficients of the same order,
taken with respect to the other coordinates. Substituting these expressions in the equations of
the form (0.), namely, in the following,

BV _ 3V 8V 8V 8V 8V _ )
8w,  Ory  Oxg Oa, Oay O@z
SV SV SV 5V SV sV )
Bs | By By B0, T 8by T Bby i
4 8V+8V+8V N4 8V ot
8z, Oz, Oz 802 808 oy
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we find that these equations become identical, because

v, &, . &, o, v, &,
Yt e @4

But substituting, in like manner, the expressions (0%.) in the equations of the form (P.), of
which the first is, for a ternary system,

DV B W o BV Y B
150, yle 2545 y28x +x3@; y38x3

4
o SVbSV SVbSV as—zbi' o)
N5p, " 150, T P2 5h, "2 5a, T 5h, % Sa;
and observing that we have
o, 7, o, -b %=O, (S%.)

x”?o‘?,,_y”ﬁ-i-a”ST” "Sa,

along with two other analogous conditions, we find that the part V,, or the characteristic
function of relative motion of the ternary system, must satisfy the three following conditions,
involving its partial differential coefficients of the first order and in the first degree,

CRSE | ] &V, &V, &V, &V, )
0—£1871_n18_«f1+528 7]28§+ 18/3 ﬁlsa'l' ZSB /328“2
&, , 98, A, . b Ok o Gos o P [
0=m§§—_€18_+%§f—2;2874-/315_,71%-“32537_”8_/32’
&, &V, v, &V,

zlag flsc 5235 528{ i3y oy, T80y “5y,)

(T*)

which show that this function can depend only on the shape and size of a pentagon, not generally
plane, formed by the point m, considered as fixed, and by the initial and final positions of the
other two points m, and m,; for example, the pentagon, of which the corners are, in order,
mg, (My), (My), My, my; (m,) and (m,) denoting the initial positions of the points m, and m,, referred
to m, as a fixed origin. The shape and size of this pentagon may be determined by the ten
mutual distances of its five points, that is, by the five sides and five diagonals, which may be
thus denoted:

mg (my) =V'sy, (my) (mg) =V, (M) my="V s, mymy=V's,, mymy="Vsg, } (128.)
mg (m2)=\/d_1, (ml)m2=\/c72, (mz)m1=\/d_3, m2m3=\/d—4, my (m1)=\/d—5;

the values of s,, ... d5 as functions of the twelve relative coordinates being

sy=oi+ Bi+71, 32=(“2—°‘1)2+(Bz".31)2+(Yz“‘)ﬁ)za‘
83=(&;— —Ba)? + (La—72)%
=8+n1+8, s=(— fz ( 7g)? +(C1 L)% { (129.)
di=a3+B3+7v3, da=({— “1)2 :81) =wd%, b
dy=(§1— )+ ("11 B2)? + (C1 v2)%
di=8+m3+8, ds=(é1—) + (=B +(L—7)?)

HMPII 19
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146 II. GENERAL METHOD IN DYNAMICS [18

These ten distances \/8—1, &ec., are not, however, all independent, but are connected by one
equation of condition, namely,*

0=s3s? +8383 + 8382 +8382 +8283 )
+s1d3 +83dj +s3d} +sjd} +83d3
+d3d} +d3d3 +d3d; +did? +d2d}
—28%8,8, —2838,85 —28%3858, —2838,8, —2528,8
—28%8,dy —2838,d, —283s;d; —2s3s,d, —282s,d,
—26%8,dy —28385d, —2838,dy —2s838,d, —28383d,

—28,dyd3 —28,dyd} —28yd,d} —28,d5di —2s;d,d}
—28,d3d, —2s,did; —28,d3d, —2s,did, —2szd3d,
—2d,d3d, —2d,d3d, —2dydid; —2d,did, —2dsdid,
—48,8,8,dy —48,8,85d, —483858,dy —4848,85d; —4858,83d,
—48,dydyd, —48ydydydy —48yd,dsd, —48,d5d,dy —485d,dydy
—28,8,8,d, —28,838,d5 —2838,85dy —28,858,dy —2858,8,d3
— 28,830, dy — 28,8, dydy — 28385d5dy —28,8,dyd5 — 28585d5d, L
—28,d,dydy —28,dyd,d; —285d5dsdy —28,d,dydy —285d5dyd, (130.)
+28,89838, +289838,8; +2838,858; + 28,858,185 +2858,8,83
+28,8,8,d; +28,8385d, +2858,8,d5 +28,858,d; +2858,83d,
+28,838,d;y +28,8,85dy +285858,dy +28,8,8,d, + 285858505
+28,8ydgdy +28585d,dy +28;38,d5d, +28,85d,dy +2858,dydy
+28,83dody +2858,dsdy +28585d,ds + 28,8, d5dy +238;8,d,d,y
+28,8,d,dy +28,85dydy + 2838, d3d, + 28,8ydydy + 28583d5d,
+28,84d,dy + 28585dydy + 2838, dydy +28,85dydy +2858;3d5d,
+28,8,dydy +28585dydy +2858,d,dy5 +28,8d5dy + 28585d,dy
+28,8,dgdy + 28,85d,ds + 2858, d5dy +28,8d,dy +28585dydy
+28,dydydy + 285dydydy +285d3d,dy + 28,dydsdy +285d5d, dy

+ 28, dgdyds + 28,d,dgdy + 285d5dydy + 284d,dydy +285dydsd,y
+2dydydydy + 2dydydydy + 2dydydsd, + 2dydsdy dy + 2d5dy dydy; |

they may therefore be expressed as functions of nine independent quantities; for example, of
four lines and five angles, 70, {0, 7®, 7(®, 6O, 6V, 6@, 6§, ¢, on which they depend as follows:

* [This is the relation connccting the distances of five points in space. It can be written more symmetrically
in determinant form (cf. Salmon, Geometry of three Dimensions (1914), p. 47).

(T - e M ML A I L
TEORY g M P s By
I gt 0y, 8y,
L s oy, N0, S5 A ey
el neg, ey o 1A S dy
1,00y dy, 08, gy 0
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18, 19] II. GENERAL METHOD IN DYNAMICS 147

— (D2
Sy =lgets

8y =1D2 4 (D2 2r D1 (cos B cos O? + sin OV sin 0§ cos ),
83 =124 (A2 _ 2/ A7( cos (6@ — 6§2),

8, =124 12 _ 294D (cos 6D cos 6P + sin P sin 6P cos t),

8; =703,

dy =72 4 p 12 _ 2@ (D (cos 0P cos OV + sin 0P sin OV cos 1),
dy=7{D2 4702 _ 2r (D7D (cos B cos §V + sin ¥ sin 6V cos ¢),
d,=r®3

dy =712 4 r{12 _ 20y cos (6P — 6{Y),

¢ (131).

J

the two line-symbols 7, #® denoting, for abridgement, the same two final radii vectores which
were before denoted by 7®:3), 723 and r{V, r{» representing the initial values of these radii;
while 60, 6®, 6V, 6 are angles made by these four radii, with the line of intersection of the two
planes r{V7®, r{?r®; and ¢ is the inclination of those two planes to each other. We may therefore
consider the characteristic function V, of relative motion, for any ternary system, as depending
only on these latter lines and angles, along with the quantity H, .

The reasoning which it has been thought useful to develope here, for any system of three
points, attracting or repelling one another according to any functions of their distances, was
alluded to, under a more general form, in the twelfth number of this essay; and shows, for
example, that the characteristic function of relative motion in & system of four such points,
depends on the shape and size of a heptagon, and therefore only on the mutual distances of its
X6

2
leaving only fifteen independent. It is easy to extend these remarks to any multiple system.

seven corners, which are in number ( = ) 21, but are connected by six equations of condition,

.General method of improving an approximate expression for the Characteristic
Function of motion of a System in any Problem of Dynamics.

19. The partial differential equation (F.), which the characteristic function V must satisfy,
in every dynamical question, may receive some useful general transformations, by the separa-
tion of this function ¥V into any two parts

Vl + I’z = V- (U4-)
For if we establish, for abridgement, the two following equations of definition,
2 2 2
' 2m |\ oz Sy oz (V1)
Carte et L (A G CUAY J
n-2g (&) +(5) (&) )
analogous to the relation
1 ((3V\2 (3V\? (87?2
SR BT il el "
7-2. 5 {(5e) * () +(&) | s
19-2
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which served to transform the law of living force into the partial differential equation (F.); we
shall have, by (U4.),
oV, 8V, &V 8V, &V,8V, ;
P=rp — |22 -

i Tat %, (Sx s T s = Sz) s
and this expression may be further transformed by the help of the formula (C.), or by the law
of varying action. For that law gives the following symbolic equation,

1875 V5 V3 _d
m\8x 8z ' Sy dy ' Oz 6z) dt’
the symbols in both members being prefixed to any one function of the varying coordinates of
a system, not expressly mvolvmg the time; it gives therefore by (U%.), (V4.),
3V, 8V, 3V 8V, 8V ,8V,\ dV, "
od (Sx {7 *rar Sz) el o
In this manner we find the following general and rigorous transformation of the equation (F.),
ay,
=TT+ Ty (A%)
T being here retained for the sake of symmetry and conciseness, instead of the equal expression
U + H. And if we suppose, as we may, that the part V;, like the whole function V, is chosen so
as to vanish with the time, then the other part V, will also have that property, and may be

expressed by the definite integral,
¢
Vz=f (T =Ty + Ty dt. (B%.)
0

(Y4)

More generally, if we employ the principles of the seventh number, and introduce any 3n
marks 1, , 9, ... 13, , of the varying positions of the n points of any system, (whether they be the
rectangular coordinates themselves, or any functions of them,) we shall have

3V oV 8V
T= F( 3 ——) e,
ony’ 8”)2 O13n, e
and may establish by analogy the two following equations of definition,
TI—F(SV A g SVI)’
8171 81)2 87]8n (Db)
ry-2(2, ... 22) '
A Oy’ Omy’ T Oy’

the function F being always rational and integer, and homogeneous of the second dimension;
and being therefore such that (besides other properties)

3T, oV, 8T, 3V, 8T, &V,
T=T,4+T+ e LT Rt Wi 18 Es,
W A s Va8, SV by 5 91 Ongn P
8"71 3”72 8"73"
3T | 31\ 8T S ST, L A% ¥
VAR A A A A A it
oy, Ony  Omy gy Oy, Omay
and
8T, 8V, T, 8V, 8T, SV,
—_i = A — —=2T,. Gs,
VAR A TR/ e
8”’71 8"72 "8"7_311
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19] II. GENERAL METHOD IN DYNAMICS 149

By the principles of the eighth number, we have also,
s R 3T ;

Sy =M Fp=" - TF7 = ens (H?3.)
d— d— S—
oy 01, 13p,
and since the meanings of 77, ... 3, give evidently the symbolical equation,
, , 8 M .
ﬂls_m+ﬂz§7—)‘2+---+ﬂan T )

we see that the equation (AS.) still holds with the present more general marks of position of a
moving system, and gives still the expression (B®.), supposing only, as before, that the two parts
of the whole characteristic function are chosen so as to vanish with the time.

It may not at first sight appear, that this rigorous transformation (B%.), of the partial
differential equation (F.), or of the analogous equation (T.) with coordinates not rectangular,
is likely to assist much in discovering the form of the part V, of the characteristic function V,
(the other part V; being supposed to have been previously assumed ;) because it involves under
the sign of integration, in the term 7, the partial differential coefficients of the sought part V,.
But if we observe that these unknown coefficients enter only by their squares and products, we
shall perceive that it offers a general method of improving an approximation in any problem
of dynamics. For if the first part V; be an approximate value of the whole sought function V,
the second part ¥, will be small, and the term 7', will not only be also small, but will be in
general of a higher order of smallness; we shall therefore in general improve an approximate
value V; of the characteristic function V, by adding to it the definite integral,

£ »
h= |, @-1yas (K5.)

though this is not, like (B®.), a perfectly rigorous expression for the remaining part of the
function. And in calculating this integral (K?.), for the improvement of an approximation V;,
we may employ the following analogous approximations to the rigorous formule (D.) and (E.),

8—Vl=—m a"%=—m ay; EI—/v3=—-m a;

da, iy i e Sy

o i, Wy ) o o &

S—bl— —mlbl, S—bz— —m2b2, eee 'ST"’— —'mnbn, (L .)

8———Vl—.—m ¢ 8—Vl——m cl: Sia ¢

96 L e 2 TR TS B

and A

kT 5
ﬁ—t, (Ms.)

or with any other marks of final and initial position, (instead of rectangular coordinates,) the
following approximate forms of the rigorous equations (S.),
OV, . 80y OV, 8T, &, 8T,
Se; 8¢y’ Bey 8¢y T Bey,  Oeg,
together with the formula (M?®.); by which new formule the manner of motion of the system
is approximately though not rigorously expressed.

(N®.)
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150 II. GENERAL METHOD IN DYNAMICS [19, 20

It is easy to extend these remarks to problems of relative motion, and to show that in such
problems we have the rigorous transformation

t
Va= [ @ ~Tat T (0%)
0
and the approximate expression
t
Va= [ @, -Ta, @)
0

V,, being any approximate value of the function V, of relative motion, and V,, being the
correction of this value; and 7',;, 7',,, being homogeneous functions of the second dimension,
composed of the partial differential coefficients of these two partsV,;,V,,, in the same way as
T, is composed of the coefficients of the whole functionV,. These general remarks may usefully

be illustrated by a particular but extensive application.

Application of the foregoing method to the case of a Ternary or Multiple System,
with any laws of attraction or repulsion, and with one predominant mass.

20. The value (68.), for the relative living force 27, of a system, reduces itself successively
to the following parts, 27'®, 27'®, ... 27 "1, when we suppose that all the n— 1 first masses
vanish, with the exception of each successively; namely, to the part

mym
@y 2L o SRR WG Mg ;
27 m1+mn(§1 +02+ 4%, (132.)
when only m,, m,,, do not vanish; the part
MM,
o = 27 (g1 ' 2 i
2T m2+mn(52 +n3°+ §%), (133.)

when all but m,, m,,, vanish; and so on, as far as the part

e (Gl L), (134)
which remains, when only the two last masses are retained. The sum of these n — 1 parts is not,
in general, equal to the whole relative living force 27, of the system, with all the » masses
retained; but it differs little from that whole when the first n — 1 masses are small in comparison
with the last mass m,,; for the rigorous value of this difference is, by (68.), and by (132 ) (133.)

(134.),*
2T, — 2T® _2T'® — ., — 9T -1 — 2’”1(T<1) T)+2m2(Tﬂ> Ty . ap=ad

2 - —

2m,‘_l (To-D_1T)

+ 77” Z, .mym{(€; — &)* + (i —mi)*+ (Cé -G (135.)

an expression which is small of the second order when the » — 1 first masses are small of the first
order. If, then, we denote by V®, V@, ... ¥V ®-D, the relative actions, or accumulated relative
[22' RO~ m ({4 1) = Tl mmy (€t

S ,'_n; zfm'T5')+2Z,T§')=1;L; (E,m,.) T,+2T’TE E/m‘mk [(E‘—'ék)s+ L --.].]
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20] II. GENERAL METHOD IN DYNAMICS 151

living forces, such as they would be in the n — 1 binary systems, (m, m,,), (mym,,), ... (m,_, m,),
without the perturbations of the other small masses of the entire multiple system of » points;
so that

yo_ f ‘aroa, vo f ‘oredr, ... yon- f ‘amn-gy, Q%)
0 0 0
the perturbations being neglected in calculating these n — 1 definite integrals; we shall have, as

an approximate value for the whole relative action V, of the system, the sum V,, of its values
for these separate binary systems,

Vi=VO4+V®+.. .+ V0D, (R®.)

This sum, by our theory of binary systems, may be otherwise expressed as follows:

_mym, w®  mym, w® Myy_y M, WD
i o ) e vt
3 my 7k my, my * my, My, 1y my,

) (S°%)

if we put for abridgement :

1)
w® = {0 YO 4 f e 7' D,
ro®

2)

7
w®=hDY® 4. f ol 20T, | (T5.)
0
coes i
w®—D = pn-1) §(n—1) a4 f '(n=1) Jp(n-1),
7'0("_1)

In this expression,

: R
rO= & [20m,+m,) 0+ 20

(U%)

pn—1)?
r'*—D= 4 J 2 (Mg +my) fOV+ 200 —

7@, ... #n-D being abridged expressions for the distances #1®, ... ¥*=1m and fO, ... f-D being
abridgements for the functions f@m, ... f®—L™, of these distances, of which the derivatives,
according as they are negative or positive, express the laws of attraction or repulsion: we have
also introduced 27 — 2 auxiliary quantities A0, g®, ... k"1, gD, to be eliminated or determined
by the following equations of condition:*

N

D §p/ (1)
a1 —dr®
g +f ro® AWM e
e or'®
= —dr®
0_3(2)+f70<2> SH® dr®, \ (V5.)
p(n—1) 8,’.'(7;—-1)
— 9(n—1 Esikd o -
g )+f ron— SA™—D whif J

* [The equations (V5.), (X5.) are obtained by equating to zero the partial derivatives of V' with respect to the
arbitrary constants A®, g, For this method of obtaining the characteristic function see Appendix, Note 2, p. 613.]

Sty s Sl
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and

or

along with this last condition,

my g

7 Jp(2) 71 Jp(n—1)
fro(a) ?’(2—) = J;. (n-1) 9’ 7 (n-1)°
dufd  duw® dum—1
SgD T §g@® T gD
myg® myg® My 19("—1) H

My +m, my+m, mg+m,

and we have denoted by 9O, ...

n_1+m m

II. GENERAL METHOD IN DYNAMICS

D gy
7o W e

et 273

3

9D the angles which the final distances »®, ...

[20

(We.)

(X3.)

(Y5)

r(n—l)’

of the first »—1 points from the last or nth point of the system, make respectively with

the initial distances corresponding, namely, r§Y, ...

by (8%.),

oV, =

mym,, Sw®

mym,, Su'®

my+m,

m2+mn

~1
m,,_ym,, dSwmD
My *h my,

3

r§®D, The variation of the sum V,, is,

(Z°.)

in which, by the equations of condition, we may treat all the auxiliary quantities 2D, g, ..
h=D, gn=D ag constant, if H, be considered as given: so that the part of this variation 8V,
which depends on the variations of the final relative coordinates, may be put under the

form,

86,71,{17/1:

mymy,

du®

myM,

My +M,,

My—1 mn

my +m,

Sw®
(%,
Sw®@
( 0,

My T m,,

Sufn—D
( Sf n—1

8¢, +

dny

dw®@

8f2+'__

8§ n—l

3,

3,

g
sgz)
| B,

b‘w(l)
8{1)
Sw( )
8y
Snn— 87711—1

Sufn—D
8cn-—l

sy )

(A%)

By the equations (T5.), (US.), or by the theory of binary systems, we have, rigorously,

(5.)

(5.

S0\
i (8—_) e
"

2 8/w(2) 2
6 (T) *
M2

Su®\?
(e
Sus®\2
(3

Sun—D)
( 8gn—l

4

Swn—1\2 Swn—1\2
)+

87]7:—1 Scn—l

) =2 mt )+ 200

) = 20my-t ) -+ 200

) =2 (m,,_y +m,,) fO0 42D

N

- {B*.)

J

and the rigorous law of relative living force for the whole multiple system is

T,=U+H,,

in which

U=m, (mfO+mof®+...+m, fOD)+ 2 . m;myf@",

www.rcin.org.pl
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1/1 1) ([SV)\® (5V\2 (SV )2 \
g 7, =3 ms ) 162) + () ()}
(g ) 38) + (5 (a2 1+
2\my,  m,) (\3&, Oy 3¢,
) () ()|
2\m,_y m,) (\0&, 4 Mp—1 Pon-1
1y (ﬁﬂ+§’_¥+ﬂi)
: Sfisfk 8’7i8’7k 3§i3§k

We have therefore, by changing in this last expression the coefficients of the characteristic
function V, to those of its first part V ;, and by attending to the foregoing equations,f

e el
My, +mym, +my\ 8; 8¢, ~ Oy dmy, 8L 8L ) ;

(DS).

J

T.,=m,2, . mfO+H,+m,Z,.

and consequently

T/ = T/1=z/ - MMy {f(i’k)—

e U (I it S0 i,
(Mg +mg) (i +my) \ O, 865~ Omy Omy - 8Ly 8 /)T T
The general transformation of the foregoing number gives therefore, rigorously, for the

remaining part V,, of the characteristic function V, of relative motion of the multiple system,
the equation

¢ Bu®u | 55 SutdSu
t T N W oL, &L
V,z=jo T,2dt+Z, .mgmy | 1 f&P— 2 ?fk O O B by dt;  (G%)
; ) (m+my)
* [From (X1), p. 126 we have X,m¢ = SV' and hence 5‘—LZZ'+ z, 8;;' Consequently the
i

5

3V, 1 3V,
THY <a§‘) g (5 3¢ » o]
+ [T, is formed from (DS.) by replacing V, by V,,. For the binary system composed of the points m;, m, we
have

expression (69) for 7', gives

@O MM srg | s g2 (o plidl Tl ALY
2TI _m‘+mn(fi +ni + ¢ )s V m. +mnw(

v mym, g, & ow®

o¢;  my+my, T o¢;°’

L : VN2  foV @ oV 2 mym, |[/ow® @ Sw\ 2 . .

21,§')=m,+m,l {( ; ) ( > / ) }=_z_n ( > ( ( > }=2mim"f<a)+2H,-)’
m;My, 0¢; P on; t ( 0L; me+m, \\ 0, g )

Mg+ My s
where ———" H{®=g®,
MMy

From equations (X1.), p. 126,

\

m¢+m,,[(aV“)\2 <3V(') (3[/«)):, 6V">6V"> aVH oV e aymgy(k)}
mﬂ

Th=1%%, agi % o o | W O

myMy, 0% / 9¢;
i D ow®  ouwd du®
b mymy [ (OwO\? <aﬂ <aw«) mymy {31/)( ) aw<k)+aw< L }
—%z'mi‘*'mn {< 6&) 3"){) & [2¢ ) +m"):'(mn+mi) (mp+my) | 06; 0& O A
B fOLEE..., T, =S mmy f&0 +H,, ete.]
HMPII a5
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and, approximately, the expression
¥ 1 ! y!
V=5, mom [ Lp0— L € mim ity |t (=)

with which last expression we may combine the following approximate formule belonging in

rigour to binary systems only,
Suw® o< Sw® du®

A =iaa iy =, 1.
S TR i i
v O RO NG - B NN ¢
“i—_—sa—i’ Bi——‘gg:: Yi——s—,yi: (K2
: du®
and t=w . (Lc.)

We have also, rigorously, for binary systems, the following differential equations of motion
of the second order,

v_ Sy 8f® e of @, 6
fi—(mn'l‘mi)'gf:, "Ii—(mn'l'mi)'&,)—i, :i—(mn+mi)8—;i’ (MS.)
which enable us to transform in various ways the approximate expression (H®.). Thus, in the

case of a ternary system, with any laws of attraction or repulsion, but with one predominant
mass my, the disturbing part V,, of the characteristic function V, of relative motion, may be put

under the form Vy=mymy W, (N¢.)
in which the coefficient W may approximately be expressed as follows:
. %
W= [ [ @t it} (0°)
@ ® ) \
or thus:* f (f(l A4+¢, 8f + sz +4, of )
dn, 8¢, k (P5.)
( ¢ swm 8w(1) 20,300, B " Sut® Swm) :
i s AR A A
f(2> f(z) 5f@
or finally, W= f (f‘l 2)+§1 7 5, +¢ 57 )dt
2 : 6
1 3w<2> Su® B S S Suf® * Q)
(B, T, UG Yo, A )

In general, for a multiple system, we may put
K2=2 m;my, W(i’k); (Rs‘)
_ 3@ D Bf®
W(t,k)_f (f(t )y §k f ")kaf +L, ng‘) ‘ |
8w<7 duw®  du® Suw'® w“’ du®
(fk 5, ﬂk—3—+§kY ® Sy +Biesg- 5. T 5y, )

or W8 = f ( f@R 4 Sf (k) Sf 2 +4 of (k)) ‘
Sf Sck L (Te )
1 Sw® w<") dw®  du® Su®  Suw® i
= (5 g T oy RS, )

* [Integrating by parts.]

and approximately,

(8°%)
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Rigorous transition from the theory of Binary to that of Multiple Systems, by means
of the disturbing part of the whole Characteristic Function; and approximate
expressions for the perturbations.

21. The three equations (K®.) when the auxiliary constant ¢ is eliminated by the formula
(L8.) are rigorously (by our theory) the three final integrals of the three known equations of the
second order (M®.), for the relative motion of the binary system (m; m,); and give, for such a
system, the three varying relative coordinates &;, n;, {;, as functions of their initial values
and initial rates of increase o;, B;, v, @i, Bi, vi, and of the time ¢. In like manner the three
equations (I°.), when g®is eliminated by (LS.), are rigorously the three intermediate integrals of
the same known differential equations of motion of the same binary system. These integrals,
however, cease to be rigorous when we introduce the perturbations of the relative motion of
this partial or binary system (m,;m,,), arising from the attractions or repulsions of the other
points m;,, of the whole proposed multiple system; but they may be corrected and rendered
rigorous by employing the remaining part V,, of the whole characteristic function of relative
motion V,, along with the principal part of approximate valueV ;.

The equations (X.), (Y.) of the twelfth number give rigorously

1 it il et ) Tooleat IV L Mol {001 el ten) '
! bt e e R —— AR i 6
gi my; 8{_-1"*' z/ Sf i A ms 87h+mnz, 31),,:’ gz m. 8§z+ 2, 8{ (U )
and
O § . saesy B i Ml Lol ke, LW .
T mbe iy By P mgp T, R T Ty T sy V)
and therefore, by (AS.),
e v, 1,
8; T my+m, 88  m,; O ' 3¢’
S, Wiy LB ™ @K 4 o 1y BV | k
Bng 8 z”.mk'i'mn on My Oy _m_nz'ﬁ’ s
Si(i)_gf_z L _M_}_%_iz Vs
8L TS mykm, 8T, m 8L m, Y
and similarly
Sw® my, Sw® 1 8V,2 oV,5 1
Sot; _ai+z”'mk+mn$,: m; 80:”~ m, Z’ oty ’
Suw'® my  Sw® 18V, 1 _ &, s
TR P R 5By Tm B, Tmy o 5B, -
dw® my,  Suw® 18V, 3V,
TSy T I Sy T by, T, T 8y

the sign of summation X, referring only to the disturbing masses m;,, to the exclusion of m; and
m,,; and these equations (W*.), (X¢.) are the rigorous formule, corresponding to the approximate
relations (I¢.), (K®.). In like manner, the formula (L8.) for the time of motion in a binary system,
which is only an approximation when the system is considered as multiple, may be rigorously
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corrected for perturbation by adding to it an analogous term deduced from the disturbing part
V,, of the whole characteristic function; that is, by changing it to the following:
_duw® &V,

t—w'f'af, %)

which gives, for this other coefficient of v, the corrected and rigorous expression

SO W,

o= (Z8.)

V,, being here supposed so chosen as to be rigorously the correction of V. If therefore by the
theory of binary systems, or by eliminating g between the four equations (K¢.) (LS.), we have
deduced expressions for the three varying relative coordinates &;, »;, {; as functions of the
time ¢, and of the six initial quantities o;, B;, v;, «i, B, ¥i» Which may be thus denoted,

§i=y (2, B‘i"}’i’“:i’ ﬁé"}’%’t)’
’7i=¢2(°‘i’Bi,')’i’a:t’ﬂ"t")';atL (A7)
§i=¢3(“i’ﬂ_iv7i:°‘£’Bé"}’;::t); :

we shall know that the following relations are rigorously and identically true,*

A, ( 8 o .. 8w<‘7) !
=Pl %5 PisVis aai: Sﬂi’ —_8—71'—, 89(1') ’
(ol 1 B 0t

M= Pa| %5 Pis Vi Sai ’ Sﬁt’ 87{ ) Sg(i) ’

Sw® Sw@® Sw® S
bmta (<P 50 =3 oy )

and consequently that these relations will still be rigorously true when we substitute for the
four coefficients of w? their rigorous values (X¢.) and (Z°.) for the case of a multiple system. We
may thus retain in rigour for any multiple system the final integrals (A?.) of the motion of a
binary system, if only we add to the initial components «;, B}, y; of relative velocity, and to
the time ¢, the following perturbational terms:

my Sw® 18V, 1.8, )

(B".)

. g

my+m, S, m; Sy M, ' Oy’
my, Sw® 18V, 1 8V,

Ao;=2

"

ABi=%,. o t— <2 +—Z, L2t .
Byt 5B Ty 5B, T my O, 5
m Sw® 1 8V 1 b4
Ay;=Z,. ko et B 2
4 my+m, Sy,  m; dy; m, 'Oy )
and :

__, .
At= — SH - (D7)

* [Otherwise we would get one or more equations connecting the initial and final points. Of course when
the rigorous values are substituted, &;, »;, {; denote the actual coordinates at the time ¢.]
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In the same way, if the theory of binary systems, or the elimination of g between the four
equations (I6.) (LS.), has given three intermediate integrals, of the form
Ei=y1(Eismis Lis 2, Bis v 1),
1];='I’8(££JTH’ ;p“t: ﬁ(!?i!t): (E7)
L= (e, 45 Lir i By Vi t),
we can conclude that the following equations are rigorous and identical,

i)
8;‘%0_';'1(&”?{!Zi’aixﬁi’?’iissl;{))

1)
?’: =ty (ft!"?h&;“vﬁi!?ﬂ%ﬁﬁ) (F7.)

i)
85%—#13(&,1)‘,l:‘,a‘,ﬂ‘,yi,ssl;{,(‘))

and must therefore be still true, when, in passing to a multiple system, we change the coefficients
of w® to their rigorous values (W%.) (Z¢.). The three intermediate integrals (E?.) of the motion
of a binary system may therefore be adapted rigorously to the case of a multiple system, by
first adding to the time ¢ the perturbational term (D?.), and afterwards adding to the resulting
values of the final components of relative velocity the terms

my  Su® 1V, Eav,,

aghl, i Yo, Sl 1 5
=, e 5 Ty 5, 5%,
my  Sw® 187, oV
A '=E'. ke e, A = 7 '} | G'J'-
sy My +my, Smy My 8ng "8, Sun
m, Sw® 18V, oV
Al=3, B oo o "+ B e
=2 et m, 80y Tmy 8L, Ty 8L,

22. To derive now, from these rigorous results, some useful approximate expressions, we
shall neglect, in the perturbations, the terms which are of the second order, with respect to the
small masses of the system, and with respect to the constant 2/, of relative living force, which
is easily seen to be small of the same order as the masses: and then the perturbations of the
coordinates, deduced by the method that has been explained, become

A= S‘f‘A +3§‘AH+S£‘A Sa‘i‘m

A= g”f T4 OB+ 5T Ak A ()
8 ) b 3
ALi=5 C‘A +8§‘ ABi+ Bi‘A + Si‘m
in which we may employ, instead of the rigorous values (C7.) for Ax;, AB;, Ay}, the following
approximate values:

my, duw® 1 8V,
Ao E B et
W "m, Sak) my dotg
mysuf 1,5
AR, 5B, T my 3,
Ayi=3 mk&wf 18V,

"_’”: Syk m‘.gy.:,

1)
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158 II. GENERAL METHOD IN DYNAMICS [22

To calculate the four coefficients
Ve 0V 8,y g
da;’ 8By By’ S_H,’
which enter into the values (I7.) (D?.), we may consider V ,,, by (R®.) (T%.), and by the theory of
binary systems, as a function of the initial and final relative coordinates, and initial components
of relative velocities, involving also expressly the time ¢, and the n — 2 auxiliary quantities of
the form g®; and then we are to consider those initial components and auxiliary quantities and
the time, as depending themselves on the initial and final coordinates, and on H,. But it is not
difficult to prove, by the foregoing principles, that when ¢ and ¢® are thus considered, their

variations are, in the present order of approximation,*

)
g (zigf) 3 %%HSH,
i 7
8t y ST (K7.)
,om (gg—z
Sk -1 Swk)

and Sg(k) = (8g(k)2) (St b 8, E’m) ’ (L7.)

the sign of variation 3, referring only to the initial and final coordinates; and also that
S, 3w 8§¢ 3%uw® 85, 3w ® 3¢, (M)

8% Bt ~ 8,59 5o, | 3B,5g 058, T y,50 3y
along with two other analogous relations between the coefficients of the two other coordinates
14> {;; from which it follows that ¢ and g®, and therefore oy, B}, v, may be treated as constant, in
taking the variation of the disturbing part V,,, for the purpose of calculating the perturbations
(H".): and that the terms involving Af are destroyed by other terms. We may therefore put

simplyf IVRTIR IV 0
y e 8 " A + 2’; A+ 8’“ o)
AL= 8C‘A it g5t Aﬁﬁ“‘ Ayl
* [We have 88%‘)’ =t. But w® depends on the initial and final coordinates and also on g®, Thus
B 42,850y,

(L7.) follows immediately and then (K”.) by summation. Equation (M?.) is obtained by differentiating (B”.) partially
with respect to gi*.]
T [To obtain (N7.): V,y=X,m;m; W& ¥, where W% " is given by (T®.). Three groups of terms come from
138V,
m( 30‘(
(i) From the integrated part of W@ we get :%1‘ ot . This cancels against the first term of A« in (I7.).

(ii) From ¢ which occurs “expressly” (explicitly) in the upper limit of the integral. From (K7.)
St 8210“) = Saw(‘) -1 %w
e~ (558) g0/ =m (5) - ma g =1mm (550)

Since At= — 5 H,’ » we see, by (M".), that this group of terms is cancelled by the terms involving At.

(iii) The remaining terms which appear in (07.).]
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employing for A«; the following new expression,

38 tSRED  §of [tSREW ]

aindum S M
8B, [t SREW 8y, [t ORGP

ey 5B )y oy

together with analogous expressions for AB;, Ay}, in which the sign of summation X, refers to
the disturbing masses, and in which the quantity

(07.)

(k) Sf k) (k)
ROD_feb 4 £, f o it b o (P".)
Smp T ST,

is considered as depending on a;, B;, v:, i, Bis ¥is %> Brs Vs %k Prs Vie» B, by the theory of binary
systems, while «;, B;, y; are considered as depending, by the same rules, on «;, B;, v, &> i &;
and 2. :
It may also be easily shown, that*
O oy | 86, Sy 8By 8.
Sty 8ar; O O; 8% Sy;  da

with other analogous equations: the perturbation of the coordinates &; may therefore be thus

Q")

expressed, R i
sionm B
Y ) S PR
+88,§Zf08§;i dt—g%éjo%dt (R".)
t§ R K) t § RGK)
e gilitre)

and the perturbations of the two other coordinates may be expressed in an analogous manner.

It results from the same principles, that in taking the first differentials of these perturbations
(R7 ), the integrals may be treated as constant; and therefore that we may either represent the
change of place of the disturbed point m;, in its relative orbit about m,, , by altering a little the
initial components of velocity without altering the initial position, and then employing the
rules of binary systems; or calculate at once the perturbations of place and of velocity, by
employing the same rules, and altering at once the initial position and initial velocity. If we
adopt the former of these two methods, we are to employ the expressions (O7.), which may be
thus summed up,

P
A=, .mki f ROP L,
o L g mksﬂfm B, (87.)
Ayé:Z,,.mks—foR“"‘)dt;

Oo; _ C*w® 3,8,; 8«, 02w 3*y;]
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160 II. GENERAL METHOD IN DYNAMICS [22, 23
and if we adopt the latter method, we are to make,

; t§ R K t§REK)
Aai A En 4 mkfo 80(; dt! Aai - z/l 3 mkjo _&T dt’
t§ R, K) t § RG.k)
—— e . R T Y £} T1o
AB‘I Zn my ° 8,3,1 dt: AB@ zn mkfo Sﬁi di, ( )
t § RG.K) t S Rk
Ayi=3% . dt, Ay;,=-2 " ——dl

The latter was the method of Lagrange: the former is suggested more immediately by the
principles of the present essay.*

General introduction of the Time into the expression of the Characteristic Function
i any dynamical problem.
23. Before we conclude this sketch of our general method in dynamics, it will be proper to

notice briefly a transformation of the characteristic function, which may be used in all applica-
tions. This transformation consists in putting, generally,

V=tH+8, : (U7)
and considering the part S, namely, the definite integral
t
8= f (T+U)dt, v7)
0

as a function of the initial and final coordinates and of the time, of which the variation is, by our
law of varying action,

88=—Hot+X.m(x'dx—a'da+y'dy —b'db+2'0z—c'dc). (W7.)
The partial differential coefficients of the first order of this auxiliary] function § are hence,
38
bR - 7
50 H; (X7.)
SS ’ SS ’ SS ’
5z, T By TV g T (¥7.)

* [If we give variations Aa‘, AB;, A'y(, the new variations of af, B;, y; will be

ot 3!
‘A¢a+« ‘ AB‘+87 M‘A“"“ ‘Ap,+§l’! Ay;,
since Sﬁ' = M
dat 33; do; 8B,

where Ao etc. mean the values given in (07.). By giving the values of Ax;, AB;, Ay, in (T7.) we get the values of
Act} in the same set of equations. See Appendix, Note 3, p. 622. Cf. Lagrange, Mécanique Analytique, Tome 1,
2nd Part, Section v. Lagrange, “Sur la théorie générale de la variation des constantes arbitraires,”” Mémoires de
UInstitut (1808), p. 257. For a comparison of the methods of Lagrange, Poisson and Hamilton in the Theery of
Perturbations, see Lovett, Quarterly Journal of Mathematics, xxx (1899), pp. 47-149.]

1 [Hamilton perceived at this stage that it was inconvenient to have H appearing in the characteristic function;
80 he transformed to another function which contained ¢ as a variable instead of H. The transformation to adopt is
obvious from the following equations:

3V =Zm (x'dx—a'da+y 8y —b'8b+2'8z—c’Sc)+t8H,
. 8 (V—Ht)=2Zm (v'de—a'da+...)— Ht.]
1 [Hamilton changes the name “auxiliary™ to *principal” in the Second Essay.]

Aaj+ A‘y‘ or Aaj+

Sog
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TR 5 s

= — . — e— . ,. —_— — +C: 7
and 5a, ma; 55 m;by, 5, m;c;. (Z7.)
These last expressions (Z7.) are forms for the final integrals of motion of any system, corre-
sponding to the result of elimination of H between the equations (D.) and (E.); and the expres-
sions (Y”.) are forms for the intermediate integrals, more convenient in many respects than the

forms already employed.

24. The limits of the present essay do not permit us here to develope the consequences of
these new expressions. We can only observe, that the auxiliary function S must satisfy the
two following equations, in partial differentials of the first order, analogous to, and deduced
from, the equations (F.) and (G.):

o8 1 (/88\2 (388\2 [388)\2 i 8
and

88 1 (/88\2 (88\2 (38)\2 SN 4

g+z.%{(§(;) +(g) +(§) }—UO, (B*.)

and that to correct an approximate value S, of S, in the integration of these equations, or to
find the remaining part S, if

S8=8;+8,, (C8.)
we may employ the symbolic equation
d & 1888 886 886\, 3
d_t—8_t+z'ﬁ(8_x8—x+@§g;.+§§)’ i
which gives, rigorously,
as, ., 1 ((88,\% (88,\% (38,)\2 .
7-7- it {0 ) =) ol
if we establish by analogy the definition .
88, 1 ((88:\% (88:\% (88:\?). .
0=+ 2 0a{(w) +(5) + (%) it
and therefore approximately
t
Sz=f (U-U,)dt, (GS.)
0

the parts S;, S, being chosen so as to vanish with the time. These remarks may all be extended
easily, so as to embrace relative and polar coordinates, and other marks of position, and offer
a new and better way of investigating the orbits and pertucbations of a system, by a new and
better form of the function and method of this Essay.

\

March 29, 1834.
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