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GABINET MAJ^MATYCZNY 
Tiwarzystwa K^waglN^rgzawsklfigii 

PREFACE 

Projective Geometry may be approached by various 
routes: postulational or intuitive, synthetic or analytic, 
metric or purely projective. In a monograph which is 
to give a first approach to the subject it has seemed to 
me that the treatment should be based on intuition, 
should develop the subject by synthetic methods, and 
should keep projective properties sharply distinguished 
from the metric specializations. The reader will ac-
cordingly find in the first five chapters a systematic and 
thoroughly elementary treatment of the most funda-
mental propositions of projective geometry, culminating 
in the theorems of Pascal and Brianchon and the polar 
system of a conic. My purpose in these chapters has 
been to develop on an intuitive basis the concepts and 
the properties of projective space, without any admix-
ture of metric ideas. Only in this way, I believe, can 
the reader gain a clear impression of what the word 
projective implies. 

A monograph on projective geometry, however, 
which aims at some degree of comprehensiveness can 
not stop there. Much of the beauty and value of the 
subject lies in its relation to metric geometries, and the 
foundation for the use of analytic methods should at 
least be laid. Accordingly, I devote the remaining 
chapters to such additional aspects of our subject in 
order to fill in and round out the picture. Chapter VI, 
devoted to a first introduction to the metric specializa-
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tion of projective theorems, is still thoroughly elemen-
tary. Beginning with Chapter VII, however, the 
treatment will make somewhat greater demands on the 
reader's mathematical maturity, since it is based on the 
group concept. After a preliminary Chapter (VII), 
Chapter VIII lays the foundation for the use of analytic 
methods and Chapter IX discusses metric properties 
from the more general standpoint of the group to which 
a geometry belongs. 

In writing this monograph I have, of course, made 
free use of the text by Professor Veblen and myself, 
Projective Geometry, two volumes, Ginn & Company 
(the second volume by Professor Veblen alone). I 
have also found Professor Severi's Geometria Proiettiva 
very useful in certain parts of my work. I am greatly 
indebted to the other members of the editorial com-
mittee of the Carus Monographs, Professors Slaught, 
Bliss, Curtis and Kempner, for many valuable criti-
cisms and suggestions resulting from their careful 
reading of the manuscript and the proof sheets. 
Especially must I express my gratitude and apprecia-
tion to Professor Slaught for the large amount of 
painstaking and time-consuming work which he put on 
the task of seeing the little book through the press, 
especially in its earlier stages when I was abroad. If 
this monograph proves to be a worthy companion for 
the earlier members of the monograph family, it will 
be very largely due to the unselfish efforts of these 
friends. 

J . W . YOUNG 
HANOVER, N E W HAMPSHIRE 

November, 1929 
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CHAPTER I 

INTRODUCTORY CONCEPTIONS 

1. Perspective drawing. Projective geometry like 
many another mathematical discipline has its historical 
origin in a practical problem: How to draw a picture in 
a plane that shall represent a three-dimensional object 
in such a way that the various portions of the picture, 
in their mutual relations, present the same aspect as do 
the corresponding visible portions of the object. Among 
the first to consider this problem of perspective drawing 
in a scientific way was Leonardo da Vinci (1452-1519), 
whose fame is perhaps greatest as a painter, but who 
according to more recent research must also be classed 
as a great pioneer in the domain of science. 

The geometric formulation of the problem, as con-
ceived by Leonardo, is as follows: From every visible 
point of a given three-dimensional object rays of light 
enter the eye of the observer. If a transparent plate be 
inserted between the eye and the object, each of these 
rays pierces the plate in a definite point, which is the 
image of the corresponding point of the object. The 
aggregate of all these points on the plate constitutes the 
desired picture. The problem consists of finding out 
how to draw the picture without the intervention of 
the transparent plate. We may note in passing that the 
photographic camera accomplishes precisely this feat 
when it collects the rays from the object in its lens, the 
"eye of the camera," and projects them on the sensi-

1 
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2 INTRODUCTORY CONCEPTIONS 

tized plate. That the plate is in this case behind the 
"eye," rather than in front of it, is obviously an 
unimportant difference. 

2. Projection and section. Correspondence. By 
considering in more detail the nature of the process just 
described, we shall become familiar with one of the 
fundamental processes of projective geometry, and shall 
also get a glimpse of some of the characteristics of this 
geometry which differentiate it from the more familiar, 
so-called metric, geometry of our school days. 

The purely geometric description of the process sug-
gested by Leonardo consists of two parts: From a point 
0 lines are drawn to every point of a geometric figure F \ 
these lines issuing from O are cut by a plane co. We may 
now make our first definition. 

The set of lines joining a point O to the points of a 
figure F is called the projection of F from O. If a set of 
lines issuing from a point 0 is cut by a plane co, the set of 
points in which the plane co cuts the lines through 0 is 
called the section of the lines through 0 by the plane co. 

This process of projection and section is fundamental 
in projective geometry. By means of it, to every point 
of the figure F is made to correspond a definite line 
through 0, and in general, to every line through 0 is 
made to correspond a definite point on co. Certain 
exceptions to this statement which may arise will be 
considered presently. The concept thus suggested of a 
correspondence between the elements of two figures is 
of fundamental importance. We shall, therefore, give 
a formal definition of it. 

The elements of two geometric figures are said to be in 
reciprocally one-to-one correspondence, by some definite 
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PROJECTION AND SECTION 3 

process (as for example, by the process of projection 
and section just described), if to every element of one 
figure is made to correspond a uniquely determined 
element of the other, and, vice-versa, if every element 
of the second figure is the correspondent of a uniquely 
determined element of the first. 

If now we return to our problem of perspective draw-
ing, we see that the picture on the transparent plate 

FIG. 1. 

between the object and the eye of the artist is the figure 
obtained by means of a projection from the eye of the 
observer and a section (of this projection) by the plane 
of the transparent plate. If the reader will consider 
the nature of any perspective representation, for ex-
ample the adjoined photograph of a court in the Palazzo 
Vecchio in Florence, he will recognize the following 
characteristics: A straight line in the original object is 
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4 INTRODUCTORY CONCEPTIONS 

represented in the photograph by a straight line. This 
must be the case, since all the lines through the center 
of projection and the points of a given line lie in a plane 
and the section of this plane by the plane of section 
must be a straight line. The intersection of two straight 
lines, that is a point, of the original is represented by 
the intersection of the corresponding lines in the photo-
graph. An angle of the original will be represented by 
an angle in the photograph, but not in general by an 
angle of the same size. A right angle in the original, for 
example, may be represented by either an acute or an 
obtuse angle in the picture. The reader will observe 
a number of examples in the adjoined photograph. He 
should, however, not content himself by merely observ-
ing the fact, but should make clear to himself the reason 
for it, by considering the nature of the process of pro-
jection and section. The same remark applies to the 
observations that follow. 

Two parallel lines in the original will not in general be 
represented by parallel lines in the picture; equal dis-
tances in the original do not in general correspond to 
equal distances in the picture; the perspective represen-
tation of a circle is usually an ellipse; etc. 

It is clear then that the perspective representation of 
an object involves a very considerable distortion, but 
always such that points are represented by points and 
straight lines by straight lines (except when a line of 
the original figure passes through O). 

The attentive reader will have noted, however, that 
the process described above, of representing a given 
three-dimensional figure on a plane does not in general 
establish a reciprocally one-to-one correspondence be-
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PROJECTIVE TRANSFORMATIONS 5 

tween the points of the given figure and those of the 
plane. For if two points of the former are on a line with 
O, they correspond to the same point on the latter, 
and if two lines of the former are on the same plane 
through 0 , they correspond to the same line of the 
latter. The process of projection and section does, how-
ever, in general give rise to a reciprocally one-to-one 
correspondence, if the elements of the first figure all lie 
in one plane. Such a correspondence is more precisely 
defined in the next section. I t is illustrated in a photo-
graph, if attention is confined to one plane of the scene 
depicted. 

3. Projective transformations. Let F be any figure in a 
plane and let it be projected from a point O not in the 
plane of the figure. The section of the projection by a 
plane gives rise to a new figure F' and the correspon-
dence between the elements of F and F' is called a 
perspective correspondence or a perspective transformation. 
If then F' be projected from a new center 0' on to a 
third plane a new figure F" results. The figure F" is 
obtained from F by means of two perspective trans-
formations, one performed after the other. Similarly, 
we may consider the result of a sequence of any number 
of perspective correspondences. This leads to the 
following definition: 

The resultant of a sequence of perspective trans-
formations is called a projective transformation or a 
projective correspondence. 

The concept of a projective correspondence lies at 
the very foundation of projective geometry, as will be 
seen in what follows. Indeed, we may now characterize 
projective geometry as follows: Projective geometry is 
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6 INTRODUCTORY CONCEPTIONS 

concerned with those properties of figures which remain 
unchanged by projective transformations. 

I t follows at once that the parallelism of straight 
lines, the equality of distances or of angles, can have 
no place in projective geometry, since these properties 
are all changed by projective transformations. Parallel 
lines may be transformed into intersecting lines, equal 
distances may be transformed into unequal distances, 
right angles may be transformed into acute or obtuse 
angles, etc. On the other hand, a point and a straight 
line are always transformed into a point and a straight 
line respectively by any projective transformation (no 
matter how many projections and sections may have 
had a part in the projective transformation); also, if a 
point A of F is on a line I of F, the point A' correspond-
ing to A under any projective transformation will lie 
on the line V corresponding to l\ and if A is not on I, 
A ' will not be on V. Two intersecting straight lines will 
correspond to two intersecting straight lines, a triangle 
will correspond to a triangle, a quadrilateral to a quad-
rilateral, etc. Certain possible exceptions to some of 
the above statements which may occur to the critical 
reader will, as has been indicated, be considered 
presently. Enough has been said to show that properties 
concerning merely the incidence of points and lines are 
projective properties, i.e., properties which remain un-
changed under projective transformations, while any 
properties concerned with measurement, i.e., metric 
properties, are foreign to projective geometry as such. 
We shall see later, however, how such metric properties 
may be obtained from projective properties by a pro-
cess of specialization. 
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A PROJECTIVE THEOREM 7 

A triangle is, as has been indicated, a figure of pro-
jective geometry; but equilateral, or isosceles, or right 
triangles are not; because they involve properties 
which are not preserved under projective transforma-
tions. A quadrilateral is a figure of projective geometry; 
but a parallelogram, a rectangle, a square, etc. is not. 
I t will be seen later that a conic section is a curve of 
projective geometry, but that the classification into 
hyperbola, ellipse, and parabola involves metric proper-
ties. 

At first sight it may appear that the consideration 
of projective properties only would so greatly restrict 
the field of operations as to give little content to pro-
jective geometry. This, however, is not the case, as 
will soon become apparent enough. By confining our-
selves to the consideration of projective properties the 
resulting geometry becomes structurally much simpler 
than one involving in addition a host of metric proper-
ties; but projective geometry is, nevertheless, very rich 
in content. Indeed, as has already been indicated, it 
contains, when its theorems are suitably specialized, the 
whole content of ordinary euclidean metric geometry 
and also the content of certain non-euclidean geome-
tries. Such considerations, which will mean much more 
to the uninitiated reader when he has reached the end 
of this monograph than they can possibly mean now, 
led the English mathematician Cayley to exclaim: 
"Projective Geometry is all geometry." To make clear 
in what sense this famous dictum is true is one of the 
primary objects of this little book. 

4. A projective theorem. The reader who is ap-
proaching the study of projective geometry for the 
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8 INTRODUCTORY CONCEPTIONS 

first time will be curious as to the nature of a geometric 
theorem which involves no metric conceptions. The 
following proposition, known as Desargues' Theorem 
on perspective triangles, will prove to be fundamental 
in the systematic development of certain parts of pro-
jective geometry to which the later chapters are de-
voted : 

If two triangles ABC and A'B'C' are so related that 
the three points of intersection of the pairs of sides AB 
and A'B', BC and B'C', CA and C'A' are on a straight 
line, the lines AA', BB', CC' joining corresponding ver-
tices all pass through the same point {or are parallel). 
(The phrase in parentheses is necessary as long as we 
state the theorem in the so-called metric space of ordi-
nary geometry; it becomes unnecessary in the projective 
space to be introduced in the next chapter, in which 
the theorem will, moreover, gain in content.) 

I t will be observed that we have here a theorem which 
involves in its statement only the incidence of points 
and lines; no metric notions are involved. A formal 
proof of the theorem will be given later (p. 34). At this 
point it is a good exercise for the spatial imagination to 
observe that, if the two triangles are in different planes, 
the theorem is almost self-evident. If the reader will 
exercise his imagination sufficiently to get a clear mental 
picture of two intersecting planes, in each of which is a 
triangle whose pairs of corresponding sides intersect 
on a line (the latter must be the intersection of the 
two planes), the conclusion of the theorem follows al-
most immediately. In fact, every pair of the lines A A 
BB', CC' lies in a plane, and three planes must intersect 
in a point (or in parallel lines or in a single line). The 
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reader may then think of one of the planes as rotating 
about its line of intersection with the other plane until 
it comes to coincide with the latter. This will make the 
theorem appear plausible, at least, even for the case 
when the two triangles are in the same plane. 

Although the historical origin of projective geometry 
goes back to the latter part of the fifteenth century, 
and although isolated theorems of this form of geometry 
were proved by Desargues (1593-1662) and Pascal 
(1623-1662), projecti-ve geometry as a self-contained 
discipline was not developed until the great French 
mathematician Poncelet (1788-1867) published his 
classic "Traite des proprietes projectives des figures" in 
1822. Since then the development of this branch of 
geometry has been rapid, so that it is now recognized 
as one of the truly fundamental disciplines of modern 
mathematics, not only on account of its varied and 
important contacts with mathematics as a whole, but 
also on account of the intrinsic beauty of its structure 
and of its results. 

This beauty is largely due to its simplicity. The latter 
is due not merely to stripping geometry of the complexi-
ties of its various metric concepts, but in no small 
measure also to the introduction of a new conception of 
space. To describe this "projective" space is the object 
of the next chapter, after which we may begin the 
more systematic development of our subject to the 
extent that the small compass of this monograph will 
permit. 

References. Besides the classic treatise of Poncelet 
already referred to, the reader interested in the historical 
development of the subject may consult Chasles, 
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10 INTRODUCTORY CONCEPTIONS 

Apergu historique sur Vorigine et le developpement des 
methodes en geometrie, Paris, 1837; also, various parts 
of the Source Book in Mathematics, edited by David 
Eugene Smith, New York, 1929. 
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CHAPTER II 

PROJECTIVE SPACE. THE PRINCIPLE OF DUALITY 

5. Ideal elements. We had occasion in the preceding 
chapter to refer to the fact that the "one-to-one" 
character of a perspective correspondence is, in metric 
space, subject to certain exceptions. Our first task in 
the present chapter must be to examine these exceptions 
and to see how to remove them. 

If the process of projection and section, described 
in the last chapter for three-dimensional space, is 
confined to a single plane, we obtain the idea of a per-
spective correspondence between the points of two lines 
in a plane. If u and u' in the adjoining figure are two 
such lines (in the future we use the word line always to 
mean straight line, unless otherwise specified), and if 
S is any point in the plane of the two lines, but not on 
either line, the lines joining S to points A B, C, • • • 
of u will in general meet u' in definite points A', B', 
C, • • • . To any point of u, say A, will correspond by 
means of this construction a uniquely determined point 
A'\ to B will cor-
respond B'; to C, 
C"; and so on. 
Vice-versa to every 
point of u ' corre-
sponds, in general, 
a uniquely deter-
mined point of u. 
The point of inter-

11 
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12 PROJECTIVE SPACE AND DUALITY 

section 0=0' of the two lines obviously corresponds 
to itself. A correspondence defined by the process just 
described is called a perspective correspondence between 
the points of u and u'; the point 5 is called the center 
of perspectivity. We also say that the points of «(or u') 
are projected into the points of u' (or u) from the center S. 

From what has just been said the perspective cor-
respondence thus defined is, in general, reciprocally 
one-to-one. However, the point I on u in which the line 
through 5 parallel to u' meets u has in our present 
metric conception of the plane no corresponding point 
on u'. Also, the point J' on u' in which the line through 
S parallel to u meets u' is not the correspondent of any 
point on u. In order to avoid this exception we conceive 
of an additional point on each of the lines, a point I ' 
on u' to correspond to / , and a point J on u to be the 
correspondent of J'. If for the time being we call the 
points of our familiar metric plane "ordinary" points, 
such new points as / ' and J must be regarded as "ideal" 
points which are to be thought of as arbitrarily added 
to the plane for a definite purpose. One such ideal 
point is thought of as existing on every line; any set 
of parallel lines are all thought of as containing the 
same ideal point. An "ideal point" is also called a 
"point at infinity." 

At first this may strike the reader as a very mystify-
ing performance. However, he will soon become familiar 
with the new conception. The following remarks will, 
it is hoped, assist him in this direction. Two inter-
secting lines have a point in common. Two parallel 
lines also have something in common, namely their 
direction. If we choose to use the phrase "ideal point 
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IDEAL ELEMENTS 13 

of a line" instead of the words "direction of a line" it 
will be found that the new terminology is equally 
intelligible. For example: A straight line is uniquely 
determined by one of its points and its direction (old 
terminology); a straight line is uniquely determined 
by one of its ordinary points and its ideal point (new 
terminology). The two statements mean exactly the 
same thing. 

Two parallel lines have the same direction (old 
terminology); 

Two parallel lines have the same ideal point (new 
terminology). 

If two or more lines have the same direction, they 
are parallel (O.T.); 

If two or more lines have the same ideal point, they 
are parallel (N.T.). 

If, then, we think of every straight line as containing 
in addition to all of its ordinary points one ideal point, 
we get the conception of a projective line, as soon as we 
drop the distinction between ordinary and ideal, and 
regard all the points, ideal as well as ordinary, as being 
in every way equivalent. We can now see why it is that 
projective geometry as such can not consider parallel-
ism. In projective geometry every two straight lines 
in the same plane have a point in common, i.e., inter-
sect. All points being regarded as equivalent, it can 
make no difference in a projective theorem whether 
this point of intersection is ideal or ordinary. 

The set of all ideal points of a plane is thought of as 
constituting a straight line, the so-called ideal line, 
or the line at infinity. One such ideal line is thought of 
as existing in every plane. A reason for this concep-
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14 PROJECTIVE SPACE AND DUALITY 

tion lies in the fact that every ordinary straight line in a 
plane has one and only one point in common with the 
set of all ideal points in the plane, and "to be met by a 
straight line in one and only one point" is characteristic 
of a straight line. 

6. The projective plane. This completes the descrip-
tion of a projective plane. To repeat, a projective plane 
consists of all the ordinary points and straight lines of a 
metric plane and, in addition, of a set of ideal points all 
of which are supposed to line on one ideal line and such 
that one such ideal point lies on every ordinary line. 

In such a projective plane a perspective correspon-
dence, as previously defined, between the points of two 
lines is reciprocally one-to-one throughout without ex-
ception. The point I' on u' corresponding to I on u 
is the ideal point of u'\ the point J of u which is the 
correspondent of the point J' of u' is the ideal point of u. 

As another consequence of the conception of a pro-
jective plane we may note that we are led by this con-
ception to think of the projective straight line as 
closed, like a circle of huge radius. Given a straight 
line u and a center of perspectivity S, let us think of a 
variable line through 5 as rotating from the position 5^4 

E 

FIG. 3 

D 
u 

to the position SB in 
the direction indi-
cated by the arrow in 
the adjoining figure. 
T h e v a r i a b l e l ine 
meets u in a variable 
point P which under 
the continuous rota-
tion specified moves 
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THE PROJECTIVE PLANE 15 

continuously from A to B, describing the seg-
ment ACB. As the variable line continues to rotate 
from the position SB in the same direction as be-
fore to its original position, the variable point P in 
which this line meets u traces out all the rest of the 
line continuously, so that the remainder of the line 
BDEA must be thought of as constituting a continuous 
segment just like ACB. Two distinct points A and B 
of a projective line divide it into two segments, just 
as two distinct points on a circle divide the latter into 
two segments. The two parts BD and EA are to be 
thought of as joined together, as it were, by the ideal 
point on u. The difficulty of forming a mental picture 
of how this happens should not disturb the reader. He 
is in this respect no better off in his familiar conception 
of the metric plane. In the latter he is expected to 
imagine that the variable point of intersection P of the 
rotating line with u suddenly ceases to exist for a 
moment (when the rotating line is parallel with u) 
only to materialize again at the other end of the line an 
instant later. I t is just as difficult to form a mental 
picture of how this can happen as it is to imagine the 
process implied by the projective conception. The 
proper mental attitude to take is simply not to attempt 
to form a mental picture of a closed straight line; 
but to accept the fact that the projective line behaves 
as though it were closed. 

The situation to be grasped will become more vivid 
to the reader, if he notes that an apparently broken 
segment like BDEA in the adjoining figure may be 
perspective with an ordinary closed segment B'D'E'A'. 
This fact is at once apparent from Fig. 4. If a line 
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through S rotates continuously from the position SB 
to the position ' =SA in the direction of the arrow, 
the point of intersection of the rotating line with u 

to exhibit more clearly the corresponding parts. 
These considerations show, moreover, that on a pro-

jective line three points are necessary to determine a 
segment on the line or a direction on the line. To give 
merely the end points A and B of a segment would 
leave us in doubt as to which of two segments is meant; 
and the direction AB might mean either of the two 
directions indicated by the arrows in the adjoining 
figure. If, however, we 
specify the segment ACB —^ * A " c 

or the direction ACB the ^ , 
FIG. 5 

segment or the direction is 
uniquely determined; similarly for the segment ADB 
or the direction ADB. 

Before proceeding to build up in a similar manner the 
conception of a projective space of three dimensions, 
it may be well to consider briefly some of the ad-
vantages that accrue from the conception of a pro-
jective plane. 

E 

I 13. 4 

u 

moves from B over D 
to E and thence to A, 
while the correspond-
ing point on u' moves 
from B'( = B) over 
D' and E' to A'. The 
cor responding seg-
m e n t s h a v e been 
drawn more heavily 
in the figure in order 
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In the statement of Desargues' theorem in the pre-
ceding chapter (p. 8) we found it necessary to add a 
phrase in parentheses to take account of the possibility 
that the three lines joining the corresponding vertices 
AA', BB', CC' of the triangle might be parallel instead 
of intersecting in a point. This was because we there 
stated the theorem for the metric plane. We see now 
that the parenthetical phrase is quite unnecessary (and, 
indeed, meaningless) if the theorem is interpreted as 
applying to two triangles in a projective plane, since 
parallel lines in a metric plane are lines intersecting in 
an (ideal) point in a projective plane. We remarked in 
the same connection that this theorem would gain in 
content under the conception of a projective plane. 
This is because various metric specializations of the 
hypothesis of the theorem lead to different metric 
theorems. For example: 

If a pair of sides of two triangles are parallel to the line 
joining the intersections of two other pairs of sides, the 
lines joining corresponding vertices will intersect in a 
single point or be parallel. Or, again: 

If the three pairs of sides of two triangles consist of 
parallel lines, the lines joining corresponding vertices 
intersect in a single point or are parallel. 

The first of these specializations results from assum-
ing that one of the points of intersection of correspond-
ing sides is an ideal point; the second, from the 
assumption that two (and hence all three) of such 
points of intersection are ideal. The reader here gets an 
illustration of how a single projective theorem may give 
rise to several metric theorems through appropriate 
specialization. 
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An advantage of far-reaching importance accrues 
from the symmetry existing between point and line in a 
projective plane. Consider the following two proposi-
tions of plane geometry: 

Any two distinct points Any two distinct lines 
determine one and only one determine one and only one 
line on which they both lie. point through which they 

both pass. 
The first of these propositions is true in the metric 

plane without exception. The second, however, has an 
exception in the metric plane, if the two lines are 
parallel. In the projective plane, on the other hand, 
both propositions are valid without exception. If, 
in the second, the lines are parallel, they still determine 
one and only one (ideal) point through which they both 
pass. If one of the lines is ideal, the proposition still 
holds. Both lines cannot be ideal, since they are dis-
tinct. In the first proposition we need only consider 
the cases where one of the given points is ideal and 
where both are ideal. In each of these cases the 
proposition is at once seen to be valid. 

If now we consider the relation between the state-
ments of these two propositions, we see that by simply 
interchanging the words "point" and "line" in one of 
them we obtain the other, except for the fact that the 
last phrase of the theorem will after the interchange 
sound peculiar. In case we make this interchange in 
the first proposition, we obtain: Any two distinct lines 
determine one and only one point on which they both 
lie. The fact that the last phrase sounds peculiar to us 
is, however, due to a blemish in our language. For, the 
relation of a point lying on a line and that of a line 

http://rcin.org.pl



PROJECTIVE SPACE 19 

passing through a point are precisely the same. A 
perfect language would express two such identical 
relations in the same words. For example, we might 
agree to express this relation by either of the forms: 
a point is on a line or a line is on a point. If we adopt 
this modification of our language, which it should be 
noted is perfectly intelligible even though the second 
form sounds queer, the two propositions above are 
obtained, either one from the other, by a mere mechani-
cal interchange of the words "point" and "line": 

Two distinct points are Two distinct lines are 
on one and only one line. on one and only one point. 

This modification of our language we will in the 
future, when we have occasion to use it, refer to as the 
"on" language. 

On the symmetry thus noted between the roles played 
by point and line in plane geometry depends one of the 
most far-reaching principles of modern mathematics, 
the so-called "principle of duality." According to this 
principle all the propositions of plane projective geome-
try occur in such dual pairs; in other words, from any 
proposition of plane projective geometry another propo-
sition can be inferred in which the roles played by the 
words point and line are interchanged. This principle 
is a special case of the so-called principle of duality in 
space. We shall have more to say of it after we have 
considered the fundamental properties of projective 
space, to which we now turn our attention. 

7. Projective space. The introduction of the concept 
of ideal points and that of the ideal line in a plane has 
prepared us, no doubt, for the introduction of ideal 
elements in three dimensional space. We can, therefore, 
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describe the latter more briefly than would otherwise 
be the case. If we consider the perspective correspon-
dence between the two planes ir and ir' established by 
projection from a center S not in either plane, whereby 
to any point A of ir corresponds the point A' of ir' 
in which the line 5.4 meets ir', we observe that any 
point I of 7r such that the line SI is parallel to ir' has 

s 

(in metric space) no corresponding point I ' in 7r'. All 
the lines SI parallel to ir' lie in the plane through 5 
parallel to ir'. This plane cuts ir in a line i. Correspond-
ing to all the points of this line i we introduce in ir' 
ideal points I ' , which constitute by definition the ideal 
line I' of ir'. Similarly, the plane through S parallel 
to ir meets ir' in a line j', corresponding to which we 
introduce an ideal line j on ir, which contains all the 
points J corresponding to the points J' of j'. Our 
perspective correspondence is now reciprocally one-to-
one without exception. 

I t will be observed that we are thus led to precisely 
the same conception of a projective plane to which the 
earlier consideration of a perspective correspondence in 

http://rcin.org.pl



PROJECTIVE SPACE 21 

a single plane led us. We are thereby brought naturally 
to the conception that every plane in projective space 
is to be such a projective plane, obtained from a metric 
plane by the addition of ideal points which all lie on 
a single ideal line. All that is needed to complete the 
conception of projective space is to add that all the 
ideal points and all the ideal lines are to be thought of 
as lying in the same ideal plane. In other words, 
projective three-dimensional space is obtained from 
metric three-dimensional space by adding to the latter 
the points and lines of an ideal plane, one such ideal 
point lying on every ordinary line, one such ideal line 
lying on every ordinary plane. Any set of parallel lines 
in space have the same ideal point in common; any set 
of parallel planes have the same ideal line in common. 

We are now in a position to gain a clear under-
standing of the fundamental properties of the incidence 
of points, lines, and planes in projective space. We will 
state them in pairs for the purpose of exhibiting the 
duality which we will discuss a little later. 

1. Any two distinct V. Any two distinct 
points determine one and planes determine one and 
only one line on which they only one line through 
both lie. which they both pass. 

The reader should not fail to make clear to himself 
just how these propositions express relations with 
which he is already familiar from his study of ordinary 
metric geometry, taking account of the various possible 
special cases involving parallelism which are taken 
care of by the ideal elements introduced to form pro-
jective space. Thus, for example, 1' contains the 
familiar proposition of solid geometry that any two 
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non-parallel planes intersect in a straight line. I t 
contains further the conception that any two parallel 
planes pass through the same ideal line; and that an 
ordinary plane and the ideal plane have a line in 
common. Proposition 1, on the other hand, in addition 
to the proposition that two distinct ordinary points 
determine a line, contains the conception that an ordi-
nary point and an ideal point determine a line; and 
also, that two distinct ideal points determine an ideal 
line. 

2. Three points, which 2'. Three planes, which 
are not on the same line, do not pass through the 
determine one and only one same line, determine one 
plane on which they all lie. and only one point through 

which they all pass. 
Here, in 2', if no two of the three planes are parallel, 

the proposition is a well-known theorem of solid 
geometry, provided the planes do not intersect in 
parallel lines; if they do intersect in parallel lines, the 
proposition is still valid, the point determined by them 
being ideal. If two of the planes are parallel and the 
third intersects them in ordinary lines, the latter are 
parallel and determine uniquely an ideal point common 
to the three planes. If all three planes are parallel, they 
all pass through the same ideal line and hence do not 
satisfy the restriction of the theorem. Other special 
cases could be listed; but the reader should note them 
for himself, and observe in each case that the propo-
sition is valid. He should treat proposition 2 in the 
same way, considering the cases where all three of the 
given points are ordinary, where two are ordinary and 
one is ideal, where one is ordinary and two are ideal, 
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and where all three are ideal. The reader should analyze 
each of the following propositions in the same way. He 
will then secure very quickly a thorough grasp of the 
fundamental properties of incidence in projective space. 

3. A point and a line 3'. A plane and a line 
not containing the point not on the plane determine 
determine one and only one and only one point 
plane on which they both through which they both 
lie. pass. 

4. Any two distinct 4' . Any two distinct 
lines in the same plane in- lines having a point in 
tersect in one and only one common determine one and 
point. only one plane. 

The reader has probably already noted the fact that 
in each of the pairs of propositions 1 and 1', 2 and 2', 
etc., one of the pair may be obtained from the other 
by interchanging the roles of "point" and "plane," 
leaving "line" unchanged. As previously noted for 
propositions in a plane (where the duality was between 
point and line) this interchange could be a mere 
mechanical transposition of the words point and plane 
were it not for an imperfection of our language. The 
"on" language already described for the plane may, 
however, be extended to space. We say a point is on a 
plane; we may describe this relation equally well by 
saying that the plane is on the point, instead of using 
one of the more familiar phrases that the plane passes 
through or contains the point. If a line is on a plane, 
we may say also that the plane is on the line; etc. 

If, now, the propositions 1 and 1', 2 and 2', etc. are 
all stated in the "on" language, it will be found that one 
proposition of each pair goes over into the other by a 
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mere mechanical interchange of the words "point" 
and "plane," the word "line" being left unchanged. 
For example, Proposition 4 stated in the "on" language 
would read as follows: Any two distinct lines on the same 
plane are on one and only one common point. If in this 
proposition we interchange the words point and plane 
we obtain: Any two distinct lines on the same point are 
on one and only one common plane. This is evidently the 
same as Proposition 4'. The reader should restate each 
of the other propositions (1, 2, 3) in the "on" language 
and verify the fact that the mere mechanical inter-
change of the words point and plane produces the dual 
propositions (1', 2', 3'). 

8. The principle of duality. The pairs of propositions 
1 and 1', 2 and 2', etc. are all examples of what are 
known as pairs of dual propositions, each one of a pair 
being the (space) dual of the other. The general prin-
ciple of which these pairs are special instances is known 
as the Principle of Duality in Space. I t may be stated 
as follows: 

T H E P R I N C I P L E OF D U A L I T Y IN SPACE. I f any pro-

jective theorem regarding points, lines, and planes in space 
is stated in the "on" language, a second theorem may 
be obtained from it by simply interchanging the words 
point and plane. 

This principle is one of the most important and 
beautiful principles in the whole field of modern 
geometry. It means that we need give the proof of only 
one of two dual theorems, the other being necessarily 
valid without further proof, assuming of course that 
the principle of duality has been established. It 
exhibits at one stroke a symmetry in the structure of 
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projective geometry which can not fail to be impressive. 
It did not appear explicitly until near the beginning of 
the nineteenth century. I t was first stated by Gergonne 
in 1826, but was led up to by the writings of Poncelet 
and others during the first quarter of the century. I t is, 
therefore, a very modern theorem. The reader will be 
impressed by its far-reaching character as we proceed. 

The proof of the principle of duality may be made in 
various ways. I t is possible to give a complete set of 
postulates for projective geometry which are them-
selves arranged in dual pairs. Any theorem derived 
formally from such a set of postulates may then ob-
viously be dualized by simply dualizing each step in 
the proof. In such a brief and elementary treatment of 
projective geometry as the present, however, it does 
not seem desirable to give the space necessary for a 
postulational treatment. The reader may, if he is 
interested in this method of proof, consult Veblen and 
Young, Projective Geometry, Vol. I, Chapter I. 

The principle may also be proved analytically with-
out difficulty, once the analytic machinery appropriate 
to projective geometry has been built (See Chapter VI 
of the present monograph). Finally, the principle of 
duality follows readily from the group of theorems 
which concern the fundamental relations of poles and 
polars with respect to a conic (p. 80), which will be 
proved later. The reader is, therefore, requested to 
accept the principle of duality on faith for the time 
being. We propose to make free use of the principle from 
now on, recognizing that in any given case we can al-
ways prove the dual theorem, if we wish, by dualizing 
the proof of the original theorem. 
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A corollary to the principle of duality in space is the 
corresponding principle in the plane, which is as follows: 

T H E P R I N C I P L E o r D U A L I T Y IN THE P L A N E . I f any 

projective theorem concerning points and lines of a plane is 
stated in the "on" language, a second theorem is obtained 
from it by interchanging the words point and line. 

This principle may be derived from the principle of 
duality in space as follows: Let F be any figure con-
sisting of points and lines in a plane and let 0 be any 
point not on this plane. The projection from O of the 
figure F then consists of a set, F', of lines and planes 
through O, such that whenever a point of F lies on a 
line of F, the corresponding line of F' will lie in the 
corresponding plane of F'. The space dual of F' will 
then consist of a set, F", of lines and points on a plane 
(this italicized phrase being the dual of the phrase "a 
set of lines and planes through a point"). The principle 
of duality in a plane now follows almost immediately 
by considering the relation between the two plane 
figures F and F". To every point P of F corresponds a 
line OP of F' and to the latter line corresponds a line 
of F"\ to every line I of F corresponds a plane through 
O and I of F' and to this plane of F' corresponds a point 
of F". Moreover, if the point P lies on the line I, the 
line corresponding to P in F" will pass through the 
point corresponding to I. To any projective property 
of F will then correspond a projective property of F" 
obtained from the former by interchanging the roles 
of point and line. 

9. Elementary figures. We are now ready to begin 
a more systematic study of projective properties of 
figures. In the interest of simplicity we shall confine 
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ourselves largely to figures in a plane, although we shall 
find it desirable occasionally, as for example in our proof 
of Desargues' theorem at the beginning of the next 
chapter, to make use of three-dimensional figures. 
We will close the present chapter with the definitions of 
certain elementary figures of projective geometry. As 
might be expected these figures occur, in general, in 
dual pairs. 

Complete Quadrangle Complete Quadrilateral 

F I G . 8 

If three or more points 
are on the same line, the 
points are said to be 
collinear. 

If three or more lines 
pass through the same 
point, the lines are said 
to be concurrent. 

The figure consisting of three non- \ s 
collinear points and the three lines \ 
joining them in pairs is called a \ 
triangle. The points are called the — V— 
vertices and the lines are called the 
sides of the triangle. FlG-7- Tr iang le 

A triangle is a self-dual figure in the plane. For the 
dual of the definition just given is evidently: "The 
figure consisting of three non-concurrent lines and their 
three points of intersection by pairs is called a triangle." 
It should be noted that the conception of a triangle 
in projective geometry differs from the corresponding 
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conception in metric geometry, since in the latter the 
side of a triangle consists only of the segment of the 
line between two vertices, while in projective geometry 
it consists of the whole line (see Fig. 7). 

The figure consisting 
of four points in a plane 
(no three of which are 
collinear) together with 
the six lines joining pairs 
of these points is called 
a complete quadrangle. 
The four points are called 
the vertices (marked • ) 
and the six lines are 
called the sides of the 
quadrangle. Two sides 
which do not have a ver-
tex in common are said 
to be opposite. The 
intersections of the three 
pairs of opposite sides 
are called diagonal points 
(marked o in Fig. 8 left). 

If the points of two 
figures (in the same plane) 
correspond in such a way 
that the lines joining 
every pair of correspond-
ing points are concurrent 
in a point O, the figures 
are said to be perspective 
from the center 0. 

The figure consisting 
of four lines in a plane 
(no three of which are 
concurrent) together with 
the six points in which 
pairs of these lines inter-
sect is called a complete 
quadrilateral. The four 
lines are called the sides 
and the six points are 
called the vertices of the 
quadrilateral. Two ver-
tices not on the same 
side are said to be op-
posite. The lines joining 
the three pairs of op-
posite vertices are called 
diagonal lines (dotted in 
Fig. 8 right). 

If the lines of two fig-
ures (in the same plane) 
correspond in such a way 
that the points of inter-
section of every pair of 
corresponding lines are 
collinear on a line I, the 
figures are said to be per-
spective from the axis I. 
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With a central perspectivity as defined on the left we 
have already become familiar. The idea of an axial 
perspectivity defined on the right is, however, new. 
It is a good illustration of how the concepts of pro-
jective geometry occur in dual pairs throughout. We 
give next our first definition of a three-dimensional 
figure. 

The figure consisting of four 
points not all in the same plane, 
together with the four planes 
joining them in threes and the six 
lines joining them in pairs, is 
called a tetrahedron. The four 
points, six lines, and four planes 
are called the vertices, edges, and 
faces of the tetrahedron, respec- FIG. 9 . Tetrahedron 

tively. 
The tetrahedron is a self-dual figure in space. Let 

the reader dualize the above definition in space and 
convince himself of the truth of this assertion. He 
should indeed take every opportunity to dualize both 
in the plane and in space, in order that he may become 
thoroughly familiar with the process. If he does so 
it will not be long before he will dualize with ease, even 
though at first it may require some effort of concentra-
tion and analysis. The following space figure will be 
used at the beginning of the next chapter: 

The figure consisting of five points, no four of which 
are in the same plane, together with the ten lines joining 
them in pairs and the ten planes joining every three of 
them, is called a complete five-point in space. 

The reader should note the general principle which 
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has governed the definition of the figures thus far de-
fined. In the last, the figure consists of five points, no 
four of which are in the same plane, and of all the lines 
and planes joining them. Since every pair of distinct 
points determines a line and since the number of combi-
nations of five things taken two at a time is 5*4/2 = 10, 
there are ten lines in our figure; and, since every three 
non-collinear points determine a plane (and no three 
of our points can be collinear, in view of the fact that 
no four are in the same plane) and the number of combi-
nations of five things taken three at a time is 5*4*3/3! 
= 10, there must be ten planes in our figure. This prin-
ciple is reflected by the adjective "complete" in the 
definition of complete five-point. Thus the tetrahedron 
is a complete four-point in space; the triangle is a com-
plete three-point in a plane, the complete quadrangle 
is a complete four-point in a plane, the complete 
quadrilateral is a complete four-line in a plane, etc. 
It should be clear now what is meant by a complete 
w-point in a plane or in space, etc. 

A simple quadrangle, on the other hand, consists of 
four points A, B, C, D, (no three of which are collinear) 
in a given cyclical order A BCD together with the four 
lines joining successive pairs of these points (AB, BC, 
CD, DA). 

The complete space five-point is not self-dual. I ts 
dual in space is the so-called complete five-plane, con-
sisting of five planes, ten lines, and ten points. We 
shall not have occasion, however, to use the latter 
figure. 
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CHAPTER I I I 

DESARGUES' THEOREM. HARMONIC SETS 

10. The Desargues configuration. We begin our more 
systematic study of projective geometry by considering 
the section of a complete space five-point by a plane 
not passing through any of the vertices. Since the 

five-point consists, in addition to its five vertices, of 
ten lines and ten planes, the plane section to be con-
sidered will be a plane figure consisting of ten points 

31 
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and ten lines. In order to gain more readily a clear 
conception of the mutual relations of these points and 
lines we will consider the five-point as made up of a 
triangle ABC and two other points Oi, 02, together with 
the lines and planes joining these points in pairs and 
triples. The projection from OI of the triangle ABC 
on the plane of section ir is a triangle A^BiCi, similarly, 
the projection of ABC from 02 gives in x a triangle 
A2B2C2. The line 0I02 meets 7r in a point O, and the 
planes 0X02A, 0I02B, 0\02C meet x in three lines 
passing through O and containing the pairs of points 
AIA2, BXB2, CIC 2 , respectively. The plane section of 
our complete five-point may, therefore, be described 
as consisting, in part, of two triangles A1B1C1 and 
A2B2C2, such that the lines AIA2, BIB2, C\C2 are con-
current in O. This description accounts for seven of the 
ten points and for nine of the ten lines in the plane sec-
tion of our five-point. The remaining line is clearly the 
line in which the plane ABC meets t, and the three 
remaining points are the points A3, B3, C3 in which the 
lines BC, CA, AB, respectively, meet ir. The three 
points A3, B3, C3 are evidently on the line in which the 
plane ABC meets ir. On the other hand, A3 is the 
intersection of the lines BIC\ and B2C2, since the latter 
lines are in the planes, OIBC and 02BC, respectively. 
The plane section of a complete space five-point may 
then be described as consisting of two triangles AiBxC\ 
and A2B2C2, perspective from a point 0 , and whose 
pairs of corresponding sides intersect in collinear points 
A3, B3, c3. 

This figure is known as the Desargues configuration. 
A plane configuration, in general, is a figure consisting 
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of an points and a22 lines such that through each of the 
points pass the same number ai2 of the lines of the figure 
and such that on each line lie the same numb,er (h\ of 
the points of the figure. The symbol J^) is then 
associated with such a configuration. I t may be noted 
that the Desargues configuration has the symbol (3°'10), 
since it consists of ten points and ten lines such that 
three of the lines pass through each of the points 
and three of the points lie on each of the lines. A 
triangle is a configuration whose symbol is (2 3); a 
quadrangle is a configuration whose symbol is (3 jj); etc. 
We shall occasionally meet other configurations; but 
their systematic study, as such, is beyond the scope of 
a brief monograph. 

We have described the Desargues configuration, un-
symmetrically, by assigning a special role to one of its 
points, namely 0, i.e., by assigning a special role to one 
line 0i02 of the five-point. This line might, however, 
equally well have been any one of the nine other lines 
of the five-point. The Desargues configuration is com-
pletely symmetrical as to its points and lines. I t may 
be considered in ten different ways as consisting of two 
triangles perspective from a point, each of the ten 
points of the configuration in turn being considered the 
center of perspectivity. The reader should, in the 
figure, choose several points as centers of perspectivity 
and pick out the corresponding pair of perspective 
triangles, observing in each case that the pairs of cor-
responding sides meet in three points lying on a line of 
the figure. 

We may now give a proof of the Theorem of Des-
argues, which we cited for illustrative purposes in 
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Chapter I (p. 8). We will state it in the following 
brief form, which is justified on the basis of a definition 
of perspectivity from a line which we gave in the last 
chapter (p. 29). 

T H E THEOREM OF DESARGUES. If two triangles are 
perspective from a point, they are perspective from a line; 
and conversely. 

After the preceding discussion of the Desargues con-
figuration, in order to prove the theorem, we need only 
show that any pair of triangles AiBxC\ and A2B2C2, 
which are perspective from a point O, may be con-
sidered as part of a plane section of a complete space 
five-point. We may consider the two triangles as lying 
in the same plane, since the theorem is directly evident, 
if they lie in different planes (p. 8). Let Oh 02 be any 
two distinct points collinear with O and not in the plane 
of the triangles. Since A\A2 passes through O, by hy-
pothesis, the points Oi, 02, A\, A2 all lie in the same 
plane. The lines OxA 1 and 02A2 will therefore intersect 
in a point A. Similarly, the lines OiBx and 02B2 intersect 
in a point B \ and the lines O1C1 and 02C2 in a point C. 
The points Oi, 02, A, B, C are the vertices of a complete 
five point of which the two given perspective triangles 
are part of a plane section. They are, then, part of a 
Desargues configuration, and their pairs of correspond-
ing sides must intersect in collinear points; i.e., they 
are perspective from a line. 

The converse of the theorem (if two triangles are 
perspective from a line, they are perspective from a 
point) is the plane dual of the original theorem, if the 
triangles are in the same plane, and does not therefore 
require a separate proof, if the principle of duality be 
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accepted. The reader will find no difficulty, however, 
in giving a proof of the converse along the lines indi-
cated for the direct theorem. 

11. The fundamental theorem on quadrangular sets. 
As an application of the theorem of Desargues, we will 
now prove the following important theorem: 

o 

If two complete quadrangles A BCD and A'B'C'D' 
correspond—A to A', B to B', etc.,—in such a way that 
five of the pairs of corresponding sides intersect on a 
line I, the sixth pair of corresponding sides will also inter-
sect on I. 

To prove this, let P, Q, R, S, T be the five points in 
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which the five pairs of corresponding sides of the quad-
rangles meet I by hypothesis. The triangles BCD and 
B'C'D', having their three sides meeting I in Q, R, S, 
respectively, are perspective from a point (Theorem of 
Desargues). Similarly, the triangles ABD and A'B'D' 
are perspective from a point. Moreover, the center of 
perspectivity is the same for both these pairs of tri-
angles, being the intersection of BB' and DD'. The 
two quadrangles are, therefore, perspective from 0 ; 
in particular, the triangles ABC and A'B'C' are per-
spective from O. Their pairs of corresponding sides, 
therefore, intersect in collinear points Q, T, U. The 
points Q and T being on I, U must also be on I. 

The set of six (or five, or four) points in which the 
sides of a complete quadrangle meet a line is called a 
quadrangular set of points. The points of a quadrangular 
set may reduce to five or four if the line I passes through 
one or two of the diagonal points of the quadrangle. 

A quadrangular set cannot consist of less than four 
points, since, in the space we are considering, the three 
diagonal points of a complete quadrangle are never col-
linear. 

12. Harmonic sets. Of special importance is the case 
where the line I contains two of the diagonal points 

harmonic set of points and is indicated by the symbol 

A 

F I G . 1 2 

B c D 

(p. 28) of the quadrangle. If 
A and C are two diagonal 
points of the quadrangle PQRS 
and B and D are the points in 
which the remaining two sides 
of the quadrangle meet AC, the 
set of points A C, BD is called a 
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H(AC, BD). The points BD are said to be harmonic 
with respect to A and C; also D (or B) is called the 
harmonic conjugate of B (or D) with respect to A and C; 
in symbols, D=H{AC, B), B = H{AC, D). By the 
preceding theorem, D is uniquely determined as soon 
as A, C, and B are given. Hence we have the theorem: 

The harmonic conjugate of a point with respect to two 
others is uniquely determined. 

Further, if B, D are harmonic with respect to A and C, 
then A, C are harmonic with respect to B and D. In the 
figure, let the harmonic set H(AC, BD) be determined 
by the quadrangle PQRS, with diagonal points at A 

and C. We wish to show that then B and D are diagonal 
points of a complete quadrangle the remaining two sides 
of which pass through A and C. To this end, draw BR 
and DS meeting in M; let L be the intersection of PR 
and QS. The triangles PLQ and SMR are then per-
spective from the line BD. The line LM, therefore, 
passes through A (p. 34). The quadrangle SMLR now 
satisfies the desired conditions: B and D are diagonal 
points, while C and A are on the remaining two sides 
of this quadrangle. 

This establishes the fact that the pairs A, C and B, D 
in a harmonic set are interchangeable; in other words, 
from the relation H(AC, BD) follow the relations 
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H(AC, DB), H(CA, BD), H(CA, DB), H{BD, AC), 
H(BD, CA), H(DB, AC), and H(DB, CA). 

The plane dual of a harmonic set of points is called a 
harmonic set of lines. I t obviously consists of two pairs 
of coplanar lines a, c and b, d passing through the same 
point, such that a and c are diagonal lines of a complete 

quadrilateral and such 
that b and d are the 
lines joining the re-
maining vertices of the 
quadrilateral to the in-
tersection of a and c. 
By virtue of the prin-
ciple of duality the 
theorems just derived 
for a harmonic set of 
points apply equally 

well to a harmonic set of lines. 
Thus, if a and c are harmonic with respect to b and d, 

b and d are harmonic with respect to a and c; the harmonic 
conjugate of a line b with respect to two others a and c 
(a, b, c being of course coplanar and concurrent) is a 
uniquely determined line; etc. 

The reason for the great importance which attaches 
to the idea of a harmonic set lies in the fact that such a 
set is, by any projective transformation, transformed 
into a harmonic set. We observed in the first chapter 
that projective geometry is concerned with those 
properties of figures which remain unchanged under 
projective transformations. Hitherto we have encoun-
tered only properties of alignment as projective proper-
ties; to these we may now add the harmonic property. 

FIG. 1 4 
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That this property is indeed invariant under any 
projective transformation follows at once from the 
following theorem: 

The projection from any point of a harmonic set of 
points is a harmonic set of lines. 

Let A, C and B, D be any harmonic set H{AC, BD) 
and let 0 be any point not on the line AD. We wish 
to prove that the lines OA, OC and OB, OD constitute 
a harmonic set of lines. To this end draw a line through 
A meeting OB, OC in o 
P, Q, respectively; and 
draw CP meeting OA 
in R. The quadrangle 
ORPQ has diagonal 
points at A and C and 
one of its sides passes A B c D 

through B. Sinee AC, Fig" 15 

BD form a harmonic set, the sixth side RQ passes 
through D. On the other hand, the lines AD, AQ; 
RD, RC form a quadrilateral, of which OA and OC 
are diagonal lines, while OB and OD pass through the 
remaining two vertices. The set of lines through 0 then 
form a harmonic set, by definition. This completes the 
proof. 

The plane dual of the theorem just proved states that 
the section by a line of a harmonic set of lines is a harmonic 
set of points. It follows at once that by any sequence of 
projections and sections in a plane a harmonic set is 
always transformed into a harmonic set. Hence, we 
have the theroem: 

Any set of lines or of points in a plane, which is pro-
jective with a harmonic set, is itself a harmonic set. 
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CHAPTER IV 

PROJECTIVITIES IN ONE-DIMENSIONAL FORMS. 
THE FUNDAMENTAL THEOREM 

13. The one-dimensional primitive forms in the plane. 
Before taking up a more detailed study of the projective 
transformations, we need the following definitions ap-
plying to plane figures: 

The figure consisting The figure consisting 
of all the points on a line of all the lines through a 
is called a pencil of points point is called a pencil of 
(or a range). lines. 

All the lines of a pencil of lines are, it must be re-
membered, in the same plane. The set of all the lines 
in space passing through a given point is called a bundle 
of lines. 

The pencil of points and the pencil of lines are the 
so-called one-dimensional primitive forms in the plane. 
(There is another one-dimensional primitive form in 
space, the so-called pencil of planes, which is the figure 
formed of all the planes through a given line.) We 
now propose to study in some detail the projective 
correspondences or transformations, more briefly, the 
projectivities between one-dimensional primitive forms 
in the plane. We recall first certain definitions: 

A correspondence be- A correspondence be-
tween the points of two tween the lines of two 
pencils of points is said pencils of lines is said 

40 
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to be perspective, if the 
lines joining the pairs 
of corresponding points 
are concurrent, i.e., if 
these lines form a pencil 
of lines. 

to be perspective, if the 
points of intersection of 
pairs of corresponding 
lines are collinear, i.e., 
if these points form a 
pencil of points. 

I t will be observed that these definitions are equiva-
lent to those previously given (p. 28); the terminology 
only is a little different. We need also the following: 

A correspondence between a pencil of lines and a 
pencil of points is said to be perspective, if every line of 
the pencil of lines passes through the corresponding 
point of the pencil of points. 

The symbol for a perspective correspondence, or a 
perspectivity, is The expression 

ABCD • • • = A'B'C'D' • • • 

indicates that the pencil of points A, B, C, D, • • • is 
perspective with the pencil A', B', C', D', • • • in such 

s 

C'j d\X A' 

-x 
F I G . 1 6 

a way that A corresponds to A', B to B', C to C', etc., 
and such that the lines A A', BB', CC', etc. all pass 
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through S. The point 5 is called the center of the 
perspectivity, and the perspectivity is said to be 
central. (Fig. 16.) Likewise, the expression 

indicates that the pencil of lines a, b, c, d, • • • is per-
spective with the pencil a', b', c', d', • • • in such a way 
that a corresponds to a', b to b', c to c', etc., and such 

F I G . 1 7 

that the points aa', bb', cc', etc. are all on the line s. The 
line s is called the axis of the perspectivity, and the 
perspectivity is said to be axial. 

A correspondence between the elements (points or 
lines) of two one-dimensional primitive forms is said 
to be projective, if such a correspondence is effected by 
means of a finite sequence of perspectivities. Such a 
projective correspondence or transformation is called, 
more briefly, a projectivity. 

Thus, for example, the figure (Fig. 18) shows the 
points of u perspective through Si with the points of ux, 
the points of ux perspective through S2 with the points 
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of w2, the points of «2 perspective through S3 with the 
points of u'. By this sequence of perspectivities every 
point of u is made to correspond to a uniquely deter-
mined point of u', namely, A to AB to Bf, C to C', etc. 

The symbol for a projective correspondence is /\. 
Thus the above correspondence would be indicated by 

ABCD • • • A'B'C'D' 

It may be observed that the point of intersection of u 
and u' does not, in general, correspond to itself. In fact, 
we shall soon learn that, if it does correspond to itself 
in a projectivity, the latter is a perspectivity. In the 
example above a sequence of three perspectivities was 
used to define a projectivity; the number is immaterial, 
any number may be used. A perspectivity, it should 
be observed, is a special case of a projectivity. 
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14. Theorems on projectivities. The definition of a 
projectivity is very general. We propose now to prove a 
set of theorems which will culminate in the so-called 
fundamental theorem of projective geometry, whereby 
the apparent complexity of the concept will become 
much simplified. 

Any three points on a line may be projected into any 
three points on another line by means of two centers of 
perspectivity. 

To prove this, let A, B, C be any three points of a 
line u, and let A', B', C' be any three points of another 
line u'. We are to show that by means of two centers 

of perspectivity we can project A into A', B into B', 
C into C'. If A concides with A' a single perspectivity 
is sufficient, since the intersection of BB' and CC' will 
serve as center from which to project A, B, C into A', 
B', C', respectively. If A and A' are distinct, draw the 
line A A' and let S\ be any point on this line, distinct 
from A and A'. Draw any line Mi (distinct from u') 
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through A' and project A, B, C from Si into A , 
Bi, Ci on If, then, S2 is the intersection of B\B' and 
CiC', we have 

Therefore, 

which proves our theorem. As an immediate corollary, 
we have: 

Any three points of a line may be projected into any 
three points of the same line by {not more than) three 
perspectivities. 

Any harmonic set of points may be projected into any 
other harmonic set. 

For, if A, B, C of the harmonic set H(AC, BD) are 
projected into A', B', C' of the other set H{A 'C', B'D'), 
the point D must be projected into D' (p. 39). 

We have already called attention to the fact that two 
distinct points A and C divide a (projective) line into 
two segments (p. 15). If B is a point of one of these seg-

ments and D is a point of the other, the points B and D 
are said to separate the points A and C. In this case, a 
continuous motion on the line from B to D must pass 
over one or the other of the points A or C. If, on the 
other hand, B and D are on the same segment AC, 
the points B and D are said not to separate A and C; 
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and a continuous motion on the line from B to D is 
always possible which does not pass over either A or C. 
(Fig. 20). 

The conjugate pairs of a harmonic set always separate 
each other. 

By constructing a harmonic set H(AC, BD) we may 
observe that the pair A, C does as a matter of fact sepa-
rate the pair B, D. We have proved that any other 
harmonic set is projective with the one constructed 
(p. 45). Furthermore, any projective transformation is 
a continuous transformation, since each of the per-
spectivities of which it is the resultant is continuous 
(p. 16). Hence the pairs of any other harmonic set 
must separate each other. 

In preparation for the proof of the fundamental 
theorem we need to become familiar with the concept 
of a point harmonically related to three given points. 
A point X of line u is said to be harmonically related 
to three distinct points A, B, C of u, if X is one of a se-
quence of points A, B, C, Pi, P2 , P3, • • • , Pn-1, Pn = X, 
such that P1 is the harmonic conjugate of one the points 
A, B, C with respect to the other two, and such that 
any subsequent point P i is the harmonic conjugate of 
one of the preceding points of the sequence with respect 
to two other preceding points of the sequence. The 
set of all points on a line harmonically related to three 
given distinct points A, B, C of the line is called the 
net of rationality determined by A, B, C. The concept 
thus defined of a net of rationality derives its impor-
tance, for our present purpose, from the fact that the 
points of any such net are "everywhere dense" on the 
line; i.e., on any segment determined by two distinct 
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points M, N of such a net there exist points of the net. 
This follows at once from the fact that the contrary 
assumption, viz. that on one of the segments MN are 
no points of the net, would imply that all the points 
of the net are on the other segment. But the harmonic 
conjugate with respect to M, N of any of these points 
would then be on the former segment (p. 46), which 
obviously contradicts the assumption. 

(A net of rationality on a line may be shown to be 
equivalent to the set of points on the line whose coordi-
nates are rational numbers. This accounts for the name, 
and may also be helpful to the reader in grasping the 
essential character of such a net.) 

We may now prove a lemma from which the Funda-
mental Theorem will follow readily: 

A projective transformation between the points of a 
given line, which leaves three distinct points of the line 
fixed, leaves every point of the line fixed. 

For, a projective transformation which leaves the 
three distinct points A, B, C fixed obviously leaves 
every point of the net of rationality determined by A, 
B, C fixed. A projective transformation which leaves 
A, B, C fixed, therefore leaves fixed every point of a 
set of points which is everywhere dense on the line. 
Such a transformation, being continuous, therefore 
leaves every point on the line fixed. 

T H E FUNDAMENTAL T H E O R E M OF P R O J E C T I V E G E -

OMETRY. A projectivity between two one-dimensional 
primitive forms is completely determined if the correspon-
dents of three distinct elements of one of the forms are given. 

More precisely, and stated for two pencils of points, 
the theorem may be stated as follow 
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If by one sequence of perspectivities we have ABCD 
~/\A 'B'C'D' (A, B,C being distinct points) and by another 
sequence of perspectivities we have ABCD ~/\ A'B'C'Di , 
then will D' = DX'. 

In order to prove this we may note that the second 
sequence of perspectivities, taken in the reverse order, 
followed by the first sequence of perspectivities ob-
viously gives a projectivity which leaves A', B', C 
fixed and transforms A into D\ , in symbols 

By the preceding lemma, however, this last projectivity 
must leave ZV fixed. Hence D' =Di . As an important 
corollary, we have the following: 

If in a projectivity between the points of two distinct 
lines the point of intersection of the two lines corresponds 
to itself, the projectivity is a perspectivity. 

For, if the point of intersection of the two lines is 
A =A', and if the projectivity is determined by ABC 
~f\ArB'C', the perspectivity whose center is the inter-
section of BB' and CC' satisfies the condition defining 
the projectivity. 

As to. the significance of the fundamental theorem, we 
may observe that in defining a projectivity we allow 
any number of perspectivities to be involved. We have 
seen, however, that two perspectivities are sufficient 
to project any three distinct points of one line into 
any three distinct points of any other line, and the 
fundamental theorem tells us that by means of such 
three pairs of corresponding points any projectivity 
is completely determined. The result of a sequence of 
any number of perspectivities may, therefore, be ob-
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tained as a result of a sequence of only two such 
perspectivities, if the correspondence is between the 
points of two different lines; or as the result of at most 
three such perspectivities, if the correspondence is 
between the points of the same line. Any projectivity 
between the points of two distinct lines may be con-
structed, therefore, by means of the process used on 
p. 44. 

The reader, furthermore, should not neglect to make 
himself thoroughly familiar with the plane duals of 
the theorems and constructions of the present chapter. 
Thus the plane dual of the construction just referred 
to gives the construction for a projective correspondence 
between the lines of two pencils of lines, when three 
pairs of corresponding lines are given. The reader 
should have no difficulty in working out this dual con-
struction for himself. 

15. Axis of homology. A second and often very con-
venient method of constructing a projectivity between 
two one-dimensional primitive forms of the same kind 
results from the following considerations, in which we 
confine our discussion to the case of two pencils of 
points on different lines. 

Let u and u' be the two lines (in the same plane) and 
let a projectivity make the points A, B, C, D, • • • of u 
correspond respectively to the points A', B', C, 
D', • • • of u' (Fig. 21). If we project these points 
from A' and A, respectively, we obtain the two pro-
jective pencils of lines AA', AB', AC', AD', • • • and 
A'A, A'B, A'C, A'D, • • • in which the line A A' is 
self-corresponding. By the dual of the corollary to the 
Fundamental Theorem (p. 48) these two pencils of 
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lines are, therefore, perspective; the pairs of homologous 
lines AB' and A'B, AC' and A'C, AD' and A'D, 
therefore, intersect in points of a line v. Moreover, if O 
is the point of intersection of the lines u, u' and U' is 
the point of u' which corresponds to 0 considered as a 
point of u, and U is the correspondent of 0 considered 
as a point of u', it is clear that the line v passes through 
U and U', i.e., is determined by U and U'. The line v 

is then independent of the particular pair of homologous 
points, A, A' chosen as centers of the two perspective 
pencils. The result of this discussion may be stated as 
follows: 

If the points of two distinct lines in the same plane are 
projective, A BCD • • • ~f{ A'B'C'D' • • • , the pairs of 
lines AB' and A'B, AC' and A'C, BC' and B'C, • • • 
intersect on a line. 

This line is called the axis of homology of the pro-
jectivity. 

The proof above does not apply if 0 is a self-
corresponding point. In this case, however, the pro-
jectivity between u and u' is a perspectivity (p. 48), 
and the pairs of lines mentioned in the theorem are 
readily seen to intersect in the points of a line v passing 
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through O. Indeed, if the center of perspectivity of u 
and u' is S, the triangles AB'C and A'BC' are perspec-
tive from S (Fig. 22). The pairs of homologous sides 
AB' and A'B, BC' and B'C, AC' and A'C therefore 

5 

intersect in collinear points one of which is O. By 
considering the perspective triangles ABC' and A'B'C, 
we find similarly that the pairs of sides AB and A'B', 
BC' and B'C, AC' and A'C intersect in collinear points 
one of which is 0 and one other of which coincides with 
the intersection of one of the previous pairs. This 
proves the theorem also for the case in which the 
projectivity is a perspectivity, in which case the axis of 
homology passes through the point of intersection of 
the lines u and u'. 

The plane dual of the last theorem is as follows: 
If two pencils of lines on distinct centers, but in the 

same plane, are projective, abed • • • /\ a'b'c'd' • • • , the 
lines joining the pairs of points ab' and a'b, ac' and a'c, 
be' and b'c, • • • are concurrent. 

The point in which these lines are concurrent is called 
the center of homology of the projectivity. If the pencils 
of lines are not perspective, the center of homology is 
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the point of intersection of the two lines which cor-
respond to the common line of the two pencils con-
sidered first as a line of one pencil and then as a line 
of the other pencil. 

The reader will note that three pairs of homologous 
elements determine the axis (center) of homology, and 
that by means of the latter any number of other pairs 
of homologous elements are readily constructed. 

16. Double elements. Elliptic, parabolic, and hyper-
bolic projectivities. We consider now certain properties 
of projectivities among the elements of one and the 
same primitive form. If in a projectivity on a line a 
point M corresponds to itself, M is called a double-point 
of the projectivity; similarly, if in a projectivity in a 
pencil of lines a line m corresponds to itself, m is called 
a double-line of the projectivity. 

By the Fundamental Theorem, a projectivity which 
does not leave every element fixed cannot leave more 
than two distinct elements fixed. Three possibilities 
then present themselves: 

A projectivity may not have any double elements, 
in which case it is called elliptic. 

A projectivity may have a single double element in 
which case it is called parabolic. 

A projectivity may have two distinct double ele-
ments, in which case it is called hyperbolic. 

We will now prove the following theorem: 
If a projectivity on a line has one double point, it has 

in general a second, which may, however, coincide with 
the first. 

To prove it, let I f be a double point and let A, A' 
and B, B' be two pairs of homologous points on the line 
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u (Fig. 23). Take two points S, S' collinear with M 
and project the points M, A, B and M, A', B' from S 
and S' respectively. The projectivity S(MAB • • • ) 
~f\S'{MA'B' • • • ) has the self-corresponding line 
SM = S'M and is therefore perspective (p. 48). The 

pairs of lines 5^4 and S'A', SB and S'B', • • • intersect 
in the axis of perspectivity AiBi. The point N in 
which AiBi meets u is clearly a double point of the 
projectivity on u. The point N will in general be dis-
tinct from M, but may coincide with M (if AiBi passes 
through M). This proves the theorem. 

A projectivity with double point M will be parabolic, 
i.e., having M as its only double point, if and only if 
with the notation of the last paragraph the line AXBX 

passes through M. This shows how to construct a 
parabolic projectivity having given the double point 
and one pair of distinct homologous points A, A'. 
See Fig. 24. 

The preceding considerations prove the existence of 
hyperbolic and parabolic projectivities in one-dimen-
sional primitive forms; they also show how to construct 
a hyperbolic or a parabolic projectivity if the double 
points (the double point) and another pair of homolo-
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gous points are given; finally, they show how to con-
struct a second double point if one double point and 
two pairs of homologous points are given. The actual 
existence of elliptic projectivities will appear presently. 

Before leaving the subject of parabolic projectivities 
we may use Fig. 24 to prove another theorem con-
cerning them. If A" is the point into which A' is 
transformed by the parabolic projectivity which has M 
for double point and which transforms A into A', 
the figure shows that A" is the harmonic conjugate of 
A with respect to M and A'. Hence, we have the 
theorem: 

If a parabolic projectivity with double point M trans-
forms A into A' and A' into A ", the pairs M, A' and A, 
A" separate each other harmonically. 

The following theorem on hyperbolic projectivities is 
important. 

If in a hyperbolic projectivity with double points M, N 
we have MNAB MNA'B', we have also MNAA' 
7\ MNBB'. 

In fact, if we refer to Fig. 23 and denote by Q the 
intersection of the lines SS' and A±B\, we have at once 

17. Involutions. If a projectivity on a line trans-
forms a point A into a distinct point Aand transforms 
A' into A, the points A, A' are said to correspond to each 
other doubly. 

I f , in a projectivity on a line, any two distinct points 
correspond to each other doubly, every two homologous 
points correspond to each other doubly. 
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To prove this, let A, A' be two distinct points that 
correspond to each other doubly, and let B, B' be any 
other pair of homologous points (Fig. 25). Let ux be 

any line through A distinct from the line A A' and pro-
ject A', B, B' from a center S into A/, Bh B{ on u\. 
Then, if the line B'BX meets A'S in C, we have 

so that 

This shows that the projectivity which is determined 
by the three homologous pairs AA'B ~/\ A'AB' must 
transform B' into B. As a corollary, we have at once 
the theorem: 

If A, A', B, B' are any four points of a line, there exists 
a projectivity which makes A A 'BB' A 'AB'B. 

A projectivity in which every two homologous ele-
ments correspond to each other doubly is called an 
involution. It brings about a mere pairing of the 
elements of the form, and any such pair of homologous 
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elements is called a conjugate pair of the involution. 
Two such conjugate pairs determine an involution com-
pletely (p. 48). If three pairs of points are conjugate 
pairs of the same involution, the three pairs are said 
to be in involution. 

If an involution has double points M, N and if A, A' 
are any pair of the involution, then A and A ' are harmonic 
conjugates with respect to M and N. 

This follows at once from the construction for the 
projectivity MAA' ~/\ MA 'A. (p. 53.) Consequently, 
if an involution has one double point, it must have a 
second distinct from the first. An involution is therefore 
either hyperbolic of elliptic. 

I t is readily seen that two conjugate pairs of a hyper-
bolic involution never separate each other. For, if 
M, N are the distinct double points of such an involution 
and A, A' are any conjugate pair of the involution, 
the latter transforms the segment AM A' into the 
segment A'MA which is the same segment in the op-
posite sense. The point conjugate to any point B 
of this segment is therefore also a point of this segment. 
Similarly for the segment ANA'. Two conjugate pairs 
of this involution cannot then separate each other. I t 
follows that an involution in which two. pairs of con-
jugate points separate each other is elliptic, which 
proves the existence of elliptic projectivities. 

Moreover, if the pairs A, A' and B, B' do not separate 
each other, as a point P describes the segment ABA', 
its conjugate P' describes the same segment A'B'A 
in the opposite direction. There must then be a point 
on this segment where P and P' coincide. Hence we 
have the theorem: 
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An involution is elliptic or hyperbolic according as two 
conjugate pairs do or do not separate each other. 

A theorem of fundamental importance is the follow-
ing^ 

A line (not containing a vertex) cuts the pairs of opposite 
sides of a complete quadrangle in three pairs of an in-
volution. 

The proof follows readily from Fig. 26. Let the pairs 
of opposite sides of the complete quadrangle PQRS cut 
the line u in the pairs of points A, A'; B, B'\ C, C' as 
indicated. Since the diagonal points of a complete 
quadrangle are not collinear (p. 36), at least one of these 
pairs of points must consist of distinct points. Let A, 
A ' be such a pair, and let E be the diagonal point de-
termined by the pair of opposite sides PQ and SR of 
the quadrangle which determine A and A'. We then 
have 

also, by a previous theorem (p. 55) 
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Hence, 
AA'B'C' -j^A'ABC. 

This shows that in the involution defined by AA'B' 
~/\A'AB the points C, C' are conjugate, or in other 
words, that the three pairs A, A'\ B, B'\ C, C' are in 
involution. 

The last theorem furnishes us with a construction for 
finding the conjugate C' of a point C in the involution 
determined by the pairs A, A' and B, B'. All that is 
needed to this end, is to construct a complete quad-
rangle of which twTo pairs of opposite sides pass through 
the two pairs of points A, A' and B, B' and of which 
one of the remaining sides passes through C; the sixth 
side of the quadrangle will then pass through C'. 

As a corollary of the next to the last theorem we have: 
If two pairs of points on a line do not separate each other, 
there exists one and only one pair of points on the line 
which separates each of the given pairs harmonically, 
but if the two given pairs separate each other there exists 
no pair which separates each of them harmonically. 

For, a pair of points which separates each of two 
given pairs harmonically must be double points of the 
involution defined by the given pairs (p. 56). The 
latter involution has double points if and only if the 
given pairs do not separate each other (p. 57). 

If we think of. the two given pairs as the double points 
of two hyperbolic involutions, a pair that separates each 
pair of double points harmonically is a common conju-
gate pair of the two involutions. This shows that two 
hyperbolic involutions on the same line have a conjugate 
pair in common if and only if the double points of the 
involutions do not separate each other. 
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This raises a question that is important in some later 
developments as to the conditions under which two in-
volutions on the same line have a conjugate pair in 
common. The question has been answered in the pre-
ceding paragraph for the case in which both the 
involutions are hyperbolic. There remain the cases in 
which one or both of the involutions are elliptic. Let 
I and / i denote the two involutions in question and 
suppose that I transforms a point A into A', while I\ 
transforms A ' into A I . Let I \ I denote the projectivity 
which is the resultant of these two involutions taken in 
this order; i.e., the projectivity which transforms A 
into A{. It is clear that if M, N constitute a conjugate 
pair both of I and of IX both M and N are double points 
of the projectivity 7i7; and conversely. Our question 
as to whether I and I\ have or have not a common 
conjugate pair reduces to the question whether the 
projectivity I J has or has not double points. 

To answer this question it is desirable to introduce the 
distinction between direct and opposite projectivities. 
Given any projectivity on a line, let it transform the 
point P into P'. Suppose P moves continuously on the 
line in one of the two possible directions; P ' will then 
also move continuously on the line (p. 46), and if the 
motion of P' is in the same direction as that of P the 
projectivity is said to be direct; if P' moves in the 
direction opposite to that of P the projectivity is said 
to be opposite. An opposite projectivity always has 
double points, for if the points P and P' move in op-
posite directions on the line there must be points on 
the line at which P and P' coincide. We have, indeed, 
already made use of this argument when we discussed 
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the existence of double points of an involution (p. 56) 
We found that a hyperbolic involution is always op-
posite, whereas an elliptic involution is always direct. 
In the case of projectivities that are not involutions 
the situation is not so simple, in view of the fact that 
a direct non-involutoric projectivity may have a double 
point. 

To return to our problem, if one of the involutions 
I , I 1 is elliptic and the other is hyperbolic, we know that 
one is direct and the other opposite. The projectivity 
I J is, therefore, opposite and must have double points. 
An elliptic and a hyperbolic involution then always 
have a common conjugate pair. If, finally, both of the 
involutions I , A are elliptic the projectivity I J is 
direct and further investigation is necessary. Let A ' be 
the conjugate of A with respect to I , and let A\, A{ be 
the conjugates respectively of A, A ' under h . The pro-
jectivity I J transforms A into A( and A' into Ai, and 
is direct. Moreover, since h is elliptic, the pairs A, Ai 
and A', A[ separate each other (p. 57). Hence, it is 
easy to see that one of the directions on the line will 
make the four points in question come in the order 

under the projectivity I J will describe the segment 
A{ A i in the same direction. The segment A A' is con-
tained in the segment A{Ax and hence there must be 
on the segment A A' a point M where P and P' coin-
cide; i.e., the projectivity IJ must have a double point. 
It must have another double point since the 

A A' A, A\ 

FIG.27 

A, A', A\, A / . As a point P 
describes the segment A A' 
in the direction indicated, 
its corresponding point P' 
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conjugate of M under I must be identical with the 
conjugate of M under 1i. The two points M and N 
constitute a common conjugate pair of / and h . Hence, 
we have the theorem: Two involutions one of which at 
least is elliptic always have a common conjugate pair. 

In the preceding argument we assumed tacitly that 
A' and A\ are distinct. If, however, we had A'=A\ 
the pair A, A' would be a common pair of the two 
involutions, and no further argument would be neces-
sary. 

http://rcin.org.pl



CHAPTER V 

THE PASCAL AND BRIANCHON THEOREMS 

18. Definition of point conic and line conic. If S and 
S' (ST^S') are the centers of two pencils of lines in the 
same plane, and a projective correspondence is estab-
lished between the lines of the two pencils, to every 
line of the pencil S will correspond a uniquely deter-
mined line of the pencil Sr. The points of intersection 
of all such pairs of corresponding lines will constitute 
a curve which is called a point conic. If the projectivity 
between the two generating pencils of lines is perspec-
tive, the points of intersection will all lie on a straight 
line, the axis of perspectivity, and on the line SS' 
which is self-corresponding. This case of a so-called 
"degenerate" point conic is to be excluded, at least 
for the present. We are thus led to the following 
definition: The locus of the points of intersection of 
pairs of corresponding lines of two projective, non-
perspective, pencils of lines on distinct centers in the 
same plane is called a point conic. 

A projective correspondence between two pencils of 
lines is, by the fundamental theorem (p. 47), completely 
determined when three pairs of corresponding lines are 
given. If the lines a, b, c of the pencil S correspond 
respectively to the lines a', b', c' of S', the points 
aa'=A, bb'=B, and cc'=C are, by definition, points 
of the point conic; conversely, if S and S' are given as 
the centers of two generating pencils, and three other 

62 
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non-collinear points A, B, C are given, a point conic 
generated by pencils at 5 and S' and passing through 
the points A, B, C is uniquely determined. 

We may note at once 
that the point conic 
thus determined passes 
through S and S'. For, 
to the line SS' con-
sidered as a line of the 
pencil S corresponds a 
line t' of S', and this 
pair of corresponding 
lines intersect at S'; 
similarly, the line S'S considered as a line of the pencil 
S', is the correspondent of a line 5 of S, and this pair 
of corresponding lines intersect at S. Furthermore, the 
line t' obviously has no other point in common with 
the point conic than S', and the line 5 meets the conic 
in the point S only. If then we define a tangent to the 
point conic as being a line in the plane of the point 
conic and meeting the point conic in only one point, 
we see that the lines s and t' are both tangents. I t is, 
moreover, clear also that s and t' are limiting positions 
of the lines £ and x' respectively, as X approaches S 
or S' along the point conic. The lines 5 and t' are then 
tangents also according to the latter definition. 

The plane dual of the definition of a point conic is 
as follows: The set of all lines joining the pairs of cor-
responding points of two projective, non-perspective, 
pencils of points on distinct lines in the same plane is 
called a line conic. A point in the plane of a line conic 
through which passes only one line of the line conic is 
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called a point of contact of the line conic. This is the 
plane dual of the idea of a tangent to a point conic. 

19. The construction of a point conic from the 
definition. We will now see how to construct a 
point conic generated by two pencils at two given 
points and S' and containing three given non-
collinear points A, B, C (Fig. 29). The projectivity be-
tween the generating pencils is determined by the three 
pairs of corresponding lines a, a b , b'; c, c' where 

Given any other line x through S, we must learn how to 
determine its corresponding line x' through S'. To this 
end, draw the lines BC = u' and AB = u", and let a, b, 
c, x meet u' in A', B, C, X', and let a', b', c' meet u" 
in A, B, C", respectively. The projectivity between 
the lines of the pencils S and S' gives rise to the pro-
jectivity 

A'BCX'^/\ABC"X" 

between the points of u' and u", where X" is a point 
still to be determined. But this latter projectivity is 
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perspective, since the point B corresponds to itself 
(p. 48). The center of this perspectivity is obviously 
the intersection 0 of the lines A A' and CC". To deter-
mine the unknown point X", therefore, we need only 
find the intersection of u" with OX'. The line x' of the 
pencil S' is then the line S'X", and the point of inter-
section X of x and x' is another point of the point conic. 
In this way any number of points of the point conic may 
be constructed. However, this method of construction 
becomes much clearer by a restatement which involves 
a very remarkable theorem, known as Pascal's Theorem. 
We will accordingly turn our attention to the latter, 
and postpone for the present the problem of construct-
ing a conic. 

20. Pascal's theorem. In order to put the result of 
the last paragraph into a more usable form and thereby 
to gain a proof of Pascal's Theorem, we must introduce 
the idea of a simple plane hexagon. The figure formed 
by six coplanar points, ABCDEF, no three of which are 
collinear, taken in a given cyclical order, together with 
the six lines joining pairs of successive points, is called 
a simple plane hexagon. The six points are called the 
vertices of the hexagon, and the six lines are called the 
sides. Moreover, these sides go in pairs of so-called 
opposite sides, the sides AB and DE being opposite, 
likewise BC and EF, and CD and FA. Also, the ver-
tices A and D, B and E, C and F are said to be opposite. 

We now return to the result of the last paragraph. 
Let us consider the simple hexagon SABCS'X deter-
mined by the six points of our point conic in the order 
indicated. The pairs of opposite sides of this hexagon 
intersect as follows: 
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and CS' intersect in 0 ; 
AB and S'X intersect in X" ; 
BC and XS intersect in X'. 

But, the points O, X", X' are by construction collinear. 
This result may be stated as follows: 

If A, B, C, X are any four points of a point conic 
generated by pencils of lines at S and S', the pairs of op-
posite sides of the simple hexagon S ABC S'X will meet 
in three collinear points. 

The converse of this theorem can be readily verified. 
The simple hexagon CS'XSAB is, however, the same 
hexagon as SABCS'X. Hence, if A, B, C, X are points 
of a point conic generated by pencils at S and S', then 
also will S', X, S, B, be points of a point conic generated 
by pencils at C and A. Three points in addition to the 
centers of the generating pencils determine a point 
conic completely. The two point conics are then de-
termined by the centers S, S' and the three points A, 
B, C, and by the centers C, A and the three points S', 
S, B, respectively. The result obtained states that if X 
is any point of the first point conic, it is a point of the 
second point conic also; in other words, the two point 
conics coincide. This proves the following fundamental 
theorem: 

A point conic is uniquely determined by any five of its 
points', and may be generated by projective pencils whose 
centers are any two of its points. 

This theorem, however, shows that the six points S, 
S', A, B, C, X are any points of the point conic. This 
gives at once the following theorem: 
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PASCAL'S T H E O R E M . A necessary and sufficient con-
dition that six points be points of a point conic is that the 
pairs of opposite sides of any simple hexagon having these 
points as vertices meet in collinear points. 

This theorem was proved by Blaise Pascal (1623— 
1662) when only sixteen years of age, a remarkable ex-
ample of mathematical precocity. His method was of 
course different from the one here given. He proved 
the theorem first for the circle and thence inferred its 
validity for any point conic, from the fact that any such 
conic could be obtained from a circle by the method of 
projection and section. The reader must, at present, take 
on faith the fact that "point-conic" as we have defined 
it is the ordinary conic with which he has become 
familiar in earlier studies. (See the end of Chapter VI.) 

In view of its importance we will state the theorem 
also as follows: 

If 1,2, 3, 4, 5, 6, are points of a point conic, the points 
of intersection of the pairs of lines 12 and 45, 23 and 56, 
34 and 61 are on a straight line; and conversely. 

This line is called the Pascal line of the hexagon 
123456. 

From a set of six given points 60 different simple 
hexagons may be formed. Each of these hexagons gives 
rise to a Pascal line. The sixty lines thus obtained 
from six points of a point conic form a very remarkable 
configuration which was not unnaturally given the name 
of Hexagrammum Mysticum. Its study is, however, 
beyond the scope of the present monograph. (See 
Veblen and Young, Projective Geometry, vol. I, p. 138, 
Ex. 19.) 
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21. The construction of the point conic through five 
given points. Pascal's Theorem furnishes a simple 
method for constructing a point conic through five 
given points; i.e., for constructing as many points of 
the point conic as you please. To th :s end let 1,2, 3,4, 
5 be the given points of a point conic. We will show 
how to construct the sixth point 6 on any line through 

5. Let x be any such line 
through the point 5. The 
intersection P of the lines 
12 and 45 is a point of the 
Pascal line of the hexagon 
123456; the intersection Q 
of the lines 23 and *( = 56) 

s« is a second point of this 
Pascal line. This line is then 
determined. According to 

Pascal's Theorem, therefore, the line PQ must meet 34 
in a point R through which 61 must also pass. This de-
termines the line 61, and the intersection of 61 and x 
( = 56) gives the desired point 6. The construction can 
be readily repeated for other lines x through 5. 

22. Brianchon's Theorem. The plane dual of Pas-
cal's theorem is as follows: 

BRIANCHON'S THEOREM. A necessary and sufficient 
condition that six lines be lines of a line conic is that the 
lines joining the pairs of opposite vertices of any simple 
hexagon having the given lines as sides are concurrent. 

This theorem may also be stated as follows: 
If 1, 2, 3, 4, 5, 6 are lines of a line conic the lines 

joining the pairs of vertices 12 and 45, 23 and 56, 34 and 
61 are concurrent. 
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This theorem may evidently be used in a manner 
analogous to the use of Pascal's Theorem, to construct 
a line conic when any five of its lines are given. Fig. 31 
exhibits this construction. The lines 1, 2, 3, 4, 5 are 
the given lines; a sixth line 6 of the conic is to be 
constructed through an arbitrary point X on the line 

5. The lines joining the points 12 and 45, and 23 and 
X = 56, determine the Brianchon point O. The desired 
line 6 must then meet line 1 in the point Y = 61 in which 
the line joining 34 and 0 meets 1. XY is then the de-
sired line. Brianchon's Theorem was not noted until 
the early years of the nineteenth century. 

23. Tangents. Points of contact. A line in the plane 
of a point conic which meets the conic in one and only 
one point P is called a tangent to the point conic at the 
point P. A point in the plane of a line conic through 
which passes one and only one line p of the line conic is 
called a point of contact of the line conic on the line p. 

Through any point of a point conic there is one and only 
one tangent to the point conic. 
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For, let A be the given point of the conic, let B be 
any other point, and let P be a variable point of the 
conic. We then have the pencil of lines at A projective 
with the pencil at B, if pairs of homologous lines pass 
through P (p. 66). Any line through A meets its homol-
ogous line through B in a point distinct from A, 
except when its homologous line is BA. Since a projec-
tive correspondence is one-to-one, there is only one 
line through A whose homologous line is BA. The 
plane dual of this theorem is as follows: 

On any line of a line conic there is one and only one 
point of contact of the line conic. 

24. Special cases of Pascal's Theorem. A tangent to 
a point conic may also be considered as the limiting 
position of a secant as the points of intersection of the 
secant with the conic approach coincidence. By con-
sidering the various limiting cases that arise when we 
think of two of the vertices of a simple hexagon in-
scribed in a point conic as approaching coincidence, we 
obtain a number of important special cases of Pascal's 
Theorem and, by duality, of Brianchon's Theorem. 

Suppose first that the vertices 1 and 2 coincide. The 
side 12 is then a tangent to the conic at the point 1=2 . 
Pascal's Theorem then states that the tangent 12 and 
the side 45 meet in a point which is on the line joining 
the points of intersection of 23 and 56 and of 34 and 61. 
In other words: 

If the vertices of a simple pentagon are points of a point 
conic, the tangent to the conic at one of the vertices meets 
the opposite side in a point collinear with the points of 
intersection of the other two pairs of opposite sides. (See 
Fig. 32). 
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By a similar argument, if we think of the side 12 as 
being a tangent (1 =2) and the side 34 as also being a 
tangent (3=4), we obtain the following: 

If the vertices A, B, C, D of a simple quadrangle are 
points of a point conic, the tangent at A and the side CD, 
the tangent at D and the side AB, and the pair of sides 
AD and BC meet in three collinear points. (Fig. 33) 

If, on the other hand we think of two opposite sides, 
12 and 45, of our hexagon as being tangents (1=2 and 
4 = 5), the theorem becomes: 
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If the vertices of a complete quadrangle are points of a 
point conic, the tangents at two of the vertices meet in a 
point of the line joining the diagonal points of the quad-
rangle which are not on the side joining the two vertices. 

Finally, if we think of three of the sides of our hexagon 
as being tangents, we obtain: 

If three points are points of a point conic, the tangent at 
each point and the line joining the other two points meet 
in collinear points', or, a triangle inscribed in a point conic 
and the triangle formed by the tangents at its vertices are 
perspective. (Fig. 35) 

25. The tangents to a point conic form a line conic. 
A further consideration of one of the theorems (p. 71) 
of the last section will yield an important result. Let 
A, B, C, P be four points of a point conic (Fig. 36), and 
let a, b, c, p be the tangents at these points, respectively. 
By the theorem just referred to, the intersection of the 
tangents b and c is on the line joining the diagonal points 
R and Q of the quadrangle ABCP. By the same theorem, 
the intersection of the tangents a and p is also on the 
line RQ. By similar reasoning we see that the points ac, 
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bp, and Q are collinear. Now, the line AB is the axis 
of homology (p. 50) of the projectivity between the 
pencils of points on a and b defined by 

Hence, the point corresponding in this projectivity to 
ap is the point bp; i.e., if p is thought of as a variable 
tangent, it is the line joining pairs of homologous 
points on the two lines a and b, so that the totality of 
lines p satisfies the definition of a line conic. We have, 
therefore, the following theorems: 

The tangents to a point conic form a line conic; 
and the plane dual of this theorem: 
The points of contact of a line conic form a point conic. 
We may now define a self-dual figure called a conic 

as a point conic together with its tangents (or, as a line 
conic together with its points of contact). In forming 
plane duals of theorems regarding conics it is clear that 
the word conic is left unchanged while the words point 
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(of a conic) and line or tangent (of a conic) are inter-
changed. If the points of a plane figure are on a conic, 
the figure is said to be inscribed in the conic; if the lines 
of a plane figure are tangent to a conic, the figure is 
said to be circumscribed about the conic. The duals of 
Pascal's Theorem and its special cases now give us 
theorems of the same consequence for point conics as 
for line conics. By way of illustration we will restate 
Brianchon's Theorem from this point of view: 

BRIANCHON'S THEOREM: If a simple hexagon is cir-
cumscribed about a conic, the lines joining opposite ver-
tices are concurrent; and conversely. 

Another important theorem follows readily from the 
last figure: 

If A is a fixed and P is a variable point of a conic, and 
a and p are the tangents at these two points respectively, 
then we have A[P ] /\ a [p ]. 

The proof follows readily from the notation in Fig. 
36: We have, first, 

where [Q] is the pencil of points on AB. We also have 

and (by p. 66, dual), 

Combining these projectivities, we have 

26. Pole and polar with respect to a conic. Let us 
consider a conic and a point P in the plane of the conic 
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but not on the conic. Let AB and CD be any two lines 
through P and cutting the conic in A, B and C, D, 
respectively, and let the intersection of AD and BC 
be denoted by Q, that of AC and BD by R (Fig. 37). 
I t is then clear (from p. 71) that the intersections 
H, K of the tangents to the conic at A and B and at C 
and D, respectively, are on the line QR. Furthermore, 
if QR meets the line AB in M, it is evident from the 

figure that M is the harmonic conjugate of P with 
respect to A and B, since the latter points are diagonal 
points of the complete quadrangle RCQD and the 
opposite sides CD and RQ pass through P and M 
respectively. For a similar reason, the point N in which 
the line QR meets the line CD is the harmonic conju-
gate of P with respect to C and D. The line p=QR 
then contains the points II, K, M, and 2V; it is therefore 
determined by the points II and M and these points 
depend only on the line AB through P. If then we 
think of the line A BP as fixed and think of the line 
CDP as variable we obtain the following theorem: 
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If P is a point in the plane of a conic, but not on the 
conic, there exists a uniquely determined line p which con-
tains : 

1) the other two diagonal points of any complete 
quadrangle inscribed in the conic one of whose diagonal 
points is P; 

2) the harmonic conjugate of P with respect to any two 
points of the conic collinear with P; 

3) the point of intersection of the tangents to the conic 
at any two points collinear with P. 

The line p thus uniquely defined by the point P and 
the conic is called the polar of P with respect to the conic. 
If P is any point of the conic the polar of P with respect to 
the conic is defined to be the tangent to the conic at P. 

The plane dual of the last theorem is as follows: 
If p is a line in the plane of a conic, but not a tangent to 

the conic, there exists a uniquely determined point P 
through which pass: 

1) the other two diagonal lines of any complete quadri-
lateral circumscribed about the conic one of whose diagonal 
lines is p; 

2) the harmonic conjugate of p with respect to any two 
tangents to the conic which are concurrent with p; 

3) the line joining the points of contact of any two 
tangents to the conic which are concurrent with p. 

The point P thus uniquely determined by the line p 
and the conic is called the pole of p with respect to the 
conic. If the line p is tangent to the conic, the pole of 
p with respect to the conic is defined to be the point of 
contact of p. 

There is thus associated with every point in the plane 
of a conic a unique line, the polar of the point; and with 
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every line in the plane of a conic a unique point, the 
pole of the line. We proceed to study the relations of 
poles and polars. 

We may note first that the relation of pole and polar 
is a reciprocal one, as expressed in the following the-
orem: 

If p is the polar of a point P, the point P is the pole of p. 
If P is not on the conic, this follows at once by com-

paring the first 3 with the second 3 on p. 76. If P is on 
the conic, it follows from the definition. The following 
is also evident, if a tangent is regarded as the limiting 
position of a secant: 

The polar of a point P with respect to a conic passes 
through the points of contact of the tangents to the conic 
through P, if such tangents exist. 

27. The polar system of a conic. We have seen how 
a conic defines a reciprocally one-to-one correspondence 
between the points and lines of a plane, whereby to 
every point corresponds its polar and to every line its 
pole. Such a correspondence is called a polar system. 
We proceed to study its properties a little more fully. 

We ask ourselves first: If a point moves along a line 
p, how does its polar move? We will suppose first that 
the line p is not tangent to the conic. Let P be the pole 
of p (which is, then, not on the conic), let Q be any 
point of p and let A be any point of the conic. Let the 
lines AP and AQ meet the conic again in B and C re-
spectively, and let PC meet the conic again in D (Fig. 
38). One diagonal point of the complete quadrangle 
ABCD is at P ; hence (p. 71) the other two diagonal 
points are on p. This means that the line BD passes 
through Q and the lines AD and BC meet in a point 
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R of p. Hence, the line q =PR is the polar of Q. Now, 
if we consider the point A and the line p as fixed, the 
points P and B are also fixed. If we let Q move on p, 

the points C and D and the line q will move, the latter, 
however, always passing through the fixed point P . 
The pencils of lines A[C] and B[C] are projective 
(p. 66). Hence, we have 

The result of this discussion may be stated as follows: 
As a point Q moves on a line p, the polar q of Q rotates 

about the pole P of p, and the pencil of points [()] is 
projective with the pencil of lines [<?]; and conversely. 

The proof we have given of this important theorem 
applies only when p is not tangent to the conic. To 
prove it when p is tangent to the conic, let P be the 
point of contact (the pole) of p (Fig. 39). Let Q be any 
point of p and let A be the intersection of any two fixed 
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tangents of the conic. Denote the line AQ by r, and its 
pole by R, the latter being on the polar a of A. The line 
RP = q is evidently the polar of Q. We now have 

which is what we desired to prove. 
28. Conjugate points. Conjugate lines. We now 

make a few definitions. Two points are said to be 
conjugate with respect to a conic (or with respect to a 
polar system), if the polar of either passes through the 
other. Two lines are said to be conjugate with respect 
to a conic, if the pole of either is on the other. 

Every point in the plane of the conic has an infinite 
number of conjugates, namely the points on its polar; 
and by duality, every line in the plane of the conic has 
an infinite number of conjugate lines, the lines through 
its pole. The only points conjugate with themselves 
are the points of the conic; the only self-conjugate lines 
are the tangents of the conic. 

Consider a line p not tangent to the conic. Any point 
Q on p has a conjugate Q' on p, viz., the intersection of 
p with the polar q of Q. The correspondence Q to Q' 
is clearly projective (p. 78) and is, moreover, an 
involution since to Q' corresponds the intersection with 
p of the polar q' of Q' which passes through Q. Hence 
we have the following theorem: 

On every line not tangent to a conic, there exists an 
infinite number of pairs of conjugate points with respect 
to the conic; and these pairs of conjugate points are the 
pairs of an involution. 

We shall refer to this involution as the involution of 
conjugate points on the line. 
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The plane dual of the last theorem is as follows: 
In every pencil of lines whose center is not on a conic 

there exists an infinite number of pairs of conjugate lines 
with respect to the conic; and these pairs of conjugate lines 
are the pairs of an involution. 

We note, further, that if and only if a line has points 
in common with the conic, does the involution of con-
jugate points on the line have double points, viz., the 
points in which the line meets the conic. Hence, the 
involution of conjugate points on a line {not a tangent to 
the conic) is elliptic or hyperbolic, according as the line 
does not or does meet the conic. Similarly, the involution 
of conjugate lines through a point {not on the conic) is 
elliptic or hyperbolic according as tangents to the conic 
through the point do not or do exist. 

29. The principle of duality in a plane. We are now 
in a position to indicate one of the methods of estab-
lishing the principle of duality in the plane to which we 
referred on p. 26. Given any figure F in a plane, let us 
form the figure F' obtained by replacing every line of F 
by its pole with respect to a conic in the plane and every 
point of F by its polar with respect to the same conic. 
To every point of F corresponds a line of F' and to every 
line of F corresponds a point of F'. Moreover, whenever 
a line of F passes through a point of F, the corre-
sponding point of F' is on the corresponding line of F'. 
If two pencils of points (lines) in F are projective, the 
corresponding pencils of lines (points) in F' are like-
wise projective (p. 78). It follows that any projective 
property of F is reproduced as a corresponding pro-
jective property of F' in which the roles played by the 
points and lines of F are interchanged. 
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CHAPTER VI 

METRIC PROPERTIES 

30. Projective and metric properties. We have hith-
erto confined our attention to purely projective pro-
perties of figures; i.e., to properties that remain un-
changed under any projective transformations. Con-
ceptions associated with such words as parallel, per-
pendicular, distance, angle, etc. have had no place in 
our discussion, and could indeed have no place since 
they refer to properties which do not remain unchanged 
under all projective transformations. 

However, such metric properties do have relations to 
projective properties and it is these relations we now 
propose to consider. Two methods of approach are 
open to us. The first and simpler of the two is to 
assume our knowledge of elementary metric (euclidean) 
geometry and investigate directly the relations between 
certain of these metric properties and the projective 
properties of figures with which we have become ac-
quainted in the preceding chapters. I t will be recalled 
that we built up our conception of projective space by 
adding to the elements of euclidean metric space with 
which we were already familiar certain ideal or improper 
elements. To be more specific, we added to our metric 
space an ideal plane, the plane at infinity. The points 
and lines of this plane were then the ideal or improper 
points and lines, the points and lines at infinity as we 
called them. All the other points, lines, and planes of 

81 
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space were then proper points. Having by the intro-
duction of the improper points and lines and the im-
proper plane extended our conception of space, we com-
pleted the conception of projective space by wiping out 
the distinction between proper and'improper elements; 
the points, lines, and planes of projective space are 
classes of identical elements, the elements of each class 
differing among themselves only in position. 

The first method of approach to the study of metric 
properties in a projective setting consists in re-
establishing this distinction between proper and 
improper elements, between ordinary points and lines 
and the points and lines at infinity. We should then 
recognize that parallel lines, for example, meet on the 
line at infinity in the plane of the lines; we would ob-
serve, that the harmonic conjugate of the mid-point of 
the segment AB of a line is the point at infinity on that 
line (see below); we would prove that all the pairs of 
perpendicular lines in a plane cut the line at infinity 
in that plane in pairs of points of one and the same 
involution; etc. 

The second method of approach, less elementary but 
esthetically more satisfying, would have us forget our 
early study of elementary metric geometry and would 
have us regard projective geometry as the fundamental 
form of geometry, out of which other forms are to be 
developed without any previous suppositions and there-
by seek to justify Cayley's dictum: "Projective geometry 
is all geometry." This method of approach is at the 
outset quite as simple as the other method just de-
scribed, although the point of view is radically different. 
According to this second method we assume no previous 
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knowledge of metric properties whatever. We begin 
by choosing arbitrarily some (any) plane of our pro-
jective space to be an "improper" plane and with 
reference to this improper plane we make certain 
definitions. All the points and lines of this plane are 
said to be improper. Two lines in the same plane are 
defined to be parallel, if they intersect in an improper 
point; two distinct points A and B being given, the 
harmonic conjugate of the improper point on the line 
AB with respect to A and B is defined to be the mid-
point of AB; we establish arbitrarily any (elliptic) 
involution on the improper line of a given plane and call 
it the absolute or orthogonal involution in that plane, 
and then define two lines to be perpendicular to each 
other if they meet the improper line in a conjugate pair 
of the orthogonal involution; etc. The reader will 
note that with these definitions certain of the familiar 
theorems concerning parallel and perpendicular lines 
follow immediately. For example, two lines parallel 
to the same line are parallel to each other; two lines in 
a plane perpendicular to the same line are parallel; a 
line in the plane of two parallel lines and perpendicular 
to one of them is perpendicular to the other also. 

In spite of this simplicity at the outset, the second 
method of approach involves some difficulties if all the 
metric conceptions are to be defined in projective terms. 
It seems desirable, therefore, to adopt a combination of 
these two methods. We begin with the second method 
of approach, and as hitherto we confine ourselves to 
figures in the same plane. In this plane we arbitrarily 
recognize an exceptional line, or improper line, which 
we call the line at infinity, with reference to which and 
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to the (improper) points at infinity on it we make cer-
tain definitions. In each case, however, where it seems 
desirable we will call upon our knowledge of elementary 
metric geometry to prove that the definitions made are 
indeed in accordance with our knowledge of such metric 
geometry. At a later stage we will definitely adopt the 
first method of approach to get us over certain diffi-
culties. In a later chapter we shall return again to the 
problem of the second method, that is, the problem of 
developing the whole of metric geometry on a projective 
basis. 

31. Parallel lines. Midpoint. Two lines in the same 
plane are said to be parallel, if they meet in a point 
at infinity. I t follows at once from this definition that 
two lines parallel to the same line are parallel to each other; 
and that through a given point there is one and only 
one line parallel to a given line. 

Another definition of fundamental importance is the 
following: Given two distinct points A, B, the har-
monic conjugate, M, of the point at infinity on AB is 
called the midpoint oi AB, and M is said to bisect AB. 

It must be kept in mind that from the point of view 
of the second method of ap-

F I G . 4 0 

R 
proach described in the pre-
ceding section none of the 
familiar properties of the 
terms defined must be as-
sumed until such time as 
they are seen to follow from 
previously established theo-
rems. That the above defi-
nition of midpoint does in-
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deed correspond to the concept associated with this 
term in our elementary metric geometry may be seen as 
follows (Fig. 40): If two arbitrary lines AQ and ylS 
are drawn through A and lines BS and BQ are drawn 
through B parallel to AQ and respectively, the lines 
A Q and SB meet, by definition, in a point R at infinity, 
while AS and QB meet by definition in a point P a t in-
finity. The complete quadrangle PQRS then has two 
4iagonal points at A and B, while the remaining pair of 

-SBpposite sides pass through M and the point at infinity 
hj}n the line AB. The point M is then by construction the 
l larmonic conjugate of the point at infinity on AB with 
lespect to A and B. On the other hand, that M is the 
midpoint of the segment AB follows from the familiar 

i; proposition that the diagonals of a parallelogram 
(PQRS) bisect each other. 

5 "3 sse This is, of course, merely a verification obtained by 
j ^assuming a knowledge of elementary geometry. From 

the point of view of the second method of approach 
described above, the theorem of elementary geometry 

« o n which the above verification depends, viz., the 
diagonals of a parallelogram bisect each other, is itself 
an immediate consequence of the theorems on har-
monic sets and the following definitions: A simple 
quadrangle ABCD in which the sides AB and CD, and 
also the sides AD and BC, are parallel is called a 
parallelogram; the lines AC and BD are the diagonals 
of the parallelogram. 

As another example of how familiar metric theorems 
appear as special cases of projective theorems we may 
cite the following: 

If the sides AB, BC, CA of a triangle ABC are cut by 

C A B I N E T > A I ^ A t Y C Z N Y 
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a line I (not passing through a vertex) in points Cx, Ax, Bx 

respectively, and if C', A', B' are the harmonic conjugates 
ofC i, Ax, Bi, respectively, with respect to A and B, B and C, 
C and A, then B'A'Cx are collinear; likewise A'C'Bx are 
collinear and B'C'Ax are collinear. 

To prove this theorem we need only note that we have 
(Fig. 41) 

AB'CBx -^B A'C Ax, 

since these sets of four points are harmonic sets (p. 45). 
Since C is self-corresponding this projectivity is a 

perspectivity (p. 48). 
Hence, AB, A'B', BxAx 

are concurrent. But 
this means that B', A', 
C x are collinear. A 
similar argument ap-
plies to the other sets of 
three points. 

If we specialize this 
theorem by taking I to 
be the line at infinity, 
A', B', C' are by defi-
nition the midpoints of 
the sides BC, CA, A B 

respectively, and the theorem then states that A'B' 
is parallel to AB, B'C' to BC, and C'A' to CA. In 
other words, the line joining the midpoints of two sides 
of a triangle is parallel to the third side. 

The reader may prove for himself that with the above 
notation the lines AA', BB', CC' are concurrent. The 
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special case of this result, when I is the line at infinity, 
gives: The medians of a triangle meet in a point. 

32. The classification of conics. Confining our-
selves to "real" points, as we have hitherto, the line at 
infinity may meet a conic in two distinct points, may 
be tangent to it, or may meet it not at all. This gives 
us the following classification of conics: A conic which 
meets the line at infinity in two distinct points is called 

a hyperbola; a conic tangent to the line at infinity is 
called a parabola; a conic having no point in common 
with the line at infinity is called an ellipse. (See Fig. 42) 

We note the following additional definitions: The 
tangents to a hyperbola at the points where it meets 
the line at infinity are called asymptotes. The pole of 
the line at infinity with respect to a conic is called the 
center of the conic, and any line through the center is 
called a diameter of the conic. Conics whose centers are 
proper points are called central conics (ellipse and 
hyperbola). 

It should be noted that every diameter of a conic is 
the polar with respect to the conic of some point at infinity 
(p. 78). We may now state the following theorem: 

FIG. 42 FIG. 43 
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The midpoints of any system of parallel chords of a 
conic all lie on a diameter d, conjugate to the diameter which 
is parallel to the chords; and the diameter d passes through 
the points of contact, if they exist, of the tangents to the 
conic which are parallel to the chords. (Fig. 43) 

This is an immediate consequence of the definition 
of midpoint and the theorem defining the polar of a 
point with respect to a conic (p. 78). Other metric 
theorems on conics that follow readily from the above 
definitions and projective theorems on conics previously 
proved are as follows: 

No two (proper) tangents to a parabola are parallel. 
The asymptotes of a hyperbola meet at the center of the 

hyperbola. 
If a parallelogram is inscribed in a conic, the tangents 

at a pair of opposite vertices are parallel. 
If a parallelogram be circumscribed about a conic, its 

diagonals meet at the center and are conjugate diameters. 
If a parallelogram be inscribed in a conic, two adjacent 

sides are parallel to conjugate diameters. 
The reader will have no difficulty in proving each of 

these theorems on the basis of the projective theorems 
with which he is already familiar. 

33. Perpendicular lines. The orthogonal involution. 
As a preliminary to the introduction of the concept of 
perpendicularity we will assume the proposition from 
elementary metric geometry that the altitudes of a tri-
angle meet in a point and by means of it prove the 
following: 

All the pairs of perpendicular lines in a plane meet the 
line at infinity in pairs of points of one and the same in-
volution. 
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Let ABC be any triangle and let AD, BE, CF be 
the perpendiculars dropped from the vertices on the 
opposite sides. By the proposition just referred to these 
perpendiculars meet in a 
point M (Fig. 44). The 
points A, B, C, M are then 
the vertices of a complete 
quadrangle the pairs of op-
posite sides of which meet 
the line at infinity in pairs of 
points of an involution I 
(p. 57). To show that any 
other pair of perpendicular 
lines I and V in the plane 
meet the line at infinity in a 
pair of points of the same involution, let I meet AB and 
AC in B' and C', respectively. (We may obviously as-
sume that I does not contain A; if it did, choose for I 
another line parallel to I not containing A.) The perpen-
diculars B'E' and C'F' drawn from B' and C' to AC and 
AB respectively are parallel to BE and CF and intersect 
in a point M'. The involution determined on the line 
at infinity by the pairs of opposite sides of the quad-
rangle AB'C'M' has two pairs in common with the 
involution I determined by the quadrangle ABCM and 
is hence identical with 7(p 56). Therefore, I and the line 
AM', which is perpendicular to B'C' = 1, meet the line 
at infinity in a conjugate pair of I . Any line I' perpen-
dicular to I is parallel to AM' and meets the line at 
infinity in the same point as AM'. This proves the 
proposition. 

Moreover, the involution I is evidently elliptic, since 
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any line through a double point of I would be per-
pendicular to itself and no such (real) lines exist. 

Adopting now the second method of approach to 
metric properties we may lay down the following defini-
tions. Let I be an arbitrary but fixed elliptic involution 
on the line at infinity. This involution I we will call the 
orthogonal or absolute involution. Two lines are said to 
be perpendicular if they pass through a conjugate pair 
of the orthogonal involution. 

The following results follow immediately from this 
definition: 

The pairs of perpendicular lines in a pencil of lines are 
conjugate pairs of an involution. 

The involution of perpendicular lines in a pencil of 
lines is called the circular involution of the pencil. 

Through any point there is one and only one line per-
pendicular to a given line. 

A line perpendicular to one of two parallel lines is per-
pendicular to the other. 

Two lines perpendicular to the same line are parallel. 
34. Angle bisectors. If two perpendicular lines are 

harmonic with two lines a, b through their point of 
intersection, the perpendicular lines are said to bisect 
the angles formed by a and b. 

That this definition does indeed correspond to the 
familiar notion of bisectors may be seen as follows: 
Let the two perpendicular lines be m and n and let a 
line perpendicular to m and hence parallel to n meet 
a, b, m, n in the points A, B, M, N, the latter being at 
infinity (Fig. 45). Since the pairs a, b and m, n are har-
monic, the pairs A, B and M, N are also harmonic, and 
M is, therefore, the midpoint of AB (p. 83). If 0 
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is the intersection of the four given lines, the triangles 
A MO and BMO are then congruent and hence the angle 
AOM is equal to the angle BOM. 

Given any two lines through 
0, one and only one pair of — 
bisectors as defined above 
always exists. For the pairs 
of lines harmonic with the 
two given lines form the con- A 

jugate pairs of the involution F i g 45 

of which the given lines are 
double lines. This involution and the involution of 
perpendicular lines through 0 have one conjugate pair 
in common, since the circular involution at 0 is elliptic 
(p. 61). 

35. Axes of a conic. The pairs of conjugate diame-
ters of a central conic form an involution of lines 
through the center. This involution will, in general, 
have one and only one pair in common with the circular 
involution at the center (p. 61). If two pairs of conju-
gate diameters of a conic are pependicular, every two 
conjugate diameters are perpendicular, since in that 
case the involution of conjugate diameters coincides with 
the circular involution at the center (p. 56). 

A conic in which the involution of conjugate diame-
ters is circular is called a circle. The single pair of 
perpendicular conjugate diameters of a central conic 
which is not a circle are called the axes of the conic. 

The chords of a central conic drawn perpendicular 
to one of the axes are bisected by this axis (p. 88). We 
may summarize the results just obtained as follows: 

A central conic which is not a circle has just one pair 
of axes. The conic is symmetric with respect to either axis. 
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The diameters of a parabola are all parallel. One of 
these diameters, however, bisects the chords per-
pendicular to it. This diameter is called the axis of the 
parabola. A parabola has only one axis and is symmetric 
with respect to its axis. 

The asymptotes of a hyperbola are evidently double 
lines of the involution of conjugate diameters. Hence, 
the axes of a hyperbola are harmonic with the asymptotes 
and bisect the angles between them. 

36. Foci of a conic. If a conic be given, to every line 
u in the plane of the conic there corresponds one and 
only one line u' which is at once conjugate and per-
pendicular to u. Such a pair of lines are called conjugate 
normals with respect to the conic. In the pencil of lines 
through any point P of the plane not on the conic the 
pairs of conjugate lines form an involution which con-
tains at least two conjugate lines which are perpen-
dicular to each other (p. 61); and if it contains two 
pairs of perpendicular conjugate lines, all conjugate 
pairs consist of perpendicular lines (p. 56). If the point 
P is on the conic, it is clear that the only pair of con-
jugate normals through P is the tangent to the conic at 
P and the line through P perpendicular to the tangent. 
Hence we have established the following: 

Through every point in the plane of a conic passes at 
least one pair of conjugate normals of the conic; if through 
the point pass two pairs of conjugate normals, all the 
pairs of conjugate lines through the point are conjugate 
normals. 

This raises the question as to whether there exist in 
the plane of any conic points such that all the pairs of 
conjugate lines through them are conjugate normals. 
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Any such point is called a focus of the conic. We have 
already found such a point in the case of a special type 
of conic, since in the case of a circle the involution of 
conjugate lines through the center coincides with the 
orthogonal involution. Hence, the center of a circle is a 
focus. Moreover, it is easy to see that the center is the 
only focus of a circle. 

Let us then investigate the existence of foci of a conic 
other than a circle. Let F be a focus. If F be joined to 
the center of the conic (we do not exclude the possibility 
that the center may be at infinity), this line will be a 
diameter whose pole is the point at infinity on the line 

" through F perpendicular to the diameter. The latter 
is, therefore, an axis. Every focus of a conic must then 
lie on an axis of the conic. 

Let a be an axis of the conic, and let P be any point 
of a (Fig. 46, p. 95). The polar p of P is then perpendicu-
lar to a. Let u be a variable line through P and let U be 
its pole, which is of course on p. Let u' be the line 
through U perpendicular to u, and let u' meet a in P'. 
We show, first, that as u rotates about P, the point P' 
remains fixed; i.e., u' rotates about P'. To this end we 
note that u' passes through the point at infinity U^ 
which is the conjugate in the orthogonal involution of 
the point at infinity £/M on the line u. We have then 
(p. 78): 

and hence the correspondence between the points U 
and UJ is projective. The lines u' are the lines joining 
pairs of corresponding points of two projective pencils 
of points on the line p and the line at infinity. In order 
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to show that the lines u' all pass through a fixed point 
it is then only necessary to show that the projectivity 
just considered is perspective; or, that in this projec-
tivity the point at infinity on p is self-corresponding 
(p. 48). But it is at once evident that when U coin-
cides with the point at infinity on p, the line u coincides 
with a, and that Uthen also coincides with the point 
at infinity on p. The lines u', therefore, all pass through 
a fixed point which is on a, since a is one of the lines u'; 
i.e., the lines u' all pass through P' which is fixed. 

Reciprocally, if we had started with u' of the pencil 
of lines through P', the line u would have been the 
conjugate normal of u' and the point P would have been 
obtained as the fixed point through which pass all the 
lines w; in other words, the correspondence between 
the points P and P' is a reciprocal one. We must now 
prove that this correspondence is also projective, and is 
hence an involution. We accordingly let P move on a. 
By what precedes the point P' is determined on a as 
the intersection with a of the conjugate normal of any 
one line u through P (distinct from a). We may then 
take for our lines u the lines of the pencil with center 
£/m, regarded now as a fixed point on the line at infinity, 
the lines of this pencil meeting a in the points P . If 
we denote by [u) the pencil of lines with center at U 
by [U] the pencil of points described by U, the pole of u, 
and by [u ' ] the pencil of lines u' with center at 
the conjugate of Ux in the orthogonal involution, we 
have 

which shows that the correspondence between P and 
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P' is projective. This correspondence is then an 
ordinary involution and such an involution is defined 
on any axis of a conic by the pairs of points in which 
pairs of conjugate normals with respect to the conic 
meet the axis in question. The involution thus estab-
lished on the axis a we may call I a . 

It is clear that a focus F on the axis a must be a double 
point of the involution 7a ; and, conversely, any double 
point of I a is a focus of the conic on a. Our question 
as to the existence of foci of a conic then depends simply 
on the question whether the involutions I a , lb on the 
axes a, b of a central conic or the involution Ia on the 
axis of a parabola are hyperbolic or elliptic. 

In the case of the parabola, the point at infinity on 
the axis is clearly a double point of I a . For, in this case 
the line at infinity is tangent to the conic; if U„ is the 
point of contact of the line at infinity any line through 
Un forms with the line at infinity a conjugate pair 
which also pass through a conjugate pair of the or-
thogonal involution. The involution I a is, therefore, 
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hyperbolic and must have one other double point. 
Hence, a parabola has a single (proper) focus on its axis. 

In the case of a central conic (ellipse or hyperbola) 
the situation is not quite so simple. The fact is that one 
of the involutions I„, /& is always hyperbolic and the 
other elliptic. A formal proof will appear presently. 
The reader may at this point, however, readily con-
vince himself of this fact by the following considera-
tions : The center C of the conic and the point at infinity 
on either axis evidently form a conjugate pair of the 
involution I a or I b as the case may be. If the involution 
on one of the axes, say a, is elliptic, any other conjugate 
pair of I a must lie on opposite sides of C, since any two 
conjugate pairs of an elliptic involution separate each 

separate each other, so that the involution Ib is hyper-
bolic. Vice versa, if I a had been assumed hyperbolic, 
similar considerations would show that I b must then be 
elliptic. 

We conclude that every central conic (not a circle) has 
two and only two (real) foci, both of which are situated 
on one of the axes of the conic. The axis containing the 
foci is called the principal axis of the conic. 

u 
b 

other. Reference to Fig. 47 
will make it clear that any 
pair of conjugate normals u 
and u' meeting a in two 

/[ 
FIG. 47 

points on opposite sides of C 
must meet b in two points on 
the same side of C. The 
latter pair and the pair con-
sisting of C and the point 
at infinity on b do then not 
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Since any pair of conjugate normals with respect to 
a conic meet the principal axis of the conic in a pair of 
the involution of which the foci are double points, a 
pair of conjugate normals through a point P in the 
plane of the conic are harmonic with the lines joining 
P to the foci of the conic (p. 56); in other words, any 
pair of conjugate normals with respect to a conic bisect 
the angles formed by the lines joining their point of inter-
section to the foci of the conic (p. 90). 

In particular, the tangent and normal to a conic at a 
point P of the conic bisect the angles formed by the lines 
joining P to the foci. 

In the case of a parabola one of the foci is at infinity, 
so that the last result becomes: The tangent and normal 
to a parabola at a point P bisect the angles formed by 
the line joining P to the focus and the line through P 
parallel to the axis. 

We may note in closing this section that the pre-
ceding argument does not apply to a circle. In this case 
the two foci coincide at the center and the involutions 
I a and lb degenerate. 

37. Metric property of an involution. At this point 
it seems desirable to abandon definitely the second 
method of approach to the study of metric relations 
referred to on p. 82 and to adopt for the remainder of this 
chapter the first method which assumes a knowledge 
of elementary euclidean geometry. This will enable us 
to secure very simply certain additional important 
metric properties which under the purely projective 
procedure would require an elaborate preparation and 
would besides make more demands on the reader's 
previous knowledge. 
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We begin by considering a certain fundamental metric 
relation in an involution of points on a line. Given such 
an involution, the conjugate of the point at infinity on 
the line is called the center of the involution. If the 

mvolution_has_ double 
points every conjugate 
pair is harmonic with 
them (p. 56). Hence, 
the center of an involu-
tion is the midpoint of 
the segment between the 
double points, if such 
exist. 

Now let A, A' and B, B' be two conjugate pairs of 
an involution on a line and let the center O of the 
involution be constructed by the complete quadrangle 
KLMN as in Fig. 48. If P is the intersection of KM 
and LN, KM being by hypothesis parallel to AA', the 
t r i a n g l e s T.OB' a n d T.PM a re s i m i l a r a n d h e n r e we h a v e 

also, since the triangles NOB and NPK are similar, we 
have 

These relations give by multiplication 

By considering similarly the triangles LOA, LPK and 
NO A', NPM, we obtain 

It follows at once that we have 
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This fundamental relation, which in some treatments 
of projective geometry is taken as the definition of an 
involution, may be stated in words as follows: 

The product of the distances from the center to two con-
jugate points of an involution is constant. 

If the pair A, A' are on the same side of the center 
O (as in Fig. 48) the segments OA and OA' will have 
the same direction and, hence, the constant OA'OA' 
will be positive; if the pair A, A' are on opposite 
sides of 0 the constant OA'OA' will be negative, 
and this is obviously true for every conjugate pair 
of a given involution. For, if U^ be the point at 
infinity on the line, every pair of an involution sepa-
rates O and U^, or every pair does not separate 0 
and U^, according as the involution is elliptic or hyper-
bolic (p. 57). We have here a verification of the result 
previously obtained as to the existence of double points 
of an involution. If M is a double point the relation just 
derived would involve the relation OM2 = OA 'OA', and 
this will have a (real) solution OM only if OA'OA' is 
positive, i.e., if two conjugate pairs do not separate 
each other. 

38. Construction of an involution by means of circles. 
The relation we have derived in the preceding section 
suggests another method of constructing the pairs of 
an involution when two pairs 
A, A' and B, B' are given. 
Through A and A' draw any 
circle and through B and 
B' draw another circle such 
that it meets the first circle K 
in two points T and T'. By FIG. 49 
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a well known proposition of plane geometry we then 
have (Fig. 49) 

where 0 is the intersection of TT' with the line of the 
involution. But this relation shows that 0 is then the 
center of the involution and that any other circle 
through T and T' and cutting the line of the involution 
will cut it in a pair of the involution. 

To find the double points of the involution, we need 
only construct the tangent to one of these circles from 
0 ; if its point of contact is K, we would have OK2 

= OT'OT'. The two points M and N at distances 
equal to OK on either side of O are then the double 
points of the involution. The reader should note that, 
if the points A, A' and B, B' separate each other, the 
point O is necessarily inside all the circles through T 
and T' and that hence no tangent from O to any such 
circle can be drawn. This is as it should be, since in 
this case the involution is elliptic. 

39. Construction of the foci of a central conic.. We 
may now return to the discussion of the foci of a central 
conic. We saw on p. 95 that the pairs of conjugate 
normals meet the axes a and b of the conic in the pairs 
of two involutions I a and /&. If either of these has 
double points, these double points are foci of the conic. 
If one of the involutions mentioned, I a , say, is hyper-
bolic with double points F and F', the other involution 
lb must be elliptic. For the pairs of conjugate normals 
at F constitute the circular involution which is elliptic 
and these pairs of conjugate normals meet b in the pairs 
of lb- We know then that at least one of the involutions 

http://rcin.org.pl



METRIC DEFINITIONS OF A CONIC 101 

/„, Ib is elliptic. Let it be Ib, and let P, P' and Q, Q' 
be two of its conjugate pairs (which by hypothesis sepa-
rate each other). Draw circles on PP' and QQ' as 
diameters. These circles will intersect in two points F 
and F', and since the 
line FF' cuts the axis b 
in the center of the in-
volution Ib and since 
this center is the center 
O of the conic, the line 
FF' must be the other 
axis a. Moreover, the 
lines FQ and FQ' are 
conjugate normals since 
the angle QFQ' is in-
scribed in a semicircle 
and the lines pass through 
Q and Q' respectively. Similarly for the lines FP and 
FP', and for any pair of lines which join F to a pair of 
the involution Ib. The two points F, F' are then the 
foci of the conic. 

40. Metric definitions of a conic. We are now in a 
position to prove the well known properties of conics on 
which the definitions of these curves as given in ele-
mentary analytic geometry depend. We begin with the 
following definition: 

The polar of a focus of a conic is called the directrix 
of the conic associated with that focus. The point or 
points in which the principal axis of a conic meets the 
conic are called the vertex or vertices of the conic. 

The directrix is evidently perpendicular to the 
principal axis. In a parabola the vertex is mid-
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way between the focus and directrix, since it is the 
harmonic conjugate of the point at infinity on the 
principal axis with respect to the focus and the point 
in which the directrix meets the axis. 

Now let F be a focus of a conic and d the corre-
sponding directrix, and l e t P be any point on d (Fig. 51). 
Through P draw any line meeting the conic in two 

points A and B, and 
let the tangents at A 
and B meet at T, the 
pole of AB. Since d 
is the polar of F, the 
lines FP and FT are 
conjugate and since 
they pass through 
the focus they must 
be perpendicular to 

^ each other. Let FT, 
T 

the polar of P, meet 
AB in C. The points 
PC, AB then form a 

harmonic set (p. 76). If we project this harmonic set 
parallel to FT on d, we obtain the harmonic set PQ, 
MN~[The lines FP FQ, FM FN are then a harmonic 
set in which the first two are at right angles to 
each other. Hence the angles QFM and QFN are 
equal. For a similar reason the angles CFA and CFB 
are equal. But this shows that the triangles FAM 
and FBN are similar, and hence the homologous sides 
give the following proportion: 
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If through the points A and B we draw lines A A' and 
BB' perpendicular to the directrix this proportion 
becomes 

This is one of the properties referred to at the outset 
which is often used as a definition of a conic: The 
ratio of the distance of a point on a conic from the focus 
to its distance from the directrix is constant. This ratio 
is called the eccentricity of the conic. 

An ellipse or a hyperbola has two foci and two 
directrices; and the eccentricity, e, is of course the same 
for one focus and its associated directrix as for the 
other, since the curves are symmetric with respect to 

both their axes (p. 91). Let r, r' represent the so-called 
focal radii of a point P on an ellipse or hyperbola, i.e., 
the distances of P from the foci F and F' respectively, 
and let p, p' be distances of P from the corresponding 
directrices. Then the relation just proved gives r = ep 
and r' = ep', whence we obtain r-\-r' = e(p+ p') and 
r — r' = e{p—p'). In the case of the ellipse p+p' is 
constant, being the distance between the directrices, 
while in the hyperbola p—p' is constant for the same 

http://rcin.org.pl



104 METRIC PROPERTIES 

reason. Hence, in the ellipse the sum of the focal radii 
of any point is constant; in the hyperbola the difference 
of the focal radii of any point is constant. 

This is the other property referred to above which is 
often used to define the ellipse and the hyperbola. 
Having thus identified the curves which we defined by 
purely projective means in Chapter V as conics with 
the curves known by that name in metric geometry, 
we may close this part of our discussion. 
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CHAPTER VII 

GROUPS OF PROJECTIVE TRANSFORMATIONS 

41. The symbolic representation of correspondences. 
In the preceding chapters we have given a systematic 
and thoroughly elementary account of a significant 
portion of projective geometry. After having given in 
the last chapter some of the metric specializations of 
projective geometry, we now return to the purely pro-
jective point of view developed in Chapters III , IV, 
and V. In the remaining chapters we propose to take up 
some of the more general aspects of our subject. The 
treatment from now on will be less systematic, our aim 
being to give an exposition of results, methods, and 
points of view rather than all the details of demonstra-
tions. For this reason and also because of the fact that 
we shall be dealing with somewhat more advanced 
topics, the reader may find that the remaining chapters 
make a somewhat greater demand on his mathematical 
maturity and previous mathematical training. 

Projective transformations between two pencils of 
points, or between two pencils of lines, the perspective 
correspondence between the points and lines of two 
planes which we had occasion to consider briefly in 
Chapter II , are examples of the general concept of one-
to-one correspondences or transformations. I t will be 
helpful if at this point we make ourselves familiar with 
a symbolic method of dealing with such correspond-
ences. Given any system S of elements (such as the 

105 
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points, or the lines, or the points and lines of a plane) 
let there be established a one-to-one correspondence 
between the elements of S and the elements of some 
other system S', and let this correspondence or trans-
formation be represented by T. We then say that T 
transforms S into S', and indicate this relation by 
writing T(S) =S'. If a is any element of S, T(a) rep-
resents the corresponding element of S'. 

If two transformations 7\, T2 are applied successively 
to a system S, such that TI(S)=S' and T2(S') =S", 
the transformation which transforms S directly into S" 
is called the resultant or the product of 7\ and T2 in 
that order, and may be represented by the symbol 
r27Y This notation follows naturally from the relations 
S" = T2{S') = T2(TI(S)) = TTT^S). Similarly, for a 
sequence of more than two transformations. Thus the 
symbol TN • • • T2TI represents the resultant of applying 
successively the transformations TH T2, • • • , TN in 
that order. The order in which transformations are 
applied is of course material. In general T{T2 is not 
the same transformation as T2TX. If we do have 
T2TI = TIT2 the two transformations are said to be 
commutative. Two projective transformations on a 
line, for example, are not in general commutative. But, 
as we shall see presently, if two projective transforma-
tions on a line have the same double points they are 
commutative. 

If a transformation T transforms a system S into a 
system S', the transformation which transforms S' 
into S is called the inverse of T, and is denoted by J1-1; 
i.e., from the relation T(S)—S' follows the relation 
T~l(S')=S. The product of a transformation by its 
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inverse leaves every element unchanged. This trans-
formation is called the identical transformation or 
simply the identity and is denoted by the symbol 1. 
We have then the relations 

It is easy to see that the product of three transfor-
mations T], Ti, T3 always satisfies the so-called associa-
tive law: ( r 3 r 2 ) r 1 = r 3 ( r 2 r 1 ) . We may accordingly in 
any product of transformations introduce or remove 
parentheses at will, provided the order of the transfor-
mations is left unchanged, and we may replace any 
transformation in the product by a product of trans-
formations equal to the given transformation. In 
particular we may note that the inverse of the product 

since we obviously have 

The resultant of a transformation T repeated n times 
TTT • • • T is denoted by Tn. If for some value of n 
we have Tn = 1, the smallest value of n for which this 
relation holds is called the period or the order of T, and 
T is said to be periodic or of finite order. A transforma-
tion of period 2, i.e., a transformation for which 
T1 = 1 is said to be involutoric. Any involutoric trans-
formation is its own inverse, T~l = T. An involution 
on a line as defined on p. 55 is an example of an in-
volutoric transformation. 

42. The concept of a group of transformations. A set 
of transformations such that the inverse transformation 
of every transformation of the set is in the set and such 
that the product of every two transformations of the 
set is also in the set is called a group of transformations. 

http://rcin.org.pl



108 GROUPS OF PROJECTIVE TRANSFORMATIONS 

If we recall the definition of a projective transformation 
we observe at once that the inverse of any such trans-
formation is projective and that the product of any 
two is likewise projective. If then we were to consider 
the set consisting of all possible projectivities on a line 
(including the identity, of course), this set forms a 
group. It is known as the general projective group on 
the line. 

If a transformation T transforms every element of a 
figure into an element of the same figure, the figure is 
said to be invariant under T. I t is then clear that the 
set of all transformations of a given group which leave a 
given figure invariant forms a group, a so-called subgroup 
of the given group. Thus the set of all projectivities on 
a line which leave a given point of the line invariant 
forms a group, a subgroup of the general projective 
group on the line. Likewise the set of all projectivities 
on a line which leave each of two given distinct points 
invariant, i.e., which has the two given points as double 
points, forms a group. 

If every two transformations of a group are commu-
tative the group is said to be a commutative group. The 
last group given as an example is of this kind, as we 
will show in the next section. 

43. Two important groups of projectivities on a line. 
Let M and N be two given distinct points of a line and 
let us consider the set of all projectivities on the line for 
which these two points are double points. We have just 
seen that this set of projectivities forms a group. 
Moreover, by the fundamental theorem (p. 48), there 
is one and only one projectivity of this group which 
transforms a given point A, distinct from M and N, into 
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another point Ai of the line. By virtue of the latter 
property the group is said to be simply transitive. It is, 
moreover, a commutative group, as the following con-
siderations will show. In the adjoining figure (Fig. 53), 

we have used the usual construction (p. 53) for a pro-
jectivity with two double points M, N and have indi-
cated the transformation Tx of our group, which trans-
forms the point A into Ax by the perspectivities 

and the transformation T2 which transforms A into A2 

by the perspectivities 
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from the double points, it follows that T2TI = TIT2. 
These considerations may be summarized as follows: 

(1) The set of all hyperbolic projectivities on a line 
having the same two double points forms {with the identity) 
a simply transitive, commutative group. 

Another group of projectivities on a line which will 
prove to be of fundamental importance later is de-
scribed in the following: 

(2) The set of all parabolic projectivities on a line hav-
ing the same double point forms {with the identity) a 
simply transitive, commutative group. 

The reader may consider this merely a special case 
of the preceding when the two double points M, N 
coincide. However, it is necessary to show that the 
product of two parabolic projectivities with the same 
double point M is parabolic. Let Ti and T2 be two 
such projectivities and suppose it possible that T2T\ 
has a second double point N{T*M). If 7\ transforms N 
into N', necessarily distinct from N, T2 would have to 
transform N' into N. But this would make T2 the 
inverse of 7\, and would make T2T\ = 1. The product 
of two transformations of our set is then parabolic, 
unless it is the identity. (When we speak of the set 
of all parabolic projectivities having a given double 
point we include in the set the identity. Every group 
must, of course, contain the identical transformation.) 

That the group of parabolic projectivities under con-
sideration is commutative may be considered as a 
special case of the preceding argument when the points 
M, N coincide. The reader may, however, find it inter-
esting to prove it independently. The fact is that while 
the former proof necessarily" makes use of the funda-
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mental theorem on a line, the proof for the case of para-
bolic projectivities can be formulated so as to depend 
only on the theorem concerning quadrangular sets 
(p. 35) without making use of the fundamental 
theorem. 

These two groups will be found fundamental in the 
next chapter in connection with the introduction of 
analytic methods into projective geometry without the 
use of any metric considerations. 

44. The transformation of a correspondence. Sup-
pose we have a correspondence T which transforms a 
system 5 into S' and suppose another transformation 7\ 
transforms S into Si and S' into S{ . The transformation 
TiTTr1 then transforms Si into S{. The transforma-
tion TiTTr1 is called the transform of T by 7\. 

Suppose, for example, that T is a projectivity on a 
line u and that Tx transforms the points of u into the 
points of another (or the same) line Ui. The transform 
TiTTr1 of T then is a projectivity on Ui, such that if 
P, P' are two homologous points of u under T, and Ti 
transforms P and P' into Px and PI respectively, the 
latter will be homologous under TiTTr1. In particular, 
if AT is a double point of T and 7\(M) =Mi, then Mi 
will be a double point of TiTTr1 . I t follows that the 
transform of any hyperbolic projectivity will be hyper-
bolic, the transform of any elliptic projectivity will be 
elliptic, and the transform of any parabolic projectivity 
will be parabolic. 

A projectivity 7\ will transform a projectivity T into 
itself if and only if T and Ti are commutative; for from 
TiTTr1 = T, follows TTX = TXT. I t is readily seen that a 
projectivity 7\ will transform a group of projectivities 
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into a set which forms a group. If Tx transforms a 
group G into a group Gh we write TiGTrl=G\. If 
Gi = G, we say that Ti transforms G into itself, or that 
G is invariant under Tx. If every transformation of a 
group Gi transforms a group G into itself, Gi is said to 
transform G into itself, or G is invariant under Gx. From 
what precedes it is readily seen, for example, that the 
group of all hyperbolic projectivities on a line with double 
points M, N transforms into itself the group of all para-
bolic projectivities on the line with double point M. 

45. Projective transformations of two-dimensional 
forms. We have hitherto given but little attention to 
projective correspondences between the elements of 
two two-dimensional or two three-dimensional forms. 
We did have occasion once (p. 20) to consider briefly 
what we called a perspective correspondence between 
two planes. This is a special case of the following 
definition: 

A projective transformation between the elements of 
two two-dimensional (or two three-dimensional) forms 
is any reciprocally one-to-one correspondence between 
the elements of the two forms, such that to every one-
dimensional form of one there corresponds a projective 
one-dimensional form of the other. 

We shall take as typical of two-dimensional forms the 
planar field, i.e., the points and lines of a plane. If to 
every point of one plane there corresponds a point of 
another (or the same) plane, then if the correspondence 
is projective as defined above, to every line of the first 
plane will correspond a line of the second, to every 
pencil of points in the first will correspond a projective 
pencil of points in the second, and to every pencil of 
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lines in the first will correspond a projective pencil of 
lines in the second. The perspective correspondence 
between two planes considered earlier (p. 20) clearly 
satisfies these conditions. Moreover, the resultant of any 
sequence of such perspective correspondences will evi-
dently also satisfy the conditions. The kind of corre-
spondence we have just been considering, where to 
every element of one form corresponds an element of the 
same kind in the other form i.e., a point to a point, and 
a line to a line, is called a collineation, and if the corre-
spondence is also projective, it is called a projective 
collineation. If we confine ourselves to ordinary real 
space every collineation is necessarily projective (al-
though this is not the case if imaginary elements are 
present). It may be shown that every projective col-
lineation can be obtained as the resultant of a sequence 
of perspectivities. In the sequel when we use the word 
collineation a projective collineation is meant. 

If, on the other hand, we have a projective corre-
spondence whereby to every point of one plane cor-
responds a line of the other and to every line of the 
one a point of the other, the correspondence is called a 
correlation. We have had an example of such a corre-
lation (in which the two planes coincide) in the case of 
the polar system of a conic (p. 77). In a polar system 
to every pencil of points in the plane corresponds a 
projective pencil of lines, and vice-versa. 

The two planes between which a collineation or a 
correlation establishes a correspondence may of course 
coincide. We then have a collineation or correlation 
on a plane. The inverse of any such collineation on a 
plane and the resultant of any two collineations on a 
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plane are clearly collineations on the plane. The set 
of all possible collineations on a plane (including the 
identical collineation) then forms a group, the so-called 
general group of collineations on the plane. The re-
sultant of two correlations on a plane is, however, a 
collineation. The set of all correlations on a plane, 
therefore, does not form a group. But the set of all 
correlations and collineations on the plane does form a 
group. 

The fundamental theorem of projective geometry 
states that any projectivity between two lines is 
completely determined if three pairs of homologous 
points are given. The corresponding theorem for a col-
lineation between two planes is as follows: 

A projective collineation between two planes {or on a 
single plane) is uniquely determined when four pairs of 
homologous points are given, provided no three of either 
set are collinear. 

That there can not be more than one collineation 
transforming a complete quadrangle A BCD into 
another A'B'C'D' follows readily from the fact that, 
if there were two, T and 7\, T~1Ti would leave each 
of the points A, B, C, D fixed. The lines joining these 
points in pairs would then remain fixed, and hence 
there would be three points on each of the sides of the 
triangle ABC which remain fixed. But this would imply 
that every point on each of these sides remains fixed 
and hence each of the lines through A, B, C would re-
main fixed. If P is any point of the plane containing 
ABC, two of the lines AP, BP, CP must be distinct, 
and since T~lTi leaves each of these lines fixed, it must 
leave P fixed. Hence we have T~lTx = 1, or TX = T. 
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That there exists at least one collineation transform-
ing a quadrangle ABCD into any other quadrangle 
A'B'C'D' may be seen by actually constructing such 
a correspondence between the elements of the two 
planes. To the three lines AB, AC, AD of the pencil 
of lines at A must correspond the three lines A'B', 
A'C', A'D' of the pencil of lines at A' and this corre-
spondence defines uniquely a projectivity TA between 
these two pencils of lines. Similarly, we establish a 
unique projectivity TB between the pencils at B and B' 
by making the lines BA, BC, BD correspond respec-
tively to the lines B'A', B'C', B'D'. To every point P 
not on the line AB we make correspond the intersection 
P' of the lines TA(AP) and TB(BP). T O any line a of 
the first plane not passing through A or B, which may 
be considered as the axis of perspectivity of two per-
spective pencils of lines at A and B, we make corre-
spond the axis of perspectivity of the perspective pencils 
at A' and B' into which TA and TB transform the per-
spective pencils at A and B, respectively. That TA and 
TB do transform the perspectivity between the pencils 
at A and B into a perspectivity between the pencils at 
A' and B' follows from the fact that to the line AB 
corresponds the line A'B' under both TA and TB, so 
that in the projective correspondence between the 
pencils at A' and B' the line A'B' is self-corresponding. 
To two lines of the first plane intersecting on the line 
AB will then correspond two lines intersecting on A'B' 
in the second plane. Finally, to any point P oi AB we 
make correspond the point P' of A'B' determined by 
the line homologous to any line of the first plane passing 
through P. We have thus defined a reciprocally one-to-
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one correspondence between the two planes which 
satisfies the definition of a projective collineation. 

If the points of a plane a be projected from a point 
S on a distinct plane a' and the points of a' are then pro-
jected from a different center S' back on to a, we 
obtain in a a correspondence H in which evidently every 
point of the line o of intersection of a and a' remains 
fixed and in which the point O in which the line SS' 
meets a also remains fixed. Such a correspondence on 
a plane in which a point O and every point of a line o 
remain fixed is called a perspective collineation on the 
plane. If the point O is not on the line o, the perspective 
collineation is called a homology, if the point 0 is on 
the line o, it is called an elation. The point 0 and the 
line o are called the center and the axis of the homology 
or elation, respectively. 

Such perspective collineations exist with any point 
and any line as axis and center. Any two homologous 
points A, A' must evidently be collinear with O, since 
the line OA meeting o in some point must be' invariant, 
and hence A' must lie on OA. Moreover, given the 
center 0 and axis o, a perspective collineation is 
uniquely determined by any pair of distinct homologous 
points collinear with 0 . The existence of one such per-
spective collineation follows readily from the fact that 
if we take any plane through o distinct from the given 
plane and any point 5 not on either of the two planes, a 
point S' is readily determined which yields the desired 
collineation as the resultant of two perspectivities with 
centers at S and S'. That there can not be more than 
one such perspective collineation follows from the 
fundamental theorem (p. 114) already proved. 
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The perspective collineations are, of course, a very 
special type of collineation in that they leave every 
point of a line invariant and leave every line through 
a point invariant. The projectivities on the lines 
through the center distinct from the axis are in the case 
of an elation all parabolic, in the case of a homology all 
hyperbolic. A homology of special interest is the so-
called harmonic homology in which every pair of 
homologous points are harmonic with the center and the 
point in which the line containing the homologous pair 
meets the axis. A harmonic homology is evidently of 
period two or involutoric. 

A collineation on a plane which leaves invariant as 
many as four points, no three of which are collinear, 
reduces to the identity. If a collineation leaves each 
of three non-collinear points invariant, it is said to be of 
Type I, provided it is not a homology; the projectivities 
on the sides of the invariant triangle are all hyperbolic. 
If two of the three points coincide, we obtain a collinea-
tion whose invariant figure consists of two points M, N, 
the line joining them, and another line through one of 
them. Such a collineation is said to be of Type I I (if 
it is not an elation); the projectivity on the line joining 
the double points is hyperbolic and on the other in-
variant line parabolic. If the points M, N coincide, the 
invariant figure consists of a single point M and a line 
through it. The projectivity on the invariant line is 
parabolic, as is also the projectivity in the pencil of 
lines on the invariant point; such a collineation is said 
to be of Type III . Finally the homology is of Type IV, 
and the elation is of Type V. 

46. Groups of collineations in the plane. The set 
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consisting of all collineations in a plane (with the 
identity) has already been referred to as constituting 
the so-called general group of collineations in the plane. 
An important subgroup of the general group consists 
of all the collineations in the plane leaving a given line 
invariant, the so-called affine group. Another group of 
importance is the set of all collineations that leave each 
of two given points invariant. This group must then 
leave the line joining the two points invariant and is 
therefore a subgroup of the affine group leaving this line 
invariant. The set of all elations having a given axis 
also forms a group which will prove to be of funda-
mental importance later. To prove that this set forms 

on the axis. 
The general group of collineations on the plane has 

a large number of different types of subgroups. We 
have called attention in the preceding to a few of these 
that are especially simple in their definition and are 
also of fundamental importance for the future. We 
will add to our list one more. There exist collineations 
leaving a conic invariant. Indeed, if A and B (Fig. 54) 
are two distinct points of a conic and the tangents at A 

FIG. 54 

a group it is necessary to 
prove that the resultant 
of any two elations of the 
set is an elation. We omit 
the proof, as the reader 
should have no difficulty 
in showing that the re-
sultant of two such ela-
tions can not have a 
double point which is not 
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and B intersect in a point C, the harmonic homology 
having C for center and AB for axis evidently leaves 
the conic invariant (p. 76). We can easily go further, 
however. Any collineation must of course transform any 
conic into a conic, since it transforms any two projective 
pencils of lines into two pencils that are projective. 
Now it is clear that any collineation with double 
points A, B, C and transforming any point P of our conic 
into a point P' of the conic (.P and P' distinct from either 
A or B) must transform the conic determined by the 
points A, B, P and the tangents at A and B into the 
conic determined by A, B, P' and the tangents at 
A and B. But the latter conic coincides with the former. 
The set of all collineations leaving a given conic invariant 
forms a group. 
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CHAPTER VIII 

THE ALGEBRA OF POINTS A N D THE INTRODUCTION OF 
ANALYTIC METHODS 

47. The addition of points on a line. We propose to 
devote the present chapter to an exposition of one of 
the most interesting developments in projective ge-
ometry; viz., the introduction of analytic methods on a 
purely projective basis, that is, without the use of any 
metric notions whatever. We are so accustomed to 
associating magnitude with numbers, and measurement 
with the idea of coordinates, that it will be surprising 
to the uninitiated reader to learn that such metric 
concepts are quite unessential both to the idea of 
number or the idea of coordinates. This was first recog-
nized in the field of projective geometry by VON STAUDT 

(1798-1867) who laid the basis for a non-metric intro-
duction of analytic methods by his so-called algebra of 
throws (1847). We shall adopt a somewhat different 
point of view which is less abstract, but which of course 
is essentially equivalent to von Staudt's procedure. 

We begin by choosing arbitrarily three distinct points 
on a line, which we will label 0, 1, and °o, respectively. 
The reader must not attach any significance to these 
labels, until we prove that they have certain properties 
in connection with operations about to be defined which 
are similar to properties which we are accustomed to 
associate with these symbols. We could just as well 
have labelled our three points A, B, and C; but it will 

120 
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facilitate the discussion if we use 0, 1, and °o from the 
start. Also, it is convenient to denote the points of our 
line by the small letters of the alphabet, rather than 
by capitals, since we propose ultimately to think of 
these points as associated with numbers. 

With reference to these three points we now propose 
to define certain operations between pairs of points on 
our line. For this purpose we make use of two groups of 
projectivities on the line which we had occasion to de-
fine in the last chapter. The first of these is the group of 
all parabolic projectivities on the line with double point 
co. This group is simply transitive and commutative 
(p. 110). If a is any point of the line (V <x>) let Ta be 
the projectivity of our parabolic group which transforms 
the point 0 into the point a, i.e., such that Ta(0) = a. We 
then define the operation of addition ( + ) on any two 
points a, b of the line by the relation 

This operation associates with every pair a, b of points 
on the line a uniquely determined point a-\-b. 

According to our definition T0 is the identical pro-
jectivity. Hence we have 0 +a = a, for every a. Also 
a + 0 = a, by definition. We have, therefore, 

Now let a, b, c be any three points of the line and 
let TaTb = Tr. We then have, from the relation 

If we place c = 0, we 
obtain from (2) a + b = r, and, therefore, 
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In other words, the operation of addition satisfies the 
associative law. 

Since our group is commutative, we have TaTb = ThTa. 
If we operate with these equal projectivities on the 
point 0, we obtain at once 

In other words, the operation of addition is commutative. 
Let Tr be the inverse of Ta. Then since TnTr is the 

identity, 7\,7\.(0)=0, or a + r = 0. Hence, given any 
point a (^oo) there exists a point r such that a-\-r = 0. 
We denote the point r by the symbol —a, and then have 

We may then define the operation of subtraction ( —) 
by saying that a — b is the point x such that b-\-x = a. 
Such a point x exists for every pair a, 0since 
( — b)-\-a satisfies the definition in view of relations 
(3), (4) and (5). We have, then, 

48. The multiplication of points on a line. We have 
not as yet used the point 1. We do so in defining a 
second operation between pairs of points a, b of our 
line. This operation we call multiplication (•) . For 
this purpose we make use of the group of all hyperbolic 
projectivities on the line having 0 and oo as double 
points. This group is also simply transitive and com-
mutative (p. 110). Let M a be the projectivity of this 
group which transforms the point 1 into any point 
a{0, oo), i.e., such that M„(\)=a. We then define 
the operation of multiplication on any two points a, 
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b of the line by the relation 

We may in the future suppress the sign of multiplication 
and write simply ab for a-b. This operation associates 
with every pair a, b(^ 0, °o) of points on the line a 
uniquely determined point ab. 

The discussion now proceeds in strict analogy with 
the discussion of addition, the projectivities of our 
hyperbolic group taking the place of those of the para-
bolic group used for defining addition and the point 1 
playing the role that the point 0 played in the previous 
discussion. 

The reader will have no difficulty in establishing the 
following properties of multiplication: 

The last two state that the operation of multiplication 
is associative and commutative. He will also establish 
readily the fact, for any a(V 0, oo) there exists an ele-
ment which we denote by ar l such that 

We define the operation of division (/) by saying that 
a/b is the point x such that bx = a. Such a point exists 
for every 0, oo), since ab~l satisfies the condition, 
so that we have 

In addition we have evidently a0 = 0, since 0 is a double 
point for every projectivity of our group. The symbol 
Oa has no meaning under the above definition; we 
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define it to be equal to 0. We then have, for every 

49. The distributive law. The group of hyperbolic 
projectivities which we have used to define multiplica-
tion transforms into itself the group of parabolic pro-
jectivities which we used to define addition (p. 112). 
This means that if M a is any projectivity of the former 
group and Tb any projectivity of the latter there exist 
a projectivity Tr of the parabolic group such that 
MaTbMal = Tr, or MaTb = TrMa. Operating with these 
equal projectivities on any point c, we obtain 

If we place c = 0, this gives ab — r. Hence, we have 

the distributive law of multiplication with respect to addi-
tion. 

50. The algebra of points on a line. We have now 
defined, with reference to three arbitrarily chosen dis-
tinct points 0, 1, co on a line, two operations, addition 
and multiplication, and their inverses, subtraction and 
division, which satisfy all the formal laws of ordinary 
algebra. The whole terminology of ordinary algebra, in 
so far at least as it is definable in terms of the four 
rational operations, may then be carried over and 
applied to this algebra of points. 

As defined in the preceding sections, the elements of 
our algebra are the points of a line, rather than numbers 
in the ordinary sense. We may, however, use the pre-
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ceding results to show how we may associate with every 
point of our line (7^°°) a number of our ordinary 
number-system. To this end we associate with the 
points 0, 1, the numbers 0 and 1. With the sequence 
of points 1 + 1, 1 + 1 + 1, 1 + 1 + 1 + 1, • • • , we associate 
the numbers 2, 3, 4, respectively, thus associating 
every positive integer with a unique point of our line. 
The negative integers are then associated with their 
corresponding points so that (—w)+w = 0. This as-
sociates the number \/n with a unique point, and also 
the numbers m/n with unique points, where m, n are 

any positive or negative integers. All ordinary rational 
numbers are then associated with points of our line in 
a unique way. 

If the reader will make the usual construction for a 
parabolic projectivity with given double point (Fig. 55), 
he will obtain the adjoining figure for the construction of 
the points 2,3,4, • • • , — 1, • • •. Then, from the theorem 
of p. 54, or directly from the figure he will observe that 
1 is the harmonic conjugate of 00 with respect to 0 and 
2; 2 the harmonic conjugate of 00 with respect to 1 and 
3; 3 the harmonic conjugate of 00 with respect to 2 and 
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4; 0 the harmonic conjugate of oo with respect to 1 and 
— 1, etc. These considerations should make vivid for 
him the way in which the process described associates 
the positive and negative integers with certain definite 
points of the line, the point labelled oo having once 
been chosen and the numbers 0 and 1 having been 
arbitrarily assigned to two arbitrary distinct points. 
It will still further clarify the situation if we depart for 
just a moment from the purely projective setting and 
observe that if the point oo is taken as the point at 
infinity on the line the points • • • , — 1, 0, 1, 2, 3, 4, • • • 
will be at equal distances. This departure momentarily 
from purely projective considerations should, however, 
emphasize rather than obscure the fact that the defini-
tions of our algebra of points and the resulting corre-
spondence between the points of a line and the numbers 
of algebra are built upon a purely projective foundation, 
without the intervention of any metric notions what-
soever. 

Having, by the preceding considerations established 
a one-to-one correspondence between what may be 
appropriately called the rational points of a line (with 
reference to the points 0, 1, oo) and the rational num-
bers, it follows readily that if we assume that the real 
points of a line are ordinally equivalent to the real 
numbers, the correspondence between the rational 
points and the rational numbers already established 
carries with it the establishment of a one-to-one 
correspondence between the (real) points of a line and 
the real numbers. To carry out the details of the pro-
cedure involved would require a discussion of the real 
number system and a careful consideration of the 
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foundations of projective geometry. Such considera-
tions seem hardly in the spirit of the present mono-
graph, which has proceeded from the start on an intui-
tive foundation. From such an intuitive point of view 
the result reached seems sufficiently obvious without 
further elaboration. This result may be stated as fol-
lows: 

Having chosen three distinct points of a line as the points 
0, 1, co } we thereby establish by the method already de-
scribed a one-to-one correspondence between the real points 
of the line and the system of real numbers. The fundamen-
tal points 0, 1, oo are said to establish a scale on the 
line, and the number associated with each point of the 
line is called the coordinate of the point with reference 
to this scale. 

51. The analytic expression for a projectivity. Let 
a scale be established on a line, and let x' be the co-
ordinate of the point which corresponds to the point 
whose coordinate is x in a projectivity on the line. We 
propose now to see how x' can be expressed algebraically 
in terms of x. 

We note first that the relations 

represent projectivities, by the definitions of the opera-
tions of addition and multiplication. Indeed, we know 
that (I) represents a parabolic projectivity with double 
point oo ; and that (II) represents a hyperbolic pro-
jectivity with double points 0 and oo . This leads us to 
introduce the following properties of the exceptional 
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symbol °° : a-(-00=00, and a-oo=o0. Further, we 
may readily prove that the relation 

represents a projectivity. For the reader will readily 
verify in the following figure (Fig. 56) that the definition 
of multiplication gives x'x=\. But this construction 
gives at once 

which shows that the correspondence between x and x' 
is projective. Moreover, it is clear that this projectivity 

transtorms the point 
0 into the point 00, 
and the point 00 
into the point 0. We 
accordingly define 
two more properties 
of the symbol 00 : 

- 1 / 0 = 00, l /oo =0 . 
Also placing x' = x, 
the relation (III) 

gives x2 = l, which must be satisfied by any double 
points of the projectivity. We have, therefore, that 
the projectivity x' = \/x has the points 1 and —1 for 
double points. Clearly also this projectivity is an 
involution. 

We may now prove the following theorem: 
Any projectivity on a line is the product of projectivities 

of the three types (I), (II), and (III) and may be ex-
pressed in the form 
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Conversely, every equation of this form represents a pro-
jectivity, if ad — be ^0. 

We will first prove the second half of the theorem. 
Let us suppose first that c^O. We may then write 
equation (1) in the form 

This shows at once that the so-called determinant of 
the transformation, ad —be, must be different from zero; 
for otherwise the equation would make every point x 
correspond to x' = a/c, while a projectivity must be 
reciprocally one-to-one. Equation (2), furthermore, 
shows that the correspondence established by it is the 
resultant of the following five: 

Since each of these represents a projectivity their re-
sultant (1) must represent a projectivity. If c = 0, and 
ad 0, the argument is readily modified to show that 
(I) is the resultant of projectivities of types (I) and 
(II). This then proves the second half of the theorem. 

It remains to show that every projectivity on the line 
may indeed be represented by an equation of form (1). 
First let us see into what point the projectivity (1) 
transforms the point <». If we follow this point through 
the five projectivities given above, into which (1) was 
resolved, we see that the first two leave it invariant, 
the third transforms it into 0, the fourth leaves 0 in-
variant while the last transforms 0 into a/c. The pro-
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jectivity (1) therefore transforms °o into a/c. This 
leads us to attribute a further property to the symbol 
co ; viz., when x = oo, we have (ax + b)/(cx-\-d) =a/c. 

According to the fundamental theorem (p. 48) a 
projectivity is completely determined when any three 
pairs of homologous points are given. Suppose that 
in a given projectivity the points 0, 1, oo are transformed 
into the points p, q, r, respectively. Then it is readily 
verified that the transformation, 

which is of the form (1), transforms 0 into p, 1 into q, 
and, in view of the property just assigned to oo, it also 
transforms oo into r. The determinant ad —be is in this 
case (p — q)(q—r)(r—p) which is different from zero, if 
p, q, r are distinct. This completes the proof. 

Certain corollaries should be noted: 
The projectivity x' = a/x ( a ^ 0, oo) transforms 0 into 

oo and oo into 0. 
This follows from the fact that the given projectivity 

is the resultant of the two projectivities xx = \/x and 
x' =axi. The first of these interchanges 0 and oo, while 
the second leaves them both invariant. We are, there-
fore, led to the following definitions regarding the 
behavior of the symbol oo : 

a / 0 = o o a n d a / c o = 0 ( a j * 0, oo); 
Any projectivity leaving the point oo invariant may be 

expressed in the form x' = ax-\-b; 
Any double points which the projectivity (1) may have 

must satisfy the equation cx2 + (d — a)x — b = 0. 
The last result shows incidentally that in the real 
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domain there are three types of projectivities according 
as this equation has two distinct real roots, two coin-
cident roots, or two conjugate imaginary roots, corre-
sponding to the three types, hyperbolic, parabolic, 
and elliptic already mentioned. We may, however, as-
sume that our line in addition to the real points con-
tains also points corresponding to all complex imaginary 
numbers. In this complex domain there are only two 
types of projectivities, according as the double points 
of the projectivity are distinct or coincide. We shall 
have occasion to return to these considerations later. 
For the present we will still confine ourselves, as we 
we have hitherto, in the main to the real domain. How-
ever, on the basis of what has just been said, we may 
think of an elliptic projectivity as one having two conjugate 
imaginary double points, whenever such a conception seems 
desirable. 

Before proceeding further the reader shou'd not 
neglect to observe that all the above considerations 
may, under the principle of duality, be applied equally 
well to the lines of a pencil of lines (or to the planes of 
a pencil of planes) instead of to the points of a pencil of 
points. Thus, we may construct an algebra of lines in 
any pencil of lines by choosing any three distinct lines 
of the pencil to be lines 0, 1, oo, thereby establishing a 
scale in a pencil of lines. The lines of the pencil may 
then be put into one-to-one correspondence with the 
numbers of our number system. We obtain in this 
way the idea of the coordinate of any line of the pencil. 
A projectivity in the pencil of lines is then represented 
by equation (1), p. 128, etc. 

52. The cross ratio. We are now in a position to 
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derive an expression of the greatest importance in pro-
jective geometry, an expression indeed which is often 
made the basis of the whole development of our sub-
ject, but which is usually derived from metric considera-
tions. The latter procedure is undesirable, if the es-
sential nature of projective properties is to be exhibited. 

The problem leading to the introduction of this ex-
pression is as follows: By the fundamental theorem, any 
three distinct points of a line are projective with any 
three distinct points of another or the same line. If 
four distinct points of a line are to be made projective 
with four other distinct collinear points a condition 
must be satisfied. This condition we now propose to 
derive. We begin with the following definition: 

If a, b, c, d are any four distinct points of a line the 
coordinate of the point into which d is transformed by 
the projectivity which transforms a, b, c respectively 
into co, 0, 1 is called the cross ratio of the four given 
points (in the given order) and is denoted by the symbol 
1{(ab, cd). The same definition applies if d coincides 
with any one of the distinct points a, b, c. If two of the 
latter coincide, and d is distinct from them all, we de-
fine 'Kiab, cd) to be that one of 'Bjjba, dc), V{(cd, ab), 
<I{(dc, ba) for which the first three elements are distinct. 
This defines the cross ratio for any four points of a line 
of which at least three are distinct. 

We may now show that the cross ratio of four points 
whose coordinates are a. b. c. d is given bv the expression 

For, the transformation 
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is reducible to the form (1) of the preceding article, in 
which the determinant is not zero if the three points 
a, b, c are distinct. Moreover, it transforms a, b, c 
into oo, 0, 1 respectively. Hence, it transforms x = d 
into the given expression. If a, b, c are not all distinct 
we use in a similar way one of the other expressions 
given in the definition. 

We should note, in particular, that we have 
ab, ca) = °o , ab, cb) =0, and 'Rfab, cc) = 1, if a, b, c 

are any three distinct points of a line. 
Also, if ab, cd form a harmonic set, we have 

1{(ab, cd) = — 1, since we have H(oo, 0, 1, — 1) by defini-
tion of — 1. 

It is now clear that two sets of four points are projec-
tive, if and only if they have the same cross ratio; i.e., 
abed /\ a'b'c'd', if and only if 1{(ab, cd) =1{(a'b', c'd'). 
For, if the first four are projective respectively with 
QO, 0, 1, X, it is clear that the second four must be 
projective with °o, 0, 1, X also, if the two given sets are 
projective. Conversely, the relation 

clearly defines a projective correspondence between 
x and x', which shows that if the two cross ratios are 
equal the two sets of four points are indeed projective. 

Another way of expressing this fundamental result 
is to say that the cross ratio is invariant under any 
projective correspondence. The reader may, incidentally, 
verify this statement directly by applying to the cross 
ratio in turn each of the three types of projectivities 
(I), (II), (III) into which in a previous section (p. 127-8) 
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we resolved any projectivity, and noting that the cross 
ratio remains invariant under each of these. 

53. Projective correspondence between two different 
one-dimensional forms. So far we have considered 
only the analytic expression of a projectivity in a single 
one-dimensional form. To find such an expression for 
a projective correspondence between two different 
forms, that is between two pencils of points on different 
lines or between a pencil of points and a pencil of lines, 
for example, offers no difficulty. Let a scale be estab-
lished in each of the two forms, by assigning the 
symbols oo, 0, 1 to three distinct elements in each of 
the forms. Let x be the coordinate of any element of 
one of the forms and let y be the coordinate of any 
element of the other with reference to these two scales. 
The equation y = x then means that two elements, one 
in one of the forms and the other in the other form, 
have the same coordinate, if y corresponds to x in the 
projectivity which makes the elements co, 0, 1 of one 
form correspond to the elements oo, 0, 1 of the other. 
This shows that a projectivity between the elements of two 
(liferent forms can always be represented by the relation 
y—x, if the scales in the two forms are properly selected. 
On the other hand, if the coordinates of the two forms 
are so related that y = x represents a projectivity, then 
any projectivity between the two forms is given by the 
equation 

54. Point and line coordinates in the plane. We now 
turn to the problem of representing the points and lines 
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of a plane by means of coordinates. In the case of 
point coordinates the reader will readily recognize the 
analogy of the procedure with that of elementary analyt-
ic geometry. The dual concept of line coordinates may, 
however, be new to him, if he is approaching the study 
of projective geometry for the first time. 

To define the coordinates of a point in a plane we 
proceed as follows: Let there be given two distinct 
lines in the plane on each of which we establish a scale 
arbitrarily, except that the point O of intersection of the 
two lines shall be the 0 point of each scale. On one of the 
lines, which we will call the x-axis, let l^and ccx=V 
be the other fundamental points establishing the scale, 
and on the other line, 
which we will call the 
y-axis, let the cor-
responding points be 
denoted by \y and 
<*>y =U ( F i g . 5 7 ) . 
Then if P is any point 
of the plane not on 
U V, t h e l i n e UP 
meets the .-r-axis in a 
unique point whose coordinate (let us say) is a, while 
the line VP meets the y-axis in a unique point whose 
coordinate on the y-scale (let us say) is b. The two 
numbers a, b are uniquely determined by the point P 
and, conversely, two such numbers, one on the x-axis 
and one on the y-axis uniquely determine the point P 
(not on UV). The two numbers a, b are called the 
coordinates of the point P and the latter is represented 
by the symbol (a, b), wherein the x-coordinate or ab-
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scissa is always written first and the y-coordinate or ordi-
nate is always written second. Any point of the *-axis 
has coordinates of the form (a, 0) while every point 
of the y-axis has coordinates of the form (0, b). The 
points of the line UV do not have coordinates in this 
system. The exceptional character of the points on the 
line UV will be removed presently. 

The plane dual of the above considerations leads to 
the concept of the coordinates of a line. Given the 
pencils of lines on two distinct points U, V, we establish 
in each of these pencils a scale by assigning the funda-
mental lines co, 0, 1 arbitrarily, except that the line 
UV joining the centers of the two pencils is to be the 
0 line in each scale. In the scale on U we denote the 

point which determines in the pencil U a line whose co-
ordinate in the scale on U we will call m; while it meets 
the line <»„ in a point which determines in the pencil V 
a line whose coordinate in the V scale we will say is n. 
The two numbers m, n are uniquely determined by p; 
and conversely, two such numbers, one belonging to 
the U scale and one to the V scale, uniquely determine 
a line p. They are called the line coordinates m, n of 

other two fundamen-
tal lines by 1„ and °ou, 

Vo 

FIG. 5 8 

respectively; in the 
pencil on V, we denote 
these points by 1„ and 
ooB (Fig. 58). Any 
line p of the plane not 
on the intersection of 
the lines °ou and °o„ 
meets the line oo„ in a 
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the line p, and the latter may be represented by the 
symbol [m, n], in which the ^-coordinate is always 
written first and the ^-coordinate is always written 
second. We have used square brackets instead of 
parentheses in order to distinguish the symbol repre-
senting a line from that representing a point. Every 
line through U has coordinates of the form [m, 0], 

while every line through V has coordinates of the form 
[0, n]. The lines through the point O do not have co-
ordinates in this system. The exceptional character of 
the lines through 0 will be removed presently. 

55. The equation of a line. Let a line p not passing 
through O meet the £-axis in a point whose abscissa is 
a and the y-axis in a point whose ordinate is b. Let 
P = (x, y) be any variable point of the line. If p meets 
the line UV in the point M (Fig. 59), we have 

whence (p. 133) 

which when expanded gives 
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Conversely, any point (x, y) whose coordinates satisfy 
this equation will be on the line p. This equation is 
accordingly called the point equation of the line. 

If the line p passes through 0, let A = (h, k) be any 
point on it distinct from 0 and let as before P = (x, y) 
be any variable point of p. If p meets UV in M (Fig. 
60), we have 

whence (p. 133) 

which when expanded gives x/h=y/k. 
This then is the equation of any line through the 

origin O. 
Dual considerations lead to the notion of the line 

equation of a point ; i.e., the equation which is satisfied 
by the coordinates u, v of all lines through the point 
and by no others. 

56. Simultaneous point and line coordinates. The 
results of the last article can be given an especially 
symmetric and illuminating form by superimposing 
our systems of point and line coordinates in an ap-
propriate way. To this end, given a set of point co-
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ordinates, i.e., an x-axis and a y-axis with a scale on 
each as previously described, let us place the U-center 
of a system of line coordinates at the point U = coy and 
the F-center at the point V = <x>x, and let the line u„ 
coincide with the y-axis and the line vM coincide with 
the x-axis. Our system of line coordinates is now com-
pletely established, except that the lines lu and 1„ have 
not yet been chosen. If we choose for 1 u the line through 
U and the point — \ x on the x-axis, and let T represent 
the projectivity which makes every line through U 
correspond to that point on the x-axis which has the 
same coordinate, and if T' represents the perspectivity 
whereby to every line through U corresponds the point 
on the x-axis in which it meets the x-axis, the pro-
jectivity T'T transforms the x-axis into itself and inter-
changes 0 and coX) and also interchanges \ x and — \x . 
Hence, T'T is the involution x' = — 1/x. It follows that 
with this arrangement of the two systems of coordinates 
the line through U whose coordinate is u meets the oc axis 
in the point whose coordinate is — \/u; and the point on 
the x-axis whose coordinate is x lies on the line through U 
whose coordinate is —\/x. 

Similarly, if we choose for the line 1„ the line through 
Y which meets the y-axis in the point whose coordinate 
is — 1 y, the line through V whose coordinate is v meets the 
y-axis in the point whose coordinate is —\/v \ and the point 
on the y-axis whose coordinate is y lies on the line through 
V whose coordinate is — \jy. 

The line p, discussed in the last article, which does not 
pass through O and which meets the x-axis and they-axis 
in points whose coordinates are a and b, respectively, is 
then the line whose coordinates [m, n] are given by 

http://rcin.org.pl



140 AL( EBRA OF POINTS. ANALYTIC METHODS 

m = —\/a, n = —1/b. Substituting these values in the 
equation of this line we obtain: The point equation of 
the line [m, n] is mx-\-ny-\-1 =0. The plane dual of this 
result states: The line equation of the point (a, b) is 
au-\-bv-\-1=0. These two statements may be com-
bined into one: 

The necessary and sufficient condition that the point 
(a, b) be on the line [m, n] is that ma-\-nb +1 =0. 

57. Homogeneous coordinates on the line and in the 
plane. The coordinates which we have defined for the 
points of a line and those which we have introduced for 
the points and lines of a plane, are not altogether satis-
factory for the analytic representation of projective 
elements. The reader will recall that, in the case of the 
coordinates on a line, the point oo was exceptional, so 
that we had to define certain special properties for it 
(p. 128f), whereas there should not be exceptional points. 
Also in the plane, the points on the line UV and the 
lines through the point 0 proved exceptional with refer-
ence to our coordinate systems. We propose now to 
modify our notion of coordinates in such a way as to 
avoid these difficulties. 

Beginning with the coordinates on a line, we replace 
the coordinate x of any point of the line distinct from 
oof by two coordinates X\, x2 such x = xi/x2. Any point 
of the line is then represented by two coordinates 
(si, x2) with the understanding that (kxi, kx2) = (xi, x2) 
for every The point 00 is represented by the sym-
bol (1,0) = (k, 0). The fundamental points of the scale 
are 0 = (0, 1), 1 = (1, 1), » = ( 1 , 0). A projectivity is 
represented by the equations: 
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The point (0, 1) is transformed into the point (b, d) and 
the point (1, 0) into the point (a, c), as they should be. 
The exceptional character of the point co disappears in 
this new method of representing the points on a line. 
The coordinates (zi, x2) are called homogeneous co-
ordinates on the line, to distinguish them from those 
previously used, and which will from now on be referred 
to as non-homogeneous. 

A similar device serves in the plane. Given any sys-
tem of simultaneous point and line coordinates as de-
scribed in the last article, we replace the symbol (x, y) 
representing a point not on UV by a symbol (xi, x2, x3) 
such that x:y: \ =xx:x2:x3. To the point V = <*> y we 
assign the symbol (0, 1, 0), to U = <x> x the symbol 
(1,0,0) and to the point in which the line joining O to the 
point (1, 1) meets UV (Fig. 61) the symbol (1,1,0). Any 
other point not on UV, which in the previous system 
had coordinates (a, b) is joined to O by a line whose 
equation is (p. 138) x/y = a/b. This justifies us in 
assigning to the point in which this line meets UV 
the symbol (a, b, 0). Every point in the plane has now 
been assigned a set of three numbers (xi, x2, x3) with the 
understanding that the point {x\, x2, x3) = (kxi, kx2, kx3) 
for every Conversely, any three numbers 
(*i, x2, x3), with the exception of (0, 0, 0), define 
uniquely a point in the plane. This new system of co-
ordinates is called a system of homogeneous point 
coordinates in the plane; the previous system will in 
the future be referred to as non-homogeneous. The con-
siderations dual to those above give rise to a system of 
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homogeneous line coordinates in the plane, whereby to 
every line of the plane corresponds a symbol [u\, w2, u3], 
and where the lines through 0, which were exceptional 
in the non-homogeneous system, are characterized 
simply by the fact that for any such line we have u3 = 0. 

(-ufl) 

The reader should note that the various points and 
lines used to establish a system of homogeneous co-
ordinates in the plane now enter very symmetrically. 
The so-called frame of reference of such a system now 
consists of a triangle OUV, the sides of which have the 
equations £i = 0, x2 = 0, a;3 = 0 and the vertices of which, 
in line coordinates, have the equations ux=0, u2 = 0. 
M3 = 0. The unit point (1, 1, 1) of the system, which 
may be any point not on a side of OUV, determines the 
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points (0, 1, 1), (1 ,0 , 1) and (1, 1, 0) on the sides of 
OUV. The unit line [1, 1, l ] is then uniquely deter-
mined as the line on which lie the points (—1, 1, 0), 
( — 1, 0, 1) and (0, —1, 1) (that these points all lie on 
a line follows from the fact that it is the axis of per-
spectivity of the perspective triangle OUV and that 
formed of the unit points on the sides of OUV, which 
are evidently perspective from the point (1,1, 1)). 

The equation of a line [m, n] not on O, which in 
non-homogeneous coordinates has the equation 
mx-fwy-f 1 =0, becomes in homogeneous coordinates 
miXi-\-m2x2-\-m3x3 = 0, where [mh m2, m3] are the 
homogeneous coordinates of the line. Indeed, the neces-
sary and sufficient condition that the point (ai, a2, a3) be 
on the line [mi, m2, m3] is that mxai-\-m2a2-\-m3a3 — ^). 

The perfect symmetry of this result is all that could 
be desired. We may see herein a reflection of the prin-
ciple of duality, since as a matter of fact the point co-
ordinates and the line coordinates are in no way dis-
tinguishable one from the other; that is, we may in any 
analytic discussion interchange point and line coordi-
nates v ithout affecting the validity of the discussion. 

The reader familiar with the theory of determinants 
will readily see that the equation of the line joining the 
two points A =(ah a2, a3) and B = (bh b2, b3) is 

and that the coordinates of this line are 
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Similar relations hold for the equation of the point of 
intersection of two lines m=[mi, m2, m3] and 
n= [nx, n2, n3]. 

As an application of these results the reader may find 
it interesting to verify the theorem of Desargues 
(p. 34) analytically. To this end we may let one of 
the triangles, say A'B'C', be the triangle of reference: 
4 ' = (0, 0, 1), B' = {0, 1, 0), C ' = ( 1, 0, 0); and we may 
let the center of perspectivity of the two triangles be 
P = { 1, 1, 1). The point A of the other triangle ABC 
must then lie on the line PA', i.e., the line whose equa-
tion is Xi— x2 = 0. We may then place A—(\, 1, a), 
where a is arbitrary. Similarly, we place B = ( 1, b, 1), 
and C = (c, 1, 1). We then obtain, by applying the 
formulas just derived and their duals, the following: 

The coordinates of the line A'B' are [l, 0, 0]; 
The coordinates of the line AB are [1 — ab, a — 1, b — 1 ]. 

Hence the coordinates of their intersection C" are 

Similarly, 

The determinant of these three points will be found to 
be zero, which verifies the fact that they are collinear. 

58. Pencils of points and lines. The following method 
of representing the points and the lines of pencils of 
points and lines is convenient: 

If A = (ai, a2, a3) and If m — [mi, m2, m3] and 
B = (bi, b2, b3) are any two n = [wi, n2, n3 ] are any two 
distinct points of a pencil distinct lines of a pencil 
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of points, any point P of of lines, any line p of the 
the pencil is given by pencil is given by 

where Xi/X2 is an arbitrary where /xi//x2 is an arbitrary 
parameter. parameter. 

The proof (of the result on the left) follows from the 
fact that any point (^i, x2, x3) of the pencil must satisfy 
the relation 

Three numbers p, X/, X2' then exist such that we have 

The number p is not zero, for if so it would follow from 
the last relation that ai'.a2:a3 = bi'.b2:b3, which would 
make the points A and B coincide. Hence, if we place 
Xi=Xi/p and X2=X2 /p, we see that every point of the 
pencil may be represented in the manner indicated. 
Conversely, every point of this form is evidently a point 
of the pencil. 

The method of representing the elements of a pencil 
just given is known as the parametric method of repre-
sentation, in which the points A, B (the lines m, n) are 
called the base points (base lines). The parameter Xi/X2 

may also be written in non-homogeneous form Xi/X2 =X, 
which for some purposes is more convenient. If so writ-
ten the point P is represented by 
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In the former method of writing the parameter the 
points A and B correspond to the values Xi = 0 and 
X2 = 0, respectively; in the latter method the points A 
and B correspond to the values X = 0 and X = °o, re-
spectively. Since to each value of X corresponds one 
point of the pencil, and conversely, we may speak of 
the point X (or in the case of a pencil of lines, of the 
line n). 

The condition that the point X of a pencil of points 
lie on the line yu of a pencil of lines is given by the equa-
tion 

When expanded this equation turns out to be of the 
form 

where the coefficients A, B, C, D depend only on the 
coordinates of the base points and base lines of the 
pencils and not on the parameters of the other points 
of the pencil. The last relation may be written in the 
form 

This is the condition that a pencil of points and a pencil 
of lines be perspective. Since every projective corre-
spondence between two one-dimensional forms can be 
obtained as the resultant of a sequence of perspectivities 
and, since the resultant of two linear fractional transfor-
mations of the above form is again of this form, we have 
proved the following theorem: 
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Any projective correspondence between the elements of 
two one-dimensional forms may be represented by a re-
lation 

between the parameters of the two forms. 
The same relation, of course, represents a projectivity 

in any one-dimensional form if /J. and X represent corre-
sponding values of the parameter of the form. 

If the two forms are different, the general relation 
above may be greatly simplified by an appropriate 
choice of the base elements. Let us take the case of 
two pencils of points on distinct lines as typical, and 
let A and B be the arbitrarily chosen base points of 
one of the pencils. Choose as base points of the other 
pencil the points A' and B', homologous in the given 
projectivity to A and B, respectively. Then to the val-
ues X = 0 and X = oc must correspond the values n = 0 
and /x = oo . The general projective relation of the above 
theorem then reduces to the form n = k\ . 

59. The equation of a conic. We will make use of 
the considerations in the last article to derive the equa-
tion of a conic. If m = m\Xx-\-miXi-\-mzX3 = 0 and 
n = nxxi + n2x2+w3x3 = 0 are the equations of two distinct 
lines, the equation of any line of the pencil determined 
by m and n is of the form m-\-\n = 0. Let a conic be 
generated by two projective pencils, in which the line 
m of one corresponds to the line p of the other, while the 
line n of the first corresponds to the line q of the 
second. T h e t w o n e n r i l s are then renresented h v 

http://rcin.org.pl



148 AL( EBRA OF POINTS. ANALYTIC METHODS 

where p = pxxx -\-p2x2+p&3 and q = qiXi+q^ +q3x3. The 
projectivity generating the conic is given by fx = k\. 
To obtain the equation of the conic we need only 
eliminate n, X between the last three relations. This 
gives us as the desired relation 

which when expanded is evidently an equation of the 
second degree in X\, x2, x3. 

If two tangents to a given conic be taken as two 
sides #i = 0 and #3 = 0 of the triangle of reference of the 
coordinate system and the line joining their points of 
contact is taken as the third side x2 = 0, the equation 
of the conic assumes the simple form x£ —kxxx3 = 0; if 
in addition a point of the conic other than one of the 
two points of contact is chosen as the point (1, 1, 1) the 
equation becomes simply x£ — = 

60. Collineations in a plane. We will close this chap-
ter by indicating briefly how any projective collineation 
may be represented analytically. To this end we 
consider the general linear homogeneous transformation 
on the coordinates of the points in a plane: 

Such a transformation evidently transforms any point 
(xi, x2, #3) into a unique point (xy', x2', x3'). It will, 
reciprocally, make (x{, x{, x{) the correspondent of 
a unique point (xx, x2, x3) if the determinant of the 
transformation, 
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is not zero; for, the above equations can then be solved 
uniquely for {x\, x2, x3) in terms of (x{ , X<2 , x3 ). Further 
it is readily seen that our transformation transforms any 
line of the plane into a line of the plane. Finally, the 
transformation transforms any pencil of lines into a pro-
jective pencil. For, if it transforms the lines m = 0 and 
n= 0 into two lines whose equations are respectively 
m'=0 and n'= 0, it is clear that it will transform the 
line m-fXw = 0 into the line ra'+Aw'=0, and this rela-
tion between these two pencils has been shown to be 
projective (p. 147). 

Any transformation (1) with the restriction A 
then represents a projective collineation in the plane. 
Conversely, every projective collineation in the plane 
can be represented in this form. To prove this, we need 
only show that the vertices of a complete quadrangle 
can, by such a transformation, be transformed into the 
vertices of any other complete quadrangle. But it is a 
simple algebraic exercise to show that if the points 
(0, 0, 1), (0, 1,0), (1, 0, 0), and (1, 1, 1) are to correspond 
to the points (ay, a2, a3), (blt b2, b3), (ch c2, c3), and 
(d\, d2, d3) respectively forming a complete quadrangle, 
then the coefficients a a of the transformation are 
uniquely determined (except, of course, for a factor of 
proportionality). 

If the line £3 = 0 is left invariant by our collineation 
we must evidently have a3l = a32 = 0. If this line is the 
exceptional line of our system of non-homogeneous 

http://rcin.org.pl



150 AL( EBRA OF POINTS. ANALYTIC METHODS 

coordinates x = xi/x3 and y = x2/x3, we obtain the fol-
lowing result which will prove to be of use in the next 
chapter: 

If the exceptional line of a system of non-homogeneous 
coordinates in a plane is left invariant by a collineation, 
the latter is represented by 
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G R O U P S A N D G E O M E T R I E S 

61. A geometry defined by a group of transforma-
tions. F E L I X K L E I N in his well known Erlanger Pro-
gramm of 1872, entitled Vergleichende Betrachtungen iiber 
neuere geometrische Forschungen, laid down a funda-
mental principle which has since become classic in 
geometry. This principle states that given any group 
G of transformations (on geometric elements) the body 
of definitions and theorems which express properties 
that are left unchanged under the transformations of 
G (but which are not invariant under the transforma-
tions of any other group containing G) is called the 
geometry associated with or defined by G. Thus plane 
projective geometry is the geometry defined by the 
group of all projective collineations in the plane, be-
cause the body of definitions and theorems of plane 
projective geometry express properties which are in-
variant under the general group of projective collinea-
tions in a plane. Such properties are very general; they 
do not include the familiar notions of parallelism, per-
pendicularity, equality of distances and angles, etc. of 
elementary euclidean geometry, since these properties 
are not invariant under the general projective group. 
These more special properties are invariant under more 
restricted groups. They are all invariant, e.g. under the 
group of all displacements in the plane. 

151 
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Any displacement or motion in the plane is repre-
sented analytically by the equations 

in an ordinary system of rectangular coordinates. 
These equations show that the group of displacements 
is contained in the group of all projective collineations 
as a subgroup; it is indeed a subgroup of the group of 
collineations leaving a given line invariant (p. 150). 
I t is, of course, evident that, in general, the more re-
stricted the group the more properties will appear that 
are invariant. This suggests the problem of studying 
the geometries associated with each of the subgroups of 
the general projective group in the plane, and among 
these geometries we should, by what has been said, ex-
pect to find the elementary euclidean geometry. The 
fact is, however, that what is usually understood by 
the term euclidean geometry is a mixture of several 
geometries in the strict sense of the definition as given 
above. I t would be interesting to consider in detail 
some of the more important subgroups of the general 
projective group and the geometries defined by them, 
and thereby to see precisely to what subgroup any given 
theorem of euclidean geometry belongs. This is, how-
ever, too ambitious a program for a brief monograph. 
The interested reader may be referred for a more sys-
tematic and more complete exposition of this point of 
view to Veblen and Young, Projective Geometry, Vol. 
II. Here we can only hope to give an outline of some of 
the principal results of such a study, and thus supple-
ment the discussion of metric properties which we gave 

http://rcin.org.pl



THE AFFINE GROUP AND AFFINE GEOMETRY 153 

in Chapter VI. Nevertheless, we hope that enough will 
here be said to make clear to the reader the point of view 
involved and to show him at least in a few instances 
the group to which certain of the familiar concepts of 
elementary euclidean geometry belong. We shall also 
see how the two principal so-called non-euclidean 
geometries arise from the group-theoretic point of view 
here adopted. 

62. The affine group. The affine geometry. We will 
begin our discussion with the group of all collineations 
in a plane which leave a given line invariant and which 
we have already defined (p. 118) as the affine group. 
The corresponding geometry is called the affine ge-
ometry (in the plane). Let the line which is left invariant 
by every collineation of our group be called the line at 
infinity and let it be denoted by lx. The reader should 
note that this is a definition; the line lx is any line in 
the plane. It should not be thought of as necessarily 
"at infinity"; only if he desires the resulting geometry 
to be intuitionally equivalent to the ordinary elemen-
tary geometry, i.e., if he desires the figures of the 
geometry to "look like" the figures he is familiar with, 
is it necessary for him to think of lM as being at infinity. 

The points of lx are called points at infinity or ideal 
or improper points; the points not on lx are then called 
ordinary points, and the lines of the plane exclusive of 

are called ordinary lines. The ordinary points and 
lines of the plane constitute the euclidean plane, and in 
the rest of this monograph the word "point" when un-
modified will mean an ordinary point. 

The fundamental theorem for the affine group here 
given without proof is as follows: There is one and only 
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one transformation of the affine group which transforms 
the vertices A, B, C of a triangle respectively into the ver-
tices A', B', C' of any other triangle. We have already 
seen (p. 150) that in any system of non-homogeneous 
coordinates in which lM is taken as the exceptional line 
any affine collineation is represented by the equations 

We now proceed to make a number of definitions 
which are the same as those given in the early part 
of Chapter VI and which need not all therefore be re-
peated in detail: Two ordinary lines not meeting in an 
ordinary point are said to be parallel and the pair of 
lines is said to be parallel. A simple quadrangle A BCD 
such that the side AB is parallel to CD and BC is parallel 
to DA is called a parallelogram, of which the lines AC 
and BD are the diagonals. The following theorem is an 
immediate consequence of these definitions and pro-
jective theorems: 

In a euclidean plane two distinct points determine one 
and only one line; two lines meet in a point or are parallel; 
two lines parallel to a third line are parallel to each other; 
through a given point not on a given line there is one and 
only one line parallel to the given line. 

The classification of conics into hyperbola, parabola, 
and ellipse; the definition of center, diameter, central 
conics, asymptotes (of a hyperbola) are all concepts be-
longing to the affine geometry, though meaningless in 
general projective geometry. We now proceed to de-
velop certain new concepts of the affine geometry. 

63. The group of translations. Any elation (p. 116) 
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having as its axis is called a translation. If I is an 
ordinary line through the center of the translation, the 
latter is said to be parallel to I. 

We have already observed that the set of all transla-
tions forms a group. It is moreover evident that the 
group of translations is invariant (p. 108) under the 
affine group. The reader will have no difficulty in noting 
that every translation transforms any ordinary line 
into a parallel line and that it transforms each of a 
certain system of parallel lines into itself. Also it fol-
lows readily from the definition of a translation that 
there is one and only one translation carrying a point A 
to any point B. 

Two figures are said to be parallel-congruent if they 
are homologous under a translation. Later we shall 
give a more general definition of congruence. But this 
restricted definition expresses a property that is invari-
ant under the affine group and, therefore, belongs to 
affine geometry. That the property is invariant under 
the affine group follows readily from the fact that the 
group of translations is transformed into itself by the 
affine group. 

The necessary and sufficient condition that the ordered 
point pairs AB and CD be parallel-congruent, if C is not 
on the line AB, is that ABCD form a parallelogram. If 
C is on the line AB and PM is the point at infinity on AB, 
the desired condition is that the parabolic projectivity on 
AB with double point P„ which transforms A into C shall 
transform B into D. 

The first part of this theorem follows at once from the 
construction of the translation which transforms A 
into C (Fig. 62). The line AC is invariant and, if P w 
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is the point at infinity on AB, the line AB is transformed 
into CPX. Hence, B is transformed into the intersection 
D of the lines CP ^ and the line BMn joining B to the 
center of the translation M U n d e r these conditions 
ABDC is a parallelogram. The second part of the the-
orem follows from the fact that the projectivity on 
every invariant line of the translation is parabolic 
(p. 117) with double point at infinity. 

The last part of the theorem gives us the following as 
a special case: 

If A and B are any two distinct points and M is the 
harmonic conjugate with respect to A and B of the point 
at infinity on the line AB, the ordered pair AM is parallel-
congruent to the ordered pair MB. 

This theorem suggests the definition of midpoint 
already given (p. 84). The proposition that the line 
joining the mid-points of two sides of a triangle is paral-
lel to the third side and the theorem that the medians of 
a triangle meet in a point (p. 86-7) are then seen to be 
theorems belonging to the affine geometry. A similar 
remark applies to the proposition that the diagonals of 
a parallelogram bisect each other and to the theorems 
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concerning the midpoints of parallel chords of a conic, 
etc. previously proved in Chapter VI (p. 88). 

If OX and OY are two nonparallel lines and T is any 
translation, there exists a unique pair of translations 
Ti, T2, such that 7\ is parallel to OX, T2 is parallel to 
OY, and TXT2 = T. 

To prove this theorem let T transform 0 into P and 
let the lines through P parallel to OY and OX meet OX 
and OY in the points A and B respectively (Fig. 63). 
Then, if 7\ is the translation transforming 0 into A 
and r 2 is the translation transforming 0 into B, it follows 
readily from preceding results that we have T\T2=T. 
That the pair Th T2 is unique follows without difficulty. 

We use the last theorem to derive an analytic rep-
resentation for a translation. In a non-homogeneous 
coordinate system for which lM is the exceptional line, 
it is clear that any translation parallel to the x-axis is 
represented by the equations x'=x-\-a, y' = y, for the 
first of these equations represents any parabolic pro-
jectivity on the x-axis of the kind desired, by the defini-
tion of addition, while the second equation insures the 
fact that every line parallel to the x-axis is transformed 
into itself. Similarly, any translation parallel to the 
y-axis is given by equations x' = x, y' = y + b. The resul-
tant of these two evidently yields the result expressed 
in the following theorem: 

With respect to any non-homogeneous coordinate system 
for which lx is the exceptional line, any translation is 
represented by the equations 
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This shows incidentally that the group of translations 
is commutative. 

64. Vectors. There is another important group of 
concepts belonging to the affine geometry which we will 
define before closing this part of our discussion. The 
vector AB is a symbol which is uniquely defined for 
every ordered point pair AB of a euclidean plane, such 
that, if CD is any ordered point pair parallel-congruent 
to AB, the vector CD is equal to the vector AB. If A 
and B coincide, the vector AB is called the null vector 
and is denoted by 0. 

We denote the vector AB by V{AB). Since any point 
of a euclidean plane can be transformed into any other 
point of the plane by a translation, the set of all vectors 
is obtained as the set of all vectors of the form V{OP) 
where 0 is any fixed point of the plane and P is variable. 

If 0, A, C are any three points of the plane, V(OC) 
is called the sum of V(OA) and V(AC); in symbols, 
V{OC) = V(OA) + V(AC). Since we evidently have 
V(AB) + V(BA)=0, we define V(BA) to be the 
negative of V(AB), and write V(BA) = — V{AB). Two 
vectors are said to be collinear, if and only if they are 
equal respectively to two vectors V(OA) and V(OB), 
where 0, A, B are collinear points. 

The sum of two non-collinear vectors OA and OB is the 
vector OC, where C is such that OACB is a parallelogram. 
This follows from the definition and the fact that 
V(AC) = V{OB). 

HO, A, B are collinear, le tP M be the point at infinity 
on the line OA and let Lx and Mx be any other two 
distinct points on /^jlet the lines OLK and AM^ meet in a 
point L and let BL„ and LP^ meet in Af(Fig. 64). If 
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MM ^ meets OA in C, OB ML and AC ML are parallelo-
grams, so that V{OB) = V(LM) = V(AC). Hence,by defi-
nition, we have V(OA) + V(OB) = V(OC). But the 
construction just given for the point C shows that it is the 
sum of the two points A and B in any algebra on OA for 

which 0 is the point 0 and PM the point" <x>. This proves 
that the addition of collinear vectors issuing from a point 
0 is equivalent to the addition of the end points of the 
vectors in any point algebra for which 0 is the zero point 
and the point at infinity on OA is the point <x>. 

It is readily seen, moreover, that the addition of vectors 
is associative and commutative; i.e., if a, b, c are vectors 
then (a-\-b) = a-\-(b+c) and a+b = b-\-a. 

The ratio, OA/OB, of two collinear vectors OA and 
OB is the number which corresponds to A in the scale 
determined by 0 = 0, B = 1, and P „=<*>, where P«, is 
the point at infinity on OA. With respect to an arbitrary 
unit vector OB, the ratio OA /OB of collinear vectors is 
called the magnitude of V(OA). The magnitude of 
V(OA) is clearly the same as the coordinate of A in 
the scale determined as above. If a< is the magnitude of 
V(OA i), we have evidently magnitude of V{A\Ai) 
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= a2 — au This gives us at once (p. 132) the following 
theorem: 

If A\, A2, A3, A4, are four collinear points, 

If A\=AX is the point at infinity on the line, we have 

As an application of this result we may prove the 
following: 

If two triangles ABC and A 'B'C' are such that the sides 
AB, BC, CA are parallel, respectively, to A'B', B'C', 
C'A ', we have 

This special case of a well-known theorem belongs to 
the affine geometry. To prove it we need only note that 
the translation which transforms A' into A, will trans-
form B' into B\ and C' into C1, where B\ and C1 are 
points of AB and AC respectively. We then have 
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whence <R(JBXA, BBI) =<P,(C„A, CCI ) , or AB/AB, 
= AC/ACI = CA/CXA, which gives by definition 

AB/A'B' =CA/C'A'. A similar argument establishes 
the rest of the theorem. 

Since the magnitudes of vectors as defined are num-
bers we may compute with them according to the laws 
of algebra. Moreover, no confusion will arise, if we de-
note the magnitude of the vector AB simply by the 
symbol AB \ the ratio of two vectors is simply the quo-
tient of their magnitudes. 

We will close this part of the chapter by deriving very 
simply a general theorem regarding projectivities, a 
special case of which we derived earlier by other 
methods. In order to state this theorem we need the 
following definition: If T is any projectivity between 
the points of the two lines I and /', and if the points I 
and J' which are homologous under T~l and T with 
the points at infinity on V and I respectively are ordinary 
points, I and J' are called the vanishing points of I and 
I', respectively. The lines I and I' may coincide. The 
theorem in question is as follows: 

If I and J' are the vanishing points on I and I' re-
spectively of a projectivity T between the points of two 
parallel lines I and I', and if P is a variable point of I 
and P' = T(P) is the corresponding point of I', the product 
IP'J'P' is constant. This constant is called the power 
of the projectivity. 

The proof is as follows: Let P K be the point at infinity 
on I and I', let Pi and P2 be two values of P, and let 
Pi = T(Pi) and P{ = T(P2) be the two corresponding 
values of P'. Then from the fundamental property 
(p. 133) of the cross ratio we have 
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which gives 

This then gives as the relation between the magnitudes 
of the vectors 

The vanishing point of an involution on a line which 
does not transform the point at infinity of the line into 
itself is called the center of the involution (p. 98). As 
a corollary of the above theorem we have the following: 

If 0 is the center of an involution on a line and P, P' 
is any pair of the involution, the product OP*OP' is con-
stant (p. 99). 

65. The euclidean metric group. The euclidean 
metric geometry. We may now define a subgroup of 
the affine group which will characterize the elementary 
euclidean metric geometry. As may be expected from 
the discussion of perpendicularity in Chapter VI 
(p. 88) the definition of this subgroup must involve 
an involution on the line at infinity. Indeed, we proceed 
simply as follows: 

Let I be an arbitrary but fixed elliptic involution on 
/«,, which we call the absolute or orthogonal involution. 
It will simplify much of the later discussion if we 
assume that this involution may be considered as 
having two imaginary double points /1, and /2, called 
the circular points at infinity. The group of all projec-
tive collineations leaving the involution I invariant is 
called the euclidean metric group and the associated 
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geometry is called the euclidean metric geometry. The 
transformations of the euclidean metric group are called 
similarity transformations; and two figures that are 
homologous under this group are said to be similar. 

As to the existence of collineations leaving the ab-
solute involution invariant, we may note that any such 
collineation must either leave each of the circular 
points 11, I<i invariant, or must simply interchange the 
points 11, / 2 ; and, conversely, any collineation with 
either of these properties will leave the absolute in-
volution invariant. Similarity transformations of the 
former type are called direct, those of the latter type 
indirect. 

We next define two lines to be perpendicular, if they 
pass respectively through two conjugate points of the 
involution I (p. 88). From this definition we have at 
once the following: 

The pairs of perpendicular lines of a pencil of lines are 
pairs of an elliptic involution. Through any point there 
is one and only one line perpendicular to a given line. A 
line perpendicular to one of two parallel lines is per-
pendicular to the other. Two lines perpendicular to the 
same line are parallel. 

Fundamental in the treatment of the euclidean 
metric group are the so-called orthogonal line reflexions, 
i.e., the harmonic homologies for each of which the cen-
ter L is on the line at infinity and for which the axis 
meets in the point conjugate to L in the absolute 
involution. I t is clear from the definition that the 
center of an orthogonal line reflexion cannot coincide 
with a circular point nor can its axis pass through such 
a point. Also, it follows at once from the definition that 
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an orthogonal line reflexion transforms any point P 
into a point P' such that the line PP' is perpendicular 
to the axis and meets the axis in the midpoint of PP'. 

66. The rectangular coordinate system. Given two 
points Xi, Yi on the line at infinity, conjugate under 
the absolute involution, there exist two other points 
U, U' on lx conjugate under / and harmonic with Xx, 
Yi. Let the points X h Yi be taken as the points (1, 0, 0) 
and (0, 1, 0) of a homogeneous system of coordinates 
and let the points U and U' be chosen as the points 
(1, 1, 0) and( —1, 1, 0), respectively. Let the point 
O = (0, 0, 1) be any ordinary point of the plane. I t is 
then evidently possible to choose the point (1, 1, 1) in 
conformity with the above specifications. If now we 
change from the homogeneous system to a non-
homogeneous system in the usual way, in which the 
line lM is exceptional and the lines OXi and OYi are 
the x- and y-axes respectively, the latter are per-
pendicular to each other and the absolute involution 
is given by x( = —x2, xi =xh xi =x3 = 0. I t follows 
that the lines y = mx and y = m'x are perpendicular to 
each other if and only if m' = — \/m. More generally, 
two lines ax+by-{-c = 0 and a'x + b'y+c' = 0 are per-
pendicular if and only if ab' + ba' = 0. The non-
homogeneous coordinate system thus established is 
called a system of rectangular coordinates. 

67. Analytic expression for the transformations of 
the euclidean group. The transformations of the affine 
group derived in §60 may be written in homogeneous 
form as 
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The circular points 7i, 72 have coordinates (i, 1, 0) and 
{ — i, 1, 0), where i2= —1. Keeping in mind that the 
coefficients of the collineation are real (it transforms all 
real points into real points), the condition that (i, 1, 0) 
is invariant gives readily b2 = ax=a, say, and a2 = —bi 
= (3, say. This leads to the following: 

Any direct similarity transformation is given by 

Similarly, the condition that (i, 1, 0) be transformed 
into ( — i, 1, 0) gives ai= — b2=a, say, and a2 = bi=fi, 
say. Hence we have the following: 

Any indirect similarity transformation is given by 

Evidently the product of two indirect transforma-
tions is a direct transformation. This is verified by the 
fact that the determinant of the product of two col-
lineations is equal to the product of their determinants 
and the product of two negative numbers is a positive 
number. 

As to the orthogonal line reflexions we may readily 
derive the additional conditions that must be satisfied 
by the coefficients of our transformation. Let us sup-
pose first that the axis of the orthogonal line reflexion 
passes through the origin. This implies that the point 
(0, 0) is invariant. Since an orthogonal line reflexion 
is indirect our transformation is, then, of the form 
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If another point (m, n) on the axis is invariant this will 
insure that our transformation is an orthogonal line 
reflexion. This gives the equations m=am-\-(in, 
n=fim — an. These give for a., fi the values 

We see at once that A = —a2—/32 = — 1. Conversely, 
given any transformation of type (1) with — a* — ft2 

= — 1, numbers m, n can be determined so that relations 
(2) hold. If transformation (1) be transformed by any 
translation x' =x+a, y' =y-\-b, the result is an orthogo-
nal line reflexion whose axis is parallel to the axis of (1). 
If we carry out the computation we find that 

Any orthogonal line reflexion is represented by the 
equations 

In the above equations we may without loss of gener-
ality assume b = 0, unless /3 = 0; in the latter case we may 
assume a = 0. 

68. Displacements. The product of any even num-
ber of orthogonal line reflexions is called a displacement 
or a motion. Two figures that are homologous under a 
displacement are said to be congruent. 

It is clear that the product of any even number of 
orthogonal line reflexions will be of the form 
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For any such product is obviously direct and its deter-
minant must be equal to 1. To prove that every trans-
formation of this form is a displacement, we prove first 
that any translation is the product of two orthogonal 
line reflexions whose axes are parallel. Let the transla-
tion carry the point A into the point B and let LX be 
the point at infinity on AB. If then LJ is the point 
conjugate to LM in the absolute involution the product 
of two orthogonal line reflexions whose axes pass 
through L'oo will be a translation, since it leaves every 
point at infinity invariant. If the line reflexion whose 
axis is BLM carries A to A', the reflexion whose axis 
passes through L' and the midpoint of BA' will carry 
A' into B. The product of these two orthogonal line 
reflexions is then the translation carrying A into B. 
Now, let D be any given transformation of form (1), 
and let T be the translation x'=x+h, y' =y-\-k. The 
transformation T~lD is then the transformation 

The product of the two orthogonal line reflexions 

is the transformation 

This will be equivalent to (2) if 

and these two equations can always be solved for a2, /32 

in terms of a, fa. This shows that T~lD is the 
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product of two orthogonal line reflexions, and hence 
that D is the product of at most four orthogonal line 
reflexions. 

A displacement which leaves any ordinary point in-
variant is called a rotation. The above discussion has 
shown that any rotation leaving the origin O invariant is 
given by 

It also shows that any displacement can be represented 
as the resultant of a rotation about the origin and a transla-
tion. 

We may now show that any point (#1, yi) may be 
transformed by a rotation about the origin into a point 
on the x-axis. Indeed, if we place (xf, y') in the above 
equations equal to (X, 0) and {x, y) equal to {x\, yi) 
and solve the resulting equations for a and we obtain 

Since a7-\-B2 = l , this gives This shows 
further that there is a uniquely determined rotation about 
the origin which transforms into a point (X, 0) where 
X is positive; and one which transforms (#1, yi) into a point 
(X, 0), where X is negative. 

It follows also that the only rotation about 0 {other than 
the identity) which leaves a line through 0 invariant is 
given by x' = — x, y' = —y. 

The product of an odd number of orthogonal line 
reflexions is called a symmetry. It is clear that the set 
of all displacements forms a group which is invariant 
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under the euclidean metric group; and that the set of 
all displacements and symmetries forms a group which 
is invariant under the euclidean metric group. This 
justifies the following definitions: Two figures that are 
homologous under a displacement are said to be con-
gruent; two figures homologous under a symmetry are 
said to be symmetric. 

As an illustration we may derive one of the three the-
orems on the congruence of triangles with which most 
elementary texts begin the study of geometry. 

Two triangles ABC and A'B'C' are congruent in such 
a way that A corresponds to A', and B to B', if the point 
pair AB is congruent to A'B' and the ordered line pairs 
ca and cb are congruent to the ordered line pairs c'a' and 
c'b' respectively. 

In the statement of the theorem the line a is the line 
BC, etc. in the usual notation, and we have had to use 
"ordered line pair" in place of angle, since the latter 
concept has not yet been defined. By hypothesis, there 
exists a displacement T which transforms A into A' 
and B into B'. Suppose T(a)=a", T(b)=b", and 
T(C)=C". If a"^a', we should have the pair c'a' 
congruent to c'a" and there would have to be a dis-
placement leaving B' and c' invariant and transforming 
a' into a". If we think of B' as the point O of the 
theorem above (p. 168) this displacement would have 
to be the identity or the rotation of the above theorem, 
and both these suppositions contradict the hypothesis 
that a"Similarly we can prove b" = b', and hence 
C" = C'. 

69. The circle. As a further illustration we may give 
a definition of a circle in accordance with the usual 
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definition of elementary geometry. If 0 and A are any 
two distinct points the circle with 0 as center and OA 
as radius is the locus of all points P such that OP is 
congruent to OA. 

If 0 is taken as the origin of a set of rectangular 
coordinates, in which OA is the positive side of the 
x-axis, and if a is the coordinate of A and (x, y) the 
coordinates of the variable point P, the equation of 
the circle is xi+y, = ai (p. 168). If the center is the 
point (h, k), the translation x' = x-\-h, y'=y-\-k will 
transform this circle into 

The equation of any circle in the plane is then of the 
form 

If this be written in homogeneous form, it is seen at 
once that the two circular points (i, 1, 0) and ( — i, 1, 0) 
satisfy any equation of this form. Conversely, any 
(real) conic is represented by an equation of the second 
degree with real coefficients. If the general equation 
of the second degree with real coefficients be subjected 
to the condition that it shall be satisfied by the circular 
points it assumes the form above. Hence, the necessary 
and sufficient condition that a conic be a circle is that it 
shall contain the circular points at infinity. We have here 
the reason for calling the double points of the absolute 
involution circular. 

70. Distance. We defined the magnitude of a vector 
OB as its ratio to a unit vector OA collinear with it 
(p. 159). This is a concept belonging to the affine 
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geometry. But in this geometry no relation exists be-
tween the magnitudes of non-collinear vectors. The 
euclidean metric group, however, makes it possible to 
establish such a relation. We need only specify that 
any two unit vectors OA and O'A' shall be congruent. 
In other words, given a unit vector OA and the circle 
with O as center and OA as radius, any other unit vector 
must be equal to a vector OP where P is on this circle. 
Since P ' , where OP'=—OP, is also on this circle 
(p. 168), this gives two choices for the unit vector of 
any system of collinear vectors, each of two possible 
unit vectors being the negative of the other. It is 
possible therefore to compare only the absolute values 
of the magnitudes of noncollinear vectors; there is no 
way of distinguishing their algebraic signs. This ab-
solute value we call distance. It may be defined as fol-
lows: Let OA be an arbitrary pair of distinct points 
which is to be called the unit of distance. The distance 
from any point P to any point Q is then the number 
corresponding to that point D of the line OA such that 
PQ is congruent to OD, and such that in the scale de-
termined on OA by 0 = 0, A =1, and P00=oo (where 
Px is the point at infinity on OA) the point D has a posi-
tive coordinate. The distance from P to Q may be de-
noted by Dist(P<2). 

I t follows at once that Dist(PQ) is uniquely de-
fined and positive when P^Q and is 0 when P = Q', 
moreover, Dist(PQ) =Dist(()P). Also, if A, B, C are 
any three points on a line so that B is between A and 
C, we have 

Dist(,4£)+DistCBC) = DistUC). 
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71. Length of arc of a circle. We may also indicate 
briefly how the length or the circumference of a circle 
or the length of any arc of circle is defined. Let P\, 
P2, P3, • • • , Pnhe n points in the order PXP2PZ • • Pn 

on a circle. If we place 

it may be proved that for a given circle the numbers p 
obtained for all possible choices of the points P i do not 
exceed a certain number. The number c which is the 
smallest number larger than all the numbers p is called 
the length or the circumference of the circle. I t is then 
possible to show that if c and c' are the lengths of two 
circles with centers O and 0' and with radii OP and 
O ' P ' respectively, we have 

If we choose O'P' as the unit of distance and denote 
Dist(OP) by r, we have 

where we have denoted the constant c by ZT. 
In a similar fashion we may define the length of arc 

of a circle, where by the arc PQ we mean one of the two 
parts of the circle into which it is divided by the two dis-
tinct points P and Q. To this end we confine the points 
P i to be points of the arc in question, and proceed as 
before. It may then be shown that if B is any point 
of the arc AC and if by arc AB and arc BC we mean the 
arcs contained in arc AC, then 

length of arc AB-\-length of arc BC = length of arc AC. 
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72. Angle. Any point 0 of an ordinary line in a 
euclidean plane divides the line into two parts each of 
which is called a ray (or half-line) issuing from O. The 
two rays issuing from a point O on the same line 
are said to be opposite. The figure formed by two rays 
issuing from a point O is called an angle; the point O is 
called the vertex and the rays are called the sides of the 
angle. 

We are now in a position to introduce the measure of 
an angle. Let a given angle have the vertex O and 
sides OA and OM and let A' be any other point on the 
ray OA. Let the circles with center at 0 and radii OA 
and OA' meet the other side of the angle in the points 
B and B', and let arc AB be one of the arcs into which 
A, B divide the first circle. If P is any point of this 
arc the ray OP will meet the second circle in a point P'. 
Let the arc A'B' be the one containing P'. We may 
then prove that if s, s' are the lengths of the arcs AB 
and A'B' as above defined and r, r' are the distances 
OA and OA' respectively, we have s'/r'=s/r. This 
ratio may then be taken as the measure of the angle. 
The procedure is familiar and we need give no further 
details. 

I t is now possible to define the trigonometric func-
tions in the usual way as the ratios of certain distances 
with the usual conventions as to signs. We assume in 
the future that this can be done. 

I t would have been possible to approach the measure 
of an angle from a different point of view. Suppose 
the sides of an angle whose vertex is 0 meet the line at 
infinity in the two points P, Q; and let the sides of 
another angle with vertex 0' meet the line at infinity 
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in the points P', Q'. The ordered pair of lines OP, OQ 
will be congruent to the ordered pair O'P', O'Q', if and 
only if 

where Ji, /2 are the two circular points. This suggests 
that %J(lih, ixii) =CRSPQ, I\I2), where h,h, ii, h denote 
the lines OP, OQ, OIh 0 / 2 respectively, could be used 
as a measure of the angle whose sides are on h, /2; 
more precisely, that it could be used as a measure for 
the ordered line pair hl2. I t is a number which is 
uniquely defined by any ordered line pair and which re-
mains unchanged if the pair is replaced by any congru-
ent pair. We should, however, wish to have our meas-
ure m satisfy the relation 

if h, l3 are concurrent lines, and this relation is not 
satisfied by the corresponding cross ratios. In fact we 
have 

as is easily verified. This shows that if we place 

where c is an arbitrary constant, the desired relation 
will hold. That this measure is indeed equivalent to 
the measure for angles already introduced may be 
easily seen if we assume Euler's relation 

If as before h, /2 meet the line at infinity in P, Q and 
if, with respect to a rectangular system of coordinates 
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the coordinates of P, Q, 1i, /2 are taken as (/>, 1 ,0 ) , 
{q, 1, 0), (i, 1, 0), ( - i , 1, 0), we have 

If the polar form of the complex number p-\-i is 
fi(cos di+i sin di) and of q-\-i is r2(cos d2-\-i sin 02), this 
cross ratio becomes e2l{e2~6l). If now we place 02 —0i = 0, 
we have 

If then we choose the constant c in (1) to be — i/2 we 
have finally 

This formula, which defines the measure of an angle in 
terms of imaginary lines will be found of interest be-
cause of its analogy with similar formulas in the so-
called non-euclidean geometries, to which we now turn 
our attention. 

73. The non-euclidean geometries. A real conic di-
vides the real points of a projective plane into three 
classes, the interior points, the exterior points, and the 
points on the conic. The interior points are characterized 
by the fact that any real line through an interior point 
meets the conic in two real distinct points, while 
through an exterior point there exist real lines which 
do not meet the conic in real points. Through any 
exterior point two real distinct tangents to the conic 
may be drawn, while through an interior point no real 
tangents to the conic exist. Evidently, any real col-
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lineation which leaves a conic invariant will transform 
interior points into interior points. 

Let there be given a real conic in the projective plane. 
This conic we call the absolute conic or simply the ab-
solute. The group of all collineations in the plane leaving 
this conic invariant we call the hyperbolic metric group 
and the corresponding geometry we call the hyperbolic 
metric geometry in the plane. The interior points of the 
conic are called ordinary points and the points on the 
absolute or exterior to it are called ideal points. A line 
containing only ideal points is an ideal line; if a line con-
tains more than one ordinary point, all the ordinary 
points of the line constitute an ordinary line. The or-
dinary points and ordinary lines constitute the so-called 
hyperbolic plane. Two lines containing ordinary points 
are said to be parallel if they have a point of the ab-
solute in common; perpendicular if they are conjugate 
with respect to the absolute. Two figures of the hyper-
bolic plane are said to be congruent, if they are homol-
ogous under a transformation of the hyperbolic metric 
group. 

The geometry corresponding to this group and the 
above definitions has many propositions in common 
with the euclidean metric geometry. For example, two 
distinct ordinary points are on one and only one ordi-
nary line; two distinct ordinary lines cannot meet in 
more than one ordinary point; through a given ordinary 
point there is one and only one ordinary line perpen-
dicular to a given ordinary line. The fundamental 
properties of congruence, of order, and of continuity 
are the same in the hyperbolic as in the euclidean 
geometry. But the propositions regarding parallels 
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are radically different in the two geometries. In fact it 
is evident from the above definitions that through an 
ordinary point not on a given ordinary line there are two 
parallels to the given line and an infinite number of ordi-
nary lines not meeting the given line. 

The so-called parallel pos-tulate of Euclid has been 
the occasion of much study and speculation from the 
time of Euclid onward. This postulate is equivalent to 
the proposition of euclidean geometry that through a 
given point not on a given line there is one and only 
one parallel to the given line. Euclid himself does not 
seem to have been altogether satisfied with it. He 
avoids using it as long as possible in his Elements. His 
immediate successors attacked the problem of proving 
the parallel postulate on the basis of his other postu-
lates, and through all the centuries that followed, in 
which any geometric activity was noticeable, we find 
this problem engaging the attention of geometers. It 
came to be suspected that the solution of the problem 
was impossible. Finally, J O H A N N BOLYAI ( 1 8 3 2 ) and 
N. I. LOBATCHEVSKI ( 1 8 2 9 ) , independently of each 
other, published a self-consistent body of geometric 
theorems based on a postulate which implied that more 
than one parallel could be drawn through a given point 
to a given line. This constituted the first of the so-called 
non-euclidean geometries. Some years later ( 1 8 5 1 ) 

B E R N H A R D R I E M A N N showed the possibility of a second 
type of non-euclidean geometry—the so-called elliptic 
geometry—in which through a given point there exists 
no line parallel to a given line. That both the hyper-
bolic geometry of Bolyai-Lobatchevski and the elliptic 
geometry of Riemann may be defined as geometries 
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associated with subgroups of the projective group was 
first shown by A R T H U R CAYLEY ( 1 8 5 9 ) , although he 
did not formulate his ideas on the basis of group-
theoretic considerations. I t may be recalled that it was 
Cayley who exclaimed: "Projective geometry is all 
geometry." 

A formula for the distance between two points of the 
hyperbolic plane and one for the angle between two 
lines of this plane may readily be derived. The analogy 
with a previous formula (p. 175) is at once apparent and 
reflects the analogy between the euclidean and the 
hyperbolic geometries. Let A and B be two ordinary 
points and let the line AB meet the absolute in the 
points A oo and Bx, the notation being so chosen that 
the points are in the order AXABBM. If A',B',AJ BJ 
are another set of points similarly determined, it is 
easily shown that the ordered point pair AB will be con-
gruent to the ordered pair A'B' if and only if we have 

We accordingly define the distance between A and B 
by means of the equation 

The cross ratio involved in this definition has, with 
the notation assigned, a positive value and hence its 
logarithm has a real value. This real value of the 
logarithm is defined as the distance in question. I t fol-
lows readily that we have 

and that if A, B, C are collinear ordinary points in the 
order A, B, C we have 
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The constant k may be determined by choosing a fixed 
point pair OP as the unit of distance. I t may be noted 
that under this definition of distance the ordinary line 
is of infinite length. 

By analogy (and also by duality, since the absolute 
conic is a self-dual figure) we define the measure of an 
angle. Let a, b be any two ordinary lines intersecting 
in an ordinary point 0 and let i\, i2 be the two (imagi-
nary) tangents to the absolute through O. We then 
define the measure of the ordered line pair ab to be 

The so-called elliptic metric geometry is the geometry 
associated with the group of real collineations which 
leaves an imaginary conic invariant. That such a 
group, the elliptic metric group, exists we will take for 
granted, although there is little difficulty in establishing 
its existence (analytically, for example). All the real 
points of the projective plane are ordinary points. 
Every two ordinary lines intersect in an ordinary point, 
i.e., there are no ordinary parallel lines. Two lines are 
perpendicular if they are conjugate with respect to the 
absolute conic, etc. The formulas for distance and 
angle are entirely analogous to those just developed for 
the hyperbolic geometry, though certain modifications 
are necessary because the absolute conic is now 
imaginary. 

Enough has been said, it is hoped, to give the reader 
some idea of how these non-euclidean geometries arise 
and their relation to the ordinary euclidean geometry. 
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The terms hyperbolic and elliptic applied to these 
noneuclidean geometries arise (by analogy with the 
classification of projectivities on a line) because a line 
containing ordinary points meets the absolute in two 
distinct real points in case of the hyperbolic geometry, 
while in the elliptic geometry such a line meets the 
absolute in a pair of conjugate imaginary points. The 
euclidean geometry is often called the parabolic metric 
geometry, by analogy with the preceding terminology, 
a real line meeting the line at infinity (the absolute for 
this case) in a single (real) point. In fact it can be 
shown that the euclidean geometry may be considered 
as a limiting case both of the hyperbolic and the elliptic 
geometries. 

The reader interested in a further study of non-
euclidean geometry may be referred to the following: 
For further details of the projective treatment here 
only sketched he may consult, V E B L E N and Y O U N G , 

Projective Geometry, vol. I I , Chapter V I I I ; for an 
elementary historical sketch and a concrete representa-
tion of the hyperbolic geometry he may be referred to 
J . W . Y O U N G , Lectures on the Fundamental Concepts of 
Algebra and Geometry, New York, 1911, Lectures I I 
and I I I ; for a more detailed history and an exposition 
of some of the content, to R . BONOLA, Non-euclidean 
Geometry, English translation by Carslaw, Chicago, 
1 9 1 2 . Other texts in English are by J. L. C O O L I D G E , 

Oxford, 1 9 0 9 ; and H. P . M A N N I N G , Boston, 1 9 0 1 . 
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(Numbers refer to pages; f after a number means "and following".) 

Abscissa, 135 
Absolute, involution, 83, 90, 162; 

conic, 176; the—, 176 
Addition, of points, 121; associa-

tive and commutative laws for, 
122; of vectors, 159 

Affine group and affine geometry, 
118, 153f 

Algebra of points, 124f; of lines 
or planes, 131; of throws, 120 

Analytic expression, for projec-
tivity, 127f, 134, 141, 147; for 
collineations, 148f; for a trans-
lation, 157; for similarity 
transformations, 165; for a line 
reflexion, 166; for a displace-
ment, 166; for a rotation, 168 

Angle, 173; in hyperbolic geome-
try, 179 

Associative law, for transforma-
tions, 107; for addition and mul-
tiplication, 122, 123, 159 

Asymptotes, 87, 154 
Axial perspectivity, 29, 42 
Axis (es), of a perspectivity, 28, 42; 

of homology, 50, 116; of an ela-
tion, 116; of a conic, 91, 92; 
principal, of a conic, 96 

Base points (lines), 145 
Bisector, 90 
Bolyai, johann, 177 
Bonola, R„ 180 
Brianchon's Theorem, 68, 74; 

point, 69 
Bundle of lines, 40 

Cayley, Arthur, 7, 82, 178 
Center, of perspectivity, 12, 28, 42; 

of homology, 51, 116; of a conic, 
87, 154; of an involution, 98, 
162; of an elation or homology, 
116; of a circle, 170 

Central, perspectivity, 29, 42; 
conic, 87, 154 

Chasles, Michel, 9 
Circle, 91, 170; length of arc of, 172 

Circular, involution, 90; points at 
infinity, 162, 170 

Circumscribed about a conic, 74 
Classification, of projectivities, 52; 

of conics, 87 
Closed (projective line), 14f 
Collinear, points, 27; vectors, 158 
Collineation(s), 113; fundamental 

theorem on, 114; general group 
of, 114; theorems on, 114f; 
perspective, 116; leaving a conic 
invariant, 119; analytic repre-
sentation of, 148f 

C o m m u t a t i v e , t r a n s f o r m a -
tions 106; group, 108;lawforaddi-
tion, 122; for multiplication, 123 

Concurrent lines, 27 
Configuration, 32f; symbol for, 32; 

of Desargues, 3If 
Congruent, 166, 169; in hyperbolic 

geometry, 176; parallel-congru-
ent, 155 

Conic(s), point-, 62; line-, 63; de-
generate, 62; tangent to, 63; 
point of contact on, 64; the-
orems on, 65f; construction of, 
68; as a self-dual figure, 73; pole 
and polar with respect to, 76; 
metric properties of, 87f; cen-
tral, center and diameter of, 
classification of, 87, 154; metric 
definition of, lOlf; axes of, 91, 
92; foci of, 93f, 100; directrix 
and vertex of, 101; eccentricity 
of, 103; equation of, 147f; ex-
terior and interior points of, 175; 
absolute, 176 

Conic section, 7 
Conjugate, pair of harmonic set, 37, 

46; of an involution, 56; points 
or lines, with respect to a conic 
or polar system, 79; involution, 
79; normals, 92 

Construction, of conic, 68f; of an 
involution, 99f; of the foci of a 
conic, 100 

Contact, point of, 64, 69 

181 
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Continuous, motion on a projec-
tive line, 45; transformation, 46 

Coolidge, J. L., 180 
Coordinates, of a point on a line, 

127; of a point on a plane, 135; 
of a line on a plane, 136; simul-
taneous point and line , 138; 
homogeneous, 140f; non-homo-
geneous, 141; rectangular, 164 

Correlation, 113 
Correspondence, reciprocally one-

to-one, 2, 4, 14; perspective, 5, 
12, 14, 20, 40f; projective, 5, 42, 
is continuous, 46; symbolic re-
presentation of, 105f 

Correspond doubly, 54 
Cross ratio, 13If; definition of, 132 

Degenerate conic, 62 
Desargues, G., 9 
Desargues' theorem, 8, 34; special-

izations of, 17; configuration, 
31f 

Determinant, of a projectivity, 129 
Diagonal, points, 28; of a quad-

rangle not collinear, 36; line, 28; 
of a parallelogram, 85, 154 

Diameter of a conic, 87, 154 
Direct, projectivity, 59; similarity 

transformation, 163 
Direction, on a projective line, 16 
Directrix, of a conic, 101 
Displacement, 166 
Distance, 171; in hyperbolic geom-

etry, 178 
Distributive law, 124 
Division, 123 
Double point or line, 52, 130; 

imaginary, 131 
Doubly, two elements correspond 

~ 5 4 

Dual propositions, 19, 24 
Duality, principle of, 19, 24f; in a 

plane, 26, 80 

Eccentricity of a conic, 103 
Edge of a tetrahedron, 29 
Elation, definition, center and 

axis of, 116 
Element, double, 52 
Ellipse, 7, 87, 154 

Elliptic, projectivity, 52; involu-
tion, 57; geometry, 177, 179; 
metric group, 179 

Equation, of a line or point, 138; of 
a conic, 147f 

Euclid, 177 
Euclidean, plane, 153; metric 

group and geometry, 162f 
Euler, L., 174 
Exterior points of a conic, 175 

Face of a tetrahedron, 29 
Five-plane, complete, 30 
Five-point, complete, 29, 3If 
Focal radii of a conic, 103 
Foci of a conic, 93f; construction 

of, lOOf 
Forms, primitive, 40 
Frame of reference, 142 
Fundamental, theorem on quad-

rangular sets, 35; theorem of 
projective geometry on a line, 
47, 48, in a plane, 114; points of 
a scale, 127 

General projective group, on a line, 
108; of collineations, 114 

Geometry, projective, character-
ization of, 5f; defined by a group, 
151; affine, 153f; euclidean met-
ric, 162f; hyperbolic, 176; ellip-
tic, 177, 179; parabolic, 180 

Gergonne, J. D., 25 
Group, of transformations, 107; 

geometry defined by, 151; gen-
eral projective, on a line, 108; 
commutative, 108; general, of 
collineations, 114; afifine, 118, 
153f; of displacements, 151; of 
translations, 154; of similarity 
transformations, 163 

Half-line, 173 
Harmonic set, 36f; of points, 36; 

of lines, 38; theorems on, 37f, 
45, 54; separation of pairs of, 46; 
conjugate, 37f, as mid-point, 82; 
cross ratio, 133; homology, 117 

Harmonically related, 46 
Hexagon, simple plane, 65; ver-

tices and sides, opposite vertices 
and sides, 65 
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Hexagrammum mysticum, 67 
Homogeneous coordinates, 140f 
Homology, axis of, for a projec-

tivity, 50; center of, 51, 116; 
for a perspective collineation, 
116; collineation, 116; harmonic, 
117 

Hyperbola, 7, 87, 154 
Hyperbolic, projectivity, 52; in-

volution, 57; metric group or 
geometry, 176; plane, 176 

Ideal, elements, l l f ; in hyperbolic 
geometry, 176; points, 12f, 153; 
plane, 21 

Identical transformation, 107 
Identity, 107 
Imaginary elements, 131 
Improper, points, lines and plane, 

83, 153 
Incidence, of points and lines, 6; 

of planes, 2If 
Indirect, projectivity, 59; simi-

larity transformation, 163 
Infinity, point at, 12, 83, 153; line 

at, 13, 83, 153; properties of 
symbol for, 128f 

Inscribed, in a conic, 74 
Interior points of a conic, 175 
Invariant, under a transformation, 

108; group,112 
Inverse, of a transformation, 106 
Involution(s), def., 55; theorems 

on, 55f, 90; double points of, 56, 
57; and complete quadrangle, 
57; three pairs in, 56; common 
pairs, in two, 58, 61; of conju-
gate points on a line, 79; ab-
solute or orthogonal, 83, 90, 162; 
circular, 90; center of, 98; met-
ric property of, 97; construction 
of, 99f; ref. to, 107 

Involutoric transformation, 107 

Klein, Felix, 151 

Length of arc of a circle, 172 
Leonardo da Vinci, 1, 2 
Line(s), projective, 13; segments 

of, 15, 16; ideal, 13; at infinity, 
improper, 13, 83, 153; diagonal, 

28; pencil of, bundle of, 40; 
double, 52; conjugate, 79; co-
ordinates of, 136; point equation 
of, 138; parallel, 4, 6, 12, 13, 17, 
82f, 154; perpendicular, 83, 90; 
in hyperbolic geometry, 176; re-
flexion, 163, 166 

Line conic, 63 ; point of contact on, 
64, 69 

Lobatchevski, N. I., 177 
Magnitude of a vector, 159 
Manning, H. P., 180 
Median of a triangle, 87 
Metric, properties, 6, 7, 8If, of 

conics, 87f, of an involution, 97; 
space, 8; definition of a conic, 
lOlf 

Mid-point, 82, 83, 84, 156 
Motion, 166 
Multiplication, 122; associative 

and commutative, 123 

Negative, of a vector, 158 
Non-euclidean geometries, I75f 
Non-homogeneous coordinates 141 
Normals, conjugate, 92 
N-point, complete, 30 
Net of rationality, 46 
Null vector, 158 

"On" language, 19, 23f 
One-dimensional primitive forms, 

40 
One-to-one correspondence, 2, 4, 

14 
Opposite, vertices and sides, 28, of 

simple hexagon, 65; rays, 173; 
projectivity, 59 

Order of a transformation, 107; 
finite, 107 

Ordinary points and lines, 12, 153; 
in hyperbolic geometry, 176 

Ordinate, 136 
Orthogonal, involution, 83, 90, 

162; line reflexion, 163, 166 

Parabola, 7, 87, 154; axis of, 92; 
focus of, 96 

Parabolic, projectivity, 52, the-
orem on, 54; metric geometry, 
180 
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Parallel lines, 4, 6, 12, 13, 17, 82, 
83, 84, 154; in hyperbolic geom-
etry, 176 

Parallel-congruent, 155 
Parallelogram, 85, 154 
Parametric representation, 144 
Pascal, Blaise, 9, 67; his theorem, 

65, 67; special cases of, 70f; line, 
67 

Pencil of points, lines, planes, 40, 
144f 

Pentagon, simple, 70 
Period of a transformation, 107 
Periodic transformation, 107 
Perpendicular lines, 82, 83, 90, 

163; in hyperbolic geometry, 
176; in elliptic geometry, 179 

Perspective, drawing, 1, 3; trans-
formation, 5, 11, 12, 20, 28, 44; 
triangles, 8, 34; figures, 28; pen-
cils, 40, 41; collineation, 116 

Perspectivity, center of, 12, 28, 42; 
axis of, 28, 42; axial or central, 
29, 42; symbol for, 41 

Planar field, 112 
Plane(s), projective, 14; ideal, 21; 

improper, 83; pencil of, 40; eu-
clidean, 153 

Point(s), ideal, at infinity, im-
proper, 12f,83,153; diagonal, 28; 
pencil of, 40; double, 52. 130; of 
contact, 64, 69; conjugate, 79; 
addition of, 121; multiplication 
of, 122; fundamental, of a scale, 
127; coordinate(s) of, on a line, 
127, on a plane, 135; line equa-
tion of, 138; ordinary, 12, 153; 
vanishing, 161; circular, 162, 
170; exterior, interior, 175 

Point conic, 62; tangent to, 63, 69; 
construction of, 68f 

Polar, of a point with respect to a 
conic, 76; theorems on 76f; sys-
tem, 77f 

Pole, of a line, with respect to a 
conic, 76 

Poncelet, J. V., 9, 25 
Power of a projectivity, 161 
Primitive forms, 40 
Principal axis, 96 
Principle of duality, 19; in space, 

24f; in a plane, 26, 80 
Product of two transformations, 

106 
Projection, and section, 2; of a 

figure from a point, 2, 12 
Projective, transformation, 5, 42, 

is continuous, 46, two-dimen-
sional, 112; geometry, charac-
terization of, 5f, "is all geom-
etry," 7, fundamental theorem 
of, 47, 48; properties, 6, and 
metric, 81f; space, 8, 9, 19f; line, 
13, 14, segments of, 15, 16; 
plane, 14; general—group on a 
line, 108; collination, 113 

Projectivity(ies), 40, as a sequence 
of perspectivities, 42; symbol for, 
43; theorems on, 44f, llOf, 128f; 
fundamental theorem on, 44, 

. 47, 48; with self-corresponding 
element, 48; AA'BB' fiA'AB'B, 
55; classification of, 52; direct 
and opposite, 59; analytic ex-
pression for, 127f, 134, 141, 147; 
power of, 161 

Quadrangle, complete, 28; simple, 
30 

Quadrangular set, 36; fundamen-
tal theorem on, 35 

Quadrilateral, 6, 7; complete, 28 

Radius, 170 
Range, 40 
Ratio of vectors, 159 
Rationality, net of, 46 
Ray, 173 
Real space, 113 
Reciprocally one-to-one correspond-

ence, 2, 4, 14, 20 
Rectangular coordinates, 164 
Reference, frame of, 142 
Reflexion, orthogonal line, 163 
Resultant of two transformations, 

106 
Riemann, Bernhard, 177 
Rotation, 168 

Scale, 127 
Section, and projection, 2; by a 

plane, 2 
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Segments of a projective line, 15, 
16 

Separation, of pairs of points, 45; 
of harmonic pairs, 46 

Side(s), of a triangle, 27; of a com-
plete quadrangle or quadri-
lateral, 28; opposite, 28; of a 
simple hexagon, 65; opposite, 
65; of an angle, 173 

Similar figures, 163 
Similarity transformations, 163 
Simple, quadrangle, 30, 71; penta-

gon, 70; hexagon, 65 
Simply transitive, 109 
Smith, D. E., 10 
Space, projective, 8, 19f 
Staudt, Ch. von, 120 
Subgroup, 108 
Subtraction, 122 
Sum of vectors, 158 
Symmetric, 169 
Symmetry, 18, 168 

Tangent(s), to a point conic,63,69; 
form a conic line, 73 

Tetrahedron, 29 
Throws, algebra of, 120 
Transform of a transformation, 

111 
Transformation, perspective, 5, 

14, 40; projective, 5, 42; trans-
form of, 111; between two-

dimensional (three-dimensional) 
forms, 112; group of, 107; 
similarity, 163; symbolic repre-
sentation of, 105f 

Transitive, simply, 109 
Translation, 155; group of 154f; 

parallel to a line, 155; analytic 
representation of, 157 

Triangle(s), 6, 7; perspective, 8, 
34; definition of, 27 

Unit, vector, 159, 171; distance, 
171 

• 
Vanishing points, 161 
Veblen, Oswald, 25, 67, 152, 180 
Vector(s), 158; null, 158; sum of, 

158; ratio of, 159; magnitude of, 
159; unit, 159, 171 

Vertex (vertices), of a triangle, 27; 
of a complete quadrangle or 
quadrilateral, 28; opposite, 28; 
of a tetrahedron, 29; of a simple 
hexagon, 65, opposite, 65; of a 
conic, 101; of an angle, 173 

X-axis, 135 
X-coordinate, 135 

Y-axis, 135 
Y-coordinate, 136 
Young, J. W., 25, 67, 152, 180 

P R I N T E D 
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