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414.

ON POLYZOMAL CURVES, OTHERWISE THE CURVES
50 W T

[From the Tramsactions of the Royal Society of Edinburgh, vol. XXv. (1868),
pp- 1—110. Read 16th December 1867.]

Ir U, V, &c., are rational and integral functions (*Jz, y, 2), all of the same
degree 7, in regard to the coordinates (z, ¥, 2), then YU+ VV +&c. is a polyzome,
and the curve YU 4NV +&c.=0 a polyzomal curve. Each of the curves ¥U =0,
NV =0, &c. (or say the curves U=0, V=0, &c.) is, on account of its relation of
circumscription to the curve VU 4+~ V4 &c. =0, considered as a girdle thereto (¢(bua),
and we have thence the term “zome” and the derived expressions “polyzome,”
“zomal,” &c. If the number of the zomes ¥U, ¥V, &c. be =», then we have a
v-zome, and corresponding thereto a w»-zomal curve; the curves U=0, V=0, &c., are
the zomal curves or zomals thereof. 'The cases »=1, v=2, are not, for their own
sake, worthy of consideration; it is in general assumed that v is=3 at least. It is
sometimes convenient to write the general equation in the form ~IU + &c.=0, where I,
&c. are constants. The Memoir contains researches in regard to the general v-zomal
curve ; the branches thereof, the order of the curve, its singularities, class, &c.; also
in regard to the v-zomal curve VI(® + L®) + &c. = 0, where the zomal curves @ + Ld =0,
all pass through the points of intersection of the same two curves @ =0, ®=0 of
the orders r and r—s respectively; included herein we have the theory of the
depression of order as arising from the ideal factor or factors of a branch or branches.
A general theorem is given of “the decomposition of a tetrazomal curve,” viz. if the
equation of the curve be NIU + NmV + N W + Vﬁ':o; then if U, V, W, T are in
involution, that is, connected by an identical equation aU+bV +cW+d7T=0, and if

: 8
l, m, n, p, satisfy the condition ;+%‘+§+fi—’=o, the tetrazomal curve breaks up into
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two trizomal curves, each expressible by means of any three of the four functions
U, V, W, T; for example, in the form VIU+Vm'V+~pT=0. If in this theorem,

we take p=0, then the original curve is the trizomal ViU + VmV +VaW =0, T is

any function =—%(aU +bV +cW), where, considering I/, m, n as given, a, b, ¢ are

quantities subject only to the condition £+%+§=0, and we have the theorem of

“the variable zomal of a trizomal curve,” viz. the equation of the trizomal
VIT +VmV +VnW =0, may be expressed by means of any two of the three functions
U V, W, and of a function 7 determined as above, for example in the form
NUTU +Vm'V+Vi'T=0; whence also it may be expressed in terms of three new
functions 7, determined as above. This theorem, which occupies a prominent position
in the whole theory, was suggested to me by Mr Casey’s theorem, presently referred
to, for the construction of a bicircular quartic as the envelope of a variable circle.

In the v-zomal curve VI (® + L®)+ &e.=0, if ®=0 be a conic, ®=0 a line,
the zomals © + L® =0, &ec. are conics passing through the same two points ® =0,
® =0, and there is no real loss of generality in taking these to be the circular points
at infinity—that is, in taking the conics to be circles. Doing this, and using a special
notation A°=0 for the equation of a circle having its centre at a given point A4,
and similarly A=0 for the equation of an evanescent circle, or say of the point 4,
we have the p-zomal curve VI°+ &c.=0, and the more special form Wi+ &ec.=0.
As regards the last-mentioned curve, VI3 + &c. =0, the point 4 to which the equation
A=0 belongs, is a focus of the curve, viz. in the case »=3, it is an ordinary focus,
and in the case »>3, it is a special kind of focus, which, if the term were required,
might be called a foco-focus; the Memoir contains an explanation of the general
theory of the foci of plane curves. For v=3, the equation Vi +Vm®B +Vn€ =0 is
really equivalent to the apparently more general form B +Vm®B® + Vn@€° =0. In fact,
this last is in general a bicircular quartic, and, in regard to it, the before-mentioned
theorem of the variable zomal becomes Mr Casey’s theorem, that “the bicircular quartic
(and, as a particular case thereof, the circular cubic) is the envelope of a variable
circle having its centre on a given conic and cutting at right angles a given
circle.” This theorem is a sufficient basis for the complete theory of the trizomal
curve VI +VmB° +Vn€®>=0; and it is thereby very easily seen that the curve
VIO + Vm®B° +VnB° =0 can be represented by an equation VI +Vm'B + V'€ =0.
But for »>38 this is not so, and the curve VI + &c.=0 is only a particular form of
the curve VIU°+ &c.=0; and the discussion of this general form is scarcely more
difficult than that of the special form VI + &c. = 0, included therein. The investi-
gations in relation to the theory of foci, and in particular to that of the foci of the
circular cubic and bicircular quartic, precede in the Memoir the theories of the trizomal
curve VI° +Vm®B° +Vn6° =0, and the tetrazomal curve VI° +Vm®B° +Vn€ +VpD° =0,
to which the concluding portions relate. I have accordingly divided the Memoir into
four parts, viz. these are—Part I, On Polyzomal Curves in general; Part IL, Subsidiary
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472 ON POLYZOMAL CURVES. (414

Investigations; Part IIL, On the Theory of Foci; and Part IV., On the Trizomal and
Tetrazomal Curves where the zomals are circles. There is, however, some necessary
intermixture of the theories treated of, and the arrangement will appear more in
detail from the headings of the several articles. The paragraphs are numbered con-
tinuously through the Memoir. There are four . Annexes, relating to questions which it
seemed to me more convenient to treat of thus separately.

It is right that I should explain the very great extent to which, in the com-
position of the present Memoir, I am indebted to Mr Casey’s researches. His Paper
“On the Equations and Properties (1) of the System of Circles touching three circles
in a plane; (2) of the System of Spheres touching four spheres in space; (3) of the
System of Circles touching three circles on a sphere; (4) on the System of Conics
inscribed in a conic and touching three inscribed conics in a plane,” was read to the
Royal Irish Academy, April 9, 1866, and is published in their “Proceedings.” The
fundamental theorem for the equation of the pairs of circles touching three given
circles was, previous to the publication of the paper, mentioned to me by Dr Salmon,
and I communicated it to Professor Cremona, suggesting to him the problem solved
in his letter of March 3, 1866, as mentioned in my paper, “Investigations in connexion
with Casey’s Equation,” Quarterly Math. Jouwrn. vol. viIL. 1867, pp. 334—341, [395], and
as also appears, Annex No. IV of the present Memoir.

In connexion with this theorem, I communicated to Mr Casey, in March or
April 1867, the theorem No. 164 of the present Memoir, that for any three given
circles, centres 4, B, C, the equation BOVU°+ CAVB° + ABNVGE° =0 (where BC, (4,
AB, denote the mutual distances of the points 4, B, C) belongs to a Cartesian.
Mr Casey, in a letter to me dated 30th April, 1867, informed me of his own mode
of viewing the question as follows:—“The general equation of the second order
(@, b, ¢, f, 9, kQa, B, 4)*=0, where a, B, « are circles, is a bicircular quartic. If we
take the equation (a, b, ¢, f; g, hYN, p, v)’=0 in tangential coordinates (that is, when
A, u, v are perpendiculars let fall from the centres of a, B, v on any line), it denotes
a conic; denoting this conic by F, and the circle which cuts a, B, v orthogonally by
J, I proved that, if a variable circle moves with its centre on F, and if it cuts J
orthogonally, its envelope will be the bicircular quartic whose equation is that written
down above;” and among other consequences, he mentions that the foci of F are the
double foci of the quartic, and the points in which J cuts F single foci of the quartic,
and also the theorem which I had sent him as to the Cartesian, and he refers to
his Memoir on Bicircular Quartics as then nearly finished. An Abstract of the
Memoir as read before the Royal Irish Academy, 10th February, 1867, and published
in their Proceedings, pp. 44, 45, contains the theorems mentioned in the letter of
30th April, and some other theorems. It is not necessary that I should particularly
explain in what manner the present Memoir has been, in the course of writing i,
added to or altered in consequence of the information which I have thus had of
Mr Casey’s researches; it is enough to say that I have freely availed myself of such
information, and that there is no question as to Mr Casey’s priority in anything which
there may be in common in his memoir on Bicircular Quartics and in the present
Memoir.
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PaRT I. (Nos. 1 to 55).—ON PorvzoMAL CURVES IN GENERAL.

Article Nos. 1 to 4. Definition and Preliminary Remarks.

1. As already mentioned, U, V, &c. denote rational and integral functions (x{a, v, z),
all of the same degree » in the coordinates (2, y, z), and the equation

VU +VV + &c.=0

then belongs to a polyzomal curve, viz, if the number of the zomes VU, ¥V, &ec. is
=y, then we have a v-zomal curve. The radicals, or any of them, may contain rational
factors, or be of the form PVQ; but in speaking of the curve as a v-zomal, it is
assumed that any two terms, such as PV@+ P'VQ, involving the same radical V@,
are united into a single term, so that the number of distinct radicals is always =w;
in particular (r being even), it is assumed that there is only one rational term P.
But the ordinary case, and that which is almost exclusively attended to, is that in
which the radicals ¥ U, V'V, &c. are’distinct irreducible radicals without rational factors.

2. The curves U=V =0, &c. are said to be the zomal curves, or simply the
zomals of the polyzomal curve ¥ U+~ V + &ec.=0; more strictly, the term zomal would
be applied to the functions U, V, &c. It is to be noticed, that although the form
NU+VV +&ec.=0 is equally general with the form ViU +VmV 4 &c. =0 (in fact, in
the former case, the functions U, V, &c. are considered as implicitly containing the
constant factors /, m, &c., which are expressed in the latter case), yet it is frequently
convenient to express these factors, and thus write the equation in the form VIU + VmV + &e.
For instance, in speaking of any given curves U=0, V' =0, &c., we are apt, disregarding
the constant factors which they may involve, to consider U, V, &c. as given functions;
but in this case the general equation of the polyzomal with the zomals U=0, V=0,

&e., is of course ViU +VmV + &ec.=0.

3. Anticipating in regard to the cases v=1, v=2, the remark which will be
presently made in regard to the v-zomal, that ¥ U 4~V + &c.=0 is the curve represented
by the rationalised form of this equation, the monozomal curve ¥U=0 is merely the
curve U=0, viz, this is any curve whatever U=0 of the order r; and similarly, the
bizomal curve YU +~¥V =0 is merely the curve U— V=0, viz. this is any curve
whatever Q =0, of the order »; the zomal curves U=0, V=0, taken separately, are
not curves standing in any special relation to the curve in question =0, but U=0
may be any curve whatever of the order r, and then V=0 is a curve of the same
order r, in involution with the two curves Q=0, U=0; we may, in fact, write the
equation Q=0 under the bizomal form VU +~¥Q + U=0. In the case r even, we
may, however, notice the bizomal curve P+~ U =0 (P a rational function of the degree
4r); the rational equation is here Q=U—P* =0, that is U=Q+ P viz, P is any
curve whatever of the order 3r, and U=0 is a curve of the order », touching the
given curve Q=0 at each of its §* intersections with the curve P =0. I further
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474 ON POLYZOMAL CURVES. [414

remark that the order of the v-zomal curve ¥V +&c. =0 is =2*#; this is right in
the case of the bizomal curve ¥ U+~ V=0, the order being =7, but it fails for the

monozomal curve ¥ U=0, the order being in this case r, instead of §r, as given by
the formula. The two unimportant and somewhat exceptional cases v=1, v=2, are
thus disposed of, and in all that follows (except in so far as this is in fact applicable
to the cases just referred to), » may be taken to be =3 at least.

4, Tt is to be throughout understood that by the curve YU+~ V+&c.=0 is
meant the curve represented by the rationalised equation

Norm (VU + VTV + &ec.) =0,

viz. the Norm is obtained by attributing to all but one of the zomes ¥U, V7V, &c.,
each of the two signs +, —, and multiplying together the several resulting values of
the polyzome; in the case of a »-zomal curve, the number of factors is thus =277
(whence, as each factor is of the degree 4r, the order of the curve is 2v7'-4r,
=2"?r, as mentioned above). I expressly mention that, as regards the polyzomal curve,
we are not in any wise concerned with the signs of the radicals, which signs are and

remain essentially indeterminate; the equation ¥U + ¥V + &c.=0, is a mere symbol for
the rationalised equation, Norm ( NT+NTV + &e)=0.

Article Nos. 5 to 12. The Branches of a Polyzomal Curve.

5. But we may in a different point of view attend to the signs of the radicals;
if for all values of the coordinates we take the symbol J,z,, and consider ,\/—ﬁ, J i":-,
&c. as signifying determinately, say the positive values of ¥'U, V'V, &e.; then each of
the several equations + ﬁ +J I:7+&c.=0, or, fixing at pleasure one of the signs,

suppose that prefixed to Jﬁ, then each of the several equations JT—fi i ?i &e. =0,
will belong to a branch of the polyzomal curve: a p-zomal curve has thus 21
branches corresponding to the 2*—' values respectively of the polyzome. The separation

of the branches depends on the precise fixation of the significations of JT/’, lef, &e.,
and in regard hereto some further explanation is necessary.

6. When U is real and positive, v/ 74 may be taken to be, in the ordinary sense,
the positive value of YU, and so when U is real and negative, /U may be taken

to be =i into the positive value of ¥ —U; and the like as regards JV, &e. The
functions U, V, &ec. are assumed to be real functions of the coordinates; hence, for
any real values of the coordinates, U, V, &c. are real positive or negative quantities,

and the significations of ./ T, JV, &e. are completely determined.

7. But the coordinates may be imaginary. In this case the functions U, V, &c.
will for any given values of the coordinates acquire each of them a determinate, in
general imaginary, value. If for all real values whatever of a, B, we select once for
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all one of the two opposite values of Va4 B, calling it the positive value, and

representing it by Ja + B¢, then, for any particular values of the coordinates, U being
=a+ B, the value of Jﬁ may be taken to be —Ja+,81, and the like as regards
J V, &e. JTI, JV, &c. have thus each of them a determinate signification for any
values whatever, real or imaginary, of the coordinates. The coordinates of a given
point on the curve YU +VV + &c. =0, will in general satisfy only one of the equations
\/?fi- JV + &c.=0; that is, the point will belong to one (but in general only one) of
the 2! branches of the curve; the entire series of points the coordinates of which

satisfy any one of the 2" equations, will constitute the branch corresponding to that
equation.

8. The signification to be attached to the expression Wi a+ 3¢ should agree with
that previously attached to the like symbol in the case of a positive or negative
real quantity; and it should, as far as possible, be subject to the condition of

continuity, viz, as a+ i passes continuously to & + A%, so Ya+ B should pass con-

tinuously to Va'+ B7%; but (as is known) it is not possible to satisfy universally this
condition of continuity; viz.,, if for facility of explanation we consider (a, B) as the
coordinates of a point in a plane, and imagine this point to describe a closed curve

surrounding the origin or point (0, 0), then it is not possible so to define ¥ a+;8%
that this quantity, varying continuously as the point moves along the curve, shall,
when the point has made a complete circuit, resume its original value. The signi-

fication to be attached to ¥Ya + B¢ is thus in some measure arbitrary, and it would
appear that the division of the curve into branches is affected by a corresponding
arbitrariness, but this arbitrariness relates only to the imaginary branches of the curve:
the notion of a real branch is perfectly definite.

9. It would seem that a branch may be impossible for any series whatever of
points real or imaginary. Thus, in the bizomal curve YU +VV =0, the branch

VT+4V =0 is impossible. In fact, for any point whatever, real or imaginary, of the
curve, we have U=7V, and therefore ¥U =V ; the point thus belongs to the other
branch YU -~V =0, not to the branch ¥VT + vV =0; the only points belonging to
the last-mentioned branch are the isolated points for which simultaneously ‘w/ﬁ:O,

vV = 0; viz, the points of intersection of the two curves U=0, V'=0.

10. It is mot clear to me whether the case is the same in regard to the branch
NOU4+NV+VW=0 of a trizomal curve. In fact, for each point of the curve
VU 4NV 4+ VW =0 we have (U= V— W) =4V W, and therefore, U = V— W=+ 2VVVW;
there may very well be points for which the sign is +; that is, points for which

U=V+W+2VVW, and for these points we have + VU=VV +VW; for real values
of the coordinates the sign on the left hand must be + (for otherw1se the two sides
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would have opposite signs), but there is no apparent reason, or at least no obviously
apparent reason, why this should be so for imaginary values of the coordinates, and

if the sign be in fact —, then the point will belong to the branch VT+VT + VW =o0.

11. But the branch in question is clearly impossible for any series of real points;
so that, leaving it an open question whether the epithet “impossible” is to be under-
stood to mean impossible for any series of real points (that is, as a mere synonym of
imaginary), or whether it is to mean impossible for any series of points, real or
imaginary, whatever, I say that in a »-zomal curve some of the branches are or may
be impossible, and that there is at least one impossible branch, viz, the branch

NT+ VT + &e. =0.
12. For the purpose of referring to any branch of a polyzomal curve it will be

convenient to consider ¥U as signifying determinately + VU, or else —¥U; and the
like as regards ¥V, &c., but without any identity or relation between the signs pre-
fixed to the VU, ¥V, &e., respectively; the equation VU +#V + &c. =0, so understood,
will denote determinately some one (that is, any one at pleasure) of the equations
NU +VV + &c. =0, and it will thus be the equation of some one (that is, any one at
pleasure) of the branches of the polyzomal curve — all risk of ambiguity which might
otherwise exist will be removed if we speak either of the curve VT + VvV, &c.=0, or
else of the branch YU +VV +&c.=0. Observe that by the foregoing convention, when
only one branch is considered, we avoid the necessity of any employment of the sign +,
or of the sign —; but when two or more branches are considered in connection with
each other, it is necessary to employ the sign — with one or more of the radicals
VU, ¥V, &c.; thus in the trizomal curve ¥U +VV +~W =0, we may have to consider
the branches VU +VV +VW =0, NU+ NV -~¥W=0; viz, either of these equations
apart from the other denotes any one branch at pleasure of the curve, but when
the branch represented by the one equation is fixed, then the branch represented by
the other equation is also fixed.

Article Nos. 13 to 17. The Points common to Two Branches of a Polyzomal Curve.

13. I consider the points which are situate simultaneously on two branches of

the vp-zomal curve ¥ U+~ 7V +&c.=0. The equations of the two branches may be taken

to be '
VT + &e. + WW + &e.) =0,

VT + &c. — (VW + &c.) =0,

viz,, fixing the significations of VU, ¥V, ¥W, &c. in such wise that in the equation

of one branch these shall each of them have the sign +, we may take VU, &ec. to
be those radicals which, in the equation of the other branch, have the sign +, and
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VW, &ec. to be those radicals which have the sign —. The foregoing equations break
up into the more simple equations

NU+&c.=0, VW +&ec. =0,

which are the equations of certain branches of the curves ¥ U+ &c. =0, and ¥ W + &ec. =0,
respectively, and conversely each of the intersections of these two curves is a point

situate simultaneously on some two branches of the original »-zomal curve NU 4NV +&e.=0.
Hence, partitioning in any manner the »-zome NTU + NV + &c. into an a-zome, VT = &e.
and a B-zome VW + &ec. (a+ B =), and writing down the equations

NT+&e.=0, YW+ &e.=0

of an a-zomal curve and a B-zomal curve respectively, each of the intersections of
these two curves is a point situate simultaneously on two branches of the »-zomal
curve; and the points situate simultaneously on two branches of the v-zomal curve
are the points of intersection of the several pairs of an a-zomal curve and a B-zomal
curve, which can be formed by any bipartition of the v-zome.

14. There are two cases to be considered :—First, when the parts are 1, v—1 (v —11is > 1,
except in the case »=2, which may be excluded from consideration), or say when the
v-zome 1is partitioned into a zome and amtizome. Secondly, when the parts a, B, are
each >1 (this implies »=4 at least), or say when the »-zome is partitioned into a
pair of complementary parazomes.

15. To fix the ideas, take the tetrazomal curve YU + ¥V + VW +~¥T =0, and

consider first a point for which VU =0, VV +¥VW+~T=0. The Norm is the product
of (22=) 8 factors; selecting hereout the factors

NTU+NV +NW +VT,
NT NV -NW -~T,

=U-(WV+NW+NTy

let the product of these

be called F, and the product of the remaining six factors be called G; the rationalised
equation of the curve is therefore FG =0. The derived equation is GdF + FdG =0,
at the point in question VU=0, V4V W +VT=0; G and dG are each of them
finite (that is, they neither vanish nor become infinite), but we have

F=0, dF=dU -V +VWHNTY(@V <NV +dW =NW+dT+NT), =dU,

and the derived equation is thus GdU=0, or simply dU=0. It thus appears that
the point in question is an ordinary point on the tetrazomal curve; and, further, that
the tetrazomal curve is at this point touched by the zomal curve U=0. And similarly,
each of the points of intersection of the two curves NTU=0, NV+NW +NT = 0, is an
ordinary point on the tetrazomal curve; and the tetrazomal curve is at each of these
points touched by the zomal curve U =0.

Nww.rcin.org.pl



478 ON POLYZOMAL CURVES. [414

16. Consider, secondly, a point for which ¥T+VV =0, VW +VT=0; to form the
Norm, taking in this case the two factors

NT+ NV +NW + VT,

NU+NV —NW =NT,
let their product
=(WU+NVR—NVW +NTy

be called F, and the product of the remaining six factors be called @; the rationalised
equation is FG =0, and the derived equation is FdG + GdF =0. At the point in-
question G and dG are each of them finite (that is, they neither vanish nor become
infinite), but we have

F=0, dF=(NU+NTV)@U +NT+dV+NV)=NW +VT)(dW VW +dT +VT), =0,

that is, the derived equation becomes identically 0=0; the point in question is thus
a singular point, and it is easy to see that it is in fact a node, or ordinary double
point, on the tetrazomal curve. And similarly, each of the points of intersection of

the two curves VU+ ¥V =0, VW +4T =0 is a node on the tetrazomal curve.

17. The proofs in the foregoing two examples respectively are quite general, and
we may, in regard to a w-zomal curve, enunciate the results as follows, viz, in a
v-zomal curve, the points situate simultaneously on two branches are either the inter-
sections of a zomal curve and its antizomal curve, or else they are the intersections
of a pair of complementary parazomal curves. In the former case, the points in
question are ordinary points on the w»-zomal, but they are points of contact of the
v-zomal with the zomal; it may be added, that the intersections of the zomal and
antizomal, each reckoned twice, are all the intersections of the w»-zomal and zomal.
In the latter case, the points in question are nodes of the v-zomal; it may be added,
that the »-zomal has not, in general, any nodes other than the points which are thus
the intersections of a pair of complementary parazomals, and that it has not in general

any cusps.

Article Nos. 18 to 21. Singularities of a v-zomal Curve.

18. It has been already shown that the order of the w-zomal curve is =2"2r.
Considering the case where » is =3 at least, the curve, as we have just seen, has
contacts with each of the zomal curves, and it has also nodes. I proceed to determine
the number of these contacts and nodes respectively.

19. Consider first the zomal curve U=0, and its antizomal ¥V + VW + &c. =0,
these are curves of the orders » and 2"~°r respectively, and they intersect therefore
in 2v7%r® points. Hence the v-zomal touches the zomal in 2"*#* points, and reckoning
each of these twice, the number of intersections is =222 viz, these are all the
intersections of the w-zomal with the zomal U=0. The number of contacts of the
v-zomal with the several zomals U=0, V=0, &c., is of course =22 2.

www.rcin.org.pl



414] ON POLYZOMAL CURVES. 479

20. Considering next a pair of complementary parazomal curves, an a-zomal and
a (-zomal respectively (a4 B=v), these are of the orders 2*=2r and 2f—2r respectively,
and they intersect therefore in 2¢t—4y2?=2"-*y2 points, nodes of the wv-zomal. This
number is independent of the particular partition (a, B), and the w»-zomal has thus
this same number, 2"7*7% of nodes in respect of each pair of complementary parazomals ;
hence the total number of nodes is =27 into the number of pairs of complementary
parazomals. For the partition (a, B) the number of pairs is =[v]’+[a]* [B]%, or when
a=f, which of course implies » even, it is one-half of this; extending the summation
from a=2 to a=v—2, each pair is obtained twice, and the number of pairs is thus
=43 {[v]* = [«]*[B]?}; the sum extended from a=0 to a=» is (1+1)’, =2% but we
thus include the terms 1, », », 1, which are together = 2» + 2, hence the correct value
of the sum is =2"— 2y — 2, and the number of pairs is the half of this =271 —»—1.
Hence the number of nodes of the v-zomal curve is =(2"1—y—1) 27472

21. The w-zomal is thus a curve of the order 2'%r, with (27'—»p —1)2" 742
nodes, but without cusps; the class is therefore

| =273 r[(v+ 1) r—2],
and the deficiency is
=2*r[v+1)r—6]+1.

These are the general expressions, but even when the zomal curves U=0, V=0, &c.,
are given, then writing the equation of the »-zomal under the form ViU +VmV + &c. =0,
the constants I : m : &c., may be so determined as to give rise to nhodes or cusps
which do not occur in the general case; the formule will also undergo modification
in the particular cases next referred to.

Article Nos. 22 to 27. Special Case where all the Zomals have o Common Point or
Points.

22.  Consider the case where the zomals U=0, V=0 have all of them any
number, say k, of common intersections—these may be referred to simply as the common
points. Each common point is a 2*-tuple point on the v-zomal curve; it is on each
zomal an ordinary point, and on each antizomal a 2*~*-tuple point, and on any a-zomal
parazomal a 2°~*-tuple point. Hence, considering first the intersections of any zomal
with its antizomal, the common point reckons as 2'—* intersections, and the % common
points reckon as 2"k intersections; the number of the remaining intersections is
therefore = 2"7%(7*—k), and the zomal touches the »-zomal in each of these points.
The intersections of the zomal with the »-zomal are the /A-common points, each of
them a 2'*-tuple point on the p-zomal, and therefore reckoning together as 2"k
intersections ; and the 2=*(7*—k) points of contact, each reckoning twice, and therefore
together as 2"%(r?—Fk) intersections (2—k + 22 (P —k)=2"2, =r.27%); the total
number of contacts with the zomals U=0, V=0, &c., is thus =2"3(r* - k) ».
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23. Secondly, considering any pair of complementary parazomals, an a-zomal and
a B-zomal, each of the common points, being a 2*tuple point and a 2f—2-tuple point
on the two curves respectively, counts as 2¢+f—% = 2'—* intersections, and the £ common
points count as 2'~*k intersections; the number of the remaining intersections is there-
fore =2"74(r*—k), each of which is a node on the v-zomal curve; and we have thus
in all 274 (21— p—1) (*—k) nodes.

24. There are, besides, the ¥ common points, each of them a 2'-tuple point
on the wv-zomal, and therefore each reckoning as 32" 2(2"%-—1), =2»%— 2% double
points, or together as (2*—*—2'-%)k double points. Reserving the term node for the
above-mentioned nodes or proper double points, and considering, therefore, the double
points (dps.) as made up of the nodes and of the 2"*-tuple points, the total number
of dps. is thus

(2t —y—1)(rP=k) + (2% — 29k,

=242 —v-1) P+ {(v+1) 24 -2} k;
or finally this is

=24 {21 —v-1)r*+ (v-1)};
so that there is a gain =2"*(v—1)%k in the number of dps. arising from the %
common points. There is, of course, in the class a diminution equal to twice this
number, or 2" (y —1)k; and in the deficiency a diminution equal to this number, or
24 (v—1)k.

25. The zomal curves U=0, V=0, &c, may all of them pass through the same
»* points; we have then £ =17% and the expression for the number of dps. is
= (2% —2v%) ¢ viz, this is =422 (22 -1)7»% But in this case the dps. are nothing
else than the 72 common points, each of them a 2**-tuple point, the w»-zomal curve
in fact breaking up into a system of 2"~2 curves of the order », each passing through
the 72 common points. This is easily verified, for if ® =0, =0 are some two curves
of the order r, then, in the present case, the zomal curves are curves in involution
with these curves; that is, they are curves of the form I®+ I'® =0, m®+m'®= 0, &c.,
and the equation of the v-zomal curve is

VIO + I'D +Vm® + m'® + &e. = 0.

The rationalised equation is obviously an equation of the degree 2'—* in ©, ®, giving
therefore a constant value for the ratio ® : ®; calling this ¢, or writing ©=q®, we

have ‘L oD oy
Vig+ U +Vmg +m + &ec. =0,

viz,, the rationalised equation is an equation of the degree 2'—* in ¢, and gives there-
fore 2* values of ¢g. And the v-zomal curve thus breaks up into a system of 22
curves each of the form © —¢® =0, that is, each of them in involution with the
curves ® =0, ®=0. The equation in ¢ may have a multiple root or roots, and the
system of curves so contain repetitions of the same curve or curves; an instance of
this (in relation to the trizomal curve) will present itself in the sequel; but I do not
at present stop to consider the question.
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26. A more important case is when the zomal curves are each of them in
involution with the same two given curves, one of them of the order », the other of
an inferior order. Let ® =0 be a curve of the order r, ®=0 a curve of an inferior
order r—s; L=0, M=0, &c.,, curves of the order s; then the case in question is
when the zomal curves are of the form ®+ L& =0, ® + YD =0, &c., the equation of
the v-zomal is

VI(® + L) + ¥m (O + MP) + &c. =0,

where I, m, &c. are constants. This is the most convenient form for the equation, and
by considering the functions L, M, &c. as containing implicitly the factors =%, m™, &e.
respectively, we may take it to include the form i@ + L® + Vm® + MP + &c. =0,
which last has the advantage of being immediately applicable to the case where any
one or more of the constants I, m, &c. may be .= 0.

27. In the case now under consideration we have the r(r—s) points of inter-
section of the curves ®=0, ®=0 as common points of all the zomals. Hence, putting
in the foregoing formula k=7 (r—s), we have a wv-zomal curve of the order 2'—*r,
having with each zomal 2'*rs contacts, or with all the zomals 2"*rsy contacts, having
a node at each of the 2" *rs intersections (not being common points @ =0, ®=0)
of each pair of complementary parazomals; that is, together 2*—*(2"7'—»—1)rs nodes,
and having, besides, at each of the »(r—s) common points, a 2**-tuple point, counting
as 25— 23 dps., together as (2*5—2"%) r(r—s) dps.; whence, taking account of the
nodes, the total number of dps. is =2 r[(2" ' —2)r —(v—1) s].

Article Nos. 28 to 37. Depression of Order of the v-zomal Curve from the Ideal Factor
of a Branch or Branches.

28. In the case of the 7 (r—s) common points as thus far considered, the order
of the w-zomal curve has remained throughout = 2%, but the order admits of
depression, viz., the constants [, m, &c., and those of the functions L, M, &c., may be
such that the Norm contains the factor ®; the »-zomal curve then contains as part
of itself (®*=0) the curve ® =0 taken  times, and this being so, if we discard
the factor in question, and consider the residual curve as being the v-zomal, the order
of the v-zomal will be = 2"%r— o (r —3).

29. To explain how such a factor ®“ presents itself, consider the polyzome
VI(® + L®) + &c., or, what is the same thing, ¥I¥® + L® + &c, belonging to any
particular branch of the curve, we may, it is clear, take VO + L®, &c. each in a fixed
signification as equivalent to ¥/@ + L®, &c., respectively, and the particular branch will

then be determined by means of the significations attached to v, ¥m, &c. Expanding
the several radicals, the polyzome is

v Pk Pt P ¢
l{«/®+;L~/_ §L®V®+&:c}+&c,

Oi VL 61
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or, what is the same thing, it is

VO (VI + &e.) + % % LVl + &) -3 @ij@(p VI + &c.) + &e.

which expansion may contain the factor ®, or a higher power of ®. For instance, if
we have VI+&c =0, the expansion will then contain the factor ®; and if we also
have LA1+4&c.=0 (observe this implies as many equations as there are asyzygetic
terms in the whole series of functions L, M, &c.; thus, if L, M, &c., are each of them
of the form aP +bQ + cR, with the same values of P, @, R, but with different values
of the coefficients a, b, ¢, then it implies the three equations aNl+&ec. =0, bVI + &c. =0,
¢Vl+&c.=0; and so in other cases), if I say LVI+&c. be also =0, then the
expansion will contain the factor ®2 and so on; the most general supposition being,
that the expansion contains as factor a certain power ®* of ®. Imagine each of the
polyzomes expanded in this manner, and let certain of the expansions contain the
factors @<, ®P, &ec., respectively. The produce of the expansions is identically equal to
the product of the unexpanded polyzomes—that is, it is equal to the Norm; hence,
if a+ B+ &c. =w, the Norm will contain the factor ®e.

30. It has been mentioned that the form #(® + L®) is considered as including the
form V1O + L®, that is, when [ = 0, the form ¥VZ®. If in the equation of the v-zomal curve
there is any such term—for instance, if the equation be vVL® +vm(® + M®)+ &e. =0,
the radical VL® contains the factor ®%; but if L contains as factor an .odd or an
even power of @, then VL® will contain the factor ®* where a is either an integer,
or an integer + 4. Consider the polyzome ¥L® +m (® + MP)+ &c., belonging to any
particular branch of the curve; the radical ¥L® contains, as just mentioned, the factor
®=, and if the remaining terms ~m(® + M®)+ &c., are such that the expansion
contains as factor the same or any higher power of @, then the expansion of the
polyzome ~L® +Vm (® + M®) + &c., belonging to the particular branch will contain the
factor ®2; and similarly we may have branches containing the factors ®2, ®8, &c.,
whence, as before, if w=a+ B+ &c.,, the Norm will contain the factor ®*; the only
difference is, that now a, 3, &c., instead of being of necessity all integers, are each
of them an integer, or an integer +4; of course, in the latter case the integer may
be zero, or the index be =4. It is clear that » must be an integer, and it is, in
fact, easy to see that the fractional indices occur in pairs; for observe that a being
fractional, the expansion of ¥'m (@ + M®) + &c., will contain not @, but a higher power,
®++4, where a+ ¢ is an integer; whence each of the polyzomes VL® + (Vm (® + M®) + &e.)
will contain the factor ®e.

31. Observe that in every case the factor ®* presents itself as a factor of the
expansion of the polyzome corresponding to a particular branch of the curve; the
polyzome itself does not contain the factor ®°, and we cannot in anywise say that the
corresponding branch contains as factor the curve @2 =0; but we may, with great
propriety of expression, say that the bramch ideally contains the curve ®*=0; and this

www.rcin.org.pl




114] ON POLYZOMAL CURVES. 483

being so, the general theorem is, that if we have branches ideally containing the curves
@2 =0, P8 =0, &c. respectively, then the v-zomal curve contains not ideally but actually
the factor ®*=0 (0=a+ B + &c.), the order of the v-zomal being thus reduced from
2727 to 2" 2*r — o (r—s); and conversely, that any such reduction in the order of the
v-zomal arises from the factors ®*=0, ®#=0, &ec., ideally contained in the several
branches of the v-zomal.

32. It is worth while to explain the notion of an ideal factor somewhat more
generally; an irrational function, taking the irrationalities thereof in a determinate
manner, may be such that, as well the function itself as all its differential coefficients
up to the order a—1, vanish when a certain parameter ® contained in the function
is put =0; this is only saying, in other words, that the function expanded in ascending
powers of @ contains no power lower than @®®; and, in this case, we say that the
irrational function contains ideally the factor ®=2, The rationalised expression, or Norm,
in virtue of the irrational function (taken determinately as above) thus ideally con-
taining @°, will actually contain the factor ®2; and if any other values of the

irrational function contain respectively ®f, &c., then the Norm will contain the factor
patB+&e.,

33. A branch ideally containing ®*=0 may for shortness be called integral or
fractional, according as the index a is an integer or a fraction; by what precedes
the fractional branches present themselves in pairs. If for a moment we consider
integral branches only, then if the v-zomal contain ® =0, this can happen in one way
only, there must be some one branch ideally containing ®=0; but if the w»-zomal
contain ®*=0, then this may happen in two ways,—either there is a single branch
ideally containing ®*=0, or else there are two branches, each of them ideally con-
taining ® =0. And generally, if the v-zomal contain ®* =0, then forming any partition
o=a+ B +&c. (the parts being integral), this may arise from there being branches
ideally containing ®*=0, ®f =0, &c. respectively. The like remarks apply to the case
where we attend also to fractional branches—thus, if the w-zomal contain ® =0, this
may arise (not only, as above mentioned, from a branch ideally containing ® = 0, but
also) from a pair of branches, each ideally containing ®*=0. And so in general, if
the w-zomal contain ®* =0, the partition w=a+ B+ &c. is to be made with the parts
integral or fractional (=4 or integer +4 as above), but with the fractional terms in
pairs; and then the factor ®*=0 may arise from branches ideally containing ®2 = 0,
DB =0, &c. respectively.

34. Any zomal, antizomal, or parazomal of a v-zomal curve, Vi (® + LD) + &c. =0,
is a polyzomal curve (including in the term a monozomal curve) of the same form
as the v-zomal; and may in like manner contain ® =0, or more generally, ®»=0,
viz, if w =a+ B+ &c. be any partition of w as above, this will be the case if the
zomal, antizomal, or parazomal has branches ideally containing ®*=0, $f =0, &c.
respectively. It is to be observed that if a zomal, antizomal, or parazomal contain
® =0, or any higher power ®<=0, this does not in anywise imply that the zomal
contains even ®=0. But if (attending only to the most simple case) a zomal and its
antizomal, or a pair of complementary parazomals, each contain ® =0 inseparably (that

61—2
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is, through a single branch ideally containing ®=0), then the »-zomal will have two
branches, each ideally containing ® =0, and it will thus contain @ =0. In fact, if in
the zomal and antizomal, or in the complementary parazomals, the branches which
ideally contain ® =0 are

VIO + L®) + &c. =0, Vn (O + N®)+ &c. =0
respectively (for a zomal, the +&c. should be omitted, and the first equation be written
VI(® + L®) =0), then in the v-zomal there will be the two branches

(VT (@ + L®) + &c.) + (Vn (0@ + NP) + &ec.) =0,
each ideally containing ® = 0.

Conversely, if a v-zomal countain ®*=0 by reason that it has two branches each
ideally containing ® =0, then either a zomal and its antizomal will each of them, or
else a pair of complementary parazomals will each of them, inseparably contain ® = 0.

35. Reverting to the case of the v-zomal curve

VI(® + L) + Vm (O + M®) + &c. =0,

which does not contain ® =0, each of the »(r—s) common points ® =0, =0 is a
2'2-tuple point on the v-zomal; each of these counts therefore for 2'—* intersections
of the wv-zomal with the curve ®=0, and we have thus the complete number
22 (r—s) of intersections of the two curves, viz., the curve ® =0 meets the v-zomal
in the r(r—s) common points, each of them a 2'*-tuple point on the v-zomal, and
in no other point.

36. But if the v-zomal contains @@ =0, then each of the »(r —s) common points
is still a 2" -tuple point on the aggregate curve; the aggregate curve therefore
passes 2"* times through each common point; but among these passages are included
o passages of the curve ®=0 through the common point. The residual curve—say
the v-zomal—passes therefore only 22 — @ times through the common point; that is,
each of the r(r—s) common points is a (2*—w)tuple point on the »-zomal The
curve ® =0 meets the »-zomal in {2%r—w (r—s)}(r—s) points, viz, these include
the r(r —s) common points, each of them a (2" — w)tuple point on the v-zomal, and
therefore counting together as (2'—2— w)r (r — s) intersections; there remain consequently
w s (r — s) other intersections of the curve ® =0 with the v-zomal.

37. In the case where the »-zomal contains the factor ®» =0, then throughout
excluding from consideration the r(r—s) common points @ =0, ® =0, the remaining
intersections of any zomal with its antizomal are points of contact of the zomal with
the v-zomal, and the remaining intersections of each pair of complementary parazomals
are nodes of the v-zomal, it being understood that if any zomal, antizomal, or parazomal
contain a power of ® =0, such powers of ® =0 are to be discarded, and only the
residual curves attended to. The number of contacts and of nodes may in any
particuiar case be investigated without difficulty, and some instances will present
themselves in the sequel, but on account of the different ways in which the factor
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@ =0 may present itself, ideally in a single branch, or in several branches, and the
consequent occurrence in the latter case of powers of ® =0 in certain of the zomals,
antizomals, or parazomals, the cases to be considered would be very numerous, and
there is no reason to believe that the results could be presented in any moderately
concise form; I therefore abstain from entering on the question.

Article Nos. 38 and 39. On the Trizomal Curve and the Tetrazomal Curve.

38. The trizomal curve
NT+VV 4V =0
has for its rationalised form of equation
U+ V24 We=2VW—-2WU -2UV =0;
or as this may also be written,

(L, e, =Lt =Ry (UL " WY =05

and we may from this rational equation verify the general results applicable to the
case in hand, viz., that the trizomal is a curve of the order 2r, and that

U =0, at each of its »? intersections with V — W =0,

V=0: ”» » W_U=O, A

W= O’ ”» » U ) V = 0,

respectively touch the trizomal. There are not, in general, any nodes or cusps, and
the order being =2r, the class is =2r (2r —1).

39. The tetrazomal curve
NOU+NV VW 4+ VT =0
has for its rationalised form of equation
U+ V2 W2t T2 —2U0V —-2UW =2UT - 2VW —-2VT - 2WT)— 64UVWT =0,

and we may hereby verify the fundamental properties, viz., that the tetrazomal is a
curve of the order 4, touched by each of the zomals U=0, V=0, W=0, T'=0 in

272 points, viz, by U=0 at its intersections with U+ NW+NVT =0, that is,
Vie Wet T°—2VW—2VI—2WT=0; (and the like as regards the other zomals), and
having 872 nodes, viz, these are the intersections of (WU+VV=0, VW +VT=0),
WUANW =0, VV + VT =0), WU +~T=0, VV+~¥W =0), or, what is the same thing,
the intersections of (U— V=0, W-T=0),(U-W=0V-T=0),(U-T=0, V- W=0).
There are not in general any cusps, and the class is thus =4r (4r —1) — 612, = 10r* — 4.
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Article Nos. 40 and 41. On the Intersection of two v-Zomals having the same
Zomal Curves.

40. Without going into any detail, I may notice the question of the intersection of
two p-zomals which have the same zomal curves—say the two trizomals VU +VV + VW =0,

NIT + NmV + VoW =0, or two similarly related tetrazomals. For the trizomals, writing
the equations under the form

NO+NV VW =0, VINT+VmV TV +Va VW =0,
then, when these equations are considered as existing simultaneously, we may, without
loss of generality, attribute to the radicals ¥'U, ¥V, VW, the same values in the two
equations respectively; but doing so, we must in the second equation successively

attribute to all but one of the radicals VI, ¥m, Vn, each of its two opposite values.
For the intersections of the two curves we have thus

NU NV N W=VNm—~n : Vo=V : Nl- Vm,
viz, this is one of a system of four equations, obtained from it hy changes of sign,
say in the radicals ¥m and #m. Each of the four equations gives a set of r? points;

we have thus the complete number, =422, of the points of intersection of the two
curves.

41. But take, in like manner, two tetrazomal curves; writing their equations in
the form et i i
NT+ N7+ NW+ VT=0,
NINT +Nm NV + Na NV W +Vp VT =0,
then VU, ¥V, VW, ¥T may be considered as having the same values in the two
equations respectively, but we must in the second equation attribute successively, say
to #'m, ¥n, ¥p, each of their two opposite values. For the intersections of the two
curves we have b Ly X A fhT AL
(Vm =NONTV + Wn=NI YN + (Wp —VT )WT =0,
Wl Vm)NT +(Wn—=Nm)NW + (Vp —¥Vm) VT =0,

viz., this is one of a system of eight similar pairs of equations, obtained therefrom by
changes of sign of the radicals ¥m, ¥n, ¥p. The equations represent each of them a
trizomal curve, of the order 2r; the two curves intersect therefore in 4o points, and
if each of these was a point of intersection of the two tetrazomals, we should have
in all 8 x4s?=32r2 intersections. But the tetrazomals are each of them a curve of
the order 4», and they intersect therefore in only 16r* points. The explanation is,
that not all the 4% points, but only 272 of them are intersections of the tetrazomals.
In fact, to find all the intersections of the two trizomals, it is necessary in their two
equations to attribute opposite signs to one of the radicals VW, ¥T'; we obtain 2
intersections from the equations as they stand, the remaining 2r* intersections from the

two equations after we have in the second equation reversed the sign, say of ~7.
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Now, from the two equations as they stand we can pass back to the two tetrazomal
equations, and the first-mentioned 2r® points are thus points of intersection of the
two tetrazomal curves—from the two equations after such reversal of the sign of

VT, we cannot pass back to the two tetrazomal equations, and the last-mentioned 2r
points are thus not points of intersection of the two tetrazomal curves. The number
of intersections of the two curves is thus 8 x 2r?, = 1672 as it should be.

Article Nos. 42 to 45. The Theorem of the Decomposition of a Tetrazomal Curve.
42, T consider the tetrazomal curve
NIT +NmV + NnW + VpT =0,
where the zomal curves are in involution,—that is, where we have an identical relation,
alU+ bV+ cW+ dT'=0;
and I proceed to show that if I, m, n, p satisfy the relation

l m

L7 L2 P
a+ b

n
it E+ a—-O,

the curve breaks up into two trizomals. In fact, writing the equation under the form
VIT +NmV + Vo Wy —pT =0,
and substituting for 7' its value, in terms of U, V, W, this is
(ld+pa) U+ (md + pb) V + (nd + pc) W
+2Vmnd VVW + 2Vnld VWU + 2 Vimd VTV =0

or, considering the left-hand side as a quadric function of (VU, ¥V, VW), the condition
for its breaking up into factors is

ld+pa, dW¥im, d¥in |=0,
dVmi, md+pb, dvmn

dVnl dvVam, nd+ pe |
that is >
p* (Ibed + meda + ndab + pabe) = 0,

or finally, the condition is
l m

n
5'+ 76+ E+ =10,

ks

43. Multiﬁlying by Id + pa, and observing that in virtue of the relation we have
(Id + pa) (md + pb) = lmnd* — #pn,

(ld + pa) (nd + pc)=Ind* — %ipm,
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the equation becomes
((ld+pa)~/U+d'\/lm'\/T’+d~/ln«/W) (bWM/V—c«/mVW)

or as this is more conveniently written

(Wi+ GEAVT ViV + Vi) = 2 B (T —cymT

an equation breaking up into two equations, which may be represented by

VLU + ViV + VW =0, VLU + Vm,V + ¥n,W =0,

where

Vi, =T + Vi, =vT +2 L

ap
d vi 9 d V]

I N AL T Y S S AN
'\/ml—\/m bcdlbvn 5 '\/mg—x/m+\/bcdlb’\/ﬁ
Vi =V +a) 2 Bevm | Vi <vE -y 2 e

where, in the expressions for V7, &c., the signs of the radicals

8Pl T Il
V1, Nm, ¥n, \/bcd 7’
may be taken determinately in any way whatever at pleasure; the only effect of an

alteration of sign would in some cases be to interchange the values of W LNm, Vny)
with those of (Vi, Nm, '\/7-1;). The tetrazomal curve thus breaks up into two trizomals.

44. It is to be noticed that we have

that is

and that similarly we have
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The meaning is, that, taking the trizomal curve NLU+Vm, V + Vn, W =0, this regarded as a

tetrazomal curve, Vi, U +Vm, V + N, W + V0T = 0, satisfies the condmon h +

0
b+ +d0

and the like as to the trizomal curve VLU + ¥m,V + Vn, W = 0.

45.

twelve equivalent equations; four of these are

(vi+ S
(o , Vm+
(vi .0
(v, ¥m

bl
avm

’

Vi, 0 ) (v,
W , Vp )(
wz+biz%, Vp )(
0 : «/p+cd—j§)(

The equation by which the decomposition was effected is, it is clear, one of

vV, VT, ﬁ)";

a

=0 (b Nl —c «/f,;:vv)i

i (c VoW — avaz),

)”_

»

fs%@VM_aﬁm)
3 )2='
5}5( VmT — bdﬂﬁ

and the others may be deduced from these by a cyclical permutation of (U, V, W),
(a, b, ¢), (!, m, n), leaving T, d, p unaltered.

Article Nos. 46 to 51.

Application to the Trizomal ;

46. I take the last equation written under the form

the Theorem of the Variable Zomal.

(@NmT —bViVy= am(V@U+wmnq4p+ )VT)
which, putting therein p=0, is

@VmU-bV1Vy =

abd Tl

which is in fact the trizomal curve,

a\/m—b«/lV+4/abd nl'=0,

.. VL
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viz,, the trizomal curve VIU +VmV +V¥nW =0,—if a, b, ¢ be any quantities connected
by the equation
I m =
e R o
aiiibiieie

(the ratios a, b, ¢ thus involving a single arbitrary parameter); and if we take 7' a
function such that aU+bV+cW+dl'=0; that is, 7'=0, any one of the series of
curves al+bV+cW =0, in involution with the given curves U=0, V=0, W=0,—
has its equation expressible in the form

aVmU—bVIT+ 5/ ur—0;

that is, we have the curve 7'=0 (the equation whereof contains a variable parameter)

as a zomal of the given trizomal curve ViU +VmV +¥nW=0; and we have thus
from the theorem of the decomposition of a tetrazomal deduced the theorem of the
variable zomal of a trizomal. The analytical investigation is somewhat simplified by
assuming p =0 ab initio, and it may be as well to repeat it in this form.

47. Starting, then, with the trizomal curve
NIT+NmV +VnW =0,
and writing

a0+ bV+ cW4+dT=0

as the definition of 7, the coefficients being connected by

the equation gives
W+ mV+2WinUV—-aW=0;

or substituting in this equation for W its value in terms of U, V, T, we have
(an +cl) U+ (bn+cm) V+ 2 VimUV + dnT = 0,

which by the given relation between a, b, ¢, is converted into

U—-——lV+ 2eVImUV+dnT =0,

ok
that is
amU + bV — 2abVImUV = a%d nT,
viz., this is
(@VmT — b VITY ~2d,p,
or finally
o Vil < bVBTES ﬂi aBi<i0;
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48. The result just obtained of course implies that when as above

aU+bV +cW+dT=0, é+ﬁ”‘+§=o,

(=n

the trizomal curve ¥iU+VmV +~¥nW =0 can be expressed by means of any three of
the four zomals U, V, W, T, and we may at once write down the four forms

, n m d Basgeiold 1g B

( osig, % V% ,—V%, = ﬁi)@uvnvmv@=q

i i i

LS : ; 2, b Adbers

Wi ; _,/m

o A . : abe
W md V@§
abe’ abe’ abe’

the last of which is the original equation VIU +VmV +¥nW =0. It may be added
that if the first equation be represented by ¥,V +~n, W +~p,T=0—that is, if we

have
Y N vl
N/ml=\/c~2’ “/n1=— / b’ N/p1= abe’
and therefore
mom p_Ld m g —0:
b+c+d_bc(a+b+c’ 9

or if the second equation be represented by V1,U+~n,W +Vp,F =0,—that is, if we
have

A3 n £ T o md
'\/l2=-—\/€2, ‘\/’l’l2= a—’2, '\/p2= HE’
and therefore

or if the third equation be represented by VI1,U+~m,V+ Vp,T=0—that is, if we
have
i y— b i md
Y R N A Ve
and therefore
62—2
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then the equation of the trizomal may also be expressed in the forms

( % ) ,‘/771 ’ \/El- > N/E )(‘\/I—T) vI—’) «/Wa "/T)=O,
] sy i’lbc 2 n,Td
15 L i) ad b ac
g 4ok ol e /med
Vi, ad ’ il ab
i n,bd myed
-Vpi, \/ac TE sy T R
[, re ERUEE \/"sad) VT, V7, VW, VT)=0,
bd
"/l_z ’ N H ‘\/;2 > \/pﬂ
'peac — Led
Bd ’ -"‘/nz s . «/ ’
n.ad l,ed
T Sy, T |
and
i ot 2oy B Ty By B (VD T W T
cd
pcidb ) . » —‘\/m3) /\/l3bd
vzs ) )\/@ > . ’ '\/ps
mqad I,bd
B

49. These equations may, however, be expressed in a much more elegant form.

Write
5 b , c ,_ —d

a','_—'”a ) b='—'—" C FoamaTy d— SNy
(Bvd) (rySa) (823) (aBry)

where, for shortness, (By8)=(B—1) (y—8)(8 — B), &c.; (a, B, y) being arbitrary quantities'
or, what is the same thing,

a:b:c:d=a(Byd) : —b (yda) : ¢'(8aB) : —d' (aBy).

Assume

l:m:n =pa/(B—q):ob(y—a): v (a-pB);

then the equation £+%+Z= 0 takes the form

p(B=y)(@=8)+a(y—a)(B-0)+7(a—pB)(y—9)
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and the four forms of the equation are found to be

( . ) V; (8—7): ‘\/;(B—S): “/;’('Y—/S))(‘/m ‘\/b/-l;'y \/C,W, \/d*IT)=O’
Vr(y—8), ] , ¥p(® —a), Va(a—v)
Voe(®-AB), vp@=-8), . , vi(B-a)

Vo (B-9), Va(y—a), Vr(a-B),

viz.,, these are the equivalent forms of the original equation assumed to be
B=y)Npd U+ (y—a) Vb’V +(a = B) Vi’ W = 0.

50. I remark that the theorem of the variable zomal may be obtained as a
transformation theorem—viz., comparing the equation YIU +VmV +VnW =0 with the
equation iz + Vmy+ Vnz=0; this last belongs to a conic touched by the three lines
=0, y=0, 2=0; the equation of the same conic must, it is clear, be expressible in
a similar form by means of any other three tangents thereof, but the equation of any
tangent of the conmic is az+ by + cz=0, where a, b, ¢ are any quantities satisfying the
condition é+%+g=0; whence, writing ax + by + cz2+dw =0, we may introduce w=0
along with any two of the original zomals =0, y=0, 2=0, or, instead of them, any
three functions of the form w; and then the mere change of #, y, 2, w into U, V, W, T
gives the theorem. But it is as easy to conduct the analysis with (U, V, W, T) as
with (2, y, 2, w), and, so conducted, it is really the same analysis as that whereby the
theorem is established ante, No. 47, '

51. It is worth while to exhibit the equation of the curve

VIT +VmV +VnW =0,

in a form containing three new zomals. Observe that the equation §'+7~g+7—;=0 is

satisfied by a=Ipy, b=myxl, c=nb¢p, if only 0+¢+x=0; or say, if 6=a"—a”",
¢p=a"—a, x=a—a’. The equation :

AM(a—a)(a-a)IU+ (@' —a") (@ —a)ymV +(a”" —a)(a" —a')n W
+uNO =YD =b)IU+O =b" )t =bymV + (" =b) (b =0 )nW
+ovVe-¢)(c—c)IU+(=c")( —c)ymV + (" —c)(c’—c)nW=0

is consequently an equation involving three zomals of the proper form; and we can deter-

mine A, g, v in suchwise as to identify this with the original equation VIU +NmV +Va W,
viz., writing successively U=0, V=0, W=0, we find

(a’—a")7\.+(b'—b")y.+(c’—c")u=0,
(@ —a )AN+®"=b)p+(c"—c)v=0,
(@ —adIA+®B =V )p+( —¢)v=0,
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equations which are, as they should be, equivalent to two equations only, and which
give

A %t e LA S ] e e ) ST Ll ke U T Y
b, 0% (b ¢, Cool AR
o, Vo Wie s s e b iy b

and the equation, with these values of A, u, v substituted therein, is in fact the
equation of the trizomal curve ¥IU +#mV +~¥nW =0 in terms of three new zomals.
It is easy to return to the forms involving one new zomal and any two of the
original three zomals.

Article No. 52. Remark as to the Tetrazomal Curve.

52. I return for a moment to the case of the tetrazomal curve, in order to show
that there is not, in regard to it in general, any theorem such as that of the variable
zomal, Considering the form iz +Vmy+Vnz+Vpw=0 (the coordinates =, y, 2z, w are
of course connected by a linear equation, but nothing turns upon this), the curve is
here a quartic touched twice by each of the lines =0, y=0, 2=0, w=0 (viz, each
of these is a double tangent of the curve), and having besides the three nodes
(z=y, z=w), (r=2, y=w), (r=w, y=2z). But a quartic curve with three nodes, or
trinodal quartic, has only four double tangents—that is, besides the lines #=0, y=0,
z2=0, w=0, there is no line az+ By +yz+éw=0 which is a double tangent of the
curve; and writing U, V, W, T in place of =, y, 2z, w, then if U, V, W, T are
connected by a linear equation (and, @ fortiors, if they are not so connected), there is
not any curve alU + BV +yW +87'=0 which is related to the curve in the same way
with the lines U=0, V=0, W=0, 7=0; or say there is not (besides the curves
U=0, V=0, W=0, T'=0), any other zomal aU+ BV +yW+81'=0, of the tetrazomal
curve. The proof does not show that for special forms of U, V, W, T there may
not be zomals, not of the above form aU+BV+yW + 87 =0, but belonging to a
separate system. An instance of this will be mentioned in the sequel.

Article Nos. 53 to 56. The Theorem of the Variable Zomal of a Trizomal Curve resumed.

53. I resume the foregoing theorem of the variable zomal of the trizomal curve
NIU +NmV +¥nW =0. The variable zomal 7=0 is the curve aU+bV +cW =0, where

a, b, ¢ are connected by the equation £+%+§'=0; that is, it belongs to a single
series of curves selected in a certain manner out of the double series aU+bV +cW =0
(a double series, as containing the two variable parameters a : b : ¢). These are the
whole series of curves in involution with the given curves U=0, V=0, W=0, or being
such that the Jacobian of any three of them is identical with the Jacobian of the three
given curves; in particular, the Jacobian of any one of the curves aU+bV +cW =0,
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and of two of the three given curves, is identical with the Jacobian of the three given
curves. I call to mind that, by the Jacobian of the curves U=0, V=0, W=0, is
meant the curve

AU, V, W)_| &U, 4U, &U
A0 RO R TR AT
LW, d,W, dW |

JU, V, W)= =0,

viz., the curve obtained by equating to zero the Jacobian or functional determinant
of the functions U, V, W. Some properties of the Jacobian, which are material as to
what follows, are mentioned in the Annex No. L

For the complete statement of the theorem of the variable zomal, it would be
necessary to interpret geometrically the condition §+%L+§=O, thereby showing how
the single series of the variable zomal is selected out of the double series of the
curves all+bV +cW=0 in involution with the given curves. Such a geometrical
interpretation of the condition may be sought for as follows, but it is only in a
particular case, as afterwards mentioned, that a convenient geometrical interpretation is
thereby obtained.

54. Consider the fixed line Q =pz+qgy+7r2=0, and let it be proposed to find
the locus of the (r—1)* poles of the line =0 in regard to the series of curves
m
b
of the poles in question, then in order that (z, y, 2) may belong to one of the
(r—1)* poles of the line Q=pz+qy+7r2=0 in regard to the curve aU+bV+cW=0,
we must have

dy QU +bV+cW) : dy(aU+bV+cW) : d,(@U+bV+cW)=p : ¢ : r;

aU+bV +cW =0, where §+ +:}—l=0. Take (z, y, z) as the coordinates of any'one

or, what is the same thing,
=, 0% dyQ id0);

and these equations give without difficulty

a:bie=d(V, W, Q)y«J(W, U, Q):JU,.V, Q)
5 T8 g avlime n :
whence, substituting in the equation §,+F +E =0, we have

l m n

s wotrow T etioT o~

as the locus of the (r—1)* poles in question. Each of the Jacobians is a function
of the order 2r—2, and the order of the locus is thus =4r—4. As the given curves
U=0, V=0, W=0 belong to the single series of curves, it is clear that the locus
passes through the 3 (r —1)* points which are the (r—1)* poles of the fixed line in
regard to the curves U=0, V=0, W =0 respectively.
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55. In the case where the given trizomal is
NI (O + LD) +Vm (® + MDP) +Vn (0 + NP)=0,

s=r—1, that is, where the zomals @+ LD =0, @ + P =0, ® + NO=0 are each of
them curves of the order 7, passing through the r intersections of the line ®=0
with the curve ® =0, then, taking this line ®=0 for the fixed line =0, we have

J(V, W, Q)=J(® + Md, ® + N®, ®)=d (M, N},

if, for shortness, {M, N}=J(M—N, ©, &)+ ®J (M, N, ®), and the like as to the other
two Jacobians, so that, attaching the analogous significations to {N, L} and {L, M}, the
equation of the locus is

/f m n
oL Mt gt Em

where observe that each of the curves {M, N}=0, {N, L}=0, {L, M}=0 is a curve
of the order 2r—3; the order of the locus is thus =4r—6, and (as before) this
locus passes through the 3(r—1)* points which are the (r—1)* poles of the line ® =0
in regard to the curves @ + L& =0, ®+ MP =0, ® + N®=0 respectively.

=0

56. In the case r=2, the trizomal is

NI (O + L) +Vm (© + UD) +Vn (0 + NP) =0,

where the zomals are the conics @+ LD =0, @+ MUDP =0, ® + NO=0, each passing
through the same two points ® =0, ®=0; the locus of the pole of the line ®=0,
in regard to the variable zomal, is the conic

l m n

or Wt LT
viz, {M, N}=0, {N, L} =0, {L, M}=0, are here the lines passing through the poles
of the line ®=0 in regard to the second and third, the third and first, and the first
and second of the given conics respectively: treating I, m, n as arbitrary, the locus is
clearly any conic through the poles of the line & =0 in regard to the three conics
respectively. The Jacobian of the three given conics is a conic related in a special
manner to the three given conics, and which might be called the Jacobian conic
thereof, and it would be easy to give a complete enunciation of the theorem for the
case in hand. (See as to this, Annex No. I, above referred to.) But if, in accordance
with the plan adopted in the remainder of the memoir, we at once assume that the
points ® =0, ®=0 are the circular points at infinity, then the theorem can be
enunciated under a more simple form—viz., if A°=0, B°=0, €°=0 are the equations
of any three circles, then in the trizomal

VI +NmB® +VnE® =0,

=01

the variable zomal is any circle whatever of the series of circles cutting at right
angles the orthotomic circle of the three given circles, and having its centre on a
certain conic which passes through the centres of the given circles. Moreover, if the
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coefficients I, m, n are not given in the first instance, but are regarded as arbitrary,
then the last-mentioned conic is any conic whatever through the three centres, and
there belongs to such conic and the series of zomals derived therefrom as above, a
trizomal curve VIA°+Vm®B°+~nG°=0. This is obviously the theorem, that if a
variable circle has its centre on a given conic, and cuts at right angles a given circle,
then the envelope of the variable circle is a trizomal curve VIA° + VmB® + VnE,
where A°=0, B°=0, €°=0 are any three circles, positions of the variable circle, and
l, m, n are constant quantities depending on the selected three circles.

Part II. (Nos. 57 to 104). SUBSIDIARY INVESTIGATIONS.

Article Nos. 57 and 58. Preliminary Remarks.

57. We have just been led to consider the conics which pass through two given
points. There is no real loss of generality in taking these to be the circular points
at infinity, or say the points 7, J—viz, every theorem which in anywise explicitly or
implicitly relates. to these two points, may, without the necessity of any change in the
statement thereof, be understood as a theorem relating instead to any two points P, Q.
I call to mind that a circle is a conic passing through the two points 7, J, and
that lines at right angles to each other are lines harmonically related to the pair of
lines from their intersection to the points I, J respectively, so that when (Z, J) are
replaced by any two given points whatever, the expression a circle must be understood
to mean a conic passing through the two given points; and in speaking of lines at
right angles to each other, it must be understood that we mean lines harmonically
related to the pair of lines from their intersection to the two given points respectively.
For instance, the theorem that the Jacobian of any three circles is their orthotomic
circle, will mean that the Jacobian of any three conics which each of them passes
through the two given points is the orthotomic conic through the same two points,
that is, the conic such that at each of its intersections with any one of the three
conics, the two tangents are harmonically related to the pair of lines from this inter-
section to the two given points respectively. Such extended interpretation of any
theorem is applicable even to the theorems which involve distances or angles—viz., the
terms “distance” and “angle” have a determinate signification when interpreted in
reference (not to the circular points at infinity, but instead thereof) to any two given
points whatever (see as to this my “Sixth Memoir on Quantics,” Nos. 220, et seq.).
Phil. Trans., vol. cXLIX. (1859), pp. 61—90; see p. 86; [158] And this being so, the theorem
can, without change in the statement thereof, be understood as referring to the two
given points.

58. I say then that any theorem (referring explicitly or implicitly) to the circular
points at infinity 7, J, may be understood as a theorem referring instead to any two
given points. We might of course give the theorems in the first instance in terms
explicitly referring to the two given points—(viz., instead of a circle, speak of a conic
through the two given points, and so in other instances); but, as just explained, this
is not really more general, and the theorems would be given in a less concise and

C. VL 63
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familiar form. It would not, on the face of the investigations, be apparent that in
treating of the polyzomal curves

VI (© + L®) + Vm (O + MP) + &c.=0,

(®=0 a conic, =0 a line, as above), that we were really treating of the curves the
zomals whereof are circles, and therein of the theories of foci and focofoci as about
to be explained. And for these reasons I shall consider the two points ® =0, ® =0,
to be the circular points at infinity I, J, and in the investigations, &c., make use of
the terms circle, right angles, &c., which, in their ordinary significations, have implicit
reference to these two points.

The present Part does not explicitly relate to the theory of polyzomal curves, but
contains a series of researches, partly analytical and partly geometrical, which will be
made use of in the following Parts III. and IV. of the Memoir.

Article Nos. 59 to 62. The Circular Points at Infinity; Rectangular and Circular
Coordinates.

59. The coordinates made use of (except in the cases where the general trilinear
coordinates (z, y, z), or any other coordinates, are explicitly referred to), will be either
the ordinary rectangular coordinates z, y, or else, as we may term them, the circular
coordinates £ 75 (= + iy, #—iy respectively, i=%—1 as usual), but in either case I
shall introduce for homogeneity the coordinate 2z, it being understood that this
coordinate is in fact =1, and that it may be retained or replaced by this its value,
in different investigations or ,stages of the same investigation, as may for the time
being be most convenient. In more concise terms, we may say that the coordinates
are either the rectangular coordinates #, y, and z (=1), or else the circular coordinates
£ n, and z(=1). The equation of the line infinity is z=0; the points I, J are given
by the equations (#+iy=0, 2=0) and (z—w =0, 2=0), or, what is the same thing,
by the equations (§=0, z=0) and (p=0, 2=0) respectively; or in the rectangular
coordinates the coordinates of these points are (—2, 1, 0) and (4, 1, 0) respectively, and
in the circular coordinates they are (1, 0, 0) and (0, 1, 0) respectively. It is, of course,
only for points at infinity that the coordinate z is =0 (and observe that for any such
point the # and y or £ and n coordinates may be regarded as finite); for every point
whatever not at infinity the coordinate z is, as stated above, = 1.

60. Consider a point A, whose coordinates (rectangular) are (a, «/, 1) and (circular)
(a, ', 1), viz, a=a+a", d’=a—a’i; then the equations of the lines through A4 to

the points I, J, are
z—az+1(y—a'z2)=0, z—az—i(y—az)=0

respectively, or they are
E—az=0 , n—az=0

respectively. These equations, if (a, @') or (a, &) are arbitrary, will, it is clear, be the
equations of any two lines through the points 7, J, respectively.
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61. We have from either of the equations in (z, ¥, 2)
(@ — a2y + (y —a'21 =0,

that is, the distance from each other of any two points (z, y, 1), and (@, ¢, 1) in a
line through 7 or J is =0. And in particular, if z=0, then 2?+4*=0; that is, the
distance of the point (a, @/, 1) from I or J is in each case=0.

62. Consider for a moment any three points P, @, 4; the perpendicular distance
of P from QA is =2 triangle PQA + distance QA ; if @ be any point on the line
through A to either of the points 7, J, and in particular if @ be either of the points
I, J, then the triangle PQA 1is finite, but the distance QA4 is =0: that is, the
perpendicular distance of P from the line through A to either of the points 7, J,
that is, from any line through either of these points, is =o. But, as just stated, the
triangle PQA is finite, or say the triangles PIA, PJA are each finite; viz, the
coordinates (rectangular) of P, A being (z, y, z=1), (a, &, 1) or (circular) (¢, », z=1),
(a, «, 1), the expressions for the doubles of these triangles respectively are

® Y. 3 HLog e
~14, 1, 0 Ririiliy -0
a,. al ol ‘ @, ea; il

that is, they are (rectangular coordinates) # —az+1¢(y—a'2), ¢ —az—i(y—a'z), or
(circular coordinates) &—az, n—a'z.

Representing the double areas by PIA, PJA, respectively, and the squared distance
of the points 4, P, by A, we have—

U= (z—azl+ (y—a'z)y
=(£—az)(n—dz), =PIA. PJA.

Article No. 63. Antipownts; Definition and Fundamental Properties.

63. Two pairs of points (4, B) and (4,, B,) which are such that the lines
AB, A,B, bisect each other at right angles in a point O in such wise that
OA=0B=1704,=10B,, aré¢ said to be antipoints, each of the other. In rectangular
coordinates, taking the coordinates of (4B,) to be (a, 0, 1) and (—a, 0, 1), those of
(4,, B,) will be (0, @i, 1) and (0, —as, 1) respectively, whence joining the points (4, B)
with the points (Z, J), the points A,, B, are given as the intersections of the lines
AJ and BJ, and of the lines AJ and BI respectively. Or, what is the same thing,
in any quadrilateral wherein 7, J are opposite angles, the remaining pairs (4, B) and
(4,, B)) are antipoints each of the other.

64. In circular coordinates, if the coordinates of A are (a, &, 1), and those of B
are (B, B, 1), then the equations of

Al AJ are §—az =0, n—az =0,
BI: BJ » E'—B‘Z:O’ W-B’Zr'O,
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whence the equations of
A, AJ are E—az =0, n—B2=0,
'BII) BIJ » E—Bz=0, ’ﬂ—alz=0.
65. Considering any point P the coordinates of which are § 7, z (=1), let
A, B, A, B, be its squared distances from the points A, B, A,, B, respectively; then
by what precedes
A =(§—az)(n—az)

B =(§-B2)(n—B2),
A =(&—az) (n—B2),
B,=(§—B2) (n—dz),

A.B=9Y.98,;

and thence

that is, the product of the squared distances of a point P from any two points 4, B,
is equal to the product of the squared distances of the same point P from the two
antipoints A4,, B;. This theorem, which was, I believe, first given by me in the
Educational Times (see reprint, vol. vI. 1866, p. 81), is an important one in the theory
of foci. It is to be further noticed that we have

A+B-A-B,=(@-B) (@ -pV2% =K*=K,

if K, =(a—a)(B—p'), be the squared distance of the points 4, B, =—squared distance
of points 4,, B,.

Article No. 6€. Antipoints of a Circle.

66. A similar notion to that of two pairs of antipoints is as follows, viz., if
from the centre of a circle perpendicular to its plane and in opposite senses, we
measure off two distances each =<7 into the radius, the extremities of these distances
are antipoints of the circle. It is clear that the antipoints of the circle and the
extremities of any diameter thereof are (in the plane of these four points) pairs of
antipoints. It is to be added that each antipoint is the centre of a sphere radius
zero, or say of a cone sphere, passing through the circle: the circle is thus the inter-
section of the two cone spheres having their centres at the two antipoints respectively.

Article No. 67. Antipoints in relation to a Pair of Orthotomic Circles.

67. It is a well-known property that if any circle pass through the points (4, B),
and any other circle through the antipoints (4,, B,), then these two circles cut at
right angles. Conversely if a circle pass through the points 4, B, then all the ortho-
tomic circles which have their centres on the line AB pass through the antipoints
A,, B,. In particular, if on AB as diameter we describe a circle and on A4,B, as
diameter a circle, then these two circles—being, it is clear, concentric circles with their
radii in the ratio 1 : ¢, and as concentric circles touching each other at the points
(I, J)—cut each other at right angles; or say they are concentric orthotomic circles.
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Article Nos. 68 to 71. Forms of the Equation of a Circle.

68. In rectangular coordinates the equation of a circle, coordinates of centre
(a, @/, 1) and radius =a”, is
W=(@-aP+(y—-adzP—a"*=0;
and in circular coordinates, the coordinates of the centre being (a, a, 1), and radius
=a" as before, the equation is
A =(E—az) (n—az) —a™2*=0.

69. I observe in passing, that the origin being at the centre and the radius
being =1, then writing also z=1, the equation of the circle is £»p=1, that is the
circular coordinates of any point of the circle, .expressed by means of a variable para-

1
meter 6, are (6’, 9’ 1).

70. Consider a current point P, the coordinates of which (rectangular) are
z, y, z(= 1), and (circular) are & #, z(= 1), then the foregoing expression
A =(@—az)+(y—a'z) —a™z*
= (£~ a2) (n —a'2) — a2
denotes, it is clear, the square of the tangential distance of the point P from the
circle Y°=0.

71. But there is another interpretation of this same function 2°, viz, writing
therein z =1, and then .
W =(z—a)y+@y—ay+ @)y

we see that 9° is the squared distance of P from either of the antipoints of the
circle (points lying, it will be recollected, out of the plane of the circle), and we have
thus the theorem that the square of the tangential distance of any point P from the
circle is equal to the square of its distance from either antipoint of the circle.

Article Nos. 72 to 77. On « System of Sizteen Points.

72. Take (4, B, C, D) any four concyclic points, and let the antipoints of

(B, C), (4, D) be (B, C), (4, Dy,
(C, 4), (B,D) , (0, 4,), (B, Dy,
(A’ B)’ (C) D) ”» (A3) Ba): (03; Da):
then each of the three new sets (4,, B,, C,, D)), (4., B,, C,, D,), (4;, B;, C;, D,) will
be a set of four concyclic points.
73. Let O be the centre of the circle through (4, B, C, D), say of the circle O,
and then, the lines BC, AD meeting in R, the lines C4, BD in S, and the lines

AD, CD in T, let each of these points be made the centre of a circle orthotomic
to 0, viz., let these new circles be called the circles R, S, T respectively.
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As regards the circle R, since its centre lies in BC, the circle passes through
(B,, 0)); and since the centre lies in AD, the circle passes through (4,, D)), that is,
the four points (4,, B, C,, D)) lie in the circle R. Similarly (4., B,, C,, D,) lie in
the circle S, and (4;, B;, O, D,) in the circle 7.

74. The points R, S, T are conjugate points in relation to the circle O; that is,
ST, TR, RS are the polars of R, S, T respectively in regard to this circle; and they
are, consequently, at right angles to the lines OR, OS, OT respectively; viz, the four
centres O, R, S, T are such that the line joining any two of them cuts at right
angles the line joining the other two of them, and we see that the relation between
the four sets is in fact a symmetrical one; this is most easily seen by consideration
of the circular points at infinity 7, J, the four sets of points may be arranged thus:

A > As, A2; Al;

B3’ -B > Bl’ B2)
G, C, C, G,
‘Dl) D2) DS’ D >

in such wise that any four of them in the same vertical line pass through I, and
any four in the same horizontal line pass through J; and this being so, starting for
instance with (4;, B;, (5, D;) we have antipoints

of (By, C;), (4s, Dy) are (B:, Ci), (4., Dy),

b3 (03) A3)’ (B3) -Ds) » (Cl) 'Al)’ (Bl) -Dl):

» (A31 Bs)’ (03’ 7)3) 2 (A ’ B )) (0 ’ -D );

and similarly if we start from (4,, B,, (i, D,) or (4., B,, C,, D,).

75. I return for a moment to the construction of (4,, B, C;, D,); these are
points on the circle R, and (B,, C,) are the antipoints of (B, (); that is, they are
the intersections of the circle R by the line at_ right angles to BC' from its middle
point, or, what is the same thing, by the perpendicular on BC from 0. Similarly
(4,, D,) are the antipoints of (4, D); that is, they are the intersections of the
circle R by the perpendicular on AD from O. And the like as to (d,, By, C,, D,)
and (4;, B;, C;, D,) respectively.

76. Hence, starting with the points 4, B, €, D on the circle 0, and constructing
as above the circles P, @, R, and constructing also the perpendiculars from O on the
six chords AB, AC, &c.,

the perpendiculars on BC, AD meet circle R in (B, ()), (4,, D),
» CA) BD 2 2» ,S » (02) A2)x (B2: D?)y
» AB; OD 2 » T ”» (A3, Bs)’ (03) DS))

so that the whole system is given by means of the circles P, @, R, and the six
perpendiculars.
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77. If to fix the ideas (A4, B, C, D) are real points taken in order on the real
circle O, then the points R, S, 7' are each of them real; but R and 7' lie outside,
S inside the circle O. The circles B and 7' are consequently real, but the circle S
imaginary, viz., its radius is =1 into a real quantity; the imaginary points (4,, B,, C,, D,)
are thus given as the intersections of a real circle by a pair of real lines, and the
like as to the imaginary points (4;, B;, €y, D,); but the imaginary points (4., B,, C,, D,)
are only given as the intersections of an imaginary circle (centre real and radius a
pure imaginary) by a pair of real lines. The points (C,, 4,) qud antipoints of (C, 4)
are easily constructed as the intersections of a real circle by a real line, and the like
as to the points (B,, D,) qud antipoints of (B, D), but the construction for the two
pairs of points cannot be effected by means of the same real circle.

Article Nos. 78 to 80. Property in regard to Four Confocal Conics.

78. All the conics which pass through the four concyclic points 4, B, C, D, have
their axes in fixed directions; but three such conics are the line-pairs (BC, AD),
(CA, BD), and (4B, CD), whence the directions of the axes are those of the bisectors
of the angles formed by any one of these pairs of lines; hence, in particular, con-
sidering either axis of a conic through the four points, the lines AB and CD are
equally inclined on opposite sides to this axis, and this leads to the theorem that
the antipoints (4;, B;)(C;, D;) are in a conic confocal to the given conic through
(4, B, C, D); whence, also, considering any given conic whatever through (4, B, C, D),
the points (4,, By, C, D), (4:, B,, C,, D,), (45, B,, Cs, Dy) lie sevelally in three conics,
each of them confocal with the given conic.

79. To prove this, consider any two confocal conics, say an ellipse and a hyper-
bola, and let F be one of their four intersections; join F with the common centre O,
and let OT, ON be parallel to the tangent and normal respectively of the ellipse at
the point F. OF, OT are in direction conjugate axes of the ellipse, and OF, ON
are in direction conjugate axes of the hyperbola; and if they are also the axes in
magnitude, that is, if the points 7, N are the intersections of O with the ellipse and
of ON with the hyperbola respectively, then it is easy to show that 07+ ON:=
And this being so, imagine on the ellipse any two points 4, B such that the chord
AB is parallel to O7, that is conjugate to OF; AB is bisected by OF, say in a
point K, or we have parallel to O7 the semichords or ordinates KA =KB; and we
may, perpendicularly to this or parallel to ON, draw through K in the hyperbola a
chord A,B,, which chord will be bisected in K, or we shall have KA,=KB;. Hence
KA, KA, are in the ellipse and the hyperbola respectively ordinates conjugate to the
same diameter OF, and the semi-diameters conjugate to OF being O7, ON respectively,
we have KA? (= KB?): KA# (= KB?) = 0T?: ON®, this is, KA*=KB*=— KA4;?=— KB},
or (4;, B;) will be the antipoints of (4, B).

80. Conversely, if in the ellipse we have the two points (A4, B), then drawing
the diameter OF conjugate to AB, and through its extremity F, the confocal hyper-
bola, then the antipoints (A4;, B;) will lie on the hyperbola. And similarly, if on the
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ellipse we have the two points (C, D), then drawing the diameter OG conjugate to
CD, and through its extremity G a confocal hyperbola, the antipoints (C;, Dj) will
lie on the hyperbola. Suppose (4, B, C, D) are concyclic, then, as noticed, 4B and
CD will be equally inclined on opposite sides to the transverse axis of the ellipse—
the conjugate diameters OF, OG will therefore be equally inclined on opposite sides
of the transverse axis—and the points #' and G will therefore be situate symmetrically
on opposite sides of the transverse axis, that is, the points F and G will respectively
determine the same confocal hyperbola, and we have thus the required theorem, viz, if
(4, B, C, D) are any four concyclic points on an ellipse, or say on a conic, and if
(45, B;) are the antipoints of (4, B), and (C,;, D;) the antipoints of (C, D), then
(45, B;, C;, D;) will lie on a conic confocal with the given conic.

Article Nos. 81 to 85. System of the Siazteen Points, the Awzial Case.

81. The theorems hold good when the four points 4, B, C, D are in a line; the
antipoints (B,, () of (B, (), &c., are in this case situate symmetrically on opposite
sides of the line, so that it is evident at sight that we have (4,, B,, €, D),
(4., B,, C,, D,), (4;, B;, C;, D;), each set in a circle; and that the centres R, S, T
of these circles lie in the line. The construction for the general case becomes, however,
indeterminate, and must therefore be varied. If in the general case we take any circle
through (B, C), and any circle through (4, D), then the circle B cuts at right angles
these two circles, and has, consequently, its centre R in the radical axis of the two
circles; whence, when the four points are in a line, taking any circle through (B, C),
or in particular the circle on BC as diameter, and any circle through (4, D), or
in particular the circle on AD as diameter,—the radical axis of these two circles
intersects the line in the required centre R, and the circle R is the circle with this
centre cutting at right angles the two circles respectively; the circles S and 7' are, of
course, obtained by the like construction in regard to the combinations (€, 4; B, D)
and (4, B; O, D), respectively. It may be added, that we have

§ extremities £ B, C; 4, D,
S » centre and {of diameter S} sibiconjugate points of involutions {C, 4; B, D,
TJ (of circles A4 B:C.D

and that (as in the general case) the circles R, S, 7' intersect each pair of them at
right angles; and they are evidently each intersected at right angles by the line
ABCD (or axis of the figure), which replaces the circle O in the general case.

82. If the points A, B, C, D are taken in order on the line, then the points
R, S, T are all real, viz, the point R is situate, on one side or the other, outside
AD, but the points S and 7 are each of them situate between B and C'; the circles
R and T' are real, but the circle S has its radius a pure imaginary quantity.

83. If one of the four points, suppose D, is at infinity on the line, then the
antipoints of (4, D), of (B, D), and of (C, D) are each of them the two points (I, J).
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It would at first sight appear that the only conditions for the circles R, S, 7' were
the conditions of passing through the antipoints of (B, C), of (C, 4), and of (4, B)
respectively, and that these circles thus became indeterminate; but in fact the definition
of the circles is then as follows, viz, R has its centre at 4, and passes through the
antipoints of (B, (): (whence squared radius =AB.AC). And similarly, S has its
centre at B, and passes through antipoints of (C, A4), (squared radius =BA4 .B(); and
T has its centre at C, and passes through antipoints of (4, B), (squared radius
=CA .CB); these three circles cut each other at right angles. As before, 4, B, C
being in order on the line, the circles R, 7' are real, but the circle S has its radius a
pure imaginary quantity.

84. That the circles are as just mentioned appears as follows: taking the line
as axis of #, and a, b, ¢, d for the =z coordinapes of the four points respectively, then
the coordinates of A4,, D, are

(a+d), +}i(a—d);
whence, m being arbitrary, the general equation of a circle through 4,, D, is

@* + y* — 2maz + [m (¢ + d) —ad] 22 =0,
writing herein

PR 7
this becomes
204yt — 2 (cc —%) xz + (aﬁ—kQ—q(?) 22=0,

viz.,, for d=o 1t 1is

(z—az)*+y*— k22 =0,
which is a circle having A for its centre, and its radius an arbitrary quantity . If
the circle passes through the antipoints of B, C, the coordinates of these are

2(0+c), £ (b—0o),
E=[0+c)—alP— (b —cl=(a—b)(a—c)

85. Reverting to the general case of four points A4, B, ¢, D on a line, the
theorem as to the confocal conics holds good under the form that, drawing any conic
whatever through (4,, By, ¢, D,), the points (4., B,, C,, D,), and (4, B;, C;, Dy) lie
in confocal conics, these conics have their centre on the line, and axes in the direction
of and perpendicular to the line. When D is at infinity, the confocal conics become
any three concentric circles through (B,, (), (Cs, 4.), and (4;, B;) respectively.

and we find

Article Nos. 86 to 91. The Involution of Four Circles.

86. Consider any four points A4, B, C, D, the centres of circles denoted by these
same letters, and let A°, B, G°, D° signify as usual, viz, if (in orthogonal coordinates)
(¢, @', 1) are the coordinates of the centre, and a” the radius of the circle 4, then
° stands for (z—az)*+ (y — a’z)*—a"?2% and the like for B°, 6°, D°. Write also

a:b:c:d=BCD :—CDA : DAB :— ABC,

YL 64
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where BCD, &c., are the triangles formed by the points (B, C, D), &c.; the analytical
expressions are

a, sih, snp eyl D, IR e B o IR R i PR SR e L
Ci A .Ciy ik 7B A | e | bitiby. 1
d,:disinl a) el w il (g | RN |
s0 that

a +b +c +d =0,
aa +bb+cc +dd =0,
aa’ +bb'+cc’+dd' =0;
this being so, it is clear that we have
afl® + bB° +cC° +dD° =
2[a(@+a?—a?)+bB*+b? —b"?)+c(+c?—c?)+d(d* +d*—d"?)] = K2?, =K,
a constant.

87. I am not aware that in the general case there is any convenient expression
for this constant K ; it is =0 when the four circles have the same orthotomic circle;
in fact, taking as origin the centre of the orthotomic circle, and its radius to be =1,

we have

@+ a?—a”?=1, &c.,
whence

K=a+b+c+d=0;
that is, if the circles A4, B, C, D have the same orthotomic circle, then °, B°, €°, D°,
a, b, ¢, d, signifying as above, we have

al’ +bB° + cC° +dD° =0,
and, in particular, if the circles reduce themselves to the points A4, B, C, D respectively,
then (writing as usual U, B, €, D in place of A°, B°, €°, D°) if the four points
A, B, C, D are on a circle, we have
all+bB +cC +dP = 0.

88. This last theorem may be regarded as a particular case of the theorem
aA+bB+cC+dD =K2=K,

viz., the four circles reducing themselves to the points A4, B, €, D, we can find for
the constant K an expression which will of course vanish when the points are on a
circle. For this purpose, let the lines BC, AD meet in R, the lines C4, BD in S,
and the lines AB, CD in T; we may, to fix the ideas, consider ABCD as forming
a convex quadrilateral, B and 7 will then be the exterior centres, S the interior
centre; a, b, ¢, d, may be taken equal to BCD, —CDA, DAB, — ABC, where the areas
BCD, &c., are each taken positively. The expression a?l+bB+c€+dD has the same
value, whatever is the position of the point P (#, y, z=1); taking this point at R,
and writing for a moment

RA=a, RB=B, RC=v, RD=3§
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then
BCD = (RCD — RBD)=4{RD(RC — RB) sin R=(y—f) 8sin R,

with similar expressions for the other triangles; and we thus have

@ (y—8)9
Hpal —-B2 (3 —a)y \
all +bB +cC +dD =1z2.sin R =4z22sin R (By — ad) (v — B) (8 —a),
+7@-a)B
- &(v-Ba

that is, replacing a, B, v, 8, by their values, and writing also z2=1, we have
al +bB +c€ +dD=}sin R.(RB. RC—RA . RD) BC. AD,
where 4sin B.BC.AD is in fact the area of the quadrilateral ABCD; we have thus

a9l +bB + ¢6 +dD = (RB.RC— RA .RD)O
=(8C.84 —8B .8D)0O
=(TA.TB -TC .TD)O

where it is to be observed that SA4, SC being measured in opposite directions from
S, must be considered, one as positive, the other as negative, and the like as regards
SB, SD. This expression for the value of the constant is due to Mr Crofton. In the
particular case where A, B, C, D, are on a circle, we have as before -

al + bB +cC + dD=0.

89. If the four points 4, B, C, D, are on a circle, then, taking as origin the
centre of this circle and its radius as unity, the circular coordinates of the four points

will be
2 Eh ) () G3)
the corresponding forms of 2A°, &c., being
A =(€—az) (77 - ;z) — a2, &c.

the expressions for a, b, ¢, d, observing that we have

1

p
x —l, ) 0 It 1’ : 2 | = —x 8 A & .
B B a5 | L B B | =g 8 &
5 Akl el | o o
O, uorY, Pig; o

if (Byd), &c. denote (B —ry) (ry—S) (8 —RB), &c., become
a:b:c:d=a(Byd) : —B(yda) : v(3aB) : —3(aBy),

which are convenient formule for the case in question.
64—2
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90. If the points A, B, 0, D, are on a line, then taking this line for the axis of
x, we may write A°=(z—az)®+y*>—a”2 &c. It is to be remarked here that we can,
without any relation whatever between the radii of the circles, satisfy the equation

al® +bB° +cC°+dD°=0;
in fact this will be the case if we have
a +b +c +d =0,

aa +bbd +cc +dd =0
a(@®—a”)+b*—0b"?)+c(c*—c")+d(d*—d"”?)=0,

equations which determine the ratios a : b : ¢ : d. In the case where the circles reduce
themselves to the points 4, B, C, D, these equations become
a +b +c¢ +d =0,
aa +bb +cc +dd =0,
aa® +bb* +cc2 +dd? =0,
a:b:c:d=(bed) : —(cda) : (dad) : — (abe);
if for shortness (bed), &c. stand for (b—c)(c—d)(d—b), &c.; and for these values, we

have
al +bB +cC€ +dD =0.

91. A very noticeable case is when the four circles are such that the foregoing
values of (a, b, ¢, d) also satisfy the equation
afl° +bB° 4+ cC° +dD° =0;
the condition for this is obviously
aa” +bb"?+cc”? +dd” =0;

giving

or, as it may also be written,
a’? b2 s du 2

@—Ha-0@-d G-9G-DH0-0a) c-DE-a)c—b  [@=a)d-b@d=0

Article No. 92. On a Locus connected with the foregoing Properties.

92. If as above, 4, B, C, D are any four points, and A, B, €, D are the
squared distances of a current point P from the four points respectively, then the
locus of the foci of the conics which pass through the four points is the tetrazomal

curve i & i
avVA+bVB +cVE+dVD =0.

In fact the sum a2l+ bB+cC + dD has, it has been seen, a constant value for all

positions of the point P; taking P to be the other focus, its squared distances are

(k —VAY, &c., whence for the first-mentioned focus we have

al +bB+cC +dD=a(b— VAR +b (k- VBy +c(k—VEy+d (k- VD);
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or recollecting that a+b+c+d=0, it follows that we have for the locus in question
avA+bVB+cVE+dVD =0; this locus will be discussed in the sequel. I remark
here, that in the case where the four points are on a circle, then (as mentioned above),
the axes of the several conics are in the same fixed directions; there are thus two sets
of foci, those on the axis in one direction, and those on the axis in the other direction ;
it might therefore be anticipated, and it will appear, that in this case the tetrazomal
breaks up into two trizomal curves.

Article Nos. 93 to 98. Formule as to the two Sets (4, B, C, D), and (4,, B,, C,, D)),
each of four Concyclic Points.
93. Consider the four points A, B, €, D on a circle, then taking, as before, their

circular coordinates to be (a, a, 1), (B, B, 1), (v, v, 1), (5, &, 1), the condition that
the points may be on a circle is

!l, Ay S aa =10
L B, 58
R A o 4
1,30 0 85,{ 16d!

viz., this equation may be written

B-y)@=8):(y—a)(B =8):(a=B)(y-8)
=B =y)@-08): (yY-ad)(B=8): (@=B)(y~7¥);
or if, for shortness, we take
a=RB—-m. Sst=d Welzy, fed-F,
b=y—-a, g=B-3 bV=9-d, g=8-35,
c=a—-B, h=y-3 c¢=d-8, V=g-=7¢,
and consequently

af + bg+ch=0, af +bg + 'k =0,
a = g. =1 of =g =W,
b =h-—f, UV =h-f,
‘ /-9, ¢ =/ =9,
a+b +¢ =0, a +b +¢ =0,

then the equation is
af : bg : ch =df’ : Vg : V.

94. Let a, b, ¢, d, denote as before (a : b : ¢ : d=BCD : —CDA : DAB : — ABC),

then we have

aibieide] B7E, ARG R T PP 1 s e, o, 1
¥/ ¥ A4 i R A g | - A |

3 l l
8; 8 > 134 | a, a” 1 | B) Bl: 1 by £ 'Y" 1
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and we may write
a= . , al—adl, ag—dg, gl—gh,

b =0k -V, : , O =UF, M =1,
c=cg —cyg of' —df, VS IE - Tg,
d=cb —cb, ac —dc, ba'—Va, i

viz., the expressions in the same horizontal line are equal, and a, b, ¢, d are pro-
portional to the expressions in the four lines respectively.

95. I say that we have

cf _cy p af f
ah * = ok af

viz., this will be the case if
bc’a = Ny’ d,

ac’b = Nf'd,
a’be = fy'd,
and selecting the convenient expressions for a, b, ¢, d, these equations become
be’ (g’ — g'h) = g'L (cb’ —cD),
ac’ (Wf' = Lf) = f'h(ac’ — a’c),
«b(fy' —f'9) =fy (b’ —Va),

viz., thesc equations are respectively bgc'h’ =b'g'ch, cha'f’ =cWaf, afb'g’=a/f'bg, and are
consequently satisfied. It thus appears that the equation

l m n Pk

p: + ¥ o Ay + d =0
is transformable into

cf’ L Yy PN

ah l+bb me+ of Ny 2= 0

which is of course one of a system of similar forms.

96. Take (4,, D,) the antipoints of (4, D); (B,, C,) the antipoints of (B, C);
or say that the circular coordinates of 4,, B,, C,, D, are (a, &, 1), (B, v, 1), (v, B, 1),
(8, @, 1) respectively; the points 4,, B,, C,, D, are, as above mentioned, on a circle,
the condition that this may be so being in fact

11, a, &, ad |=0,
} L B v B
|1, §, B, 9B
| 1, 8, a’, oo’

equivalent to

af : bg : ch=df’ : by : N
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97. Let (a,, by, ¢, d;) be the corresponding quantities to (a, b, ¢, d), viz,
a,:b :¢:d=BCD, : -CDA, : DAB, : — ABC,; we have

aqtblzcl:dl=|/9, Y, 1i:—=|» B, 1: & o 1:-a, & 1|
v, B 1 18 @, 1 beaol 8 e -, Cftiln
: |
pitiofhiayadson gl gapmppis gt b Dl b oo
giving rise to a similar set of forms
a, = ; , —ac +ha!, d'g+ba, —c'g —bh,
y=—cb—gh iyt D O PR,
C = blc+h,,—flc +h’_f, . ) f’g+gif‘»
dy= ge+tb —Na+de, —a'b -Ja, ; §
and leading to
o o B
alc/ af/ l
so that the equation
I m n D
;1 o E o o e a; =)

is transformable into

af 9

Cf l cg,7n1+ nl— ,Ié_plzo,

a’c ¢’y .
98. Let A, B, C, D, be, as above, points on a circle; (4, D,) and (B, C,) the
antipoints of (4, D), (B, () respectively. Write
U=(E—-az)(n—adz), U =(E-az)(n—19¥2),
B=(E—-Bz)(n—B2), Bi=(E—-B2)(n—2),
C=(@E—y2)(n—v2), CG=(E-vz)(n —B2),
D=(E-02)(n-02), D=(E-8z)(n—az);

then we have identically

@-a)(F-a)B =(B-98) (B -8 A+ (B-a)(B —a)D—(B-8)(B'~a)U~(B-a)(B'~-8)D,,
@-a)(F-a)€ =(y =8 (v - A+ (y —a) (¥ =) D—(y=8)(v —2) U~ (v —a) (v =8)D,,
@-a)(§-a)B,=(B-9) (v -8 A+(B-a) (v —a) D —(B-O)(v ~) U~ (B-a)(v' -8)D,,
@-a)(=a)6 =(y =) (B -8)A+(y —0) (B -a)D—(y-8) (B -d)W—(y—0)(8-8)D,,

or, in the foregoing notation,

B = g9 + D + gcU + cg'D,,
Jf€ = hrA + VD — WA, — DI'D,,
S8, = gh'A — cb'D — gb'A, + ch'D,
J€ = hgA — b¢'D + AU, — by'D,.
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Article Nos. 99 to 104. PFurther Properties in relation to the same Sets
(4,- B, 0,'D) ‘and: (AFIBrECE, D).

99. Itis to be shown that in virtue of these equations, and if moreover E+ 3
then it is possible to find 7, m,, m;, p;, such that we have identically

— U+ mB + n€ - pD +1,A, —

mB, —m €, +p.9,=0.

This equation will in fact be identically true if only

—ffl+g99'm + hh'n

cc'm + bb'n — ff'p

gc'm — hb'n
cg'm — bh'n

a single one, viz, we have

+ ffh

— gh'm, — g'hn,

+ cb'm, + be'n,

+ gb'm, — he'ny

=10

2

=),

+ ch'm, + bg'my + ff'p, = 0.

From the first and second equations eliminating m, or m,, the other of these quantities
disappears of itself, and we thus obtain two equations which must be equivalent to

beffl+cgafm+bhafn+ghff'p=0,

beffl+cgaf'm + bWafn + gh'ffp=0;

which equations may also be written

cf l+cg

Ihl

and it thus appears that the equations are equivalent to each other

assumed relation

100. Similarly, from the third and fourth equations eliminating m or

s

g

by

!
S+
a

m +

f

iy
b

QI3

g

)Y
/b’

=0.

oS

of these quantities disappears of itself, and we find

g ff t — cga’fm + afc'gm — dgffp, =0,

p 0,

p=0;

VRl — af6Hm, + bhalf'n, — Bhffp, =

equations which may be written

c—f _ch‘lm-’- ;fln '];q“:P:O,
ac” ¢y ga

f/hl —b/h/ af —_/g“' o

P by ™ f P B 50

b

Sl
+c+d 0,

, and to the

n, the other
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where we see that the two equations are equivalent to each other and to the
equation

bos 0 Mg Dy

Faagi Tt s
It thus appears that the quantities [,, m,, n,, p,, must satisfy this last equation. It
is to be observed that the first and second equations being, as we have seen, equivalent
to a single equation, either of the quantities m,, n,, may be assumed at pleasure, but
the other is then determined; the third and fourth equations then give [, p,; and the
quantities l,, m,, my, p,, so obtained, satisfy identically the equation £1+7€1- :}2 %)3:0.

1 )| 1 1

101. Now writing
I =—g(m +bm)+h(bn +cn,),
Jp==c(gm—Hm)+b(hn—gn),

and
Hfp = c(m+bm)+b(n+cn),
Il = g(g'm—Em)+h(Kn-gn),
we find
2 (bpy = lp) = — (bg + ch) [(¢m + b'my) (K'n — g'm) + (g'm — W'm,) (b'n + ¢'ny)],
= (bg+ch) Vg +ch ) (mmn, —mn),
= adff’ (mmn, —mn),
that is

T (Lp, = lp) = aa’ (mgm, — mm)

viz., this equation is satisfied identically by the values of [, m,, n,, p, determined as
above.

102. Hence if myn,=mn, we have also lp,=Ip, and we can determine my,, n,, so
that mn, shall =mn, viz., in the first or second of the four equations (these two being

3 6 4 1
equivalent to each other, as already mentioned), writing m, = 0n, and therefore =g m,

we have
—fFL+ gg'm + hi'n — gh'n8 — g'hm (19 s,
cc'm + bb'n — ff'p + cb'nd + bc'm %: 0,

which are, in fact, the same quadric equation in 6, viz, we have

—Jfl+ggm+hihn_ _gh' _ _gh
cm+ Obn—ffp b b

The final result is that there are two sets of values of 4, my, ny, p,, each satisfying
the identity
— U+ mB +n6 — pD + L, A, —m,B, — 0,6, + p,D, =0,
OV 65
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and for each of which we have
Lp, =1lp, myn, = mn.

103. Consider, in pa.rticula,r, the case where p=0; the relation

;+F+E+d_ y
here becomes
/ lh
lea2 m — T
b i

The equation in € is
(cc'm + bb'n) 0 + cb'nd* + bc'm = 0,

viz., this is
(¢ + ¢'m) (b'nf + b) = 0,
giving
or else
PORtLL . LSRG F o __bn
bln b 1 bl b 1 cl 3

Since in the present case /;p,=0, we have either [,=0, or else p,=0, and as mlght;
be anticipated, the two values of 6 correspond to these two cases respectively, viz.,
proceeding to find the values of /,, p,, the completed systems are

b ' o b’ﬂ ) cm
0——5 iy g <ccm bb ), mo==—, m ==, p, =0,

C’m R0 e C_,’I_I} g 'n a,f e
0=—b)7’l; ll—'O sip M 3 = = T 77/1—-—?, pl b,:f(CC’m/ bb’n),

so that for the first system we have

j—;+g’q+ﬁ—0 mmy, =mm, —IA+mB+n€==17LA +m,B,+n6,,
: |

and for the second system
b + +€]1 =0, m'n,=mn, —IA+mB+n€=-p D +m"B,+n6,.
1

104. The whole of the foregoing investigation would have assumed a more simple
form if the circular coordinates had been taken with reference to the centre of the
circle. ABCD as origin, and the radius of this circle been put =1; we should then

have a"=%, &c., and consequently

P, ot g g ik o B
.= 3,),“’ T fyab’ C.= aﬁc’ = aS'ﬁ g ——B“Sg» 12 _—'y_Sh’
but the symmetrical relation of the circles ABCD and A,B,C.D, would not have been
so clearly shown.
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I will however give the investigation in this simplified form, for the identity
—N+mB+n€=—=1A+mB+nE; viz., in this case we have
L__m@B-vB-3_nB-v)(vy-29

a  By-a)@-8 y@-B)(a-y’
and the identity to be satisfied is

-1 (-a2)(n-

1 t
a o

+ m (€ —B2) (77 - %z) + m, (E— Bz) (7) %, )
1
v

+n (E—W)(n— Z) +iy (f—'yZ)('l;-—%}z>;

writing &= az, 77=/—::2 z, we find m,, and writing £ = az, n=lz, we find n,, and it is
.

then easy to obtain the value of [, viz, the results are

by m(a—B)(,B v) n(ﬁ 'Y)('Y—'a) g nl=—-mi.—_-B
Yy

o St m=—n'—

§ By-a)(@=-8)" y(a=B)(a=3§)’ a—RB’

and therefore my,n, =mn; it may be added that we have

h B,"Y<"£€!+’_’1)
§ 0T
ny . m

viz., this is the form assumed by the equation il,_;_ g =0.
1 1 1

Part III. (Nos. 105 to 157). ON THE THEORY OF Focr.
Article Nos. 105 to 110.  Ezplanation of the General Theory.

105. If from a focus of a conic we draw two tangents to the curve, these pass
respectively through the two circular points at infinity, and we have thence the
generalised definition of a focus as established by Pliicker, viz, in any curve a
focus is a point such that the lines joining it with the two circular points at infinity
are respectively tangents to the curve; or, what is the same thing, if from each of
the circular points at infinity, say from the points 7, J, tangents are drawn to the
curve, the intersections of each tangent from the one point with each tangent from
the other point are the foci of the curve. A curve of the class » has thus in
general n* foci. It is to be added that, as in the conic the line joining the points
of contact of the two tangents from a focus is the directrix corresponding to that
focus, so in general the line joining the points of contact of the tangents from the
focus through the points I, J respectively is the directrix corresponding to the focus

in question.

65—2
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106. A circular point at infinity 7 or J, may be an ordinary or a singular
point on the curve, and the tangent at this point then counts, or, in the case of
a multiple point, the tangents at this point count a certain number of times, say
g times, among the tangents which can be drawn to the curve from the point; the
number of the remaining tangents is thus =n—g¢. In particular, if the circular point
at infinity be an ordinary point, then the tangent counts twice, or we have ¢=2; if
it be a node, each of the tangents counts twice, or ¢ =4; if it be a cusp, the tangent
-counts three times, or ¢=3. Similarly, if the other circular point an infinity be an
ordinary or a singular point on the curve, the tangent or tangents there count a certain
number of times, say ¢ times, among the tangents to the curve from this point;
the number of the remaining tangents is thus =n—¢. And if as usual we disregard
the tangents at the two points 7, J respectively, and attend only to the remaining
tangents, the number of the foci is =(n—q) (n —¢’).

107. Among the tangents from the point / or J there may be a tangent which,
either from its being a multiple tangent (that is, a tangent having ordinary contact
at two or more distinct points), or from being an osculating tangent at one or more
points, counts a certain number of times, say r, among the tangents from the point
in question. Similarly, if amoug the tangents from the other point J or 7, therc is
a tangent which counts 7’ times, then the foci are made up as follows, viz. we have

Intersections of the two singular tangents counting as . r'r focl.

Intersections of the first singular tangent with each of
the ordinary tangents from the other circular point at

infinity, as . ; ; s s ! ; ! ; (n—q =1)r
Do. for second singular tangent, : . ) i : (n—q —r)r
Intersections of the ordinary tangents . : . . (n—qg—-rY(n—q —=7)
Giving together the . . e . ; g (n—gq) (n—q) foci:

and the like observation applies to the more general case where the tangents from
each of the points 7, J include more than one singular tangent.

108. There is yet another case to be considered; the line infinity may be an
ordinary or a singular tangent to the curve: assuming that it counts s times among
the tangents from either of the circular points at infinity, the numbers of the
remaining tangents are n—g—s, n—¢q —s from the two points I, J respectively, and
the number of foci is =(n—q—58)(n—q - s).

109. In the case of a real curve the two points I, J are related in the same
manner to the curve, and we have therefore ¢=¢’; the singular tangents (if any)
from the two points respectively being the same as well in character as in number.
Writing n—g—s=n—¢ —s, =p, and not for the present attending to the case of
singular tangents, I shall assume that the number of tangents to the curve from each
of the two points is =p; the number of foci is thus =p*; and to each focus there
corresponds a directrix, viz, this is the line through the points of contact of the
tangents from the focus to the two points Z, J respectively,
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110. Consider any two foci A, B not un lined with either of the points 7, J,
then joining these with the points 7, J, and taking A4,, B, the intersections of A, BJ
and of AJ, BI (Al, B, being therefore by a foregoing definition the antipoints of (4, B)),
then d,, B, are, it is clear, foci of the curve. We may out of the p* foci select, and
that in 1.2..p different ways, a system of p foci such that no two of them lie
in lined with either of the points 7, J; and this being so, taking the antipoints of
each of the 4p(p—1) pairs out of the p foci, we have, inclusively of the p foci, in
all p+2.4p(p—1), that is p* foci, the entire system of foci.

Article Nos. 111 to 117. On the Foct of Conics.

111. A conic 1s a curve of the class 2, and the number of foci is thus =4.
Taking as foci any two points 4, B, the retﬁaining two foci will be the antipoints
4,, B,. In order that a given point 4 may be a focus, the conic must touch the
lines AZ, AJ; similarly, in order that a given point B may be a focus, the conic
must touch the lines BI, BJ; the equation of a conic having the given points 4, B
for foci contains therefore a single arbitrary parameter.

112. In the case, however, of the parabola the curve touches the line infinity ;
there is consequently from each of the points 7, J only a single tangent to the
curve, and consequently only one focus: the parabola having a given point 4 for its
focus is a conic touching the line infinity and the lines AZ, AJ, or say the three
sides of the triangle AIJ; its equation contains therefore two arbitrary parameters.

113. Returning to the general conic, there are certain trizomal forms of the focal
equation, not of any great interest, but which may be mentioned. Using circular
coordinates, and taking (a, «, 1) and (B; B, 1) for the coordinates of the given foci
A, B respectively, the conic touches the lines £—az=0, n—a2=0, £-B2=0,
n—Bz=0; the equation of a conic touching the first three lines is

VI(E—az)+ Vm(E—Bz)+Vn(n—dz)=0,

where I, m, n are arbitrary, and it is easy to obtain, in order that the conic may
touch the fourth line n —B'z=0, the condition

n=—g—_—af(m—l).

—a

114. In fact, n having this value, the equation gives

(E—a2) +m (€ — B2) + 2Vim (B= a2) (E=Bo) =~ 3 _ %~ ) (n— B2+ (B = ) 2),
and taking over the term

St D@ ~a)z =@ (=D

this gives

L(E = B2+ m (= o) + 2Vim (= 22) (E= B2) =~ g = 2y (= ) (0 — 2),
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which puts in evidence the tangent n— @Bz It is easy to see that the equation may
be written in any one of the four forms

V1 (E—az)+Nm(E—B2)+ «/ - g ok : (m—1)(n & a’z<) =0,

Vm (E—az)+ ¥ I (E — B2) + \/— g;:,(m— l)(_n—ﬂjz“)= 0,

N (g —dz)+Vm(n—Bz)+ \/— gf{g (m—1U)(E-az)=0,

N (n—dz)+ N 1(n—B2) +\/— % = :-' (m —1)(E—Bz)=0,

viz, in forms containing any three of the four radicals V& —az, VE—RBz, Vp—dz,
Wy —R%z The conic is thus expressed as a trizomal curve, the zomals being each a
line, viz., they are any three out of the four focal tangents; the order of the curve,
as deduced from the general expression 2'~%7, is =2; so that there is here no depression
of order.

115. But the ordinary form of the focal equation is a more interesting one; viz.,
A, B being as usual the squared distances of the current point from the two given
foci respectively, say

A=(E—az)(n—az),

B =(§—B2)(n - B2),
then 2« being an arbitrary parameter, the equation is

20z +VA+VB =0,

viz., the equation is here that of a trizomal curve, the zomals being curves of the
second order, that is, the zomals are (2°=0) the line infinity twice, and the line-pairs
AI, AJ and BI, BJ respectively: the general expression 2*—2r gives therefore the order
=4; but in the present case there are two branches; viz., the branches

20z + VA - VB =0, 2az-— \/’2—[+\/%=0,
each ideally containing (2=0) the line infinity; the curve contains therefore (z*=0)

the line infinity twice, and omitting this factor the order is =2, as it should be.

116. To express the equation by means of the other two foci 4,, B,, writing the
equation under the form

A+ B+ 2VAB — dazr =0,

and then if 2, B, are the squared distances of the cwrent point from A4,, B,
respectively, we have (ante, No. 65),

AB=2A,,
A+B-A-B,=k2,
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110. Consider any two foci A, B not @n lined with either of the points 7, J,
then joining these with the points 7, J, and taking A4,, B, the intersections of A, BJ
and of AJ, BI (4,, B, being therefore by a foregoing definition the antipoints of (d, B)),
then d,, B, are, it is clear, foci of the curve. We may out of the p* foci select, and
that in 1.2..p different ways, a system of p foci such that no two of them lie
in lined with either of the points 7, J; and this being so, taking the antipoints of
eac of the 4p(p—1) pairs out of the p foci, we have, inclusively of the p foci, in
all p+2.4p(p—1), that is p* foci, the entire system of foci.

Article Nos. 111 to 117. On the Foct of Conics.

111. A conic is a curve of the class 2, and the number of foci is thus =4.
Taking as foci any two points A4, B, the remaining two foci will be the antipoints
4,, B,. In order that a given point A may be a focus, the conic must touch the
lines AZ, AJ; similarly, in order that a given point B may be a focus, the conic
must touch the lines BI, BJ; the equation of a conic having the given points 4, B
for foci contains therefore a single arbitrary parameter.

112. In the case, however, of the parabola the curve touches the line infinity ;
there is consequently from each of the points I, J only a single tangent to the
curve, and consequently only one focus: the parabola having a given point 4 for its
focus is a conic touching the line infinity and the lines AZ, AJ, or say the three
sides of the triangle AIJ; its equation contains therefore two arbitrary parameters.

113. Returning to the general conic, there are certain trizomal forms of the focal
equation, not of any great interest, but which may be mentioned. Using circular
coordinates, and taking («, «, 1) and (B, B, 1) for the coordinates of the given foci
A, B respectively, the conic touches the lines £—az=0, 7—a2=0, £-B2=0,
n—pB'2=0; the equation of a conic touching the first three lines is

NI(E=az)+ Vm(E— Bz)+ Nn(n—dz)=0,

where I, m, n are arbitrary, and it is easy to obtain, in order that the conic may
touch the fourth line » —B'z= 0, the condition

(m~l)

n=-—

BI

114. In fact, n having this value, the equation gives

(E—a2) +m (€ — Be) + 2 Vim (B= ) (E=Bo) == 1y _ % (m— ) (n— B2+ (B = )2),

and taking over the term

a =@ -2)s =B-Dm-Ds,

this gives

L(E—B2)+m (E—az)+2VIm (E—az) (E- BZ)——*, ,(m—l)(n B'2),
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viz., of a circle having its centre on the major axis at a distance =aesin 6 from the
centre, and its radius =bcosd. (I notice, in passing, that this gives in practice a
very convenient graphical construction of the ellipse.) It may be remarked that for

6 = + sine, the circle becomes
b? bt

(mi(a—é))2+y2=(§,

viz., this is the circle of curvature at one or other of the extremities of the major
axis; as 6 passes from 0 to +sin~'e we have a series of real circles, which, by their
continued intersection, generate the ellipse; as 6 increases from 6=t sin7'e to +90°
the circles continue real, but the consecutive circles no longer intersect in any real
point,—and ultimately for 6=+90°, the circles become evanescent at the two foci
respectively.

121. In the case ¢ >1, we have a real representation of
(z—qaey +y* +b* (¢ - 1),

as the squared distance of the point (z, y) from a point (X, 0, Z) out of the plane
of the figure, viz., putting this = (z— X)*+ 3>+ 2

we have
que=X, Z2=b(¢°—1),
whence
L=l (3(_ d 1) :
a’e
or, what is the same thing,
X VA
b ik

that is, the locus is the focal hyperbula, viz, a hyperbola in the plane of zz, having
its vertices at the foci, and its foci at the vertices of the ellipse.

122. If instead of the form first considered, we start from the trizomal form

20z +Va* + (y — aeiz) + Va? + (y+ aeiz) =0,

then we have the zomal or circle of double contact-under the form

@+ (y — quei) = a*(1 = ¢);
or putting herein ¢ =—<¢tan ¢, this is

2*+(y —aetan ¢p)*=a’sec® ¢;
so that we have the ellipse as the envelope of a variable circle having its centre
on the minor axis of the ellipse, distance from the centre =aetan ¢, and radius
=asec¢. This is, in fact, Gergonne’s theorem, according to which the ellipse is
the secondary caustic or orthogonal trajectory of rays issuing from a point and
refracted at a right line into a rarer medium. It is to be remarked that for

tan ¢ = + %q, the equation of the circle is

ad

e+ (y£0-3) =5
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where k is the squared distance of the foci 4, B, =4a’*® suppose: whence putting
a@* (1 —¢)=01% the equation becomes

A+ B, +2 VAP, — 422 =0,
that is SN e

VL, + VB, + 2bz =0,

which is the required new form. It is hardly necessary to remark that the equation
2az + VO + VB =0, putting therein z=1, and expressing 2, B in rectangular coordinates
measured along the axes, is the ordinary focal equation 2a =+(z — ae)* + y* + V(2 + ae)* + ¥~

117. Iremark that the equation 2az+VA+VB =0 gives rise to 4a%2? + A —B +4azVA=0,
but here A—B =— 4aexz, so that the equation contains z=0, and omitting this it

becomes (az— ex) + VA =0, a bizomal form, being a curve of the order =2, as it should
be; this is in fact the ordinary equation in regard to a focus and its directrix.

Article Nos. 118 to 123. Theorem of the Variable Zomal as applied to a Conic.

118. The equation 2kz+VA°+vVB°=0 is in like manner that of a conic; in
fact, this would be a curve of the order =4, but there are as before the two branches
2oz + VAT — VB =0, 2kz—VA° +VB° =0, each ideally containing (z=0) the line infinity,
and the order is thus reduced to be =2. Each of the circles A° =0, B°=0 is a
circle having double contact with the conic (this of course implies that the centre of
the circle is on an axis of the conic). We may if we please start from the form
2%z 4+VA+ VB =0, and then by means of the theorem of the variable zomal introduce
into the equation one, two, or three such circles.

119. It is in this point of view that I will consider the question, viz., adapting
the formula to the case of the ellipse, and starting from the form

2az + V(@ — aez) + 4 + V(z + aez)t + 12 =0,

the equation of the variable zomal or circle of double contact may be taken to be

da?z?  (z—aez)P+y*  (x+aez) +y°
T 1—g¢ b 1+¢q Ll

where ¢ is an arbitrary parameter; writing for greater simplicity z=1, and reducing,

the equation is
(z— qaey +y*=b*(1 —¢*).

120. If ¢< 1, then writing ¢=sin 6, we obtain the ellipse
ek
e Tr= L
as the envelope of the variable circle

(z —aesin 0) + > = b® cos* 0,
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125. Hence taking the points on the curve to be the circular points at infinity,
we have the sixteen foci lying in fours upon four different circles—that is, we have
four tetrads of concyclic foci. Let any one of these tetrads be A4, B, C, D, then if

Antipoints of (B, C)(4, D) are (B,, ), (4., D)),
» (C, 4)(B, D) , (G, 4,), (B,, Dy,
» (AI -B) (0) D) » (A:b BS): (03 ) -D3>1

the four tetrads of concyclic foci are

2 b s s Do 70
AL B G T
Ay By, el s
ARET By 0 D,

It is to be observed that if A, B, C, D are any four points on a circle, then if as
above, we pair these in any manner, and take the antipoints of each pair, the four
antipoints lie on a circle, and thus the original system A, B, C, D, of four points on
a circle, leads to the remaining three systems of four points on a circle. The theory
is in fact that already discussed ante, No. 72 et seq.

126. The preceding theory applies without alteration to the bicircular quartic,
viz.,, the quartic curve which has a node at each of the circular points at infinity.
The class is here =8, but among the tangents from a node each of the two tangents
at the node is to be reckoned twice. and the number of the remaining tangents is
=4: the number of foci is =16. And, by the general theorem that in a binodal
quartic the pencils of tangents from the two nodes respectively are homologous, the
sixteen foci are related to each other precisely in the manner of the foci of the
circular cubic. The latter is in fact a particular case of the former, viz., the bicircular
quartic may break up into the line infinity, and a circular cubic.

Article Nos. 127 to 129. Centre of the Circular Cubic, and Nodo-Foci, &c. of the
Bicircular Quartic.

127. The tangents at /, J have not been recognised as tangents from I, J, giving
by their intersection a focus, but it is necessary in the theory to pay attention to the
tangents in question. It is clear that these tangents are in fact asymptotes—viz., in
the case of the circular cubic they are the two imaginary asymptotes of the curve,
and in the case of a bicircular quartic, the two pairs of imaginary parallel asymptotes;
but it is convenient to speak of them as the tangents at I, J.

128. In the case of a circular cubic, the tangents at 7 and J meet in a point

which I call the centre of the curve, viz., this is the intersection of the two imaginary
asymptotes.
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129. In the case of a bicircular quartic, the two tangents at 7 and the two
tangents at .J meet in four points, which (although not recognising them as foci) I
call the mnodo-foci; these lie in pairs on two lines, diagonals of the quadrilateral formed
by the four tangents (the third diagonal is of course the line IJ), which diagonals
I call the “mnodal axes;” and the point of intersection of the two nodal axes is the
“centre” of the curve. The nodo-foci are four points, two of them real, the other two
imaginary, viz, they are two pairs of antipoints, the lines through the two pairs
respectively being, of course, the nodal axes; these are consequently real lines bisecting
each other at right angles in the centre (with the relation 1 : ¢ between the distances).
The centre may also be defined as the intersection of the harmonic of IJ in regard
to the tangents at 7, and the harmonic of this same line in regard to the tangents
at J. Speaking of the tangents as asymptotes, the nodo-foci are the angles of the
rhombus formed by the two pairs of parallel asymptotes; the nodal axes are the
diagonals of this rhombus, and the centre is the point of intersection of the two
diagonals; as such it is also the intersection of the two lines drawn parallel to and
midway between the lines forming each pair of parallel asymptotes.

Article No. 130. Cirvcular Cubic and Bicircular Quartic; the Awial or Symmetrical
Cuase.

130. In a circular cubic or bicircular quartic, the pencil of the tangents from
I and that of the tangents through J, considered as corresponding to each other in
some one of the four arrangements, may be such that the line 7J considered as
belonging to the two pencils respectively shall correspond to itself, and when this is
so, the four foci, A, B, €, D, which are the intersections of the corresponding tangents
in question, will lie in a line (viz, the conic which exists in the general case will
break up into a line-pair consisting of the line IJ and another line). The line in
question may be called the focal axis; it will presently be shown that in the case of
the circular cubic it passes through the centre, and that in the case of the bicircular
quartic it not only passes through the centre, but coincides with one or other of the
nodal axes, viz, with that passing through the real or the imaginary nodo-foci; that
is, the curve may have on the focal axis two real or else two imaginary nodo-foci.
The focal axis contains, as has been mentioned, four foci—the remaining twelve foci
are situate symmetrically, six on each side of the focal axis, the arrangement of the
sixteen foci being as mentioned ante, No. 81 et seq.; the focal axis is in fact an
axis of symmetry of the curve, and if preferred it may be named the axis of symmetry,
transverse axis, or simply the axis. And the curve (circular cubic, or bicircular quartic)
is in this case a “symmetrical” or “axial” curve.

Article Nos. 131 to 140. Cuircular Cubic and Bicircular Quartic: Singular Forms.

131. The circular cubic may have a node or a cusp. If this were at one of the
points 7, J the curve would be imaginary, and I do not attend to the case; and for
the same reason, for the bicircular quartic I do not attend to the case where one of
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524 ON POLYZOMAL CURVES. (414

the points I, J is a cusp. There remain then for the circular cubic and for the
bicircular quartic the cases where there is a node or a cusp at a real point of the
curve; and for the bicircular quartic the case where each of the points I, J is a
cusp—in general the curve has no other node or cusp, but it may besides have a
node or cusp at a real point thereof.

132. I consider first the case of the bicircular quartic where each of the points
I, J is a cusp. The curve is in this case of necessity symmetrical ()—it is in fact
a Cartesian; viz, the Cartesian may be taken by definition to be a quartic curve
having a cusp at each of the circular points at infinity. But in this case, as dis-
tinguished from the general case of the bicircular quartic, there is an essential
degeneration of all the focal properties, and it is necessary to explain what these
become. The centre is evidently the intersection of the cuspidal tangents; the nodo-
foci (so far as they can be said to exist) coalesce with the centre, and they do not
in so coalescing determine any definite directions for the nodal axes; that is, there
are no nodal axes, and the only theorem in regard to the focal axis or axis of
symmetry is, that it passes through the centre. Of the four tangents through the
point 7, one has come to coincide with the line IJ; and similarly, of the four
tangents through the point J one has come to coincide with the line J7: there
remain only three tangents through 7/ and three tangents through J, and these by
their intersections determine nine foci—viz., three foci A, B, C on the axis, and besides
(B,, C,) the antipoints of (B, (): (C., A4,) the antipoints of (C, A) and (4,, B;) the
antipoints of (4, B).

133. The remaining seven foci have disappeared, viz, we may consider that one
of them has gone off to infinity on the focal axis, and that three pairs of foci have
come to coincide with the points I, J respectively. The circle O (as in the general
case of a symmetrical quartic) has become a line, the focal axis; the circles R, S, T
(contrary to what might at first sight appear) continue to be determinate circles, viz.,
these have their centres at A, B, C' respectively, and pass through the points (B,, (),
(C,, A,), and (4,, B;) respectively, see ante, No. 83. But on each of these circles we
have not more than two proper foci, and it is only on the axis as representing the
circle O that we have three proper foci, the axial foci A4, B, C: in regard hereto it
is to be remarked that the equation of the curve can be expressed not only by
means of these three foci in the form VI +VmB+Vn€=0; but by means of any

two of them in the form VI +VmB + K =0, where K is a constant, or, what is the
same thing (z being introduced for homogeneity in the expressions of A and B

respectively), in the form Vi + ¥Vm®B + Kz* = 0.
134, Using for the moment the expression “twisted” as opposed to symmetrical—

1 It will appear, post Nos. 161—164, that if starting with three given points as the foci of a bicircular
quartic, we impose the condition that the nodes at I, J shall be each of them a cusp, then either the
quartic will be the circle through the three points taken twice, in which case the assumed focal property of
the given three points disappears altogether, or else the three points must be in lined, and thus the curve be
symmetrical, that is, a Cartesian.
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(viz., the curve is twisted when there is not any axis of symmetry, but the foci lie
only on circles)—then the classification is

Circular Cubics, twisted,
i i3 symmetrical,

Bicircular Quartics, twisted,
! Ordinary,
h 2 symmetrical, . t '
| Bicuspidal = Cartesian,
and "each of these kinds may be general, nodal, or cuspidal—viz, for the two last

mentioned kinds there may be a node or a cusp at a real point of the curve.

135. In the case of a node, say the point N; first if the curve (circular cubic
or bicircular quartic) be twisted—then of the four foci A, B, ¢, D we have two,
suppose B and C, coinciding with N; and the sixteen foci are as follows, viz

B, G, A D are N N A D

B, C, A,, D, , N, N, Antipoints of (4, D);

C,, 4,, B,, D, , Antipoints of (N, A), Antipoints of (N, D);
As B G Bg i Do. do.

viz., we have the points (A4, D) each once, the node N four times, the antipoints of
(4, D) once, and the antipoints of (N, 4) and of (N, D), each pair twice. But
properly there are only four foci, viz, the points A4, D and their antipoints. The
circle O subsists as in the general case, and so does the circle R (BC, AD), viz, this
has for centre the intersection of the line AD by the tangent at N to the circle O,
and it passes through the point N, of course cutting the circle O at right angles:
the circles S and 7' each reduce themselves each to the point N considered as an
evanescent circle, or what is the same thing to the line-pair NI, NJ.

136. The case is nearly the same if the curve be symmetrical, but in the case
of the bicircular quartic excluding the Cartesian: viz, we have on the axis the foci
B, C coinciding at N, and the other two foci A4, D; the sixteen foci are as above—
and the circle B is determined by the proper construction as applied to the case in
hand, viz., the centre R is the intersection of the axis by the radical axis of the
point N (considered as an evanescent circle) and the circle on AD as diameter; that

is RN*=RA.RD. And the circles S and 7 reduce themselves each to the point IV
considered as an evanescent circle.

137. Next if we have a cusp, say the point K: first if the curve (circular cubic
or bicircular quartic) be twisted—then of the four foci A, B, C, D, three, suppose
A, B, O, coincide with K ; and the sixteen foci are as follows, viz.,

B, C, A\ %D are 'K, K, K, D,

B, C, A,, D, ,, K, K, Antipoints of (K, D),
Cs, 4,, By, D, ,, Do do.

A B G D Do. do.
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viz., we have the point D once, the point K nine times, and the antipoints of K, D
three times. But properly the point D is the only focus. The circle O is, it would
appear, any circle through K, D, but possibly the particular circle which touches the
cuspidal tangent may be a better representative of the circle O of the general case—
the circles R, S, T reduce themselves each to the point K considered as an evanescent
point.

138. The like is the case if the curve be symmetrical, but in the case of the
bicircular quartic excluding the Cartesian; the circle O is here the axis, which is in
fact the cuspidal tangent.

139. For the Cartesian, if there is a node N; then of the three foci A4, B, C,
two, suppose B and C, coincide with N; the nine foci are A once, N four times, and
the antipoints of N, A twice: but properly the point A is the only focus. And if
there be a cusp K; then all the three foci 4, B, C coincide with K; and the nine
foci are K nine times; but in fact there is no proper focus.

140. A circular cubic cannot have two nodes unless it break up into a line and
circle; and similarly a bicircular quartic cannot have two nodes (exclusive of course
of the points I, J) unless it break up into two circles; the last-mentioned case will
be considered in the sequel in reference to the preblem of tactions.

Article No. 141. As to the Analytical Theory for the Circular Cubic and the Bicircular
Quartic respectively.

141. It may be remarked in regard to the analytical theory about to be given,
that although the investigation is very similar for the circular cubic and for the
bicircular quartic, yet the former cannot be deduced from the latter case. In fact if
for the bicircular quartic, using a form somewhat more general than that which is
ultimately adopted, we suppose that for the two nodes respectively (§=0, z=0) and
(n=0, z=0), then if I+ mz=0, I'E+mz=0, nmy+ pz=0, w'n+p2=0 are the tangents
at the two nodes respectively, the equation will be

(I + mz) (VE +m'z) (ng + pz) (W'n + p'z) + e2*En + 2° (aE + by) + c2* =0,

and if (in order to make this equation divisible by 2, and the curve so to break up
into the line z=0 and a cubic) we write /=0 or n=0, then the curve will indeed
break up as required, but we shall have, not the general cubic through the two points
(=0, 2=0), (p=0, 2=0), but in each case a nodal cubic, viz., if =0 there will be
a node at the point (=0, 2=0), and if »=0 a node at the point (§=0, z=0).

Article Nos. 142 to 144. Analytical Theory for the Circular Cubic.

142. I consider then the two cases separately; and first the circular cubic. The
equation may be taken to be

En (pE + qn) + ezén + 22 (aE + by +c2) = 0,
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or, what is the same thing,
En (PE+qn +e2) + 2* (a€ + by + c2) =0,

viz. (€, 5, z) being any coordinates whatever, this is the general equation of a cubic
passing through the points (§=0, 2=0), (n =0, 2=0), and at these points touched by
the lines £=0, » =0 respectively. And if (& %, 2=1) be circular coordinates, then we
have the general equation of a circular cubic having the lines £=0, »=0 for its
asymptotes, or say the point £=0, n=0 for its centre; the equation of the remaining
asymptote is evidently pE+gn+ez=0; to make the curve real we must have (p, q)
and (a, b) conjugate imaginaries, e and ¢ real.

143. Taking in any case the points I, J to be the points £=0, z2=0 and 7 =0,
z=0 respectively, for the equation of a tangent from I write p& = 60z; then we have
On (0z + qn + ez) + z (abz + bpn + cpz) =0,
that is
2*(al + cp) + nz (0° + €6 + bp) + 7*. ¢ =0,

and the line will be a tangent if only
(6°+ €0 +bpy — 4¢0 (ab + cp) = 0,

that is, the four tangents from I are the lines pf =0z, where 6 is any root of this
equation ; similarly the four tangents from J are the lines gy = ¢z, where ¢ is any
root of the equation

($* + ed + aq)* — 4pp (b + cq) = 0.

Writing the two equations under the forms

6, \ 6, )
3e, 3e,
Je+2bp—dag , {6, 14=0, { e +2ag—4bp , G, 1)*=0,
3ebp  — 6epg, 3eaq  — 6cpg,
6b2p?, J baq’, J

the equations have the same invariants; viz, for the first equation the invariants are
easily found to be

I = 3(&&—4bp—4aq)*+ 72 (ce — 2ab) pq,
J=— (&—4bp—4aq)’— 36 (ce — 2ab) pq (¢* — 4bp — daq) — 216 c*p*¢,

and then by symmetry the other equation has the same invariants. The absolute
invariant 7°+J? has therefore the same value in the two equations; that is, the
equations are linearly transformable the one into the other, which is the before-
mentioned theorem that the two pencils are homographic.

144. The two equations will be satisfied by 6 =¢, if only bp=agq; that is, if
p=%, q=]l—;; putting for convenience ]% in place of e, the equation of the curve is then
En(ak + by +e2)+ k2* (aE+bn+cz)=0.
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In this case the pencils of tangents are af = k6z, bn=~r0z, where € is determined by
a quartic equation, or taking the corresponding lines (which by their intersections
determine the foci 4, B, C, D) to be (aé==k6z byn==Fk0:z), &c., these four points lie in
the line af—bn=0, which is a line through the centre of the curve, or point £=0,
n=0: the formule just obtained belong therefore to the symmetrical case of the
circular cubic. Passing to rectangular coordinates, writing z=1, and taking y=0 for
the equation of the axis, it is easy to see that the equation may be written

@+y)(z—a)+k(@—-0)=0;
or, changing the origin and constants,

zy*+ (¢ — a) (x—b)(z—c)=0.

Article Nos. 145 to 149. Analytical Theory for the Bicircular Quartic.

145. The equation for the bicircular quartic may be taken to be
k(& —a2?) (2 — B2%2%) + ez n + 2° (af + by) + c2* = 0,

viz. (£, 7, z) being any coordinates whatever, this is the equation of a quartic curve
having a node at each of the points (§=0, z=0) and (p=0, z=0): the equations of
the two tangents at the one node are £—az=0, £4+az=0; and those of the two
tangents at the other node are n—Bz=0, n+B2z=0; £=0 is thus the harmonic of
the line z=0 in regard to the tangents at (§=0, z=0), and =0 is the harmonic
of the same line z2=0 in regard to the tangents at (=0, 2=0). If (§ 5, z=1) be
circular coordinates, then we have the general equation of the bicircular quartic having
the lines £+az=0, £—az=0 for one pair, and the lines 7 —Bz=0, n +Bz=0 for the
other pair of parallel asymptotes; and therefore the point £=0, =0 for centre, and
the lines B —an=0, BE+an=0 for nodal axes. In order that the curve may be real
we must have (a, B), (@, b) conjugate imaginaries, k, ¢, ¢ real. The points (£=0, z=0)
and (=0, 2=0) are as before the points 7, J. If a=0, the node at I becomes a
cusp, and so if 8=0, the node at J becomes a cusp; the form thus includes the case
of a bicuspidal or Cartesian curve.

146. To find the tangents from I, writing in the equation of the curve §= faz
we have
ka? (62— 1) (p* — B°2%) + eabnz + z (aabz + bn) + ¢z =0 ;
that is
n* . ka? (62 —1),

+ mz.ea0 + b,
+ 22— ka3 (- 1)+ aaf+c=0,

and the condition of tangency is

2

4k (0° - 1) {ka®B? (6> = 1) — aad — ¢} + (eﬁ + g) =0;
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viz., the tangents from I are &=6az, where 6 is any root of this equation. Similarly,
if we have

8¢ 1) (b (9~ 1)~ B — o]+ (e + %) =0,
the tangents from J are = @Bz, where ¢ is any root of this equation.

147. The two equations may be written

2400%3, 24/%a3,
— 6kaa, — 6kbB,
— Skra®3— 4dkc+ e, — 8k**B*— 4kc + e,
3 2 5,0 0, 1}=0, A i 50 Q¢ 1)=0,
a +3e_, B +3e g’
24/ + 24kc + 6 5’-2 24ia23 + 24kc + 6 =, |
@ ) B )

which equations have the same invariants; in fact for the first equation the invariants
are found to be as follows, viz.,, if for shortness C'= — 8k?a®3? — 4kc +¢2, then

I =576k%aB + 576k%ca?3> + 1444* (w*a® + b°3) + T2kab + 3C2,
J = C (5T6kasB + 576 ca2B + 144k (a2a + bB?) + 36kea — (2}
— 864k*eaba’32 — 216k%* («*a® + b*B?) — 2164%a*b?,

and then by symmetry the other equation has the same invariants. The absolute
invariant /*+J*? has thus the same value in the two equations, that is, the equations
are linearly transformable the one into. the other, which is the before-mentioned
theorem that the pencils are homographic.

148. The equations will be satisfied by 6= ¢ if only aa =08, that is, if a, b=m}, ma;
or by 6=—¢ if only aa=—08, that is, if a, b=mB, —ma: the equation of the curve
is. in these two cases respectively

k(& — a%®) (p* — B°2%) + ez*én + mz* (BE + an) + c2* =0,
k (8 — a22®) (p* — 3°%2) + ez?Em + mz® (BE — an) + c2* = 0.

If to fix the ideas we attend to the first case, then the equation in € is

|/ 24kta23r, »
—  6hmaf,
4 — 8k — 4kc+e, (6, 1)=0;
- 6kmaB + Sme, |
240?32 + 24kc + 6m J

and we may take as corresponding tangents through the two nodes respectively £=faz,
n=0Bz; the foci A, B, C, D, which are the intersections of the pairs of lines (£=6,az,
C. VL 67
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n=08z), &, lie, it is clear, in the line B§ —an =0, which is onec of the nodal axes
of the curve. Similarly, in the second case, if € be determined by the foregoing
equation, we may take as corresponding tangents through the two nodes respectively
E=0az, n=—0Bz; the foci (4, B, C, D), which are the intersections of the pairs of
lines (€= 0,0z, n=—0,82), &c., lie in the line BE+ an=0, which is the other of the
nodal axes of the curve. In either case the foci A, B, C, D lie in a line, that is,
we have the curve symmetrical; and, as we have just seen, the focal axis, or axis of
symmetry, is one or other of the nodal axes.

149. In the case of the Cartesian, or when a=0, 8=0, viz, the equation aa =08
is satisfied identically, and this seems to show that the Cartesian is symmetrical; it
is to be observed, however, that for a=0, 8=0 the foregoing formule fail, and it is
proper to repeat the investigation for the special case in question. Writing a=0, 8=0,
the equation of the curve is

kEn® + ez?n + 2° (af +bn) + ¢z =0,
and then, taking &= 6bz for the equation of the tangent from I, we have
7 . kb*6?
+nz.0(e0+ 1)
+ 22 .abf+¢c=0,
and the condition of tangency is
456 (abB +c) — (e +1)=0;

viz., we have here a cubic equation. Similarly, if we have 5=6az for the equation
of a tangent from J, then

4k (ab + ¢) — (e + 1) =0.

Hence 6 being determined by the cubic equation as above, we may take ¢ =46, and
consequently the equations of the corresponding tangents will be &=0bz, 5= 6az, viz,
the foci 4, B, C will be given as the intersections of the pairs of lines (£=6,bz,
n = 6,az), &. The foci lie therefore in the line af=bn=0; or the curve is symmetrical,
the focal axis, or axis of symmetry, passing through the centre.

Article Nos. 150 to 158. On the Property that the Points of Contact of the Tangents
Jrom a Pair of Concyclic Foci lie in a Circle.

150. We have seen that the sixteen foci form four concyclic sets (4, B, C, D),
(4., B, 0, D), (4;, B, C,, D) {(CASEB: ¢, Dpsitat 18,0 4,'B, O, D" are in\a; circle
We may, if we please, say that any one focus is concyclic—viz., it lies in a circle with
three other foci; but any two foci taken at random are not concyclic; it is only a pair
such as (A4, B) taken out of a set of four concyclic foci which are concyclic, viz,
there exist two other foci lying with them in a circlee The number of such pairs
is, it is clear =24. Let 4, B be any two concyclic foci, [ say that the points of
contact of the tangents A7, AJ, BI, BJ, lie in a circle.
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151. Consider the case of the bicircular quartic, and take as before (£=0, z=0),
and (=0, z2=0) for the coordinates of the points I, J respectively. Let the two
tangents from the focus 4 be £—az=0, n—a’2=0, say for shortness p=0, p'=0,
then the equation of the curve is expressible in the form pp'U= V*(*), where U =0,
V=0 are each of them a circle, viz, U and V are each of them a quadric function
containing the terms 2°, zn, 2§ and &y Taking an indeterminate coefficient A, the
equation may be written

PP’ (U+20V+Npp) = (V +2pp'y,

and then X may be so determined that U+ 2AV +A*pp’ =0, shall be a O0-circle, or
pair of lines through 7 and J. It is easy to see that we have thus for A a cubic
equation, that 1is, there are three values of A, for each of which the function
U+ 20V +App’' assumes the form (§—pBz)(n—B'2), =q¢ suppose: taking any one of
these, and changing the value of V so as that we may have V in place of V+App)
the equation is pp'gq’ + V?, where V=0 is as before a circle, the equation shows that
the points of contact of the tangents p=0, p'=0, ¢=0, ¢ =0 lie in this circle V'=0.
The circumstance that A is determined by a cubic equation would suggest that the
focus ¢q=0, ¢=0 is one of the three foci B, C, D concyclic with 4; but this is
the very thing which we wish to prove, and the investigation, though somewhat long,
is an interesting one.

152. Starting from the form pp'q¢’ = V? then introducing as before an arbitrary
coefficient \, the equation may be written i

PP (97 + 20V + Npp') = (V + Mpp')?,

and we may determine A so that ¢¢ +2AV 4+ Npp’=0 shall be a pair of lines.
Writing V=Hgy— Lyz — L'éz + M2z*, and substituting for pp’ and ¢¢' their values
(E—az)(n—d'z) and (£ — Bz)(n— B'z), the equation in question is

(14 2NH + ) £ — (B + ONL + N2) gz — (B’ + AL +3) £z + (BB + IAM + Nao) 22 =0,
and the required condition is
1+ 20AH + 2 (BB + 2AM + 2.’y = (B + 2AL + \a) (B + 20 L + \d)) ;

or reducing, this is

(2M + 2HBB — 2L'B — 2LRB)
+x((@a=pB)(@-B)+4HM —4LL")
+ N (2M + 2Hod — 2L'a — 2La) =0,

viz, A is determined by a quadric equation. Calling its roots A,, and A,, the foregoing
equation, substituting therein successively these values, becomes (£—yz)(n —z)=0, and
(§ —82) (n — 8§'2) =0 respectively, say 7’=0 and ss'= 0.

1 This investigation is similar to that in Salmon’s Higher Plane Curves, p. 196, in regard to the double
tangents of a quartic curve.
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153. We have to show that the four foci (p=0, p'=0), (¢=0, ¢=0), (r=0,
r=0), (s=0, §=0) are a set of concyclic foci; that is, that the lines p=0, ¢=0,
r=0, s =0 correspond homographically to the lines p'=0, ¢'=0, =0, s'=0; or, what
is the same thing, that we have

Iifat - a8 aas olli==10j
1, 0, B,
1’ 'Y) ’y,’ W'
1 B R R

or, as it will be convenient to write this equation,

a=f y=8 _a=8 By

ar_B/ fy'—_87=a/—5' B’-"Y,.

_ B4+ 2uL+ N , B 2N+ N
i e R e s e T
8_/3+2>\,,L+x,2a ,_ B+ 2L+ N

TL42HMEAE 0 A 2HM A

The expressions of a—8, &c., are severally fractions, the denominators of which disappear
from the equation; the numerators are

for a =8, = a(l+420H +2A2) — (B + 2\.L +a\?),
a— B+ 2N, (aH - L);
for B—q, = BA+20MH+N2)—(B+ 2ML +a\?),
M (2(BF —I)(a—B));
for y =8, = (B + 2L\ +an?) (1 +2HN, + AP)
—(B+ 2L+ an?) (1 + 2HM + 02,
(@ - B) [2Haf — 2HL (a+ B) + 2L+ } (a— BY} ;

154. We have

and it hence easily appears that the equation to be verified is

9HaB — 2HL (a+ B)+ 2L+ 3 (a— B _a —B+2(@H —L)N, 2(BH-L)—(a =B)\
I B —2HL (d+R)+2L + 3 (d — By d—B +2(@H-L)n 2(BH=-L)=(d = B)N’

155. This is
B-C _ A+ Bn+O0nm+DAn,
B —-C A+ BN+ 0n+ DA’
A= 2a-B)(BH-L) , A= 20 -B)BH-L) ,
%~ {a- 2y P f ol (G - B0 ,
C= 4(@H-Ly(BH-L), ¢ = 4@H-L)BH-L),
D=-2(@-B)(aH-L) , D=-2d-R)@H-L) ,
and the equation then is
AB — A'B+CA'-CA —(\+M\) (BC = BC)+ M\, (CD = C'D—(BD' - BD)).

if for shortness
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156. Calculating AB'— A'B, CA’'—(C'A, CD'—C'D, BD'— B'D, these are at once
seen to divide by {(af' —a'B)H + L(« — B)— L' (a— B)}; we have, moreover,
BC'-BC=—-4(a—-By(@H-L)(BH-L)+4(« =By (all — L)(BH — L),
=—{(ad =BB)H - L(« —B) =L (a=B)} {a —«B) H + L(d =)~ L' (2= B)},
viz., this also contains the same factor; and omitting it, the equation is found to be
(a=B@-B)—4(BH-L)(BH-L) |
—2{(a—-BRYH —L(d-f) —L'(a=p) j(M+2)
+ {(—(@a=-PB)(@-B)+4(alH - L)y(@H—-L) x\, =0;
viz., substituting for A, + A, and A\, their values, .this is
{(@a=B)(@—B)—4(BH - L)(BH— L)} (M+ Had — La' — I'a)
—{(ad =BBYH—-L(d—)) {(a—B)(« —B)+ 4HM —4LL'}
+{~@=-B)(@—B)+4(al — L)(«H-L)} {M+ HBR — LB - L'B} = 0,
which should be identically true. Multiplying by I, and writing in the form
(@a-B)(«@=B)-4(BH-LY(BH-L) j(HM—LL +(@H—-L)(«H-L) )
— {((@H - L) («H - L)—(BH - L)(BH - L)} (a= B)(@~ B) +4 (HM — LL') )
+{-@=-PB) @ —B)+4@H - L)(«H - L)} (HM - LI + (BH - L) (8H - L)) = 0,
we at once sec that this is so, and the theorem 1is thus proved, viz, that the equation

being pp'qq’ = V?, the foci (p=0, p’'=0) and (¢=0, ¢/ =0) are concyclic.

157. By what precedes, X being a root of the foregoing quadric equation, we may

write
qq + 20V + Npp’ = K=rr,

where the focus =0, »"=0 is concyclic with the other two foci; but from the
equation of the curve V =Vpp'qy, that is we have
g9 + 2AVpp'yq +Npp' = Krr',
or, what is the same thing,
A V}Tp' + N/qé]+ KV =0,
viz., this is a form of the equation of the curve; substituting for p, p’, ¢, ¢, », 2
their values, writing also
' A=(E—az)(n—42),
B =(£-B2) (n—PL2),
C=(E-yz)(n—v72),
and changing the constants A, K (viz. A : 1 : K =1 : ¥m : ¥n) the equation is
VI + VmB + Val = 0,
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viz, we have the theorem that for a bicircular quartic if (—az=0, 7-d2=0),
(E—Bz=0, n—R2=0, (E—y2z=0), n—v'2=0) be any three concyclic foci, then the
equation is as just mentioned; that is, the curve is a trizomal curve, the zomals
being the three given foci regarded as O-circles. The same theorem holds in regard
to the circular cubic, and a similar demonstration would apply to this case.

158. It may be noticed that we might, without proving as above that the two
foci (p=0, p’=0), (¢=0, ¢'=0) were concyclic, have passed at once from the form
Pp'aq = V? to the form AVpp +Vgg'+ KNr' =0 (or ¥ =vm®B=vnE=0), and then
by the application of the theorem of the variable zomal (thereby establishing the
existence of a fourth focus concyclic with the three) have shown that the original
two foci were concyclic. But it seemed the more orderly course to effect the demon-
stration without the aid furnished by the reduction of the equation to the trizomal
form.

ParT IV. (Nos. 159 to 206). ON TrRizoMAL AND TETRAZOMAL CURVES WHERE THE ZOMALS
ARE CIRCLES.

Article Nos. 159 to 165. The Trizomal Curve—The Tangents at I, J, dc.

159. I consider the trizomal
VIA® + VimB° + ¥V’ =0,

where A, B, C being the centres of three given circles, A°, &c. denote as before, viz,
in rectangular and in circular coordinates respectively, we have

W=@—-az)+(y—dzy—a"? =(E—az)(n-—-doz)—a"2

B = (o= b+ (= Yoy =V, =(E=B2)(n—B2) = b2,

6 = (@ caP+ (y— 02 = 5 = (E—2) (n—2) = o2,
By what precedes, the curve is of the order =4, touching each of the given circles
twice, and having a double point, or node, at each of the points I, J; that is, it is

a bicircular quartic: but if for any determinate values of the radicals Vi, Vm, Vn,
we have

VI +vm +v¥n =0,
then there is a branch

NI + VmB® +Va6® =0,

containing (z=0) the line infinity; and the order is here =3: viz, the curve here
passes through each of the points 7, J and through another point at infinity (that is,
there is an asymptote), and is thus a circular cubic.

160. I commence by investigating the equations of the nodal tangents at the
points 7, J respectively; using for this purpose the circular coordinates (£ », z=1),
it is to be observed that, in the rationalised equation, for finding the tangents ab
(6=0, z=0) we have only to attend to the terms of the second order in (§ z), and
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similarly for finding the tangents at (=0, z=0) we have only to attend to the terms
of the second order in (5, 2z). But it is easy to see that any term involving a”, V",
or ¢” will be of the third order at least in (£ z), and similarly of the third order at
least in (9, 2); hence for finding the tangents we may reject the terms in question,
or, what is the same thing, we may write a”, 0", ¢’ each =0, thus reducing the three
circles to their respective centres. The equation thus becomes

VI(E—az) (n—dz) + Vm (E — B2) (n— B'2) + Vi (E—5z) (n—z) = 0.

For finding the tangents at (§=0, z=0) we have in the rationalised equation to
attend only to the terms of the second order in (£ 2); and it is easy to see that
any term involving o, B, o will be of the third order at least in (& z), that is,
we may reduce o, B, v each to zero; the irrational equation then becomes divisible

by V5, and throwing out this factor, it is
VU(E— az)+Vm (€ — Bz)+ Vn (£ — yz) =0,
viz.,, this equation which evidently belongs to a pair of lines passing through the point

(§=0, z=0) gives the tangents at the point in question; and similarly the tangents
at the point (p=0, z=0) are given by the equation

VI =a3) + Vi = B2) + Vi ln =) =0.

161. To complete the solution, attending to the tangents at (§=0, z2=0), and
putting for shortness '

A= Il —m —n,
p=—0l4+m —n,
v=—I[0—m +n,
A= P4+ m24n2—2mn—2nl — 2lm,
the rationalised equation is easily found to be
£.A
— 28z (Ina + mp + nvry)
+ 2 (P + m?B + niy® — 2mn By — 2nlya — 2imaB) = 0;
and it is to be noticed that in the case of the circular cubic or when Vi+Vm +Vn=0,

then A =0, so that the equation contains the factor 2z, and throwing this out, the
equation gives a single line, which is in fact the tangent of the circular cubic.

162. Returning to the bicircular quartic, we may seck for the condition in order
that the node may be a cusp: the required condition is obviously

A (I + m2B? + 2y — 2mnBry — 2nlyx — 2lmaB) — (INa + mpB + nvy)* =0,

or observing that
A — 2\ =—4mn, &ec.
A+ pv =— 20\, &c.
this is
la? +mf3 + ny* + ABy + pya + vaB = 0,
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or substituting for A, u, », their values, it is
l@=-B)(@a=y)+mB-y)(B-a)+n(y—a)(y—B)=0,

or, as it is more simply written,

_l_+_m4+’n; =0
Blegl =i 8=

163. If the node at (p=0, z=0) be also a cusp, then we have in like manner

l m n

_—*/+"/’ 1+ /=0-
B =Y i rn

o —p
Now observing that
(y—a)(@-B)—(v-a)(@=8), =|a, «, 1
B B, 1
oy s il
=(@=8)(B'—v)—(d=B)(B-9)
=B-7 (- —-(B-7)y-a),
=) suppose: the two equations give
Lim:n=0@B-7)@E-v): Qy-a)(¥' -«) : 2@-B)(« -B);
or if Q is not =0, then
Lim:n= (B=—mE@-v): @G-0)@-da): (@-B@-pH)

164. If
0= ag-aan 43 x=0;

& gy

v 9, 1
or, what is the same thing, if

i, L

TR e |

the centres 4, B, C are in a line; taking it as the axis of 2, we have a=a' =\,
B=B=b, y=¢"=c; and the conditions for the cusps at Z, J respectively reduce
themselves to the single condition

l m n

g s Sl

so that this condition being satisfied, the curve

VI {(w—az) + 32 — a2} + Vm{(z — be)+ y* = b2} + Vn{(@w = czf + y*— ¢"*2*} =0

is a Cartesian; viz, given any three circles with their centres on a line, there are
a singly infinite series of Cartesians, each touched by the three circles respectively;
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the line of centres is the axis of the curve, but the centres 4, B, ' are not the foci,
except in the case a”=0, b"=0, ¢"=0, where the circles vanish. The condition for
[, m, n is satisfied if l:m : n=(b—c) : (c—a) : (a—b); these values, writing
NI :¥m : ¥n=b—-c :c—a:a—-0 give not only ¥I+~m++n=0 but also
aVNl+bVm+cVn=0; these are the conditions for a branch containing (22 = 0) the
line infinity twice; the equation

b—c)V(@—a2P+y* — a2 +(c — a) V(z — bz)* + y* = "2 + (a — b) V(2 — c2) + y* — ¢*2* =0,

is thus that of a conic, and if @’ =0, 0" =0, ¢"=0, then the curve reduces itself to
= the axis twice.

165. If Q is not =0, then we have
l:m:n=B-y)B—7): (y—a)(y—-a): (a=B)(d-78),

viz, I, m, n are as the squared distances BC%: CA? AB say as f* : g* : h*; or when
the centres of the given circles 4, B, C' are not in a line, then f, ¢, h being the
distances BC, C4, AB of these centres from each other, we have, touching each of
the given circles twice, the single Cartesian

VW 4 g VB + W VE =0,

which, in the particular case where the radii a”, b”, ¢” are each =0, becomes
VI +gVB +hVE =0,

viz,, this is the circle through the points 4, B, C, say the circle ABC, twice.

Article Nos. 166 to 169. JInvestigation of the Foci of a Conic represented by
an Equation in Areal Coordinates.

166. I premise as follows: Let 4, B, C be any given points, and in regard to
the triangle ABC let the areal coordinates of a current point P be w, v, w; that is,
writing PBC, &ec., for the areas of these triangles, take the coordinates to be

w:v:w=PBC: PCA : PAB,
or, what is the same thing in the rectangular coordinates (z, y, z=1), if
fergralul) 1(by: b 1.8 (0/ses R,
be the coordinates of A, B, C respectively, take

R EOR TS R T SO R TR A S i T TES R
ik e esTHpue T (o) W M |
o St | agrocased O; bl
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or in the circular coordinates (£, 7, z=1), if (a, «, 1), (B, B, 1), (v, 7/, 1) be the
coordinates of the three points respectively, then

vw:v:w=|§& 5, z|:|§& n,zi:lf, el
B @] by 1’ oty “ 0 =
'Y: 'Y,: 1 a, a', ]- ‘;3; B,, 1

167. For the point I we have (£ 7, 2)=(0, 1, 0), and hence if its areal
coordinates be (u,, v,, w,), we have

Up 2 Ut We=B—y ty—a:a=p
and hence also, (u, v, w) referring to the current point P, we find
vw —ww =(y—a) [(« = B) (§ - az)— (2 = B) (n — «'2)]
—(@=-B)(v-d)(E-a)—(y—a)(n—d2)], =0(§-x)

if
Q=(y—a)y@-B)—(a—B)(y—-d), =|a, «, 1];
B B, vl
e 'Y': 1
whence

VoW — W 2 WyUh— Wiy : UV—uvy=E —az: E—LBz:E—-yz
and in precisely the same manner, if w,, v/, w, refer to the point J, then

w v w =B —v 4 —d :d -4,
and
VW —wyv 2 wu—wu, : wv— ) =n—az:n—Rz:n—v2
168. Consider the conic
(a, b, ¢, f, 9, hQu, v, wp=0,

where u, v, w are any trilinear coordinates whatever; and take the inverse coefficients
to be (4, B, C, F, G, H) (A=bc—j? &c.), then for any given point the coordinates of
which are (u,, v, w,), the equation of the tangents from this point to the conic is,
as is well known,

(4, B, C, F, G, HYvw —ww, wu—uaw, up—vu)*=0;

consequently for the conic

(a, b, ¢, f, g, hQu, v, wp=0,

where (u, », w) are areal coordinates referring, as above, to any three given points
A, B, C, the equation of the pair of tangents from the point I to the conic is

(4, B, C, F, G, HUE — az, £ — Bz, £ — yz)* =0,
and that of the pair of tangents from J is
4, B, C, F, G, Hin—dz, n— Bz n—y2?=0,

these two line-pairs intersecting, of course, in the foci of the coniec.

)
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169. In particular, if the conic is a conic passing through the points 4, B, C,
then taking its equation to be

lvw + mawu + nuw = 0,

the inverse coefficients are as (%, m? n% —2mn, —2nl, —2lm), and we have for the
equations of the two line-pairs

VI(E—az)+Vm (E-Bz)+Vn(E—yz)=0,
Nl (p—d'z) +Vm(n — B2) + \/ﬁkn—?’z) .

Article No. 170. The Theorem of the Variable Zomal.

170. Consider the four circles
A'=0, B =0, =0, D=0 (A =(z—az)y+ (y — a'2)* — a2, &c.),
which have a common orthotomic circle; so that as before

adl’ +bB° + cC° +dD° =0,
where

a:b:¢c:d=BCD : -—CDA : DAB : — ABC.

I consider the first three circles as given, and the fourth circle as a variable circle
cutting at right angles the orthotomic circle of the three given cu‘cles, this being
so, attending only to the ratios a : b : ¢, we may write

ansiehiide = DBCs:. #:DOA. DA B,

that is, (a, b, ¢) are proportional to the areal coordinates of the centre of the variable
circle in regard to the triangle ABC.

171. Suppose that the centre of the variable circle is situate on a given conic,
then expressing the equation of this conic in areal coordinates in regard to the
triangle ABC, we have between (a, b, ¢) the equation obtained by substituting these
values for the coordinates in the equation of the conic; that is, the equation of the
variable circle is

al’ +bB’ + cC” =0,
where (a, b, ¢) are connected by an equation
(a! b; C, j; 9: hzia'; b) 0)2—_-0-

Hence (4, B, C, F, G, H) being the inverse coefficients, the equation of the envelope
of the variable circle is

(4, B, C, F, G, HYW", B°, 6°)2=0,
and, in particular, if the conic be a conic passing through the points 4, B, C, and
such that its equation in the areal coordinates (u, v, w) in regard to the triangle

ABC is
lvw + mawu + nuw = 0,

68—2
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then the equation of the envelope is

(5, m?, w3, —mn, —nl, —Ilmy A°, B°, €°)»=0;
that 1is, it is

a 1,1,- 1, - 1, — 1 giA°, m®B°, n€°p =0,
or, what is the same thing, it is

VIA° +VmB° +VnB° = 0.

172. It has been seen that the equations of the nodal tangents at the points
1, J respectively are respectively

VI(E—az)+Vm (E~Bz) +Vn (£ —yz) =0,
Vi(n — a2) + Vm (n — B2) +Vn (g —o/2) =0,

and that these are the equations of the tangents to the conic lvw+mwu+ nuv =0
from the points I, J respectively. We have thus Casey’s theorem for the generation
of the bicircular quartic as follows:—The envelope of a variable circle which cuts at
right angles the orthotomic circle of three given circles 2°=0, B°=0, €°=0, and has
its centre on the conic lwvw + mwu+nuv=0 which passes through the centres of the
three given circles is the bicircular quartic, or trizomal

VI + Vm®B° + VnE® =0,
which has its nodo-foci coincident with the foei of the coniec.
173. To complete the analytical theory, it is proper to express the equation of

the orthotomic circle by means of the areal coordinates (u, », w). Writing for shortness
a’+a?*—a”?=a', &c., and therefore

A=+ y* — 202z — 2a'yz — @'2*, &c.,
then if as before
u:v:.w=\a ¥y 2 |:]la Yt & ¥ 21
AN | a, )

ol a5 et /e |

SN
S
o
—
(v

and therefore
z:y:z=aut+bv+cw : du+bv+cw : u+v+w,

the equation of the orthotomic circle is
z—az, y—a'z, ax+ady—az | =0,
z—bz, y—bz, bz+by->bz
x—cz, y—cz, cx+cy—cz

viz., throwing out the factor 2, this is

uw(az+ay—az)+vbz+by—0z) +w(ce+cy—cz)=0,
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or, what is the same thing, it is
(au + bv +cw) z + (a'u + bv + cw) y — (a'u + bv + cw) 2 =0,
viz., it is
(au +bv +cw) +(au+bv+cw)y —(au+bv+cw)(u+v+w)=0,
that is, substituting for a', b, ¢' their values, it is
a™? + Y+
+(2 ¢ (b —cyp—¥ - ¢')) vw
Hrra = (o —ap—(f — )
+(a24 0 = (a—b)—(a/ = b)) ww =0,
and it may be observed that using for a moment a, B, v to denote the angles at

which the three circles taken in pairs respectively intersect, then we have 2b”¢” cos a
=b"+c¢”?—=(b—c)—(b'—c)p &c., and the equation of the orthotomic circle thus is

(1, 1, 1, cosa, cos B, cosyfa"u, by, ¢"w)*=0.

174. We have in the foregoing enunciation of the theorem made use of the
three given circles 4, B, C, but it is clear that these are in fact any three circles
in the series of the variable circle, and that the theorem may be otherwise stated

thus :

The envelope of a variable circle which has its centre in a given conic, and cuts
at right angles a given circle, is a bicircular quartic, such that its nodo-foci are the
foci of the conic.

Article Nos. 175 to 177. Properties depending on the relation between the Conic and Circle.

175. I refer to the conic of the theorem simply as the conic, and to the fixed
circle simply as the circle, or when any ambiguity might otherwise arise, then as the
orthotomic circle. This being so, I consider the effect in regard to the trizomal curve,
of the various special relations which may exist between the circle and the conic.

If the conic touch the circle, the curve has a node at the point of contact.

If the conic has with the circle a contact of the second order, the curve has a
cusp at the point of contact.

If the centre of the circle lie on an axis of the conic, then the four intersections
lie in pairs symmetrically in regard to this axis, or the curve has this axis as an
axis of symmetry.

If the conic has double contact with the circle (this implies that the centre of
the circle is situate on an axis of the conic) the curve has a node at each of the
points of contact, viz, it breaks up into two circles intersecting in these two points.
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The centres of the two circles respectively are the two foci of the conic, which foci
lie on the axis in question. Observe that in the general case there are at each of
the circular points at infinity two tangents, without any correspondence of the tangents
of the one pair singly to those of the other pair, and there are thus four inter-
sections, the four foci of the conic; in the present case, where the curve is a pair
of circles, the two tangents to the same circle correspond to each other, and intersect
in the two foci on the axis in question. The other two foci, or antipoints of these,
are each of them the intersection of a tangent of the one circle by a tangent of
the other circle.

If the conic has with the circle a contact of the third order (this implies that
the circle is a circle of maximum or minimum curvature, at the extremity of an axis
of the conic), then the curve has at this point a tacnode, viz, it breaks up into two
circles touching each other and the conic at the point in question, and having their
centres at the two foci situate on that axis of the conic respectively.

176. If the conic is a parabola, then the curve is a circular cubic having the
four intersections of the parabola and circle for a set of concyclic foci, and having
the focus of the parabola for centre. The like particular cases arise, viz,

If the circle touch the parabola, the curve has a node at the point of contact.

If the circle has, with the parabola, a contact of the second order, the curve has
a cusp at the point of contact.

If the centre of the circle is situate on the axis of the parabola, then the four
intersections are situate in pairs symmetrically in regard to this axis, and the curve
has this axis for an axis of symmetry.

If the circle has double contact with the parabola (which, of course, implies that
the centre lies on the axis), then the curve has a node at each of the points of
contact, viz., the curve breaks up into a line and circle intersecting at the two points
of contact, and the circle has its centre at the focus of the parabola.

If the circle has with the parabola a contact of the third order (this implies
that the circle is the circle of maximum curvature, touching the parabola at its
vertex), then the curve has a tacnode, viz, it breaks up into a line and circle touching
each other and the parabola at the vertex, that is, the line is the tangent to the
parabola at its vertex, and the circle is the circle having the focus of the parabola
for its centre, and passing through the vertex, or what is the same thing, having its
radius =4 of the semi-latus rectum of the parabola.

177. If the conic be a circle, then the curve is a bicircular quartic such that its
four nodo-foci coincide together at the centre of the circle; viz, the curve is a
Cartesian having the centre of the conic for its cuspo-focus, that is, for the intersection
of the cuspidal tangents of the Cartesian. The intersections of the conic with the
other circle, or say with the orthotomic circle, are a pair of non-axial foci of the
Cartesian; viz, the antipoints of these are two of the axial foci. The third axial
focus is the centre of the orthotomic circle.
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Article No. 178. Case of Double Contact, Casey's Equation tn the Problem of Tactions.

178. In the case where the conic has double contact with the orthotomic circle,
then (as we have seen) the envelope of the variable circle is a pair of circles, each
touching the variable circle; or, if we start with three given circles and a conic
through their centres, then the envelope is a pair of circles, each of them touching
each of the three given circles; that is, we have a solution of the problem of
tactions. Multiplying by 2, the equation found ante, No. 173, for the variable circle,
and then for the moment representing it by (a, b, ¢, f, g, hQu, », w)*=0; then
attributing any signs at pleasure to the radicals ¥a, ¥b, Vc, the equation of a conic
through the centres of the given circles, and having double contact with the ortho-
tomic circle, will be

(a, b, ¢, f, g hJu, v, w)—(uVa+vVb+wVc)y=0,
viz., representing this equation as before by

lvw + mwu + nuw = 0,
we have A% e o
l:m:n=f—vbec: g—+eca: h—ab,

that is, substituting for a, b, ¢, f, g, h their values, and taking, for instance, a, b, ¢
=a’ N2, b" N2, ¢"N2, we find
l:m:n= @' =c"yP=0b-cyp—->0 =)
(" =a")P—(c —aP—( —a)
2 (@ =V )p—(a—b) — (@ -bY,

that is, I, m, » are as the squares of the tangential distances (direct) of the three
circles taken in pairs, and this being so, the equation of a pair of circles touching
each of the three given circles is VIA° +VmB° +vn6° =0. It is clear that, instead
of taking the three direct tangential distances, we may take one direct tangential
distance and two inverse tangential distances, viz, the tangential distances corresponding
to any three centres of similitude which lie in a line; we have thus in all the
equations of four pairs of circles, viz, of the eight circles which touch the three
given circles. This is Casey’s theorem in the problem of tactions.

Article No. 179. The Intersections of the Conic and Orthotomic Circle are a set of four
Concyclic Foci.

179. The conic of centres intersects the orthotomic circle in four points, and for
each of these the radius of the variable circle is =0, that is, the points in question
are a set'of four concyclic foci (4, B, €. D) of the curve. Regarding the foci as given,
the circle which contains them is of course the orthotomic circle; and there are a
singly infinite series of curves, viz, these correspond to the singly infinite series of
conics which can be drawn through the given foci. As for a given curve there are
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four sets of concyclic foci, there are four different constructions for the curve, viz, the
orthotomic circle may be any one of the four circles O, R, 8, T, which contain the four
sets of concyclic foci respectively; and the conic of centres is a conic through the
corresponding set of four concyclic foci. We have thus four conics, but the foci of each
of them coincide with the nodo-foci of the curve, that is, the conics are confocal; that
such confocal conics exist has been shown, ante, Nos. 78 to 80.

Article Nos. 180 and 181. Remark as to the Construction of the Symmetrical Curve.

180. It is to be observed that in applying as above the theorem of the variable
zomal to the construction of a symmetrical curve, the orthotomic circle made use of
was one of the circles R, S, 7, not the circle O, which is in this case the axis; in
fact, we should then have the conic and the orthotomic circle each of them coinciding
with the axis. And the variable circle, qua circle having its centre on the axis, cuts
the axis at right angles whatever the radius may be; that is, the variable circle is
no longer sufficiently determined by the theorem. The curve may nevertheless be
constructed as the envelope of a variable circle having its centre on the axis; viz,
writing A° =(z — az)*+ y*— a”"%2% &c., and starting with the form

VIA° + VmB® + Vanl° = 0,

then recurring to the demonstration of the theorem (ante, No. 47), the equation of
the variable circle is a2’ +b®B°+4c6°=0, where a, b, ¢ are any quantities satisfying

l . . : )
;+% +g=0, or, what is the same thing, taking ¢ an arbitrary parameter, and writing

aé =1+4g¢, %’ =1-—g¢q, §= — 2, the equation of the variable circle is
LIS SARE N T
l1+g¢ 1—-¢ i

Compare Nos. 118—123 for the like mode of construction of a conic; but it is proper
to consider this in a somewhat different form.

181. Assume that the equation of the variable circle is

D=(@—deyp+y—d"”22=0;
we have therefore identically
a° +bB° +cC° +dD° =0,
viz,, this gives
a +b +c =-d,

aa +bb +cc=-—dd,
a(@—a”)+b(b*—b") +c(*—c"”) =—d(d—d™),
and from these equations we obtain a, b, ¢ equal respectively to given multiples of d ;

substituting these values in the equation £+% +1—Z=O, d divides out, and we have an

www.rcin.org.pl



414] ON POLYZOMAL CURVES, 545

equation involving the parameters of the given circles, and also d, d”, the parameters of
the variable circle; viz, an equation determining d”, the radius of the variable circle,
in terms of d, the coordinate of its centre. I consider in particular the case where
the given circles are points; that is, where the given equation is

VI +VmB + V€ = 0.
The equations here are

a +b +c¢ =-d,

aa +bb + cc=—dd,
aa® + bb* + cc? = —d (d* — d™),
and from these we obtain g
a(a=b)(a—c)==d(([d-b)(d—c)—d")
b(b-c)(b—a)=—d((d—-c)(d—a)—d"?)
c(c—a)(c—b)=—d((d-a)(@d-b)—d"),

so that the equation é -+ %l +- g =0 becomes

l(a=1b)(a=c) m(b—c)(b—a) n(c—a)(c—Db)

@=b)(@d—0)—d " d-o)[d—a)—d" T [d—a)(d—-b)—d"

0,

or, as this is more conveniently written,

l 2 +_'m_ 1 ) e 1k 4%
T—e@-bh@=o=d c—a@—o@d-a)-d*Ta—b{d-a)@-b)—d5 "

viz., considering d, d” as the abscissa and ordinate of a point on a curve, and repre-
senting them by @, y respectively, the equation of this curve is

l 1 g B 1 iR vy BTN i
b—c(@-b)(x—c)—y* c—a (@—c)(z—a)—y* c—a (z—a)(@—b)—y*

which is a certain quartic curve; and we have the original curve

VIRA+ VmB +VnE = 0,
as the envelope of a variable circle having for its diameter the double ordinate of
this quartic curve.

Write for shortness , ¢ MM _I, M, N respectively, then the equation

b—c’' c—a’ a—=b
of the quartic curve may be written
SL[(z—ap(z—b)(z—c)—y*(z—a)(2z —b—c)+y] =0,

viz., this is

SLz(z—a)(z—0b)(z—c)
—y2(2x2—(a+b+c)w+(ab+ac+bc))+y‘

—a(z—a)(z—>)(z—c)+y*(ax+bc)] =0,
69
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or what is the same thing, the equation is

(L+M+ N)[z(@—a)(@—b)(z—c) —y* (20* — (@ + b+ ¢) &+ ab + ac + be) + y]
— (La + Mb+ N¢) (z — a) (2 —b) (z—c)
+9* {(La + Mb + Nc) z + Lbc + Mca + Nab} =

In the particular case where L+ M+ N =0, that is, where

l+l+_n
b—¢ o—a =P "

the quartic curve becomes a cubie, viz., putting for shortness

Lbc + Mca + Nab
= Lo+ Mb+ N¢
the equation of the cubic is
_(@-a)(z- b)(.z'—c)
z—98

viz., this is a cubic curve having three real asymptotes, and a diameter at right
angles to one of the asymptotes, and at the inclinations + 45°, —45° to the other
two asymptotes respectively—say that it is a “rectangular” cubic. The relation

l m
b=—cte—ata-b
we have thus the theorem that the envelope of a variable circle having for diameter
the double ordinate of a rectangular cubic is a Cartesian.

=0 implies that the curve V2 +VmB +VnE =0 is a Cartesian, and

I remark that using a particular oiigin, and writing the equation of the rectangular
cubic in the form 7*=a?—2mz + a+ 2;1 , the equation of the variable circle is

24

(z—dy+y=d*—2md + a+ = o

that is

2+ 1y —a—2d (z — m)——2—A—0

where d is the variable parameter. Forming the derived equation in regard to d, we
have \

and thence

wﬂ+y2—a=4‘(;1,

@+ — 01)2._1—(;4 =164 (z —m),

that is, the equation of the envelope is (224 3*—a)*=164 (#—m)=0, which is a
known form of the equation of a Cartesian.
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Article Nos. 182 and 183. Focal Formulw for the General Curve.
182. Considering any three circles centres 4, B, C, and taking °, &ec., to denote

as usual, let the equation of the curve be
VI + VB +Vnb° =0;
then considering a fourth circle, centre D, a position of the variable circle, and having
therefore the same orthotomic circle with the given circles, so that as before
al” +bB° + c6° +dD° =0,
the formule No. 47 (changing only U, V, W, T into A°, B°, 6°, D°) are at once

applicable to express the equation of the curve in terms of any three of the four circles
A = BACD. g

In particular, the circles may reduce themselves to the four points 4, B, C, D, a
set of concyclic foci, and here, the equation being originally given in the form

NI+ Vm®B +Vn6 =0,

the same formule are applicable to express the equation in terms of any three of
the four foci.

183. It is to be observed that in this case if the positions of the four foci are
given by means of the circular coordinates <a, %, 1), &ec., which refer to the centre of

the circle ABCD as origin, and with the radius of this circle taken as unity, then
the values of a, b, ¢, d (ante, No. 90), are given in the form adapted to the formula
of No. 49, viz.,, we have

a:b:c:d=a(Byd) : =B(yda) : v (8aB) : —38 (aBy),

where (By8)=(B—v)(y—38)(8 —B), &c. The relation é - 7{:

l:m:n=pa(B—q): cB(y—a)y : ry(a—B), (or, what is the same thing, taking the

¥ g =0, putting therein

equation of the curve to be given in the form (8— 4)Vpall + (y — 2) Vo BB +(a— ) N1y =0),
becomes

p(B=m)(a=8)+a(y—a)(B-3)+7(a=B)(y—8=0,

viz., this equation, considering p, o, 7, @, B, v as given, determines the position of the
fourth focus D, or when 4, B, ¢, D are given, it is the relation which must exist
between p, o, 7; and the four forms of the equation are

(., ¥1@=q), Yo(B=8) Vp(y—B) )(Wall, VBB, VoG, VsD)=0,
Lk 2y, TN T ), N (a ]
Ne(B-B), Vp(a=8), . , Vr(B-a)|
e B=w), Vely-a) Vr@-8), . |
viz, the curve is represented by means of any one of these four equations involving

each of them three out of the four given foci 4, B, C, D.
69—2
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Article Nos. 184 and 185. Case of the Circular Cubic.

184. In the case of a circular cubic, we must have
pB-—m(a=8+a(y-a)(B—08)+7(a—B)(y—98=0,
Vap (B~ 7) +VBr(y—a) +V¥yr(@=p) =0,

which, when the foci 4, B, C, D are given, determine the values of p : ¢ : 7 in order
that the curve may be a circular cubic. We see at once that there are two sets of
values, and consequently two circular cubics having each of them the given points
4, B, C, D for a set of concyclic foci. The two systems may be written

Jp : Vo & P a ST W o A Ve W e,
viz., it being understood that Vad means Va.Vs, &c., then, according as v/§ has one
or other of its two opposite values, we have one or other of the two systems of
values of p : ¢ : 7. To verify this, observe that writing the equation under the form

'\/05: VBo : '\/'77‘=a‘\/37—'\/a_,87y s B\/S-—’\/;,ny - ry\/S—\/;B%
the second equation is verified; and that writing them under the form
pio:17=—B+y)(a+8)+M: —(y+a)(B+8)+M : —(a+B)(y+38)+ M,

where

M =By + a8 + ya+ B3 + af + v& — 2VaBys,
the second equation is also verified.
185. If we assume for a moment a=cosa+isina=e@, &c., viz, if a, b, ¢, d be
the inclinations to any fixed line of the radii through 4, B, C, D respectively, then we

have
Va8 + ¥ By = etatbretdi {etatd—b—oi 4 g—ta+d-b—0i)

“/&(/3—')') = ghla+b+oyi {em—c,i — g h—0)i },
and thence
Vap(B—1) : ¥Ba (y—a) : Vyr(a—B)= cos}(a+d—b—c)sin} (b —c)
tcost(b+d—c—a)sind(c —a)
tcost(c+d—a—b)sing (a—0b);

or else

= sin}(a+d—b—c)sin}(b—c)
:sin}(b+d—c—a)sin}(c—a)
:sinj(c+d—a—>b)sing(a—>b).

Putting in these formule,
t(@a—b—c)=A4, then we have B—C =} (b—c),
1 —-c—-a)=B8B, 3 C-4=%(c—a)
t—-a-0)=0C, i A-B=}(a-b),
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and for either set of values the verification of the relation
Vap (B—7)+VBa (y—a)+ Vyr(a - B)=0,
will depend on the two identical equations
sin 4 sin (B — () 4+ sin Bsin (C— 4) +sin Csin (4 — B) =0,
cos 4 sin (B — () + cos Bsin (('— 4) + cos C'sin (A — B)=0:

although the foregoing solution for the case of a circular cubic is the most elegant
one, I will presently return to the question and give the solution in a different form.

Article No. 186. Focal Formule for the Symmetrical Curve.

186. In the symmetrical case, where the foci A, B, 0, D are on a line, then if,
as usual, @, b, ¢, d denote the distances from a fixed point, we have the expressions
of (a, b, ¢, d) in a form adapted to the formule of No. 49, viz,

a:b:c:d=(b-c)(c—d)(d-b):—(c—d)(d—a)(a—c): (d—a)(a—b)(b—d): —(a—b)(b—c)(c—a),

so that, assuming
l:m:n=p—c)P:ao(c—a): v(@->0)
the equation

Il m n
£+b+g_0’

becomes
plb—c)(@a—d)+ao(c—a)(b—d)+T(a—b)(c—d)=0,

and the equation of the curve may be presented under any one of the four forms
( ., Vr(d—c), Vo —d), Vp(c—b))(WU VB, VG VD)=0.
V1 (c — d), ., ¥Yp(@d—-a), Vo(a—c)
Va(d-1b), Vp(a—d), ., VNr(b-a)
| ¥p (b—c), Vo(c —a), Vr(a-1D),

Article No. 187. Case of the Symmetrical Circular Cubic.
187. For a circular subic we must have
plb—c)(@—d)+a(c—a)(b—d)+T(a—D)(c—d)=0,
Vo (b—c) +Va(c—a) + V7 (a—b) =0

These equations give Vp :Ng : ¥r=1:1:1 (values which obviously satisfy the two
equations), or else

Vp: Ve :Vp=a+d—b—c:b+td—c—a:c+d—a-b
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In fact, these values obviously satisfy the second equation; and to see that they
satisfy the first equation, we have only to write them under the form

pro:1=M—-4@0+c)(a+d): M—4(c+a)(b+d) : M—4 (a+Db)(c+d),
where M =(a+b+c+d)>. The first set gives for the curve
BO=c)VA+(c—a) VB + (a—b)VE =0,

but this contains the line z=0 not once only, but twice; it in fact is (y*=0), the
axis taken twice; the only proper cubic with the foci 4, B, O, D un lined is therefore

(b—c)(a+d—b—c)NA+(c—a)(b+d—c—a)¥VB+(a=b)(c+d—a—-b)VE=0,

the equation of which is, of course, expressible in each of the other three forms.

Article Nos. 188 to 192. Case of the General Circular Cubit.

188. Returning to the general case of the circular cubic, the lines BC, 4D meet
in R, and if we denote by a;, b, ¢, d;, the distances from R of the four points
respectively, so that b, = a,d,=rad.?R, then observing that a, b, ¢, d are proportional
to the triangles BCD, CDA, DAB, ABC, with signs such that a+b+c+d=0, we find

a:b:c:d==d(b—c):ca(@m—d): —b(a,—d) : a,(b,—c);

§ g ! gt et b i 1
and this being so, the equations = F %7'+ g =0, ¥i+Vm+~n=0, give two systems of

values of V1 : ¥m : Mn, viz., these are

NU N Nn=b—¢, : ¢,—ay : a, — b,
and
=b—c¢ :ca+a, : —a;—0b,.

(To verify this, observe that for the first set we have

I m n (bl — ) ) (31 —_a’l)2 (a, — bl)2

at bt e T - alm-d) =him—d)

_bl—cl 1 ( a,’ a,’
=L sl - Bl

_g)l—cl bl”— G (%2 _1)
—d, a4 —dy \bey A

i b—q b}‘ﬁ a, ) e
== A )y

and the like as regards the second set.)
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189. These values of ¥ : ¥m : ¥n give the equations of the two circular cubics
with the foci (4, B, C, D), the equation of each of them under a fourfold form,
viz.,, we have

( . ) dl—cl) bl _dh G —bl )(‘\/32[: ‘\/$: {@) N/ﬁ):()
6 —d, s h=—a, a—6
di—b, a-d, v by (first curve),
b—a, a—a, a,—b,
and g Ja
( ., —a=d, di+b, —b+e¢ )(VU VB, VE VD)=0
d1+cl) . ) al_dl’ G —
-b-d, d-a, PR 1 (second curve).

b—¢, —a+a, —a-—b,

190. Similarly C4 and BD meet in S, and if we denote by a,, b,, c,, d, the
distances from 8 of the four points respectively, so that c,a,=b,d,=rad.2S (observe
that if as usual 4, B, €, D are taken in order on the circle O, then A, C' are on
opposite sides of S, and similarly B, D are on opposite sides of S, so that taking
@y, b, positive ¢,, d, will be negative), we have

a:b:c:d=c(—-d):dc—a): —ab—d): —b(c—a)

and then the equations f;+ %" - % =0, Vi+Vm+~n =0, are satisfied by the two sets
of values ; 2

VI :Vm : Vn= by—cy:c—ay: aa—by,
and

=—b;—Cy : Co— Ay ¢ Ay + by,

and we have the equations of the same two cubic curves, each equation under a
fourfold form, viz., these are

( . 5, —Ctdy, —dy+by,, —b+c )(\/52[: )\/%: )\/@7 \/ﬁ)éo

i c — ds, . > d,—a,, —c:+a
; —b, +d,, s —ds, ., —ay+ by (first curve),
B =0 Co — (s, ay — b, g E
and i Y
( . s ¢ + d-); 03 d2 * b2 Doy b2 —C ) (\/52[, ’\/%’ )\/@, \/:D) =0
_d2_02; . ) “2+d2: Cy — Qy |
—by+d,, —d,—a,, o g ay+ b, | (second curve).

bo+c, —C+a, —a—b, 3 |

191. And again AB and CD meet in 7, and denoting by as;, bs, ¢, ds the
distances from 7 of the four points respectively, so that a;b;= c,d; = rad. 2T we have

a:b:c:d=b(c—ds) : —as(cs—dy) : —ds(ag—bs) : cs(as—by);
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and the equations é+%+g=0, VIi4N¥m+Nn=0, then give for VI, ¥m, ¥n two sets
of values, viz., these are
NT : N s WNn=by—c; @ cy—ay : ag— by,

and
=by40c 1 —C;—ay : a;—by;

and we again obtain the equations of the two cubics, each equation under a fourfold

form, viz., these are

( ., —C+dy, —dyt+bs, ¢ —b Y(WU VB, VG VD)=0,
—ds+o, ., =atdy, GG
—b+d;, —d;+ a, 3l by — ay
b, —cs, c; — @, a;— by,

and

( . s C3 _dsa ds+b3; —03—b3 )(‘\/2_[: V%) '\/@; ‘\/5):0

ds—cs, .y —ay—dy, a; + ¢3
— b, —ds, d; + as, . , by — ay
|
by +¢;, — ¢ —as, as — b,

192. The three systems have been obtained independently, but they may of
course be derived each from any other of them: to show how this is, recollecting that

we have

RA) -RB; RC’: -RD:a'l) bl; G, dl;
SA, 8B, 8C, 8D =a,, by, —c,, —d,,
TA, TB, TC, TD =a,, b, ' o, '
then to compare
(al: bl) cl) dl) and (a2) b?; 021 d2);
the similar triangles
SBC give b, —¢ : —¢ : by,
SAD = =~d; 3 —dy 30y, \
and the similar triangles
RAC give a,—c,: ¢ : a,

RBD =by=ds " | dytr byl

using these equations to determine the ratios of a,, b,, ¢,, d, we have

s — C":ﬁ, or dxaz—dlcz_clb2+cld’=0;
bg—'dg ;|
that is
2 a —d, % % = d, -y
bz{ cl+d1bl_cl}+02{ d1+clbl—cl}_0)
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and hence
: by, (= by + ¢ + and, — &) + e, (= by, + eid, + ay¢, — ¢,dy) = 0,
that is
b, ((’12 o dl’) +c (al 015 bl dl) =0,
but

ac —bd = (bi_l (c?—dy?),

or the equation gives b,+ % c;=0, or say b,:c,=b, : —d,, and this with z‘l—g:gﬂ = g’! >
1 B 2 2

gives all the ratios, or we have

ay : byt dy=b(n—dy) : byl —c) : —di(a,—d) : —d,(b—¢).
We have then for example

bo—C i o=y : Qy—by=b—¢,: e,—a; : =0, ; &,

showing the identity of the forms in (@, &, ¢, d;) and (@, b, ., d).

Article No. 193. Transformation to a New Set of Concyclic Focs.
193. Consider the equation
Vi + ¥mB + v/nB = 0,

which refers to the foci A, B, C, and taking D the fourth concyclic focus, let (4,, D)
be the antipoints of (4, D) and (B,, C)) the antipoints of (B, C); so that (4,, B,, C,, D,)
are another set of concyclic foci. We have B,. & =%.6, and it appears, ante No. 104,
that we can find /,, m,, n,;, such that identically

- +mB +n6=—-LU+mB, +n,C,
and that m,n, =mn. The equation of the curve gives

—1 +mB +n6 +2VmaBE =0,
we have therefore
=5, + 7B, + 0,6 + 2 ¥Vm,n,B,6, =0,
that 1is,
Vi, + Vi, B, + V€, =0,

viz, this is the equation of the curve expressed in terms of the concyclic foci
Ay w0
Article No. 194. The Tetrazomal Curve, Decomposable or Indecomposable.
194. I consider the tetrazomal curve
VI + Vm®B° + V€ + VpD© =0,
where the zomals are circles described about any given points A, B, C, D as cen;res.
el (= 0
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There is mnot, in general, any identical equation a¥°+b®B° +c¢6°+dD°=0, but
m o n
S5 + 5 £_

when such relation exists, and when we have also §.+b 3 d=0, then the curve

breaks up into two trizomals. When the conditions in question do not subsist, the
curve is indecomposable. But there may exist between [, m, n, p relations in virtue
of which a branch or branches ideally contain (2= 0) the line infinity a certain number
of times, and which thus cause a depression in the order of the curve. The several

cases are as follows:

Article No. 195. Cuses of the Indecomposable Curve.

195. I. The general case; I, m, n, p not subjected to any condition. The curve
is here of the order =8; it has a quadruple point at each of the points 7, J (and
there is consequently no other point at infinity); it is touched four times by each of
the circles A, B, C, D; and it has six nodes, viz, these are the intersections of the

pairs of circles B
Vm®B® + Vi€ =0, V' +VpD° =0,

Vi@ + VI =0, VmB® +VpD° =0,

VI +Vm®B° =0, VaB® +VpD°=0;

the number of dps. is 6+ 2.6, =18, and there are no cusps, hence the class is = 20,

and the deficiency is = 3.

II. We may have
Vi+VNm+Nn+Vp=0;

there is in this case a single branch ideally containing (z2=0) the line infinity; the
order is =7. Each of the points I, J is a triple point, there is consequently one other
point at infinity; viz, this is a real point, or the curve has a real asymptote. There
are 6 nodes as before; dps. are 6 +2.3, =12; class =18, deficiency =3.

III. We may have
Vit ¥m=0, Vau+Vp=0;

there are then two branches each ideally containing (z=0) the line infinity ; the order
is =6. Each of the points 7, J is a double point, and there are therefore two more
points at infinity. These may be real or imaginary; viz, the curve may have
(besides the asymptotes at I, J) two real or imaginary asymptotes. The ecircles
VIA +VmB =0, ¥n6 +Vp®D =0, each contain (z=0) the line infinity, or they reduce
themselves to two lines, so that in place of two nodes we have a single node at the
intersection of these lines; number of ncdes is =5. Hence dps. are 5+2.1, =7. Class

=16, deficiency =3.

IV. We may have
Vi:Vm :Vn :¥p=a:b:c:d;
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there is here a single branch containing (2*=0) the line infinity twice; the order is
=6. Kach of the points I, J is a double point, and there are therefore two more
points at infinity, that is (besides the asymptotes at Z, J), there are two (real or
imaginary) asymptotes. The number of nodes, as in the general case, is =6. Hence
dps. are 6+2.1, =8; class is =14; deficiency = 2.

I notice the included particular case where the circles reduce themselves to their
centres; viz, we have here the curve

aVvVA+bVB +cVE+dVD =0,

which (see ante No. 93) is in fact the curve which is the locus of the foci of the
conics which pass through the four points A4, B, €, D. It is at present assumed that
the four points are not a circle; this case will be considered post No. 199. If we
have BC, AD meeting in RB; CA, BD in S, and 4B, CD in 7, then these points
R, S, T are three of the six nodes. In fact, writing down the equations of the two
circles

bVB +cVE=0, avi+dVD=0,

and observing that when the current point is taken at R, we have B : €= RB* : R(*
=(BADYy : (CADy=c* : b* and similarly 2 : D = RA? : RD*=(ABCy : (DBOy: =4 : a},
we see that each of the two circles passes through the point R, or this point is a
node. Similarly, the points S and 7' are each of them a node.

Vi el
Wy AR,

there are here three branches, each ideally containing (z=0) the line infinity; the
order is thus =5. Each of the points I, J is an ordinary point on the curve; there
are besides at infinity three points, all real, or one real and two imaginary; that is
(besides the asymptotes at I, J) there are three asymptotes, all real, or one real and
two imaginary. Each of the circles VI + VB =0, &ec., contains the line infinity, and is
thus reduced to a line; the number of nodes is therefore =3. Hence also, dps.=3;
class =14; deficiency =3.

Article No. 196. Cases of the Indecomposable Curve, the Centres being in a Line.

196. There are some peculiarities in the case where the centres 4, B, C, D are
on a line; taking as usual (@, b, ¢, d) for the a-coordinates or distances of the four
centres from a fixed point on the line, I enumerate the cases as follows:

I. No relation between I, m, n, p; corresponds to L supra.
II. Vi+VNm+~n++~p=0; corresponds to II. supra.

III. Vi+~¥m=0, Vn4++p=0; corresponds to IIL supra.
70—2
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IV. Vi4¥Vm+Vn+Vp=0, aVi+b¥m+cVn+dVp=0; corresponds to IV. supra,
viz., there is a branch ideally containing (2?=0) the line infinity twice. But, observe
that whereas in IV. supra, in order that this might be so, it was necessary to impose

on I, m, n, p three conditions giving the definite systems of values VI : ¥m : ¥n : ¥p
=a:b:c:d in the present case only two conditions are imposed, so that a single
arbitrary parameter is left.

V. Ni=Vm=~n=Wp; corresponds to V. supra.

VL Vi+vVm=0, Yn+Vp=0, aVli+bVm+cVn+d~p=0, or what is the
same thing, V7 : ¥m : ¥n : ¥p=c—d :d—c:b—a : a—b; the equation is thus
(¢ — d)(WVA° =VB°)— (a — b) (WUA° —~B°) = 0. There is here one branch ideally containing
{22=0) the line infinity twice, and another branch ideally containing (z=0) the line
infinity once; order is =5. Each of the points Z, J is an ordinary point on the
curve, the remaining points at infinity are a node (A°=LB°, €°=D°), as presently
mentioned, counting as three points, viz, one branch has for its tangent the line
infinity, and the other branch has for its tangent a line perpendicular to the axis;
or what is the same thing, there is a hyperbolic branch having an asymptote perpen-
dicular to the axis, and a parabolic branch ultimately perpendicular to the axis. The
number of nodes is =5, viz.,, there is the node A°=B°, 6°=D° just referred to; and

the two pairs of nodes ((c — d) VU° —(a—b)VE =0, —(c—d)VDB° +(a—b)VD°=0) and
(c=d)VH° + (@ —b)VD° =0, (c— d)VB° + (a —b) V@ = 0), each pair symmetrically situate
in regard to the axis. Hence also dps.=5; class=10; deficiency =1.

And there is apparently a seventh case, which, however, I exclude from the present
investigation, viz., this would be if we had

(1, 1, 1, 1,)W., Vm, va, ¥p)=0,
vy Do crp A,
I R R e K
(ot L bt o
that is, a, b, ¢, d denoting as before, if we had
MU :A/m :a/n:ap=a:b:c:d, and aa”+bb"?+cc”?+dd”?2=0.
For observe that in this case we have

a’+bB° +¢C°+dD°=0, and £+Z’f+g+1_’=0;

b d

that is, the supposition in question belongs to the decomposable case.

Article No. 197. The Decomposable Curve.

197. We have next to consider the decomposable case, viz, when we have

al®+bB° +cC° +dD°=0;
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see ante, Nos. 87 et seq.—it there appears that (unless the centres 4, B, €, D are in
a line) the condition signifies that the four circles have a common orthotomic circle;

and when we have also

I mil s mal D
5+F+6+a—o.

The formule for the decomposition are given ante, Nos. 42 et seq. Writing therein

A°, B°, €°, D° in place of U, V, W, T respectively, it thereby appears that the tetra-

zomal curve VII° +VmB® + Vnl° + VpD° =0, breaks up into the two trizomal curves
VI + VB + N0, = 0, VI 4 VB + V6 =0,

where

L wwl 2P VI g T B
; l'+d«/l’ £ ‘/l"'d\/l’

Vi == [ 2 o, Vim= it/ B VR,

S la - R
Nn, =Vn +\/bcd 7C N, Vn, =Vn bed 1° Vm,
and where we have
l_1+7£‘+‘_n_‘=0’ e,
;b= ae a

Article Nos. 198 to 203. Cases of the Decomposable Curve, Centres mot in a line.

198. I assume, in the first instance, that the centres of the circles are not in a
line; we have the following cases:

I. No further relation between I, m, n, p; the order of the tetrazomal is =8;
the order of each of the trizomals is =4, that is each of ther 3s a bicircular quartic.

IL. Vi+Vm+Vn+Vp=0; the order of the tetrazomal is =7, that of one of
the trizomals must be = 3.

To verify this, observe that we have
B bt s e BT
\/l1+Vm1+V1zl—Vl+Vm+Vn+dVZ+ Vi BEH(CVm—b&/n),
or substituting for ¥l + ¥m + ¥n the value — p, this is

=J\{«1’/;z favp-avi+ \/g—g(cm_w;)},
and similarly for VI, 4+ ¥m,+#n,, the only change being in the sign of the radical
%(—j. But from the two conditions satisfied by I, m, n, p it is easy to deduce

(@Vp—dVip 2 (e Vi —bVap =0,
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and hence one or other of the two functions
VT, + N, + Ny, Nl +Nmg+ Vg is =0

that is, one of the trizomal curves is a cubic.

III. ~i+ '\/1_)=O, N+ ~¥n=0; order of the tetrazomal is =6; and hence order
of each of the trizomals is =3. To verify this, observe that here

(Lo d)em )0

which since a+b+c+d=0, gives ;ll=%g; so that, properly fixing the sign of the

radical, we may write VI + «/ %(;1 Vm=0. We have then

VE=2* 0T s g2 o)V

which last equation, using \/ %‘i to denote as above, but properly selecting the signi-
fication of +, may be written

b+ec aligna
N/ml+\/nl—+ ) bcv

Hence

W’l;(«/m;+va)_é{(a+d)«/l+(b+c)\/ dvm}

«/l \/ad's/m} =0,

viz., «/l;?(‘\/n_ll-}- Vn) with a properly selected signification of the sign ¥ is =0; and
similarly ~7, T (Vm, +~'n,) with a properly selected signification of the sign F is =0;
that is, each of the trizomals is a cubic.

199. IV. Vi:Nm :¥n:Vp=a:b:c:d (values which, be it observed, satisfy
\
of themselves the above assumed equation £+ & + - +£ 0) the order of the tetra-

zomal is =6; and the order of each of the trizomals is here again =3. We in fact
have Vi =a+d, Vm +V¥n=b+ec, and therefore '\/l;+«/;r—n‘1+4/771=0; and - similarly
Vi, +Nm, + «/E._,=0; that is, each of the trizomals is a cubic.

I attend, in particular, to the case where the four circles reduce themselves to
the points 4, B, €, D; these four points are then in a circle; and the curve under
consideration is

aVA+bVB+cVE+dVD =0;
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in the general case where the points A4, B, €, D are not on a circle, this is, as has
been seen, a sextic curve, the locus of the foci of the conics which pass through
the four given points; in the case where the points are in a circle then the sextic
breaks up into two cubics (viz, observing that the curve under consideration is
VIA +Nm®B + VB + VpD =0, where VI : ¥m : Vo : Vp=a:b:c:d these values do
of themselves satisfy the condition of decomposability £+%L+g+g=0), that is, the
locus of the foci of the conics which pass through four points on a circle is composed
of two circular cubics, each of them having the four points for a set of concyclic
foci. It is easy to see why the sextic, thus defined as a locus of foci, must break
up into two cubics; in fact, as we have seen, the conics which pass through the four
concyclic points A4, B, C, D have their axes in two fixed directions; there is con-
sequently a locus of the foci situate on the axes which are in one of the fixed
directions, and a separate locus of the foci situate on the axes which lie in the other
of the fixed directions; viz., each of these loci is a circular cubic.

200. Adopting the notation of No. 188, or writing
Rdi=ldy, Bi—lb e = SR D= o,
(and therefore b,c, = a,d,) we have
a:b:c:d==d(b—-c):cl@m—d): —=b(a—d): a—c)

Moreover K i
Vi, =a+d , NI, =a +d,

vﬁ___“\/bcd, ,\/Ez=b_\/bcd,
a a

'\//;—L; = — lfgl, ’\/12 =C+/\/bcq,
a a

and we have

b:ii =(a, — d,)? al_};LCI =a2(a,—d,), \/ b%‘.i = —a,(a,— d,) suppose;
and thence 5 .
vll =(a, —d)) (b — ), '\/l-z =(;—d)( b—c)
«/ﬁl.—_(a,l—dl)(cl—ul), N/;i:(al—dl)( 61+a/1)
Vn, =(a¢, — d)) (&, = b)), Vo, =(a, —d)) (- ¢, — b)),
that is

NI, : Nmy : Vip=b—¢, :ei—ay : a,— by,
Vi, : Nmy : Nmg=b—¢, : e+ a, : —a,— by,
agreeing with the formule No. 188,
The tetrazomal curve

—dy (b — ) VU + 0 (@, — d)VB = b (= ) VE +ay (b — ) VD=0
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is thus decomposed into the two trizomals

(b — ) v + (6 — @) V3B + (@, — b)) VE =0,
(b — ) VU + (¢, + a) VB — (ay + b) VE = 0.

201. Observe that the tetrazomal equation is a consequence of either of the
trizomal equations; taking for instance the first trizomal equation, this gives the
tetrazomal equation, and consequently any combination of the trizomal equation and
the tetrazomal equation is satisfied if only the trizomal equation is satisfied. Multiply
the trizomal equation by —a,+d, and add it to the tetrazomal equation; the resulting
equation contains the factor a,, and omitting this, it is

(bl_cl)(_"/g*'“/§)+(@1-‘d1)(‘\/$—'\/@)=0,

where observe that b,—c, is the distance BC, and a,—d, the distance A4D. But in
like manner multiplying the second trizomal equation by —a,+d,, and adding it to
the original tetrazomal equation, the resulting equation, omitting the factor «,, is

(b —¢) (VAL VD) — (0, — d) (VB -VE)=0;

viz., it is in fact the same tetrazomal equation as was obtained by means of the first
trizomal equation.

The new tetrazomal equation, say
(b= 0) (= VA+ VD) + (e, — ) (VB - VE) =0,

is thus equivalent to the original tetrazomal equation; observe that it is an equation
of the form VI +~m®B 4+ ¥n€ +vVpD =0, where

Vi=—(b—c), Vm=a,—d, Vn=(a,—d), Vp=b—aq,

and where consequently ¥I+4p=0, Vm++~n=0, that is an equation of the form
(198) 1II., decomposable, as it should be, into the equations of two circular cubics.
Writing

—VA+VD

a—d,

V8- VE _

bl—Ol

0, 0,

where 6 is an arbitrary parameter, the curve is obtained as the locus of the inter-
sections of two similar conics having respectively the foci (4, D) and the foci (B, C)
(see Salmon, Higher Plane Curves, p. 174): whence we have the theorem, that if
A, B, C, D are any four points on a circle, the two circular cubics which are the
locus of the foci of the conics which pass through the four points 4, B, C, D, are
also the locus of the intersections of the similar conics, which have for their foci
(4, D) and (B, C) respectively; and of the similar conics with the foci (B, D) and
(C, A) respectively; and of the similar conics with the foci (C, D) and (4, B) respectively.

202. V. Vi=Vm=~n=+p. The order of the tetrazomal is =5, whence those
of the trizomals should be =3 and =2 respectively. To verify this observe that the
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coibihl RS D : Lo il LV :
equation 5+f+6+a_0 gives §+B+E+&=O’ and combining with a+b+c+d=0,

these are only satisfied by one of the systems (a+b=0, c+d=0), (a+c=0, b+d=0),
(a+d=0, b+c=0). Selecting to fix the ideas the first of these, or writing
(a, b, ¢, d)=(a, —a,‘c, —c),
so that we have identically
a(4°-B°)+c(C°-D°)=0,
an equation which signifies that the radical axis of the circles 4, B is also the

! : . J S a p/_ i 1
radical axis of the circles C, D; then, writing as we may do, bed l(_ \/ c’) %

we have

o a - a
‘\/ll _1——6’ vlz "1_6,

e a g a
’\/’mx—l'*'ax «/mz—l—a,
N, =141, =2, Wn,=1-1, =0.

Here VI, +~m, —~n, =0, which gives one of the trizomals a cubic, viz, this is the
trizomal

(1—2>42F+(1+%)~/%_°+2«/@°=0.

The other trizomal reduces itself to the bizomal ~°++B°=0, which regarded as a
trizomal, or written under the form (VI°+~®B°)2=0, is the line A°—B°=0 twice, viz.,
this is the radical axis of the circles 4,, B, twice; and the order is thus =2. By
what precedes, the line in question is in fact the common radical axis of the circles
A, B and of the circles C, D.

Article Nos. 203 to 205. Cases of the Decomposable Curve, the Centres in a Line.

203. We have yet to consider the decomposable case when the centres 4, B, C, D
are on a line; the equation a’+bB°+cC°+dD°=0 here subsists universally, what-
ever be the radii a”, 0", ¢”, d’. We establish as before the relation :_i +%L+§+§=O.
The cases are as follows:

I. No further relation between I, m, n, p; order of tetrazomal =8, of trizomals
4 and 4.

IL Vi+Vm+~n+V p=0; order of tetrazomal =7; of trizomals =4 and 3; same
as IL. supra.

III. ¥i+Vp=0, Ym+~n=0; order of tetrazomal =6; of trizomals 3 and 3;
same as IIL supra.
C. VL 71
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204, IV. Ni+Vm+~n+~Np=0, avNi+bVm+cVn+d¥p=0; order of tetrazomal
= 6; this is a remarkable case, the orders of the trizomals are either 3, 3 or else 4, 2.

To explain how this is, it is to be noticed that in the absence of any special

relation between the radii, the above conditions combined with l+ o +g—0 give

N : Nm 2 Nn «/p:a :b:c:d(®; when I, m, n, p have these values, the case is
the same as IV. supra, and the orders of the trizomals are 3, 3. But if the radii
of the circles satisfy the condition

a/@) bnz’ cl/g, d

then the two conditions satisfy of themselves the remaining condition £+ T - +g 0,

and the ratios V7 : Vm : ¥n : V/p instead of being determinate as above, depend on an
arbitrary parameter.

We have

SRS R T o e o o
\/l,—'\/l+dvz, N, =Vm bdle/n vV, N/n+«/bcdlc’\/m,

and between I, m, n, p only the relations
NI+Nm+Vn+Vp=0. aVi+bVm+cVn+dVp=0.
We find first
VI 4+ Ny + N =Vl Vm + Vn

\/p - ‘a - )
«/l{ p—«/bcd(b\/n—c«/m)}
S AL e B ol e i)
__:/l-{(—i(dVl—an)—\/b—c(b‘\/n—c«/m)j,

1 Writing «2, 2, 22, w? in place of N1, ¥m, Nn, Vp, we have to find x, y, 2z, w from the conditions
2+ y+ 2+ w=0,
ax+by +cz +dw=0,

et ol
e +d0

where the constants are connected by the relation
aa+bb +cc +dd =0.

It readily appears that the line represented by the first two equations touches the quadric surface in the point

z:y:z:w=a:b:c:d, so that these are in general the only values of NN N \/17. In the case next
referred to in the text the line lies in the surface, and the values are not determined.
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and then
(d—a)Vl =B —d)Vm + (c — d)Vn,

(d—a)Vp=(a—b)Vm+(a—c)Vn,

whence
V= aNp=""% b Vn—cVm)
and we have thus

Vi + "+ 4y = VP

1T oA/ be) 0Va-cvm);

and similarly
- - — Ap b—c¢ ad — —
N/l2+'\/mz+'\/n2=dl\}/l_ (d——a+‘ &’)(b'\/n—c'\/m):
(observe that in the case not under consideration b¥n—cVm =0, and therefore
Vi, + N, +Nn, = 0, Vi, + ¥m, + Vn, = 0).

In the present case we have
a:b:c:d=(b—c)(c—d)(d-b): - (c—d)(d—a)(a—c): (d—a)(a=b)(b—d): —(a—b)(b—c)(c—a),
and thence
L g
be  (d—a)’
so that only one of the two sums N + Ny + Ny, VI + Vmy +Vn, is =0, viz, assuming

ad _b—c
bhe dh—a’

we have VI, +Vmy + vV, =0.
We have then also
aNlL+bVm, +cNm=aNI+bVm +cVn

+://]Z {aaA/p \/b d(bb Nn— ccx/m)}

= VP{ (dAVl—aap)— /\/bd(bb*/az—cch)}
but we find
dd Wi —aavp="27"° @bV —cevim),
and thence
SR R <) - At s e
a'\/ll+b\/ml+c\/nl=dvZ (di-_(t— b—c>(bb‘\/n—cc'\/n7.), =0,

in virtue of Mad Il—_—c Hence VI, : ¥m, : ¥my, =b—c¢ : c—a : a—b, or the corre-

sponding trizomal is a conic, but the other trizomal is a quartic.

71—2
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205. V. Vi=Vm=+Vn =«/]—); order of tetrazomal is =5; orders of trizomals =3, 2;
same as V. supra.

VL Vi4Vp=0, Vm+"¥n=0, aVi+b¥Nm+cVn+dVp=0; order of tetrazomal
=5; orders of trizomals are 3, 2.

We have here
s £ a+d g
Vi, = 5 Vi,

gt vﬁ+¢;ﬁbv5,

gt “”7“\/%1‘“/5’

or writing the values of N'm,, ¥n, in the form

Vi '\/m+/\/ad b

~/71,=—\/m+«/adc Vm,

then observing that as before l=i—im, if to fix the ideas we assume V= «/ %—3 Vm, the

equations are

= a+d\/l and similarly V7, = a'-g—dw/l—
V= i+ 24, Vimy = = 2
Vi == Am + S, Vi, =vm =S Wi,

whence
VI, +Nm +¥n, =0, Vly—~Nm,—Vn,=0.
‘We have moreover i

o “agdd«/z;

b\/;zl_+c'\/a=(b—c)«/'7ri+bbzccx/z

and thence i ik A i T
aVl+bVmy + eV =(a—d)Vi+ (b —c)Vm=0,
so that
NG, : Nm, : Vny=b—c:c—a:a—b;
the corresponding trizomal is thus a conic, and it has been seen that the other

trizomal is a cubic.
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VII. If we have |1 ,1,1,1 ;=0,and (1 ,1,1,1 )W, ~m VnVp)=0,

a ,b,c,d a,b,c,d
@ 0%, o d aA,br,c,d
a’/’, bl/z, cllz, d’lﬂ ali2’ blla’ 61/2’ dliz

the tetrazomal has a branch ideally containing (z*=0) the line infinity 3 times; order
is =5; orders of the trizomals are 3, 2. We have here

’\/l—:'s/;z:'\/h_:\/ﬁ=a,:b:c:d,

and thence b
Vi, =a+d , Vi, =a+d )
AL e Sy
a a
AR L I Sy
a a
which give o ot 4 5 &
'\/l—1+x/'m,+\/n‘=0, Vi, + Vmy, + Vi, =0.
Moreover

aVh+bVm +cVn = a(a+d)+bb+ce

= (a—d)d—(b—c)\/b?

= afe--0-04/5}

aVL 0Vt o Vi =d{a—d)+0-0p/ o}

and similarly

whence in virtue of
ad R (b; 0)2
be  (d— a)’

one of the two expressions is =0; and the trizomals are thus a conic and a cubic.

Article No. 206. The Decomposable Curve; Transformation to a different set of
Concyclic Foci.

206. Consider the decomposable case of
VI +VmB + Vn€ +VpD =0;

: ; 3 2 l
viz.,, the points 4, B, C, D lie here in a circle, and we have i +£z+::_2+]_o =0.

b d
Taking (4,, D;) the antipoints of (A4, D); (B,, (,) the antipoints of (B, C); then

www.rcin.org.pl



366 ON POLYZOMAL CURVES. (414

A, =AD, B,6,=BE (No. 65) and referring to the formule, ante, Nos. 100 et seq.,
it appears that we can find [, m,, n,, p, such that identically

- +mB +2€ —pD = — LA + B, + 0,6, — p,D,,
and moreover that Ip=1lp,, mn=mm,.

The equation of the curve gives

I +mB +n€ —p® —2VIPAD +2VmnBE =0,
which may consequently be written

o llml + ml%]_'*' ?’ll@l == pl®1 P 2 '\/IITQ[;®1 + 2 ’\/’ml’lll%l@l = 0 ;
viz., this is

Vi, + VB, + V6, + Vp, D, = 0;

that is, the two trizomals expressed by the original tetrazomal equation involving the
set of concyclic foci (4, B, C, D) are thus expressed by a new tetrazomal equation
involving the different set of concyclic foci (4,, B,, Ci, D,); and we might of course
in like manner express the equation in terms of the other two sets of concyclic foci
(4., B,, C,, D,) and (4;, B;, C;, D;) respectively. It might have been anticipated that
such a transformation existed, for we could as regards each of the component trizomals
separately pass from the original set to a different set of concyclic foci, and the two
trizomal equations thus obtained would, it might be presumed, be capable of composition
into a single tetrazomal equation; but the direct transformation of the tetrazomal
equation is not on this account less interesting.

ANNEX 1. On the Theory of the Jacobian.

Cousider any three curves U=0, V=0, W= 0,{ of the same order », then writing
I, 7 my= 0L WA Vs Gl .
d@ 9y, 2) | qU 4V, dW
d U d, V. d. W
we have the Jacobian curve J (U, V, W)=0, of the order 3r — 3.

A fundamental property is that if the curves U=0, V=0, W=0 have any
common point, this is a point on the Jacobian, and not only so, but it is a node, or
double point, that is, for the point in question we have J =0, and we have also
de =0, dyJJ =0, dJ=0.

It follows that for the three curves 1@+ LP =0, m® +MP =0, O+ NP=0
(=0 of the order r—s, =0 of the order r—s, =0, m=0, n=0 each of the
order s, L=0, M=0, N=0 each of the order s) which have in common the
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(r—¢) (r—s) points of intersection of the curves ® =0, ® =0, each of these points is
a node on the Jacobian, and hence that the Jacobian must be of the form

J (1O + LD, m® + M®, n® + NO) = AO: + 2BOD + 0D =

where obviously the degrees of A, B, C must be r+25 —3, r+s+8-—-3, r+2s—3
respectively. In the particular case where =0, that is where I, m, n are constants,
we have 4=0; the Jacobian curve then contains as a factor (®=0), and throwing
this out, the curve is BO + (® =0, viz, this is a curve of the order 2r+s—3
passing through each of »(r —s) points of intersection of the curves @ =0, ® =0,

In particular, if =2, s=1, that is, if the curves are the conics O + LD =
O+ MP=0, O+ NP=0, passing through the two points of intersection of the conic
® =0 by the line ®=0, then the Jacobian is a conic passing through these same
two points, viz, its equation is of the form ® + Qd =0. This intersects any one of
the given conics, say ® + L& =0 in the points ® =0, ® =0, and in two other points
O+QP=0, Q-L=0; at each of the last-mentioned points, the tangents to the two
curves, and the lines drawn to the two points ® =0, ® =0, form a harmonic pencil.

Although this is, in fact, the known theorem that the Jacobian of three circles
is their orthotomic circle, yet it is, I think, worth while to give a demonstration of
the theorem as above stated in reference to the conics through two given points.

Taking (2=0, 2=0), (2=0, y=0) for the two given points @ =0, ® =0, the
general equation of a conic through the two pomt;s is a quadric equatlon containing
terms in 2%, zz, 2y, xy; taking any two such conics

¢zt + 2fyz + 2gzx + 2hay =0,

C2* + 2Fyz + 2G 2w + 2Hay = 0,
these intersect in the two points (z=0, 2=0), (y=0, 2=0) and in two other points;
let (#, y, z) be the coordinates of either of the last-mentioned points, and take (X, Y, Z)
as current coordinates, the equations of the lines to the fixed points and of the two

tangents are
Xz—Z2z=0, Yz2—2Zy =0,

(hy +92)(Xz—Zzx)+ (ha +f2)(Yz—Zy)=0,
(Hy + Gz) (Xz — Zz) + (Hz + Fz) (Yz — Zy) = 0,
whence the condition for the harmonic relation is
; (hy + 92) (Hz + F2) + (ha + fz) (Hy + Gz) =0,
e (fG+gF) 22+ (hF + fH) yz + (9H + hG) zz + 2hHzy = 0,
but from the equations of the two conics multiplying by $H, }h and adding, we have
3 (cH +10) 22+ (hF +fH) yz + (9H + hG) 2z + 2h Hzy =0;

viz., the condition is thus reduced to

cH+h0—2(fG+gF)=0
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so that this condition being satisfied for one of the points in question, it will be
satisfied for the other of them. Now for the three conics

c2® +2f yz+ 29 zx + 2h 2y =0,

2 +2f" yz + 29" 22 + 2h'zy =0,

¢’z + 2f"yz + 29”22 + 2" xy = 0,
forming the Jacobian, and throwing out the factor z, we may write the equation in

the form
C22 + 2Fyz + 2Gzz + 2Hay = 0,

where the values are
C=g(fe'=f7)+9 (fe—f")+9" (fd —f0)
H=gWf" =W +g Wf =) +9" (bf' = Kf),
2F = (f'c"—f"c')+h’ (f'e—fc")+ 1" (fc' —fc),
2G =h (g’ —c"g)+ N ("g—cg’ )+ k' (cg —Cg);
and we thence obtain
cH + hC=—(fg' —[f'9) ("h—ck”) + (f"g = f9") (ck’ — c'h)
= 2(fG+gF),

viz.,, the condition is satisfied in regard to the Jacobian and the first of the three
conics; and it is therefore also satisfied in regard to the Jacobian and the other two

conics respectively.

I do not know any general theorem in regard to the Jacobian which gives the
foregoing theorem of the orthotomic circle. It may be remarked that the use in the
Memoir of the theorem of the orthotomic circle is not so great as would at first
sight appear: it fixes the ideas to speak of the orthotomic circle of three given circles
rather than of their Jacobian, but we are concerned with the orthotomic circle less as
the circle which cuts at right angles the given 01rcles than as a circle standing in
a known relation to the given circles.

ANNEX II. On CASEY’S Theorem for the Circle which touches three given Circles.

The following two problems are identical :
1. To find a circle touching three given circles.

2. To find a cone-sphere (sphere the radius of which is =0) passing through
three given points in space.

In fact, in the first problem if we use z to denote a given constant (which may
be =0), then taking @, o' and ¢(2—a”) for the coordinates of the centre and for the
radius of one of the given circles; and similarly b, ¥, ¢(2—b"); ¢, ¢, ©(z —c”) for the
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other two given circles; and 8, §, i(z—8") for the required circle; the equations of
the given circles will be
(—a)+(@y—a)yP+(z—a"2=0,
@=b+y-V)yr+(z-0"yr=0,
@—cy+@y—cy+@E—c"y=0,
and that of the required circle will be
(@—=Sy+Hy—-8)r+(=z-8"2=0.
In order that this may touch the given circles, the distances of its centre from the
centres of the given circles must be 1 (S” —a”), 1 (S” —b"), 1 (S” —c¢”) respectively; the
conditions of contact then are

S=ay+S" —adyp+(8"—a"p=0,
B=0r+S"=by2+(8"=0")2=0,
S=c)2+ (8" = yP+(8"=c")2=0,

or we have from these equations to determine S, S/, S”. But taking (@, o, a”),
b, ¥, b"), (c, ¢, ¢”) for the coordinates of three given points in space, and (S, S’, 8”)
for the coordinates of the centre of the cone-sphere through these points, we have the
very same equations for the determination of (S, S, S”), and the identity of the two
problems thus appears.

I will presently give the direct analytical solution of this system of equations.
But to obtain a solution in the form required, I remark that the equation of the
cone-sphere in question is nothing else than the relation that exists between the
coordinates of any four points on a cone-sphere; to find this, consider any five points in
space, 1, 2, 8, 4, 5; and let 12, &c. denote the distances between the points 1 and 2, &c.;
then we have between the distances of the five points the relation

'Rt Mes G ST N i TR T

SRy Lty —f .

1,770, "18. 748,714, " 18
—2 —2 —2

1, 2, =0, 28, 24, 2

TR TR e e

AECTHD S e e

el il

1. b1, 52, 53, 54, 0
whence taking 5 to be the centre of the cone-sphere through the points 1, 2, 3, 4,
we have 15=25=385=145=0; and the equation becomes

2 —2
0, 12, 13, 14 =0,

Y T Y o
ol
T e Y

AT 42 48,70
C. VL 72
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which is the relation between the distances of any four points on a cone-sphere; this
equation may be written under the irrational form

23.14+31.24+12.34=0.

Taking (a, @, a”), (b, V', V"), (¢, ¢, ¢’), (#, y, 2) for the coordinates of the four points
respectively, we have

NG —F+ (W =P+ =", lh=N@—af+y—ay+(z—d)
§T=,\‘/(c —a) +(CI b al)z +(C" = a//'g" 24 — ,\/(x Zh b)2 +(y_ b')e L P bn)z,
19 = \/(a bR+ (a =Y+ (a”=b") 34 = ‘\/(.7,‘ —cr+(y— P+ (z— ¢y

or the symbols having these significations, we have
23.14+431.24+12.34=0

for the equation of the cone-sphere through the three points; or rather (since the
rational equation is of the order 4 in the coordinates (z, y, 2)) this is the equation
of the pair of cone-spheres through the three given points; and similarly it is in
the first problem the equation of a pair of circles each touching the three given circles
respectively.

In the first problem the radii of the given circles were i (z —a”), ¢(z—b"), i(z—¢”
respectively ; denoting these radii by a, B, v, or taking the equations of the given
circles to be

(¢-af+(y—a)y—a =0,
(—§p+@-b)y-8=0,
(@—cyP+@y—cr-v =0,
the symbols then are
BT o+ O —0F =By W=V@—ap+{y-af-a,
BLl=V(—ay+(d —ay—(y—a), Zh=V@—byr+@y-byr-p
2=Vl by @ —FF =GBy, =Vl oF+G -V -7,

and the equation of the pair of circles is as before

23.14+31.24+12.34=0;

where it is to be noticed that 23, 31, 12 are the tangential distances of the circles
2 and 3, 3 and 1, 1 and 2 respectively; viz, if «, B, v are the radii taken positively,
then these are the direct tangential distances. By taking the radii positively or
negatively at pleasure, we obtain in all four equations—the tangential distances being
all direct as above, or else any one is direct, and the other two are inverse; we have
thus the four pairs of tangent circles.

The cone-spheres which pass through a given circle are the two spheres which
have their centres in the two antipoints of the given circle; and it is easy to see
that the foregoing investigation gives the following (imaginary) construction of the
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tangent circles; viz, given any three circles 4, B, ' in the same plane, to draw the
tangent circles. Taking the antipoints of the three circles, then selecting any three
antipoints (one for each circle) so as to form a triad, we have in all four complementary
pairs of triads. Through a triad, and through the complementary triad draw two
circles, these are situate symmetrically on opposite sides of the plane; and combining
each antipoint of the first circle with the symmetrically situated antipoint of the second
circle, we have two pairs of points, the points of each pair being symmetrically situate
in regard to the plane, and having therefore an anticircle in this plane; these two
anticircles are a pair of tangent circles; and the four pairs of complementary triads
give in this manner the four pairs of tangent circles.

I return to the equations
(=8P +(@ -8y +@ -8"P=0,
(a =82 +(@—=8)P+(@ —-8")y=0,
b—=8yp +@O —-8S)P+@®" -—8"):2=0,
(c =8y +(c =8P +(” —=8")2=0;
by eliminating (S, S’, 8”) from these equations we shall obtain the equation of
the pair of cone-spheres through the points (a, o/, «”), (b, ¥, "), (¢, ¢/, ¢”). Write
-8, y==8', 2=8"=X, Y, Z, then we have X*+ Y*+ Z*=0, and, putting for shortness
A=(a—-a)p +(@-yF +(@"-2),
B=(0b -2 +@¥-yr +0" -2),
CE=(C-af +( -yF +(c"—2),
then, by .neans of the equation just obtained, the other three equations become
A+2[(a—z) X +(a' —y) Y+(a" —2)Z] =0,
B+2[(b—a) X+ W —y) Y+(b"—2)Z]=0,
C+2[c—a) X +( —y) Y+ (c"—2)Z]=0.
These last equations give
X:Y:Z= A +uB +v €
cNUA + 4B+ 6
: MU+ u"B + 06,

where .
x =b/c/1_b//c/+(cl _b/)z_(c//_b/)y’

p =ca’ —c'd +(@ —c)z—(a"—c")y,
v =t =V + W —d)z—("—a")y,
N =0 —bc" +(c" —b)z—(c =b )z,
W=ca—ca +(@—-c)o—(a —c )z,
vV =a’b—ab’ + (" —a" Yz —( —a )z,
N'=bd =bc +( =b)y—(c =V )z,
wW=ca —ca +(@ —c )y—(a —c )=,
Vi=abl —ab +(b —a)y—(0 —d)z;
72—2
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and the result of the elimination then is
AA+uB +v8 )2+ NA+ p'B +vEp+ WA+ p"B + "€y =0.

But substituting for 2, B, € their values, and writing, for shortness,
—1 =b'¢" =0 +ca”"—c"a + a'b” —a”b,
-7 =b"c =bc"+c"a —ca” +a"b —a V',
—k =bd’ =bec +ca'—ca +a b —a'b,

A=ac =b"c)+da (b'c—bc")+a” (be —b'c),

—p =" =b"¢) (@ +a?+ a”) + (da” — ") (b + b2 + ") + (a'b” — a"V') (¢* + ¢* + ),
—q =" =b")(@+a”+a™) +("a —ca” ) (B + b2+ ") + (a"b — ab” ) (¢ + ¢ + ¢),
—r = =bec)(@+a?+a")+ (ca’ —ca )B+b?+b")+ (ab —ab" ) (> +c?+ ™),
-l =(c =b Y@+a"+a)+(a —c YB+2+V)+(b —a )(+c*+c),
-m=(cd =b Y@+a?+a?)+(a —¢ )B+b2+b)+(V —a )(E+c*+"),
—n=(c =V Ya+a’+a?)+(a’" =" YO +b2+b)+ (V" —a” )(E+c*+c"),

AU+ uB +vE
== 1(BP+y*+ 2%
+ 20 (2° + y* + 2°) — 22 (v + jy + k2) — 2Az + ny — mz — p,
with similar expressions for N + w8 + '€, N"A + p”B +1"C, and the result is
i (@®+y*+2°)— 2 (lw+jy +kz)— 20z + ny — mz—p}*
+ {j @+ 2+ 22 -2y (e +jy + kz)— nz —28y+ lz —q)
+ {k(@+y+2°) =22 (z+jy+kz)+ me— ly —28z—rP=0,
viz., this is
(@ + 32+ 22 (P + 5+ k) :
+ (22 + 92 + 2°) (44 (iz + jy + kz) + 2 (i (ny — m2) + j (Iz — nax) + k (mz — ly))
+ 442 — 2 (ip + jq + kr) + (I*+ m* + n?)}
—(lz + my + nz)y + 4 (iz + jy + kz) (pz + qy + r2)
+4A (pz + qy +72) — 2 (p (ny — m2) + q (Iz = nz) + 7 (ma — ly))
+p’+ ¢ +r*=0,
viz.,, this is in the rational form the equation of the pair of cone-spheres. The

function on the left-hand side must, it is clear, be save to a numerical factor the
norm of

Vb —cp+@ = p+0" =" Na—aP+{y—ay+(z—a’)
+Ve—ap+( —ay+( —a" ¥ . N@—by+y—b)y+(z—0b")
+V(@a—by+ (@ =0)P+@ by . N@—cl+@y—cy+@E—c")

www.rcin.org.pl



414] ON POLYZOMAL CURVES. 573

the numerical factor of the expression in question is in fact =-—4, that is, the

norm is
=—4(@+ 1y + 2P (P +5° + k) + &c.;

so that attending only to the highest powers in (z, y, z2) we ought to have

Norm {V(b —c)+(b'—c'y+b"—¢"y+V(c—=a)+(0 =y +(c"—a” P+ (a—by+ (@ =) +(a” = b))
=—4 @+ + k).
It is easy to see that the norm is in fact composed of the terms
200 —y{ (b—cp—(c—ay—(a-b)}
+2( —aP{—=(b—-clP+(c—a)—(a-Db),
+2(a@ b )2 {—(b—cP—-(c—a)+(a—0b)},

and of the similar terms (a, b, ¢), (a”, b”, ¢”), and in (o, V', ¢), (a”, b”, ¢”); the above
written terms are = — 4 into

@& =c)Pa=b)(a—c)+(c'—aPb—c)(b—a)+ (@ =) (c—a)(c—D),

which is
=a”?(b—cP+b*(c—a)+c?*(a—b)

+2b¢ (a—b)(c—a)+ 2ca’ (b—c)(a—b)+ 2a'b' (¢ — a) (b —rc),
={a'(b—c)+V(c—a)+c (a—Db)
=k
and the value of the norm is thus =— 4 (& + ;2 + &%), as it should be.

ANNEX III. On the Norm of (b—c) VU + (c—a)V®’ +(a—b) V&, when the Centres
are tn a Line.

The norm of VU +VV + VW is
S0, LY, 21, — 1, —S§UV, WY

whence that of VU+ T +VV+V +¥VW + W is
= (11,1,-1,-1,-13U0, V, Wy
JRE g B (V0 T R
VIR VIR TE TR G Y 1 Y
where the last term is =2 into
U U=V W)+ V(=T VW)t W(=U=V+W);
and the norm of U+ U + U +VV + V' + V' +¥W+ W + W is obviously composed

in a similar manner.
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Now, applying the formula to obtain the norm of
(b=—c)Var+ 0 +a+(c—a) VB + 0+ B+ (a—b) Ve + 0+,

the expression contains six terms, two of which are at once seen to vanish; and
writing for shortness (,,) in place of (1, 1, 1, —1, —1, —1) the remaining terms are

() ((B-o0ra, (c—aPB (a=byy)
+2 () (B-cra (c—arB, (a=bryl®-ora, (c—ayt (a—bye)
+20(,) (b —ora, (c—aPB, (@=bpyi(b—cf ,(=0af ,(@=b} )
+20(,) (b—opar, (c—ayb, (@=bpefb—cf , (c—af , (a=bF );
the first of these terms requires no reduction; the second, omitting the factor 2, is
(b—cral (b—cra—(c—a)yb—(a—>b)yc]
+(—aPB[—0b—cyra+(c—a)yb—(a—>b)yc]
+(@=byy [-(b=oFat—(c—ay b+ (a—bY s

which is

=2(a=b)(b—c)(c— a) [be (b — ) &+ ca(c—a) B+ ab(a—Db)y]
Similarly the third term, omitting the factor 26, is
(& = pel" (O~ =iloi-a) = (a5
+e—apBl- (=0 +(—ayr—(a=0by]
+(@a=bpy[-(—c)—(c—a)y+(a—-0dy]

which is

=2(a=b)(b—c)(c—a)[(b—c)a+ (c—a)B+(a—"D)y],

and for the last term, omitting the factor 26, this may be deduced therefrom by writing
(a? 0% ¢ in place of (a, B, v), viz, it is

=—2(a=by(b—or(c—a)
Hence, restoring the omitted factors, and collecting, we find
Norm {(b—c)Va?+0+a+(c—a) Vb + 0+ B +(a—b)Ve* + 0 + v}
=(b-c)a+(c—a)f+(a—b)y —2(c—a)(a—0b)By—2(a—by(b—o)ya—2(b—c)y(c—a)yap
+40(a-b) b—0) c—a)[ (b-c)a+ (c—a)B+ (a—b)y]
+4 (a—=b) (b—c) (c—a) [be(b—c)a+ca(c—a)B+ab(a—b)qy]
~ 46 (a—b) (b—c) (c—a)
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Hence, first writing a-2, b—w, c¢—« in place of a, b, ¢; then y* for 6, and
(—a™, =™, =¢") for (a0, B, v); and finally introducing z for homogeneity, we find

Norm {(b—c)V(z—azf+ = a2+ (c —a)V, + (a—b)¥,} = 2 into
2(b=cyra”+(c—a)yb+(a— by '
—2(c—ap(a—Dbrb™c"?-2(a—b2(b—c)rc?a”—2((b—c)r(c—a)a”b™)
-4y b—c)(c—a)(a—b)[ (b—c)a”+(c—a)b+(a—0b)c"]
-4 (b-c)(c—a)(a=b){ (b—c)a™(22bc —zx (b +c)+a?)
+(c—a)b?(Fca —zz(c + a) + a°)
+(@a—0b)c"” (2 ab—zz(a+b) + a*)}
—dy (b—or(e—ay(a—by,

so that the equation (b—c)VA° + (c—a) VP’ +(a—b)VE°=0, in its rationalised form,
contains (2= 0) the line infinity twice, and the curve is thus a conic. If a2 =0"=c"=k",
then the expression of the norm is

=2 into —4(a—"0b) (b—c) (c—a) (y* — k™ 2°),

viz.,, when the three circles have each of them the same radius %7, the curve is the
pair of parallel lines y*—k"22=0; and in particular when £”=0, or the circles reduce
themselves each to a point, then the curve is y*=0, the axis twice.

ANNEX IV. On the Frizomal Curves VIU +NVmV +VuW =0, which have a Cusp, or
two Nodes.

The trizomal curve VIU +~mV +~nW =0, has not in general any nodes or cusps:
in the particular case where the zomal curves are circles, we have however seen how
the ratios I : m : » may be determined so that the curve shall acquire a node, two
nodes, or a cusp; viz, regarding a, b, ¢ as current areal coordinates, we have here a
m
a’p
depends on establishing a relation between this conic and the orthotomic circle or Jacobian
of the three given circles. I have in my paper “Investigations in connection with
Casey’s Equation,” Quart. Math. Jour. vol. viiL (1867), pp. 334—342, [395] given, after
Professor Cremona, a solution of the general question to find the number of the curves
VIU +¥mV +¥nW =0, which have a cusp, or which have two nodes, and I will here
reproduce the leading points of the investigation. I remark, that although one of the
loci involved in it is the same as that occurring in the case of the three circles
(viz., we have in each case the Jacobian of the given curves), the other two loci
S, and A, which present themselves, seem to have mno relation to the conic of centres
which is made use of in the particular case.

conic +g=0, the locus of the centres of the variable circle, and the solution
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We have the curves U=0, V=0, W=0, each of the same order r; and con-
sidering a point the coordinates whereof are (I, m, n), we regard as corresponding to
this point the curve VIU+4 VmV 4+ ¥nW =0, say for shortness, the curve £, being as
above a curve of the order 2r, having 7° contacts with each of the given curves
U=0, V=0, W=0. As long as the point (I, m, n) is arbitrary, the curve Q has not
any node, and in order that this curve may have a node, it is necessary that the
point (!, m, n) shall lie on a certain curve A; this being so, the node will, it is easy
to see, lie on the curve J, the Jacobian of the three given curves; and the curves
J and A will correspond to each other point to point, viz, taking for (I, m, n) any
point whatever on the curve A, the curve  will have a node at some one point
of J; and conversely, in order that the curve Q may be a curve having a node at
a given point of J, the point (}, m, n) must be at some one point of the curve A.
The curve A has, however, nodes and cusps; each node of A corresponds to two points
of J, viz., for (I, m, n) at a node of A, the curve Q is a binodal curve having a node
at each of the corresponding points of J; each cusp of A corresponds to two
coincident points of J, viz. for (/, m, n) at a cusp of A, the curve © has a node at
the corresponding point of J. The number of the binodal curves Q is thus equal to
the number of the nodes of A, and the number of the cuspidal curves Q is equal to
the number of the cusps of A; and the question is to find the Pliickerian numbers of
the curve A. This Professor Cremona accomplished in a very ingenious manner, by
bringing the curve A into counnexion with another curve % (viz, = is the locus of
the mnodes of those curves [U+mV 4+ oW =0 which have a node), and the result arrived
at is that for the curve A

Order = 3(r—-1)3r-2),

Class = 6(r—1)

Nodes = 3(r—1)(27r*— 63r* + 22r + 16),
Cusps = 3(r—1)(7Tr-28),

Double tangents = 3 (r—1) (127° — 3672 + 197 + 16),
Inflexions =12(r—-1)(r—=2);

so that, finally, the number of the cuspidal curves ViU +~mV +~nW =0, is found to be
=38(r—1)(7r—8), and the number of the binodal curves of the same form is found
tobe =32 (r—1)(277*— 63r*+22r+16). When the given curves are conics, or for r=2,
these numbers are =18 and 36 respectively; but the formule are not applicable to
the case where the conics have a point or points of intersection in common; nor,
consequently, to the case of the three circles.
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