684.

ON A RELATION BETWEEN CERTAIN PRODUCTS OF DIFFERENCES.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xv. (1878), pp. 174, 175.]

Consider the function

$$
\left\{\begin{array}{r}
a b c \cdot d e \\
+b c d \cdot e a \\
+c d e \cdot a b \\
+d e a \cdot b c \\
+e a b \cdot c d
\end{array}\right\} \quad\left\{\begin{array}{c}
a b d \cdot c e \\
+b c e \cdot d a \\
+c d a \cdot e b \\
+d e b \cdot a c \\
+e a c \cdot b d
\end{array}\right\}
$$

where

$$
\begin{aligned}
& a b c=(a-b)(b-c)(c-a), \\
& a b=(a-b)(b-a),=-(a-b)^{2},
\end{aligned}
$$

$$
\& c .
$$

therefore

$$
\begin{aligned}
& a b c=b c a=c a b=-b a c, \& c \\
& a b=b a .
\end{aligned}
$$

It is to be shown that the function vanishes if $e=d$. Writing $e=d$, the value is

$$
\begin{aligned}
3(b c d \cdot d a+d a b \cdot c d) & -a b d \cdot c d \\
& -b c d \cdot d a \\
& -c d a \cdot d b \\
& -d a c \cdot b d
\end{aligned}
$$

viz. this is

$$
\left.\left.\begin{array}{rl}
& 3 b c d \cdot a d-a b d \cdot c d \\
+ & 3 a b d \cdot c d-b c d \cdot a d \\
& -2 a c d \cdot b d
\end{array}\right\}=2 b c d \cdot a d-2 a c d \cdot b d+2 a b d \cdot c d\right)
$$

which is easily seen to vanish; the value is

$$
\begin{aligned}
& (b-c)(c-d)(d-b)(a-d)^{2}=-(b-c)(a-d)^{2}(b-d)(c-d) \\
+ & (c-a)(a-d)(d-c)(b-d)^{2} \\
+(c-a)(b-d)(d-a)(c-d)^{2} & -(a-b)(a-d)(b-d)(c-d)^{2}
\end{aligned}
$$

viz. omitting the factor $(a-d)(b-d)(c-d)$, this is

$$
\begin{array}{r}
=-(b-c)(a-d) \\
-(c-a)(b-d) \\
-(a-b)(c-d)
\end{array}
$$

which vanishes. Hence the function also vanishes if $e=a$, or $a=b$ or $b=c$, or $c=d$; and it is thus a mere numerical multiple of $(a-b)(b-c)(c-d)(d-e)(e-a)$, or say it is $=M a b c d e$.

To find M write $e=c$, the equation becomes

$$
\begin{aligned}
& 3 a b c \cdot d c-c d a \cdot c b=M a b c d c,=M a b c \cdot d c \\
+ & 3 b c d \cdot c a-a c \\
+ & 3 d c a \cdot b c \\
+ & 3 c a b \cdot c d
\end{aligned}
$$

viz. this is

$$
6 a b c \cdot d c+4 d b c \cdot a c+4 a d c \cdot b c=M \cdot a b c \cdot d c
$$

giving $M=10$. In fact, we then have

$$
-4 a b c \cdot d c+4 d b c \cdot a c+4 a d c \cdot b c=0
$$

that is,

$$
-a b c \cdot d c-b d c \cdot a c-d a c \cdot b c=0
$$

which is right. And we have thus the identity

$$
\left\{\begin{array}{r}
a b c \cdot d e \\
+b c d \cdot e a \\
+c d e \cdot a b \\
+d e a \cdot b c \\
+e a b \cdot c d
\end{array}\right\}-\left\{\begin{array}{c}
a b d \cdot c e \\
+b c e \cdot d a \\
+c d a \cdot e b \\
+d e b \cdot a c \\
+e a c \cdot b d
\end{array}\right\}=10 \cdot a b c d e
$$

or say

$$
3[a b c d e]-[a c e b d]=10\{a b c d e\}
$$

