687.

NOTE ON THE FUNCTION $9 x=a^{2}(c-x) \div\left\{c(c-x)-b^{2}\right\}$.
[From the Quarterly Journal of Pure and Applied Mathematics, vol. xv. (1878), pp. 338-340.]

Starting from the general form

$$
9 x=\frac{\alpha x+\beta}{\gamma x+\delta}
$$

we have

$$
9^{n} x=\frac{\left(\lambda^{n+1}-1\right)(\alpha x+\beta)+\left(\lambda^{n}-\lambda\right)(-\delta x+\beta)}{\left(\lambda^{n+1}-1\right)(\gamma x+\delta)+\left(\lambda^{n}-\lambda\right)(\gamma x-\alpha)}
$$

where

$$
\lambda+\frac{1}{\lambda}=\frac{\alpha^{2}+\delta^{2}+2 \beta \gamma}{\alpha \delta-\beta \gamma}
$$

For the function in question

$$
9 x=\frac{a^{2}(c-x)}{c(c-x)-b^{2}}
$$

(a form which presents itself in the problem of the distribution of electricity upon two spheres), the values of $\alpha, \beta, \gamma, \delta$ are

$$
\alpha=-a^{2}, \quad \beta=a^{2} c, \quad \gamma=-c, \quad \delta=c^{2}-b^{2} ;
$$

the equation for λ therefore is

$$
\lambda+\frac{1}{\lambda}=\frac{a^{4}+\left(c^{2}-b^{2}\right)^{2}-2 a^{2} c^{2}}{a^{2} b^{2}}
$$

or, what is the same thing,

$$
\frac{(\lambda+1)^{2}}{\lambda}=\frac{\left(a^{2}+b^{2}-c^{2}\right)^{2}}{a^{2} b^{2}} .
$$

Suppose that a, b, c are the sides of a triangle the angles whereof are A, B, C; then $c^{2}=a^{2}+b^{2}-2 a b \cos C$, or we have

$$
\frac{(\lambda+1)^{2}}{\lambda}=4 \cos ^{2} C
$$

or, writing this under the form

$$
\sqrt{ }(\lambda)+\frac{1}{\sqrt{ }(\lambda)}=2 \cos C
$$

the value of λ is at once seen to be $=e^{2 i C}$; and it is interesting to obtain the expression of the nth function in terms of the sides and angles of the triangle.

The numerator and the denominator are

$$
\begin{aligned}
& \lambda^{n} P+Q \\
& \lambda^{n} R+S
\end{aligned}
$$

where

$$
\begin{array}{ll}
P=\lambda(\alpha x+\beta)+(-\delta x+\beta), & R=\lambda(\gamma x+\delta)+\gamma x-\alpha \\
Q=-\quad(\alpha x+\beta)-\lambda(-\delta x+\beta), & S=-\quad(\gamma x+\delta)-\lambda(\gamma x-\alpha)
\end{array}
$$

Hence, writing the numerator and the denominator in the forms

$$
\begin{aligned}
& \lambda^{\frac{3}{2} n} P+\lambda^{-\frac{1}{2} n} Q, \\
& \lambda^{\frac{1}{2} n} R+\lambda^{-\frac{1}{2} n} S,
\end{aligned}
$$

these are

$$
\begin{aligned}
& (P+Q) \cos n C+(P-Q) i \sin n C \\
& (R+S) \cos n C+(R-S) i \sin n C
\end{aligned}
$$

viz. they are

$$
\begin{aligned}
& (\lambda-1)(\alpha+\delta) x \cos n C+(\lambda+1)\{(\alpha-\delta) x+2 \beta\} i \sin n C, \\
& (\lambda-1)(\alpha+\delta) \cdot \cos n C+(\lambda+1)\{2 \gamma x-(\alpha-\delta)\} i \sin n C
\end{aligned}
$$

or, observing that $\frac{\lambda-1}{\lambda+1}=i \tan C$ and removing the common factor $i(\lambda+1)$, they may be written

$$
\begin{aligned}
& \tan C(\alpha+\delta) x \cos n C+\{(\alpha-\delta) x+2 \beta\} \sin n C \\
& \tan C(\alpha+\delta) \cdot \cos n C+\{2 \gamma x-(\alpha-\delta)\} \sin n C
\end{aligned}
$$

Substituting for $\alpha, \beta, \gamma, \delta$ their values, these are

$$
\begin{aligned}
& \tan C\left\{\left(c^{2}-a^{2}-b^{2}\right) x \cos n C\right\}+\left\{\left(b^{2}-a^{2}-c^{2}\right) x+2 a^{2} c\right\} \sin n C, \\
& \tan C\left\{\left(c^{2}-a^{2}-b^{2}\right) \cdot \cos n C\right\}+\left\{-2 c x-\left(b^{2}-a^{2}-c^{2}\right)\right\} \sin n C, \\
= & \tan C\{-a b \cos C x \cos n C \quad\}+\left\{-a c \cos B \cdot x+a^{2} c\right\} \sin n C, \\
& \tan C\{-a b \cos C x \cos n C \quad\}+\{-c x+a c \cos B \quad\} \sin n C, \\
= & x\{-a b \sin C \cos n C-a c \cos B \sin n C\}+a^{2} c \sin n C, \\
- & c x \sin n C \quad+\{a c \cos B \sin n C-a b \sin C \cos n C\} ;
\end{aligned}
$$

or, writing herein $b \sin C=c \sin B$, these are

$$
\begin{array}{ll}
-a c x\{\sin B \cos n C & +\cos B \sin n C\} \\
-c x \sin n C \quad+a^{2} c \sin n C \\
-a c\{\cos B \sin n C-\sin B \cos n C\}
\end{array}
$$

whence finally

$$
9^{n} x=\frac{a^{2} \sin n C-a x \sin (n C+B)}{a \sin (n C-B)-x \sin n C}
$$

As a verification, writing $n=1$, we have

$$
\begin{aligned}
9 x & =\frac{a^{2} \sin C-a x \sin A}{a \sin (C-B)-x \sin C} \\
& =\frac{a^{2} c-a c x \frac{\sin A}{\sin C}}{a c \frac{\sin (C-B)}{\sin C}-c x}
\end{aligned}
$$

or observing that

$$
a c \frac{\sin (C-B)}{\sin C}=c^{2}-b^{2}
$$

(for this is $\sin A \sin (C-B)=\sin ^{2} C-\sin ^{2} B$), we have

$$
9 x=\frac{a^{2}(c-x)}{c^{2}-b^{2}-c x}
$$

as it should be. If in the formula for $9^{n} x$ we write $x=0$, we have a formula given in the Senate-House Problems, January 14, 1878: it was thus that I was led to investigate the general expression.

