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705.
PROBLEMS AND SOLUTIONS.

[From the Mathematical Questions with their Solutions from the Educational Times, vols. xIv. to lxi. (1871—1894).] 
[Vol. xIv., July to December, 1870, pp. 17—19.]3002. (Proposed by Matthew Collins, B.A.)—If every two of five circles A, B,C, D, E touch each other, except D and E, prove that the common tangent of D and E is just twice as long as it would be if D and E touched each other.

Solution by Professor Cayley.
Consider the ellipse x2/a2+y2/b2= l, foci R, S; the coordinates of a point U on the ellipse may be taken to be (α cos u, b sin u), and then the distances of this point from the foci will be
Taking k arbitrarily, with centre R describe a circle radius a — k, with centre S a circle radius a + k, and with centre U a circle radius k — ae cos u: say these are the circles R, S, U respectively; the circle U will touch each of the circles R, S (viz. assuming ae <k<a, so that the foregoing radii are all positive, it will touch the circle 

R externally and the circle S internally).Considering next a point V, coordinates (α cos v, b sin v), and the circle described about this point with the radius k — ae cosυ, say the circle V; this will touch in like manner the circles R, S respectively. And the circles U, V may be made to touch each other externally; viz. this will be the case if squared sum of radii = squared
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705] PROBLEMS AND SOLUTIONS. 567distance of centres, or what is the same thing, squared difference of radii + 4 times the product of radii = squared distance of centres; that is,
or
If for a moment we write tan 1/2u = x, tan1/2 v = y, and therefore

we have
or
which is readily identified with the circular relation
or, what is the same thing, in order that the circles U, V may touch, the relation between the parameters u, υ must be

Considering in like manner a circle, centre the point W, coordinates (a cos w, b sin w), and radius k — ae cos w, say the circle W; this will, as before, touch the circles R, S; and we may make W touch each of the circles U, V; viz. we must have

where, in the last equation, must be considered as denoting itsvalue in the first equation increased by π. Hence, adding the three equations, we have
that is,
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568 PROBLEMS AND SOLUTIONS. [705or that is, 
viz. this is the condition for the existence of the three circles U, V, W, each touching the two others, and also the circles R, S.The circle R lies inside the circle S, and the tangential distance is thus imaginary; but defining it by the equationsquared tangential dist. = squared dist. of centres — squared sum of radii,the squared tangential distance is
But if the circles were brought into contact, the distance of the centres would be 
2k, and the value of the squared tangential distance = 4k2 — 4α2; hence, if this be =one-fourth of the former value, we have 
that is, 
the same condition as above. The solution might easily be varied in such wise that the circles R, S should be external to each other, and therefore the tangential distance real; but the case here considered, where the locus of the centres of the circles 
U, V, W is an ellipse, is the more convenient, and may be regarded as the standard case.

[Vol. xIv., p. 19.]3144. (Proposed by Professor Cayley.)—If the extremities A, A' of a given line 
AA' describe given lines respectively, show that there is a point rigidly connected with AA' which describes a circle.

[Vol. xIv., pp. 67, 68.]3120. (Proposed by Professor Cayley.)—To find the equation of the Jacobian of the quadric surfaces through the six points
Solution by the Proposer.Writing for shortness
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705] PROBLEMS AND SOLUTIONS. 569(so that a+h — g = 0, &c., a +b + c = 0, af+ bg + ch = 0), the six points lie in each of the plane-pairs
We cannot take these as the four quadrics, on account of the identical equation 0 = 0, which is obtained by adding the four equations; but we may take the first three of them for three of the quadrics, and for the fourth quadric the cone, vertex (0, 0, 0, 1), which passes through the other five points; viz. this isWe write therefore 
and we equate to zero the determinant formed with the derived functions of P, Q, R, S in regard to the coordinates (x, y, z, w) respectively. If, for a moment, we write 
A, B, C to denote bg — ch, ch —of, af—bg respectively, it is easily found that the term containing dxS is 
the terms containing dyS and dzS are derived from this by a mere cyclical interchange of the letters (x, y, z), (A, B, C), (a, b, c), and (f, g, h). Collecting and reducing, it is found that the whole equation divides by 2abc; and that, omitting this factor, the result is 
which, substituting for a, b, c, f, g, h their values, is the required form.If, in the equation, we write for instance x≈0, the equation becomes 
or, the section by the plane is made up of four lines. Calling the given points 1, 2, 3, 4, 5, 6, it thus appears that the surface contains the fifteen lines 12, 13, ..., 56, and also the ten lines 123.456, &c.; in all twenty-five lines. Moreover, since the surface contains the lines 12, 13, 14, 15, 16, it is clear that the point 1 is a node (conical point) on the surface; and the like as to the points 2, 3, 4, 5, 6.

[Vol. xIv., pp. 104, 105.]3249. (Proposed by Professor Cayley.)—Given on a given conic two quadrangles 
PQRS and pqrs, having the same centres, and such that P, p; Q, q; R, r; S, s are the corresponding vertices (that is, the four lines PQ, RS, pq, rs all pass through c. x. 72 
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570 PROBLEMS AND SOLUTIONS. [705the same point; and similarly the lines PR, QS, pr, qs, and the lines PS, QR, ps, qr): it is required to show that a conic may be drawn, passing through the points p, q, r, s and touched at these points by the lines pP, qQ, rR, sS, respectively.
Solution by the Proposer.Taking the centres for the vertices of the fundamental triangle, the equation of the given conic may be taken to be x2 + y2 + z2 = 0; and then the ’ coordinates of P, 

Q, R, S to be (A, B, C), (A, - B, C), (A, B, -C), (A, -B,-C) respectively, where A2 + B2 + C2 = 0; and those of p, q, r, s to be (a, β, γ), (a, — β, γ), (a, β, — γ), (a, — β, — 7) respectively, where a2 + β2 + γ2 = 0. The required conic, assuming it to exist, will be given by an equation of the form lx2 + my2 + nz2 = 0. This must pass through the point (a, β, γ), and the tangent at this point must be 
that is, we must have lα2 + mβ2 + nγ2 = 0, and
The first condition is obviously included in the second; and the second condition remains unaltered if we reverse the signs of B, β, or of C, γ, or of B, β and C, γ. Hence the conic passing through p, and touched at this point by pP, will also pass through the points q, r, s, and be touched at these points by the lines qQ, rR, sS, respectively ; that is, the equation of the required conic is 
or, what is the same thing,

[Vol. xv., January to June, 1871, pp. 17—20.]3206. (Proposed by Professor Cayley.)—In how many geometrically distinct ways can nine points lie in nine lines, each through three points ?3278. (Proposed by Professor Cayley.)—It is required, with nine numbers each taken three times, to form nine triads containing twenty-seven distinct duads (or, what is the same thing, no duad twice), and to find in how many essentially distinct ways this can be done.
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705] PROBLEMS AND SOLUTIONS. 571
Solution by the Proposer.Let the numbers be 1, 2, 3, 4, 5, 6, 7, 8, 9. Any number, say 1, enters into three triads, no two of which have any number in common. We may take these triads to be 123, 145, 167. There remain the two numbers 8, 9; and these are, or are not, a duad of the system.

First Case.—8 and 9 a duad. In the triad which contains 89. the remaining number cannot be 1; it must therefore be one of the numbers 2, 3; 4, 5 ; 6, 7; and it is quite immaterial which; the triad may therefore be taken to be 289. There is one other triad containing 2, the remaining two numbers thereof being taken from the numbers 4, 5; 6, 7. They cannot be 4, 5 or 6, 7; and it is indifferent whether they are taken to be 4, 6; 4, 7; 5, 6, or 5, 7: the triad is taken to be 247. We have thus the triads 
and we require two triads containing 8 and two triads containing 9. These must be made up with the numbers 3, 4, 5, 6, 7: but as no one of them can contain 47, it follows that, of the two pairs which contain 8 and 9 respectively, one pair must be made up with 3, 5, 6, 7, and the other pair with 3, 5, 6, 4; say, the pairs which contain 8 are made up with 3, 5, 6, 7, and those which contain 9 are made up with 3, 5, 6, 4 (since obviously no distinct case would arise by the interchange of the numbers 8, 9). The triads which contain 8 must contain each of the numbers 3, 5, 6, 7, and they cannot be 835, 867, since we have 67 in the triad 167; similarly the triads which contain 9 must contain each of the numbers 3, 5, 6, 4, and they cannot be 845, 836, since we have 45 in 145. Hence the triads can only be 
and clearly the top row of 8 must combine with the top row of 9, and the bottom row of 8 with the bottom row of 9; that is, the system of the nine triads is 
in combination with or else in combination withThese are really systems of the same form, that is, each of them is of the form 
viz. in the first and second systems respectively we have

(First system), (Second system), 72—2
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572 PROBLEMS AND SOLUTIONS. [705as one out of many ways of effecting the identification. Observe that there is not in the system any triad of triads containing all the numbers. It thus appears that 8, 9, a duad, gives only a single form of the system.
Cor.—It is possible to find in a plane nine points such that the points belonging to the same triad lie in lined. The nine points are, in fact, on a cubic curve; and the figure is that belonging to a theorem of Prof. Sylvester’s, according to which it is possible to find on a cubic curve a system of points 1, 2, 4, 5, 7, 8, &c., (a series of 

numbers not divisible by 3), such that for any triad (such as 145) where the sum of the numbers, one taken negatively, = 0, the three points are in lined; and so also that, if two of the points become identical, in the figure 13 = 14, then there is not any new point, but the preceding points are indefinitely repeated; thus, 2, 14, 16 being 
in lined, and 14 being =13, 16 must be =11, and so on.

Second and, Third Cases.—8 and 9 do not form a duad. There are thus three triads composed of 8 with (2, 3; 4, 5; 6, 7), and three triads composed of 9 with (2, 3; 4, 5; 6, 7). If with these numbers (2, 3; 4, 5; 6, 7) we form all the arrange­ments of three duads other than those which contain all or any of the duads 23, 45, 67, there are the eight arrangements 

where A has a duad in common with B, with D, and with G: but it has no duad in common with C, E, F, or H. We have thus the sixteen pairs 

where each pair contains six different duads.
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705] PROBLEMS AND SOLUTIONS. 573Combining AC with 8, 9, we have the triads 8 (24, 37, 56) and 9 (24, 36, 57), that is, the triads 
which, with the original three triads 123, 145, 167, form a system of nine triads; 8 and 9 might, of course, be interchanged, but no essentially distinct system would arise thereby. Hence we have a system of nine triads by combining the original three triads 123, 145, 167, with any one of the sixteen pairs AC, AE, &c. But it is sufficient to consider the combinations of the three triads with each of the pairs AC, AE, AF, AH; in fact, these are the only systems which contain the triad 824; and since there is no distinction between the two pairs 4, 5 and 6, 7, or between the two numbers of the same pair, it is allowable to take 824 as a triad of the system. Hence—

Second Case.—The system consists of the three triads combined with AE∙, viz. it is 
which, it is to be observed, consists of three triads of triads, each triad of triads containing all the nine numbers; viz. the system is

Cor.—We may have nine points such that the points belonging to the same triad lie in lined, viz. the figure is that of Pascal’s hexagon when the conic is a line-pair.
Third Case.—Combining the three triads with AC, AF, or AH, it is readily seen that we obtain in each case a system of the form 

viz. in the case where the pair is AC; that is, the system is 
and in the cases where the pair is AF or AH, the identifications may be taken to be
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574 PROBLEMS AND SOLUTIONS. [705Observe that there is in the system a single triad of triads A aa', Bββ', Cγγ', con­taining all the numbers; viz. for the system with AC, this is 123, 856, 947; for the system with AF, it is 145, 837, 926 ; and for the system with AH, it is 167, 824, 935.
Cor.—It is possible to find a system of nine points such that the points belonging to the same triad lie in lined. Such a figure is this:—

The solution shows that these are the only systems of nine points satisfying the prescribed conditions.
[Vol. xv., pp. 66, 67.]3329. (Proposed by Professor Cayley.)—It is required to show that every per­mutation of 12345 can be produced by means of the cyclical substitution (12345), and the interchange (12).

Solution by the Proposer.It is sufficient to show that the interchanges (13), (14), (15) can be so produced; for then, with the interchanges (12), (13), (14), (15), we can, by at most two such inter­changes, bring any number into any place.Writing P = (12345), α = (12), we have 

as can be at once verified; and the theorem is thus proved.I remark that, starting with any two or more substitutions, and combining them in every possible manner (each of them being repeatable an indefinite number of times), we obtain a “group”; viz. this is either· (as in the problem proposed) the 
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705] PROBLEMS AND SOLUTIONS. 575system of all the substitutions (or say the entire group), or else it is a system the number of whose terms is a submultiple of the whole number of substitutions. The interesting question is, to determine those two or more substitutions, which, by their combination as above, do not give the entire group; for in this way we should arrive at all the forms of a submultiple group.
[Vol. xv., p. 80.]3356. (Proposed by Professor Cayley.)—If the roots (a, β, γ, δ) of the equation (a, b, c, d, e)(u, l)4 = 0 are no two of them equal; and if there exist unequal magnitudes θ and φ, such that(0 + α)4 : (0 + β)4 ; (0 + γ)4 : (0 + δ)4=(ϕ + δ)4 : (ϕ + δ)4 : (ϕ+γ)4 : (ϕ + δ)4;show that the cubinvariant

ace — ad2 -b2e — c3 + 2bcd = 0;and find the values of θ, φ.

[Vol. xvI, June to December, 1871, p. 65.]3507. (Proposed by Professor Cayley.)—Show that, for the quadric cones which pass through six given points, the locus of the vertices is a quartic surface having upon it twenty-five right lines; and, thence or otherwise, that for the quadric cones passing through seven given points the locus of the vertices is a sextic curve.
[Vol. xvI, p. 90.]3536. (Proposed by Professor Cayley.)—Aparticle describes an ellipse under the simultaneous action of given central forces, each varying as (distance)-2, at the two foci respectively: find the differential relation between the time and the oxcentric anomaly.

[Vol. xvII January to June, 1872, p. 35.]3591. (Proposed by Professor Cayley.)—If in a plane A, B, C, D are fixed points and P a variable point, find the linear relationα . PAB + β.PBC+γPCD + δ . PDA = 0,which connects the areas of the triangles PAB, &c.
[Vol. xvII p. 49.]2652. (Proposed by Professor Cayley.)—Find the differential equation of the parallel surfaces of an ellipsoid.
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576 PROBLEMS AND SOLUTIONS. [705[Vol. xvII p. 60.]3677. (Proposed by Professor Cayley.)—Find at any point of a plane curve the angle between the normal and the line drawn from the point to the centre of the chord parallel and indefinitely near to the tangent at the point; and examine whether a like question applies to a point on a surface and the indicatrix section at such point.
[Vol. XVII p. 72.]3564. (Proposed by Professor Cayley.)—To determine the least circle enclosing three given points.

[Vol. XVIII., July to December, 1872, p. 68.]3875. (Proposed by Professor Cayley.)—Given the constant a and the variables 
x, y, to construct mechanically a2-x2what is the same thing, given the fixedpoints A, B, and the moving point P, to mechanically connect therewith a point P' such that PP' shall be always at right angles to AB, and the point P' in the circle APB.

[Vol. xx., July to December, 1873, pp. 106, 107.]3430. (Proposed by W. J. C. Miller.)—Find the equation of the first negative focal pedal of (1) an ellipsoid, and (2) an ellipse.
Solution by Professor Cayley.1. It is easily seen that if a sphere be drawn, passing through the centre of the given quadric and touching it at any point (x,, y,, z,), then the point x, y, z) on the required surface, which corresponds to (x'y', z') is the extremity of the diameter of this sphere which passes through the centre of the quadric. We thus easily find the expressions 

where
Solving these equations for x'y,, z', and substituting in the two equations
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705] PROBLEMS AND SOLUTIONS. 577we get

Since (2) is the differential with respect to t of (1), the result of eliminating t between these two equations is the discriminant of (1). Hence the equation of the required surface is the discriminant of (1) with respect to t. Since (1) is only of the fourth degree, this discriminant is easily formed. If (1) be written in the form 
it will be found that A and B do not contain x, y, z, while C, D, E contain them, each in the second degree. Now the discriminant is of the sixth degree in the coefficients, and of the form Aφ + B2φ(see Salmon’s Higher Algebra, § 107); hence it contains x, y, z only in the tenth degree. This is therefore the degree of the required surface.The section of this derived surface by the principal plane z consists of the dis­criminant of
(which is of the sixth degree, and is the first negative pedal of   , togetherwith the conic (taken twice), which is obtained by putting t = 2c2 in (3).This conic, which is a double curve on the surface, touches the curve of the sixth degree in four points.2. The formulae for the conic are quite analogous to those for the ellipsoid, viz. we have 
leading to the equations 
and its derived equation, from which to eliminate θ. The first is the cubic equation 
(A, B, C, D)(θ, l)3=0, where

C. X. 73
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578 PROBLEMS AND SOLUTIONS. [705Equating the discriminant to zero, this is
Or finally 
which is the required equation.

[Vol. xxι., January to June, 1874, pp. 29, 30.]4298. (Proposed by J. W. L. Glaisher, B.A.)—With four given straight lines to form a quadrilateral inscribable in a circle.
Solution by Professor Cayley.Let the sides of the quadrilateral taken in order be α, b, c, d; and let its diagonals be x, y; viz. x the diagonal joining the intersection of the sides a, b with that of the sides c, d; y the diagonal joining the intersection of the sides α, d with that of the sides b, c; then, the quadrilateral being inscribed in a circle, the opposite angles are supplementary to each other. Suppose for a moment that the angles subtended by the diagonal x are θ, π — θ, we have 

and thence that is, 
and similarly 
agreeing as they should do with the known relation xy = ac + bd: the quadrilateral is thus determined by means of either of its diagonals. It is however interesting to treat the question in a different manner.Considering a, b, c, d, x, y as the sides and diagonals of a quadrilateral, we have between these quantities a given relation, say 
and the quadrilateral being inscribed in a circle, we have also the relation xy = ac +bd; which two equations determine x, y; and thus give the solution of the problem.
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705] PROBLEMS AND SOLUTIONS. 579The expression of the function F is in effect given in my paper, “ Note on the value of certain determinants, &c.,” Quarterly Mathematical Journal, t. III1860), pp. 275—277, [286]; viz. a, b, c being the edges of any face, and f, g, h the remaining edges of a tetrahedron, thenvolume

where, when the tetrahedron becomes a quadrilateral, the volume is = 0.In this formula, changing c, b, h, g, f, a into a, h, c, d, x, y, we have the required equation F = 0; viz. this is found to be 
which, with xy = ac + bd, determines x, y. Substituting in the foregoing equation for 
xy its value, the equation becomes 
or

To show more clearly how this equation arises, I observe that we have identically
The resulting equation (ad + bc)x- (ab + cd) y = 0, together with xy = ac + bd, gives for x, y the foregoing values.

[Vol. xxI, pp. 81, 82.]4392. (Proposed by S. Roberts, M.A.)—If Np denotes the number of terms in a symmetrical determinant of p rows and columns, show that the successive numbers are given by the equation 
k being positive and No being taken equal to unity.

Solution by Professor Cayley.It is a curious coincidence that the question of determining the number of distinct terms in a symmetrical determinant has been recently solved by Captain Allan 73—2
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580 PROBLEMS AND SOLUTIONS. [705Cunningham in a paper in the last number of the Quarterly Journal of Science*; and the question having been proposed to me by Mr Glaisher, I have also solved it in a paper [580] printed in the April Number of the Monthly Notices of the Royal 
Astronomical Society. I there obtain 
viz. writing
I show that u satisfies the differential equation 
giving when the constant is determined
Writing the differential equation in the form 
we at once obtain for Nthe equation of differences 
which is in fact a particular first integral of Mr Roberts’s equation; viz. from the above equation we have 
and multiplying this last by k — 1 and adding, we have 
which is the equation obtained by Mr Roberts. It thence appears that the general first integral of his equation is
The equation 
gives very readily the numerical values, viz.

* I have not the volume at hand to refer to, but he obtains an equation of differences, and gives the 
numbers 1, 2, 5, 73, 398 (should be 388),...
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705] PROBLEMS AND SOLUTIONS. 581[Vol. xxII,July to December, 1874, pp. 20, 21.]4354. (Proposed by R. Tucker, M.A.)-Solve the equations

Note on Question 4354. By Professor Cayley.A question of simple algebra such as this, becomes more interesting when inter­preted geometrically: thus, writing the equations in the form 
and then putting for shortness 
the solutions obtained are 
say these are
But the equations are also satisfied by 
or what is the same thing, (0, 1, 1, 0), (1, 0, 1, 0), (1, 1, 0, 0). The three equations represent quadric surfaces, each two of them intersecting in a proper quadric curve, and the three having in common 8 points; viz. these are made up of the first mentioned two points each once, and the last mentioned three points each twice: 2 + 3.2, =8.To verify this, observe that, at each of the three points, the tangent planes of the surfaces have a common line of intersection; this line is the tangent of the curve of intersection of any two of the surfaces, and the curve of intersection therefore touches the third surface; wherefore the point counts for two intersections. In fact, taking (X, Y, Z, W) as current coordinates, the equations of the tangent planes at the point (x, y, z, w) are 
hence at the point (0, 1, 1, 0) these equations are 
which three planes meet in the line X = 0, Y-Z = 0; and similarly for the other two of the three point?.
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582 PROBLEMS AND SOLUTIONS. [705[Vol. xxII,pp. 60—64.]4458. (Proposed by Professor Cayley.)—Find (1) the intersections of the two quartic curves
and (2) trace the curves in some particular cases; for instance, when α=l, b=2, λ = 1, μ = — 2.

Solution by the Proposer.1. The 16 intersections are made up as follows: 5 points at infinity on the line x = 0, 5 at infinity on the line y = 0, the two points (x = a, y = b, (x = b, y = a), and 4 other points, 16 = 5 + 5+2+4. As to the points at infinity, observe that, as regards the first curve, the point at infinity on the line x=0 is a flecnode having this line for a tangent to the flecnodal branch; and, as regards the second curve, the same point is a cusp, having this line for its tangent; hence the point in question counts as 2 + 3, = 5 intersections; and the like as to the point at infinity on the line y = 0. It remains to find the coordinates of the 4 points of intersection. Assume xy = abω, then the equations become
hence, eliminating successively y and x, the factor 1 — ω divides out,—this factor belongs to the points (x=a, y = b), (x = b, y=a) for which obviously ω = 1—, and the equations become

Multiplying these two equations together, and substituting for xy its value abω, we find
Write, for shortness, p = (λ + μ)(a + b) - λ2- μ2, then, dividing by ω2, and writing 
ω + 1/ϖ=Ω, the equation is

ω

viz. this is a quadric equation for Ω. But, instead of Ω, it is convenient to introducethe quantity The equation thus becomes
oror
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705] PROBLEMS AND SOLUTIONS. 583viz. substituting for p its values, this is 
or if we write this is whence 
viz. taking for convenience the sign — on the right-hand side, this is 
and we have thus 
that is,
We may write 

whence also x — y = (μ — λ) (ω - 1), as is also seen at once from the original equations; then we have 
and the values are 

which may be expressed in the more simple form
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584 PROBLEMS AND SOLUTIONS. [705the transformations depending on the identity 
which is easily verified. Of course, since the signs of √A,√B are arbitrary, we have 4 systems of values of (x, y), which is right.In the original equations, for a, b, λ, μ, x, y, write 1, k-2 λ2, — μ2, x2, — y2; then the equations become 
and we thence have 
viz. assuming x = sn a (sinam a), iy = sn iβ, this is λ + μi = sn (a + βi); viz. the problem is (for a given modulus k,assumed as usual to be real, positive, and less than 1) to reduce a given imaginary quantity λ + μi to the form sn (α + βi). The proper solution is that in which the signs of the radicals are each —, viz. it may in this case be shown that the value of x2is positive and less than 1, that of y2 positive. The values thus are 
where
The solution is really equivalent to that given by Richelot (Crelle, t. xlv., 1853, p. 225). To verify this partially, observe that, writing σ, τ for Richelot’s tan1/2ϕtan1/2ϕ, we have 
giving 
giving 
whence 
or the above value of x2 is =k-1στ, agreeing with his; the value of y2 is, however, presented under a somewhat different form.
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705] PROBLEMS AND SOLUTIONS. 5852. The curves are 
each passing through the points (1, 2) and (2, 1); the four points of intersection found by the foregoing general theory are all real, viz. these are

The equation of the curve (1) may also be written in the forms
The original form shows that, if y is between 1 and 2, x is negative—(but by a further examination it appears that there is not in fact any branch of the curve between these limits of y)—but y being outside these limits, then x is positive; in fact, the whole curve lies on the positive side of the axis of y. And then the inspec­tion of the first quadric equation shows that the lines x = 0 and x = 2 are each an asymptote.The point at infinity on the axis of y is in fact a flecnode, the tangent to the flecnodal branch being x = 0, and that of the ordinary branch x = 2.Similarly, from the second quadric equation, it appears that the line y = 0 is an asymptote; the point at infinity on the axis of x is in fact a cusp, the axis in question y = 0 being the cuspidal tangent.The equation of the curve (2) may also be written in the forms
The original form shows that, if x is between 1 and 2, y is positive; but that x being beyond these limits, y is negative; and as regards the first case, x between 1 and 2, we at once establish the existence of an oval, meeting the line y = 1 in the points x = 2 and 3/2andthe line y = 2 in the points x = 1 and 4/3it is further easy to see that the horizontal tangents of the oval are y = 1/1625 + √113), =say 2.2 and 0,9.The remainder of the curve lies wholly below the line y = 0. The first quadric equation shows the asymptote x = 0; the point at infinity on the axis of y is in fact a cusp, having the axis itself for the cuspidal tangent. The second quadric equation shows the asymptotes y = 0, y = — 1 ; the point at infinity on the axis of 
x is in fact a flecnode, having the line y = 0 for the tangent to the flecnodal branch, and y = — 1 for that of the other branch. It is further seen that there are two vertical tangents x= 1/2(11 √113)= 10,8 or 0,2; the former of these touches a branchc. x. 74 
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586 PROBLEMS AND SOLUTIONS. [705lying wholly between the two asymptotes y = 0, y = — 1; the latter one of the branches belonging to the cuspidal asymptote x = 0; this last branch cuts the asymptote x = 0 at y = — 2, and then, cutting the asymptote y = — 1 and x = -2/7(=03), goes on to touch at infinity the asymptote y = 0. It is now easy to trace the curve.The figure shows the two curves. The curve (1) is shown by a continuous line, the curve (2) by a thick dotted line; the points 1, 2, 3, 4 show the above mentioned 

four intersections of the curves; the point 1 and the dotted branch through it are of necessity drawn considerably out of their true positions; viz. as above appearing, the x-coordinate of 1 is =17O0, and the equation of the vertical tangent to the branch is x = 10,8.
[Vol. xxII pp. 78, 79.]4520. (Proposed by A. B. Evans, M.A.)—Find the least integral values of x and y that will satisfy the equation x2 — 953y2 = — 1.

Solution by Professor Cayley.The values are given in Degen’s Tables, viz.
The work referred to is entitled “ Canon Pellianus, sive Tabula simplicissimam aequa­tionis celebratissimae y2 = ax+1 solutionem pro singulis numeri dati valoribus ab 1 usque ad 1000 in numeris rationalibus·iisdemque integris exhibens. Auctore C. F. Degen, Hafniae (Copenhagen), 1817.”
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705] PROBLEMS AND SOLUTIONS. 587Table I., pp. 3—106 gives, for all numbers 1 to 1000, the denominators, (?) the quotients of the convergent fraction of √α, and also the least values ofx,y which will satisfy the equation x2- αy2 = + l. Thus

Table II., pp. 109—112, is described as giving for all those values of a between 1 and 1000, for which there exists a solution of the equationx2-ay2 = -1, the least values of x and y which satisfy this equation: thus 953, x and y as above. It is, however, to be noticed that the values of α = β2 + l, for which there is the obvious solution x = β, y=l, are omitted from the table. The reason for this appears, but the heading should have been different.
[Vol. XXIIIJanuary to July, 1875, pp. 18, 19.]4528. (Proposed by Professor Cayley.)—A lottery is arranged as follows:—There are n tickets representing a, b, c pounds respectively. A person draws once; looks at his ticket; and if he pleases, draws again (out of the remaining n— 1 tickets); looks at his ticket, and if he pleases draws again (out of the remaining n — 2tickets); and so on, drawing in all not more than k times; and he receives thevalue of the last drawn ticket. Supposing that he regulates his drawings in themanner most advantageous to him according to the theory of probabilities, what isthe value of his expectation?

Solution by the Proposer.Let the expression “a or a ” signify “ a or a, whichever of the two is greatest,” and let M1(a, b, c, ...) denote the mean of the quantities (a, b, c, ...), viz. their sum, divided by the number of them.To fix the ideas, consider five quantities a, b, c, d, e, and write

and so on. And the like in the case of any number of quantities a, b, c, .... Then the value of the expectation is =Mka, b, c, ...).For, when k= l, the value is obviously =M1(α, b, c, ...). 74—2
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588 PROBLEMS AND SOLUTIONS. [705When k = 2, if a is drawn, the adventurer will be satisfied or he will draw again, according as a or M1 (b, c, ...) is greatest, viz. in this case the value of the expectation is “ a or M1(b,c, ...).”So if 6 is drawn, the adventurer will be satisfied or he will draw again, according as b or M1(a, c, ...) is greatest; viz. in this case the value of the expectation is 
“b or M1 (a, c, ...)”; and so on: and the several cases being equally probable, the value of the total expectation is 
and the like for k = 3, k = 4, &c.For instance,

Or finally
Cor. If the α, b, c, ... denote penalties instead of prizes, then the solution is the same, except that “ a or a ” must now denote “ a or α, whichever of them is least.”

[Vol. xxIIIpp. 47, 48.]4581. (Proposed by the Rev. M. M. U. Wilkinson.)—A witness, whose statement is what he opines once in m times, and whose opinion is correct once in n times, asserted that the number of a note, issued by a bank universally known to have issued notes numbered from B to B+ A-l inclusive, was B + P, where P is either 0, 1, 2, ..., or A — 1. Prove (1) that the probability that the note in question was that note is
The above witness also said that the note was signed by X, it being universally known that X has signed one note, and Y the remaining A — 1 notes; find (2) the probability that this last statement was correct.
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705] PROBLEMS AND SOLUTIONS. 589
Remark by Professor Cayley.There is a serious difficulty in the question, or the answer; I think, in the question. Try the answer in numbers m = 10, n = 10. The witness says what he opines once out of 10 times—he is in fact an atrocious liar; and he opines rightly once out of 10 times, that is, wrongly 9 times out of 10; he is therefore a blunderer— but a remarkably ingenious one, in that the chances are so greatly against his blunder­ing upon a right result.He says that the note was signed by X, and the chance of this being so is found to be1/100+81/100= or more than 8/10he larger part 81/100of this is obtained as follows:—the witness having said that the note was signed by X,the chances are 9 out of 10 that he thought the reverse; and, thinking the reverse, the chance is 9out of 10 that he thought wrongly, viz. that the note was signed by X. But canthe statement of such a witness create any probability in favour of the event ?The fallacy seems to consist in the assumption that n can have a determinatevalue irrespective of the nature of the opinion. Suppose there are 500 notes, andthat the opinion is that the note was a definite number 99; it is quite conceivable that, in forming a series of such opinions, the witness may be wrong 9 times out of 10. But let the opinion be that the note was not 99; no amount of ingenuity of blundering can make him wrong 9 times out of 10 in a series of such opinions. If it could, a friend who knew the true opinion of the witness, would be able 9 times out of 10 to know the number of the note, from the mere fact that the witness opines that the note is not a named number.

[Vol. xxIIIp. 58.]4638. (Proposed by Professor Cayley.)—Find the equation of the surface which is the envelope of the quadric surface ax2 + by2 + cz2 + dw2 = 0, where a, b, c, d are variable parameters connected by the equation Abe + Bca+ Cab + Fad +Gbd + Hcd = 0; and consider in particular the case in which the constants A, B, C, F, G, H satisfy the condition
[Vol. xxIV.,July to December, 1875, p. 41.]4694. (Proposed by Professor Cayley.)—Taking F, F' a pair of reciprocal points in respect to a circle, centre 0; then if F, F' are centres of force, each force varying as (distance)-n,prove that (1) the resultant force upon any point P on the circle is in the direction of a fixed point Son the axis OFF’; and if, moreover, the forces at the unit of distance are as (OF)1/2(n-1)to (0F1/2(n-1)then (2) the resultant force is proportional to 

where PV is the chord through S.
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590 PROBLEMS AND SOLUTIONS. [705[Vol. xxIV, pp. 72—74.]4793. (Proposed by Professor Wolstenholme, M.A.)-If y = xn (logxr, where n and r are integers, prove that 
the coefficients being and 1;so that the result may be symbolically written
where D denotes and operates on ~∙i only, and Δ operates on lr-1 only, the terms after the rth all vanishing since ∆mxn = 0, when m is an integer > n. The calculations involved prove that, when x≈l,

Solution by Professor Cayley.Since y = xn (log x)r, therefore (xdx -n)y = rxn (log x)r-1;by repeating the same operation, we have
Now, for any value whatever of the function y, we have 

the coefficients A, B, C, ... being functions, presumably of r, n, but independent of the form of the function y. It will, however, appear that A, B, C, ... are, in fact, functions of r only.To see how this is, observe that (xdx — n)r consists of a set of terms 
where (xdx)θ denotes θ repetitions of the operation xdx;by a well-known theorem, this is = [xdx + Θ—1]θ, where, after expansion of the factorial, (xdx)S is to be replaced by 
xsdx8thus 
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705] PROBLEMS AND SOLUTIONS. 591thus (xdx-n)r consists of a series of terms xθdxθ, ( = 0 to r), and, operating with 
dxn, this last, = (dx + dx')n, consists of a series of terms such as dxadxn-a, where the unaccented symbol operates on the xθ, and the accented symbol on the y; the term is thus xθ-a dxn+θ-a, or observing that 0 — a is at most =r, and putting it =r-k, the term is xr-kdxn+k, viz. dxn(xdx-n)r consists of a series of terms of the form xr-kdxn+k; what is the same thing, dxn (xdx — n)ry is a series of the form in question.To understand how it can be that the coefficients A, B, C, ... are independent of n, take the particular case r = 2; then we have here
The right-hand side is which is 
hence 
and we thus see also how in this particular case the last coefficient is = 0, viz. that we have without any term in dxny.To find the coefficients A, B, C, ... generally, write y = xr+n+θ, then xdx - n = r + 0, and consequently 
whence 
or, what is the same thing,
Since the left-hand side, and every term [r + θ]8 on the right-hand side, contains the factor r + θ, there is not on the right-hand side any term [r + 0]o; dividing the equation by r + 0, it then becomes 
and we thus have 
viz. writing r+0=l+x,ux = (l +x)r-1, and taking the terms in the reverse orderhe series is the well-known one 
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592 PROBLEMS AND SOLUTIONS. [705Hence, in general, 
where observe that the last term is = xdxn+1y.For the function yxn(logx)n, the value of each side is =[r]r[n]n.

[Vol. xxιv., pp. 89—91.]4752. (Proposed by Professor Cayley.)—Mr Wolstenholme’s Question 3067 may evidently be stated as follows:—If (αb, c) are the coordinates of a point on the cubic curve 
and if 
then (x, y, z) are the coordinates of a point on the same cubic curve.This being so, it is required to find the geometrical relation of the two points to each other.

Solution by Professor Cayley.1. On referring to Professor Wolstenholme’s Solution of the original Question 3067 (Reprint, Vol. xIIIp70), it appears that the coordinates (x, y, z) of the point in question may be expressed in the more simple form 
viz. the given relation between (a, b, c) being equivalent to 
we have 
and thence 
and consequently 
whence the transformation in question.2. Writing for greater symmetry (x, y, z) in place of (a, b, c), and (x', y', z') in place of (x, y, z), the coordinates (x y, z) and (x', y', z')of the two points are connected by the relation
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705] PROBLEMS AND SOLUTIONS. 593and we thence at once deduce the converse relation
Hence, writing and similarly wehave 
and thence also ξξ' = ηη' = ζζ'; so that, regarding (ξ, η, ζ), (ξ,, η', ζ') as the coordinates of the two points, we see that these are inverse points one of the other in regard to the triangle ξ = 0, η = 0, ζ = 0.To complete the solution, we must introduce these new coordinates into the equation of the cubic curve. Writing this under the form 
and observing that the equation is 
viz. this is a cubic curve inverting into itself. And the two points in question are thus any two inverse points on this cubic curve.3. In regard to the original form, that the point (x, y, z) defined by the equations 
lies on the cubic curve
Professor Sylvester proceeds as follows:—Writing 
suppose; and 
he observes that the truth of the theorem depends on the identity 
and that, in order to prove the identity generally, it is sufficient to prove it for the three cases α2= 0, a2 = b2 + c2, a2 = b2, which may be effected without difficulty.4. But, for a general proof of the identity, write 
so thatC. X. 75
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594 PROBLEMS AND SOLUTIONS. [705whence
Moreover therefore whence 
if γ= b + c, δ = b — c. By changing the sign of c, we interchange γand δ, and we thus have 
and the identity to be verified is thus 
the values of λ, μ in terms of γ, δ are λ = 1/2γ2 + δ2), μ = γδ; substituting these values on the right-hand side, the verification can be completed without difficulty.

[Vol. xxv., January to July, 1876, p. 82.]4946. (Proposed by Professor Cayley.)—Show that the attraction of an indefinitely thin double convex lens on a point at the centre of one of its frees is equal to that of the infinite plate included between the tangent plane at the point and the parallel tangent plane of the other face of the lens.
[Vol. xxvι., July to December, 1876, pp. 41, 42.]5020. (Proposed by W. S. B. Woolhouse, F.R.A.S.)—Let 1, δ1 δ2 δ3, ...,δn be the first differences of the coefficients of the expansion of the binomial (1 + x)2n taken as far as the central or maximum coefficient; also let 

then show that the algebraic function 
is divisible by (x— 1)n without a remainder; and that the sum of the numerical coefficients of the quotient is equal to 1 .3.5 ... 2n — 1.[See Solution to Question 1894, Reprint, vol. v., p. 113.]
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705] PROBLEMS AND SOLUTIONS. 595
Solution by Professor Cayley.Mr Woolhouse’s elegant theorem depends ultimately on the property of triangular numbers φ (n),= 1/2(n2-n)then φ (n + 1) = φ (-n), so that, writing down the series of triangular numbers backwards and forwards, 

we have, in fact, a continuous single series obtained by giving to n the different negative and positive integervalues, zero included.Thus a particular case is 
where, on the left-hand side, the exponents are the triangular numbers ϕ(n+ 1), 
n = 0 to 3; and the coefficients, after the first, are the differences of the binomial coefficients of the power 2n (in the particular case, n = 3); viz. the binomial coefficients being 
the differences taken as far as they are positive are
Expanding the several terms and writing down only the coefficients, we have a diagram

The theorem in the particular case depends on the identities

or writing, as above, h, g,f, e, to denote the triangular numbers 6, 3, 1, 0, these may be replaced by
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596 PROBLEMS AND SOLUTIONS. [705or, reducing each equation by those which precede it, these become

Consider any one of these, for instance the third; the function on the left­hand is 
or, introducing the values b, c, d as above, 
which is, in fact, = 0, if b, c, d, e, f, g, hare any successive triangular numbers; viz. this is an immediate consequence of the well-known theorem

for any value of m up to m = 5, and
We have thus all the equations except the last; and as regards the last equation, observe that the equation to be verified is 
viz. this may be replaced by 
which is right.It is clear that the proof, although worked out on a particular case, is perfectly general; and Mr Woolhouse’s theorem is thus proved.

[Vol. xxvI, pp. 77, 78.]5079. (Proposed by Professor Cayley.)—Show that the curve 
where i(√-1) as usual, is a real bicircular quartic having the axial foci
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705] PROBLEMS AND SOLUTIONS. 597
Solution by the Proposer.Consider the equation

This is 

where, putting the imaginary part equal to zero, we have 
which will be true identically if

The last gives and then 
so that, putting 
we have
Therefore 
and the equation is 

which is a real curve having the axial foci + βi, -βi; γ + δi; y — δi; viz. γ + δi being a focus, and the curve being real, it is clear that γ-8i is also a focus.
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598 PROBLEMS AND SOLUTIONS. [705[Vol. xxvII,January to June, 1877, p. 20.]5130. (Proposed by Professor Cayley.)—Show that the envelope of a variable circle, having its centre on a given conic and cutting at right angles a given circle, is a bicircular quartic; which, when the given conic and the circle have double contact, becomes a pair of circles; and, by means of the last-mentioned particular case of the theorem, connect together the porisms arising out of the two problems—(i) Given two conics, to find a polygon of n sides inscribed in the one and circumscribed about the other.(ii) Given two circles, to find a closed series of n circles each touching the two circles and the two adjacent circles of the series.
[Vol. xxvII, pp. 81—83.]5208. (Proposed by Professor Sylvester.)—Let the magnitude of any ramification signify the number of its branches, and let its partial magnitudes in respect to any node signify the magnitudes of the ramifications which come together at that node. If at any node the largest magnitude exceeds by k the sum of the other magnitudes, let the node be called superior by k, or be said to be of superiority k;but if no magnitude exceeds the sum of the other magnitudes, let the node be called subequal. Then the theorem is, in any ramification, either there is one and only one subequal node; or else there are two and only two nodes each superior by unity, these two nodes being contiguous.

Solution by Professor Cayley.The proof consists in showing that (1) there cannot be more than one subequal node; (2) there cannot be more than two nodes each superior by unity: and if there is one such node, then there is, contiguous to it, another such node ; (3) starting from a node which is superior by more than unity, there is always a contiguous node which is either of smaller superiority, or else subequal; for, these theorems holding good, we can, by (3), always arrive at a node which is either subequal or else superior by unity; in the former case, by (1), the subequal node thus arrived at is unique; in the latter case, by (2), we have, contiguous to the node arrived at, a second node superior by unity; and we have thus a unique pair of nodes each superior by unity.I will prove only (3), as it is easy to see that the like process applies to the proof of (1) and (2).Let the whole magnitude be n; and suppose at a node P which is superior by 
k, the largest magnitude is α, and that the other magnitudes are, say, β, γ δ. We 
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705] PROBLEMS AND SOLUTIONS. 599have α = β+ γ + δ +kand since n = α + β + γ + δ, we have thence n = 2α — k, or 
a = 1/2n + k), β + γ + δ = 1/(n - k): clearly k is even or odd, according as n is even or odd.Suppose now that we pass from P, along the branch of magnitude α, to a contiguous node Q; and let the magnitudes for Q be α', β', y,, δ', e',where α' denotes the magnitude for the branch QP. We have α' = β + γ + δ +1: for the ramification consists of the branch QP and of the ramifications of magnitudes β, γ, δ which meet in P. We have thus 
and thence

Supposing here that k is greater than 1, viz. that it is = or >2, k—2 is 0 or positive; and if a be the greatest magnitude belonging to the node Q, this is a subequal node. But it may be that a is not the greatest magnitude; supposing then that the greatest magnitude is β', we have 
and thence 
viz. either the node is subequal, or else, being superior, the superiority is at most 
= k-2;that is, if from the node P, of superiority = or >2, we pass along the branch of greatest magnitude to the contiguous node Q, this is either subequal, or else of superiority less than that of P; which is the foregoing proposition (3).The subequal node, and the two nodes of superiority 1, in the cases where they respectively exist, may be termed the centre and the bicentre respectively; and the theorem thus is, every ramification has either a centre or else a bicentre. But the centre and the bicentre here considered, due (as remarked by Professor Sylvester) to M. Camille Jordan, and wich may for distinction be termed the centre and the bicentre of magnitude, are quite distinct from the centre and the bicentre discovered by Professor Sylvester, and considered in my researches upon trees, British Association Report, 1875, [610]. These last may for distinction be termed the centre and the bicentre of 
distance: viz. we here consider, not the magnitude, but the length of a ramification, such length being measured by the number of branches to be travelled over in order to reach the most distant terminal node. The ramification has either a centre or else a bicentre of distance: viz. the centre is a node such that, for two or more of the ramifications which proceed from it, the lengths are equal and superior to those of the other ramifications, if any; the bicentre a pair of contiguous nodes such that, disregarding the branch which unites the two nodes, there are from the two nodes respectively (one at least from each of them) two or more ramifications the lengths of which are equal to each other and superior to those of the other ramifications, if any.
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600 PROBLEMS AND SOLUTIONS. [705It is very noticeable how close the agreement is between the proofs for the existence of the two kinds of centre or bicentre respectively. Say, first as regards distance, if at any node the length of the longest branch exceeds by k the length of the next longest branch or branches, then the node is superior by k, or is of the superiority k;but, if there are two or more longest branches, then the node is subequal. And say next, in regard to magnitude, if at any node the largest magnitude exceeds by k the sum of all the other magnitudes, the node is superior by k, or has a superiority k; but if the largest magnitude does not exceed the sum of the other magnitudes, then the node is subequal. Then, whether we attend to distance or to magnitude, the three propositions hold good: (1) there cannot be more than one subequal node; (2) there cannot be more than two nodes each superior byunity: and if there is one such node, there is contiguous to it another such node; (3) starting from a node which is superior by more than unity, there is always a contiguous node which is of smaller superiority or else subequal; whence, as in the solution just referred to, there is always, as regards distance, a centre or a bicentre; and there is always, as regards magnitude, a centre or a bicentre.
[Vol. xxvii., pp. 89, 90.]

On Mr Artemus Martins First Question in Probabilities. By Professor Cayley.The question was, “ A says that B says that a certain event took place: required the probability that the event did take place, p1 and p2 being A’s and B’s respective probabilities of speaking the truth.”The solutions, referred to or given on pp. 77—79 of volume xxvIIof the Reprint, give the following values for the probability in question :—Todhunter’s Algebra ...................................................... p1p2.+ (1 -p1) (1 -p2).Artemas Martin ............................................................... p1 [p1p2+ (1 — p1)(1 -p2)].American Mathematicians and Woolhouse... p1p2It seems to me that the true answer cannot be expressed in terms of only 
p1and p2, but that it involves two other constants β and k; and my value is—Cayley ....................................p1p2+β(l -p1)(l -p2) + k(l - β)(1-p1)In obtaining this I introduce, but I think of necessity, elements which Mr Woolhouse calls extraneous and imperfect.

B told A that the event happened, or he did not tell A this; the only evidence is As statement that B told him that the event happened: and the chances are p1 and 1— p1. But, in the latter case, either B told A that the event did not happen, or he did not tell him at all; the chances (on the supposition of the incorrectness of A’s statement) are βand 1— β;and the chances of the three cases 
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705] PROBLEMS AND SOLUTIONS. 601are thus p1, β(1-p1), and (1 — β) (1 — p1). On the suppositions of the first and second cases respectively, the chances for the event having happened are p2 and 1—pa; on the supposition of the third case (viz. here there is no information as to the event) the chance is k, the antecedent probability; and the whole chance in favour of the event is
If β= 1, we have Todhunter’s solution; if β = 0, and also k=0,we have the solution preferred by Woolhouse; but we do not (otherwise than by establishing between k and β a relation which is quite arbitrary) obtain Martin’s solution. The error in this seems to be as follows:—A says that B told him as to the event, and says further that B told him that the event did happen; the probability of the truth of the compound statement is taken to be =p12; whereas, in calling the probability of A's speaking the truth p1, we mean that if A makes the statement, “B says that the event took place,” this is to be regarded as a simple statement, and the probability of the truth of the statement is = p1;viz. I think that Martin introduces into his solution a hypothesis contradictory to the assumptions of the question.I remark further that in my solution I assume that the event is of such a nature that, when there is any testimony in regard to it, the probability is determined by that testimony, irrespectively of the antecedent probability. This is quite consistent with the antecedent probability being, not zero, but as small as we please; so that, if k is (as it may very well be) indefinitely small, the whole probability is the same as if k were = 0. But there is absolutely no reason for assigning any determinate value to β so that the solutions p1p2 + (1 — p1) (1 — p2) and p1p2, which assume respectively β = 1 and β = 0, seem to me on this ground erroneous.

[Vol. xxviii., June to December, 1877, p. 17.]5306. (Proposed by Professor Cayley.)—If α, β, γ, δ; α1, β1, γ1, δ1, are such that 
show that the three equations

C. X. 76
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602 PROBLEMS AND SOLUTIONS. [705are equivalent to each other; and show also that, consistently with the foregoing relations between the constants, the differences α1 — δ1, β1- δ1, γ1- δ1 may be so determined that the equations in (x, x1) constitute a particular integral of the differential equation

[Vol. XXIX., January to June, 1878, p. 20.]4870. (Proposed by Professor Cayley.)—Given three conics passing through the same four points; and on the first a point A, on the second a point B, and on the third a point C. It is required to find on the first a point A', on the second a point B', and on the third a point C', such that the intersections of the linesA'B'and AC, A'C' and AB, lie on the first conic;
B,C' and BA, B'A'and BC, lie on the second conic;C'A'and CB, C'B' and CA, lie on the third conic.

[Vol. xxιx., pp. 96, 97.]5625. (Proposed by Professor Cayley.)—The equation 
represents a trinodal quartic curve having the lines x = 0, y = 0, z=0, x +y + z = 0 for its four bitangents; it is required to transform to the coordinates X, Y, Z, where 
X = 0, Y = 0, Z =0 represent the sides of the triangle formed by the three nodes.

[Vol. xxxI, January to June, 1879, p. 38.]5387. (Proposed by Professor Cayley.)—Show that a cubic surface has at most 4 conical points, and a quartic surface at most 16 conical points.
[Vol. xxxιι., July to December, 1879, p. 35.]5927. (Proposed by Professor Cayley.)—If [α + β+ γ + ...}p, denote the expansion of (α+β+γ+...)p, retaining those terms Naaβbγcδd ... only in which prove that
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705] PROBLEMS AND SOLUTIONS. 603[Vol. xxxIIIJanuary to July, 1880, p. 17.]6155. (Proposed by Professor Cayley.)—Given, by means of their metrical co­ordinates, any two lines; it is required to find their inclination, shortest distance, and the coordinates of the line of shortest distance.N.B.—If λ, μ, v are the inclinations of a line to three rectangular axes, and α, β, γ the coordinates to the same axes of a point on the line, then the metrical coordinates of the line are
= cos λ, cos μ, cos v, β cos v — γ cos μ, γcos λ — a cos v, a cos μ- β cos λ, satisfying identically the relations

[Vol. xxxvI, 1881, p. 21.]6470. (Proposed by Professor Cayley.)—It is required, by a real or imaginary linear transformation, to express the equation of a given cubic curve in the form
[Vol. xxxvI, p. 64.]6766. (Proposed by Professor Cayley.)—Find the stationary and the double tangents of the curve x4+ y4+z4= 0.

Solution by the Proposer.Take la fourth root of — 1; m and n fourth roots of +1; then the 28 double tangents are the lines x = ly, x = lz, y = lz, (4 + 4 + 4 =) 12 lines; and the lines x+my+nz=  0, 16 lines; and the first 12 of these, each counted twice, are the 24 stationary tangents. In fact, any one of the 12 lines is an osculating tangent, or line meeting the curve in 4 coincident points; it counts therefore once as a doubletangent, and twice as a stationary tangent. There should consequently be 16 otherdouble tangents; and it only needs to be shown that these are the 16 lines
x + my + nz = 0. Consider any one line x + my + nz = 0;for its intersections with thecurve x4 + y4+ z4 = 0, we have or, as this may be written, viz. this is or, what is the same thing, 76—2
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604 PROBLEMS AND SOLUTIONS. [705so that the line is a double tangent, the two points of contact being given by means of the equation (1, 1, 1)(mynz)2 = 0;viz. ω being an imaginary cube root of unity, we have nz =ωmy or ω2my: and thence, for the points of contact, 
values which satisfy, as they should do, the two equations

[Vol. xxxvI, pp. 106, 107.]6800. (Proposed by W. J. C. Miller, B.A.)—Prove that, if 
then

Note on Question 6800. By Professor Cayley.The identity given by the solution is a very interesting one. Instead of a, b, c, writing (a, b, c) ÷ d, we have satisfied by 
or, considering (α, b, c, d) as the coordinates of a point in space, and (α, y, z) as the coordinates of a point in a plane, we have thus a correspondence between the points of the cubic surface 4d3— d (α2 + b2 + c2) + abc = 0, and the points of the plane. To a given system of values of (x, y, z) there corresponds, it is clear, a single system of values of (α, b, c, d); and it may be shown without difficulty that, to a given system of values of (α, b, c, d) satisfying the equation of the surface, there cor­respond two systems of values of (x, y, z); the plane and cubic surface have thus a (1, 2) correspondence with each other.

[Vol. xxxvII., 1882, p. 74.]5244. (Proposed by Professor Cayley.)—Writing for shortness 
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705] PROBLEMS AND SOLUTIONS. 605show that the equation 
belongs to a 16-nodal quartic surface, having the nodes 

and the sixteen singular tangent planes represented by the equations
[Vol. xxxvIII., 1883, pp. 87—89.]7190. (Proposed by Professor Wolstenholme, M.A.)—If x, y, z be three quantities satisfying the two symmetrical equations 

prove that (1) they will also satisfy one of the two pairs of semi-symmetrical expressions 
and (2) one set of the following equations will also be satisfied:—

Solution by Professor Cayley.The two symmetrical equations represent a conic and a cubic respectively; they intersect therefore in 6 points, and if we denote by α a root of the equation 
then the other two roots of this equation are 
viz. if α3 + α2 — 2α — 1 = 0, then we have 
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606 PROBLEMS AND SOLUTIONS. [705an identity which is easily verified. It may be remarked that, if 
then 
the left-hand side of the last mentioned equation thus is (u — a) (u — φa) (u — φ2a), which remains unaltered when a is changed into φa or φ2a. Then the coordinates of the six points of intersection can be expressed indifferently in terms of any one of the roots (a, β, γ), viz. the coordinates are 
or they are equal to the like expressions in β and in 7 respectively; say these are the coordinates of the points 1, 2, 3, 4, 5, 6 respectively, as shown by the attached numbers. Thus, writing we find 
which verifies the formulae for the six points of intersection. Take, again, 
then we find
Or, since α3 = — α2 + 2α + 1, and thence 
the last equation becomesWe have also 
hence the point in question is situate on each of the cubics 
and this, of course, shows the points 1, 2, 3 are all three of them situate upon each of the three cubics; and in precisely the same manner it appears that the points 4, 5, 6 are all three of them situate on each of the three cubics
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705] PROBLEMS AND SOLUTIONS. 607Again, from the values x, y, z = α2 — 1, — α, — 1, we have 
viz. the point 1 lies on each of these conics; similarly the point 2 lies on each of the same conics; and the point 3 lies on each of the same conics; that is, the conics in question have in common the points 1, 2, 3.In like manner, the conics 
have in common the points 4, 5, 6.The general result is that the given conic and the cubic meet in six points forming two groups of points (1, 2, 3) and (4, 5, 6); through the points (1, 2, 3) we have three cubics and three conics; and through the points (4, 5, 6) we have three cubics and three conics.If in the equation x3 + x2 — 2x — 1 = 0, whose roots are a, φ(a), φ2(α), we put x=2cos0, the equation becomes 
or 
or the three roots are 2 cos 2/7π, 2 cos 4/7π, 2 cos 6/7π. The two equations 
are satisfied if x:y :z = these three roots in any order, giving the six solutions. The semi-symmetrical systems are satisfied, the one by 
and the other by

[Vol. xxxIx., 1883, p. 31.]5689. (Proposed by Professor Cayley.)—Show (1) that the apparent contour of a Steiner’s surface (2xyz + y2z2 +z2x2 + x2y2 = 0), as seen from an exterior point on a nodal line (say the axis of z), projected on the plane of the other two nodal lines, is an ellipse passing through the four points (±1, 0) and (0, ±1); and (2) find the surface-contour, or curve of contact, of the cone and surface.
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608 PROBLEMS AND SOLUTIONS. [705[Vol. xxxIx., p. 49.]4722. (Proposed by Professor Cayley.)—1. Show that the conditions in regard to the reality of the roots of the equation 
are, if 
then the roots are two real, two imaginary; but if 
then, if simultaneously 
the roots are all real, but otherwise they are all imaginary.2. If the roots of the foregoing equation are all imaginary, then for any real value whatever of y, the roots of the equation 
are all imaginary.

[Vol. xxxIx., pp. 69, 70.]4387. (Proposed by Professor Cayley.)—Using the term “ Cassinian ” to denote a bi-circular quartic having four foci in a right line; show that the equation of a Cassinian having for its four foci the points x=a, x=b, x = c, x = d on the axis of 
x, may be written in the four equivalent forms 

that is, 
where A1/2, B1/2, C1/2, D1/2 are the distances from the four foci respectively, and the parameters p, σ, τ are connected by the equation
Show also that the curve has, at right angles to the axis of x, two double tangents, the equation whereof is any one of the three equivalent forms
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705] PROBLEMS AND SOLUTIONS. 609[Vol. XL·., 1884, p. 32]7376. (Proposed by Professor Cayley.)—Show how the construction of a regular heptagon may be made to depend on the trisection of the angle cos-1(1/2/7).
[Vol. XL., p. 110.]7352. (Proposed by Professor Cayley.)—Denoting by x, y, z, ξ, η, ζ homogeneous linear functions of four coordinates, such that identically 

where αf = bg = ch = 1; show that 
is the equation of a quartic surface having the sixteen singular tangent planes (each touching it along a conic)

[Vol. XLI., 1884, p. 37.]5421. (Proposed by Professor Cayley.)—Suppose
where, for any given value of x, we write +,—, or 0, according as the linear functionis positive, negative, or zero, and where the order of the terms is not attended to.If x is any one of the values α1, α2, a3, a4, the corresponding S is 0 + +++, ,0+ + -, or 0 --: and if I denote indifferently the first or the second form, and Rdenote indifferently the third or the fourth form: then it is to be shown that the four S's are R, R, R, R, or else R, R, I, I.

[Vol. xliv., 1886, p. 109.]8340. (Proposed by F. Morley, B.A.)—Show that (1) on a chess-board the number of squares visible is 204, and the number of rectangles (including squares) visible is 1,296; and (2) on a similar board, with n squares in each side, the number of squares is the sum of the first n square numbers, and the number of rectangles (including squares) is the sum of the first n cube numbers.c. x. 77
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610 PROBLEMS AND SOLUTIONS. [705
Solution by Professor Cayley.In a board of n2 squares, the number of pairs of vertical lines at a distance from each other of n — r+1 squares is = r; and the number of pairs of horizontal 

lines at a distance from each other of n — s squares is = s. Hence the number of rectangles, breadth n — r + 1 and depth n — s +1, or say the number of 
rectangles, is = rs.For instance, n = 4, the number of rectangles 44, 43, 34, &c., is shown in the diagram; hence the whole number of rectangles is (1 + 2 + 3 + 4)2 = 13 + 23 + 33 + 43, and so for any value of n.The same diagram shows that the whole number of squares is = 12 + 22 + 32 + 42; and so for any value of n.

[Vol. xlvi., 1887, pp. 49, 50.]8636. (Proposed by Professor Mahendra Nath Ray, M.A., LL.B.)—Show that the following equations are satisfied by the same value of x, and find this value:—

Solution by Professor Cayley.The second equation rationalised gives 
that is, 
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705] PROBLEMS AND SOLUTIONS. 611if, for shortness,We thence find 
and therefore also
Or, assuming the sign of the square roots, 
whence, adding, the whole divides by V and we have 
the second equation. Observe that the second equation rationalised gives an equation of the form (x2, 1)4 = 0; the foregoing value x2 = 4α2b2c2∕∆ is thus one of the four values of x2.

[Vol. xlvii., 1887, p. 141.]5271. (Proposed by Professor Cayley.)—If ω be an imaginary cube root of unity, show that, if 
then 
and explain the general theory.

[Vol. L,, 1889, p. 189.]3105. (Proposed by Professor Cayley.)—The following singular problem of literal partitions arises out of the geometrical theory given in Professor Cremona’s Memoir, “ Sulle trasformazioni geometriche delle figure piane,” Mem. di Bologna, tom. v. (1865). It is best explained by an example:—A number is made up in any manner with the parts 2, 5, 8, 11, &c., viz. the parts are always the positive integers ≡ 2 (mod. 3); for instance, 27 = 1.11+8.2. Forming, then, the product of 27 factors α11 (bcdefghi)2, this may be partitioned on the same type 1.11 + 8.2 as follows, 
(Observe that the partitionment is to be symmetrical as regards the letters which have a common index.) But, to take another example,

77—2
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612 PROBLEMS AND SOLUTIONS. [705The first of these gives the product (αbc)8 d5 (efgh)2, which cannot be partitioned (symmetrically as above) on its own type, though it may be on the second type; and the second gives the product α11 (bcde)5 (fgh)2, which cannot be partitioned (symmetrically as above) on its own type, though it may be on the first type; viz. the partitions of the two products respectively are:First product on second type,
Second product on first type, 

so that in the first example the type is sibi-reciprocal, but in the second example there are two conjugate types. Other examples are : 

viz. the first four columns give each of them a sibi-reciprocal type, but the last two double columns give conjugate types. It is required to investigate the general solution.
[Vol. L., p. 191.]3304. (Proposed by Professor Cayley.)—The coordinates x, y, z being proportional to the perpendicular distances from the sides of an equilateral triangle, it is required to trace the curve

[Prof. Cayley remarks that the curve in question is a particular case of that which presents itself in the following theorem, communicated to him (with a de­monstration) several years ago by Mr J. Griffiths :—The locus of a point (x, y, z) such that its pedal circle (that is, the circle which passes through the feet of the perpendiculars drawn from the point in question 
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705] PROBLEMS AND SOLUTIONS. 613upon the sides of the triangle of reference) touches the nine-point circle, is the sextic curve

It would be an interesting problem to trace this more general curve.]
[Vol. L., p. 192.]3481. (Proposed by Professor Cayley.)—Find, in the Hamiltonian form 

the equations for the motion of a particle acted on by a central force.
[Vol. lv., 1891, p. 27.]10716. (Proposed by Professor Cayley.)—In a hexahedron ABCDA'B'C'D' the plane faces of which are ABCD, A'B'C'D', A'ADD', D'DCC', C'CBB', B'BAA', theedges AA', BB', CC', DD' intersect in four points, say AA', DD' in a; BB', CC'in β; CC', DD' in γ; A A', BB' in δ: that is, starting with the duad of lines

aβ, y8, the four edges A A', BB', CC’, DD' are the lines αδ, βδ, βγ, aγ which jointhe extremities of these duads. Similarly, the four edges AB, CD, A'B', C'D' are the lines joining the extremities of a duad; and the four edges AD, BC, A'D', B'C' are the lines joining the extremities of a duad. The question arises, “ Given two duads, is it possible to place them in space so that the two tetrads of joining lines may be eight of the twelve edges of a hexahedron ? ” The duad aβ, yδ is considered to be given when there is given the tetrahedron aβy8, which determines the relative position of the two finite lines aβ and y8.

[Vol. lxi., 1894, pp. 122, 123.]3162. (Proposed by Professor Cayley.)—By a proper determination of the co­ordinates, the skew cubic through any six given points may be taken to be 
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614 PROBLEMS AND SOLUTIONS. [705or, what is the same thing, the coordinates of the six given points may be taken to be
Assuming this, it is required to show that if 
and if 
then the equation of the Jacobian surface of the six points is

[Vol. lxi., p. 123.]3185. (Proposed by Professor Cayley.)—An unclosed polygon of (m +1) vertices is constructed as follows: viz. the abscissae of the several vertices are 0, 1, 2, ..., m, and corresponding to the abscissa k, the ordinate is equal to the chance of m + k heads in 2m tosses of a coin; and m then continually increases up to any very large value; what information in regard to the successive polygons, and to the areas of any portions thereof, is afforded by the general results of the Theory of Probabilities ?
[Vol. lxi., p. 124.]3229. (Proposed by Professor Cayley.)—It is required to find the value of the elliptic integral F(c, θ) when c is very nearly =1 and θ very nearly =1/2π that is, the value of 

where α, b are each of them indefinitely small.N.B.—Observe that, for a = 0, b small, the value is equal log 4/b, and for b = 0, 
a small, the value is — log cot 1/2α.
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705] PROBLEMS AND SOLUTIONS. 615
In the following Contents, the Problems are referred to, each by its number and the 

proposer’s name; and the subject is briefly indicated. An asterisk shews that no solution 
was given. A line ----- shews that there is no number.
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616 PROBLEMS AND SOLUTIONS. [705
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