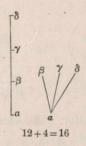
895.

A THEOREM ON TREES.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. XXIII. (1889), pp. 376—378.]

THE number of trees which can be formed with n+1 given knots α , β , γ , ... is $=(n+1)^{n-1}$; for instance n=3, the number of trees with the 4 given knots α , β , γ , δ is $4^2=16$, for in the first form shown in the figure the α , β , γ , δ may be arranged



in 12 different orders $(\alpha\beta\gamma\delta)$ being regarded as equivalent to $\delta\gamma\beta\alpha$, and in the second form any one of the 4 knots α , β , γ , δ may be in the place occupied by the α : the whole number is thus 12+4, =16.

Considering for greater clearness a larger value of n, say n = 5, I state the particular case of the theorem as follows:

No. of trees $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta) = \text{No.}$ of terms of $(\alpha + \beta + \gamma + \delta + \epsilon + \zeta)^4 \alpha \beta \gamma \delta \epsilon \zeta = 6^4 = 1296$, and it will be at once seen that the proof given for this particular case is applicable for any value whatever of n.

I use for any tree whatever the following notation: for instance, in the first of the forms shown in the figure, the branches are $\alpha\beta$, $\beta\gamma$, $\gamma\delta$; and the tree is said to be $\alpha\beta^2\gamma^2\delta$ (viz. the knots α , δ occur each once, but β , γ each twice); similarly in the second of the same forms, the branches are $\alpha\beta$, $\alpha\gamma$, $\alpha\delta$, and the tree is said

to be $\alpha^{s}\beta\gamma\delta$ (viz. the knot α occurs three times, and the knots β , γ , δ each once). And so in other cases.

This being so, I write

where the numbers of the left-hand column are the polynomial coefficients for the index 4; and the numbers of the right-hand column are the numbers of terms of the several types, 6 terms α^4 , 30 terms $\alpha^3\beta$, 15 terms $\alpha^2\beta^2$, &c.: the products of the corresponding terms of the two columns give the outside column 6, 120, 90, &c.; and the sum of these numbers is of course 6^4 , = 1296.

It is to be shown that we have

1 tree α^4 . $\alpha\beta\gamma\delta\epsilon\zeta$ (= $\alpha^5\beta\gamma\delta\epsilon\zeta$); 4 trees $\alpha^3\beta$. $\alpha\beta\gamma\delta\epsilon\zeta$ (= $\alpha^4\beta^2\gamma\delta\epsilon\zeta$), ...,

24 trees
$$\alpha\beta\gamma\delta$$
. $\alpha\beta\gamma\delta\epsilon\zeta$ (= $\alpha^2\beta^2\gamma^2\delta^2\epsilon\zeta$):

for this being so, then by the mere interchange of letters, the numbers $1, 4, 6, \ldots$ of the left-hand column have to be multiplied by the numbers $6, 30, 15, \ldots$ of the right-hand column, and we have the numbers in the outside column, the sum of which is = 1296 as above.

Start with the last term
$$\alpha\beta\gamma\delta \cdot \alpha\beta\gamma\delta\epsilon\zeta$$
, $=\alpha^2\beta^2\gamma^2\delta^2\epsilon\zeta$. We have the trees $\epsilon\alpha\beta\gamma\delta\zeta$ (= $\epsilon\alpha \cdot \alpha\beta \cdot \beta\gamma \cdot \gamma\delta \cdot \delta\zeta$),

where the α , β , γ , δ may be written in any one of the 24 orders, and the number of such trees is thus = 24. If we consider only the 12 orders $(\alpha\beta\gamma\delta)$ being regarded as equivalent to $\delta\gamma\beta\alpha$, then the ϵ , ζ may be interchanged; and the number is thus 2×12 , = 24 as before.

Now for the δ of $\alpha\beta\gamma\delta$ substitute α , or consider the form $\alpha\beta\gamma\alpha$. $\alpha\beta\gamma\delta\epsilon\zeta$, $=\alpha^3\beta^2\gamma^2\delta\epsilon\zeta$. We see at once in the form $\epsilon\alpha$. $\alpha\beta$. $\beta\gamma$. $\gamma\delta$. $\delta\zeta$, which one it is of the two δ 's that must be changed into α : in fact, changing the first δ , we should have $\epsilon\alpha$. $\alpha\beta$. $\beta\gamma$. $\gamma\alpha$. $\delta\zeta$ which contains a circuit $\alpha\beta\gamma$, and a detached branch $\delta\zeta$, and is thus not a tree: changing the second δ , we have $\epsilon\alpha$. $\alpha\beta$. $\beta\gamma$. $\gamma\delta$. $\alpha\zeta$ which is a tree $\alpha^3\beta^2\gamma^2\delta\epsilon\zeta$, $=\alpha\zeta$. $\alpha\epsilon$. $\alpha\beta$. $\beta\gamma$. $\gamma\delta$. And similarly for any other order of the $\alpha\beta\gamma\delta$, there is in each case only one of the δ 's which can be changed into α ; and thus from each of the 24 forms we obtain a tree $\alpha^3\beta^2\gamma^2\delta\epsilon\zeta$. But dividing the 24 forms into the 12+12 forms corresponding to the interchange of the letters ϵ , ζ , then the first 12 forms, and the second 12 forms, give each of them the same trees $\alpha^3\beta^2\gamma^2\delta\epsilon\zeta$; and the number of these trees is thus $\frac{1}{2}$. 24, =12.

4-2

And in like manner reducing the $\alpha\beta\gamma\delta$ to $\alpha^2\beta^2$, $\alpha^3\beta$ or α^4 , we obtain in each case the number of trees equal to the proper sub-multiple of 24, viz. 6, 4, 1 in the three cases respectively (for the last case this is obvious, viz. there is 1 tree $\alpha^5\beta\gamma\delta\epsilon\zeta$, $=\alpha\beta.\alpha\gamma.\alpha\delta.\alpha\epsilon.\alpha\zeta$); and the subsidiary theorem is thus proved. Hence the original theorem is true: as already remarked, it is easy to see that the proof is perfectly general.

The theorem is one of a set as follows:

Let $(\lambda, \alpha, \beta, \gamma, ...)$ denote as above the trees with the given knots $\lambda, \alpha, \beta, \gamma, ...$; $(\lambda + \mu, \alpha, \beta, \gamma, ...)$ the pairs of trees with the given knots $\lambda, \mu, \alpha, \beta, \gamma, ...$, the knots λ, μ belonging always to different trees; $(\lambda + \mu + \nu, \alpha, \beta, \gamma, ...)$ the triads of trees with the given knots $\lambda, \mu, \nu, \alpha, \beta, \gamma, ...$, the knots λ, μ, ν always belonging to different trees; and so on: then if i+1 be the number of the knots $\lambda, \mu, \nu, ...$, and n the number of the knots $\alpha, \beta, \gamma, ...$, the number of trees is $= (i+1)(i+n+1)^{n-1}$. In particular, if i=0, then n being the number of knots $\alpha, \beta, \gamma, ...$, and therefore n+1 the whole number of knots $\lambda, \alpha, \beta, \gamma, ...$, the number of trees is $= (n+1)^{n-1}$ as before.

As a simple example, consider the pairs $(\lambda + \mu, \alpha, \beta)$: here i = 1, n = 2, and we have $(i+1)(i+n+1)^{n-1} = 2 \cdot 4$, =8: in fact, the pairs of trees are

$$(\lambda \alpha, \alpha \beta, \mu), (\lambda \beta, \beta \alpha, \mu), (\lambda \alpha, \lambda \beta, \mu),$$

 $(\mu \alpha, \alpha \beta, \lambda), (\mu \beta, \beta \alpha, \lambda), (\mu \alpha, \mu \beta, \lambda); (\lambda \alpha, \mu \beta), (\lambda \beta, \mu \alpha).$

We may arrange the trees $(\alpha, \beta, \gamma, \delta, \epsilon)$ as follows:

$$(\alpha, \beta, \gamma, \delta, \epsilon) = \alpha\beta \qquad (\beta, \gamma, \delta, \epsilon); \quad 125 = 4 \times 1.4^{\circ} = 64$$

$$+ \alpha\beta . \alpha\gamma \qquad (\beta + \gamma, \delta, \epsilon) \qquad + 6 \times 2.4^{\circ} \quad 48$$

$$+ \alpha\beta . \alpha\gamma . \alpha\delta \qquad (\beta + \gamma + \delta, \epsilon) \qquad + 4 \times 3.4^{\circ} \quad 12$$

$$+ \alpha\beta . \alpha\gamma . \alpha\delta . \alpha\epsilon \qquad + 1 \qquad 1$$

$$125,$$

viz. to obtain the trees $(\alpha, \beta, \gamma, \delta, \epsilon)$, we join on the branch $\alpha\beta$ to any tree $(\beta, \gamma, \delta, \epsilon)$: the branches $\alpha\beta$, $\alpha\gamma$ to any pair of trees $(\beta + \gamma, \delta, \epsilon)$; the branches $\alpha\beta$, $\alpha\gamma$, $\alpha\delta$ to any triad of trees $(\beta + \gamma + \delta, \epsilon)$; and take lastly the tree $\alpha\beta$. $\alpha\gamma$. $\alpha\delta$. $\alpha\epsilon$: the knots β , γ , δ , ϵ being then interchanged in every possible manner. The whole number of trees 125 is thus obtained as = 64 + 48 + 12 + 1; the theorem is of course perfectly general.

The foregoing theory in effect presents itself in a paper by Borchardt, "Ueber eine der Interpolation entsprechende Darstellung der Eliminations-Resultante," Crelle, t. LVII. (1860), pp. 111—121, viz. Borchardt there considers a certain determinant, composed of the elements $10, 12, \ldots, 1n, 20, 21, 23, \ldots, 2n, \ldots, n0, n1, \ldots, nn-1$, and represented by means of the trees $(0, 1, 2, \ldots, n)$; the branches of the tree being the aforesaid elements, and the tree being regarded as equal to the product of the several branches: the number of terms of the determinant is thus $=(n+1)^{n-1}$ as above.