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A THEOREM ON TREES.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xxIII. (1889), 
pp. 376—378.]

The number of trees which can be formed with n + 1 given knots a, β, γ, ... is 
= (n+l)n-1; for instance n = 3, the number of trees with the 4 given knots a, β, γ, 
δ is 42 = 16, for in the first form shown in the figure the a, β, γ, δ may be arranged

12 + 4 = 16

in 12 different orders (αβγδ being regarded as equivalent to δγβα), and in the second 
form any one of the 4 knots a, β, γ, δ may be in the place occupied by the a: 
the whole number is thus 12 + 4, =16.

Considering for greater clearness a larger value of n, say n = 5, I state the 
particular case of the theorem as follows:
No. of trees (α, β, γ, 8, ε, ζ) = No. of terms of (α +β +γ + δ + ε + ξ)4 αβγδεξ, = 64, = 1296, 
and it will be at once seen that the proof given for this particular case is applicable 
for any value whatever of n.

I use for any tree whatever the following notation: for instance, in the first of 
the forms shown in the figure, the branches are aβ, βγ γδ; and the tree is said 
to be αβ2γ2δ (viz. the knots a, δ occur each once, but β, γeach twice); similarly 
in the second of the same forms, the branches are aβ, aγ aδ, and the tree is said
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to be a3βγδ (viz. the knot a occurs three times, and the knots β, γ, δ each once). 
And so in other cases.

This being so, I write

where the numbers of the left-hand column are the polynomial coefficients for the 
index 4; and the numbers of the right-hand column are the numbers of terms of 
the several types, 6 terms α4, 30 terms a3β, 15 terms α2β2,&c.: the products of the 
corresponding terms of the two columns give the outside column 6, 120, 90, &c.; 
and the sum of these numbers is of course 64, = 1296.

It is to be shown that we have

for this being so, then by the mere interchange of letters, the numbers 1, 4, 6, ... of 
the left-hand column have to be multiplied by the numbers 6, 30, 15, ... of the 
right-hand column, and we have the numbers in the outside column, the sum of 
which is = 1296 as above.

 Start with the last term We have the trees

where the α, β, γ δ may be written in any one of the 24 orders, and the number 
of such trees is thus = 24. If we consider only the 12 orders (αβγδ being regarded 
as equivalent to δγβα), then the ε, ζ may be interchanged; and the number is thus 
2 × 12, = 24 as before.

Now for the δ of aβγδ substitute α, or consider the form aβγa . aβγδγεζ, = a3β2γ2δεζ. 
We see at once in the form εα. aβ. βγ. γδ . δζ, which one it is of the two δ2sthat 
must be changed into α: in fact, changing the first δ, we should have εa . aβ . βγ. γα. δζ 
which contains a circuit aβγ, and a detached branch δζ, and is thus not a 
tree: changing the second δ, we have εα . aβ . βγ . γδ.aζ which is a tree α3βγ2δ2εξ, 
= aζ.aε . aβ . βγ. γδ. And similarly for any other order of the aβγδ, there is in each 
case only one of the δ'swhich can be changed into a; and thus from each of the 
24 forms we obtain a tree a3β2y2δεζ. But dividing the 24 forms into the 12 + 12 
forms corresponding to the interchange of the letters ∈, ζ, then the first 12 forms, 
and the second 12 forms, give each of them the same trees α3βγ2δεζ and the 
number of these trees is thus 1/224, =12.
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And in like manner reducing the aβγδ to α2β, a3β or α4, we obtain in each 
case the number of trees equal to the proper sub-multiple of 24, viz. 6, 4, 1 in the 
three cases respectively (for the last case this is obvious, viz. there is 1 tree 
a5βγδeξ, =aβ . aγ . aδ . ae . aξ); and the subsidiary theorem is thus proved. Hence the 
original theorem is true: as already remarked, it is easy to see that the proof is 
perfectly general.

The theorem is one of a set as follows:
Let (λ, α, β, γ, ...) denote as above the trees with the given knots λ, α, β, γ, ...; 

(λ + μ, a, β, γ, ...) the pairs of trees with the given knots λ, μ, a, β, γ ..., the 
knots λ, μ belonging always to different trees; (λ + μ + v, a, β, γ...) the triads of 
trees with the given knots λ, μ, v, a, β, γ, ..., the knots λ, μ, v always belonging 
to different trees; and so on: then if i+ l be the number of the knots λ, μ, v, ..., 
and n the number of the knots α, β, γ, ..., the number of trees or pairs, or triads, 
&c., of trees is = (i + 1) (i + n + l)n-1. In particular, if i = 0, then n being the number 
of knots a, β, γ, ..., and therefore n + 1 the whole number of knots λ, a, β, 7, ..., 
the number of trees is = (n + l)n-1as before.

As a simple example, consider the pairs (λ + μ, a, β): here i = 1, n = 2, and we 
have (i+ 1) (i + n + l)n-1 = 2.4, = 8 : in fact, the pairs of trees are

We may arrange the trees (α β, γ, δ, e) as follows: 

viz. to obtain the trees (α β, γ, δ, e), we join on the branch aβ to any tree 
(β, γ, δ, e): the branches aβ, aγ to any pair of trees (β + γ, δ, e); the branches 
aβ, aγ, αδ to any triad of trees (β + γ + δ, e); and take lastly the tree aβ. aγ. aδ. ae: 
the knots β, γ, δ, e being then interchanged in every possible manner. The whole 
number of trees 125 is thus obtained as =64 + 48 + 12 + 1; the theorem is of course 
perfectly general.

The foregoing theory in effect presents itself in a paper by Borchardt, “ Ueber 
eine der Interpolation entsprechende Darstellung der Eliminations-Resultante,” Crelle, 
t. LvII(1860), pp. 111—121, viz. Borchardt there considers a certain determinant, 
composed of the elements 10, 12, ..., 1n, 20, 21, 23, ..., 2n, ..., n0, n1, ..., nn—1, and 
represented by means of the trees (0, 1, 2, ..., n); the branches of the tree being 
the aforesaid elements, and the tree being regarded as equal to the product of the 
several branches: the number of terms of the determinant is thus =(n+l)n-1 as 
above.
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