which belong to the neighbourhood of 461. The curve through the unbilic does

ON THE GEOMETRICAL INTERPRETATION OF THE COVARIANTS OF A BINARY CUBIC.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. x. (1870), pp. 148—149.]

Consider the binary cubic $U = (a, b, c, d(x, y))^3$, and its covariants, viz. the discriminant (invariant)

$$\nabla = a^2d^2 - 6abcd + 4ac^3 + 4b^3d - 3b^2c^2,$$

the Hessian

$$H = (ac - b^2) x^2 + (ad - bc) xy + (bd - c^2) y^2,$$

and the cubicovariant

$$\Phi = \begin{pmatrix} a^2d - 3abc + 2b^3 \end{pmatrix} x^3$$

$$- (-3abd + 6ac^2 - 3b^2c) x^2y$$

$$+ (-3acd + 6bd^2 - 3bc^2) xy^2$$

$$- \begin{pmatrix} ad^2 - 3bcd + 2c^3 \end{pmatrix} y^3,$$

connected by the identical equation

$$\Phi^2 - \nabla U^2 = -4H^3.$$

Then if we regard (a, b, c, d) as the coordinates of a point in space, but (x, y) as variable parameters, the equation

$$\nabla = 0$$

represents a quartic torse, having for its cuspidal curve the skew cubic $ac - b^2 = 0$, ad - bc = 0, $bd - c^2 = 0$; the equation

$$U = 0$$

is that of the tangent plane to the torse along the line $ax^2 + 2bxy + cy^2 = 0$, $bx^2 + 2cxy + dy^2 = 0$: this line meets the cuspidal curve in the point whose coordinates are $a:b:c:d=y^3:-xy^2:x^2y:-y^3$. The equation

$$H = 0$$

is that of a quadric cone having the last mentioned point for its vertex, and passing through the cuspidal curve: and the equation

$$\Phi = 0$$

is that of the cubic surface which is the first polar of the same point in regard to the torse.

The equation $\Phi^2 - \nabla U^2 = -4H^3$, writing therein U = 0, gives $\Phi^2 = -4H^3$, a result which implies that U=0, H=0 is a certain curve repeated twice, and that U=0, $\Phi = 0$ is the same curve repeated three times. The curve in question is at once seen to be the line of contact $\delta_x U = 0$, $\delta_y U = 0$; it thus appears that the tangent plane U=0 meets the cubic surface $\Phi=0$ in this line taken three times. This can only be the case if the equation $\Phi = 0$ be expressible in the form $MU + (\delta_x U)^3 = 0$, or, what is the same thing,

 $MU + (\alpha \delta_x U + \beta \delta_u U)^3 = 0$,

 α and β constants, M a quadric function of (α, b, c, d) ; that is, Φ must be equal to a function of the form

$$MU + (\alpha \delta_x U + \beta \delta_y U)^2$$
.

Seeking for this expression of Φ , and writing the symbols out at length, I find that the required identical equation is

$$-(\beta x - \alpha y)^{3} \begin{cases} (a^{2}d - 3abc + 2b^{3}) x^{3} \\ -(-3abd + 6ac^{2} - 3b^{2}c) x^{2}y \\ +(-3acd + 6bd^{2} - 3bc^{2}) xy^{2} \\ -(-ad^{2} - 3bcd + 2c^{3}) y^{3} \end{cases} + 2 \left\{ \alpha \left(ax^{2} + 2bxy + cy^{2} \right) + \beta \left(bx^{2} + 2cxy + dy^{2} \right) \right\}^{3} = \\ (a, b, c, d)(x, y)^{3} \cdot (2a^{2} - 6ab - 6b^{2} - 6ab - 6b^{2} - 6ad - 6b$$

(where the † indicates that the binomial coefficients are not to be inserted, viz. the function on the right hand is $\{2a^2x^3 + 6abx^2y + 6b^2xy^3 + (-ad + 3bc)y^3\} \alpha^3 + \&c.$). As a verification remark that for $x = \alpha$, $y = \beta$, the equation becomes simply $2U^3 = U \cdot 2U^2$.

6cd

6cd

 $2d^2$