945.

NOTE ON LACUNARY FUNCTIONS.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xxvi. (1893), pp. 279-281.]

The present note is founded upon Poincare"s paper "Sur les fonctions à espaces lacunaires," Amer. Math. Jour., t. xiv. (1892), pp. 201-221.

If the complex variable $z=x+i y$ is represented as usual by a point the coordinates of which are (x, y), and if $U_{0}, U_{1}, U_{2}, \ldots$ denote an infinite series of given functions of z, then the equation

$$
f z=U_{0}+U_{1}+U_{2}+\ldots
$$

defines a function of z, but only for those values of z for which the series is convergent, or say for points within a certain region Θ; and within this region, it defines the successive derived functions $f^{\prime} z, f^{\prime \prime} z, f^{\prime \prime \prime} z, \ldots$

Taking $l,=h+i k$, as an increment of z, we define the function of $z+l$, by the equation

$$
f(z+l)=f z+\frac{l}{1} f^{\prime} z+\frac{l^{2}}{1.2} f^{\prime \prime} z+\ldots
$$

but only for values of l for which the series is convergent: it may very well be, and it is in general the case, that we thereby extend the definition of $f z$ so as to make it applicable to points within a larger region Θ_{1}; and then considering $f z$ as defined within this larger region Θ_{1}, we may pass from it to a still larger region Θ_{2}; and so on indefinitely, or until we cover the whole infinite plane.

For instance, the equation

$$
f z=1+z+z^{2}+z^{3}+\ldots
$$

defines the function $1 \div(1-z)$ for values of z for which mod. $z<1$, that is, for points within the circle $x^{2}+y^{2}-1=0$; and this being so,

$$
f(z+l)=\frac{1}{1-z}+\frac{l}{(1-z)^{2}}+\frac{l^{2}}{(1-z)^{3}}+\ldots
$$

extends the definition to the larger region for which this is a convergent series: the condition of convergency is

$$
\text { mod. } \frac{l}{1-z}<1 \text {, that is, mod. } \frac{h+i k}{1-x-i y}<1 \text {, or } h^{2}+k^{2}<(1-x)^{2}+y^{2}
$$

The condition is that the distance $\sqrt{ }\left(h^{2}+k^{2}\right)$ must not exceed the distance $\sqrt{ }\left\{(1-x)^{2}+y^{2}\right\}$ of the point $z=x+i y$, from the point $(c=1, y=0)$; the point z is strictly within the circle $x^{2}+y^{2}=1$, but taking it on the circumference, the condition is that the point $z+l$ must lie within a circle having its centre on the circle $x^{2}+y^{2}-1=0$ and passing through the point $(x=1, y=0)$. Taking $\cos \theta$ and $\sin \theta$ for the coordinates of the centre, the equation of this circle is

$$
(x-\cos \theta)^{2}+(y-\sin \theta)^{2}=(1-\cos \theta)^{2}+\sin ^{2} \theta
$$

that is,

$$
x^{2}+y^{2}-1-2 \cos \theta(x-1)-2 y \sin \theta=0
$$

and the envelope of these circles is

$$
\left(x^{2}+y^{2}-1\right)^{2}-4(x-1)^{2}-4 y^{2}=0 ;
$$

or, as this may be written,

$$
\left(x^{2}+y^{2}\right)^{2}-6\left(x^{2}+y^{2}\right)+8 x-3=0
$$

or again in the form

$$
\left(x^{2}+y^{2}-3\right)^{2}+4(2 x-1)=0,
$$

or in the form

$$
y^{4}+2 y^{2}\left(x^{2}-3\right)+(x-1)^{2}(x+3)=0 .
$$

The curve is a cuspidal Cartesian. To put this in evidence, observe that the equation may be written

$$
-4 y^{2}+\left\{(x-1)^{2}+y^{2}\right\}\left\{(x-1)^{2}+y^{2}+4 x-4\right\}=0
$$

viz. writing

$$
\begin{aligned}
& A=x+i y-1, \\
& B=x-i y-1, \\
& Z=-1,
\end{aligned}
$$

then

$$
\begin{aligned}
& A-B=2 i y \\
& A B=(x-1)^{2}+y^{2} \\
& A+B=2 x-2
\end{aligned}
$$

or the equation is

$$
Z^{2}(A-B)^{2}+A B\{A B-2 Z(A+B)\}=0,
$$

that is,

$$
Z^{2} A^{2}+Z^{2} B^{2}+A^{2} B^{2}-2 Z^{2} A B-2 Z A^{2} B-2 Z A B^{2}=0
$$

which is the equation of a bicuspidal quartic curve, having for cusps the vertices of the triangle $A=0, B=0, Z=0$.

The region within which the function is $=\frac{1}{1-z}$ is thus extended to the area within the Cartesian curve, say this is the region Θ_{1} : starting from this curve instead of the circle (viz. by considering the envelope of the circle having its centre on the curve and passing through the point $x=1, y=0$), we obtain a second curve, a closed curve, which instead of having a cusp on the axis of x cuts this axis at right angles at a point the distance of which from the origin is greater than 1 ; and we thus extend the region to the area within this second curve, say this is the region Θ_{2}. And proceeding in this way, we ultimately extend the region to the whole of the infinite plane.

But the functions $U_{0}, U_{1}, U_{2}, \ldots$ may be such that for every value whatever of l, for which the point $z+l$ is outside the region Θ, the series

$$
f z+\frac{l}{1} f^{\prime} z+\frac{l^{2}}{1.2} f^{\prime \prime} z+\ldots
$$

is divergent, and we are in this case unable to define the function $f z$ for points outside the region Θ_{1} : the function then exists only for points inside the region Θ, and for points outside this region it is non-existent; a function such as this, existing only for points within a certain region and not for the whole of the infinite plane, is said to be a lacunary function.

