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NOTE ON THE THEORY OF ORTHOMORPHOSIS.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. XXVI1. (1893),
Pp. 282—288.]

THE equation of any given curve whatever, ® =0, may be expressed in the form

$ (@ +iy)+ ¢ (@ — iy) =O.
Let x be any odd function; then since

¢ (z—1y)=—¢ (z+1y),
we have
x$ (@ —1y) = x {— ¢ (@ +iy)} = —x¢ (= + 1),
that is,
x¢ (#+1y) + xp (z — 1y) = 0.

Assuming that © is a real function, that is, a function with real coefficients, then
also ¢ (z+vy) will be a function with real coefficients, or say a real function of
@ +1y; the function x may be real or imaginary, but if imaginary, then the ¢ of the
coefficients does not change its sign in the passage from y¢ (z+ 1Y) to yd (@ —y).

In proof of the assumed theorem, imagine the equation ®=0 expressed as an
equation between x+ ¢y and @« —dy, or, supposing it solved in regard to x—1y, take
the form of it to be @ — vy =f(z+1%y): let u, be a function of n satisfying the equation
of differences wn4y=fu,; and let ¢(z+14y) be determined as a function of z+vy by
the elimination of n from the equations

| Z 4w =u,, ¢ (@+1y)=cosnr;
we thence have
Z— iy =fum = Un4a,
and consequently
¢ (z—1ay)=cos(n+1)m,
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that is,
¢ (@+1y)+ ¢ (2 —1y) =0,
viz. this equation is a transformation of the equation ® =0, and thus it appears that
the equation ® =0 can always be thrown into the last-mentioned form.
As an example, take the equation y=axz+0b: which, putting for a moment

E=a+y, n=0—1y, is

1

S (E—m) =}a(E+m)+,

that is,
14 Q 2b
(oS e £+ Al ?
we have therefore
1+ a 2b
“"+‘=i—a“”+m >
a solution of which is
E) %_+2) b,
{5 (z —-a a’

putting this = £ we have

1 b
i fagEg T <E+&>’
log

T—a

and thence

T b
¢& = cos 7/._i_alog<f+a),
log ——
i—a
where observe that, writing a+ ¢= Re’* and therefore a —¢ = Re~, we have

1

cos o= sinog=—————
V(a*+ 1)

o 0 A
V(a2 +1)’
or say cota=a, and then

14 a
1—a

= el iiopiilog Z—i_—z =1 (2a+ ),

whence
w

$ = cos o log (g4 ). =oosh 27 log (£+ 2),

a real function of &.

In verification of the equation ¢p&+ ¢n=0, we have

T b
: ¢n—cosmlog(7}+ ﬁ)’
Ei—a

53—2
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h
Sy b 1+ a 2b b z+a,
log(n+ > log(—— §+ 7—+ ) i (§+ )
=10g}}j+10g(5+2>,
and thence
¢ = cos Z_i_a’{log———{—log(f-i- )}
log 5=
=COS{7T+—*-+E g(f+c—bb>1, = — COS +alog(§+—),
log s —a W log ==

that is, ¢n=— ¢, or ¢&+ ¢n =0, the equation in question.

I remark, in passing, that the same equation y=ax+b might have been put in
the form ¢+ ¢y=0, viz assuming

b
Pz = cos T~ g - log (@ ( —a) X
then

b T b
¢>y—coslg log(aw+b—4 —a>=00510ga10ga<w—1——__—)
T_lloga+1 g o
1Oga{oga og(a: 1—a>
T b
= cos {W+@log (a:— 1—_—(;/)}

=—COS —— log log ( 13a>=—¢x,

= COS

that is, ¢z + ¢y =0.

If b=0, then
7 log @
loga ’

y=axz and ¢z =cos

in fact, repeating the proof for this particular case,

log ax

¢y—00371@—=cos (1+ ogw)__c()szr_lgg_w =—¢xz;

loga loga ’
that 1is,
oz + ¢y = 0.

Considering then (z, y) as the coordinates of a point on the curve ®=0, we
have, as above, . !
xé (@+1iy) + xb (@ —1y) =0,

where ¢ is a real function determined as above, and y is any real or imaginary odd
function. This being so, assume
&, * 1y, = exd @),
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then also
& — zyl = eX'f’ (w—un’
and consequently
a2+ 3/12 = exd @+iy)+xd @—iy) — 1,

that is, we have the circumference of the circle #?+y?—1=0 corresponding to the
given curve © =0.

Suppose that the curve ® =0 is a closed curve: and then writing

E+in=xo (z +1y),
and therefore :
§—mm=yx¢ (z—1y),
we thence have
28 =x¢ (z + 1Y) + xb (z —1y),
a real function of (z, y).

(1) Assume that it is possible to find y, such that & as defined by this last
equation shall be throughout the area of the curve ® =0 finite and continuous, except
only that in the neighbourhood of a given point, taken to be the point z=0, y=0,
it is =log o/(2* + ¥?).

(2) At the boundary of the area ®=0, £ is =0.
(8) Throughout the area, & satisfies the partial differential equation

L dE_

da?” dy
These conditions being satisfied, the equation
@, + vy, = et
that is,
o, + iy, = Xt

gives an orthomorphosis of the area ®=0 into the circle #?+y?—1=0, the point
#=0, y=0 corresponding to the centre of the circle; (2) and (3) are satisfied as above:
it remains only to satisfy (1), viz. the function x is determined not by any equation—
but only by this condition as to finiteness and continuity; and if it be thus determined,
then the foregoing equation =, + 4y, =ex*@¥ gives the required orthomorphosis.

For instance, let the curve ® =0 be the parabola »*=4(1—x), which may be
regarded as a closed curve bounding the infinite parabolic area. We have 2z=£+9,
2y = £—m, whence the equation is

e Gt~y
£ — 2y + 1 —8E— 8y + 16 =0,
whence Vé+ vn —2=0, or writing this in the form
 WE=D+(m-1)=0,

that is,
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we have ¢f=4+£E—1, and assuming that y can be found so that the condition as to
finiteness and continuity is satisfied, then the orthomorphosis is given by

z, + vy, =expy (WE—1), =expy W(z+iy)—1}.
Assuming J .
s o ke Yo i%ifii';ﬁ—_i—i’.,—iﬁ ;
which is obviously an odd function, we have
1 1-vexp( }imw)
exp 3 imrw 1 —vexp (— dimw)’

exp fyw =

1—expdimeo _t(l—texp}imw)

Texpiimw—1’  1+iexpyive
which is
=tan 7 (0 + 1),

and hence, for o writing /(2 + 4y) —1, we have
z + vy =expx W(z+1iy) —1}, =tan®}w /(2 + ).

This satisfies the required conditions as to finiteness and continuity; and in
particular, we have

& + i = log tan® } 7 +/(z + 1y),
so that, # and y being small,
. ! Ty : : ars ;
E+in=logTe @tiy), E—in=logT (@—1iy),
that 1is,
v A
& =log ;¢ V(@ + y°).
Hence we have the known result: the orthomorphosis of the parabola 2*=4(1 —2)
into the circle 2+ y2?—1=0 is given by the equation @, + vy, = tan*}m 8/(z + ).
Consider the ellipse, where a*—b*=1, or say
wﬂ 2
MLy My &
Hrey) 1(0-5)
I show, by a less direct process, how to express this equation in the required
form ¢&+ ¢y =0. In fact, writing

=1,

E=2+1y, n=z—1y,
the equation of the ellipse is the rationalised form of

i+ W1 —7?) =M {if+ /(1 - &)}
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To show that this is so, call for a moment the right-hand side , the equation is

VI = 7)) =Q —n,

hence

1—n2=0 =20y — 9

204 = Q2 —1,
or

) A S !
in'= 0 — & = M iE + V(1 — £9) + o 86 — V(1 = £,
i
= (A2 + ) i+ (22— 1) vt - &)

therefore

2in (M4 35) i€ = (2 = ) V(1= 8)

—4n2+4(M2+]%) Eﬂ'{"(M4+2+jﬁ> (—E)2=( BE 1114) <M‘_2+%>Ez"

that is,
1 \2
= 2 sl il
4 4E2+4(M2+1l12> E"? < Mz) s

or say

—52—172+<M2+%2> ‘g’n—i(M’—J}):O:

viz. substituting for & # their values, this is

26—y + (M4 ) @) =1 (0= ) =0,
that 1is, :
(i—g) o+ (W og) -1 (10— i) o
or finally, it is

= ot 1y,
H(r+ ) (- )

as it should be.

Starting then from the relation
i + /(1 =) =M i€ + V(1 - )},

and writing’

¢& = 2log I 7108 W€ + V(1 = &),
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we have

¢n = cos i—l:-g—MlogM"’ (i€ + V(1 - &)},
= 08 51— 21 g Llog M +log (i€ + /(1 - £)}]

= COo8 [71' o g 108‘ {@f V(1 - fﬂ)}tl

=—cos ;o rlog i+ V(1 = &)}, =—¢F,
that is, we have ‘
&+ ¢n =0,
as the required transformation of the equation of the ellipse

a? L€ y? L
Har+y) HH-g)

We hence derive the known formula for the orthomorphosis of the ellipse into the
circle &+ y*—1=0.
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