957.

ILLUSTRATIONS OF SYLOW'S THEOREMS ON GROUPS.

[From the Messenger of Mathematics, vol. xxiri. (1894), pp. 59-62.]

The theorems 1, 2, and 3 in the paper Sylow, "Théorèmes sur les groupes de Substitutions," Math. Ann. t. v. (1872), pp. 584-594, apply to groups in general, and not only to groups of substitutions. They are as follows:

Theorem 1. If n^{a} be the highest power of the prime number n which divides the order of a group G, this group contains a group g of the order n^{a} : if, moreover, $n^{\alpha} \nu$ is the order of the highest group contained in G, the operations whereof are permutable with the group g, then the order of G is of the form $n^{a} \nu(n k+1)$. (I write k for Sylow's p, since it is convenient to have p to denote a prime number; and for Sylow's "Substitutions" I write "Operations.")

Theorem 2. Everything being as in the preceding theorem, the group G contains precisely $n k+1$ distinct groups of the order n^{a}; and these are obtained by transforming any one of them by the operations of G, each group being given by $n^{a} \nu$ distinct transformations.

Theorem 3. If the order of a group is n^{a}, n being prime, then any operation 9 whatever of the group may be expressed by the formula

$$
\mathcal{I}=\theta_{0}{ }^{i} \theta_{1}{ }^{k} \theta_{2}^{l} \ldots \theta_{a-1}^{r},
$$

where

$$
\begin{aligned}
& \theta_{0}^{n}=1 \\
& \theta_{1}^{n}=\theta_{0}^{a} \\
& \theta_{2}{ }^{n}=\theta_{0}^{b} \theta_{1}^{c} \\
& \theta_{3}{ }^{n}=\theta_{0}{ }^{d} \theta_{1}^{e} \theta_{3}^{f}
\end{aligned}
$$

and where

$$
\begin{aligned}
& 9^{-1} \theta_{0} 9=1 \text {, } \\
& 9^{-1} \theta_{1} 9=\theta_{0}{ }^{8} \theta_{1} \text {, } \\
& 9^{-1} \theta_{2} 9=\theta_{0} \gamma \theta_{1}{ }^{\delta} \theta_{2} \text {, } \\
& \mathcal{A}^{-1} \theta_{3} 9=\theta_{0}{ }^{e} \theta_{1}{ }^{5} \theta_{2}{ }^{\eta} \theta_{3} \text {. } \\
& \text { ! }
\end{aligned}
$$

But at present I attend only to the theorems 1 and 2.
For instance, consider the group G of the order $n=6$,

$$
\text { 1, } \beta, \beta^{2}, \alpha, \alpha \beta, \alpha \beta^{2}\left(\alpha^{2}=1, \beta^{3}=1, \alpha \beta^{2}=\beta \alpha, \alpha \beta=\beta^{2} \alpha\right) .
$$

Here $n=2$ or 3 : if $n=2$, we have $N=n^{\alpha} \nu(n k+1)=2.1(2+1)$; if $n=3$, we have $N=n^{a} \nu(n k+1)=3 \cdot 2 \cdot 1$.

First, $n=2$; we should have a group g of the order 2 ; one such group is $(1, \alpha)$, and the only group the substitutions whereof are permutable with $(1, \alpha)$ is the group ($1, \alpha$) itself: for, taking any other operation of the group, for instance β, it is not true that $\beta(\gamma, \alpha)=(1, \alpha) \beta$; in fact, the left-hand is $(\beta, \beta \alpha)$ and the right-hand is $(\beta, \alpha \beta)$ or $\left(\beta, \beta^{2} \alpha\right)$: hence $n^{\alpha} \nu,=2 \nu,=2$, or ν is $=1$.

Hence also, by theorem 2, there should be 3 groups of the order 2 such as $(1, \alpha)$, viz. these are $(1, \alpha),(1, \alpha \beta),\left(1, \alpha \beta^{2}\right)$, derived from ($1, \alpha$) as follows :

$$
\begin{array}{lll}
1 & (1, \alpha) 1^{-1} & =(1, \alpha), \\
\alpha(1, \alpha) \alpha^{-1} & =(1, \alpha), \\
\beta(1, \alpha) \beta^{-1} & =(1, \alpha \beta), \\
\beta^{2}(1, \alpha) \beta^{-2} & =\left(1, \alpha \beta^{2}\right), \\
\alpha \beta(1, \alpha)(\alpha \beta)^{-1} & =\left(1, \alpha \beta^{2}\right), \\
\alpha \beta^{2}(1, \alpha) \cdot\left(\alpha \beta^{2}\right)^{-2} & =(1, \alpha \beta),
\end{array}
$$

since $\beta^{-1}=\beta^{2}$, and therefore the second term is $\beta \alpha \beta^{2}=\alpha \beta^{2} \cdot \beta^{2}=\alpha \beta$,

$$
\begin{array}{llll}
" \beta^{-2}=\beta, & " & " & \beta^{2} \alpha \beta=\alpha \beta \cdot \beta=\alpha \beta^{2}, \\
" & (\alpha \beta)^{-1}=\alpha \beta, & " & " \\
\alpha \beta \alpha \alpha \beta=\alpha \beta \cdot \beta=\alpha \beta^{2}, \\
" & \left(\alpha \beta^{2}\right)^{-1}=\alpha \beta^{2}, & " & "
\end{array} \begin{aligned}
& \alpha \beta^{2} \alpha \alpha \beta^{2}=\alpha \beta^{2} \cdot \beta^{2}=\alpha \beta ;
\end{aligned}
$$

viz. the derivatives are $(1, \alpha),(1, \alpha \beta),\left(1, \alpha \beta^{2}\right)$, each twice.
Secondly, $n=3$; there should be here a group of the order 3, viz. this is $\left(1, \beta, \beta^{2}\right)$. The group, the substitutions whereof are permutable with ($1, \beta, \beta^{2}$), is the entire group ($1, \beta, \beta^{2}, \alpha, \alpha \beta, \alpha \beta^{2}$); in fact, taking any substitution hereof, for instance α, we have $\alpha\left(1, \beta, \beta^{2}\right)=\left(1, \beta, \beta^{2}\right) \alpha$, viz. the left-hand side is $\left(\alpha, \alpha \beta, \alpha \beta^{2}\right)$, and the right-hand side is $\left(\alpha, \beta \alpha, \beta^{2} \alpha\right),=\left(\alpha, \alpha \beta^{2}, \alpha \beta\right)$, which is the left-hand side, the change of order being immaterial; this is the meaning of the expression used, "the operations whereof are permutable with the group g." Hence, we have $n^{a} \nu,=3 \nu,=6$, or $\nu=2$; and $67-2$
thence also $n k+1,=3 k+1,=1$, viz. $k=0$. There is thus only a single group of the order 3 , viz. the group $\left(1, \beta, \beta^{2}\right)$.

As another instance, I take the group of the order 12 formed by the positive substitutions of four letters, viz. these are

$$
\begin{array}{rr}
1, & a b \cdot c d, \\
a b c, \\
a c \cdot b d, & a c b, \\
a d . b c, & a b d, \\
& a d b, \\
& a c d, \\
& a d c, \\
& b c d, \\
& b d c .
\end{array}
$$

Here, taking $n=2$, we have $N=n^{a} \nu(n k+1)=2^{2} .3 .1$; there is a group g of the order 4, viz. this is

$$
(1, a b . c d, a c . b d, a d . b c)
$$

and the greatest group, the substitutions whereof are permutable with this group g, is the entire group of the order 12; thus, considering any substitution thereof, for instance $a b c$, we have

$$
\left\{\begin{array}{l}
1 \\
a b \cdot c d \\
a c \cdot b d \\
a d \cdot b c
\end{array}\right\}=\left\{\begin{array}{l}
1 \\
a b \cdot c d \\
a c \cdot b d \\
a d \cdot b c
\end{array}\right\}
$$

viz. the left-hand is $\left\{\begin{array}{l}a b c \\ a c d \\ b d c \\ b d c \\ a d b\end{array}\right\}$, the right-hand is $\left\{\begin{array}{l}a b c \\ b d c \\ a d b \\ a d b \\ a c d\end{array}\right\} ;$
hence $n^{a} \nu,=4 \nu,=12$ or $\nu=3$; whence also $n k+1,=2 k+1,=1$: and thus the foregoing group g is the only group of the order 4 .

Similarly, taking $\nu=3$, we have $N=n^{\alpha} \nu(n k+1),=3.1$.4. There is a group g of the order 3 , say $(1, a b c, a c b)$; the greatest group, the substitutions whereof are permutable with g, is the group g itself, viz. we have $n^{a} \nu,=3 \nu,=3$, or $\nu=1$; and then $n k+1,=3 k+1,=4$: there are thus 4 groups of the order 3, viz. these are

$$
(1, a b c, a c b),(1, a b d, a d b),(1, a c d, a d c),(1, b c d, b d c)
$$

Reverting to the before-mentioned group of the order 6 , this not only contains each of the groups $(1, \alpha),(1, \alpha \beta),\left(1, \alpha \beta^{2}\right)$ of order 2 , and the group $\left(1, \beta, \beta^{2}\right)$ of
order 3; but it is the permutable product of a group of order 2 by a group of order 3, say it is

$$
G=(1, \alpha)\left(1, \beta, \beta^{2}\right),=\left(1, \beta, \beta^{2}\right)(1, \alpha) .
$$

A group, which is thus a permutable product of two factors, is said to be a true product; and when it cannot be thus expressed as a permutable product of two factors, it is prime or simple. A group, the order of which is equal to a prime number p (the cyclical group of the order p) is simple; but the order may be a composite number and yet the group be simple-it was remarked by Galois, Liouville, t. XI. (1865), p. 409, that the order of the lowest simple group of composite order is $60,=2^{2} .3 .5$, and it has been recently shown, Hölder, "Die einfachen Gruppen im ersten und zweiten Hundert der Ordnungszahlen," Math. Ann. t. xl. (1892), pp. $55-88$, that the only other composite order of a simple group in the first 200 numbers is 168. Moreover, in the paper Cole, "Simple groups from order 201 to order 500," Amer. Math. Jour. t. xiv. (1892), pp. 378-388, it is shown that within these limits the only numbers which can give a simple group or groups are 360 and 432. I take the opportunity of referring to two other important papers, Young, "On the determination of groups whose order is a power of a prime," Amer. Math. Jour. t. xv. (1893), pp. 124-178, and Cole and Glover, "On groups whose orders are products of three prime factors," $i b$. pp. 191-220.

