956.

ON RICHELOT'S INTEGRAL OF THE DIFFERENTIAL EQUATION

$$
\frac{d x}{\sqrt{X}}+\frac{d y}{\sqrt{Y}}=0
$$

[From the Messenger of Mathematics, vol. xxiII. (1894), pp. 42-47.]
In the Memoir "Einige neue Integralgleichungen does Jacobischen Systems Differentialgleichungen," Crelle, t. xxv. (1843), pp. 97-118, Richelot, working with the more general problem of a system of $n-1$ differential equations between n variables, obtains a result which in the particular case $n=2$ (that is, for the differential equation

$$
\frac{d x}{\sqrt{ } X}+\frac{d y}{\sqrt{ } Y}=0, \quad X=a+b x+c x^{2}+d x^{3}+e x^{4}
$$

and Y the same function of y), is in effect as follows: an integral is

$$
\left\{\frac{\sqrt{ } X(\theta-y)-\sqrt{ } Y(\theta-x)}{x-y}\right\}^{2}=\square(\theta-x)(\theta-y)+\Theta+e(\theta-x)^{2}(\theta-y)^{2}
$$

where \square , θ are arbitrary constants, and Θ denotes the quartic function

$$
a+b \theta+c \theta^{2}+d \theta^{3}+e \theta^{4} ;
$$

viz. this is theorem 3, p. 107 (l.c.), taking therein $n=2$, and writing θ, \square for Richelot's α and const.

The peculiarity is that the integral contains apparently two arbitrary constants, and it is very interesting to show how these really reduce themselves to a single arbitrary constant.

Observe that, on the right-hand side, there are terms in θ^{4}, θ^{3} whereas no such terms present themselves on the left-hand side. But by changing the constant \square,
we can get rid of these terms, and so bring each side to contain only terms in $\theta^{2}, \theta, 1$; viz. writing

$$
\square=-2 e \theta^{2}-d \theta-c+C,
$$

where C is a new arbitrary constant, the equation becomes

$$
\begin{aligned}
&\left\{\frac{\sqrt{ } X(\theta-y)-\sqrt{ } Y(\theta-x)}{x-y}\right\}^{2}= \theta^{2}\left[e(x+y)^{2}+d(x+y)+C\right. \\
&+\theta[-2 e x y(x+y)-d x y-(C-c)(x+y)+b] \\
&+\left[e x^{2} y^{2}\right. \\
&+(C-c) x y+a]
\end{aligned}
$$

which still contains the two arbitrary constants θ, C.
But this gives the three equations

$$
\begin{aligned}
\frac{(\sqrt{ } X-\sqrt{ } Y)^{2}}{(x-y)^{2}} & =e(x+y)^{2}+d(x+y)+C \\
-2 \frac{(\sqrt{ } X-\sqrt{ } Y)(y \sqrt{ } X-x \sqrt{ } Y)}{(x-y)^{2}} & =-2 e x y(x+y)-d x y-(C-c)(x+y)+b, \\
\frac{(y \sqrt{ } X-x \sqrt{ } Y)^{2}}{(x-y)^{2}} & =e x^{2} y^{2}+(C-c) x y+a
\end{aligned}
$$

The first of these is Lagrange's integral containing the arbitrary constant C; and it is necessary that the three equations shall be one and the same equation; viz. the second and third equations must be each of them a mere transformation of the first, equation.

It is easy to verify that this is so. Starting from the first equation, we require, first the value of

$$
-2 \frac{(\sqrt{ } X-\sqrt{ } Y)(y \sqrt{ } X-x \sqrt{ } Y)}{(x-y)^{2}},=\Omega
$$

for a moment.
We form a rational combination, or combination without any term in $\sqrt{ } X Y$; this is $(x+y) \frac{(\sqrt{ } X-\sqrt{ } Y)^{2}}{(x-y)^{2}}-2 \frac{(\sqrt{ } X-\sqrt{ } Y)(y \sqrt{ } X-x \sqrt{ } Y)}{(x-y)^{2}}=e(x+y)^{3}+d(x+y)^{2}+C(x+y)+\Omega$, where the left-hand side is

$$
\frac{(x-y)(X-Y)}{(x-y)^{2}},=\frac{X-Y}{x-y}
$$

which is

$$
=e\left(x^{3}+x^{2} y+x y^{2}+y^{3}\right)+d\left(x^{2}+x y+y^{2}\right)+c(x+y)+b,
$$

and we thence have for

$$
\Omega,=-2 \frac{(\sqrt{ } X-\sqrt{ } Y)(y \sqrt{ } X-x \sqrt{ } Y)}{(x-y)^{2}}
$$

the value given by the second equation.

Secondly, starting again from the first equation, and proceeding in like manner to find the value of

$$
\frac{(y \sqrt{ } X-x \sqrt{ } Y)^{2}}{(x-y)^{2}},=\Omega
$$

for a moment, we form a rational combination

$$
-x y \frac{(\sqrt{ } X-\sqrt{ } Y)^{2}}{(x-y)^{2}}+\frac{(y \sqrt{ } X-x \sqrt{ } Y)^{2}}{(x-y)^{2}}=-e x y(x+y)^{2}-d x y(x+y)-C x y+\Omega
$$

where the left-hand side is

$$
\frac{(x-y)(-y X+x Y)}{(x-y)^{2}},=\frac{-y X+x Y}{x-y}
$$

which is

$$
=-e x y\left(x^{2}+x y+y^{2}\right)-d x y(x+y)-c x y+a ;
$$

and we thence have for

$$
\Omega,=\frac{(y \sqrt{ } X-x \sqrt{ } Y)^{2}}{(x-y)^{2}}
$$

the value given by the third equation.
In conclusion, I give what is in effect the process by which Richelot obtained his integral. The integral is $v=\square$, where

$$
v=\frac{-\Theta}{\theta-x \cdot \theta-y}-e(\theta-x \cdot \theta-y)+(\theta-x . \theta-y) \Omega^{2}
$$

if, for shortness,

$$
\Omega=\frac{\sqrt{ } X}{\theta-x \cdot x-y}+\frac{\sqrt{ } Y}{\theta-y \cdot y-x}
$$

and it is required thence to show that

$$
\frac{d x}{\sqrt{ } X}+\frac{d y}{\sqrt{ } Y}=0
$$

or, what is the same thing, to show that v satisfies the partial differential equation

$$
\sqrt{ } X \frac{d v}{d x}-\sqrt{ } Y \frac{d v}{d y}=0
$$

We have

$$
\begin{aligned}
& \frac{d v}{d x}=\frac{-\Theta}{(\theta-x)^{2}(\theta-y)}+e(\theta-y)-(\theta-y) \Omega^{2}+2(\theta-x)(\theta-y) \Omega \frac{d \Omega}{d x} \\
& \frac{d v}{d y}=\frac{-\Theta}{(\theta-x)(\theta-y)^{2}}+e(\theta-x)-(\theta-x) \Omega^{2}+2(\theta-x)(\theta-y) \Omega \frac{d \Omega}{d y}
\end{aligned}
$$

and thence, attending to the value of Ω,

$$
\begin{aligned}
\sqrt{ } X \frac{d v}{d x}-\sqrt{ } Y \frac{d v}{d y}=\frac{-\Theta}{\theta-x \cdot \theta-y}(x-y) \Omega & +\left(e-\Omega^{2}\right)(\theta-x)(\theta-y)(x-y) \Omega \\
& +2(\theta-x)(\theta-y) \Omega\left(\sqrt{ } X \frac{d \Omega}{d x}-\sqrt{ } Y^{d \Omega} \frac{d}{d y}\right)
\end{aligned}
$$

or say

$$
-\frac{\left(\sqrt{ } X \frac{d v}{d x}-\sqrt{ } Y \frac{d v}{d y}\right)}{(\theta-x)(\theta-y)(x-y) \Omega}=\frac{\Theta}{(\theta-x)^{2}(\theta-y)^{2}}-e+\Omega^{2}-\frac{2}{x-y}\left(\sqrt{ } X \frac{d \Omega}{d x}-\sqrt{ } Y \frac{d \Omega}{d y}\right)
$$

and it is consequently to be shown that the function on the right-hand side is $=0$. We have

$$
\begin{aligned}
& \sqrt{ } X \frac{d \Omega}{d x}=\frac{\frac{1}{2} X^{\prime}}{(\theta-x)(x-y)}+\frac{X}{(\theta-x)^{2}(x-y)}-\frac{X}{(\theta-x)(x-y)^{2}}+\frac{\sqrt{ }(X Y)}{(\theta-y)(x-y)^{2}} \\
& \sqrt{ } Y \frac{d \Omega}{d y}=\frac{\frac{1}{2} Y^{\prime}}{(\theta-y)(y-x)}+\frac{Y}{(\theta-y)^{2}(y-x)}-\frac{Y}{(\theta-y)(x-y)^{2}}+\frac{\sqrt{ }(X Y)}{(\theta-x)(x-y)^{2}}
\end{aligned}
$$

and thence

$$
\begin{aligned}
\sqrt{ } X \frac{d \Omega}{d x}-\sqrt{ } Y \frac{d \Omega}{d y}= & \frac{\frac{1}{2} X^{\prime}}{(\theta-x)(x-y)}-\frac{\frac{1}{2} Y^{\prime}}{(\theta-y)(y-x)} \\
& +\left\{\frac{X}{(\theta-x)^{2}}+\frac{Y}{(\theta-y)^{2}}\right\} \frac{1}{x-y} \\
& -\left(\frac{X}{\theta-x}-\frac{Y}{\theta-y}\right) \frac{1}{(x-y)^{2}} \\
& -\frac{\sqrt{ }(X Y)}{(\theta-x)(\theta-y)(x-y)}
\end{aligned}
$$

Multiplying by $\frac{2}{x-y}$, we may put the result in the form

$$
\begin{aligned}
\frac{2}{x-y}\left(\sqrt{ } X \frac{d \Omega}{d x}-\sqrt{ } Y \frac{d \Omega}{d y}\right)= & \frac{1}{\theta-x} \frac{d}{d x} \frac{X}{(x-y)^{2}}+\frac{1}{\theta-y} \frac{d}{d y} \frac{Y}{(x-y)^{2}} \\
& +\frac{2 X}{(\theta-x)^{2}(x-y)^{2}}+\frac{2 Y}{(\theta-x)^{2}(x-y)^{2}}-\frac{2 \sqrt{ }(X Y)}{(\theta-x)(\theta-y)(x-y)^{2}}
\end{aligned}
$$

and the equation to be verified thus is

$$
\begin{aligned}
& 0=\frac{\Theta}{(\theta-x)^{2}(\theta-y)^{2}}-e+\Omega^{2} \\
&-\frac{1}{\theta-x} \frac{d}{d x} \frac{X}{(x-y)^{2}}-\frac{2 X}{(\theta-x)^{2}(x-y)^{2}} \\
&-\frac{1}{\theta-y} \frac{d}{d y} \frac{Y}{(x-y)^{2}}-\frac{2 Y}{(\theta-x)^{2}(x-y)^{2}} \\
&+\frac{2 \sqrt{ }(X Y)}{(\theta-x)(\theta-y)(x-y)^{2}}
\end{aligned}
$$

But decomposing the first term into simple fractions, we have

$$
\begin{aligned}
\frac{\Theta}{(\theta-x)^{2}(\theta-y)^{2}}= & +e \\
& +\frac{1}{\theta-x} \frac{d}{d x} \frac{X}{(x-y)^{2}}+\frac{X}{(\theta-x)^{2}(x-y)^{2}} \\
& +\frac{1}{\theta-y} \frac{d}{d y} \frac{Y}{(x-y)^{2}}+\frac{Y}{(\theta-y)^{2}(x-y)^{2}}
\end{aligned}
$$

Also for the third term, we have

$$
\begin{aligned}
\Omega^{2}= & \frac{X}{(\theta-x)^{2}(x-y)^{2}} \\
& +\frac{Y}{(\theta-y)^{2}(x-y)^{2}} \\
& -\frac{2 \sqrt{ }(X Y)}{(\theta-x)(\theta-y)(x-y)^{2}},
\end{aligned}
$$

and substituting these values the several terms destroy each other, so that the righthand side is $=0$, as it should be.

