CHAPTER V. ‘

RATIONAL ALGEBRAIC FRACTIONAL FORMS.

127. Integration of

1 1

2’ —a?

@ >a)

Either of these forms should be thrown into Partial
Fractions, which can be done by inspection.

ja:—l—g-vxz=§1& <aiw+a1z> da

vz [log(a+z)—log (a—a;)]-——— lo, a,i-:
or e tanh—lg (z<a).
jzch;ﬁ:il&j(zla w+a>dz
=§%[log(m—a)—log(x+a)]=2t og :;Z
or = —(%/ coth—1 '3 or ——a—l tanh-1 C—; (z>a).

The Partial Fractions are so simple that the results are not
usually committed to memory.

128. These inverse hyperbolic forms should be compared
with
42 a2
j dx ltan-l:f:lcos—l—r a ‘_1 Va +2*
a a

== gec™!
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The three results are:

. (ﬁ—‘il%,‘z: %'tan—lg or —(%’cot"1 2!
. a%:iﬁ= étanh—lg (z< a),
. z—;é%: —%coth‘lg (z>a),

or —éta,nh—1 2.

129. Extension of above rule.

In the same way, a and 8 being real,

R SRS (e L
VPFETa~ B B
dz ) z+a B+(z+a)
——— e T hl e l
Vo= gt e gplegTr
(z+a<p)
[ dz 5 a%+a
16 +a)2 ,32 Bcoth [3
;| o] : 1 z+a—f3
or ——Btanh 1x+a i.e. %logz——+a+,3
(z+a> ).
130. Integration of
yif o
_jaxz+bw+c'

Since ax®+bz+ ¢ can alWays be written as

b dac—b? :
[<m+2a) +—MTaz— , e of form a[(z+a)?+ B2,
or as
3 1t
I:(x'*"’a,) _Y—dac " tac]’ i.e. of form a[(z+a)*—B%];

taking the first or the second according as b*<4ac or b*>dac
the rules of the former article apply.
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Thus
131. CasE L b2 <4ac.
I_I dx _IJ‘ dx
“Ja2+bz+ec a b\% dac—b?
(x+§;’> T
A it 2az+b
"~ Jiac— b2 Vaac—b?
2 2ax+b ;
== e t—l
i Jhaoc—B " Jaac—bt
2 1J4-7~/aa¥+bz+c
NS = , ete.
= Jrao—B . Jhae—t ¢
132, Case: TI b2 > dac.
e 1 dz
jaxz+bz+c a ( +£ 2 bP—duc
" 2a. 4q®
i 1 i 2az+b—b2—4dac
JF—4ac B 2aa+b+Jii—4a
2 2ax+b
== —————coth~! ———
i b*—4ac o Vb —4ac
2 J‘baJax2+bw+c
or —m cosech—! TR

which'is a real form if 2ax+b>/b*—4dac,

< 11 &
i " &fb*—zluc_( +b)2
4a? S e

1 Vb2 —dac+(2az+b)
Vb2 —dac ngZ 4ac—(2ax+b)’

;i 2 2ax+b
R b v b i
e Vb:—4dac J*—tac

which is a real form if 2ax+ b < V/b*—4ac.

=ete.,
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133. Of these several forms the real one is to be chosen in
each numerical case. The general forms are equivalent, except
that they differ by a constant which may be unreal.

134. Another Method.
As the factors in the second case are real, say
a(z—a,)(2—,),
the usual proceeding is to write the work as follows without
the formal completing of the square in the denominator :

j de 1 dx
am2+bx+c*uj(:c-—zl)(a:——x2)

i 1 j‘ dx ¢ 1 “' dz
T alm,—zy) ) z—2, ' a(z;—=)) z—1,

log (x—z,)+ log (¢ —,)

R a(z,—,) a(zy— )
1 T—x,

- 1
a(z—a;) ©o—1,

135. Other forms of the above results.

Other forms of these results may be exhibited. For instance,
taking R =aa?+bz+c, and dac—b?=4a%?= —4a%'?;
then

2az+b . 2az+b ! d
et sl g PR R daal) =sin-!(x ¥
2 tan i o ¢ e gl 9o T 7 c) sin (x 7 log R)
and
2ax+b 3 2ax+b 3 »d
-1 29870 _ginh-1( =« sl el -1
2 tanh g+ oy sinh ( T c) sinh (x T log R)

whence I= é%c sin—? (x dixlog R) or 2}—‘—‘\, sinh—! <x' (—%log R)

the real form to be chosen.

136. Integrals of expressions of the form

paxq L, PREg
ax’+bx+c’ ot O TR

can be obtained at once by throwing pz+ ¢ into the form
Pr+q=AR+pu, ie=A(20z+b)+u,
where ), u are constants to be found ;
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for then
[ px+q OEAR s 1 IR’ dw
_jax?+bw+cdz_.“ o dz=2\ dz+’“IR

and the second member of the right side has been discussed.

137. fois transformation is one very frequently required.
It may be performed either by inspection, or by comparing
coefficients.

(i) By inspection,
wb cf
pr+q= % (2az+ b)+(q 2a>‘
(ii) By comparing coefficients,

2ar=1p,
A +u=gq,

} giving A= — and,u, q—p—b

Thus

pr+q _BI 2az+b pb dx
ux2+bz+cdz_2a am"f+bx+cdx+<q_2a> ar*+br+c

P pb dz
T 0y log (ax2+bx+c)+(q 2a>_\.ax‘-’+bz+c'

It is essential that the numerator of the first partial fraction
shall be the differential coefficient of the demominator, and
that the 2’s of the numerator of the given fraction are thereby
exhausted.

138. Ex. 1. jx, +91 2;’: - f 51(;;(6“’)”:;2)
="”f2+(x+e)f; xZﬁ;xlf—ssd”
f/lét 'lxjée—;—log(.z’+l2x+38).
i 353;x7fx= do= 1% 9ac_(z:ﬁrx)

it 10" ' 111)
/( Ed T 35+rd'z

=§log(7 ——x)+§10g(5+x).

WWW.rcin ,;’)i’g_pl



RATIONAL ALGEBRAIC FRACTIONAL FORMS. 143

This difference is to be noted in such examples as the two preceding ;
in the first the form of the result is real for all real values of z ;

in the second the form given is only real if x lies between —5 and +7.
For values of # > 7 we should write it

Elog (‘1.'—’7)+Eloo (z+5),
3 SIS
and for values of # < —5,
Plog (7-2)+ 5 log (~5-2).

These three forms differ by unreal constants.

ExAMPLES.
lf zdx 7 dz
22+ 22+3 'f(ax+b)”+(cx+d)"
2[ xdx 8 dzx
22+ 2 +1" * J(az+ b —(cr+d)*
3f z+1 9. zdx
1;’+4z'+5 f(at*+b)’+(cx’+d)’
(x+1)dx 10 zdx
3+22 -2 'f(a.r’+b)’+(cx’+d)'+(e.’v‘+f)’
dx
(v—1)*dx 0
* fx’+2x+2' 11, .r(ax+£) H c.v+% )
222 +3r+4 e*dx
6 [S it de 12, fe_.,+2e,+3

NoTE oN PARTIAL FRACTIONS.

139. In the author's Differential Calculus (p. 72) a Note
was inserted on the methods to be pursued in the case of
finding the n'* Differential Coefficient of an algebraical fraction
when it was necessary to resolve the fraction into its simple
or partial fractions. It is now necessary to repeat this Note,
with some additions and alterations, as success in the integra-
tion of complicated rational algebraic fractions will depend
upon the ability of the student to obtain the equivalent partial
fractions with facility. Moreover, many subsequent articles
will depend upon the general theory.

140. Let f ((x)) be the fraction in its lowest terms which is

to be resolved into its simple component or partial fractions,
f(x) and ¢(z) being supposed rational integral algebraic
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functions of z, the coefficients being real and, unless the
contrary be stated, rational.

Then if the degree of f(z) be not already less than the degree
f(@) .
#(@)

of ¢(x), we can, by ordinary division, express “—— in the form

n n—1 X(w)
g™+ a, 2"+ . a2 $(@)’
where a‘,a:"+a1m"'1+ .+a, is the quotient, and y(z) is the
remainder, of lower degree than ¢(x).
Hence the integration of

@) g, o G, x(@)
J‘;—(—x—)- 18 :T+al—+...+a @+ ¢(w)dx

and we only have to attend to I;Em;dw
Hence we may confine our attention to the case when f(z)
is of lower degree than ¢().
Also we may, without loss of generality, consider the co-
efficient of the highest power of # in ¢(z) to be unity.
141. It is proved in Theory of Equations that if ¢(z)=0
be a rational algebraical equation of degree n,
(1) there are m roots, real or imaginary,
(2) that imaginary roots occur in pairs, a 3, y=+,
ete.
Any of these roots may be repeated.
Then the general form of ¢ is of the nature
= (z—a)(@—b)*{(z—a)*+ B*H{(z—y)*+4%}9,
where we have taken the case of
(1) areal linear factor occurring once only ;
(2) a real linear factor occurring p times;
(8) a parr of unreal factors, each occurring once ;
(4) a pair of unreal factors, each occurring q times.
Any other factors which there may be in ¢ must be of one
or other of these categories.
We consider these four cases separately.

And as we are going to suppose that qf% is a fraction in

its lowest terms, none of the factors described above will be
factors of f(z) also.
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142. 1. To obtain the partial fraction corresponding to the
factor £ —a occurring once only.

Let ¢(x)=(z—a)y(x) for short. Then (z) does not con-
tain ¢—a as a factor, and r(a) does not vanish.

(m {E;’\)b(m) w—a+\);r((?)’ an assumption justifiable if
we succeed in finding 4, supposed independent of .

Then Sl@) (w) =4+ (m)(w —a) is an identity and true for

¥ () ¥ (x)
all values of z.
Hence putting x=a, \';(( ))
Therefore f(@) f(a) X(-”’)

@)@ @E=a)(@ @)
Hence our rule to find 4 is,
“ Write a for « in every portion of the fraction — L)
except in the fuctor (x—-a) itself” @—a)y (@)
And this process may be applied to every partial fraction
corresponding to a factor of ¢(z), which only occurs once.
Moreover, since

p(@)=(@—a) (@), ¢'@)=(@—a)y' @)+ (),
and /() is finite, .. ¢'(a)=vY(a).

J(a@)
¢ @)

Hence we may also write 4 in the form

X
143, Ex. 1. G-De-D@=3)
1 e 2
C(@-1)(1-2)(1-3) " (2-1)(z-2)(2-3)
3
*BEINE-2)@-3)
1 2 3

Z@-1) 7-272(x-3)
Thus, here, three partial fractions must occur. No others can occur.
For if there were a fourth fraction %&’ say, the denominator of their

sum must be (z —1)(z - 2)(z — 3) (# — 8), which is not so.
Hence we have obtained the whole expression,
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at ’

Ex. 2. P o Here the numerator not being of lower degree
than the denominator, we must divide by the denominator. The result
will then be expressible as

73 A B
(z—a)(z=0) x+(a+b)+ R

where A and B are to be found.

Since i=(a: a)[x+a+b]+A+ 4 (x a), putting r=a we get
A L a.nd similarl B—-—ﬂ

Ta-b’ et oo "

‘We may here stop to remark that 4 and B can be written down by the
rule “Put #=a everywhere except in x—a itself” just as well in the

" 2 z

Eoaiaoh as in (x—a)(z—b)_(x+a+b)'

This remark vs general, and will usually save much trouble.

7 a? [ 1

e (x—a)(x—b)"x+(a+b) -ba-— a+b a z-b

Ex. 3. Let the roots of 2"=1 be a, 3, 7, ... and F(z) a rational integral
algebraic expression of degree lower than n; then, by the second rule
of Art. 142,

original expr

F(z) _F(a) 1 FB) 1 o
2"=1 nalz—a B iz-fB "
(B2 SREHD T Sotiy
z— ﬁ SLn e
where the summation is for all the roots.
This may be also further expressed as

E (z+a)—(z— a)F(o.),

Zr—a
or an (@t S F().

If F(x) be written as Aa™+ Bz™+...4+ K (m < n), then, since the
sum of the »** powers of the a* roots of unity is zero when 0 <r<m,
we have

EF(a)—nK—nF(O) ¢
F(@) 1 qofla)) s,x+o. i
X x"—l_ﬁzx d; 9 o F(O)
By taking F'(z) =2 and putting z=e%6, deduce that
b L (.n—2)x= e '_‘i: l)smgr—ﬂ-mt<r —Tl).
sin nz Bt n 7
[Mara. Trie., Parr I, 1919.]

144. II. Next suppose the factor (x —a)in the denominator to
be repeated 7 times and no more, so that we may write

¢(z)=(z—a) - (z) where yr(a) does not vanish.

Put z—a=y.

——
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Then 1@ _1 flaty)
@) ¥ Y(atyy

any means in ascending powers of y,
Sl A0+A1y+A2y + ..
?/ By+ B y+ B,y + ..

or expanding each function by

Divide out thus:
By+ By +Byy’+ ...) Ao+ A,y + 4,9°+ ... (Co+ O,y + Oy + ...
ete.,
and let the division be continued wntil y* is a factor of the
remainder.
Let the remainder be y"x(y).

Hence
J(=) C, C._ x(®)
e
i C, C, 0,_ (x— a)
_(z—a)'+($—(:)'“1+(z—a)"2+ T +x\//(z)

Hence the partial fractions corresponding to (z—a)" are
determined by a “long division” sum.

! z!
145. Ex. (i). Take (x_——lm Put 2-1=y.
A T +y)’
Then the fraction 3/3 ity ]
2+y)1+29+9*(3+3y+19° -3 g%
1+dy
Sy+y*
fy+3y?
}‘yﬂ
¥+
—3 !
% 1 o
Therefore the fraction= 5 + I iy 8 8@+

i s Aoy 1 L
=3@-1)¢ T d@=1p T 8@=1) B@+l)

146. Remarks.
(1) In practice it is desirable to perform the division by the ¢ detached
coefficients” method, and the above work appears as

241)14+2+1(3+3+3
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(2) In cases where there is but one other linear or quadratic factor in the
denominator ¢ (z) and that not a repeated one, this process will finish the
whole operation.

2422

Ex. (ii). @)@+

The fraction=

Put 2=1+y.

13+4y+y*
P2+ +y*
2+2+1)3+4+1(3+3—-2+3-%
3+3+3
i-3

I T W TR L
zj R T R T i E e
3 1 3 1 1 12-3
=3@—1F T 2@=1) d@-1p 2@-1) B@-1)T81ita"
and is then ready for integration.

Hence the fraction=

Ex. (iii). W"(‘m. In such a case we find the three partial

fractions corresponding to #—1, and then, either from the remainder or
beginning over again, the two corresponding to (z—2)*%

147. Instead of eipanding out fla+y) and Y(a+y)
separately, as shown above (which is however usually best in
practical cases), we may expand \%%-—:_—yy—)) as though it were
F(a+y) by Taylor’s theorem, or otherwise, which shows a
compact theoretical form for the several coefficients, Uy, C),*
C,, ..., of Art. 144.

Thus

fla+y) _ fla) fa) y a(fa
v~y va(a)rt o+ foga ()t

So that p

_ fla) _d(fa 1 &2 /fa
=gy G=dalpe) O-paa(fe)
-1
L 1"y ( fa,

L—_— da"" ‘l’a’
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148. Nothing has been assumed so far as to the reality of
the several roots, @, b, etc., of ¢(z)=0. Hence the rules
obtained equally apply for unreal or for real roots.

Tthen 4 (2= @—ap(e—bra—oy...,
whether a, b, ¢ be real or unreal, so that p+gq+r+...=

the degree of ¢(z), we obtain, by methods explained above,
a result of form

A 4,
f(x) 'AO + Al)p 1.*. 2‘) 2-I--{*- =

¢(:¢:) (z—a) " (z—a)f' " (z—a)"" z—a
B B, By B..

to—tpt ettt t Yot

00 C 0 Or—l

+(a:—-c)'+(x o) +(a; cjrea yhas +a:—c

deioe s

and imagining these fractions to be reduced to a common

denominator and added up to get back to the form f (( ;, the

coefficient of 2" is obviously 4,_,+By_+C,_+ ...
The integral will be

[£0,
() & . g

B Ty | v R L (S
B, B, B,.,

S E=DE=bF =G0 z—b Pealoge—d)
Co C'l C’r_z

B D a PR T g T Yok R 0),

ete.,

t.e. in general partly algebraic and partly logarithmic.

149. The conditions necessary that the integrwl should be
purely algebraic are clearly
Ap—l = D1 FUp1 T eee = 0»
and in number the same as the number of different roots of
¢(xz)=0. But the coefficient of z"~! in f(z)/¢(z) has been seen

to be
4, ,+B 40 +...,

and this must vanish when the above conditions are satisfied.
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Hence the index of the highest power of z in the numerator
must be at least 2 less than that of the highest power of z
in the denominator.

If then the number of different roots of ¢(z)=0, viz
a, b, ¢ ..., bek, say; and if the degree of f(z) be lower by 2
than the degree of ¢(z), we must necessarily have

A R T

and one of the & conditions, 4, =B, ;=...=0, must be in-
cluded in the others, and there are then only k—1 independent

conditions to be satisfied for If (@) 7= 0 to be entirely algebraic

150. III. Consider next the case of an irreducible quadratic
factor, @— a8,
not repeated, occurring in the denominator, ¢ (), and let
$@) = (@ o+ B @)

f(@) 2.e. of

Then the partial fractions of =% @)

f(z)
(@—a—PB)@—a+B)Y ()

corresponding to these unreal factors, are

Jfla+:B) 1 fla—iB) ]
(28) Y (at+B) x— a—x,B (—2B8)Yr(a—iB) z—a+3’
J(a+B)

or, separating out the real and unreal parts of m
a )

as P +.Q, these partial fractions are

P+Q , P-Q 2PG—a)—208
z—a—if3 w—a+f’ @—a)f'+5"
Ak Le+ M
which is of form G—af + B

o P A _flat) . fla—iB)
where P= 4[,/8\/;(a+t;3) ByYr(a—1B3) 1| which are both

o fla+B) e fla—B) real,
AL BY(a+B) * BYla—iPB)],
and L=2P, M=—2Pa—20QB.

and Q=—
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151. IV. Case of the factor (x— a)®+ (3% repeated » times.

Let $(@)=[@—a)+ B Y (a).
Then it will be possible to write
M 15 f(z) & P.z+Q,
9(@) [@—af'+8T V() [(@—a)*+BT
x-(%)

T o=+ BTV (@)
For this is equivalent to determining P, and @,, so that
Jf@)—(Pre+ @)V (2) = x(z)[ (z—a)*+ 7,
%.e. so that f(@)—(P,zx+ Q)Y (z)
contains z—a— 3 and z— a+ 3 as factors, and this will be
effected by taking P, and @, such that

flatd) _p . N s e
\l’(a+lB)_Pr(a+ 13)+Qr a'nd \l’(a_lﬁ) Pr( 118)+er
and if —f‘p((aa—_:_%, when separated into real and unreal parts,
becomes A +:B, then P,a+Q,=A4 and P,8=B,
2.6 P,=§ and Q,=A—B—él=ABEBa-

Thus P,, Q,, and therefore y, are determinate.
This being so, it is obvious that
Xr(x)
[(z—a)*+ BV (2)
can itself be expressed as
P iz+0,.. + Xr-1(2)
[(E—a)?+ 17" " [(@—a)f + B (o)
and by continued repetition of the argument we get finally that
i(f) e P,z+Q, P 12+ 0., i P, s2+Qr_s +
¢(@)  [@—af+B7 " [(z—a)’+BT " [(@—af+87T" "
Piz+Q, +X1(z)
(z—a)*+B% " ()
and the values of the r pairs of quantities,
B and @ o B i andh Ol sk Pyiand i O
are successively obtainable as described.
The general form of the result is thus established. But this
mode of finding the numerical value of the P’s and @'s is
laborious, except when 7 is small.

-+

+-
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152. It now appears that the general result of putting

';(( ; into partial fractions, where ¢ () is, say,

(z—a)(@—b)" (z*+ pa+ ) (2* +rz+s)"
the last two factors being irreducible to real linear factors,
and f(z) is any rational integral function of # of any degree,
will be of the form

{;(—)) =an integral algebraic quotient

A .
ti—a
B, B, B, B,
e b+(z b)2+(:c b)3+ +(z %
£ Pz+Q
2t +pr+q
Raz+ 8, R,z+8S, Ra+S, Rax+ 8.,
N E T R PR ) S ———

This is the general typical form of the result. If other
factors occur in ¢ (z), other partial fractions will occur in the
result. But all others will be of the types exhibited.

153. The integration can therefore be effected.

For (1) The integrals of the algebraic terms are of type

W
j Ax'dz= s T
(2) The integral of j’i de is Alog(z—a).
k B, 1
is E—
(4) The integration of J'_z‘f_:_f'_t?}__ dz has been effected
in Art. 136. rere
(5) The integration of -‘.M-—dx can be effected
(2 +rz+s)

by means of a reduction formula, as will be
explained in a subsequent article.

Hence we may then regard the integration Ié(( ))d:c as
complete whenever ‘(—gg is a rational algebraic function of .
154. In practice, when irresoluble quadratic factors are
present in the denominator we may first of all determine the
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partial fractions corresponding to the real linear factors, single
and repeated. Then, if there be only one quadratic factor, and
that not repeated, it will appear without further trouble in

the remainder of 'é% But if there be several such factors

or a repeated factor, we may subtract the simple partial
fractions when obtained and then after simplification discuss
the remainder.

155. Use of *Undetermined or Indeterminate Coefficients.”
We may often with advantage apply the method of “indeter-
minate coefficients.”

When the fraction has been reduced by division till the
numerator is of lower degree than the denominator, ze of
degree n—1 a.t most, and we get, as in I,

(z) B, Pz+Q *z=¢ Riz+S;:
f(z) z— a+2 (z—Db) w’+px+q+2 (2 +rz+s)”
we have, upon multiplying up by #(z) an identity in which
the right-hand side is of degree n—1 and consists of n terms
when arranged in powers of z, and the left side is of degree
n—1 at most, viz. f(z).

Now ¢ (z) is of degree 14+A+2+2u, which must =n, and

the number of quantities
4, (By, By, ...), (P, Q), (R, 8,, Ry, S;,...)
TR MR S N + 2 + 2u, .=

Hence, upon equating coefficients of the n terms on the
right-hand side to the corresponding coefficients in f(z), we
have just enough equations to obtain the n quanutities, pro-
vided that these equations are all independent. But as we
have established otherwise a means of finding these quantities
we may infer the consistence of the equations obtaimed by
cquating coefficients.

156. Many of the coefficients, or all, may be found by the
substitution in the identity of numerical values for . Obviously
any number of equations of this kind could be obtained, but
only n would be independent. The most suitable values to take
for this purpose will be such as will make one of the factors
z—a, z—b, 22+ pr+q or 2®+rz+s vanish, for such values
would cause many of the terms of the identity to disappear.

<
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In substituting roots of #*4 pz+¢, viz. a8 say, only one
root need be substituted. Then the real and unreal parts on
each side of the identity may be equated.

All the B's and 4, t.e. A\+1 of the quantities, can be found
by the easy rules given above (Arts. 140 to 147). Hence A+1
of the equations obtained by equating coefficients will not be
independent of the others when the values of 4, B,, B,, ... By,
which have been found, are substituted. But there will still
remain 24 2u independent relations from the equating of
coefficients. The substitution of a root of 2?4 pz+q and of a
root of 22 +rz+s=0 with the equating of real and unreal parts
will furnish four other relations and reduce the number of
independent “ equated coefficient equations” to 2u—2, which
are linecar and to be solved in the easiest way available. The
student will perceive that in practice it will be best to combine
several methods to determine the coefficients and to use
redundant equations to check numerical results.*

157. If none but even powers of z occur in both numerator
and denominator, we may put 22=y, and thereby reduce the
labour considerably. In such fractions, the quadratic factors
becoming linear by this substitution, their occurrence may be
termed pseudo-quadratic or quasi-linear.

2241
Bx 1 Gra@ior
shii y+1
This is of form GTOG T
Putting, then, #* (or y)=2z-9,
2241 =84z
(#2+4)(2*+9)F 22(—5+2)
8 3z
—5+z)—8+;(5+2—5-
2
—8+—5—
3z
L
3z 32
5 25
322
)
: g 88 S
“ P (P9 5229 —54z
8 I g sl gt

* See also Art. 1891, Vol. II.
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1
“(x-1) (22 +1) (22 +4)*
The partial fractions are of form
i_{_Bx-}-C’_!_Dx+E1L~ FrtG
z—1" 2241  (22+4) (2%+4)%
Multiplying up we have the identity
1=A4(2*+1)(2%+4)*+(Br+ C) (- 1) (22 +4)*
+(Dz+E)(x—1)(22+1) (2% +4)
+(Fx+G)(x—1).(x’+1).

gux.

Putting z=1, 1=504.
Putting z=q, 1=(B+C)(.—1)9;
. —B+0=0,
—B+ =1, } whence B= (= —{5.
Putting z=2, 1=2F1+@)(2.-1)(-3);
. 4+ G
th_é’ }whence F=G=.
Equating coefficients of 2%,
A+B+D=0;

e

Equating absolute terms,
164 —16C—4E— G=1, whence E=3§; ;

. 1 1 S S LN P i
© @=1)(@+1)(@®+4)" B0xz—1 18241 225 2*+4" 15 (P +4)*

158. Case when the numerator is an odd function of x and the
denominator is even.

f(z) @ F(a?)
I=j$(%dw takes the form j 3 e s )
Sl i Ams ™ L j gg))d

and the factors in the denominator which were quadratic
factors in & are linear in 7.

P+30 ) L s
Ex Thus oD@+ © 2] G- 1)(9“)2 I

f[ ey _1/+1 (J+1)'] 4

I 1/»_1+1 1
2 y+1 2y+1
i 2-Thal ' |k
318 i Ta T

WWW.rcin
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159. Case when the denominator is odd and the numerator even.
The same process may be adopted.

P41, 1 g+l
P~ [y En™

UEEE -3_) “l s
—Sf(y+,1/+4 dy—alogy(y+4)

Thus

=élogz’(z’+4)‘.
4

e ,),whereq<n.

160. Integration Off(z’+a,')(z’+a,’)(z’+a,’)...(z’+a,.

The partial fractions are of the form
L. |

2 i ra
- o s A4, g
and the integral is St fan=t =
1 Gy ar
The value of 4, is
( i ar.)q

(@’ =a%) (@ —a,%) ... (ar1*— a,%) (Grp2® — @&2) .. (a2 — @,%)
The denominator factorized may be written as
(m—a,)(a2—a) o (G2 — @) (G~ ) (Anp2—r) oo (G0 —ay)
X (0140, (@+8,) o (s +,) (@11 +,) (@42 +a,) .. (@nta,).

Taking the case when a,, a,, a3, ... a, form an A.p., with common
difference b, this denominator D, say, is

k=n
D=(-1)"Y(r—1)b(r—2)b...26.5, 5.25.3b...(n—r)bx H! (ax+ a,)/2a,,
k=

where in forming the product of the factors in the lower line the missing
term (a,+ a,) has been supplied ;

D= (= 1y (r— 1) 15" (n—7) | :ﬁ:'(a,+a,)/2a,

and A4, =(—1)r"H2 2 =1 (r _1)(n—1)! kﬁ:‘(a.+a,).
k=
If b=a,, we have ar+a,=(r+k)a,,
and I:I(a,,+a,)=a,"(r+1)(r+2)...(r+n)=al"(r—':——ln)l,

giving for this case the partial fractions
2 r=n p20+2 1

Bl & ALES S — 1)e—rt1
a4, 1( B ¥ (-1 22+a?

and the integral

el .—_,.'nn tan—! 2
(n+n)l (n—7)! Gy

2 r=n
Z’"__ﬁrgl ( i
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161. Obviously we should also have in the same case

2t gy
f(z""al’) (2 +as®) ... (" +a,?)

Lo i r=n pet2 %
_t_l—,m-frgl( i l)q—-’.ﬂ(n+r) (n—7)! +a,?

Wk < B2 . F2+1

=g E}l (—1)—h (n—+r)l(7r)——!l°g (22 +a,2).

162. Taking the case a,=2, b=2, and therefore a,=2r,
2%
(22 + 22) (2% + 4%) (2* + 67) ... (2 + 2%n?)

- 1 $ ot r?ﬂ"" 2y 1
=@ 12T g T O

(2n - 4)ut
F+(@n—ap

(At (2n)%t2 . (20 - 2)%t3

2n % 2n
T 22"-1[ 0°z2+22n2 124 (2n - 2) G

n—1 2n 2““
Ft (=10, s ];
and its integral

A ER ) e T

TE (oYL Ol

o 20+ gan—1-2 _ 2 — 9)2H an=1 2
[0.(21&) tan=l o 0y (2n - 2)%*! tan &%

Fon+ (=112, 2=«+ltan-1§:|. wadid

163. And similarly, if the index of z in the numerator had been 2g+1
instead of 2¢, the same work shows

22+l
(2% + 22) (22 + 42)... (2% + 2%n?)

_(=1y1 )
T (2m)1 2@

g P St
[2"0°(2n)2q 2+ 22 Lo +(2n - 2)?

T i AN P
and its integral
i ( o l)q-hs—l 1
SRR
[2*Co(2n)2 2 log (22 + 2n?) — 20} (20 — 2)% 2 log {2+ (2n — 2)%}
Fo (= 1)129C,_ 22+ log (24 22)). ...(B)
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164. Taking the case a;=1, b=2, and therefore a,=2r -1,

2%
(2% + 12)(22 + 32) (22 + 52)...[22 + (2n — 1)?]
Nl Tl 1 e ER=DE 1
=@n-i2- VT e Orrar@r=Ip
(1 1 M aen o 1P L (90— Bt
(2n -1)! 22 2 +(2n - 1) 1224+ (2n - 3)?
sy (2n = B)EHL 2 12041
ik lC?zTT(T)-b‘)E""""(“ L e i pleT
and its integral
_(_ l)q—nn 1
T (2 -1)! 22

on—1 _1)2 VSR R~ S e R A
[ Co(2n - 1)* tan om =1 0y (2n - 3)% tan =3

+...+(-1)'-—m—10,._,1man—l§]. ©

; 20+1
165. And for @7 12)...Ez2+(2n T the integral will be
o —n+1
=(Té7zliq'_1)T s [7=10a(2n ~ 1)+ log (22 4+ (20 ~ 1)}

- 210 (20 — 3)20H 1 log {22+ (2n — 3)%}
+o (= 112010, 1% Jog (22 4-1%)). (D)
2™dx

a"2" cos na+a’" (m < 2n)

166. Consider the integral f e

Here S(@)=a™, $(z)=2"—2a"2"cosna+a® (Art.142)
=r=l"II-l 2% — 202 cos (a+ 2%) +a’],
r=0

¢'(2)=2n2" (2" — a” cos na).
2rr
Let a+ T = x.

The factor 2% — 2z cos x + a*= (v — ae’X)(x — ae™ ‘X),
and gives rise to the partial fractions

fae®) 1 flaen) 1

¢'(aeX) z—aeX  ¢'(ae” X))z —ae” X

¢'(aeX)  2na®™ 1™~ DX ("X — cos na)
ametmx e—:.(n-m—l)x

2ma™ "1™ ~DX, ginng  2ma® ™ 1sin na
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Hence the two partial fractions

1 I:e—t(n—m-l)x e;(n—m-l)x]

2 ™ Lgin na

1 c—-L(n—m—l)x(m_ae—Lx)_el.(n—m—l)x(x_aetx)jl
1smna.I:

z — ae'X x—ae X

-21-1102”—7"— 2% —2ax cos X +a?

[Emsm(n m)x — 2% sin(n— m—l)x]_

2 sin naa”“m-l — 2ax cos X +a*

mm
. '”2”—2a"x”cosna+a2n
g : S [2asin X cos(n—m—1)x —2(x —a cos x) sin(n—m—1)x
Ny (x—acos x)*+a?sin’y
™ de
Hence jxﬂ"—2a"xncosna,+a2ﬂ’ (m < 2n),
I TR = orr z—a cos(a.;.g"__’r)
LS A e ol - ¢
= waina S O 08 (n=m 1)(“+ n )tan i ( 2r1r)
! asina+
1 1 st ( 2r1r) 2 _ ( ,.,,-) g.-].
_maz—n—‘in'—_lz;sm(n—m—-l) o+ =~ |log| #*—2ax cos{ a += = ) +a

In the same way z?~!/(z"+a") may be integrated. The
results are given in Exs. 39 and 40, pages 166 and 167,

dz

167. Ex. Calculate A m.

Here (Art. 166) B=g —a, m=0, n=2.
The indefinite integral is

. L cos(g_ﬂ> tan—lx_ams(é—p)

2sin2f @* a sin(%— ,8)
z—a cos(%’z— )
asin (%’-r—ﬁ)
—%sin (%— B) log {x?— 2ax cos (g— B)-f—a’}

~ysin(%7 - B)10g {a2- 2avcos(3- ) +at} ]

+cos (%’-r - ,3) tan™!

o 1 X LZx—asinf . ta: i @+asinf
" 2a’sin 23 ain 4 Lo acos 3 wJont it acos 3

—} cos 8 log (#* — 2aw sin B+a?) +4 cos Blog (2 +2ax sin B +a%)},

www.rcin.org.pl
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and taken between limits 0 and

~sa=gg| i B(3+3) |- g
—2a3sin2,8|:smﬂ(2+2) “4adcos B

The indefinite integral may also be written as

1 A 2 1 20z si
2a°sin 23 [sm 2w :,ffo :2'3+cos e ‘::;:-l :‘B
168. An integral of the form
2
Ia + bz: dz 4
¢+ da*

can always be integrated as follows:
Let I be the L.c.M. of ¢ and s, and let{—;=% and 'g %
Let 2=7, dz= lz‘"dz
l’“”“qd - g:s::z‘“dz,
¢+ daz’

and the expression to be integrated is now rational, and when
expressed in partial fractions each term can be integrated.

Then

1+a2% _[1+2

Ex. mdx (Lot w=28) | = l+z,625dz
SRR s 2 )
—6f1+23dz—6](z‘+z —z_zs+l dz

: 12:-1-3
p— 2 ____
6/[”*’ "y | 6#—z+1]¢
S

2
—-gff+2zs 3:2—4log (24 1) —log (22 — 2+1) +2+/3 tan™! i/ﬁ

=§a:!+2t*—3.z'§—4log(l +x*)—log(1 ~x‘+x*)

9%~ 1
B y
+24/3 tan 7

169. In exactly the same way the integration of
?
j‘a +b(a+ /Sx)‘;dz,
¢+ d(a+ Bz)*

can be effected by putting a+ Bz=2' when [ is the L.oM. of
q and s, and more generally that of

jf[(a+ﬁz)§] o
#la+B2)]
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where f(t) and ¢(t) are any rational algebraic functions of ¢;
for, putting a + Bz =2, as before, the integral becomes
LA 2
J5@ 5
and the integrand being now rational and algebraic, we can in
any such case proceed to put it into partial fractions and then
integrate. .

EXAMPLES.

Integrate with regard to # the expressions in the following seven

groups :
1. Linear unrepeated factors

X 1
D z@-1y
eeer 1 — 322
()
(z—1)(z-2)
™ @916y
(z—a)(z—Dd)(z—c)

) E e @) @ - o)

A z+1
(%) 10z 119"

2. Linear repeated factors :

: 1
O e e+
x4+ 1
(iii) A@-T)F
(V) (2®-Tz+12)72
e 22-32+3
Vi) a6 - 19

4 1
@ EhE-9E-5
. 2+z+1
(iv) F-DN@-9
(z—a)(z-b)(z-c)
z-a)(z-b)(2—¢)
z+1
22+10z - 75"
*) 31 S i
—312% + 311z - 1001

i

(viii)

i 1
O G-y
(iv) (aa®+bad)L,
(vi) "“'—f—
(z—a)*(z-b)

(I C. S., 1900.]

3. Quasi-linear occurrence of factors. Powers of = all even :

4 dz
O (e
(iii) I’i(%c;‘;) s

ar®+b
0 Jama e

(i) j(z’+a2)(x2+b‘~’)d i

: 22dz
@ [Ty

ax®+b

(vi) Lﬂ(eﬁ ) TE T Y

In the last two ¢, d, ¢, f, g, h may be considered positive.
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4. Quasi-linear factors. Numerator an odd function, Denominator
even, or Numerator even, Denominator odd :

kg 22+ 2
O [y ) [z

iy fo sapRins il LGy aee .
27 — 62° + 1123 - 6z (aa® + bz + ¢)? + (aa® — bz + c)?

5. Quadratic factors not repeated :

A o (z+1)? p
@ Jotta? 4+ T @) )y ®

el i LT 2241
(iii) d3:4—_*_—Tal.1:. (iv) j Z+1dx

of ( #? + a?) (2t + a22? + at)V do.  (vi) I(xz - a?) (4 + a? + a%)~1dz.

o [224+32+1 dx
(vii) | md&:. (viii) IxT'l'—l
6. Linear factors repeated. Quadratic factors not repeated.
@) 2%z ) o dx :
(z-1)%*(a2-22+4) (I'+2)%(1 + 22 + 422)
i) ztdx s dz
(x-1)2(22+4) (z+1)2@2+ 1)
RN, TNy o R . T8
(z-1)2(z*+1) a(x-1)*(22+ 1)
o dx - dz
i) ey ) @) vy
%) oy ®) ST
(@-1P@+z+1) (2z — 3)%(42% +5)"
7. Repeated quadratic factors :
dx v dz
O z@+ipE @) T @
z+1)dz z+a)(@+b
( ) ((z2+)1)2. (lV) _(____)(____)d

@+ )P

7
8. Evaluate jJtan 0df and L Jeot 6 dé.

9. Evaluate (i) j &

cos*z — cos?z sin?z + sintz’

(i) da
cos‘a: + cos?z sin%z + sintz’

www.rcin.org.pl
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cos z dz
(I +sin®) (2 +sinz)’

z
10. Evaluabej
0

N 22dx T
S, (Show that L @)@+ )@+ ?) 2@+ (b+o)(c+a)
i dx o a+bd
i o el j_,, (@ xaz+ad) (2 £ba+02) /3 ab(a?+ab+0?%)
[v, 1891.;

13. Show that the sum of the infinite series
1 1 1 It

a a+btaro% avm T
can be expressed as a definite integral, viz.

1 ta-—l
jo ﬁh dt.

(a>0, b>0)

And hence prove that

+
1-143- A4 d—+...=3(x3F1log,2).
[OxrorD, 1887.]

sl 25 da
14. Integrate: @) 12 138+ 32— 2 [CoLLEGES, 1882.]
o (2542
(i) = zd:c. [St. Jorn’s, 1881.]
(1+2?) dx
(iii) JT-22%cosa +a* [CoLLEGES, 1882.]
N el
(iv) 1 T [CoLLEGES a, 1891.]
1 1 +x2
O ), - ram®

15. Prove that j i =7§r.

ol +a8 [St. JonN’s, 1881.]

dx
16. L o BRI
Prove that j(:c ~ 2P (=B
r=p—2 Qr (9} s a)-p+r+l r=¢—2 _P' (m ol b)—q+r+1
& (a-0)*" —p+r+1 X “ (b-ayt —qg+r+1

1 1
+amtprm Y1108 @ - O+ i Pea log (v -0),

where P, and @, are the coefficients of 2" in (1+2)~? and (1+2)*
respectively.

www.rcin.org.pl
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17. Integrate j(f’ - yo» 3z) @)

@ [=sser w)* @D
(i) I T+ 9@ +x)(3 oy
ik 1 ‘II'\/—

(:c’+a:+1)3

(i) ‘rl+z2

18. Prove (i) r

[MaTH. TrIP., 1878.]

[OxrForp 1., 1888.]

[CoLLEGES 8, 1891.]

4

[TrINITY, 1882.]

-1

(iii) jjl—‘ff—z,dz= s {1r ~2tan1_Y¥2 )

zdz
19. Integrate ,L"—_H
1 Tk

1
Prove that-—+8 ” SV L4

20. Integrate j(JcoTc el

1+ 3sin 2z

r Pz —1
21. Integrate (i) |tan—? ‘—l—ﬁ—ldz.

[TriNITY, 1895.]

+...to —%[—j—log :I

[CoLLEGES, 1896.]

[CoLLEGES B, 1890.]

[MaTH. TrIP., 1898.]

[CoLLEGES, 1896.]

[J. M. ScH., Ox., 1904.]

[ST. Joun’s, 1892.]

bz—-1
(i) | a2 + V02 + c/a da.

22. Integrate (Ja-Jopda

J(@? +az+22) Vz

[ 52% + 32— 1

23. Integrabe m &,

oF
24. Evaluate sm:x

Jo cos®z

dz

25. Integrate LXZ‘_");’ n being a positive integer.

26. Integrate

[E=TE

27. Integrate II‘W‘

[ST. JOKN s, 1882.]

[COLLEGES a, 1885.]

[MaTH. Trip., 1895.]
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28. Sum the series

3 bl a7 v
Tt L aling,

| PR B §4 W
assuming it to be convergent.
Deduce that
Ll IR | : B |
m—2~+—3—5—5+"“~‘7‘ 7+ admf.——————log3
(L C. 8., 1899.]
29. Prove that
1 il R 0 3.0
1—7+§ —5 A ﬂdtﬂf——(l‘i’\/—)
[CoLLEGES S, 1888.]
30. Evaluate Ixz log (1 — #?) dz,
and deduce that
1 1 1 B loz 2
LU s o e R i I
[COLLEGES «, 1889.]
31. Integrate j(a‘ +a#)~1d.
Prove vhat
1 1 1 1

J2
T.‘5+9.13+17.21+25.29+"'“35{"“°g(3+2‘/§)}'

[MATH. Trip., 1896.]
32. Show that

d 1 o
Iz(x+ 1)(=z+ 2)(z+3)...(a:+n)=E'z={,( I C ok [y e).
33. Show that
I(l+z)" Wi A0 R _n3_"‘_‘ i n(ne= 1) 3
2P T F R (I -2 M- g
+ a rational integral algebraic expression of a finite
number of terms.

log(1-2z)

: dz
34. Show that if c<1, I(I-x)(l—cx)(l—c”z)...toao
Pi R 1 o
sl b Ered by g a ) v TRy T ) Ry

i dy
(@-0)) (@~ 0))(z—ay) ... (z- @)
= H +H T+ D, . ot log (z ~ a,)
T (@~ 8 (@ — @) -~ (@ — @) 1
Where H, is the sum of the homogeneous products r at a time of
a)) 02, ceey G".

35. Show that j
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36. Show that the part of the indefinite integral
[1/@
= o dw
J2 56
which becomes infinite when z=0, f and ¢ being rational integral
functions of z which do not vanish when z=0, is

1 f(0) 1f(0)$(0)-¢'(0)£(0)

202 $(0) = [¢(0)]
1, f"(0)Y{$(0)}* - 2/(0)$'(0) $(0) — f(0)[¢(0)$"(0) — 2{¢'(0)}*]
+gloge” o :

[0x. 1.'P., 1901.]

37. Show that when a rational fraction is decomposed intc its
simple or “partial ” fractions, the decomposition is unique.

38. If F(z) be a function of the (n—1)* degree which assumes
the values u,, u,, ug, ..., u, when =2, @,, %,, ..., &, respectively,
show that

(2 — ) (% — ) ... (x—1,)

) = =)= 2a) - (=)
(x—2,)(x—2,) ... (x—2,)

ki (2 — ) (2 — T3) ... (T3 — %)

(z-2)(x-2,)...(x—2,,) :
i (:c,, g zl)(xn e “’2) e (2},, o mn—l)

39. Prove that if p<n+1,

+u

n—1

wiafTide. gt 5 Qrpm 2 orr |
na sz”_an_log(z—-a)+ ; cosTlog(z —2aa:cosT+a,)

n-1 2rw
o & — @ cos —
n

2
-2 E sin 2%ﬂ-tam“

r=1 2rmw

asin —
n
if # be odd,
and =log(z-a)+(-1)"log (z+a)
n—2
=i
e E cos 2T—1’bmlog (a:’ — 2az cos g:;—ﬂ + a“’)v
r=1

2w
r=ﬂ"_2 T — @ COS £
n

2
9,
. m
=2 2 ; sin L7 tan-1 S
r=1 n 7
asin==

if n be even.
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40. Prove that if p<n+1,
- ! s »—1

n-1

re—

- Z cos (27 - 1)}9 log{ 2azcos(2r—1)%+a’}

r=1

3
-

r=

|

z—acos (2r— l);—:
+2 —

M.

sin (27 - l)p% tan~!

i

r=

y a,sin(2r—l)7;:

if 2 be odd,

and = - Zcos(2r— I)I;—rlog {x’ - 2azx cos (2r — 1)%+a2}
r=1
i z— acos(2r—1)—; y
+2 E sin (2r - l)p‘n' tan—! ———— if » be even.
oy asin (2r - 1) e

41. Prove that
rw . T
J‘z- dr _lm,.-,< o .- 2xcos-77 Ve _]2zsm;
ol—am™ 32 ; cosTLtanh 1__,_;,;9_"'3"";'33'" gt
[MaTH. TrIP., 1884.]

IR 4
42. Show that j gl
o B+17 5 /104245

43. (i) Show that the remainder left after dividing the rational
integral function f(z) by (z—c)?+ 8% is

[70- 5™ @+ /0= et (=1 o

+@-9| 10~ 570+ 5:7%6) -

par+l
+( ]) (2 +l)|f(2r+1)(c)+ ]
where f®(c) denotes g f (c) :

(ii) If f(z) and 4>(x) are rational integral functions of z, and ¢ (z)
does not contain (z — ¢)?+ 042 as a factor, show that it is possible to
determine finite values for the constants P and @ in such a manner
i f@)~[P@-0)+ Q)b ()

is divisible, without remainder, by (z — ¢)? + 2.
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(iii) Apply the last result to show (or prove in any manner) that

/@
@ P+ 0T 6@

can be expressed in the form

x(z) "Z‘:'Pu(z ¢)+@n

#@) " H[@-o+
r being a positive integer, x(«) a rational integral function of #, and
P, and @, constants. [I.C.S., 1892.]

7wy =*@+ 7y

where F, f, ¢, ¥ are rational polynomials of degrees m +, n, m,
n — 1 respectively, show thatife,, a,, ag, ... , a, be the roots of f(x) =0,
considered all different, ¥ (z) will be determinable from

Y (), apnla bt ol
F(a,), ™ HiiaAn. o ay 1
F (“2): a2"_1’ azn—ﬁ’ evy a2) 1 =0‘

F(a,.), ann_ly an"_Q; ceny Ay, 1

Also determine ¥/(z) when f(z) =0 has equal roots.
[Oxrorp L. P., 1913.]

k . az? + bz +c )
45. Integrate j‘{(m— )@ -B)@- 7)}

46. Prove that if » bé a positive integer,

(i) cos::;an)O s Efcosﬂlogsm (9— —-)

[OxForp I. P., 1917.]

r-—l

sin (n - 2p) 6 1 reall) 2pr1r rr
(ii) I o= 2 —n—log cosec (0 - E)'

sinnd

r=1

. x " dz
47. Integrata (l) j“_——ez, (ll) “‘,\/_—s;n*’—T_in(z—_.f_a)’

and prove that  (iii) j mﬁ—%m L
! 24 3)dz 1
(“')j (:6(:2:1) 3 (58~ 157).

[Martsu. Trre. 1., 1917.]

A " dx
48. Obtain the rational part of jm (Mars, Tare, 1L, 1915.]
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49. Prove that
n _ Asin gy cos #2a, 1
(T +z)m+ (1 -z)2 Z; sin(2n — 1)a, 22+ tana,

where a,=(2r+ 1)x/4n. [Oxr. II. P., 1899.]
Write down the values of the integrals
dz zdx

IxoP+ (-2 JT+oP+(1-2

50. Show that

zdx T
o (@t —(a—z)"  2nan?

Z(-1)-1 sini\fcos'”k—’r
n n

-1 -2
o or to A="

the summation extending from A=1 to A=— .

according as n is odd or even.
[Cf. WoLSTENHOLME'S Problems, No. 1912.]

Write down the value of the integral
x%dw
(a, +a)® - (@ — z)-n'

51. Show that if # be even a.nd a:+y-—l

dx 1 1 1
iy T | !—/":1- T ogn—1 +T S 2 :,/:1—2 zn—z

RLILIVIR U 0 R b L T N P
1.2 ‘n-3|y8 g+8]" " -.(n-1)
[Mukrpny, Camb. Tr., vi.]

52. Show that if p<g,

r=n A pzwﬁ P
i (1 L) s o - sm( 9 Beh

1§ I« RO T Sl
== q%’ &~ pg ~ cosrm 733
T(1-fo) = o
. [TopHUNTER, I.C., p. 38.]
Deduce that if p<g,

(-r<gqz<m).

singe , sin ( 'r1r) ¢
J st ol 224 o4 T Y O nh—l%r

sin qx ~{q" " costr
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