CHAPTER XI.

PRELIMINARY TO INTEGRATION OF jli{i% WHERE
Q IS A RATIONAL QUARTIC. DEFINITIONS
OF ELLIPTIC FUNCTIONS. ELEMENTARY CON-
SIDERATIONS.

367. In many problems of both pure and applied mathe-
matics, such as the investigation of the length of an arc of
an ellipse, or of a lemniscate, or the time of a finite oscilla-
tion of an ordinary simple circular pendulum, integrals occur
in which the integrand contains a square root of an algebraic
function of higher degree than the second.

/ dx
Now the integral N4
where @ is the general biquadratic function

0,2t + da, 2* + 60,0+ da,z+-a,,
cannot 7n general be integrated by means of the circular, inverse
circular, or inverse hyperbolic functions, though it has been seen
that for particular values of the coefficients this may be possible ;
for no such function is known which will, on differentiation, give

rise to the general expression JQ as its differential coefficient.

Hence, in discussing such an integral as this, we are in a
position similar to that which would have occurred if we had

required the integral J'__d?_
Ja+bx -+ cx?

or inverse hyperbolic functions had been discovered. The

before the inverse circular

integration even of the case I:/Tdf—;

383



384 CHAPTER XI.

sented a difficulty. And the necessity for the consideration
of such an integral would have formed a suitable starting-
point for the investigation of such functions as would have

J11 -,» Or, mcre generally, m——_b}:i.—_i__cﬁ for their differential

coefficients.
And the whole theory of such functions could have been

built up from this starting-point.

4

368. For instance, let F(z)= z————

Then F(0)=0.
Let z and y be two variables connected by the equation
dx dy
AR AT
w.e. F'(z)dx+F (y)dy =0.

The integral is F(z) 4 F (y) =constant =F (z), say, where z is
the value of ¥ when z vanishes.
But multiplying by V1—a® V1 —y2
da/1—y2+dyJ1—a22=0,

and we can integrate this by parts, viz.

dx =constant =C,

PNy J dy+yJ1 xz—}-ij

i.e. le_—73+le—x2+Imy Jldzx2+Jldyy) C,

and the part under the integration sign vanishes.

Hence, z+/1— 42 +y /1 —22=2, say, where z is the value of
y if z vanishes.

Hence we have the addition equation

F(@)+F(y)=F(aJ/1-y*+yJ/1-2?),
and if we then choose to write sin~! (a supposed unknown
symbol) for F, we should have

sin—z+sin-1y=sin1(zv/1—y2 4+ y V1 —2?),
or writing sin—*z=6 and sin~ly=¢,

sin (0 4 ¢) =sin /1 —sin2¢ +sin ¢/1—sin20,

www.rcin.org.pl



ELLIPTIC INTEGRALS. 385

and we should thus have arrived at one of the fundamental
propositions of trigonometry, and could have built up the
general theory.

Such is actually our position with regard to the integration

of L}% or, more generally, I N JQ’ where M and N are

rational integral algebraic functions of #, and @ is a rational
integral algebraic polynomial of degree higher than the
second, say the quartic

Q =a,xt +4a,2° + 6a,2% +4a,2+a,,
and the absence of knowledge of any function which, upon

differentiation, would give a general result of this kind long
barred the progress of geometers.

369. It was natural that after having exhausted the dis-
cussion of integrations which could be expressed algebraically
or by means of logarithms, or by inverse circular functions, that
is in terms of arcs of a circle, that investigators should turn
their attention to such expressions as could be integrated by
means of ares of an ellipse or a hyperbola. Thus Colin
Maclaurin, in his Fluwzions, vol.ii., Art. 799, of date 1742,

discusses “the fluent of 2%,” or as it would now be
Jrdr s 1( zdx

written

3 which he expresses as
2 Nat— " 2)Ja(@r—1) P

the arc of a rectangular hyperbola of semi-axis unity, viz.
drawing a tangent at the vertex 4 of the hyperbola, centre C,
and a circle with the same centre and radius 2 cutting the

tangent at the point M, then letting the bisector of ACM cut

the . hyperbola at E, arc AE= 2 m which we leave
to the student to verify.

870. The real starting-point of the general theory of such
integrals, which have been termed Elliptic Integrals, from
their intimate connexion with that curve, may be taken to be
Fagnano’s discovery * that upon every ellipse or hyperbola
it is possible to assign in an infinite number of ways two

* Fagnano, Produzioni matematiche, tom. ii.
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arcs whose difference is equal to an algebraic expression, and
that the lemniscate “jouit de cette singuliere propriété, que
ses ares peuvent étre multipliés ou divisés algébriquement,
comme les arcs de cercle, quoique chacun d’eux soit une
transcendante d'un ordre supérieur.”*

371. Definitions. Various mathematicians, Euler, Lagrange,}
Landen§ and others, turned their attention to this matter, and
much progress was made. But the chief advance was due to
the investigations of Legendre, first in his Mémoires sur les
Transcendantes Elliptiques, 1793, and, after a long interval, in
his Exzercices de Calcul Intégral, 1811. In this last work he
treated the general reduction of the integral

Pis

g
where P is any rational function whatever of z, and @ is the
quartic function
ayzt+4a,2° 4 6a,0° 4-da,x+-a,,
showing that in all cases the integration may be made to
depend upon that of three fundamental integrals, viz.
mom=r——ﬂLMM L aime
; ov/1—k?sin?6 oA’
Emm=rﬁtﬁﬁ@w=rAw
0 0

g do

o (1+nsin26) /1 —k*sin%0

REH do
R J

which he calls the “ Elliptic Integrals of the First, Second and

Third kind respectively,” k being a real constant quantity less

than unity, called the modulus, and n any constant whatever.

. where A =«/1—F2 sinZ0,

nmhm=I

372. Legendre in a footnote, (pages 18, 19) of the Exercices suggested
names for these functions, but it does not appear that the names were
generally adopted, except as to the initial letter E and II still used for
the second and third. He remarks:

“Ces fonctions réunissent un si grand nombre de propriétés, que

* Legendre, Exercices de Calcul Intégral, 1811.
t Euler, Novi. Com. Petrop., tom. vi. et vii.

{ Mém. de Turin, tom. iv.

§ Math. Memoirs, by John Landen, 1780.
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quand elles seront plus généralement connues, on jugera sans doute
nécessaire de leur imposer un nom particulier, et de désigner la

fonction de ¢ et ¢ égale a f de’, comme on désigne Varc dont le sinus

est z, ou le nombre dont le logarithme est . Il semble quon carac-
tériserait assez bien la fonction F' en lui donnant le nom de Nome,
parce que cette fonction a la propriété de régler tout ce qui concerne
la comparaison des fonctions elliptiques. Peut-étre conviendrait-il en
méme temps de donner les noms d’ Epinome et de Paranome aux fonctions
E et II que constituent les deux autres espéces.”

373. Legendre established addition formulae for each of
these functions analogous to the trigonometrical formulae for
sin (6=+¢), cos(0+¢), whence their whole theory may be
deduced, as for the ordinary circular functions of trigo-
nometry, and their numerical values calculated and tabulated
for definite values of & and n. This having been done, they
are available for numerical use, as in the case of the circular
and inverse circular functions.

874. All three of Legendre’s standard forms are compre-
hended in the one formula

b (%4 + Banit e
B, or [H:L—L 1+nsin26 /T — k2sin%0

The cases are
A=1, B=0, n=0, H=F(6,k),
A=1, B=—k, n=0, H=E(6,k),

A=1, B=0(, H=I1(6, k, n).
375. The *Complete Values.” The Real Periodicity.
A+ Bsin?60 1

The function AR TIT s
obviously goes through all its values four times, as 6 increases
from 0 to 2w, and then repeats the same cycle. The values
in the second quadrant are merely repetitions of those in
the first, passed through in the reverse order.

It is clear then that

[H]o":[a];:[af ) et

and that [H :l:: [H ] :_a.
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We may call [H:I the quarter period of the integral H.
0
In the case of the first elliptic integral, this “complete”

7
integral jo N ES is denoted by F, or K, and called the

real quarter period of F (0, k).
Similarly, E, and IT, are written for the “ complete ” integral
of the second and third kinds respectively, #.e. when the limits

are 0 and g, and E, II, are the respective quarter periods of
E(6, k) and 11 (6, &, n).

CR 7 7o e
Th j s hod i) ug I i I ey Py |
" o /1 —k2sin%0 ( 0 0) 1—#42sin%20

K-—F

Il

w .
[analogous to cosrlze= 7 —sm“lx] .

In this respect these integrals resemble the length of the
arc of an ellipse, or of any oval symmetrical about two per-
pendicular axes. In fact, as will be presently shown, one
of them, E, represents the length of an arc of an ellipse
measured from the end of the minor axis. And it was
this particular fact that led Legendre to style them Elliptic
functions.

It will be noticed that the “complete” values are not
numerical until the values of %, » are assigned, but are func-
tions of & and n.

376. It is not the object of the present chapter to discuss
elliptic functions at length, nor to establish the mode of

reduction of J‘l:/—‘g to one of the above canonical forms. These

matters, as well as the addition formulae, will be postponed
for later treatment. The present chapter must be regarded
as an introductory description of such functions, so that the
student will gradually grow accustomed to their use in cases
that may appear in treating of the rectification of ellipses
and other curves.
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377. The Jacobian Notation.

0
In the integral u=I it is usual to call the
0

dp
V1—£?sin%0
superior limit O the amplitude of », and write it as
0 =am u,

and in accordance with the usual notation for inverse functions

©=am™10,
¢ dé
o7 ey SR VBN gy MU EIRY
Thus am—10 _Io =

If z =sin 6, we have x =sin am «, which is abbreviated into
z=snu and w=sn"'z.
Similarly, J1—=2%=cos @ =cos am u, abbreviated to cnu :
1P
N1—a2
The quantity ~/1—4?sin?, which we have called A, may
be written A(0), (mod. k), or A(6, k&) when it is necessary to
put 6, & in evidence;
s 1= sin?6=Aamy,
which is further abbreviated to dnw.
Thus dnu=Aam u= A6 =+/1—k? sin6.
The names of these expressions, sn u, cnw, dn , are spoken
as spelt, u.e. each letter read off.

=tan @ =tan am u, abbreviated to tn w.

378. Differentiation.

du - 1 i
460~ JT—#sin’@ dnu
Hence we can differentiate each of these functions.
Thus

From the integral itself

(-l%sn u =‘—l%sin 0= cosegg= cnudnw,
t%cn u =%‘cos¢9= —sin 03—3=-snudnu,
k*sin 6 cos 0 d6 _
J1—k* sin?0du
It follows that any expression involving such functions
may be differentiated by the ordinary rules of differentiation.

d%dnu:%«/l-k’sin%:— —ksnuenw
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379. Integration.

Conversely, we can integrate various forms involving such
functions.

Thus Icn udnudu= snu,
jsn u dn w du= —cn u,

jsnucnudu:—]—:édnu. ‘

380. The elementary transformations are merely those of
ordinary trigonometry for single angles.
Thus cn?u =cos?f =1—sin?6 =1—snuy,

sn?y =sin?260 =1— cos2f =1 —cn3y,

dn2u=1—k2?sin26 =1—k?sn?u,
sn % cny 1
thu =——, ctnu=cotamu=—=—,
cnu snu tnwu

sn?u +cn?u=1,
dn2u4-k2sn2u=1,
ete.
= dx
o N (1—a?)(1—kPa?)
which exhibits the quartic nature of the radical.
&t dx
oV (1—a?) (1—k2a?)

z=snu,(mod. k); or as sn(u, k);

381. If x=sinf, F=

The equation u=I may then be written as

and u=sn"1z, (mod. ¥);  or -sn~i(w, k)

382. The earlier authors treating of this subject, Legendre,
Euler and others, regarded the direct integral « as the func-
tion to be studied, and @ as its inverse.

The course followed by all later writers, Abel, Clifford,
Ferrers, Cayley, Greenhill and others, is to regard 0 as the
direct function and u as its inverse.
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283. The inverse nature of u is expressed in calling it
am~160, and this is in conformity with the simple case where

k=0, viz. “ dx Vi3 W
- “J: - ’
whilst Uy = o =anat(ak):
o J(1—2*)(1—k*2?)

384. Complementary Modulus.
It is desirable to introduce a new quantity %’ such that
kB+k2=1;
k' is called the complementary modulus

385. Transformations.
Each of the functions, sn %, cn u, dnw, tn %, can be expressed
in terms of the others.

If snu=2, cnu=+1—22 =J1—snu

dnu=+1—k22=x/| —k%snu

x snu__ snuw

tnu=~/1~—x2 =g11—%_0_~/1—sn2u
If cnu=2, snu=+1—2° =+/1—cn?u,
dnu=J1—k*(1—2%) =Jk24k%cnly,
tnu___Jl—x’ =\/1——cn=u.
x cnu
If dnu=u, snu=‘/l_x2 _V1—dn’s
» k ] = jx )
Ji2—1+z? Jdn2u —k'?
enu= = !
k k
: _Ji=a® _ [1—dn*u
y o g ~ Vdntu—k*
£+ b il _ tnu
nu=a, snu—m Ao
1 ki 1
e YT
d _J1+k?%2 _ [14+k%tn%u
o5 o J1+22 “ NV 1+4tnlu

www.rcin.org.pl
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386. Inverse Notation.

With the inverse notation the same formulae would be
written

snlz =cn~1J/I—z2=dn-1J/1—k2% = tn—1—.

Ji—a? 1 z?’
en—lg=sn"1J/1—22=dn" V&> k%2® = tn—! il_zix_,
{8 22— k2 1—z2
dnTlz=sn-! i 2 [airs \/i——— =tnmk —5/1—2-4,
k k 3
1 JITFZ
tn—1z =sn"1— =cn-l——. =dn-! ;
«/l—i—:z:2 V1422 N
i cos 26 +cos 23 1+cos2f
387. Ex. cn ‘(\/ T+cos2B > 3 )

=sn‘1( 1 __c0s26+cos 23

1+cos2B °’ COSB)

1 —cos 20 )

et il ,\/

£ ( l+cos2Z?’ cos 3
sn~ l(ci—b,::;e, cosB)

Similarly

e (\/cos 2.?(;:;7323’ 1 —c;)s 2ﬁ) Al (81 g, sirt ,3)

388. Illustrative Examples of Reduction to the Legendrian Form.

1. Consider IE'/:‘\/TT—;LW—?) (x<b<a).
a’— -z
Let 2=>bsin 6,
I=f beos OdO
0 n/(a? - b%sin? @) b2 cos? @
1

L[ (o)
a?

6=am(al),

2=>bsin @=bsn (a/); mod. f—:,

ey &
Iz ‘(in a)-

Mt dr
z /1 —a?

2. Consider the case /=

Put 2=cos 6,

Www.rcin.org.pl



ILLUSTRATIVE TRANSFORMATIONS.

i j" —sin d6
=)o SO T 0070

=f =L[’

0 A/2—sin?0 ~2/ N1-}sin?0
- N

e A CF
f=am (IV2); mod.:/l'é‘y
z=cn I3,

L 1
I=\T§cn 1(.1:, Té)
3. Consider

jifis dz
I=L'~/4($—a)(x—b)(x—c)’ hipsodadalaud o

Let 2 — a=(c— a) cosec? 6.
Then —(c—a) 2 cosec? @ cot 6 df

I=-/n~/4(c a) cosec’B{(c—a) cosec’§ —(b—a)}{(c—a)cot? 6}

~/ Nc—a)- (b a)sin?f

(ig d0
\/c—aJ‘: \/1—2:2m20

(o VD
f=am (We—al); mod'\/

c—a’

V;_a=5in f=sn (\/ml) :

Y . c—a m)
3 s ﬁ“"’(\', NG

4. Consider the case

I—/l RN ek T N
=k oy A<V
Put 2 + A=(1+A) cos?¢h.
Thus,
el — (14 A) 2 cos sin b dp
I_f’d

= A+(1 +A) cos? GH{(L+ A) —(1+A) cos*p} (1 + A) cos* b
¢

/ V2= (1+A)sin'ep (l+)&)sm”4> Fiighet
=2 ¢——.‘E__—-__ /2F( Vliz')_'),

\/1 - sm’gb

www.rcin.org.pl
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" ¢=am (x/ii)’ cosp= cn(J2>
I=~/§cn“( x+/\ \/H-A)
If x=cos26 and /\=cos2ﬁ,

I=v32sn1 (%g, cos B)) (Art. 387.) -

ﬁJ(T—;f(—z—)»)z"/i"“ﬂ(“Jl » Vi /\)

=im ( e ng).

These integrals are useful in the rectification of a Cassinian oval.

Similarly,

5. Consider the integration

z 2 _ 22
IE'/; V‘:,Tx,dx, r<c<a.

Futting 2=csin 6,
0 T [ 63 .
I=./; NaF=Esin?0df=a ,,o \/1 —;,sm’@ 40

a
=ak(6, %)
6. Consider the integration

—at
IEL’V;—’——_%M, where z>c¢>a.
Here we may put

e
=sin?w.
22— a?

m—
Then it i
cos @
auil dz_ (c2—a?)sin o /
do  costwvc?—a?sinw’

c2 a?
. I= f sec?w —————-=do
JE—alsinte

2 03 a?sin’ew — a2 cos?w
sec =
Vel —a?sinlo

—f sectwn/c?—aZsinfo dw - f:/c,

© dw

—a?sine
G S e e /“a’sm’m a-d
=tan wvc:—-a?sinfw+ e = —— g ]

NE—alsinto
2 g2) — (c?— alsin?
el A P (c?— a?) — (¢ — a’sin®w)
=tanw~/c”——a’sm'w+f. = ',__;A"dw

0 Net—alsine

www.rcin.org.pl



REAL PERIODICITY. THE PENDULUM 395

=2y
=tan wa/c — a?sin?w +(c a)f /\/
b

i 2
P sm

a? .
—c’ '\/1——251n’wdw
o ¢

2_ o2
—tan o/ —alsinfo+ S — % F w0, %) =cE w,g 5
c c c

the integration needed in the rectification of a hyperbola.

.

7. Reduce the integral
a?cos? @+ b%sin? f
e ./ '\/a‘cos’ 0+ 0b%sin2 0+ ¢ 6,

to Legendrian form, taking a > b.
Write b tan 6=a cot .

2x d d
Then TR L. GRS SUN... S—
l+%-zcot2x b%sin?x +a®cos?x
Hence
$u f; a4+ btan? @
o N (a4 c?)+ (b2 + c?) tan?f

acosec X abdy
5 I¥sin?y + af cos?
J; ’\/(a2+c“)+(bg+cz)%cot,2x sin?x + a®cos®y

f" a*b?dy
0 [a?—(a? - b%)sin?x] v/ (a?+c?) b2 sin® x + (B2 + c?) a? cos?®y

Y j a?b’dy
0 [a?—(a®-0?) sin*x]~/(b‘+c*)a2 (a?— b‘)c‘smz
aZb? X :
S N Ria 3
/(b +c)fu (1 _ﬂlnz )\/1 » +c‘ ¢ sinty

PR ( ¢ AfB=8 _“_2‘_”2)
Tavbira  \X g Npiya T at )
an integral of the Third Species.

This integral is needed in the rectification and quadrature of a sphero-
conic.

389. The Simple Pendulum. Dynamical illustration of the real
periodicity of 7.
Consider the finite oscillation of a simple circular

pendulum. Let 6 be the angular displacement of the rod
from the vertical at time ¢, a the extreme value of 6, m the

www.rcin.org.pl
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mass of the bob, a the length of the rod. The line of
zero-velocity in this case cuts the circle described by the
bob at two points 4, A’ between which the bob oscillates.

.
A
Line of zero velocity

(o]
Fig. 38.

The energy equation is
3 ma?6®=mg (a cos 6 —a cos a)

=2mga (s;in2 g —sgin? g)

giving t= %\[ ]
\/ sm2 =—gin? S

2

t being measured from the instant at whlch the bob passes
through its lowest position.

0, Ll s
Let sin 5 =sing 2sing;

2 sin g cos b do

*s O = e e, ;
:;1 —sinzgsinztﬁ

b= ’
\/ j \/1—s1n2~sm2¢
. t=»\/§am_1¢; (mod. sing),

caiponighih (\/g)
2.e. smé-smé sn dt .
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When 6=aqa, and .-. ¢=§, 0=0, and the time to this point,
viz. T, is given by

o «/ j \/1 s:n2a81n ¢ Jﬁjﬁx‘b); (mOd' (o %) ;

and is the quarter period of the whole time of a complete
oscillation. Writing K for F) it appears that the function

¢ ded
fill.cts 29 .
o\./l sin' 2sm2<l>

is periodic and has a real period 4K. Thus F) or K is called
the “ quarter period of the integral F,” viz,

'————L where k=sin &
o1 —k2sin’ ¢’ by §

For an indefinitely small oscillation « is infinitesimal and

K=

T=% \/é' , the ordinary formula for a small oscillation.
g

390. Complete Bevolutions.
Case of the pendulum making complete revolutions.

Line of zero velocity
A A

Fig. 39.

In the case when the line of zero velocity is at a height &
(> 2a) above the lowest point and does not cut the circle

WWW.rcin.org.pi
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described by the bob of the pendulum, the velocity of the bob
is not exhausted when it arrives at the highest point of its
path. The rod then makes complete revolutions and does not
oscillate. In this case the energy equation is

ima?@>=mg[h—al—cosf];

0. 29 rk e
. e YR PAY
= o 2 sin 2)
_2gh(1_ ot ) y
a,nd ——2glb,t= —-——————__.
& \/1—2—asin?g
0 h 2
Let 6=2¢,
J2qh s RO S
7<)
\/1—*smz¢
=F (% \/27“ ,
The time of a half revolution is given by ¢=1
and J2 hFl’ mod. ,\/

=¢=am gght, Sin9=sn .'_29_ht,
2 2a

Ve 81T (sm 4 2——0, ) .

h

391. LEGENDRE'S FORMULAE.

Legendre gives (Exercises, p. 199) a list of results connect-
ing various integrals at once by elementary means with the
first two standard integrals of Art. 371, viz.

0d0 9
[[F=Fe.n [ asw=E@D.
0 A o

These we may usefully reproduce for reference, and they will
furnish a useful set of examples for the student to verify.

WW

ww.rcin.org.pl
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ExampLEs (LEGENDRE).
Prove the following twelve results:

1 J‘ do _ 1 E(O k)— :Zsm()AcosG
[Putting P =W and differentiating, we obtain, after

a little reduction, k’%=A—IZ—:, then integrating we obtain
the result stated.] .

2. J’: SphLe L AF-B)

s. j: L S )

4 j: g fa(A tan 64 k2P — ),

5. j: t—"—“ff—dq = (A tano—E)

ja tan’gdG 0

6. ; b = . 2A tan§+F—2E'.
jasec’gdé) 0

/4] Ty = :2A tan §+2F— 2E.

£

8. j Asec?fdfd= Atanf-+F—E.
0
9. I°Amn=9de— Atan 6+ F—2E,
0
0 o 28, 2 % |
10. j Ny B ’—c—aAsinOcos(9+%’£—E—%F
0

2
A sin?6 df =— 3 A sin 6 cos 9+ 3k’ E+3k2

1442, k2
3k E‘WF'

392. Further discussion of Elliptic integrals is reserved till
Chapter XXXI. Enough has been written to explain their
nature, and the student will be able to employ the notation
when wanted in the intervening chapters.

ey
<

@ O

12 I Acos?fdf= 3AsinfcosO+ —;
0

www.rcin.org.pl
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EXAMPLES.

—sin 0

1. By putting z= 1 e shew that

1 L pe dé 1 1
o-| v sl e ar (o)

and that
1 - sn (w/2) Ly o L ies 1
T 1+ () (mw'ﬁ)’ i “"stnl(lm’ JZ),'

2. Prove that

2 32 2 92 B2
F,(a,k)——(1+ k+;2 22"4"'51?2—%2—21‘64' )

and that Fy(6, i) =1574745 very nearly.
3. Prove that

1 12.3 12.32.5
E,(6, k)=’_2'(1 )

‘?kz‘zi.uk"z’.ﬂ.s*ka‘

4. Prove that

H(Okn)_~[l+( B- n)2 Skt

2.4

1.8.b
2.4.6

1.3.5 Ziate
+ mk‘ 2 4k‘ﬂ+ Ln —n)

+...] ifnbe<]l.
5. Establish the truth of

1 \2 1\2 1 1 2
@ (smut o) +(enus o) (" svem)
cnuw sSnuw
Donuanu_1 1

cnu+sn® snu cnu

@ (my-s )(—-c ) o

—-cnu 1 cny

()l+cnu snw snu
6. Prove that

(1) dn’u—k’cn’u=k’3,

(2) cn’ =1+ tny,
1
@) sn2 +m—“’u'
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7. Prove tha.b

(l) sn2u 2 snucnwdnwu,

+1
(2) sn"ucnudnudu:snp u,
+1
_dnw 1 _,/acnu+b
G a+bcllz¢d1‘_Ja2_bzcos l(a+bcnu)’ a>b.
8. Prove

2 sn v cn v =sin (am % + am v) +sin (am % —am v),
2 cn u cn v =cos (am % 4+ am v) + cos (am % — am ).

9. By putting z=a cos 0, show that
NN
Lw-w o (&7

10. Prove r dz aj/’ ( A :/%)

11. By putting z=aJ l+—z , show that

R AN 1 (x-a? .1_)
Ja4+x4 2" \&@xa 2/
12. Prove that

-" dx 1 _1<x2 a2
‘/a4+2a232008.4a;}i_§&cn Zra’ sma)
13. Prove that

snK=1,cuK=0,dn K=k, tn K=c0.

14. Prove that
(1) ;E (snu+cnu)*=n(snu+cnu)"(cn v —snw)dny,

(k2 sn u + en w)"*1

(2) I(k’ sn % + cn w)" (k2en u — sn w)dn u du = 1)

15. Draw graphs of y=A6 and y=§9, showing that the former

consists of an undulating curve lying entirely below the line =1 and
the other of an undulating line lying entirely above the line y=1.
Take the cases k=4 and k*=1{.

Show that the areas bounded by these curves, the 2-axis,
the y-axis and any ordinate at a point whose abscissa is 6 represent
E(6) and F(0) completely. Examine what happens in the limiting

cases k=0 and k=1.
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16. Show that the complete elliptic integrals of the First and
Second Species may be expressed as

Fl =1“2rf(%’ é‘: 1, kz))
E=ZA-% 31 m),

where f(a, b, ¢, z) is the hypergeometric series
a.b aa+1bb+1

L4dadn e &8 T RN
R DA 0 T v 2l ‘
17. Show by differentiating F(6, k) and E(6, k) with regard to &
dE 1,
M) =5 E-H)
ar iy p k sin 6 cos 6
(2) g =gga(E - K*F) - g2

Hence, eliminating E and F alternately, show that
d?F 1-3kdF ,, sinfcos@
SRl kb T | B hoden
d?E 1-kdE sinf cos 6
(1~ B ¥ g T8 wagr #0;
and for the complete functions F), E,
d*F, 1-3kdF, o
Dbt b i . e S
d%E,  1-I*dE,

(1—]02)7122‘4'7‘ W+E1=0.
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