CHAPTER XVIL

RECTIFICATION (IL).

CENTRAL CoNic, LiMAGON, LEMNISCATE, TROCHOIDS, ETC.
APPLICATION OF ELLIPTIC FUNCTIONS.

566. We have reserved for a separate chapter the consider-
ation of those curves whose rectification needs the employment
of Elliptic Integrals.

567. Rectification of the Ellipse. Arc measured from the End
of the MiNOR AXIs.
If 6 be the eccentric angle of a point z, y on the ellipse
z*

atp=t
we have rz=acosf, y=>bsin 6,
dz=—asin0dO, dy=bcosbdb.
>
B
v P
[a) AT®
Fig. 130.
Hence ds® = (a? sin? 64 b% cos? 6) d6?,
7
and g aj (1—e? cos? 0)¥ dA)

gives the arc BP from the end B of the minor axis to any
point P on the curve.
5717



578 CHAPTER XVIL

Putting 0= %r e

ik :szsmdx=aE(x, e).
(See Chapter XI.)

568. This integral is Legendre's elliptic integral of the
second kind, and is not expressible in terms of the ordinary
circular or inverse circular functions. But its value can be
found for specific values of e and x from the tables
calculated for the function E. Thus, for instancé, the
tables for E corresponding to e=4% give

B(10°) = ‘17431
E(20°) = ‘34733
E(307)= ‘51788
E40°)= 68506 Values extracted from
E(50°)= ‘84832 | tables given in Bertrand,
E(60°)=1'00756 | Cale. Intég., p. 717.

E(70°)=1'16318
E(80°) =1'31606
E(90°) = 146746 |

Hence, taking an ellipse with a 20-inch major axis and
eccentricity 3, the arcs for eccentric angles 80°, 70°, 60°, ... 0°,
measured from B, the end of the minor axis, are: 174, 347,
518, 6:85, 848, 1008, 1163, 1316, 1467 inches to two
places of decimals.

The student should construct a quadrant of such an ellipse
on squared paper, and by careful stepping with dividers round
the perimeter verify this calculation approximately.

The total perimeter of the ellipse in any case is 4aE,,
where E, is the complete elliptic integral. And in the present
case 4 X 14/6746 =587 inches very approximately.

The circumference of the auxiliary circle=207=62:8318,
te. 41 inches longer than that of the ellipse.

569. Approximation.
If an approximate value be required, we may expand the

radical ~/1—e?siny, and in cases where the eccentricity is
small the series is rapidly convergent.
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ELLIPTIC ARCS. 579
We then have
< 1 gl s (e
fon — e2gindly - et R vy — % sin® y —
s—ajo<1 gesin®x—5- zetsin®x—5 .5 celsin®x ...)dx.

For a quadrant the limits are 0 and 7_2r’ and the arc of the
quadrant

Ehea il iibu s B B LGt Vs |
et R e B3 i B BE b Gk 0 B N S AN T T
_ma 1 L 1188 B )
_—2—(1—2—26—22.426—22_4‘2.629—- R

The first three terms give for the above ellipse a perimeter
of 587 approximately.

570. Other modes of procedure may be adopted.

Cartesians.
Keeping z for the independent variable, we have
e S
deotiat g
i Gl e i Py S e
A (% =lta a1t in) amsr g

x
Hence s=I A ,w dax.
oV g2—a?
If we now put z=asin x, where x is, as before, the com-
plement of the eccentric angle, this reduces at once to
X
s=aj JI—e? sin?y dy ,
as before. -

571. Taking the central pedal equation

232
_a-p_f =a2+b2_r2,
rdr rNa24b2—r2
we get s=-‘-/7'2—p2=j\/(a2—r2) e
Putting r2=a?sin? y +b? cos? x,

rdr = (a®—b?) sin x cos x dx,
a?+ b —1?=a? cos® x + b2 sin® y =a?(1 —e€*sin® x),
and (a®—17?) (12 —b?) = (a®— b?)? sin® x cos® x ;

X
. s=aL~/1 —e?sin? x dy.
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572. Taking the focal p-r equation
e

i SN
i rdr___(_rv2—rdr " 2ar—7 .
J b%r N2art—b¥r—r | J2ar—b2—1r?
o
¢ 2a—r d
Putting r=a(l +esin x) this reduces at once to

X
8=aj. Jl——e‘sin’xdx,
0

B

as before.
573. It appears then that aE(y, e), i.e.

X
aLJl—e’sin’x dy,

represents the length of the arc of an ellipse measured from
the end of the minor axis to a point, on the curve, whose
™
37
eccentricity e. (See Art. 567.)
This may be written as

X
J‘o va? cos? y +b%sin? y dy,

eccentric angle is X, the semi-major axis being @ and the

X
QL 88 jole+2lmcos 2x +m2dy,

where l+m=a and l—m=>. And it is useful to be able to
recognise these forms at once, when they appear, as repre-
senting an arc of an ellipse. They occur in many other
rectifications.

574. March of the Second Elliptic Function.
X
The form s=a| V1—e?sin®ydy

for an ellipse gives a very clear idea of the “march” of
the “second elliptic function” corresponding to any given
modulus e, and it is easy to construct a graph of the relation
between x and s by measuring off ordinates equal to the
arc of the ellipse and abscissae proportional to the com-
plement of the eccentric angle.

Taking a=1, the figure (Fig. 131) shows the march of the
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ELLIPTIC ARCS. 581

function for the values e=0, which gives a straight line, viz.
8=y}
X
e=1%, which gives s=j N1—}sin2xdx=E(x, ),
)

and e=1, which gives s=sin yx, the curve of sines.
8
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Fig. 131
It will be seen that for the first 15° the difference of the
ordinates is so small that there is no appreciable difference
between ordinates in the drawings, in fact for e=0,
§='26180; for e=1, s="26106; and for e=1, s='25882, for
x=15°, which only gives a difference of ordinate of ‘0030
between the greatest and least, and the curve s=FE(y) lies
between these extremes. There is much more rapid deviation

Of ‘g = E(x, sin g) from the curve s=sin y after x=;~£.

575. Arc measured from the End of the MaAJor AXIS.
FaaNANO'S THEOREM.

Another method of proceeding gives the length of the arc
AQ measured from the end of the major axis, and incidentally
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a comparison of the two methods establishes a remarkable
result with regard to the difference of two ares, one
measured from 4, the other from B. This theorem is
known as Fagnano’s theorem, being discovered by Giulio,
Count de Fagnano (1682-1760).* It shows that two arcs
of an ellipse can be found in an infinite number of ways,
whose difference can be expressed by a certain straight line,
and really establishes in a particular case the addition formula
for elliptic integrals of the second kind.

7
B \{ y
S 7
(xpy)
2 ab 0.7 1 R
r
83
[e} G A *

Fig. 132.
Take the central tangential polar equation
p?=a%cos?,+b%sin%,

Yr being the angle between the perpendicular upon the
tangent and the major axis; we have

ds &p
e e N+Ip .

Let @ be the point of contact, whose coordinates are
obviously by comparison of the equation, zcos\+ysin r=p,

with the equation ——2+1/~1/2

p b
_a*cos _b%siny,
B G sl S
Also 5= —QY, the negative sign occurring, because in

i
this case Y is on the “forward drawn” tangent from @,
and p is diminishing as v/ is increasing.

* Cajori, Histoxy of Mathematics, p. 241.
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FAGNANO’S THEOREM. 583
Also
A T
jp dy= _‘.\/a,z cos2 v +b2sin? ) diy = “L‘/l —etsin? ) dy,

which is the same integral as obtained in Art. 567 for the
arc BP, y» being in that case a different angle, viz. the
complement of the eccentric angle of P.

Hence, if these angles be taken the same in magnitude,

arc AQ+tangent QY = ar\/ I—e?sin®r dv,
0

T
and arc BP =aj V1—esinrdyr.
0

Thus, arc BP—arc AQ =tangent QY.
This is Fagnano’s result.

576. Algebraic Relation between the Abscissae of P and @).
dp (a®—b%)sinrcosr aZe? .

Now QY=—7-= =— sinyr cos.

Also the coordinates of @ being

2 2
:c2=% cos\, y2=% sin,

and those of P being
z,=asin\, gy, =bcosy,

z a?
7 — 2y A R s g
we have QY =etz, . <0r e* s y1y2>.

6} a?
Hence arc BP—arc AQ=; TTs, (or e? Bs ylg/2>
This result is symmetrical as regards z,, ,, and therefore
arc BQ—arc AP =%2 %y,
as is, of course, immediately obvious otherwise.
Also %lez,,:tangent PY’, if OY’ be the perpendicular on
the tangent at P from O. Hence QY =PY".

Again, (a?—x,?)(a®—x,2) =(a® —a?sin® ) <a2

__a*cos? \I/)
pZ

4 cpg? i
= avy;z— \‘l’b2 sin? = (1 —e?)x,%xy?;

. e 4,2 —al(x,24-a,%) f-at=0.
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577. The ccrresponding relation between y, and y, is
%y, %y, +b4(y,*+y,%) —b° =0,
that is €%y, 2y ,2—b¥(y,2+y,%) + b*=0,
where :2+e’2 1,
¢ being the “imaginary ” eccentricity.
578. THE FAGNANO POINTS.
It will be noticed also that
""11’2 %Y
bB e .
Hence, at the point F on the arc 4B at which P and @
coincide when ¢ is suitably chosen,
x2 yz
e iy s g T
@ B atb atb’
and the coordinates of the point are therefore

higl oy A B T

and this is called the “ Fagnano Point,” * for the first quadrant.

579. Properties.
At this point 7,
arc BF—arc AF:eijz=q-2—a—:,‘E a(—l::b_a b
" =the difference of the semiaxes.
And the length of the projection of the radius vector OF on
the tangent at ¥ is also =a—b.

’ $ g a?e?sin \Jr cos\r
580. The expression for QY, viz. Jatcosty tbiemiy’ may
be written as
—bs a®—b?

va? cosec? s +-b?sectys’ A4F! (@a+b)2+(a cot \» —b tan )2’
and therefore QY attains its maximum when tan = ~/‘ viz.

a—b. The Fagnano point is therefore the point for which
QY has a maximum value. QY varies continuously from
zero to a—b in travelling from B or 4 to F.

* Greenhill’s Elliptic Functions, p. 178 onward.
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FAGNANO’S THEOREM 585

581. If we seek for a point @ upon the quadrantal arc 4B
of an ellipse such that QY, the projection of OQ upon the
tangent at @, is of given length I, where 0<l<a—b, there
will be two solutions, viz. the points P and @, whose positions
are given by the equations
‘ﬁ_az_J‘_bs_,z
P )

r being the radius vector to either of the required points, viz.
OP or 0Q.

r?=024p? and

%
B

0 x
Fig. 133.
Eliminating p we have
(r2—a2—b2) (P —12)+a%h2 =0,
rt— (a2 +-b2 )2+ 12 (a2 +-b?)+a%% =0, ............ (1)
with roots 7,2, 7,2, such that
722 =af 02 R, il (2)

and equal roots when l=a—b and r2=a%—ab--b%
If we differentiate equation (2),
rydry+rydry=1dl.*
If we call BP, s,, and BQ, s,, and remember that

T %:pm_jection of radius vector on the tangent,

viz. | in both cases,

ds,+ds,=dl,
ze. B ) T vt 3)
where C is a constant.

Taking the case when r,=b, that is P at B, we have
r2=a?+40?, and therefore r, must =a and 1=0, for », % a,
so that Q is at 4 ; then s, =0, s,=arc 4B, =0 simultaneously ;

;. C=arc4B;
*. arc BP4-arc BQ =l--arc BA, i.e. arc BP—arc AQ =1,
* See Bertrand, Calc. Intég., p. 380.
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which is Fagnano's result, and the points P, @, in which
the arc AP must be divided to give a definite value { for QY,
are determined by equation (1).

ExAMPLES.

1. Show that if coaxial ellipses be drawn with a given centre such that
the areas enclosed between them and their respective director circles is
constant, the locus of the Fagnano points is a circle of the same area.

2. Show that the locus of the Fagnano points for similar and similarly
situated concentric ellipses is a pair of straight lines.

3. Show that the locus of the Fagnano points which lie on confocal
ellipses is (z’-’f +.7/§)z (xg —3/?‘)= &,
2¢ being the distance between the foci.

4. Show that if # be the Fagnano point on an ellipse of semiaxes
OA=a, OB=b,
2arc BF=akb+a-b,
2arc AF=ak,—a+b,

where E| is the complete elliptic integral of the second kind
5
/o JI=¢¥sinfd dep.

5. Show that the central perpendicular upon the tangent at a Fagnano
point is a geometric mean between the semiaxes, and equal to the semi-
diameter conjugate to the radius to the Fagnano point. Further, that
the radius of curvature at this point is also equal to the perpendicular, and
that the normals at the corresponding point on the evolute pass through
the centre. Finally, that the arc of the evolute is at such a point
divided in the ratio it

6. Show that if a straight rod LA/ of length a+b slides with its ends
on two axes Oz, Oy at right angles and carries a point # whose distance
from L and M are respectively a and b, which thus describes an ellipse,
then at the instant when LM is tangential to the path of #, ¥ is a
Fagnano point on the described ellipse, and the circle on ZM for
diameter passes through the point on the normal at # where that normal
touches the evolute.

7. Show that the tangents at the points P(z, 7,), @ (23, %;) on an
3 o2 :
ellipse 2’2""%2:1’ which are related to each other so that ’%’=%‘?

intersect on a confocal hyperbola which passes through the Fagnano
points.

[Many properties of these points will be found in Greenhill’s Elliptic
Functions, pages 182, 183.] .
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TAUT CORD ENCIRCLING AN OVAL. 587

582. Properties of the Locus traced by a Pointer which pulls
taut an Inextensible String passing round a given Oval.

Taking the case of any oval curve, let 4 be the point from
which s is measured; PQ, P'Q, the tangents at contiguous

Fig. 134.

points (s, ) (s+6s, Y+6y) of the oval; and let a length

PQ=t be measured upon the forward drawn tangent at P,

P'Q =t} upon the tangent at P’. Let the tangent to the

locus of @ make an angle ¢ with the tangent at P to the oval.

Draw QN perpendicular to P'Q, and let the arc Q@ = do.
Then, to the first order,

QN=téy, QN =dogcosg,

and t+8t4-6s=t cos SV +NQ
=t-+d0 cos ¢ ;
GV 0L S-08==COReh 00, dieetieubioonssctanlinY, ELE (1)

If QR, Q'R’ of lengths t’,¢'+dt" be the other tangents from
Q, @ which can be drawn to the oval, and s’, s'+ds” be the
arcs APR, APR’ respectively, and if ¢’ be the angle which QR
makes with the tangent Q@ to the @-locus and Sy’ the
difference of the angles of contingence at R, R’, we have in
the same way, @N’ being the perpendicular upon @R,

Q'N'=t'8y, QN’'=dascos¢,
t'+8s'= 8o cos ¢’ +t'+3t’,
to the first order;
o O =08 2= — COBIP 8w tin adiissiaesansniin (2)
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If the Q-locus be such that the tangent at @ always
bisects the exterior angle between the tangents from @ to
the oval,

¢=¢ and QN=Q'N’=dosin ¢ to the first order.

Therefore 8t +8s8-+6t'—48s'=0, }
and Loy =t oy’

These equations give

1dt 1d' p p

i TrayT T ,
) dlogt dlogt’ _p' »p
ne. &y -+ s e S el stk (3)
and also t+4+t’'4s—s'=constant. ....ccecevearenneniss 4)

Equation (4) expresses that in such case
QP +QR—arc PR=constant,
€. QP +QR-+-arc PAR= constant.

In this case the Q-locus is an oval traced by a pencil at Q
which draws taut a loop of string placed round t'is original
oval,

583. Dr. GRAVES’S THEOREM.

The case when the original oval is an ellipse and the
Q-locus is a confocal, when the necessary property holds,
viz. that the tangent to the @-locus bisects the exterior angle
between QP, QR, gives the well-known theorem due to Dr.
Graves, viz.

If two-tangents be drawn to an ellipse from any point of
a confocal ellipse, the excess of the sum of these two tangents
over the intercepted arc is constant.*

Incidentally, we have a method of drawing an ellipse
confocal to a given one.

584. If the Q-locus be such that its tangent bisects the
interior angle between the tangents QP, QR, as it would
do in the case of an ellipse and a confocal hyperbola, and
if we measure s and s’ in opposite directions from the

* Salmon’s Conic Sections, p. 357 ; Graves’s Translation of Chasles’s Memoirs.
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THEOREMS OF GRAVES AND MACCULLAGH. 589

point A. where the @Q-locus meets the oval, we have, in the
same way,
QN={osingp=tdyr, QN'=dgsing¢'=tdJ/,
NQ'=dacos ¢, N'Q=docos¢';
sud ,t+8f‘+6ac°s ¢=‘t_)—&’ }to the first order;
t'+8s8"+Ja cos ¢’ =t'+6t,
and when ¢=¢’, we have dt—dt'=ds—ds’, and tdyr=t'dy/,

so that d‘l;:ft——%i=;—’—%,

and also t—s=t'—s’+const. ;

also, as t, t’, s, s all vanish at 4,
t—s=t'—s',

s.e. tangent QP —arc AP=tangent QR—arc AR.

/

Fig. 135.

MacCuLLAGH’S THEOREM.

For the case of the ellipse and the confocal hyperbola,
where the condition ¢=¢’ is necessarily satisfied, we have
the following result.

If tangents QP, QR be drawn from a point @ on a hyperbola
to a confocal ellipse cutting the hyperbola at 4, the difference
of the tangents is equal to the difference of the arcs AP, AR.
This theorem is due to MacCullagh.*

* Salmon’s Conic Sections, p. 358 ; Chasles, Comptes Rendus, Tom. xvii.
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585. Deductions.

If we draw tangents to the ellipse at the extremities of
the axes, the particular confocal to the ellipse which passes
through the corners of the rectangle formed cuts the ellipse
in the Fagnano points, and if @ be the intersection of tangents

B Q

Fig. 136.

at A4 and B, and F the point in the first quadrant where the
confocals cut, MacCullagh’s theorem gives
@B—QA=arc FB—arc FA,
and if the semiaxes be a and b, we have
arc FB—arc FA=a—b,
which is Fagnano’s result.

586. From the theorem of Dr. Graves it appears that if
Q,, @, be any two points on the confocal and Q,P,, Q,R;;

Fig. 137.

Q,P,, Q,R, are the corresponding pairs of tangents to the
original ellipse,

Q.P,+Q,R,—arc P,R,=Q,P,+Q,R,—arc P,R, ;
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THEOREMS OF GRAVES AND MACCULLAGH. 591

and therefore that the difference of the arcs P\R,, P,R, is
(QIPI +Q1R1)_(Q2P2+Q2R2)

and is therefore rectifiable in terms of known lines.
The particular value of the constant to which

QP+QR—arc PR

is equal may be found by taking @ at a specified point on the
confocal, eg. where it cuts the conjugate axis.
And a similar result follows also from MacCullagh’s theorem.

587. Exactly in the same way, if @ be a point on the ellipse
and QP, QP’ be tangents to the same branch of the hyperbola,
it will be clear that

QP— arc AP=QP’— arc AP’,

for the tangent at @ still satisfies the requisite condition, namely
that the internal bisector of the angle PQP’ is a tangent

Fig. 138.

to the ellipse. And the difference of the arcs AP, AP’ is
therefore expressible as the difference of two straight lines
and is rectifiable. Moreover, if @, be another point on the
ellipse, such that tangents QP,, @ P," can be drawn to the
same branch of the confocal hyperbola, the difference of
the arcs PP,, P'P/ is rectifiable. In order that the point @
should be such that tangents can be drawn to the same
branch of the hyperbola, such point must obviously lie in
one of the regions between the asymptotes in which the
hyperbola lies. In the limiting case in which QP is an
asymptote, the difference of the infinite portion of the

www.rcin.org.pl
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asymptote QP and the infinite arc AP is finite and equal
to the difference of QP" and the arc 4P, @ being now
at the point of intersection of the asymptote with the
ellipse.

2 2
588. Rectification of the hyperbola ‘/;%— %: i A

Let C be the centre, C4 the semimajor axis, s the length of
an arc AP measured from 4 in the first quadrant, CY the
perpendicular p upon the tangent at P.

4

-4

v

Then p=x cos \+y sin - touches the curve if
p*=a?cos® r—b%sin®r=a?(1—e? sin% ).

In the case of the hyperbola, when P lies in the first
quadrant, v~ is the angle 2C'Y and is negative, and as s
increases from 0 to «o whilst P travels along the arc from 4,
Y travels from 4 towards C along the first positive pedal
curve r2=a?cos? @ —b2sin? 0, which becomes a Lemniscate of
Bernoulli when b=a, i.e. when the hyperbola is rectangular.
The angle v therefore remains negative, and as its actual
magnitude is increasing  is algebraically decreasing and
an increment dyr is negative. When P has travelled to
© along this branch of the curve the limiting position
of YP is an asymptote. The tangents at the node of the
pedal are therefore the perpendiculars to the asymptotes of

Fig. 139.
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the hyperbola, coinciding with them in the case of the
rectangular hyperbola and its pedal r>=a? cos 26.

Let us find the length of the arc 4P from 4 to a point P
for which yr=—x.

ds _dp,
We have d\l/ p+d\[/2 and t_n,
therefore, integrating,
o
=I P d\[/.
o

Now ¢= :ii L is the projection of the radius vector OF upon
the tangent =PY, and is positive.
—ae®sinr cos» _ae?sin  cos x
J1—e?sin?y,  A/1—e?sin®y

P
v X X y
and Ipd\b: j \/l—ezsinzxpd\[r=—a.“. v1—etsi (dy;
o 0 ]

X
', are AP=PY—aI v/1—e?sin? y dy,
0

: @e? sin y cos J"‘ a5 s
2.e. e —e2 2
7 e ey Bl
X
or PY —arc AP:aI N LEeRRIN 20l ecyionds S dosks 1)
o

‘This integral is not of the Legendrian form at present, e being
essentially greater than unity.
If P be allowed to travel to oo, x ultimately becomes

tan—l% (i.e. %-mn’lg>.

Hence the excess of the infinite asymptote Coo over the
infinite arc 4o is

tan ™ P
aj /1 —¢?sin? X dx.
0

It is easy to reduce the integral in equation (1) to two
integrals of Legendre’s standard form.
Let e sin y=sin e.
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Then e cos x dx=cos  dw, and
X
LJI —e?sin? y dy

1 1Ee cos? w dw
T e

j
——gin
1, 1 easm‘”
(1) +(-f)
=€ 1 &0
° x/l—e—zsinzw 4

T 62__1 w d(l) '@ —_T__
_e[—— e—zj ﬁ—{—ja x/l—;sm%:d«;]
]—e—,lsmzw
0

—e < —cos? aju;——-dw:- +I:J 1—sin®asin e dw),

ov/1—sin2 g sin®

2 2
where cot a=é , e k. —*;b =cosec? q,
a a
and a is the complement of the half angle between the
asymptotes.
Hence,

Arc AP=PY +-ae[cos? a F(w, sin a) —E(w, sin a)],

F and E being the Legendrian standard integrals of the first
and second species, whose values are tabulated for particular

values of the modulus sin ¢,  being sin-! (:;2 X> in the
a

upper limit and PY, written in terms of w, being

-2 _tanw./I—sin?asinfe=aectanw A (Mod. l),
sin a e
where A= ,\/ 1 —12 sin’w,
e
i.e. Arc=ae{tan wA+ cos? a F(w, sin a)—E(w, sin @)}. ...... (2)

589. In a rectangular hyperbola a=g, e=+2, and we have

s T ()5 )
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ExAMPLES.

SH, 4 B e b g
1. In the hyperbola z—z—'z—z=l, put a=btan a, A=~/1 —sina sin?¢, and
show that we may take x=0tan asecp A, y=bcosatan ¢, and that
ds _bcosa b
d¢ Acosi’ N ™
and s=bsecatan pA+bcosa F(¢p, sina)—bsec a E(ep, sin a).

2. From the polar equation 7*=a?sec 20 deduce the rectification of the
rectangular hyperbola, viz.
s=a~2[Atan w+3F - E].
3. If PQ be a chord of one branch of a hyperbola, touching a confocal
ellipse at #, and the confocal cutting that branch of the hyperbola at 4
and B, and if PR, @8 be the other tangents from P and @ to the ellipse,

show that the elliptic arcs AR, BS exceed the elliptic arc AFB by the
excess of the tangents PR, @8 over the chord P, 7.e. that

arc AR+arc BS—arc AFB

is rectifiable in terms of known lines.
In particular, examine what happens :

(1) When F'is the vertex of the confocal ellipse.
(2) When F/is at B.

(3) When PR and @S are at right angles to ¢ and F the vertex
of the ellipse.

590. Another Method of Treatment for the Central Conics.
Use of Hyperbolic Functions.

In the case of the central conics it is instructive to consider
another mode of treatment of the rectification.

The relation z+y=csin (u+w)
gives z=csinucoshv, y=ccosusinhv

Then v=const. is the equation to the ellipse

x2 yz

i)

c%cosh?v I‘ c*sinh?v
and u=const. is the equation to the hyperbola
[ TG Y
c?sin?u  c2cos?u
and different constant values of v and u give confocal ellipses
and hyperbolae.
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Now ‘?:cos u cosh v du+-sin  sinh v dv,
dy : A
—=—sinu sinh v du--cos u cosh v dv.
Hence
ds?

—c?=(cos’ % cosh? v+-sin? u sinh? v) (du-++dv?)
={(1—sin?u) cosh? v+sin?u (cosh2v—1)} (du2+dv?)
=(cosh? v—sin?u) (du®+ v2).

Hence, for any of the family of the ellipses v=const.,
d?“"=~/co.~zh2 v—sinfudu ( =const.);
and for any of the family of hyperbolae u=const.,

t-lgs=~/ cosh? v —sin® u dv (u=const.).

591. In the case of the ellipse a?%/a?+y2/b2=1,
a=ccoshv, b=csinhv, c2=a®—b®=a?%?
where e is the eccentricity, and .°, e=sech.

And ds=av1—e*sin®u du,
s=arJ 1—e?sin? u du=akF (u, €).
0

In the case of the hyperbola 22%/a®—y2[b*=1,
a=csinw, b=ccosu, and c2=a%}b%=a%? e=cosecu.
With the notation of Art. 589, in which

V=—%, siny=sinusinoe,
we have

cosx=+1-sin*usin’p=A and ¢=PY=ctanwA.
The line 2 cosyr+ysinyy=p is tangential, provided that
Pt =a’cos?\y — b’sin
=c2sin%u A2 — c2cos?u sin?u sin%w = c?sin®u cosw ;

. P =csin % cos w.
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The point of contact P is given by

2
a?cos
Wy =ccos?u tan w,

z= =csinuAsecw, Y=-—

b’sin
P
and, as these are to be ¢sin u cosh v, ¢cos » sinh v, we have
coshv=Asecw, sinhv=cosu tanw.
It follows that cosh v dv=cos u sec’w dw,

cos u dw
dv=- "
A cos w

%e.
Again,
Jcosh?v — sin?u =+/AZsec?w — sin®u = cos w sec w.

8 :
Hence i ~/cosh2v — sin?u dv

sec? @
=cos?u A dw

= A tan w+cos?uF— E (mod. sin w)
by Legendre’s fourth formula, p. 399 ;

*, Arc =PY+ae(1 “glé)F(“” sin u)—aeE(w, sin u),
the same result as before.

592. The Lemniscate.

The equation is r?=a?cos 20 ;
dr
we have at once /Y —tan 20;
whence d—o—rsec 29_Jc:s TR
j B )
=a| ——.
o/cos 20
Put cos20=cos®¢; . .. dO= smzlc__%;ép_di;
=aj¢ singpcospdp d¢
ocos p /I —cosid oJ2——sm’¢

B AL Pt il A
—J§joJ1—}sin2¢—J§F(¢’J2 i

or J§ am~! ¢,
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Hence am '5':/_2 =d,
st

cn_=cos¢

Rt 1
S—Jé en~t o, mod. 7
Here s is measured from the vertex.

We might have expressed 6 from the beginning in terms
of 7, and then 1 g
0=35 cos! —,

2 a?

Hence

MRS, R

ar Jat =’

ds a? zr dr
_— e ———— S=a —————;
dr Ja,*—r‘ rafat—rt

then putting r=a cos ¢ the work proceeds as before.
For the whole length of the arc, we have

4a (® d o 1
%) - WER, mod 7.
The tables for F, (Bertrand, C.I. p. 716) give F,=185407,
whence  whole arc=2a./2 x 185407 = a x 5:2441.
We might, however, proceed as follows:
T do

3 o Ncos 20

Putting 260=w, we have

= 2af (cos w)~} do=2a r(2i1)"(l“}()}) ;
0

It will be shown later (Art. 872) that
T'»)T'1—n)==

sinnr’

where n is less than unity. Borrowing this theorem for

present purposes, TG = _7|-_; L

sin —
4

Y T T
! Per1meter—2a[ ;93/;/ J27r [T(})P=Fka, say.
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The values of the I' functions are calculated. Tables of
these values are given in Bertrand’s Caleul Intégral, pages
285, 286, to seven places of decimals from Log I'(1) to
LogI'(2). As the values of I'(z) from I'(1) to I'(2) are
all fractional, 10 is added to their ordinary logarithms for
convenience of tabulation, as is usual in tables of logarithms
of sines and cosines. (See Chambers’s Mathematical Tables.)

Now I'H=1T®),
and LT})=LT(%)+log 4,
where L denotes the tabular logarithm,

= 99573211 from the tables of L I'(z).

+ 6020600

1056593811
2log I'(})= 1-1187622

log2  =3010300
logz =-4971499

log 27 ="T981799

log/27= 3990899
logk= -7196723
log 5-2441= 7196710
13
Difference for 1= 8
50
50

log ~/27=13990899

Hence k=5244116.
Hence the whole perimeter of 72=a? cos 20 is, as before,
5244116 X a.
593. Incidentally, it may be remarked that the equation
5/2

r=acn ——
a

Fig. 140.
for a lemniscate gives a very good idea of the graph of the

functions en and en—! for the case mod. % and we can readily

WW\V
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draw a graph, taking, for instance, as unit length % on

the z-axis, and any convenient unit on the y-axis, say a, and
constructing the curve with abscissa s and ordinate .

axis of

,lP
M : axis of s

o[ =& N

a

Fig. 141.
The ordinate shows the march of the function enz, the

abscissa the march of en~'z.

EXAMPLES.

1. Find the length of the arc of a lemniscate r’=a%cos26 from

{ ™
#=0to 0=(_i k
Here
Wi, d L $ b ads Tl S
s—ﬁf:Jmﬁ, and k—~/§, oS’ 4>—cos3_§, ¢_4,
and from the tables for F(¢, é), (Bertrand, Calcul Intégral, p. 716.)

k.4 d‘#
—t_——="82602 ;
j"-‘\/l —4sin’¢p
- s=an2x 41301
=-5841a.

2. Find the area of the curve y’=1 _1 = for the portion in the first

quadrant. What connection is there between this problem and the
evaluation of the perimeter of the lemniscate ?

3. Draw a careful polar graph of the lemniscate 72=25 cos 20, taking
one inch as unit of length, and deduce a Cartesian graph of

y=5 cn'%§ (mod. ~7l§).

4. Show that the difference between the lengths of the asymptote and

the infinite arc of the hyperbola #2/a?—y2/b2=1 in the first quadrant is
wafile Vi X 280 3 %38 .20 LA R DA o L ]

i—=3 s te i dtrrestases at )

(@)
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594. The Limacon r=a-+b cos 6.
2
Here 3—;= —bsin@ and (%) =a2+42ab cos 6-+b%;

(]
s=L~/a2 +2ab cos b2 dO

~J N atbp—sabsinsZdp (et 624

W 4ab
=2(a+b)LN/ 1—k?sin® ¢ dg, where k2= (@b’

=2(a+5) E(9, %“/fg .

An obvious modification will be necessary if a and b be of

opposite sign.
This curve very well illustrates the march of the second
elliptic integral E. The arc AP measured from the vertex

Fig. 142. For the case ¢a=>b.

is proportional to E, whilst ¢ is half the angle AOP. See
also Art. 574.

The result shows that the arc AP of the limagon is equal
to the arc of an ellipse of semi-major axis 2(a+b) and

eccentricity 2*/__;.“:, measured from the end of the semi-minor
a

axis to a point on the ellipse for which the complement of

the eccentric angle is g (compare Art. 573). The semiaxes of

the ellipse in question are then 2(a-+b) and 2(a—b).
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This would also be evident upon writing

9
LJ a?+2ab cos 6 +b% d9

0
as L \/ (a+b)? cos? g +(a—b)? sin? g do

¢
=.[ J(2a+b) cos? ¢+(2a—b)sin® ¢ dp, where 0=2¢.

595. Ex. Conslder the case of the limagon in which %—Z"'j% for the
portion from 6=0 to 0=§.
a+b_ 2 g 4ab 1 10 GRS .
Here F g by and % =@y /c—§—8m ®

1=2(a4b) [ NTETE G dp

=8a(2-~/3)x 51788, from the tables for Z (¢, 3),
=111012 x a.

The limagon is of course the focal inverse of a conic, and when a=5%
the cardioide is the inverse of a parabola.

596. Trochoidal Curves. (See Diff. Calc., p. 344.)

1f a be the radius of the fixed circle, b that of the rolling
circle and the carried point P be at a distance mb from the
centre of the rolling circle,

x=(a-+-b) cos 6—mb cos —— a+b
+b

=(a+b) sin 0—mb sin o 0.
Hence g—g ~(a-+b) sin O +m(a-b) sin —— . +b 0,
Z%: (a-+b) cos —m(a+-b) cos Z_b 8;

@) =(a-+b)* (14m?)— 2m(a+b)* cos —9

b)2 2 6
=(a+b)*(1+m) [ ik +m)2 cos? ‘;b

ab =
Tt .. LTt R
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2b X 2/m
Then s= 2 @ +b)(1+4m) LJI —k?sin? x dx, where k=1—+—m,

=2t b)(14+m) E(x, B,

where s is measured from the point at which x=0, s.e. 0=l%r,

s.e. from a vertex V, as in the case of the epicycloid (Art. 540).

Fig. 143.

Hence again we can find the length of any desired portion
by means of the tables for Legendre’s elliptic integrals of the
second form ; or, which comes to the same thing, such length
can be expressed as being equal to the corresponding arc of an
ellipse, measured from the end of the minor axis, the semi-

major axis being %—b (a+0b)(1+4m), the eccentricity being
a=—]2%’;n-;& , and y being the complement of the eccentric angle
at the end of the elliptic are.
For a circle, when m=0,
=2 (atp) X=(a+b)(0—’%b) +consk.
For the epicycloid, when m=1.
4b

4 - 4b ab
S (a@+b)sin x= T(a+b)cos %+const.

which agrees with the result of Art. 540.

www.rcin.org.pl
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We might use this curve, like the ellipse and the limagon,
to construct a graph showing the march of

X
joJl“— TEsint x dy
2/m

for any modulus k=m..

597. The Cassinian Oval.
The bipolar equation of this curve is rr,=b% (See Diff.
Cale., Art. 458.)

f ¢ P ¢

A

BI

Fig. 144,

If 8,, S, be the foci, S,S;=2a, and if the line of foci be
taken as z-axis and its centre O as origin, the equivalent
polar equation is

r¢—2a%2 cos 20 }-at=>b"

Three cases arise :
(1) a>b, two separate twin ovals with vertices distant

Ja® b2, Ja®—b® from O.
(2) a=b, reducing to Bernoulli’s lemniscate.
(3) a< b, one single oval lying outside the lemniscate,
which may or may not possess inflexions.
The equation may be written

4. He
r’+a ,.zb =2a? cos 26.

Take an auxiliary angle ¢’ such that

4__ 4
2+ b—r,l=2b2 cos 26'.

www.rcin.org.pl
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Then r2=q?2 cos 20 +-b2 cos 26,

4__He
. ,zb =a? cos 20 —b? cos 20’ ;
*. a*—bt=a*cos®20—b*cos 226,
or atsin2 20=>b*sin® 20/,

v.e. the auxiliary angle @ is such that
a®sin 20=>b*sin 26

Differentiating the original equation, we have
rdd  r*—a?cos20

dr a’sin 20 °’
Bl e L
dr at sin2 20 sin220"’
b2 V@R V@R gy
A as bJ"’a_b’ dr a]"’m dr
vt rec vt | S e

where u=cos 20, wv=cos20".
We shall adopt the first or the second forms according as

ais > or <tha,nb
Ja b .
Let A=""y— (a<tb), =cos 2a, where i=sin 2a;

e
,u—_b— -, (@$b); =cos2B, where @ _sin 28.
b? b?

r*+at—bt
In the case a4 b, u=cos20="—5 35—,

72 a? :
SN T=2u;
el B Lo
L A =2V
T a2=V3u=x;
a r
g r=\% (Vutx+Vu=2),

d d
e ey

www.rcin.org.pl
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. a =_b= 1 d: W u
bt L 2~/2Uu~/(l~—u2)(u+/\)+L~/(l—u“)(u—k)]

=é|: ( sin § , CoOsa +sn—1<:ig z , 8in a)]

\COSa
Pbt—at
2% °

In the case a $b, v=cos20'=

2 2
z_z"l"ﬂz %=2’U,

4

and the work proceeds precisely as before, interchanging
aand b, v and v, 6 and 0, A and u, a and 3, on the right-

hand side of the values of %8 z

’ g s—g[sn-l (22 g , €o8 ,6) +sn—? (Sm ¢ sin ﬁ\]

where 0'=4sin~Y(sin28sin20) and sin 2,8= 5—2

The arc is in both cases measured from the vertex, where
r=x/a®+b%

598. In the case of the Lemniscate,
a=b, 72=2a®cos20=c?cos206, say;
then 6 =6, and either case gives

8=2 i) sn"‘(ﬁ sin @, :/l-é)
: chyi e (Jf_m—(), J2> _cn (~/cos 26, N“/lé)

e KR G § g
—ﬁcn (c’Jﬁ)’ as in Art. 592.

599. It is a very instructive process to perform the same rectification
first expressing @ in terms of ». We have

sin?20=1— (r‘ ;;1;; b4)2

= (r2 42+ B2)( = 12+ a2+ B) (2 — a2 + B2)(r2 + a? - B2) /datrt
=[(a2+b2)2 — ][4 — (a2 ~ B)%] Jda¥r*.
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~32
21 2 2_
Let r=va?+b®u and A= —’—-55

the positive value to be taken.
sin 20=(a?+b2)W/(1 —u?)(uf = X9)/2a%u?,
and dr=Na*+b%du;
PR it u?du
Var+ b2 Ju (1 —uf)(ut =A%)
Again, (1 —u®)(ut—A%)=[(1—2)(u®— A*)][(1 +u*)(u?+A%)]
= [0+ X9t = (4 AL+ At (4 A9)]
=(1+ A2t — (ut+ A2)2
=L+ AT ut(1 ~ %),

4 +2M =(1+A?)w.

where
This transformation gives

u’-i-——(l +A%v;
; u+;=~/(1 FAZ o+ 22X,

u—$=~/(l+)\’)'v—2h,

2u=v({1+A%)v+2A +N(1+A%)v - 24,
4du dv + dv g
NTEA A
Vorrim Vo-irm

L ATER
_x/a“+b"J.,,(1+)\’)\/l—v' 4

bl
M V) +)C=

g o paers e com el

3 dv
N tegral of form 1= f TS/
ow an integral of form RV oTer e
once into the standard Legendrian form as follows (Art. 388, 4) :
Put v+c=(1+c)cos®¢p.

can be converted at
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Then
9 —2(1+c)sin ¢ cos pddp
o VI+0—(L+0) cos* GH(L — )+ (1 +0) cost GI(1 +0) com'
ot de
_2f A/?—(l+c)sin’¢

=/
2f Vl —— sin’¢c

and as in our case ¢=+

l i /\,, it is numerically less than unity and

% is positive and less than unity ; ‘

. ¢p=am(I/~2), mod. 1+c

v+c.

cosp=cn(//N2) and I= fc“_l\/1+c

Hence, finally, we have

L b? i 1+A2 1
MRV rw s e \/1 R \/( 1+)J)

O

)
)

{ (u+é > <u—
x Jen—1 v 4 Al =
X J2(1+n) -X ./z(1+A’)
— b’
V2@ ) + (@~ BY)

(e o)
I\ T P\ T J(a- =)

the respective moduli being
NOTBE VA~ VAR -Na T
V2 V(a*+5%) + (a*~ %) V(@ +8) + (2~ ?)

For the twin-loop curve a>b,

: rp Vet =¥ ,_Nat=b 1
Ly oo - +en™! - :
2a Nat+ b2+ Na* - b Ja'+b'—~/a’—b’J

=
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with respective moduli

VAT 02 +a =02 NaP+b*—~a®—
: |

2a 2a
For the single-loop curve a<d,

r+«/b‘-—a“ r_«/[?‘—?
s—é cn~! - +cn™! £ ,
P Nb¥+a?+NbE - a*

Y o
with respective moduli

NiEFat+aAbE—a? b 4a—Ab2-a?
2b 3 %

600. The expressions written in this rectification are less simple than
when written in terms of @, as in Art. 597, but can readily be reduced
2

In the case a>b, let sin 2a.=b

W
Also cos 2a='\/1~%,

2 then 7% —2a%r? cos 20+ a® cos? 2a.=0.
: N B —aJa? - b?

sing=——_—————

2a

2 2 2 _ 5%
conp NI B ANE T
2a

o at— bt H_a”cosZcL
-1 £ =CN "] c———
and cn NP en g
4 2
\/cos 2a+r‘____+a ;:o:! Ly
Sl s 2a%r
~2cosa
___yNcos 2a+cos 20
N2 cos o
'3 cos?a — sin%6 _1fsin 0
wEXN e, " \ema)
Similarly,
\/a‘
—=gn™1 sin 0)
«/a’+b’ ~/a’ b2 (sin a/)
Hence a>b,

a—»b—’ l:sn—‘(sm E cos )+sn-‘(Bin
~ 2a cosa’ ¢ sin
Also for the case a< b, since

4
r'+b—,—-—2b'coq 20" (Art. 597),

g, sin a)],

as before.

+§coTi2_B=2bi(1 —25in?0);
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3 (r+b—: cos zﬁ)2=2b'(1 ~25in?0’) + 262 cos 23

=44%(cos® 3 —-sin?0’) ;

r—'—b’ cos2f3
¥ sin® @’

=
2b cos B =V1_cos’B’

2 in6’
ke ook 23_8,,-1(::): ‘/’8 , cos B)*

2rbcos B
2 _p2 1 e
Similarly, cn“r2’f;%s§'§=sn’l (::3 % , sin B),

5 sl a=éJ sn“(f%s%. cos B)-i—sn"(%—%, sin ,8)],

where 0’=4sin™* (sin 23sin 20), the result of Art. 597.

601. Serret’'s Method of Rectification of a Cassinian.

A different method of rectification of a Cassinian Oval
is given by Serret* connecting two arcs measured from
different vertices of the curve, and expressing these ares
directly in terms of 6.

In the twin-oval case a>b, let A and B be the vertices of
one of the ovals, and let a radius vector OQP be drawn

Fig. 145.

cutting that oval in Q and P. Let the vertex A be the one
furthest from the centre 0. Let arcs AP, BQ be called
8, 8, respectively. Let b2=a?sin 2a.

Then —2a212 cos 20+ ad = bt,
Solving, 7%= a? cos 20 + a%/cos? 20 —cos® 2a,
the upper sign giving OP2, the lower 0Q2

* Calcul Intégral, p. 265.
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day i Bl
Now, as before, T N e o)
ds, b? b* y
s r d9 =t aeos 20~ " a?y/cos? 20 —cos? 2a’

. ds, _b° Jeos 0+ /cos?20—cos? 2a
df e Veos? §—cos? 2a
the positive sign being taken as s, increases with 6.

Similarly 382 L +/cos 20 —/cos® 260 —cos?2a .

g

0 Jeod? 20 —cos? 2a
( 1, 95 > b* 2(cos 26+ cos 2a) _ 1
do a? cos?20—cos? 2a a’ cos 20 —cos 2a
d (ds1 cis_2> b* 2(cos 26 — cos 2a) _ 2b* 1
i d0 ~dB/ ~ a? cos?20—cos?2a  a? cos20+cos2a’
Hence
b2 j‘“ de b2 j“’
= — 2 E— R 0 )
1% J_ 0 »/cos 20 — cos 2a o+/sin%q —sin20
b de ks J' 0 dp
Bog 0 /c0s 20+ c0s 2a @ Jou/costa—sin2
In these iutegrals put szn O=sina 31.n ¢ respectively.
and 8in 6= cos a sinr
o E AR, e
Aes L Ra i M = e sin?g’
A b2 I it Mgo
2" a Jo J/T—costasin®y’
.. $=am z5 (sl +38,), mod. sin a,
Y =am :—2 (8;—8), mod. cos a ;
sin 6 sin 0
i Slll a =8N 535 bz (81 +82) s bz (81 82) )

b? (siné‘ "
‘. 8+ 8=—sn1(— sma)
1+ 2 a na’ ¢
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s |:sn—l (S_illﬁ’ sin a) +sn-1 (?:i)n—z, cos a)],

12 sina

b? sinf . sin 6
%=1, [sn-1 (sina’ sin a) —sn—1 (cos p cos a):l
the former of these being the result previously obtained.
Reducing in the case of Bernoulli’s Lemniscate, we have

a=£, 7?2 =2a? cos 20,
s;=asn"y/2sin 6
1
=a e/ cos 26, mod. TE > ‘

=acn-! a,sé’ as in Art. 598.

602. The Single-loop Case.

In the one-loop case a<b, the same method cannot be
adopted, and M. Serret considers the arcs traversed by a pair
of perpendicular radii vectores 0P, 0Q, starting from the ends

Q9 P

P

Fig. 146.

A, B of the two perpendicular axes. Let the arcs AP, BQ
be respectively s and o, and let a®?=>5b%sin2B. Then, solving
as before,
r4—2a%7r? cos 20 + a* cos® 20 = a*(cos? 20 + cot? 23)

and r2= q? cos 20 +a? J/cos? 20 +cot? 23,
and the positive sign must now be taken.

Also, as before,

ds b? ds _ b2 J/cos 20+ /cos? 20+ cot? 23

rd0 r*—afcos20’ dB” a Vcos? 26 +cot? 23
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Writing 9+7_r for 6,
do _ b2 v/ —cos 26 ++/cos® 20 + cot? 23

H

b~ a Vcos? 26 +cot? 23
ds +dcr) 2b4 /c0s? 20+ cot? 23+ cot 23
a0 ' dé cos? 20 +cot2 28 )
e ds _@)2 _ 2b* Wcos? 20 + cot?28 —cot 23
do do/ — & cos? 20 + cot? 23 :
In each of these change the variable to 6, where
sin 20 = M , and therefore cos20df= 008.29 g’ :
sin 23 sin 23
Then
y S 2o 8in*20" cos®20’
cos? 20 +cot?28=1+cot?283 Sn29B = snt 98 38"
Then

( ds +da- )2 2b* cos 29" + cos 28 cos® 26’ ;
a9’ " dy’ cos® 20" sin28 . sin*2¢’
sin® 23

_2b* cos 26’ +cos 23
= a? sin?2B—sin? 26’
_ 2t sin 23 b* sin2B

= a? cos20'—cos 2B af sin?B—sin®0’

sin 23

Similarly
(i{ _dl) 2b* sin 23 b* sin2B
‘\do’ do’ a® c0s 20 +cos 2B at cos’B—sinZg”’

’I:.G. = i 2 -"-———:,
e vl Jsm 3 /sin?3—sin%6’
B = do’
S S W
In these integrals put respectively
sin@ =sin Bsing and sinf’ =cosBsiny,

2
and remembering that sin 28= %2,
R
v i Jl—sm’,B sm2¢

ik - o s -l
2 a—bJ.O J1—cos?Bsin®y’
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. ¢=am s—go-,
. 8in@’" 8+o‘ sin()'_sns—a-,
] smﬂ b’ cosB '
s+o= bsn‘l( ,sm,B) 8—o= bsn“( s B’ cosﬁ)
whence

=gt (Gag np) vt (5 o)}

om3 (828, ) (22 )}

where 0’ =% sin~1(sin 23 sin 20).
The first of these was established in Art. 597.

603. The Elastica or Lintearia.

This curve is of considerable importance in various branches
of Physics. It is (1) the form assumed by a uniform originally
straight elastic rod bent into a bow by a bow-string, or by equal
thrusts at its extremities, 7.e. it may take the form 4BC or

B E
A (I € G
Fig. 147.
ABCDE, ete., according as the string is tied at 4 and C, 4 and
E, ete. This is called an undulating elastica. When the bend-
ing is slight, the form is approximately the curve of cosines
(E. J. Routh, 4nal. Statics, vol. ii. p. 281, “ Bending of Rods ).
(2) It is the form assumed by a flexible thin rectangular
sheet, two of whose opposite edges are fixed horizontally at

Fig. 148.

the same height, the flexible rectangular sheet forming the
base of a rectangular box with vertical sides into which water
is poured, the material being supposed impermeable for water
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ELASTICA OR LINTEARIA. 615

and the base fitting the sides so closely as to prevent appreci-
able escape of water. From this property the second name
arises (lintearius =made of linen).

(8) The curve also occurs in the case of water drawn up
by capillary action against a partially immersed vertical plate.

Fig. 149.

The curve may assume various shapes according to the
physical circumstances occurring. It may undulate, or there
may be any number of complete convolutions forming loops and
nodes. Such cases are exhibited in the accompanying figures.

Fig. 150.
Fig. 151,
Fig. 152. Fig. 153.
Fig. 154. Fig. 155.
Fig. 156.
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604. The determination of the nature of this curve is due
to James Bernoulli (1654-1705).

For much detailed information as to the curve and its
physical properties, the student may consult W. H. Besant,
Hydromechanics, pages 168-171, p. 194, p. 201, ete.; G. M.
Minchin, Statics, vol. ii. p. 204; E. J. Routh, Analytical Statics,
vol. ii. p. 283, etc., “ Bending of Rods”; Sir A. G. Greenhill,
LElliptic Functions, p. 87 ; and the article on Capillarity in the
Encyclopaedia Britannica, by the late Sir J. Clerk-Maxwell.

605. The stress couple at any point being %, where p, is the

radius of curvature and K a certain constant called the flexural
rigidity, we have as the geometrical property of the curve,

K
F: Ty,
where y is the ordinate from any point to the line of thrust
and 7' the thrust, or string tension if the bow is bent as in the
ordinary case by a bow-string.
Hence the equation to be considered is py=c? ¢ being a
constant, and two cases arise accordingly as the curve is

(1) undulating, (2) nodal.

606. Rectification of the Bow.
Taking the bow-string as z-axis, its mid-point O as origin,
and a perpendicular through O as the y-axis, let y be the

\4
’ F3
2a P 5
B (] N A x
Fig. 157.

ordinate of any point P, and let \ be the acute angle the
tangent makes with the tangent at the vertex V of the are,
and let arc VP=s. Let s =a when P is at 4, and let OV =2a

Then pY=¢;
{oot
. p .
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. i e dp d?/
Differentiating, ;2 a—‘l—/ e 3 = +psiny (p + 3 ‘I’)

c? :
% P dp=sin\r d\,

2
and integrating, ;2= 2 (cos yr—cos a),
for »=a when y=0 and p=w, t.e at 4.
v dyr
H - 2 j ver o dafiond
1 V2Jo n/eosyr—cosa
o R
T2 ‘\/ s g @ Mg
. sin? 5 —sin® &
2 2_ ¢ i
Let sin o =sin 5 sin x ;
e cos%d\[x=2singcosxdx;
.‘x d
=c
\/ 1 —sin? & sin?
0 2 i
=cF (X’ sin %)
. s
and x=am_;
i sihali foke ol A slig
. sing=singsn_; mod. sin 5
And the intrinsic equation of the curve is therefore
sin% #
8=csn! m— B G |e  serousseriesesnans (1)
sin 5

The student should note the analogous result in Kinetics
in Art. 389, viz. the case of the oscillating motion of a simple
circular pendulum. For a comparison of the two results, see
Greenhill, Elliptic Functions, p. 87.

www.rcin.org.pl



618 CHAPTER XVIL

The ordinate y is given by
2
y=%=2c 4/sin? %—-sinZ%

=2c¢sin 2 cos y=2¢sin 2. cend;
grK R

o y=9sinZ g ald
igh y_2csm2cn (c’ sin 2). ..................... (2)

To find the abscissa z, we have

dz .
E’;~cosx[r,
Wudas ds
s d‘—l’—-—-COS\IIW
1—2sin? § sin?y
and d—x=c03\,bi€=c : 3
dx dx s 9@ . o
1—sin 5 sin“x

and adding %,
d(x+s) «/ R 95
T—% 1—sin 3 Sin’x;

e ity
w+s=2cjo \/1 —sin® % sin%y dy,

.e. x=2CE (x, sin g) = T g, s el R,
We thus have for the bow, or undulatory elastica, py=c?
sin 4 y
s=csn! , Sin S5
sing '
2
sin ¥ -
x=2¢cE| sin1 ; e;in_2 —8,
sing A
2
y=2¢sin 2 en (ﬁ, sin 2)_
: 2 c 2 /
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NODAL ELASTICA. 519

607. Rectification of the Elastica in the case when there are
several Convolutions, viz. the Nodal Elastica.

Taking the y-axis to pass through a vertex V as before and
the line of terminal thrusts as the z-axis and v, the angle

V

Fig. 158.
which the tangent at P has turned through in passing from
2

V to P, we have again %:y.

MO R

paay Y

e 1

~) dp=sinr d\,

2

and integrating [—c)-2=2 cosyr+a constant=2 cos\r+4, say. We

have not, however, in this case, as we had before, any point
at which p is infinite. Let 2z be the ordinate of the vertex.

cZ
Then at V, =5,

2 2
.. putting p=§—a, when =0, A:%_z;

2 4q?
£—2=c—2—2(1— cosyr)

2
=4s<%— sin? k) !

2
g being >1, as p cannot be « by supposition, and
ds ¢ 1
W 2 faE LY
Eé—sm §
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f _=!=, or putting =2y,
«/ 1— — sin? ‘I,

c2
=5f (<)
l——sm2

=57 (0 2.

as
and X=8am .

Hence the intrinsic equation is

W WY
§= —am 15. A e A R
G
Also y———?a/\/l—?sm’%=2aA(%)=2aA(x) ;
y=2adnac—;§. ................................................... (2)
Again, %:—cosw,
dz
d‘l’ coswd‘{,
de_ ©® (1—2sin’y)
="
A = l—c%:sin’x

[(f—z) +2(1 £ smzx)]
\ 1- G sinty

¢\ X
z=a<2— aﬁ) ax 20_'. A/1— —28111 2xdx;
q/l—;sm"

. z=(2§—1)s—2aE L SV TR e 3

b

0
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THE CAPILLARY CURVE. 621

Hence, in the nodal case of py=c?,
LR,
3—E&m 9
gl R e
o=(25-1)e-2H(F.2).
y=2adn a—: :
c
Compare with this case the result and process of Art. 390

for a revolving pendulum.

608. In the case of an infinitely Iong rod, imagining the
elastica to touch the line of thrust at o, we have
p=c when \p——vr,

and %5—2(1+005\//) 4cos"/'
. a8 _c ¥ "
'&T/r_Esecf and 8= c]ogtan )

8 being still measured from the vertex.

A4

Fig. 159.

This species of elastica is called the Capillary curve (see
Besant, Hydromechanics, p. 201), the shaded portion in
Fig. 159 representing the water raised above the normal level
by capillary action due to the presence of a partially immersed

vertical plate PQRS. In this case p——2— at the vertex, and

c¢=a, the modulus of the elliptic functions occurring in the
second case becoming unity,
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609. Cotes’ Spirals.
These Spirals are defined by the pedal equation
%=g+g. (See Diff. Cale., Art. 454.)

There are five varieties :

(1) B=0, an Equiangular Spiral.

(2) A=1, in which case B is essentially positive (as »> p);
the curve is the Reciprocal Spiral (Diff. Cale.,
Art. 452); and the other three are reducible to the
polar forms

u=asinnf, u=asinhnd@ and wu=acoshnf.

(1) The rectification of an equiangular spiral has been effected
in Art. 449, Diff. Cale.

4

(2) In the reciprocal spiral r= 9 , we have 7= — (% , and
ds _a T
a6~ 6\/ 1+
giving S aj - + ol df. (Let 6=tan ¢.)

= Icot2¢ sec’p dep= Isu‘_[z(l) cos ¢

dsin ¢
oy a,j sin®¢ (1 —sin?¢p)

=“I[siﬁlﬁ¢+ %(l—:in ¢+1+:in ¢>]d8in¢

i 14-sin ¢

= —acosec p+3 log e ¢

i a~/1+02+g1 ~/1+02+9
0 28 Tro—6 + 62—

The remaining three are rectifiable by the aid of elliptic
functions. For instance, take the first, viz. w=asinn for
the case n > 1.

Lm/(g +u?df (Art. 511);

_r Vsin?n0+ n2cos’n o
g sinnf

do,

2n

www.rcin.org.pl
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measuring s from the vertexat 0= 21n . (See figure of curve in

Art. 387, Diff. Cale.)

Let nl=¢;
6 /1% — (n?— 1)sin’e
as=lj Jn (n 3 Ji ¢d¢
"), sin®¢

2
where A=+1-—«%in%¢ and x2=nn21;

¢ — k28l
M:[—Acot ¢]¢+j c0t¢-K—SmA¢w—OS¢d¢
» z

d¢

=—Acot ¢+I¢(1 —K2)“(i“ *sin® ¢)

™
z

& = f ok ¢+(1—K2)K"%”—IiA dg
4 7

1 R e o |
e cot nO/sin2n0+ nicos?nb + pov {F(ne, k)—F, (22[ ’ x)}

(m00.0-5,(5.9).
where ki=1— —15
n

610. Bi-Polar Curves; Plane Elliptic Coordinates.

Let S, H be fixed points, and let the distances of a moving
point P from S and H be 7, and 7, respectively. Let SH=2¢;
O the mid-point of SH, PN a perpendicular from P upon SH ;
ON =2, NP=y; also let r,+7r,=2¢, r,—r,=2.

Then £ » may be called the elliptic coordinates of P; for
£=const. and y=const. give families of confocal ellipses and
hyperbolae.

Let A be the area of the triangle SPH.

Then

16A2=(2¢c+7; +75) (—2¢ 47, +75) (20— 1, +19) (2c+1,— 7)),
ne.  A*=(£2—c%)(E—n?),
where £ is necessarily < ¢ and ¥ c.

Hence cy=V(E@—3)(E—n.
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624 CHAPTER XVIIL
Also, if m be the length of the median OP,
I s WS
mct=-l— =£24y
. wzzmz_ysz:(fz_{_,’z*cz)_(52_02)(02 ) fz 2’

. ew=¢§n.
=]

s O N H
Fig. 160.

Thus the Cartesian coordinates of P are given by
ow=0n,  Y=VE—CVE—g; errrreritnnes (1)
S cdm=q df+£dn,
cdy=¢ E’ =gy g—cz dn,

And therefore, if ds be an element of the arc of the Bi-Polar
curve traced by P for any relation between 'r1 and s

c’d&”:( P+ £ ?—rﬁ) det+ (fz
——c’(f’ 7%) (gs_c: "z);

and 5 Iin_” '/E’S ca_,_c’d_'” ........................ @)

If we put £=ccoshv, z=csinu,
we have s=chcosh’v—sin’quu’+dv’. g il Y’
Moreover, x=c cosh v sin u,
y=csinh v cos u,
and 2+ 1y=csin (w+w),

the transformation used in Art. 590 for the rectification of the
central conics.
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The (u, v) system and the (& ») system are therefore
connected, and either may be regarded as “ elliptic ” coordinates.
Moreover, we have a definite interpretation of u, v as used in
Art. 590, viz.

47 y Ps—7.
v=cosh™ -1 -2  q=gin~1-1_-2
e ™ Rl

and they are thus expressed in terms of the bi-polar
determination of a point.
Ex. Employ Formula (3) in the case
sin w=m cosh v,
To what curve does this equation refer ?
611. If we wish to express the result of Art. 610 in terms of
the original radii vectores »,, 7,, we have
E—nt=myry
ag i dn? (dry4dry)? | (dry—dr,)?
2t A (r 47y —4c® 42— (r—m,)?
_(dr, A-dry)?[ 462 — (1, —7y)*] +(diry —dry)*[ (1, +75)% —4c?]
(2¢ 47y 4 75) (—2¢ 41, +75) (2c—1ry 4 75) (2¢ 7, —7,)
4™ (dr 2 4-dr?) + dr dry (a®—ry 2-~'r'22)
160 (c—a)(c—7y) (0 —7y)
where 2c=a and 20=a+7r,+7,;
“‘ = Nrr(dr 2 dr?) + (a2 —r 2 —r, )d'rldr2 )
Vo(o—a)(oc—r,) (c—T,)

and

List oF WELL-KNOWN Bi1-PoLArR EQUATIONS.

612. The principal bi-polar cases of well-known curves are :

Name. Bi-Polar Equation. Form of Equation in Elliptic

Coordinates.

1. Ellipse 7+ 7,=2a =q

2. Hyperbola r—ry=2a n=a

3. Cartesian oval I +lr,=n g + % —!

4. Circle =Kty n=m¢

5. Circle 3 ri=y2 &4 nt= %2

2
6. Straight line 7 3—m2=2 fn="
7. Cassinian oval 7 7y=«® £2—p’=x*
E.LC. 2r
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613. Ex. 1. Rectify the ellipse r,+7,=2a.
Here é=a, df=0.

a7t : 3
&= /: V ‘:2—_;7-5 dn (nincreasing) (n<c<a)
=al ( 6, 2). where n=csin § (cf. Art. 567).

Ex. 2. Rectify the hyperbola 7, —r,=2a.
Here n=a, dn=0.

d f A :‘:’d.g (£>0>a) (cf. Art 388, Case 6),

SRR TP A Ot
=ta.nws/c’—-a?sin’w+°2 ca F(m, %)—cE(w, %),

W
where g_—:z=sin2m (cf. Art. 588).
Ex. 3. Consider the case of the Bernoulli’s Lemniscaie r,7,=c%
df_dn
Here 2_pt=c® and =—.
Fca 1 &
Hence " B aier S N

’

5‘—_0_' -t pitcd et gt
4 d
SStEENE /: Jc‘_l____n‘ (cf. Art. 388, Case 2),

—cen-! (2 _1_) (cf. Dif.. Cale., Art. 458, and In.

)
o’ N2 Cale., Art. 592).

614. Use of Bi-Angular Coordinates.

It is sometimes desirable to express an element of arc of
a bi-polar curve in terms of the bi-angular coordinates 6,, 0,
which 7, 7, respectively make with the line joining the poles.

Let f(ry, ry)=const. be the bi-polar equation of a curve, ¢
the distance between the poles S, H. Let the angles of the
triangle SHP be 0,, 6,, 63; so that =, 6, are the polar
coordinates of P with SH for initial line, 7,, 6, the polar
coordinates with HS for initial line. Let the normal PG
cut the line SH at G and the circumecircle of SHP at Q. Let

SPQ=v;;* "HPO—;;

and let 8Q=p,, HQ=p,," PQ=N.

do, cz+p I_p 2

Then 7, 2=cos y,=——21 2,
1ds X1 2¢p,

9 cs+ , JRARY

-y %l=cos Xo= _%%
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BIANGULAR COORDINATES. 627

Hence multiplying by p,, p, respectively, and then adding
and subtracting,

0, do, g
Ty ds —PeTe gy e RN AR (1)
do, de S =
T, 2+ oy dsl s cp2 Slah s vt (ii)

Now PSQH being cyclic,
P11+ pery=Ne.

Fig. 161.
Hence these results may be respectively written
cds=(Nc—p,73) @0y—(Nc—p, 1) d; ............ (iii)
=py 7y 40,— py 7y d0,— Ne(db,—db,),
and i:"’—I’ds=pl'r1 d6,+ p,7,d0,+ Ncdb, ......... @iv)
for d0,+df,+dh;=0.

The last equation (iv) is due to Mr. Roberts (vide Professor
Williamson’s Integral Calculus, p. 501, for a somewhat
different proof).

Again, in travelling along the curve f(r,, r,)=const.,

frndri+f, dry=0 (where Jr stands for .o etc)

.. Jr8in x;—f7, sin y,=0.
S8G _rsiny, 7 f,
HG rysiny, 7yofy
(see Diff. Cale., p. 181, Ex. 32);

A Sle fr:
©) py SinXy fr

Hence ()
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In cases in which f(»,, r,) is homogenecus in 7, and 7, and
of degree n, and if for convenience we write the constant as

n—1

et a
g N that f(r,, r2)=cT,

we have, by the theorems of Ptolemy and Euler,

Bl B} TiLY Sapg  NOC N R d R
,f'l f’z "'1.]‘;‘1+72.ﬂ2 nf a1 :
Then - Plzf;‘xyi P2=ﬁny’ N=a"1y.

The quantities » and N can be obtained in terms of «, 7,

as follows: 4
N2=(r, p, + 7y py) 22 L1P2
st 1P+ 720y

(Hobson’s Trigonometry, p. 203);

P i, =:—’““i§::1-::§:f (ryre+ 2 frfr);
o S8 7y 7o(ry fr+ 7o ) ;
; @21y fr 1o fr) I fr(ri I o tr)
and v is therefore found in terms of »,, 7, and the constant a.
And as pr=¥lns  pa=vfn, N=ar1y,

p1s p2> N are also known in terms of 7, 7,.

¢ L P <
Also, since sin@, sin6, sin(0,+0;)
5 o
and J{ry, re)=c :

T

we have theoretically the means of expressing 7, 7,, p;, po
and N either in terms of 6, or in terms of 6,, as required.

Hence the rectification of the curve depends upon the in-
tegration of either of the formulae

esT= IP1 7, dfy __‘.Pz"'z s,
ool PV, o HEE I Pes o
4 ¢ J. pli—pt * pl—pt

I de. jﬁx"'l e I_Nﬁ_dg
o -[Pzz_sz A I"zz_)"l2 & Piza_l’la s
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615. Rectification of a Cartesian Oval. Genocchi’s Result.

The last form was used by Mr. Roberts in a proof of Prof.
Angelo Genocchi’s Theorem, that the arc of a Cartesian oval
can be expressed in terms of three elliptic arcs.

Thus, for this oval, viz. I,r, +1l,7,=cl,,

pr_py_Ne N_
we have e i e =y, 8ay,

and  72=N24p,2—2Np, cos 0, =12 (l,2—2l,l, cos 6, +1,2),
72=N?+p,2—2Np, cos 8, =12(l,2—2l,l, cos 6,+1,?),
c=p,2+ p,2+2p, p, cos O, =12(1;2+-21,1, cos 6, +1,2).
Hence
LA 0 T I b 1 I ly_¢
c“jzzz— 73 28, + [ byt [ty S,

and (-1 =zlj\/z,2_2z.2 T, 008 6, ¥ 12 d5,

+1, IJ 1,2—2L,1, cos ,+1,% db,

+ l3j~/ 1.2+21, 1, cos 0, + 1,2 d9,.

And these are the integrations required in the rectification
of ellipses. This is Genocehi’s result.

For a full description of the elements of these ellipses and
for many other important properties of the Cartesian Ovals,
the student should consult Professor Williamson’s Differential
Calculus, pp. 375-382, and Integral Calculus, pp. 239-243.

Fig. 162.

616. In a similar manner, if the fangent to the curve cut
the circumcircle of the triangle SPH at a point @ whose
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bi-polar coordinates are oy, oy, and T be the length of the
tangent PQ’, which makes angles y,, x, with 7, and r,, we have

dry A+’ —oy’
@ TG e
DN AT b ¢ v O
ds Xe™= 2ca, !
dr dr, ol—ay? dr. dry i
e 0'27d—81+a'1 a-gz=—l—c—2 and Ulﬁ—czm}=c,

s, 8= Ialdr,—jaz&rl

and g= 6'12‘:2 2 dry+ .[0'122 ey dry
617. A General Theorem.
Let there be two given curves
r=£0), 73=F50),
and let OP,P, be a radius vector from the origin cutting
these curves at P, and P,.

Fig. 163,

Let a point P be taken on OP,P, so that
' OP=\,0P,+,0P,

z.e. r=A\TF AT,
and =N\ + A,
Ay Ap being constants and dots denoting differentiation with
regard to 6.

Hence

24 2= N 2(7 2 7 2) F N2 (12 + 702) 4 2A A (737 + 7,7, waeens (1)

Let s,, 8,, 8p be corresponding ares of the three curves.

Now (rra+ 772 4 (17 —1y7p)2 = (1,2 72) (re2 + 7, %)
and (ryry+ 7o) +(ryfa—ryf )P = (1 +7,7) (g +7%).
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A GENERAL THEOREM. 631

Hence there are two cases of simplication, viz.
(A) when 5 —ry,=0; (B) when 77— 7y, =0.
Case (A) arises when the given curves are so related that
r2—r2=const.=a?

Case (B) arises when 12
Tl T

.6, :‘l =constant and the original curves similar and similarly
situated with regard to O.
In case (A)
(ryry )= (rd + a®+7*) (r P —a? +7?)
=(8,?—a?)(s,’+a%)

and 2= A28 2 A 2,2+ AN (87— a2) (32 + 22,

If we take A=A, =), say,
42 =N42 — a®+ 8,2+ a®+ 2452 —a? V3,2 + a?]
and sp=A[Wé2+a?+Vs2—a?
If another point @ be taken on the same radius vector such
that AL =—NA;=A, say,
then $o=A[Vs2+a2—Vs2—al].

The radicals are placed in this order because
$24a?> 3,2 —a?,
as may be seen as follows:
82+ Q2 (82— ) = (ry2 +74) — (r, 27y + 202
= ,,‘.22 it ,,'.12 + a?
= ,,._12 2 242
,’-22 1 1
=:§j-12+a2= a? (1 _*_:_:: g
and is positive.
If we take

; 4+ r,—n,
A=1, te rp= 1+7y and ro=-12

2 2

then the P-curve is the locus of the mid-points of P, P,, and
the Q-curve is such that 0Q=P,P = PP, and,

so that the P and @ loci are inverse to each other.
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For such derived loci we therefore have
sP+SQ=IJ$22+a2 dao,

Sp—38y =j~/.§12—a2 de,

and when these integrals can be found, s, and s, can be found.

o

Fig. 164.

Again, the P and @ loci being inverse to each other, the

; ] S
constant of inversion being 3

2 ds - 4 !
dsg= (2> p L i dsp A Tzdsp;

("'1‘*’7'2)2 r+7
2r 2r
‘. dsp+ds s L_dsp=—21—ds,,
P Q it P P—— Q

- 27,y 2ry :
d-gp dsq— + dsp_"‘l—’l‘zdSQ,

o142 Werratdo=4( B IVET=atds,
- ;j ANaTFaRde= ;I —1)/sE=atae.

618. In Case (B), mry+77y=34,;
whence Sp=N& + o8
and 8p=2N\;8; +Ag853
but as the curves are then similar this is an obvious fact, and
this part of the investigation does not render any new
information.
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619. A Useful Case.
In Case (A), it may happen that the derived curves are
different branches of the same curve locus,

a2
r2—bF(0)r +Z=O’ say,

o
whose roots are 7p, To and Q=7
and therefore 2 —rl2=drpre=a’

In this case the two branches of the curve are

_ bF(0)+ VRO P—a
r= 3 )

which are inverse to each other with regard to the pole, the
constant of inversion being %’.
And the “given” curves from which this curve is derived are
r,=bF(6),
ry =B F(O))—a”

And if 3 and 3, be the differential coefficients of the arcs of
these curves, the arcs of the derived P and @ curves are given by

28p= |82 +a2df+ I\/Elz—a’d(),

28o= |n/&;2+ «?dO— |+/4,2—aldb.

620. Ex. 1. Consider the rectification of the curve
4(2*+y*)(x—a)+a*z=0.
Putting this into Polars,
72— arsec 0+%.=0,

o asec f+atanf

2
The original curves from which this is derived are obviously
r,=asec
and r,=atan 6,

the first being a straight line and incidentally an asymptote of the curve
we wish to rectify.

The P and @ curves are branches of the same curve and inverse to
each other. If N be the node on this curve (see Fig. 165) and A the point
where the asymptote #=2a cuts the z-axis, the several arcs are
AP,=8, ; OP;=8;, NP=38p, NQ=48,.
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634 CHAPTER XVIIL

Now s;=asec?d, $,2=a*(tan?@+sec'd),
§2—a’=a*tan®0 (sec*0+1),
82 +a?=a?sec?l (sec2f+1);

al'—a”— sm ~/ 1+ cos?0,
s*+a ’—asec’ﬂ«/ +oos’9

\
I' i
4 '
H

g
4 <Y
7 f ‘

QA A
ARE :

o :A i
H
Fig. 165, :

Now j‘sm N1+cos?0db
=sec On/1+cos?@ +cos’0+f~/lil_l::s,6d9

=sec §+/1+cos?f —sinh—! (cos 6)
=n/sec?f+1 —sinh~1(cos §),

and sec*0~/1+cos’0d0=tan0~/l+cos’9+f~/li%% af
=tan 0~/l+cos’9+f(~/——2‘7—~/l+oosw)d0
=tan ONT+cos?+~/2 J—“— J2f~/l —}sin?0dé

§ sin?

—sanJsec’0+1+~/—F( ’J—) J2E(0, .J")’

Hence
arc NP+arc NQ=a [sin Onsec?G+1 +\/§F(9, ﬁ)—ﬁE(@, ~Tlé):l,
arc NP—arc NQ=a [+/sec?d + 1 —sinh—* cos §].
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EXAMPLES OF THE THEOREM. 635

Thus arc NP and arc NQ are found by addition and subtraction. It is
to be noted in this case, that although each separate arc NP, NQ requires
for its expression the elliptic integrals of the first and second kinds, their
difference is free from these functions, and expressible in terms  of
trigonometric and logarithmic functions.

Ex. 2. As a further example, consider the “derived” curves to be the
branches of the Cartesian oval
2
r—(A4+ Beos 6)r+5 =0.
The roots being 7, and r,, we have
r=rp+r,=A+ Bcos 0,
ra=rp—rq=n(A4+ Bcos ) —a
and these are the “original” curves from which the Cartesian ovals are
derived, the first being a Limagon.
§2=r2+72=(A4+ Bcos )*+ B?sin*f
=A?+4+2A4B cos 0+ B?,
sn-ag= [VET B - +34Boos 06, (Seo Art. 573.)
Hence the difference between corresponding portions of the inner and
outer loops of the curve :
r—-(4 +Bcos€)r+%=
can be expressed as the corresponding arc of a certain ellipse.
[This polar equation to the Cartesian oval is an ordinary conversion to

polars, retaining one of the poles as origin, of lr4+msr'=n, writing
724 ¢2— 2r¢ cos @ for 72 and performing the rationalization.]

Fig. 166.

We may remind the student that any arc of this curve has already
been expressed in terms of three elliptic arcs (Art. 615).
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The arcs sp=AP, sq=A'Q to which the integration refers are shown
in the figure.

We may construct the ovals as follows. Having drawn the limagon
ry=A+ Bcosf as explained in Art. 424, Diff. Calc., take any radius
vector OP;, and on OP, for diameter construct a circle. Take centre P;
and radius @ and draw a second circle cutting the first at R. Then with
centre O and radius OR draw a circle cutting OP, at P,.

Then OP,=A+ Bcosd,

OP,=V(4+ Bcos 0} —a’.

Bisect P,P; at P and make OQ=PP,; then the points P and Q are

points on the Cartesian oval.

MISCELLANEOUS PROBLEMS.
1. Prove that the three equations
z=clogsecy, y=c(tany-y), s=c(secy—1),
represent one and the same curve. (I C. 8., 1893.]
2. Find the area of the curve
1yfq = 0%
considering all cases which may arise.

3. Prove that the value of the integral

fon 5oy

taken round the ellipse 2%/a® + 92/b2=1, is 4 p denoting the central

perpendicular on the tangent at (z, ¥) and ds an element of arc.
(L C.S., 1912.]
4. If the point 2, y lies on the curve
Y'=2+2pz+y,

prove that —=—= Z
Yy z+p z+Y+p

3 t dz
d hence obtain the integral of ———.
and hen in the integral o 77 2 i

If, however, the point (z, y) lie on the circle 22+3%=a? show
that the corresponding relation is

ds__dy_ ds
Y z a
where s is the length of the arc measured to the point (z, ).
Deduce the known formula for the integral of Wi .o
Jai — 22
[L C. S., 1908.]
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PROBLEMS. 637

5. Show that if & stands for e
5 (uv) =v 8"y — n:ll_z n-lg 4 n(n+1) d2

3.2 dxls-" ol

6. 1t L 1dR_ fr+g
Rdz e +bo+c
and if b%—4ac be positive and the roots of az?+bz+c¢=0 be
A and p, prove that B=(z - A)?(z — p)%, where
p_Jf, 209-Yf
q =2 % 20%(A —p)’
Andifa=-1,50=0,c=1

-4 1
R=(1-22) (1 +:)
If b2 - 4ac be negative,

S 2ag-b . %ax+b
R=(aa?+ bz + )" e?V4a0—0 " Viac—,
If b2 - 4ac=0,
f _ 2a9-%
e (2‘1"’ it b) @, a(az+h)
2a T
[E. J. RourH, Proc. L.M.S., vol. xvi., p. 250.)
7. Show that

Iﬂ I(z’—l)—’“l )dzdz . dz,

there being 2%+ 1 integrations, 2k+1 being an integer, though %
may be a fraction, is equal to

1 z-1
gwe @ - O (551 =
where M=(k+1)(k+1-1)...to 2k + 1 factors.
[Cf. RouTH, Proc. L.M.8., vol. xvi., p. 249.]
8. ABC is a triangle with the corner 4 fixed and with sides

AC, OB respectively ~/n and /n+1, given lengths.

The side 4B (=7) makes an angle 8=nd — (n+1)B with a
fixed straight line 4X.

Show (1) t,hat the pa.t-h of B is rectifiable by the formula

=Jnam-14, mod. 'n+1'
sm’&

(2) When n=1 the rectification is the same as that of a
Bernoulli’s Lemniscate.
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(3) The inclination of the normal to the radius vector
is 4+B.

(4) The area of the triangle is equal to the area of a sector

of the curve starting from the axis 4X.
[M. SERRET’S PROBLEM, Calc. Int., p. 269.]

9. C'is a point of maximum curvature on the Limagon
r=acos@+b, b>a;

A and 4’ are the two vertices Prove that the difference between
the arcs 4C, 4'C is 4a. [ST. JouN’s, 1891.]

10. If y=2® - 3a%x, prove that
dx e dy ‘
VR —4a® 3:/yP - 4a®

and by integration express z explicitly in terms of . :
[Oxrorp L. P., 1916.]

Apply this method to solve the cubic
28 — 322 — 452 - 473 =0.
11. Prove that

t] 1 1
a2 oog pdz=g-1{1 4+ -1 EART 8
Io I { 3.1 1l 5ait7 3 }

[Oxrorp L. P., 1916.]

12. Prove that if » be an odd positive integer greater than 3,
(]
nJ. sin"zde=(2 - f)" Al i%
V3 n-1 1 n-1 n-3 4
- —[2“—_34';_—2 W-*- +;"—_—2 ‘a—i st
[OxForp I. P., 1916.]
13. The parameters £, #, of two points 4, B of the unicursal curve
‘ zf(1 - ) =y/(t - £)=a/(1 +#)
are equal to tan a, tan 3, whers
—-dr<a< -4r, Ir<B<im
Prove that the area of the curvilinear triangle 40B, where 0 is
the double point, is
a’[2—g+ﬂ— a —sec Bsecasin (B - u)+%tan,8ta.nasin 2(B- a)].
[Oxrorp 1. P., 1916.]
14. If n be a positive integer, show that

”
in? 2 doo — dnad
Io « sin®nz cosec?z dz = nw?, [Ox¥orD L P., 1912.]
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15. By assuming
28 @+ ba + cx? + dad + ext
———dz to be of the form i
.L/1+z4 a VT

obtain the integration by differentiation and equating coefficients,
also obtain the result directly by putting z*=2z.

16. Given a rational integral relation between # and y of the form
P+ Ay + Ayt + A, =0=F(z, y), say,
where A,, 4,, ... A, are rational functions of z, prove that when

“-y dx can be expressed algebraically in terms of #, then
jydx=Bo+Bly+B2y2+B&y‘+ VOORE, ol T
where By, B, B, ... are rational functions of 2. [ABEL.]

17. Assuming X to be a rational function of 2, and ym=X,
and that J.y da is integrable in algebraic form and expressible as

Iydx=Po+P‘y+P2y2+ oot Py,
where Py, P, ... P,,., are rational functions of #, show that
Po=Py=Po=l..=P - =0,
that is that the integration must contain one term only, and that

}/Iy dz is a rational algebraic function of z. [LiouviLLe.]

18. If M and T be two rational polynomials, then, provided
I ﬁdz can be integrated in algebraic form at all, the form of
the integral is ~/97" where 6 is a function of z.

Show also that
(1) 6 is a rational functlon of 2.

9 1 ,dT
(2) That MT=T% -~ 6%,

(3) That 6 is an integral polynomial expression and not of
such form as 7 where U and 7 are complete poly-

nomials, ¢.e. not such that 7 contains z.
(4) That the degree of the polynomial 6 is greater by unity than
the degree of M.

Use these facts to show thatj. ¥

1s not expressible algebraically.
[BErRTRAND, C. I, p. 94.]
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19. P, @, R being any rational algebraic polynomials, and

d;
assuming that when jg \/—% is integrable by means of the ordinary

elementary functions, the integral must be of the form

0 Ta=n+ g+ A1og  + BV + Blog (s + /B + .

where 7, 6, a,, B, a, etc., are rational functions of z, a result
established by Abel,* show that when the integration can be
reduced to one term, the general type of the result is either
algebraic of form 6//R or may be written as

P dx BVE

— ——= A tanh-! :

4 s ol ol

In the latter case show that
(1) o®-B2R=0Q.

@) «Br(G-Se3 )%

’

1 2P
(3) 2Q-qa=2Lp
where accents denote differentiation with regard to .
20. Show that

281122+ 372+ 28) do Fia h_l(x+l)\/x+2
PP -bz-2 g2 O 27 J
21. Prove that 1
zdx 1

4 Py 4z-8
=—tanh—1aif—-‘[—z fot
V(@2 +22-5) (a2 +42-8) 2 z+5Vat 1275

22. P;-ove that

522 + 3z + 1 dz ozt + 2% + 2z + 1
1 = tanh-L2VE it 22 bt L
@) j TS U~ - iy Bro+l
3 tan?6 + 2 _, siné
@) _‘-2 tan40+5tan'*‘0+4’secado=mn 1+ cos?6’
inh 2z dz p)
3 ]’ sin R _y [cosh z+1
®) Jcosh?z + 1 Jeosh®z + 2 $tanb cosh®z + 2

* Guvres. See Bertrand, Calc Intéy , chap. v.
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PROBLEMS. 641
23. Show that
2n+1 a2n-1 4 g2n-1  dy  2p -1 [a2ntlyg20tl (g
1) 2 I'\/a2n+1 3 g2n+l a? - x2 ‘[Jazn—l + g2n—1 g2 _ 92
xZn—l s a2n—1

=tanh-1z

2n +1 4 sm"'— 9
I'J 2n+10 0 de

21 14 sm2"+10 7eF [1+sin®-16
J.'\/l Fenin—1g oo ec 6 d6 =tanh (sm 0 T+ sisHig 0).

24. Integrate the following :

(i)I (2z+1)dz i )J‘ zdz
Vot + 203 - 322 - 4z + 3 VA + 23— 327 —az+a
[ABEL.]
(iii) I5x2+15x+12 dx ;
52% +152+9 /(z +1)(z +2)
(iv)j (1 +82)dz
V1 + 6z + 422/1 - 2z + 422
(V)J' (2z +a)dz
Jat +2aa3 + 3a%? + 203z — at
o [328-228+1 dz 3z +1 dz
( >Izzﬂ-x2+1 b~ sy ("“)I "z -2 g
3x‘+1 dz 22— (a +b)z—a)
(vidd) |7 NS %) Jx3+a2Jz2+b2dx
1+x z2 dz o 1424 dx
SO e By I

(xify [LH32+20° _do
) |\ Ti%d JTra

25. Show that the whole perimeter and area of a single loop of
the curve r=2acosnf (n>1) are respectively equal to the whole
perimeter and area of the ellipse 2% + n%? =a? [Oxr. I. P., 1911.]

26. If an element ds of a curve lie at distance  from the origin,
and subtends an angle df there, it is known that unit electric current
flowing along ds produces a magnetic force at the origin at right

angles to the plane of the curve proportional to d70

Show that if unit current flows through a thin endless wire of
given length in the form of an ellipse, the magnetic force due to
the current at the centre of the ellipse is inversely proportional to
the area of the ellipse. [Oxrorp II. P., 1913
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27. A current of electricity is flowing round a fine wire
ABCD ... K4 bent into a plane polygon. O is any point within
the polygon, and perpendiculars OP, 0@, OR, ... are drawn to the
sides K4, AB, BC, etc., respectively, and again perpendiculars
whose lengths are a, 3, ¥, ... from O upon the sides PQ, @R, RS, ...
of the inscribed polygon PQRS.... Show that the magnetic force

on unit particle situated at O is
S sin 4

) a
where ¢ is the current strength.

28. Show that the perimeter of an ellipse of axes 2a, 25 and small
eccentricity e is approximately equal to the perimeter of a circle of
diameter a + b, with an error which is only about 0:0025 per cent.
when e is as great as 0-2. [Marsg. Trip. Parr 11, 1913.]
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