
CHAPTER XVII.
RECTIFICATION (II).Central Conic, LimaCon, Lemniscate, Trochoids, etc. Application of Elliptic Functions.566. We have reserved for a separate chapter the consider­ation of those curves whose rectification needs the employment of Elliptic Integrals.567. Rectification of the Ellipse. Arc measured from the End of the Minor Axis.If θ be the eccentric angle of a point x, y on the ellipse 

we have

Fig. 130.Hence and gives the arc BP from the end B of the minor axis to any point P on the curve. 577
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578 CHAPTER XVII.
Putting

(See Chapter XI.)568. This integral is Legendre’s elliptic integral of the second kind, and is not expressible in terms of the ordinary circular or inverse circular functions. But its value can be found for specific values of e and χ from the tables calculated for the function E. Thus, for instance, the tables for E corresponding to e = 1/2 give
Values extracted from tables given in Bertrand, 

Calc. Integ., p. 717.
Hence, taking an ellipse with a 20-inch major axis and eccentricity 1/2, the arcs for eccentric angles 80o, 70o, 60°, ...0o, measured from B, the end of the minor axis, are: 1∙74, 3∙47, 5∙18, 6∙85, 8∙48, 10∙8, 11∙63, 13∙16, 14∙67 inches to two places of decimals.The student should construct a quadrant of such an ellipse on squared paper, and by careful stepping with dividers round the perimeter verify this calculation approximately.The total perimeter of the ellipse in any case is 4αE1, where E1 is the complete elliptic integral. And in the present case 4× 14∙6746 = 58∙7 inches very approximately.The circumference of the auxiliary circle = 20π = 62∙8318, 

i.e. 4∙1 inches longer than that of the ellipse.
569. Approximation.If an approximate value be required, we may expand the radical √1- e2sin2χ, and in cases where the eccentricity is small the series is rapidly convergent.
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ELLIPTIC ARCS. 579We then have
For a quadrant the limits are 0 and π/2, and the arc of the quadrant

The first three terms give for the above ellipse a perimeter of 587 approximately.570. Other modes of procedure may be adopted.Cartesians.Keeping x for the independent variable, we have

HenceIf we now put x = αsinχ, where χ is, as before, the com­plement of the eccentric angle, this reduces at once to 
as before.571. Taking the central pedal equation 
we getPutting 
and
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580 CHAPTER XVII.
572. Taking the focal p-r equation

Putting r = a(1+e sin χ) this reduces at once to 
as before.573. It appears then that αE(χ, e), i.e.

represents the length of the arc of an ellipse measured from the end of the minor axis to a point, on the curve, whose eccentric angle is π/2-X, the semi-major axis being a and the eccentricity e. (See Art. 567.)This may be written as 
or as where l+m = α and l—m = b. And it is useful to be able to recognise these forms at once, when they appear, as repre­senting an arc of an ellipse. They occur in many other rectifications.

574. March of the Second Elliptic Function.The form for an ellipse gives a very clear idea of the “march” of the “second elliptic function” corresponding to any given modulus e, and it is easy to construct a graph of the relation between χ and s by measuring off ordinates equal to the arc of the ellipse and abscissae proportional to the com­plement of the eccentric angle.Taking a = l, the figure (Fig. 131) shows the march of the
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ELLIPTIC ARCS. 581function for the values e = 0, which gives a straight line, viz.
, which givesand which gives s = sin χ, the curve of sines.

Fig. 131.It will be seen that for the first 150 the difference of the ordinates is so small that there is no appreciable difference between ordinates in the drawings, in fact for e=0, s=,26180; for e = 1/2, s=,26106; and for e=1, s= ,25882, for χ = 150, which only gives a difference of ordinate of 0030 between the greatest and least, and the curve s = E(χ) lies between these extremes. There is much more rapid deviationof from the curve after
575. Arc measured from the End of the Major Axis. Fagnano’s Theorem.Another method of proceeding gives the length of the arc 

AQ measured from the end of the major axis, and incidentally
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582 CHAPTER XVII.a comparison of the two methods establishes a remarkable result with regard to the difference of two arcs, one measured from A, the other from B. This theorem is known as Fagnano’s theorem, being discovered by Giulio, Count de Fagnano (1682-1760).* It shows that two arcs of an ellipse can be found in an infinite number of ways, whose difference can be expressed by a certain straight line, and really establishes in a particular case the addition formula for elliptic integrals of the second kind.

Fig. 132.Take the central tangential polar equation
ψ being the angle between the perpendicular upon the tangent and the major axis; we have
i.e.

Let Q be the point of contact, whose coordinates are obviously by comparison of the equation, xcosψ + y sinψ=p,with the equation
Also the negative sign occurring, because inthis case Y is on the “ forward drawn ” tangent from Q, and p is diminishing as ψ is increasing.*Cajori, History of Mathematics, p. 241.

www.rcin.org.pl



FAGNANO’S THEOREM. 583Also
which is the same integral as obtained in Art. 567 for the arc BP, ψ being in that case a different angle, viz. the complement of the eccentric angle of P.Hence, if these angles be taken the same in magnitude,
andThus,This is Fagnano’s result.

576. Algebraic Relation between the Abscissae of P and Q.NowAlso the coordinates of Q being
and those of P being
we have

HenceThis result is symmetrical as regards x1, x2, and therefore
as is, of course, immediately obvious otherwise.Also PY', if 0Y' be the perpendicular onthe tangent at P from 0. Hence QY = PY'.Again,
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584 CHAPTER XVII.577. The corresponding relation between y1 and y2 is
that iswhere
e' being the “ imaginary ” eccentricity.578. The Fagnano Points. It will be noticed also that

Hence, at the point F on the arc AB at which P and Q coincide when ϕ is suitably chosen,
and the coordinates of the point are therefore
and this is called the “ Fagnano Point,” * for the first quadrant.579. Properties.At this point F,

= the difference of the semiaxes.And the length of the projection of the radius vector OF on the tangent at F is also =a-b.580. The expression for QY, viz. maybe written as
and therefore QY attains its maximum when tan viz.
a — b. The Fagnano point is therefore the point for which 
QY has a maximum value. QY varies continuously from zero to a — b in travelling from B or A to F.* Greenhill's Elliptic Functions, p. 178 onward.
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FAGNANO’S THEOREM 585581. If we seek for a point Q upon the quadrantal arc AB of an ellipse such that QY, the projection of 0Q upon the tangent at Q, is of given length l, where 0<l<a-b, there will be two solutions, viz. the points P and Q, whose positions are given by the equationsand
r being the radius vector to either of the required points, viz. 
OP or 0Q.

Fig. 133.Eliminating p we have
(1)with roots r12, r22, such that

∙(2)and equal roots when l=a-b and r2 = a2-ab+b2. If we differentiate equation (2),
If we call BP, s1, and BQ, s2, and remember thatprojection of radius vector on the tangent,viz. l in both cases,

i.e. (3)where C is a constant.Taking the case when r1 = b, that is P at B, we have r22 = α2+l2, and therefore r2 must =a and l = 0, for r2 ⊁ a, so that Q is at A ; then s1 = 0, s2 = arc AB, l= 0 simultaneously;
i.e.* See Bertrand, Calc. Integ., p. 380.
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586 CHAPTER XVII.which is Fagnano’s result, and the points P, Q, in which the arc AP must be divided to give a definite value l for QY, are determined by equation (1).
Examples.1. Show that if coaxial ellipses be drawn with a given centre such that the areas enclosed between them and their respective director circles is constant, the locus of the Fagnano points is a circle of the same area.2. Show that the locus of the Fagnano points for similar and similarly situated concentric ellipses is a pair of straight lines.3. Show that the locus of the Fagnano points which lie on confocal

ellipses is2c being the distance between the foci.4. Show that if F be the Fagnano point on an ellipse of semiaxes
where E1 is the complete elliptic integral of the second kind

5. Show that the central perpendicular upon the tangent at a Fagnanopoint is a geometric mean between the semiaxes, and equal to the semi­diameter conjugate to the radius to the Fagnano point. Further, that the radius of curvature at this point is also equal to the perpendicular, and that the normals at the corresponding point on the evolute pass through the centre. Finally, that the arc of the evolute is at such a point divided in the ratio b5/2: α5/2.6. Show that if a straight rod LM of length a + b slides with its ends on two axes Ox, 0y at right angles and carries a point F whose distance from L and M are respectively a and b, which thus describes an ellipse, then at the instant when LM is tangential to the path of F, F is a Fagnano point on the described ellipse, and the circle on LM for diameter passes through the point on the normal at F where that normal touches the evolute.7. Show that the tangents at the points P(x1, y1), Q(x2, y2) on anellipse which are related to each other so thatintersect on a confocal hyperbola which passes through the Fagnano points.[Many properties of these points will be found in Greenhill’s Elliptic 
Functions, pages 182, 183.]
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TAUT CORD ENCIRCLING AN OVAL. 587

582. Properties of the Locus traced by a Pointer which pulls 
taut an Inextensible String passing round a given Oval.Taking the case of any oval curve, let A be the point from which s is measured; PQ, P'Q', the tangents at contiguous

Fig. 134.points (s, ψ) (s+δs, ψ+δψ) of the oval; and let a length 
PQ = t be measured upon the forward drawn tangent at P, 
P'Q' = t+δt upon the tangent at P'. Let the tangent to the locus of Q make an angle φ with the tangent at P to the oval. Draw QN perpendicular to P'Q', and let the arc QQ' = δσ.Then, to the first order, 
and

(1)If QR, Q'R' of lengths t', t'+δt' be the other tangents from 
Q, Q' which can be drawn to the oval, and s', s'+δs' be the arcs APR, APR' respectively, and if ϕ' be the angle which QR makes with the tangent QQ' to the Q-locus and δψ' the difference of the angles of contingence at R, R', we have in the same way, Q'N' being the perpendicular upon QR, 
to the first order;

(2)
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588 CHAPTER XVII.If the Q-locus be such that the tangent at Q always bisects the exterior angle between the tangents from Q to the oval,
ϕ = ϕ' and QN = Q'N' = δσ sin ϕ to the first order.ThereforeandThese equations give

i.e. (3)
and also constant.. (4)Equation (4) expresses that in such caseconstant,
i.e. constant.In this case the Q-locus is an oval traced by a pencil at Q which draws taut a loop of string placed round the original oval.583. Dr. Graves’s Theorem.The case when the original oval is an ellipse and the Q-locus is a confocal, when the necessary property holds, viz. that the tangent to the Q-locus bisects the exterior angle between QP, QR, gives the well-known theorem due to Dr. Graves, viz.If two tangents be drawn to an ellipse from any point of a confocal ellipse, the excess of the sum of these two tangents over the intercepted arc is constant.*Incidentally, we have a method of drawing an ellipse confocal to a given one.584. If the Q-locus be such that its tangent bisects the 
interior angle between the tangents QP, QR, as it would do in the case of an ellipse and a confocal hyperbola, and if we measure s and s' in opposite directions from the* Salmon’s Conic Sections, p. 357 ; Graves’s Translation of Chasles’s Memoirs.
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THEOREMS OF GRAVES AND MACCULLAGH. 589point A. where the Q-locus meets the oval, we have, in the same way,
and to the first order;and when we have andso thatand also const.;also, as t, t', s, s' all vanish at A,

i.e.

Fig. 135.MacCullagh’s Theorem.For the case of the ellipse and the confocal hyperbola, where the condition ϕ=ϕ' is necessarily satisfied, we have the following result.If tangents QP, QR be drawn from a point Q on a hyperbola to a confocal ellipse cutting the hyperbola at A, the difference of the tangents is equal to the difference of the arcs AP, AR. This theorem is due to MacCullagh.** Salmon’s Conic Sections, p. 358 ; Chasles, Comptes Rendus, Tom. xvii.
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590 CHAPTER XVII,585. Deductions.If we draw tangents to the ellipse at the extremities of the axes, the particular confocal to the ellipse which passes through the corners of the rectangle formed cuts the ellipse in the Fagnano points, and if Q be the intersection of tangents

Fig. 136.at A and B, and F the point in the first quadrant where the confocals cut, MacCullagh’s theorem gives
QB—QA = arc FB—arc FA, and if the semiaxes be a and b, we have arc FB—arc FA = a—b, which is Fagnano’s result.586. From the theorem of Dr. Graves it appears that if Q1, Q2 be any two points on the confocal and Q1P1, Q1R1;

Fig. 137.

Q2P2, Q2R2 are the corresponding pairs of tangents to the original ellipse,
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THEOREMS OF GRAVES AND MACCULLAGH. 591and therefore that the difference of the arcs P1R1, P2R2 is 
and is therefore rectifiable in terms of known lines.The particular value of the constant to which 
is equal may be found by taking Q at a specified point on the confocal, e.g. where it cuts the conjugate axis.And a similar result follows also from MacCullagh’s theorem.587. Exactly in the same way, if Q be a point on the ellipse and QP, QP' be tangents to the same branch of the hyperbola, it will be clear that 
for the tangent at Q still satisfies the requisite condition, namely that the internal bisector of the angle PQP' is a tangent

Fig. 138.to the ellipse. And the difference of the arcs AP, AP' is therefore expressible as the difference of two straight lines and is rectifiable. Moreover, if Q1 be another point on the ellipse, such that tangents Q1P1, Q1P1' can be drawn to the same branch of the confocal hyperbola, the difference of the arcs PP1, P'P1' is rectifiable. In order that the point Q should be such that tangents can be drawn to the same branch of the hyperbola, such point must obviously lie in one of the regions between the asymptotes in which the hyperbola lies. In the limiting case in which QP is an asymptote, the difference of the infinite portion of the
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592 CHAPTER XVII.asymptote QP and the infinite arc AP is finite and equal to the difference of QP' and the arc AP', Q being now at the point of intersection of the asymptote with the ellipse.
588. Rectification of the hyperbolaLet C be the centre, CA the semimajor axis, s the length of an arc AP measured from A in the first quadrant, CY the perpendicular p upon the tangent at P.

Fig. 139.

Then p=xcosψ+ysinψ touches the curve if
In the case of the hyperbola, when P lies in the first quadrant, ψ is the angle xCY and is negative, and as s increases from 0 to ∞ whilst P travels along the arc from A, 

Y travels from A towards C along the first positive pedal curve r2=α2cos2θ-b2sin2θ, which becomes a Lemniscate of Bernoulli when b—a, i.e. when the hyperbola is rectangular. The angle ψ therefore remains negative, and as its actual magnitude is increasing ψ is algebraically decreasing and an increment dψ is negative. When P has travelled to ∞ along this branch of the curve the limiting position of YP is an asymptote. The tangents at the node of the pedal are therefore the perpendiculars to the asymptotes of
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THE HYPERBOLA. 593the hyperbola, coinciding with them in the case of the rectangular hyperbola and its pedal r2=α2cos 2θ.Let us find the length of the arc AP from A to a point Pfor whichWe have andtherefore, integrating,
Now is the projection of the radius vector OP uponthe tangent =PY, and is positive.

and

i.e.

or
This integral is not of the Legendrian form at present, e being essentially greater than unity.If P be allowed to travel to ∞ , χ ultimately becomes

Hence the excess of the infinite asymptote C∞ over the infinite arc A∞ is
It is easy to reduce the integral in equation (1) to two integrals of Legendre’s standard form.Let e sin x=sin ω.
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594 CHAPTER XVII.Then and

whereand a is the complement of the half angle between the asymptotes.Hence,
F and E being the Legendrian standard integrals of the first and second species, whose values are tabulated for particularvalues of the modulus sin a, ω being in theupper limit and PY, written in terms of ω, beingMod.
wherei.e. (2)589. In a rectangular hyperbola and we have
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CENTRAL CONICS. 595

Examples.1. In the hyperbola , put andshow that we may take x = b tan α sec ϕ∆, y = b cos α tan ϕ, and that 
and2. From the polar equation r2=α2sec20 deduce the rectification of the rectangular hyperbola, viz.

3. If PQ be a chord of one branch of a hyperbola, touching a confocal ellipse at F, and the confocal cutting that branch of the hyperbola at A and B, and if PR, QS be the other tangents from P and Q to the ellipse, show that the elliptic arcs AR, BS exceed the elliptic arc AFB by the excess of the tangents PR, QS over the chord PQ, i.e. that 
is rectifiable in terms of known lines.In particular, examine what happens :(1) When F is the vertex of the confocal ellipse.(2) When F is at B.(3) When PR and QS are at right angles to PQ and F the vertexof the ellipse.

590. Another Method of Treatment for the Central Conics. 
Use of Hyperbolic Functions.In the case of the central conics it is instructive to consider another mode of treatment of the rectification.The relation givesThen v=const. is the equation to the ellipse 
and u=const. is the equation to the hyperbola 
and different constant values of v and u give confocal ellipses and hyperbolae.
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596 CHAPTER XVII.
Now
Hence

Hence, for any of the family of the ellipses v=const.,
=const.

and for any of the family of hyperbolae u=const.,
u=const.

591. In the case of the ellipse

where e is the eccentricity, andAnd
In the case of the hyperbolaandWith the notation of Art. 589, in which

we have andThe line is tangential, provided that
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BERNOULLI’S LEMNISCATE. 597

The point of contact P is given by 

and, as these are to be c sin u cosh v, c cos u sinh υ, we have

It follows that cosh

i.e.

Hence

(mod. sin u)
by Legendre’s fourth formula, p. 399;

the same result as before.

592. The Lemniscate.
The equation is 

we have at once 

whence

Put 

or
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598 CHAPTER XVII.
Hence

Hence

Here s is measured from the vertex.
We might have expressed θ from the beginning in terms

of r, and then

then putting r = a cos ϕ the work proceeds as before. 
For the whole length of the arc, we have

The tables for F1(Bertrand, C.I. p. 716) give
whence whole

We might, however, proceed as follows:

Putting 20=ω, we have

It will be shown later (Art. 872) that

where n is less than unity. Borrowing this theorem for
present purposes,

Perimeter say.
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BERNOULLI’S LEMNISCATE. 599

The values of the Γ functions are calculated. Tables of 
these values are given in Bertrand’s Calcul Integral, pages 
285, 286, to seven places of decimals from Log Γ(l) to 
LogΓ(2). As the values of Γ(x) from Γ(l) to Γ(2) are 
all fractional, 10 is added to their ordinary logarithms for 
convenience of tabulation, as is usual in tables of logarithms 
of sines and cosines. (See Chambers’s Mathematical Tables.)

Now
and
where L denotes the tabular logarithm,

from the tables of L Γ(x).

Difference for 1 =

Hence
Hence the whole perimeter of is, as before,

593. Incidentally, it may be remarked that the equation

Fig. 140.

for a lemniscate gives a very good idea of the graph of the
functions cn and cn-1 for the case mod. and we can readily
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600 CHAPTER XVII.
draw a graph, taking, for instance, as unit length on

the x-axis, and any convenient unit on the y-axis, say a, and 
constructing the curve with abscissa s and ordinate r.

Fig. 141.

The ordinate shows the march of the function cnx, the 
abscissa the march of cn-1x.

Examples.1. Find the length of the arc of a lemniscate r2=α2cos20 fromtoHere and
and from the tables for (Bertrand, Calcul Integral., p. 716.)

2. Find the area of the curve for the portion in the firstquadrant. What connection is there between this problem and the evaluation of the perimeter of the lemniscate ?3. Draw a careful polar graph of the lemniscate r2=25cos20, taking one inch as unit of length, and deduce a Cartesian graph of
4. Show that the difference between the lengths of the asymptote and the infinite arc of the hyperbola x2∕α2-y2∕b2 = l in the first quadrant is

www.rcin.org.pl



PASCAL’S LIMACON. 601

594. The Limacon

Here

(Let θ=2ϕ.)

where

An obvious modification will be necessary if a and b be of 
opposite sign.

This curve very well illustrates the march of the second 
elliptic integral E. The arc AP measured from the vertex

Fig. 142. For the case α>b.

is proportional to E, whilst ϕ is half the angle AOP. See 
also Art. 574.

The result shows that the arc AP of the limacon is equal 
to the arc of an ellipse of semi-major axis 2(α+b) and

eccentricity measured from the end of the semi-minor

axis to a point on the ellipse for which the complement of

the eccentric angle is (compare Art. 573). The semiaxes of

the ellipse in question are then 2(a+b) and 2(α-b).
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602 CHAPTER XVII.
This would also be evident upon writing

as

where

595. Ex. Consider the case of the limacon in which for theportion fromHere and
from the tables for

The limacon is of course the focal inverse of a conic, and when α=b the cardioide is the inverse of a parabola.
596. Trochoidal Curves. (See Diff. Calc., p. 344.)
If a be the radius of the fixed circle, b that of the rolling 

circle and the carried point P be at a distance mb from the 
centre of the rolling circle,

Hence

Let
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THE TROCHOIDS. 603

Then , where

where s is measured from the point at which
i.e. from a vertex V, as in the case of the epicycloid (Art. 540).

Fig. 143.

Hence again we can find the length of any desired portion 
by means of the tables for Legendre’s elliptic integrals of the 
second form; or, which comes to the same thing, such length 
can be expressed as being equal to the corresponding arc of an 
ellipse, measured from the end of the minor axis, the semi­

major axis being the eccentricity being

and χ being the complement of the eccentric angle 

at the end of the elliptic arc.For a circle, when m=0, const.For the epicycloid, when m = 1. const.which agrees with the result of Art. 540.
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604 CHAPTER XVII.
We might use this curve, like the ellipse and the lima90n, 

to construct a graph showing the march of 

for any modulus

597. The Cassinian Oval.
The bipolar equation of this curve is r1r2=b2. (See Diff. 

Calc., Art. 458.)

Fig. 144.

If S1, S2 be the foci, S1S2=2a, and if the line of foci be 
taken as x-axis and its centre 0 as origin, the equivalent 
polar equation is

Three cases arise:
(1) a>b, two separate twin ovals with vertices distant

from 0.

(2) α=b, reducing to Bernoulli’s lemniscate.
(3) a<b, one single oval lying outside the lemniscate,

which may or may not possess inflexions.
The equation may be written

Take an auxiliary angle θ' such that

www.rcin.org.pl



OVALS OF CASSINI. 605

Then

or
i.e. the auxiliary angle θ' is such that

Differentiating the original equation, we have

where
We shall adopt the first or the second forms according as 

a is > or < than b.

Let where

where

In the case

so
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606 CHAPTER XVII.

where (Art. 388, 4).

In the case

and the work proceeds precisely as before, interchanging 
a and b, u and v , θ and θ', λ and μ , a and β, on the right-
hand side of the values of

where

The arc is in both cases measured from the vertex, where

598. In the case of the Lemniscate,
say;

then θ = θ', and either case gives

as in Art. 592.

599. It is a very instructive process to perform the same rectification first expressing θ in terms of r. We have

www.rcin.org.pl



OVALS OF CASSINI. 607

Letthe positive value to be taken.
and

Again, 

whereThis transformation gives

Now an integral of form can be converted atonce into the standard Legendrian form as follows (Art. 388, 4) : Put v+c=(1 +c) cos2ϕ.
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608 CHAPTER XVII.Then

and as in our case it is numerically less than unity andis positive and less than unity ;
andHence, finally, we have

the respective moduli being andFor the twin loop curve a>b,
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OVALS OF CASSINI. 609with respective moduli
For the single-loop curve a<b, 

with respective moduli
600. The expressions written in this rectification are less simple than when written in terms of θ, as in Art. 597, but can readily be reduced.In the case a>b, let then
Also 

and

Similarly,
Hence a>b, 

as before.Also for the case a<b, since
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610 CHAPTER XVII.

Similarly, 
where

601. Serret’s Method of Rectification of a Cassinian.
A different method of rectification of a Cassinian Oval 

is given by Serret* connecting two arcs measured from 
different vertices of the curve, and expressing these arcs 
directly in terms of θ.

In the twin-oval case a>b, let A and B be the vertices of 
one of the ovals, and let a radius vector OQP be drawn

Fig. 145.

cutting that oval in Q and P. Let the vertex A be the one 
furthest from the centre 0. Let arcs AP, BQ be called 
s1, s2 respectively. Let b2=α2sin 2α.

Then
Solving, 

the upper sign giving OP2, the lower 0Q2.

* Calcul Integral, p. 265.
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OVALS OF CASSINI. 611

Now, as before, 

and 

the positive sign being taken as s1 increases with θ.

Similarly 

and

Hence

In these integrals put
and

respectively.

Then

i.e.

www.rcin.org.pl



612 CHAPTER XVII.

the former of these being the result previously obtained. 
Reducing in the case of Bernoulli’s Lemniscate, we have

602. The Single-loop Case.
In the one-loop case a<b, the same method cannot be 

adopted, and M. Serret considers the arcs traversed by a pair 
of perpendicular radii vectores OP, 0Q, starting from the ends

Fig. 146.

A, B of the two perpendicular axes. Let the arcs AP, BQ 
be respectively s and σ, and let α2 = b2 sin 2β. Then, solving 
as before, 

and
and the positive sign must now be taken. 

Also, as before,
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OVALS OF CASSINI. 613

Writing for θ,

and

In each of these chancre the variable to θ', where

and therefore cos20d0
Then

Then

Similarly

i.e.

In these integrals put respectively
and

and remembering that
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614 CHAPTER XVII.

whence 

where
The first of these was established in Art. 597.
603. The Elastica or Lintearia.
This curve is of considerable importance in various branches 

of Physics. It is (1) the form assumed by a uniform originally 
straight elastic rod bent into a bow by a bow-string, or by equal 
thrusts at its extremities, i.e. it may take the form ABC or

Fig. 147.

ABC DE, etc., according as the string is tied at A and C, A and 
E, etc. This is called an undulating elastica. When the bend­
ing is slight, the form is approximately the curve of cosines 
(E. J. Routh, Anal. Statics, vol. ii. p. 281, “ Bending of Rods ”).

(2) It is the form assumed by a flexible thin rectangular 
sheet, two of whose opposite edges are fixed horizontally at

Fig. 148.

the same height, the flexible rectangular sheet forming the 
base of a rectangular box with vertical sides into which water 
is poured, the material being supposed impermeable for water
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ELASTICA OR LINTEARIA. 615

and the base fitting the sides so closely as to prevent appreci­
able escape of water. From this property the second name 
arises (lintearius = made of linen).

(3) The curve also occurs in the case of water drawn up 
by capillary action against a partially immersed vertical plate.

Fig. 149.

The curve may assume various shapes according to the 
physical circumstances occurring. It may undulate, or there 
may be any number of complete convolutions forming loops and 
nodes. Such cases are exhibited in the accompanying figures.

Fig 150.

Fig. 151.

Fig. 152. Fig. 153.

Fig. 154. Fig. 155.

Fig. 156.
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616 CHAPTER XVII.604. The determination of the nature of this curve is due to James Bernoulli (1654-1705).For much detailed information as to the curve and its physical properties, the student may consult W. H. Besant, 
Hydromechanics, pages 168-171, p. 194, p. 201, etc.; G. M. Minchin, Statics, vol. ii. p. 204; E. J. Routh, Analytical Statics, vol. ii. p. 283, etc., “ Bending of Rods ”; Sir A. G. Greenhill, 
Elliptic Functions, p. 87 ; and the article on Capillarity in the 
Encyclopaedia Britannica, by the late Sir J. Clerk-Maxwell.605. The stress couple at any point being K/A, where p is the

Pradius of curvature and K a certain constant called the flexural rigidity, we have as the geometrical property of the curve, 
where y is the ordinate from any point to the line of thrust and T the thrust, or string tension if the bow is bent as in the ordinary case by a bow-string.Hence the equation to be considered is py = c2, c being a constant, and two cases arise accordingly as the curve is(1) undulating, (2) nodal.

606. Rectification of the Bow.Taking the bow-string as x-axis, its mid-point 0 as origin, and a perpendicular through 0 as the y-axis, let y be the

Fig. 157.ordinate of any point P, and let ψ be the acute angle the tangent makes with the tangent at the vertex V of the arc, and let arc VP = s. Let ψ = a when P is at A, and let OV = 2aThen
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UNDULATING ELASTICA, OR BENT BOW. 617

Differentiating, 

and integrating, 

for ψ=a when y = 0 and p = ∞ , i.e. at A.

Hence

Let 

and

And the intrinsic equation of the curve is therefore

∙(1)

The student should note the analogous result in Kinetics 
in Art. 389, viz. the case of the oscillating motion of a simple 
circular pendulum. For a comparison of the two results, see 
Greenhill, Elliptic Functions, p. 87.
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618 CHAPTER XVII.
The ordinate y is given by

∙(2)

To find the abscissa x, we have 

and 

and adding

i.e. (3)

We thus have for the bow, or undulatory elastica, py=c2,
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NODAL ELASTICA. 619

607. Rectification of the Elastica in the case when there are 
several Convolutions, viz. the Nodal Elastica.

Taking the y-axis to pass through a vertex V as before and 
the line of terminal thrusts as the x-axis and ψthe angle

Fig. 158.

which the tangent at P has turned through in passing from 
c2

V to P, we have again —=y.

and integrating a constant say. We
have not, however, in this case, as we had before, any point 
at which p is infinite. Let 2a be the ordinate of the vertex.
Then at V,

putting when

a/c being >1, as p cannot be ∞ by supposition, and
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620 CHAPTER XVII.
or putting ψ= 2χ,

and

Hence the intrinsic equation is

.(1)

Also

∙(2)

Again,

..(3)
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THE CAPILLARY CURVE. 621

Hence, in the nodal case of py=c2,

Compare with this case the result and process of Art. 390 
for a revolving pendulum.

608. In the case of an infinitely long rod, imagining the 
elastica to touch the line of thrust at ∞ , we have 

and 

s being still measured from the vertex.

Fig. 159.

This species of elastica is called the Capillary curve (see 
Besant, Hydromechanics, p. 201), the shaded portion in 
Fig. 159 representing the water raised above the normal level 
by capillary action due to the presence of a partially immersed 
vertical plate PQRS. In this case p = c/2 at the vertex, and 
c = a, the modulus of the elliptic functions occurring in the 
second case becoming unity.
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622 CHAPTER XVII.609. Cotes’ Spirals.These Spirals are defined by the pedal equation(See Diff. Calc., Art. 454.)There are five varieties :(1) B = 0, an Equiangular Spiral.(2) A = 1, in which case B is essentially positive (as r >p);the curve is the Reciprocal Spiral (Diff. Calc., Art. 452); and the other three are reducible to the polar forms
u = asin nθ, u = αsinh n0 and u = α cosh nθ.(1) The rectification of an equiangular spiral has been effected in Art. 449, Diff. Calc.(2) In the reciprocal spiral we have and

giving (Let θ = tan ϕ.)

The remaining three are rectifiable by the aid of elliptic functions. For instance, take the first, viz. u = a sin nθ for the case n > 1. (Art. 511);
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BIPOLAR CURVES. 623

measuring s from the vertex at (See figure of curve in
Ait. 387, Diff. Calc.)

Let

where and

where

610. Bi-Polar Curves ; Plane Elliptic Coordinates.
Let S, H be fixed points, and let the distances of a moving 

point P from S and H be r1 and r2 respectively. Let SH=2c; 
0 the mid-point of SH, PN a perpendicular from P upon SH; 
ON = x, NP=y, also let r1 + r2=2ξ, r1-r2=2η.

Then ξ, η may be called the elliptic coordinates of P; for ξ=const. and η=const. give families of confocal ellipses and 
hyperbolae.

Let Δ be the area of the triangle SPH.
Then

i.e.
where ξ is necessarily and

Hence
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624 CHAPTER XVII.
Also, if m be the length of the median OP,

Fig. 160.

Thus the Cartesian coordinates of P are given by
.(1)

And therefore, if ds be an element of the arc of the Bi-Polar 
curve traced by P for any relation between r1 and r2,

and ∙(2)

If we put

we have ∙(3)
Moreover,

and
the transformation used in Art. 590 for the rectification of the 
central conics.
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BIPOLAR CURVES. 625The (u, v) system and the (ξ, η) system are therefore connected, and either may be regarded as “ elliptic coordinates. Moreover, we have a definite interpretation of u, v as used in Art. 59O. viz. . _ ..
and they are thus expressed in terms of the bi-polar determination of a point.Ex. Employ Formula (3) in the casesin u=m cosh vTo what curve does this equation refer ?611. If we wish to express the result of Art. 610 in terms of the original radii vectores r1, r2, we have 
and

where and (4)
List of Well-known Βι-Polar Equations.612. The principal bi-polar cases of well-known curves are : 
Name. Bi-Polar Equation. Form of Equation in Elliptic

Coordinates.1. Ellipse2. Hyperbola3. Cartesian oval4. Circle5. Circle6. Straight line7. Cassinian oval
E.I.C.
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626 CHAPTER XVII.613. Ex. 1. Rectify the ellipse r1 + r2 = 2α.Here (17 increasing)where (cf. Art. 567).Ex. 2. Rectify the hyperbola r1-r2=2α. Here η=α, dη=O. (cf. Art 388, Case 6),
where (cf. Art. 588).Ex. 3. Consider the case of the Bernoulli’s LemniscateHere and

Hence
(cf. Art. 388, Case 2),

(cf. Dijf. Calc., Art. 458, and Int.
Calc., Art. 592).

614. Use of Bi-Angular Coordinates.
It is sometimes desirable to express an element of arc of 

a bi-polar curve in terms of the bi-angular coordinates θ1, θ2 
which r2,r1  respectively make with the line joining the poles.

Let f(r1, r2)=const. be the bi-polar equation of a curve, c 
the distance between the poles S, H. Let the angles of the 
triangle SHP be θ2, θ1, θ3; so that r1, θ2 are the polar 
coordinates of P with SH for initial line, τ2, θ1 the polar 
coordinates with HS for initial line. Let the normal PG 
cut the line SH at G and the circumcircle of SHP at Q. Let

and let

Then
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BIANGULAR COORDINATES. 627

Hence multiplying by p1, p2 respectively, and then adding 
and subtracting,

..(i)

..(ii)

Now PSQH being cyclic,

Fig. 161.

Hence these results may be respectively written
..(iii)

and .(iv)
for

The last equation (iv) is due to Mr. Roberts (vide Professor 
Williamson’s Integral Calculus, p. 501, for a somewhat 
different proof).

Again, in travelling along the curve f(r1, r2)=const.,
where frι stands for etc.

i.e.

Hence (a)
(see Diff. Calc., p. 181, Ex. 32);(6)
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628 CHAPTER XVII.
In cases in which f(r1, r2) is homogeneous in r1 and r2 and 

of degree n, and if for convenience we write the constant as

so that

we have, by the theorems of Ptolemy and Euler,

say.

Then
The quantities v and N can be obtained in terms of r1, r2

as follows:

(Hobson’s Trigonometry, p. 203);

and v is therefore found in terms of r1, r2 and the constant a.

And as 
p1, p2, N are also known in terms of r1, r2.

Also, since 

and 

we have theoretically the means of expressing r1, r2, p1, p2 
and N either in terms of θ1 or in terms of θ2, as required.

Hence the rectification of the curve depends upon the in­
tegration of either of the formulae 

or 

or
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ANGELO GENOCCHI’S THEOREM. 629

615. Rectification of a Cartesian Oval. Genocchi’s Result.The last form was used by Mr. Roberts in a proof of Prof. Angelo Genocchi’s Theorem, that the arc of a Cartesian oval can be expressed in terms of three elliptic arcs.Thus, for this oval, viz. l1r1 + l2r2=cl3, we have and
Hence 

and

And these are the integrations required in the rectification of ellipses. This is Genocchi’s result.For a full description of the elements of these ellipses and for many other important properties of the Cartesian Ovals, the student should consult Professor Williamson’s Differential 
Calculus, pp. 375-382, and Integral Calculus, pp. 239-243.

Fig. 162.616. In a similar manner, if the tangent to the curve cut the circumcircle of the triangle SPH at a point Q' whose 
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630 CHAPTER XVII.
bi-polar coordinates are σ1, σ2, and T be the length of the 
tangent PQ', which makes angles χ1, χ2 with r1 and r2, we have 

and

617. A General Theorem.
Let there be two given curves 

and let 0P2P1 be a radius vector from the origin cutting 
these curves at P2 and P1.

Fig. 163.

Let a point P be taken on 0P2P1 so that

i.e.
and 
λ1, λ2 being constants and dots denoting differentiation with 
regard to θ.

Hence
(1)

Let s1, s2, sp be corresponding arcs of the three curves.
Now 

and
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A GENERAL THEOREM. 631

Hence there are two cases of simplication, viz.
(A) when (B) when

Case (A) arises when the given curves are so related that

Case (B) arises when

i.e. constant and the original curves similar and similarly
situated with regard to 0.

In case (A)

and
If we take

and
If another point Q be taken on the same radius vector such

that
then

The radicals are placed in this order because

as may be seen as follows:

and is positive. 
If we take

and

then the P-curve is the locus of the mid-points of P1P2, and 
the Q-curve is such that 0Q = P2P = PP1 and,

so that the P and Q loci are inverse to each other.
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632 CHAPTER XVII.
For such derived loci we therefore have 

and when these integrals can be found, sp and sq can be found.

Fig. 164.

Again, the P and Q loci being inverse to each other, the 
constant of inversion being

618. In Case (B), 
whence 
and 
but as the curves are then similar this is an obvious fact, and 
this part of the investigation does not render any new 
information.
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A GENERAL THEOREM. 633

619. A Useful Case.
In Case (A), it may happen that the derived curves are 

different branches of the same curve locus,

whose roots are

and therefore
In this case the two branches of the curve are

which are inverse to each other with regard to the pole, the
constant of inversion being

And the “ given ” curves from which this curve is derived are

And if s1 and s2 be the differential coefficients of the arcs of 
these curves, the arcs of the derived P and Q curves are given by

620. Ex. 1. Consider the rectification of the curve
Putting this into Polars,
The original curves from which this is derived are obviously and the first being a straight line and incidentally an asymptote of the curve we wish to rectify.The P and Q curves are branches of the same curve and inverse to each other. If N be the node on this curve (see Fig. 165) and A the point where the asymptote x=2a cuts the x-axis, the several arcs are AP1=s1 ; OP2=s2, NP=sp, NQ=SQ.
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634 CHAPTER XVII.Now

Fig. 165.Now

Hence
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EXAMPLES OF THE THEOREM. 635Thus arc NP and arc NQ are found by addition and subtraction. It is to be noted in this case, that although each separate arc NP, NQ requires for its expression the elliptic integrals of the first and second kinds, their difference is free from these functions, and expressible in terms of trigonometric and logarithmic functions.Ex. 2. As a further example, consider the “ derived ” curves to be the branches of the Cartesian oval
The roots being rp and rq, we have

and these are the “ original ” curves from which the Cartesian ovals are derived, the first being a Limacon.
(See Art. 573.)Hence the difference between corresponding portions of the inner and outer loops of the curve

can be expressed as the corresponding arc of a certain ellipse.[This polar equation to the Cartesian oval is an ordinary conversion to polars, retaining one of the poles as origin, of lr+mr'=n, writing r2+c2 — 2rc cos0 for r'2 and performing the rationalization.]

Fig. 166.We may remind the student that any arc of this curve has already been expressed in terms of three elliptic arcs (Art. 615).
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636 CHAPTER XVII.The arcs sp=AP, sQ=A'Q to which the integration refers are shown in the figure.We may construct the ovals as follows. Having drawn the limacon r1 = A + Bcos0 as explained in Art. 424, Diff. Calc., take any radius vector OP1, and on OP1 for diameter construct a circle. Take centre P1 and radius a and draw a second circle cutting the first at R. Then with centre 0 and radius OR draw a circle cutting 0P1 at P2.Then
Bisect P1P2 at P and make 0Q = PP1; then the points P and Q are points on the Cartesian oval.

MISCELLANEOUS PROBLEMS.1. Prove that the three equations
represent one and the same curve. [I. C. S., 1893.]2. Find the area of the curve
considering all cases which may arise.3. Prove that the value of the integral 
taken round the ellipse is p denoting the centralperpendicular on the tangent at (x, y) and ds an element of arc.[I. C. S., 1912.]4. If the point x, y lies on the curve 
prove that 
and hence obtain the integral ofIf, however, the point (x, y) lie on the circle x2 + y2=a2, show that the corresponding relation is 
where s is the length of the arc measured to the point (x, y).Deduce the known formula for the integral of [I. C. S., 19O8.]
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PROBLEMS. 637

5. Show that if δ stands for
6.and if b2 - 4ac be positive and the roots of ax2 + bx + c = O be λ and μ, prove that R = (x- λ)p(x - μ)q. where
And if α = - 1, b = 0, c = 1,
If b2 - 4ac be negative,
If b2 - 4ac = 0,

[E. J. Routh, Proc. L.M.S., vol. xvi., p. 250. ]7. Show that 
there being 2k + 1 integrations, 2k + 1 being an integer, though k may be a fraction, is equal to 
where M = (k + l)(k + l- 1)... to 2k + 1 factors.[Cf. Routh, Proc. L.M.S., vol. xvi.. p. 249. ]8. ABC is a triangle with the corner A fixed and with sides 
AC, CB respectively √n and √n+ 1, given lengths.The side AB ( = r) makes an angle θ = nA - (n+1) B with a fixed straight line AX.Show (1) that the path of B is rectifiable by the formula

(2) When n = 1 the rectification is the same as that of a Bernoulli’s Lemniscate.
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638 CHAPTER XVII.(3) The inclination of the normal to the radius vectoris A + B.(4) The area of the triangle is equal to the area of a sectorof the curve starting from the axis AX.
[M. Serret’s Problem, Calc. Int., p. 269.]9. C is a point of maximum curvature on the Limaςon

A and A' are the two vertices Prove that the difference between the arcs AC, A'C is 4α. [St. John’s, 1891.]10. If y=x3- 3a2x, prove that
and by integration express x explicitly in terms of y.[Oxford I. P., 1916. ]Apply this method to solve the cubic

11. Prove that
[Oxford I. P., 1916.]12. Prove that if n be an odd positive integer greater than 3,

[Oxford I. P., 1916.]13. The parameters t1, t2 of two points A, B of the unicursal curve
are equal to tan α, tan β, where

Prove that the area of the curvilinear triangle A0B, where 0 is the double point, is
[Oxford I. P., 1916. ]14. If n be a positive integer, show that [Oxford I. P., 1912.]
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PROBLEMS. 63915. By assuming to be of tbe formobtain the integration by differentiation and equating coefficients, also obtain the result directly by putting x4 = z.16. Given a rational integral relation between x and y of the form, say,where A1, A2, ... An are rational functions of x, prove that when 
∫y dx can be expressed algebraically in terms of x, then
where B0, B1, B2 ... are rational functions of x. [Abel.]17. Assuming X to be a rational function of x, and ym = X, and that ∫y dx is integrable in algebraic form and expressible as
where P0, P1, ... Pm-1 are rational functions of x, show that
that is that the integration must contain one term only, and thatis a rational algebraic function of x. [Liouville.]18. If M and T be two rational polynomials, then, providedcan be integrated in algebraic form at all, the form ofthe integral is where θ is a function of x.Show also that(1) θ is a rational function of x.(2) That MT(3) That θ is an integral polynomial expression and not ofsuch form as where U and V are complete poly-nomials, i.e. not such that V contains x.(4) That the degree of the polynomial θ is greater by unity than the degree of M.Use these facts to show that is not expressible algebraically.[Bertrand, C. I., p. 94.]

www.rcin.org.pl



640 CHAPTER XVII.19. P, Q, R being any rational algebraic polynomials, andassuming that when is integrable by means of the ordinaryelementary functions, the integral must be of the form
where η, θ, α1, β1, α2, etc., are rational functions of x, a result established by Abel,* show that when the integration can be reduced to one term, the general type of the result is either algebraic of form θ/√R or may be written as

In the latter case show that
(1)

(2)(3)where accents denote differentiation with regard to x.20. Show that
21. Prove that
22. Prove that
(1)

(2)
(3)

* (Euvree. See Bertrand, Calc Integ , chap. v.
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PROBLEMS. 64123. Show that (i)
(ii)
24. Integrate the following:
0) (n)

(iii)(iv)
(v)

(vi) (vii)
(viii) (ix)

(χ) (xi)
(xii)25. Show that the whole perimeter and area of a single loop of the curve r=2acosnθ (n> 1) are respectively equal to the whole perimeter and area of the ellipse x2 + n2y2 = a2. [Oxf. I. P., 1911.]26. If an element ds of a curve lie at distance r from the origin, and subtends an angle dθ there, it is known that unit electric current flowing along ds produces a magnetic force at the origin at right angles to the plane of the curve proportional to d0/r.Show that if unit current flows through a thin endless wire of given length in the form of an ellipse, the magnetic force due to the current at the centre of the ellipse is inversely proportional to the area of the ellipse. [Oxford II. P., 1913.
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27. A current of electricity is flowing round a fine wire 
ABCD... KA bent into a plane polygon. 0 is any point within the polygon, and perpendiculars OP, 0Q, OR,... are drawn to the sides KA, AB, BC, etc., respectively, and again perpendiculars whose lengths are α, β, γ,... from 0 upon the sides PQ, QR, RS, ... of the inscribed polygon PQRS.... Show that the magnetic force on unit particle situated at 0 is
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