
5.

NOTE ON SPHERICAL HARMONICS.

[Philosophical Magazine, II. (1876), pp. 291—307, and p. 400.]

If for a moment we confine our attention to so-called “zonal” harmonics, 
and affect each element of a uniform spherical shell with a density varying 
as the product of two such harmonics of unequal degrees, we know that the 
mass of such shell is zero. A very slight consideration will serve to show 
that this is tantamount to affirming that if a given spherical surface be 
charged with a density inversely proportional to the product of the distances 
of each element from two fixed internal points lying in the same radius 
produced, then the mass of such shell will be a complete function of the 
product of the distances of the two points from the centre; and in fact, if we 
write dS for an element of a spherical surface, it is easy to find, by direct 
integration, that

ff____________ dS_____________
J J √(c2 — 2hx + A2) √(c2 — 2h'x + A'2) ’ 

for the entire surface, is proportional to
1 , c2 — √(AA')

*J(hh') c2 + √(AA,) ’
In like manner, the truth of the more general theorem relating to the 

surface-integral of the product of any two harmonics of unequal degrees 

involves, and is involved in, the fact that the surface-integral j > where

P2 = (x — A)2 + (y — A)2 + (z — l)2,

R'2 = (x — A')2 + {y — A')2 ÷ (-2r - A)2
and A- + A2 + I? and h'2 + A'2 +1'2 are each less or each greater than the square 
of the radius of the sphere, is not merely a function (as we see a priori from 
the symmetry of the sphere must be the case) of the three quantities

A2 + A2 + l2, h'2 + A'2 + Γ2, hh' + AA' + ll',
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38 On Spherical Harmonics [5

but, more definitely, is a complete function of the product of two of them, 
namely, (A2 + k2 + Z2) (A'2 + k'2 + Z'2), and of the third. In other words, the 
fundamental law of spherical harmonics is exactly tantamount to the assertion 
that if each element of a sphere is charged with a density inversely propor­
tional to the product of its distances from two internal or two external points, 
then the mass of the sphere will be a function only of the density at the centre 
and of the angle subtended at the centre by the line joining the given pair 
of points; or, venturing upon an irrepressible neologism, which explains its 
own meaning, the Bipotential, with respect to a given uniform sphere at any 
point-pair, is a function only of the Bipotential thereat with respect to a unit 
particle at the centre, and of the angle subtended at the centre by the line 
joining the two given points. Of course, if this is true for the volume of 
the sphere, it must be true for any shell of uniform thickness, or, in other 
words, for the surface, and vice versa. In what immediately follows the 
volume of a spherical shell is to be understood. It is, I think, very noticeable 
that in that proof no process whatever of integration is employed; only the 
idea implied in integration is employed to acquire the fact that the integral 
in question cannot but be a function of three parts of the triangle, of which 
the centre of the sphere and the two given points are the apices. The rest 
of the proof follows as a matter of purely formal or algebraical necessity 
from the above fact, conjoined with that of each factor under the sign of 
integration being subject to Laplace’s equation. In. this feature of exemption 
from all use of integration as a process, this proof, I believe, stands alone.

It is further remarkable that its success depends on the proposition being 
stated as a whole; it would not be applicable, for example, to the simple 
case, taken per se, treated of at the beginning of this paper. It is by no 
means uncommon in mathematical investigation for this to happen, and (as 
regards the exigencies of reasoning) for the part to be in a sense greater 
than the whole—the groundwork of this wonder-striking intellectual pheno­
menon being that, for mathematical purposes, all quantities and relations 
ought to be considered (so experience teaches) as in a state of flux. In the 
particular case before us it is not difficult to see a priori why the general 
proposition should be more easily demonstrable than any special case of it, 
the reason being that more information as to the form of the function under 
consideration is made use of in dealing with the general than in dealing 
with any special case.

The integral under consideration is
f∕⅛ar (say λ

where B2 = x2 + y2 + z1 — 2hx — %ky — %lz +h2 + k2 + Z2,
B'2 = ar2 + y2 + — ςPix — eLk'y — %Γz + h'2 + k'2 + l'2.

h2 + k2 + l2 — r2, h'2 + k'2 + l'2 = t2, hh' + kk' + U' = s.Call
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5] On Spherical Harmonics 39

Then —A, expanded under the form of a converging series (x, y, z being

for a moment regarded as constants), will be of the form - multiplied by

a rational function of - , , -9, —, and of 7, 4 > ⅜ , 7; when the two
r r2 r2 r2 t t2 t t

points are external, and (more simply) of h, k, I and of ti, k', I' when they 
are both internal. I, we know, must turn out to be a complete function of 
r, s, t, and, when expressed in the form of a series derived from the above 
expansion, will be the sum of terms of the form rl.s^ .tk, where it is obvious 
that i and j must both be negative when the “ pair-point” is exterior, both 
positive when it is interior to the shell, and one positive and one negative 
in the remaining case.

Now we have identically
(iS-⅛) r=θ∙

and {(as-as)+(as-a's')}s=0∙
Hence with respect to I as operand we have

(λs-as)+(as-as)=o∙
Operate on this identity with

( h dk ~ k dh) ^ ( h' dk' ~ k dh') ,

and we obtain

( a s - * sH a s+* a s - a sH a' s+ k' s) ’
and there will be two other equations of like form. Adding all these together, 
changing all the signs, and remembering that in regard to I as operand

∕ d ∖2 id∖2 _ _ (dΛ2 
W + ∖dk) ~ {dl) ,

id V f AY _ _ (d V
∖dh'J + ∖dk') ~ ∖dl'J ’

we obtain

(as+asA)+2(as+as + 's)
= ( a' s + a' s +'' s) + 2 ( a' s + a' s+z' s) ∙

www.rcin.org.pl



40 On Spherical Harmonics [5

In this formula (^h + k 4 I

stands for its algebraical value
*∙⅛),*≈>*i⅛÷--

{(*^+t⅛+ι⅛iK

to denote the operation twice repeated, then
∕7 d 7 d , 1 d∖2 
∖hdh+kdk + ldlJ

(7 7 d 7 d 7 d∖ 12 f, d 7 d j d∖~{∖hdh + kdk + ldir∖ ~∖hdh+kdk + ldd),
and so for the like expressions with the accented letters. The formula thus is

i(a⅛+*⅛ + z⅛)*} +(λ⅛ + ,cs + zs)
={M+k' s÷ 4-)*Γ+(a' s+i s+4)≈

or say {(7⅛)2 + E — (E'⅛)j2 — E'} I ==0,
or simply (F — F,) 7 = 0.

Let now risHk be any term in 7; then since
Er = r, Es — s, Et = 0,
E,t = t, E's = s, E'r = 0,

we have FrisHk = {(⅛ + j)2 + (i +y)} risHk,
F,rιs∏k — {(k +j)2 + (k + j)} rlsHk,

and thence (77 — 7v) r'isjtk = (f2 + i + 2fy -k2-k- 2kj) rτsHk.
Hence Σ (⅛2 + i + 2⅛j' -k2-k- 2kf) risHk must be identically zero ; therefore 
f — 7 = 0, or i + k + 2j + 1 = 0.

But when the two points to which the Bipotential is referred (and which 
I shall hereafter call the points of prise) are both external or both internal, 
⅛ and k have the same sign; therefore i = k, and the integral is a function 
only of rs and t, or say of

(A2 + k2 + 1?) (h'2 + k'2 + A'2), (hh, + kk, + liy↑-.

+ When the point corresponding to r is external and that corresponding to t is internal, the equation i + fc + 2∕+l=0 applies, which shows that each term is of the form - . 5that is to say, the Bipotential multiplied by r is a complete function of and the cosine of the angle which the line joining the two fixed points subtends at the centre.
www.rcin.org.pl



5] On Spherical Harmonics 41

Thus the desired theorem has been established by virtue of an algebraical 
necessity of form alone; and the proof is of course applicable to space in 
any number of dimensions, substituting for the sphere or spherical surface 
its analogue in such space, and for the reciprocal of distance the proper 
power necessary for the satisfaction of Laplace’s equation, that is, the 
(q — 2)th power of the reciprocal, where q is the number of dimensions 
(supposed to be greater than 2).

For the case of two dimensions, substituting the logarithm for the re­
ciprocal, so that, for example, we are able to affirm that if each element of 
a circular ring be affected with a density proportional to the product of the 
logarithms of its distances from two fixed internal points, the mass of such 
ring will depend only on the product of their distances from the centre 
of the ring and the angle between these distances—for this case, writing 
E=h^r + and E' = h' + k, -^7 in the equation (F — F') I — 0, 

F=(E⅛yi and F' ≈(E'⅛)2', and if the two points are interior, every term 

in will be of the form cri. sj. tk, i and k being both positive, and we

must have i2 + 2ij -k2- 2kj = 0, and consequently i = k—the other solution, 
i + k + 2j = 0, being applicable to the case of one point being external and 
the other internal. If the points are both external there will be four sets 
of terms. One set will consist of the single term Λ log r logi; a second, of 
terms of the form c logr. risHk ; a third, of terms of the form c log t. r'lsHk; 
and the last set, of terms of the form crisHk: and it is easy to see that

F (log r log t) = 0, F' (log r log t) = 0,
(F — F') log r. risHk = {(⅛ +J)2 log ?— (k +j)2 log r + 2 (⅛' — k)} r1,sHk,

and consequently i = k for the second and third sets; as regards the fourth set, 
ι = k for the same reason as in the case of three dimensions. Hence

I = A log r log t + log rφ (rt, s) + log tφ (rt, s) + ω (rt, s); 
and as r and t are interchangeable, we must have φ = ψ, and consequently

I — A log r log t = F (rt, s);
so that not now the mass of the ring, but the difference between it and the 
mass due to the density at the centre is invariable when rt and s are given.

For greater simplicity, and as bearing more immediately on the theory 
°f spherical harmonics, I have hitherto regarded the points of the pair-point 
at which the “bipotential” is reckoned either both internal or both external. 
-The results established in these two cases are not complementary, but mutu- 
ally equivalent to each other, and to thę theorem that the integral along 
a spherical surface of the product of two spherical harmonics of unequal 
degrees is zero. In the third case, where one point is internal and the other
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42 On Spherical Harmonics [5

external, then for the case of space of three dimensions the equation between 
i and k will have to be satisfied, not by i = k but by i + k + 2j + 1 = 0, as 
previously stated in a footnote; and for two dimensions the equation would 
have to be satisfied, not by i = k but by i + k + 2j = 0.

The advantage of the method here indicated is that it is immediately 
applicable to space of any number of dimensions. I shall now proceed to 
show that it leads at once to the determination of the values of the surface- 
integral of the product of any two given types of spherical harmonics of 
equal degrees, and mutatis mutandis to the corresponding surface-integral 
in space of any order.

To prove that the degrees must be equal or else the integral will vanish, 
we have combined the two Laplacian operators applicable to R and R' re­
spectively ; to find the value of the integral in a series, I use either of these 
operators to act singly on the result acquired by their use in combination. 
For greater simplicity suppose the point-pair to be internal; then, calling

α + 6 + c = μ- = α + ∕3 + γ,
the problem to be solved is in effect that of finding the value of the numerical 
coefficient of kakble .h'ak βl'y in the integral I. Now we know by what pre­
cedes that the value, say Iμ, of that part of I which is of the μ,th order in 
the two sets k, k, l∖ h,,k',l' respectively is a rational function of rt and s; 
and we may accordingly write

∕μ = tIs* + Bsp~2. θ + Cs^~i. θi +..., 
where s = kk' + kk' + IΓ,

and θ = (Λ2 + k2 + l2) (h'2 + k'2 + l'2) = pp'.
When Λ, B, C,... are determined, the problem is virtually solved, and we 
shall then know the coefficient of

kakblc. h'ak'^l'y
by mere binomial expansions.

since (s)^ + (ffi)^+(s)2∙

say V, operating on the whole of I gives the result zero, the same must 
obviously be true for each part Iμ,.

Now Vsp is obviously equal to
(p2-p) P'sp~2,

and V0? = 2q (2q + 1) p'θq~1',
for ^Ljh2 + k2 + l2)q = t ~{2qk(k2 + k2+l2)q→}

= Σ {2ępS_1 + 4>q (q — 1) p. pq~2}
= {<⅛ + ½q(q- i)} pq~1-
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5] On Spherical Harmonics 43

Also Vsppq — pqVsp — spVpq = 2pq∑ s ~∣- p^ sp~1. ρq~1 = 4pqsp. ρq~l. 

Therefore
'Qspθq = (j>2 — p) sp~2pqp'q+1 + (4pq + 4ę2 + 2q) sp. pq~1. p'q, 

or Vs'x^^2∙7 07 = (∕χ — 2j) (μ — 2j — 1) sp~2 (pp')ip'
+ 2j (2μ-2j + Γ) sp (ppy~1. p'.

Hence, equating to zero the coefficients of the different combinations of 
p, p', s, we easily obtain by writing for j successively 0, 1, 2, 3, ...,

μ (μ — 1) A + 2 (2μ — 1) B = 0,
(μ-2)(μ-3)B +4(2μ-3)G = 0,
(μ — 4) (μ — 5) G + 6 (2μ — ∂) D = 0,

μ(μ-Γ>
8 2(2za-l) ,

∩ = ∕√μ- 1)(μ- 2) (μ-3) a
2.4 (2/z. — 1) (2μ, — 3) ’

∏ _ μ O -1) (μ - 2) O - θ) O - 4) (μ - 5) a
2.4.6 (2μ∙ — 1) (2μ, — 3) (2μ — 5) ’

To find the value of A, I observe that when k = 0, l = Q, k, = 0, Z' = 0, 
aud h, — h, Iμ becomes

(A + B + G+ ...^)h2p.
But in that case, taking the radius of the sphere equal to unity, I becomes
the surface-integral of -------------j- , and is equal to1 — Ahoc “I- tt

of1 dx 2π 1 /1 + h∖ . i h2 ∕⅛2μ ∖27γJ- 1 Γ-2⅛ + ⅜ = ~h ‰) “ 4π 11 + 3 + - ⅛ + l + -λ

Therefore A + B + G + ... = . 1 ,
2μ + 1

or S A= ~1r-
ti 2μ+l,

where £ = 1 - ∆lZ≤2λ + ∕√∕*-W~2) fc~3)
μ 2(2zx-1) 2.4.(2μ- l)(2μ,-3)

μ (μ - 1) (μ - 2) O -3)(μ- 4) (μ - 5)
2.4.6 . (2μ, — 1) (2μ, — 3) (2μ-— 5)

This series admits of summation. And I find
,q _ -i c< _ 2 q __2 q _ θ q _ 8 q_____lθ1 > ^2-3, ^3-5, ^-35, ^-θ3, ^-3.7.11>

,g - 16 ∏ 128____ ς 120
7 3.11.13’ 8 3.11.13.IS’ 9 5.11.13.17’

q 256Miλ -  —----- -----------
11.13.17.19
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44 On Spherical Harmonics [5

and in general
~ _ 2.4.6...(2∕n)

2wι (2ra + 1) (2wi + 3) (2m + 5)...(4w — 1)

, q _ 2m + 1 q
ana A>m+ι — _j_ ∣ &2m 5

that is to say, Sμ is the reciprocal of the coefficient of hμ∙ in (1 — 2Λ) -- .

Hence the values of J., B, G... in Iμ are completely determined, and Iμ, 
and consequently the value of the complete integral of

∕HMH3W)W'⅜
is known for all values of a, b, c; ot, /3, 7—and this by a method which is 
applicable step by step to any number of variables, provided in place of 
1.1— we write when n exceeds 2, and logr when n — 2, and consider dS to

be the element of what in n dimensions corresponds to a spherical surface 
in three-dimensional space.

The method employed, of first using two Laplacian operators in com­
bination to determine one property of the form under investigation and then 
a single one of them to act on the form thus partially determined, reminds 
one very much of the method for obtaining invariants of given orders from 
their two general partial differential equations. Combined, these two equa­
tions express the law of isobarism ; then, assuming the isobarism, a single 
one of the two serves to determine the special values of the coefficients. The 
analogy between that process and the one here employed seems to me to be 
exact, although the subject-matter is so very unlike in the two problems— 
and is the more interesting on that very account.

The bipotential in the case where the two points of prise are both internal
being known under the form -F,^-,cosα^, where a is the radius of the

sphere, its value for the case where these points are both external, and for 
the case where they are one internal and the other external, may be assigned 
without any further calculation as follows:—

1. Suppose r greater than the radius of the sphere, but r' less. We know 
a priori from the result previously obtained (and stated in a footnote), that 
the bipotential for this case is of the form ~ G cos oc^. Now in place of 

r, r' substitute α, — ; then the bipotential becomes - G (—, cos a∖.
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5] On Spherical Harmonics 45

But we may by an easily justifiable application of the principle of con-

(αν ∖as well as — 1 as the distance of an internal point 

from the centre. Hence we have

1 r, (r' ∖ α „ (r’ ∖or - (jγ — , cos α = - jb —, cos α ,r ∖r ] r ∖r J

which is the value of the bipotential of a spherical surface cut by the line of 
prise, r being the distance of the external point of prise from the centre.

2. Suppose r and r, to be each greater than the radius, and r > r,,, 
we know the bipotential is of the form H , cosαj . For r, r' substitute

respectively a, r~ . Then we may regard the case as that of an exterior and 
(t

interior point of prise, and consequently from the last case we have

ττ (rr' ∖ α2 „ ∕ α2 ∖H —, cos α = —. r —-., cos a .
∖a2 ] rr ∖rr )

If we compare the two expressions

J√⅞,cos<∕) and —,F(≤,, cos«Ί

respectively applicable to two internal and two external points of prise, it 
will easily be seen that it leads to the following theorem. Let there be two 
concentric spheres, and let any two radii cut the first and second surfaces 
in the points P, Q and P', Q, respectively; then the bipotential of the first 
surface with respect to P', Q' as the points of prise, is to the bi potential 
of the second surface with respect to P, Q as the points of prise in the ratio 
of the squares of the radii of the two surfaces to each other.

This is a theorem of precisely the same kind as Ivory’s for the comparison 
of the attractions (or, if we please, the potentials) of two confocal ellipsoids 
ln the particular case when they become two concentric spheres, and may 
he verified by precisely the same geometrical method. For we have only to 
divide the two spherical surfaces into corresponding elements m, m! by radii 
drawn in all directions to meet the two surfaces, and it is evident that we 
shall have the distances mP' and m P equal, as also ιn,Q' and m'Q. And, 
m°leover, the ratio of any two corresponding elements m, m' will be as the 
square of the radii, which evidently establishes the theorem in question. 
It may further be noticed that the relations between the bipotentials in
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46 On Spherical Harmonics [δ

the three several cases considered may be deduced from the fact that each 
such radical as

1
√(Γ - 2ky - 2lz + h2 + k2 + l2) ,

where Λ2 + k2 + Z2 is greater than unity, may be put under the form
1 ________________ 1________________

√(λ2 + &2 + Z2) √(1 — 2h1x — 2k1y — 2l1z + h12 + k2 + Z12) ’
where h1, k1, l1 and h, k, I are the coordinates of two points the inverses (or 
electrical images) of each other in regard to the origin, and consequently 
A12 + k2 + Z12 less than unity. This is going to the heart of the matter. So 
I may observe that if we would go to the root of the relation between 
positive- and negative-degreed solid spherical harmonics, the more logical 
mode of proceeding is not (as is usually done) to infer this by a lengthy 
a posteriori process, but immediately from the fact that since

__________________ 1____________________
√{(<r2 + y2 + z2) — 2 (hx + ky + lz) + (A2 + k2 + Z2)} 

is nullified by the operator (δ) + ⅛) + (e) ’
so also must the same operator nullify the radical

1 * 4
√{1 — 2 (hx + ky + lz) + (A2 + k1 + Z2) (λ∙2 + y2 + z2)}'

Before proceeding further, I ought to observe that Iμ in the above series
4,7Γ

for the bipotential may easily be shown to be ——- multiplied into the

coefficient of tμ in the expansion of -77----- J-----or, in other words,
r √(1 — 2st + θt2)* s, it will be remembered, is hh' +kk' + ll', and θ is the product (7ι2 + fc2 + Z2) (∕√2+fc'2+Z'2). The statement in the text follows as a consequence from the fact that (1 - 2sZ+0Z2) - ⅛ obeys Laplace’s law, and, when expanded according to powers of t, is of the form found for Jμ, and must consequently be identical with it to a factor pres, that factor being a function of μ, whose value is easily found by making h = h' and ⅛, Z; k,, l' each zero. In like manner it may be shown that in higher space of n dimensions the corresponding value of Iμ is a function of μ multiplied bythe coefficient of Zμ in {1 - 2tΣ⅛Λ' + Σ (Zt2) Σ (Λ'2) Z2}^ ~⅜n; and [writing m for μ] I findf that this function, say φ(m, n), (as will be shown in a sequel to this paper) is always a rational function in m, containing in the denominator, when n is odd, one factor of the form 2r∕ι∙ +j, all the others being of the form m + i—and when n is even, factors all of the form m + i. Whatever the form of these linear factors had been for even numbers, we could see a priori that the Bipotential for space of even dimensions could contain only algebraic and inverse circular or logarithmic functions. But as regards the case of space of odd dimensions, the fact of there being no factors except of the form m + i, 2m+j, is prepotent in determining the form of the result. For space of two dimensions the Bipotential does not appear readily to yield to summation in finite [f See below, p. 51. ]
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5] On Spherical Harmonies 47

if the distances from the centre of a spherical surface of two points in the 
interior be r, t, and the angle which the line joining them subtends at the 
centre be ω, then [for a sphere of radius c] the value of the bipotential of the 
surface at this point-pair is the elliptic integral

f c 4∙7γc‰c
J 0 √(1 — 2x2 cos ω + xi) ’

which I take leave to call the Cardinal Theorem of Spherical Harmonics; 
for it is the theorem from which spring all the properties relating to the 
“ surface-integral” of the product of any two rational forms of Laplace’s 
coefficients.

Since every spherical harmonic of integral degree is a linear function of 
the differential derivatives of (x2 + y2 + z2)~⅛, the whole theory of the diplo- 
spherical-harmonic-surface integral is contained in the annexed equation,

terms. Thus at one blow the theory of spherical harmonics has been extended to “ globoidal ” harmonics in general; and the chief eases of statical distribution of electricity heretofore solved may be regarded as virtually solved mutatis mutandis for space of any number of dimensions, of course with the proviso that the law of attraction (in consonance with the hypothetical principle of force-emanation to which the English school of physicists seem to be returning) is always to be supposed to vary as the (i - l)th power of the distance in space of i dimensions.The actual expression for φ (m, n) when n is 3 we know is 8enerai when n isany other odd number, I find that its value is
w—1

2(2ττ) 2

(2m + n-2) (m + n-3) (m + n-⅛)... + —g—As this expression may be split up into partial fractions, it is obvious that the value of the Bipotential may be expressed by means of the sum of integrals of the form
/1 ui du

∞ { J(u2 + Au + B)}n~2 ,and one of the form I ----------- —----------- ∙J 00 {√(u4 + Au2 + jB)}h-2'so that it involves no transcendents of a higher order than an ordinary elliptic function. I think also that it follows from the limits to the value of j that the other integrals are mere algebraical functions. The less interesting case when n is an even number (being very much pressed for time and within twenty-four hours of steaming back to Baltimore) I have not taken the trouble to work out in detail.lhe determination of the Bipotential constitutes in itself a vast accession to the theory of definite integrals, and promises to be fruitful in yielding whole new families of such when subjected to the usual processes performed under the sign of integration. But does the theory 'top here? The success of my method for the Bipotential depends solely upon the discovery that, as regards internal points of prise, it may be regarded as a function of only two variables, rr and cosω. Now a Tripotential will obviously at first sight be a function of not more than sιχ 'tables, viz. the three quantities r, r', r" and the cosines of the angles between them ; but lt becomes a question whether this number also may not be reduced to be less than six, them- sehes simple functions of the six parts of a tetrahedron; and so for a multipotential of any order the question arises, Is it a function of ⅜jλ (m +1) quantities or of a smaller number ? andso, of what number of what variables?
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which springs immediately from the expression found above for the bi­
potential of a spherical surface at two internal points (slightly modified by 
taking — h, — k, — I·, — h', — k', — I' for the coordinates of the points) by 
means of the simple and familiar principle that any differential derivative 
with respect to x, y, z of a function of x, y, z is identical with what the 
corresponding derivative with respect to Λ, k, I of the like function of x + h, 
y + k, z + I becomes when h, k, I are made to vanish.

Let U stand for ui — 2u2Xhh, + X∕√2. ∑λ∕2, and let

F(Λ, k, I ; k', k', ,⅛,⅛)⅛,

where Φ and Ψ are forms of function which denote series, whethei’ finite 
or infinite, containing only positive integer powers of the variables. Then,
if p = (λ∙2 + y2 + z2y~2 and dS is the element of a spherical surface of unit 
radius, the complete integral

∫∫dS^φ(^, jy, ^)p∣ = 4ττF(0, 0, 0; 0, 0, 0).

When Φ and Ψ are homogeneous forms of function, each of the degree f, 
if we write

Γ=1-2W + Σ⅛2.X⅞'2,
and make

Ω (¼ k, I ■ h', k,, Γ) = Φ , dl) ψ (d∆7 : dk', dr)ττ, 

the value of the corresponding harmonic surface integral becomes

2^1ω<o, o,o; o, o, o).

I am not aware that a rule for finding such integral so simple in form 
and of such absolute generality in operation as the one above has been given 
before ; the interesting rule furnished by Professor Clerk Maxwell, Electricity 
and Magnetism (vol. I. p. 170), assumes that Φ and Ψ have been each reduced 

to the form of the product of linear functions of , —a reduction

which cannot practically be effected, as it involves the solution of systems 
of equations of a high order—not, however, so high as might at first sight 
be inferred from Professor Maxwell’s statement that, for the case of i factors, 
it depends on the solution of a system of 2i equations of the ⅛'th degree, 
as the equations referred to (evidently those obtained by the use of the 
method of indeterminate coefficients in its crude form) would be of a special 
character : thus, for example, when i = 2, the order of the system of the four 
quadratic equations sinks down from 4.23 or 32 (its value in the general 
case) to be only 3, as will presently be seen.
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The method of poles for representing spherico-harmonics, devised or 
developed by Professor Maxwell, really amounts to neither more nor less 
than the choice of an apt canonical form for a ternary quantic, subject to 
the condition that the sum of the squares of its variables (here differential 
operators) is zero ; and I am quite at a loss to understand how it can at all 
assist “ in making the conception of the general spherical harmonic of an 
integral degree perfectly definite,” or what want of definiteness apart from 
the use of this canonical form can be said to exist in the subject.

(cZ ∖2 ∕ d∖2 f d∖2
dxj w∕∕ + ∖efc∕ re^a^ns f°rrn when any orthogonal linear

substitutions are impressed on x, y, z, we recognize à priori that a harmonic 
distribution on the surface of a sphere is invariantive in the sense that it 
bears no intrinsic relation to the particular set of axes which may happen 
to be used to express the value of the harmonic at each point of the surface ; 
and the great merit, it seems to me, of Professor Maxwell’s beautiful con­
ception of harmonic poles is that it puts this fact in evidence : for it is easy 
to see at a glance, from the use of successive linear operators, that the 
harmonic at any variable point on the surface for any given degree (n) will 
depend in an absolutely determinate manner (save as to an arbitrary constant 
factor) on the cosines of the arcs joining it with n arbitrarily assumed fixed 
points on the sphere, and of the arcs joining those n points with one another 
(being in fact a symmetrical function of each of the two sets of cosines), 
so that intrinsic poles are substituted for extrinsic Cartesian axes. I am 
a little surprised that this distinguished writer should not have noticed that 
there is always one, and only one, real system of poles appertaining to any 
given harmonic, and that to find this system it is not necessary, as he has 
stated, to employ a system of n equations each of the order 2n, but one

single equation of that order. For calling , , by the names ξ, η, ζ, 

then any given harmonic of the nth degree may be reduced by the use of

raerθ linear equations to the form (ξ, η, ζ)n , and the problem to be solved

ln order to find its poles is the purely algebraical one of converting the 
quantic

(ξ,v, ^ + Λ(^ + τ72 + ∏,
"here Λ is a quantic of the order (n — 2), into a product of linear factors, 
λow this again is merely the problem of finding a pencil of rays that 
'hall pass through the intersections of the curve (ξ, η, ζ)n with the curve

+ 772 + £2); that is to say, any dispersal of the 2n intersections into n sets of 
t" 0 each will give a system of n polar factors in Professor Maxwell’s problem.

e have therefore only to find the values of £ : 77 : £ in the two simultaneous 
• quations (ξ, η, ζ)n = 0, ξ2 + y2 + ζ2≈ 0, and this leads to a resolving equation

s. hi. 4
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of the 2nth order. From the form of the second equation we see that the 
values x : y : z are all imaginary ; consequently there will be one, and but 
one, system of real rays, that is, real polars corresponding to the distribution 
of the 2n roots of the resolving equation into n conjugate pairs. The re­
maining systems (there are in all 1.3.5... (2z⅛ — 1) of them) will each contain 
imaginary elements, so that all or some of the poles become imaginary.

In the case of n = 2, the problem becomes the familiar one of finding the 
principal axes of a cone of the second order ; and instead of employing a 
biquadratic resolvent we make the discriminant of (ξ, η, ζ)2 + (ξ2 + η2 + ζ2) 
vanish, which of course only requires the solution of a cubic equation ; but 
as subsequently (when the pair is to be divided into its elements) a new 
quadratic surd is introduced, we are virtually solving a biquadratic, in ac­
cordance with the general rule that, to find the poles of a spherical harmonic 
of the degree n, it is necessary to solve an equation of the degree 2n.

To put the coping-stone to Professor Clerk Maxwell’s method of poles, 
I think it would be desirable to find an intrinsic definition of spherical 
harmonics to correspond with their representation referred to intrinsic 
axes : I mean we ought to be able to dispense with the Laplacian operator 
altogether, and to define a Harmonic with sole reference to some algebraical 
or geometrical (but certainly not physical) condition which it satisfies in 
regard to its poles. With all possible respect for Professor Maxwell’s great 
ability, I must own that to deduce purely analytical properties of spherical 
harmonics, as he has done, from “Green’s theorem” and the “principle of 
potential energy” (Electricity and Magnetism, vol. I. p. 168), seems to me 
a proceeding at variance with sound method, and of the same kind and as 
reasonable as if one should set about to deduce the binomial theorem from 
the law of virtual velocities, or make the rule for the extraction of the square 
root flow as a consequence from Archimedes’ law of floating bodies.
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POSTSCRIPT. NOTE ON SPHERICAL HARMONICS.

The value of ó (m, n) is stated inaccurately in the long footnote at 
pp. [46, 47]. If

∩.=_____<2≤>!_____
i 1.3.δ... (2i—1)

and R = √(1 - 2⅛hh'. i2 + ∑∕t2. S∕√2. ti)

then I find φ (m, 2i + 1) = —J? ;
2m + 2τ — 1

and accordingly the Bipotential in space of 2i + 1 dimensions is
fθ Ωidt2i~1 

Jι R2i 1,

Also I find that in space of 2i + 2 dimensions the prospherical Bipotential is

2ττi fθ __________ dti__________
1.2.3 ... i J1 (1 — 2'Z.ldi. t + X∕⅛2. ΣΛ∕2. i2)t ’

The above results may be extended to general quadric surfaces and pro­
surfaces. Thus, for example, if an indefinitely thin ellipsoidal shell be 
contained between two concentric surfaces, the equation to one of which is 
G {χ, yj z) = 1, where G is a general quadric, and if the squared density at 
χ, y, z is the reciprocal of

G (x — h, y — k, z -l).G {x — h', y -k', z — V), 
then the mass of the shell divided by its volume is

fθ dt
Jlj √(l-Ai2 + ^i4),

where

and B = G (h, k,l).G {h', k', Γ).

It is further noticeable that if F and G are contravariantive forms, 
each numerator of the fractions expressing the differential derivatives of

1
ιs nulhfied by thθ θPerat°r

π(d d d∖
∖dx, dy, dzΓ

a∏d conversely, every rational integer function of x, y, z so nullifiable is 
a linear function of such numerators. And so in general the Theory of 
Spherical and Prospherical Harmonics merges in a theory of Conicoidal 
a∩d Proconicoidal Harmonics.

4—2
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