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ON CERTAIN TERNARY CUBIC-FORM EQUATIONS.

[American Journal of Mathematics, ∏. (1879), pp. 280—285, 357—393; 
in. (1880), pp. 58—88, 179—189.]

Chapter I. On the Resolution of Numbers into the sums 
or differences of Two Cubes.

Section 1.
M. Lucas has written to inform me that in some one or more of a series 

of memoirs commencing with 1870, or elsewhere, the Reverend Father Pópin 
has made considerable additions to my published theorems * on the classes of 
numbers irresoluble into the sum or difference^ of two rational cubes.

Using p, q to denote primes of the forms 18w+ 5, 18n + 11, besides the 
6 forms published by me, M. Pdpin has found 10 other general classes of 
irresoluble numbers, the total number (as I understand from M. Lucas) 
known to the Reverend Father being as follows:

p, cf, p2, q, 2p, 2q2, 4p2, 4>q,
9p, 9q2, 9p2, 9q, 25p, 2z>q2, 5p2, 5q,

but the last four of these classes are special cases only, of three out of the 
four more general irresoluble classes pq, p2q2, plp22, q1q22, where p1, p2 are any 
two numbers of the p class and q1, q2 any two of the q class. On making 
p = 5 in the first two of these, and p1 = 5, p2 = p, or p2 = 5, p1=p, in the 
third,Father Pópins last four classes result. It is also true that the numbers 
in my four additional general classes respectively multiplied by 9 are still 
irresoluble. Hence the number of known classes of numbers (depending on 
p and q) irresoluble into the sum or difference of cubes may be arranged as 
follows:

p, q> p2, q2, pq, p2q2, plp22, qiq22,
9p, 9q, 9p2, 9q2, 9pq, 9p2q2, 9p1p22, 9qlq22,
2p, 4>q, 4ρ2, 2q2.

[* See Vol. ι. of this Reprint, pp. 107—118, and Vol. π. pp. 63, 107.]
t It is well to understand that a number resoluble into the sum is necessarily also resoluble 

into the difference of two positive cubes and vice versa.
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39] On Certain Ternary Cubic-Form Equations 313

Moreover, I have ascertained the truth of the following two theorems of 
a somewhat different character :

1st. Let p, -φ, φ denote prime numbers respectively of the forms 18ft +1, 
18n+ 7, 18ft+ 13 and suppose p, yfr, φ to be not of the form f2+27g2 and 
consequently not to possess the cubic residue 2, then I say that all the 
numbers comprised in any one of the eight classes

2p, 4<p, 2p2, 4>p2, 2yfr, 4ψ2, 4∣φ, 2φ2
are irresoluble into the sum of two cubes *.

2nd. Provided 3 is not a cubic residue to v↑ [where v, any 6ft + 1 prime, 
is the same as p, φ, -φ taken collectively], 3y and 3v2 are similarly irresoluble.

With the aid of these theorems and certain special cases of irresolubility 
noticed by Father Pepin, communicated to me by M. Lucas, supplemented by 
calculations of M. Lucas and my own as regards the non-excluded numbers, 
it follows (mirabiie dictu) that of the first 100 of the natural order of numbers, 
there is only a single one, namely, 66, of which it cannot at present be 
affirmed with certitude either that it is or is not resoluble into the sum of 
two cubes, and of which, in the former case, the resolution cannot be 
exhibited.

The proof of these statements, and the resolutions into cubes in their 
lowest terms, when they exist, will be given in the next number of the 
Journal. For the present I limit myself to noticing (what I much regret 
not to have done before the paper was printed) a statement of M. Lucas 
which is capable of being misunderstood and might give rise to an erroneous 
conception.

It is where this distinguished contributor to our Journal speaks of 
deriving from one rational point on a cubic curve (defined by a cubic equa­
tion with integer coefficients) another by means of its intersections with a

* The exclusion of 2 as a cubic residue blocks out the possibility of the “ distribution of the amplitude” ; the formp2 + 27q2 blocks out the possibility of a solution in which x2 - xy + y2 has a common factor with the amplitude, and thereby imposes upon the equation containing x, y, z (were it soluble in integers) the necessity of repeating itself perpetually with smaller numbers, which of course is impossible. But the two conditions thus separately stated are in fact mutually implicative, every number of the form /2 + 27#2 having 2 for a cubic residue and vice versa every number of the form 6n+ 1 to which 2 is a cubic residue being of the form∕2 + 27<72. The sole condition, therefore, in order that a number coming under any of the eight categories in the text shall be known at sight to be irresoluble into the sum of two cubes, is that its variable part shall not be of the form p2 + 27q2, that is, shall not be 31, 43, 91, 109, 127,157, 223, 229, 247, etc.t If I am not mistaken this is tantamount to the proviso that v shall not be of the form ∕2=fc9∕gf + 81g'2. It is worth noticing that the above quantity multiplied by 3, say 3N, is equal to 
—27ffl8^—~ > sθ ti^at when g is a cube number N is immediately resoluble. The initialvalues of N will be found to be 61, 67, 73, 103, 151, 193, 271, 367, 547, etc., for each of which, up to 367 inclusive, g = 1 or g=. -1, so that their products by 3 are immediately resoluble.
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314 On Certain Ternary Cubic-Form Equations [39

conic drawn through five consecutive points situated at the given rational 
one; but, in fact, it follows from my theory of residuation that this point is 
collinear with the given point and its second tangential: just as a ninth 
point in which the cubic would be met by any other cubic passing through 
eight consecutive points situated at the given point would be the third 
tangential to the latter *.

Hence M. Lucas’ third method amounts only to a combination of the 
other two; and in fact there is hut one single scale of rational derivatives 
from any given point in a general cubic, the successive terms of which 
expressed in terms of the coordinates of the primitive are of the orders 
1, 4, 16, 25, 49, ... the squares of the natural numbers with the multiples of 
3 omitted f.

Scholium.

I term lmn the amplitude of the equation lx* + my* + nzi = Q, and if A 
cannot be broken up in any way into factors I, m, n, such that

lx? + my* + nz* = 0
shall be soluble in integers, I call the amplitude A of the equation 

zr3 ÷y3 + 2I23 = 0
undistributable.

When A is of the form ——> the equation x? + y* + √f-z3 = 0 is οζύ
always soluble, and when this equation is soluble, then, provided that its 
amplitude is undistributable and contains no prime factor of the form 6i + 1, 
the equation x? — 3zr2y + y* = 3√4^3 must be soluble in integers, which cannot 
be the case when A contains any factor other than 3, or of the form 18i + 1, 
inasmuch as the cubic form x? — 3a? + 1 contains no factors other than 3 or of 
the form 18t + 1.* I make the important additional remark that at those special points of the cubic where this ninth point (sometimes elegantly called the subosculatrix) coincides with the point osculated, the scheme of rational derivatives returns upon itself, and instead of an infinite number there will be only two rational derivatives to such point. That is to say the infinite scheme becomes a system of 3 continually recurring points. The general theory of the special points which have only a finite number of rational derivatives will be given in the next number of the Journal.+ When the cubic is of the form Ax3 + Ay* + Cz3 + Mxyz = 0, where A, C, M are integers, then a rational point of inflection x=l, y= -1, z = 0 is known and, in that case, from any other rational point besides the ordinary ones derivative rational points of the missing orders 9, 36, 81 can be found, but no others, and so universally if in the general cubic a rational point of inflec­tion and a rational point (a, b, c) are given the scale of rational derivatives will be of the orders 1, 4, 9, 16, ... in a, b, c. This scale will of course be duplex, consisting of a series of points and a second series in which the radii drawn through the points of the first series and the point of inflection again meet the cubic.
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39] On Certain Ternary Cubic-Form Equations 315

This last theorem is a particular case of the following: If k be any integer
and F {x, y), the product of factors of the form [x—2 cos y^ , where λ is

every number prime to k up to ⅜ (k — 1), then Fx [= F(x, 1)] contains no prime 
factors excepting such as are contained in k or else are of the form ki + 1 *.

If it could be shown, in analogy with what holds for the quadratic forms 
Fx which result from making k = 8, 10, 12, that the cubic form x? — ⅜xy2 + y3 
which results from making k = 18 may always be made to represent any 
prime number of the form 18n + 1 itself, or else its treble (and for our purpose 
rational numbers would be as efficient as integers), we should then be able 
to affirm that any prime 18n + 1 or else its nonuple could be resolved into 
the sum of two cubes. As a matter of fact I have ascertained that every 
prime number 18n + l as far as 537 inclusive (and have no ground for 
supposing that the law fails at that point) can be represented by

ir3 — ⅜xy2 + y3

or else by its third part with integer values of x, y. Moreover, I find that 
the same thing is true of 172, 17.19, 192, 17.37, 19.37, 372, 17.53, 
19.53, 37.53, that is, in fact for all the binary combinations of the 
natural progression of “ r, p” numbers 17, 19, 37, 53, 71, 73, 89 (21 in all), 
as also 172, 192, 372f. The number of consecutive r, p primes for which the 
law has been verified, that is, the number of those not exceeding 537 will be 
found to be 39, namely, 17, 19, 37, 53, 71, 73, 89, 107, 109, 127, 163, 179, 
181, 197, 199, 233, 251, 269, 271, 307, 323, 341, 359, 361, 377, 379, 397, 413, 
431, 433, 449, 451, 467, 469, 487, 503, 521, 523, 541, which according to the 
usual canons of induction would, I presume, be considered almost sufficient 
to establish the theorem for the case of k = 9.

* Thus, by making ⅛=8we learn that a;2-2 contains no factors except 2 and 8i÷l and by making Ze = 16, that yi - 4y2 + 2, none except 2 or 16i÷l, by making fc = 9 that .τ3-3x+l, by making ⅛ = 18, that as3-3a;- 1 contain no other factors but 3, or numbers of the form 18n±l. The theorem, I am aware, is well known for the case where λ: is a prime number and possibly is so for the general case. The proof of the irresolubility into two cubes of the 20 classes of numbers involving p’s and q’s, given at page [312], is an instantaneous consequence of the theorem for the case of ⅛ = 9, for which case also there is no shadow of doubt of the theorem being true.+ 532 has not yet made its appearance. All the primes of that form themselves occurring in the first six hundred numbers have already occurred in my calculations except 557 and 593. I have worked with the formula x3- 3xy2±y3 [a; and y relative primes], giving to x and to y all the values possible from 1 to 36, and intend to extend the table to the limit of 50 or 100. The longer a moderate-sized number is in making its appearance, the longer it is likely to be before it appears, inasmuch as the large numbers of which it is the residuum or balance are becoming continually greater. It may very well then happen that the missing numbers alluded to may transcend all practicable limits of calculation to find them just as would be the case, for certain values of A, with finding values of x, y to satisfy the Pellian equation x2-Ay2=l, were there not a theoretical method of arriving at them.
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The table of “ special cases” of irresoluble numbers found by Father 
Pdpin (according to the information most kindly communicated to me by 
M. Lucas) comprises the numbers

14, 21, 31, 38, 39, 52, 57, 60, 67, 76, 77, 93, 95 *, 
all of which I have verified as irresoluble except the number 60, which I 
accept as such on the erudite and sagacious Father’s authority.

Reverting to F, it is hardly necessary to recall that Jτ(ir2 + y2, xy) is the 
primitive factor of xk — yk, and that it is capable of very easy demonstration 
that this primitive factor contains no prime factors except such as are 
divisors of k or of the form ki +1, the linear divisor ki — 1 being here 
excluded. It seems to be very probable that for k = 9, F(x,y) or else 
3F(λ7, y) does represent any prime of the form 18w + 1, and consequently 
that every such form of prime or else 9 times the same is the sum of two 
rational cubes +.

This last conjectural theorem, it will be noticed, is not in any real 
analogy to the theorem that every product of primes of the form 4n + 1, and 
also the double thereof, is the sum of two integer squares; the real analogy 
is between the fact, of which this theorem is a consequence, that ar5- 3xy2±y3 
or its third part represents every number which is a product of primes of 
the form 18w + 1, and each one of the facts that x2- 2y2, x2 — 5y2 represent 
all numbers of the form 8i + 1, 10f + 1 respectively, and that x2 — 3y2 or its 
third part represents all numbers of the form 12t + 1. On account of its 
importance to this theory it seems desirable to give a name to the law which 
governs the prime factors of F(x, y), and I take advantage of the circum­
stance that Jt(λj2 + y2, xy) contains prime factors of the form ki + 1, but not 
of the form ki — 1, whilst F (x, y) contains prime factors of either of these 
forms indifferently, to characterize it as the Law of Twin Prime Factors. 
Let us suppose the circumference of a circle divided by points into k equal 
parts, and agree to designate the shorter arc between any two of the points 
a primitive division of the circle in respect to k, provided that no number less 
than k would be adequate to give rise to an equal length of arc, so that 

when λ is prime to k and less than ∣, will serve to represent any such

division. The assumed Law of Twin Factors (well known, I repeat, for the 
case of & a prime number and possibly in its extended form likewise) may 
then be enunciated as follows :* Of these numbers all except 60, 31, 67, 77, 95 belong to some one or other of the general classes of irresoluble numbers given in the text.+ It maybe and probably is true also that x3 - 3xy2 =t y3 will represent the product or else three times the product of any two primes each of which is of the form r or p, and possibly the square or else three times the square of any r or p; it cannot possibly represent three times any 
cube, for if it did we should be able to infer that a cube was resoluble into two cubes, which we know is not true.
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That function of x whose first coefficient is unity and whose roots are the 
doubled cosines of all the primitive divisions of the circle in respect to k 
contains no prime factors except such as are divisors of or else when increased 
or diminished by unity, are divisible by k. This may be called again the 
Exclusional or Negative Theorem of Twin Factors; and on the other hand 
the more extraordinary theorem which asserts (on evidence not yet con­
clusive) that the function of x above defined, when made homogeneous in#, y, 
will represent (at all events for the case of k = 9) every prime number of the 
form ki + 1, or else certain specific multiples of any such number, may be 
called the Inclusional or Representational Theorem of Twin Factors.

Excursus A. On the Divisors of Oyclotomic Functions.
Title 1. Oyclotomic Functions of the ls⅛ Species. In the preceding 

section which should have been termed and will be hereafter referred to as 
the Proem of Chapter I., I stated that the proof of the first batch of theorems 
on the irresoluble cases of equations in numbers of the form #3 + / + Az3 = 0, 
or, as we might say, of the forms of numbers A irresoluble into a pair of 
rational cubes, depends on the demonstration of the form of the numerical 
linear divisors of the function #3 — 3# + 1. At the time when this proem 
went to press I had reduced to a certainty the law of the divisors by 
numerical verifications without end, but had not obtained a rational demon­
stration of it, nor was I able to find such or even a statement of the law 
itself in any of the current text-books, such as Gauss, Legendre, Bachmann, 
Lejeune-Dirichlet or Serret. I was therefore compelled to seek out a demon­
stration for myself, and in so doing was unavoidably led to consider the 
general theory of the species of cyclotomic (Kreistheilung) functions of which 
the cubic function above written is an example of what may be called the 
second species and incidentally also the theory of the simpler or first species 
which, although discussed ever since the time of Euler, appears to me to 
remain still in a somewhat cloudy and incomplete condition. As this inquiry 
extends beyond the strict needs of the subject which called it forth, I entitle 
it an excursus. It will be necessary for me eventually to introduce another 
and still more important excursus or lateral digression on certain con­
sequences of the Geometrical Theory of Residuation, which theory itself also 
took its rise in and is required for the purposes of the arithmetical theory 
which forms the subject of the entire memoir.

If/# is any rational integral function of the order ω in its variable, we 
know that in respect to a prime number p as modulus fx regarded as the 
subject of a congruence cannot have more than ω distinct real roots. If we 
take pi as modulus, certain conditions increasing in number with the value 
of j, will have to be satisfied in order that fx may have a superfluity (that is, 
more than ω) of real roots.

www.rcin.org.pl



318 On Certain Ternary Cubic-Form Equations [39

One condition, the universal sine qua non, will serve for the object I have 
in view, so that it will be sufficient to make J =2. Obviously when this 
superfluity exists two of the roots must differ by a multiple of p since other­
wise there wτould be a superfluity of roots qua the first power of p as modulus. 
If then a and a + ∖p where λ < p be two of the roots, we have fa ≡ 0 and 
fa + λ∕zα . p + Rp2 ≡ 0 mod. p2. Hence fa ≡ 0 and fa ≡ 0 mod. p, so that 
fa + ∖p = 0 and fa + μp= 0.

Applying the dialytic method to eliminate a it is obvious that the result­
ant of these two equations will differ only by a multiple of p from that of fa 
and fa, that is, from the arithmetical discriminant of fa (I use the term 
arithmetical to distinguish it from the algebraical· discriminant in obtaining 
which latter fx is supposed to be affected with binomial numerical coefficients 
ω, ⅜ω (ω — 1), ... and the factor ω to be struck out from each of the two
θiuatiθns = 0, dff = 0).

We see then that a rational integer function (the subject of a congruence) 
cannot have a superfluity of roots in respect to the power of a prime pi as 
modulus, unless the strict (arithmetical) discriminant of the function con­
tains p.

It is necessary for the purpose I have in view to express the strict 
relation between the arithmetical discriminant of a function, Δ∕⅛, and the 
product of the squares of the differences of its roots, if fx. I shall for greater 
simplicity suppose that the initial coefficient of fx is unity, as it is in the 
cases with which we shall have to deal.

We know that Δ∕,= μζ2f where μ is a function of n the order of f so that
to determine μ we may specialize f in any manner we please, provided the
order is maintained. Let fx=xn — 1. Then it is easily proved that, making

2στ . . 2σrp = cos -----h ⅛ sin —■,r η n
w-l . ,.w

(-) 2 f∕= >2.n”.

(n-l)(n-2)

so that iff = (—) 2 . nn,

and Δ∕,= (—)n^~1. n2n~2.

Hence Δ∕= ~2 ∙ nn~2 ff*

expresses the universal relation between the arithmetical discriminant and 
the squared product of the root-difference of a function. If we had been* As regards the application to be made of this result it was of course not necessary to determine the index of the power to which (--) is raised, but it was hardly worth while to leave it undetermined.
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dealing with the algebraical discriminant, it would have been necessary to 
replace nn~2 by n~n in the above equation. It is furthermore to be observed 
that the discriminant is fixed in its sign by the condition that the term con­
taining the highest power of the product of the expressed coefficients is to be 
taken positively.

So again it will be seen presently to be necessary to ascertain the strict 
relation between the resultant of two functions of degrees r, s and the 
product of the differences between the several roots p of the one and the 
several roots σ of the other of them, or, as we may say, between s and 
Dp,σ, where if we choose to pay attention to algebraical signs that of Rr, g 
may be understood to mean the resultant so taken that the term containing 
the highest power of the coefficient in the r-degreed function is positive and 
DPi σ to mean the product of the rs differences (p — σ).

I shall again, for greater simplicity, suppose the initial coefficients of each 
of the two functions to be unity.

We know that Rr t — μDp, σ where μ is a function of r and s exclusively. 
To determine it we may take xr and xs + 1 as the two functions, it will be 
found without difficulty that

Rr, , = 1 * and DPt σ = { - (- l)*}r, = (-)«+*.
Hence we have universally Rr, s = (-)rtl+rDpt σ.

This seems to be the proper place to ascertain (what will be needed for 
future purposes) how far or under what qualifications the reciprocal con­
nexion of the two facts: 1. Of two functions in x having a common root. 
2. Of their resultant being zero, admits of being extended to roots of 
congruences in respect to a prime-number modulus.

Suppose fx, gx to be two in all respects (numericallyf as well as 
algebraically) integer rational functions of the degrees i, j in x, then 
by eliminating dialytically (i+j — 1) powers of x between

y⅛, xfx, x2fx ... χr~xfx, gx, xgx, ... xi~1gx,

we may obtain the equation ∖xfx + μxgx — Rxq (q having any integer value 
from 0 to i+j — 1) where R is the resultant of f, g and Xx, μx are in all 
respects integer functions of x of degrees j — 1 and i — 1 in x whose values* Thus, for example, let r=4, s = 2. Then Rr,i is the dialytic resultant of

x5
xi

x3 -{-x3
x4 + x2

x3 +χ
x2 +1which is obviously equal to unity.+ By which I mean that the coefficients are exclusively integer numbers.
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depend on the value of q. If, then, fx and gx are simultaneously zero for 
some value of x, we must universally have R = 0 even if x should be zero, for 
thus we might make q = 0.

But this equation will not suffice to show that fx and gx will simulta­
neously vanish for some value of x, provided that R = 0; for every value of x 
which makes fx vanish, might, as far as this equation discloses (and for all 
values of g), have the effect of making gx vanish*. We may, however, prove 
the fact in question, on a certain hypothesis to be presently stated, by 
availing ourselves of the knowledge that R is, to a numerical factor pres, 
the product of the differences between the roots of f and those of g.

The hypothesis I make is that fx ≡ 0 mod. p is a congruence all whose 
roots are real; in this case I shall show that if the resultant R of fx and gx 
satisfies the congruence R = 0 mod. p (that is, if R contains p) then gx must 
have at least one real root in common with fx qua modulus p.

From the congruence of fx ≡ 0 mod. p we may, by a well known 
principle, infer the existence of an equation Fx = fx + pφx = 0 whose roots 
are the same as those of the congruence above written, and the dialytic 
method of elimination renders it self-evident that the resultant of Fx and gx 
will differ only by a multiple of p from that of fx and gx, and will, therefore, 
be a multiple of p.

If, then, we call the roots of Fx (all real by hypothesis) a1, a2, ... a{, we 
shall have gay.ga2. ga3... gai≡f) mod. p, and, as all the factors on the left 
hand side of the equation are real, one of them must contain p. Hence, if 
R (fx, gx) ≡ 0 mod. p, and fx = 0 mod. p has all its roots real, one of these 
roots must belong also to the congruence gx ≡ 0 mod. p.

Going back now to what precedes this investigation, let us determine 
strictly the relation between the arithmetical discriminants and resultant of 
two functions in x and the discriminant of their product.

Let ω, ω1 be the degrees in x of two altogether integer functions fx,flx, 
and suppose Fx=fx.fx. Then obviously ξ2Fx = ζfx . ζfλx . (D (fx, fx)f. 
Hence ωω~2. ω1"1~2ΔJ⅛ = (ω + ωj)ω+ωι~2∆∕⅛. ∆fix (R (fx,fx)f.

If, then, p any prime number is contained in Δ/a?, and ω, ω1 are each less 
than p, p will necessarily be contained in ΔF⅛. And as a particular case of 
this theorem, if p were contained in the discriminant of any factor of xp~1-1 
it would be contained in the discriminant of xp~1 — 1, that is, in a power of 
{p- I), which is impossible. Hence, by a preceding theorem, no factor of 
xp~1 — 1, regarded as the subject of a congruence, can contain a superfluity 
of real roots (that is, more real roots than there are units in its degree) in 
respect to the modulus ph* I think it would not be incorrect to say that in all cases the fact of the resultant of two functions of x containing a prime number raises a strong presumption that the functions have a common congruence root in respect to that number.
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It is easy to show, although I do not find it distinctly stated in any of 
the current text-books, that xp~1 -1 = 0 mod. pi has p - 1 real roots.

For let x = yp3~1. Then the congruence becomes 
y2,i 1, *∙p-1> — 1 ≡ 0 mod. pi,

where pi~1. (p — 1) is what is commonly designated as the φ function of pi, 
the number of numbers less than pi and prime to it, (the so-called φ function 
of any number I shall here and hereafter designate as its τ function and call 
its Totient). This last congruence by Fermat’s extended theorem has all its 
roots real. It is easy to see that they will consist of (p — 1) groups, each 
group containing pi~1 numbers for which the value of x qua modulus pi will 
be the same, but different for numbers belonging to two different groups. For 
let y1 be any of the y roots, and yjpi~1 - yipi~1 ≡ 0 mod. pi. Then qua mod. p, 
y2pj 1 ≡ y2 and.y1pj 1≡ylt because pi~1 — I contains p — 1.

All the values of y2 will, therefore, be comprised in the series
‰ yι +p, yι + %p, ∙ ∙ ∙ p∑ + (pj~1 - Op> 

and (y1 + ∖p)Pj~1 = yf~1 + ppj. Q.
Hence the pi terms of the series (and no other values of z) all satisfy the 
congruence

zp3~1 — y1p3~1 ≡ 0 mod. pi.
Hence x = yp3 1 has (p — 1) distinct real values qua pi or there are (p — 1) 
real roots to the congruence xp~i — 1 = 0 mod. pi. Hence, if fx is any factor 
of xp~1 — 1, fx ≡ 0 [mod. pi] will have all its roots real.

For let fx .fx = xp~1 — 1.
Then since xp~1 —1 = 0 mod. pi has all its roots real, and fx and fx have 

no congruence root qua mod. p in common*, if fx ≡ 0 to the modulus pi has 
not its full quota, fx will have a superfluity of roots, but this has been shown 
to be impossible.

Now, let p = mk + 1. Then xk — 1 is a factor of xp~1 — 1. Let ^kx be 
the factor of xjc — 1, which contains all its primitive roots; this is what I term 
a cyclotomic function of the first species to the index k. χ∣cx being a factor of 
xk — I is a factor of xp~1 — 1, and will therefore, by what has just been shown, 
have all its roots real qua the modulus pi.

Hence a cyclotomic function of the 1st species to the index k contains, 
as a divisor, any power of any prime number of the form mk + 1, and, more­
over, if ω is its degree, (where ω represents the totient of k), {mk + 1)1 will 
be an ω-fold divisor of the function, that is, will be a divisor thereof corre­
sponding to ω distinct values of the variable of the function, that is, values 
incongruent with one another qua the modulus pi.* For if this were the case two factors of xp~1 — 1 qua mod. p having two roots in common ajp-ι _ i would not have its full quota of roots.

S. III. 21
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The divisors of the cyclotomie function to index h may be divided into 
two classes, namely, divisors which do not divide the index, which may be 
called superior or extrinsic divisors, and divisors which divide at the same 
time the function and its index which may be termed inferior or intrinsic 
divisors. I shall begin with showing that any prime number extrinsic 
divisor diminished by unity must contain the index, that is, that if p is an 
extrinsic divisor and k the index, we must have p = mk +1 which is a 
reciprocal proposition to the one just established.

If possible let p, any prime such that p — 1 does not contain k nor k con­
tain p, be a divisor of the cyclotomie function of the first species χfczr. And 
let δ be the greatest common divisor of p — 1 and k. Then we shall have 
xt — 1 ≡ 0 mod. p. But we have also χfcrr ≡ 0 mod. p. Hence the resultant

■“ 1 « «of xs — 1 and χkx must contain p, but —j contains χkx ; à fortiori there­

fore the resultant of this and xs — 1 will contain p. But this resultant is 
_  1evidently equal to the value of -s—∣ (where .τδ = 1) raised to the power δ, 

∕ fo∖ δ
that is, = ( g ) and therefore, ex hypothesi, does not contain p.

It has thus been proved that every extrinsic divisor of χkx can only be of 
the form mk + 1.

Next let k=k1pi (k1 being prime to p~) and suppose p to be a divisor of 
Xkχ∙

Then p is a divisor of (xpjye' — 1 and, therefore, by what has been shown, 
must be of the form mk-i + 1, unless xp3 — 1 contained p in which case since 
pi — 1 is divisible by p — 1, x — 1 must contain p and consequently p will be 
a divisor of χ⅛l.

To find the value of χkl we may proceed as follows :
Let k = aa . bβ . c?. dδ. ee. Then the totient of k is

aa-l . foβ-l . cγ-l t c∣8-l . ee-l (aβyξe + ∑aβy + Sût)

(— ∑α∕3γδ — 2α∕3 — 1 j ’

and if we write thisL+M+N- P — Q — R
(xl — l)(irw — 1)(zcλγ- 1)

Xkχ (√,-1)(#Q—1)('fb-1)’

and so in general the expression for χkx, however many the distinct prime 
factors of k, imitates and follows pari passu the expression for the totient of 
k; and if L, M, N, ... be the positive terms and P, Q, R, ... be the negative 
ones in the algebraical representation of that totient, the common theory 

of vanishing fractions shows that χ⅛l = ’ ∩ ' » . There are two cases:
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(1) When k contains i distinct prime factors, where i > 1. In that case 
supposing a to be one of them and α its index, the index of a in L . M. N ... 
will be

J1 ι (i-l)(*-2) , (t-l)(ι-2)(ι-3)(i-4) , ) 
w, j -l i 12 ""r^ 1234 ∣*∙∙∙r

and in P . Q . R ... φ∙-υ√>∙-υp-2)σ-3),,.μ
so that the index in the quotient is α (1 - l)i~1, that is, is zero. And so for 
b,c,.... Hence χ⅛l = l.

χaa _ q
(2) When ⅛ = 1 and k-aa, the value of χkχ=-—----- , and conse-

xa°, — 1
quently χkl = a. Hence, when k = k1pi, and k1 is not unity,p, if a divisor of 
χ⅛zr, must be of the form mk1 + 1. Moreover, the case of k1 = 1 offers no 
exception to this conclusion, inasmuch as when k1 = 1, p, (like every other 
number) comes under the form mk1 + 1.

It now remains to show the converse that if k = k1pi and p = mk1 + 1, 
p will be a divisor of χkx.

For the sake of greater simplicity, we may consider apart the case where
xpi_ q

k = pi. Here rχkx = -——= 1 + xp3 1 + x2pj 1 + ... + xip~1^p∙,~1, which, (to 
xpj — I

_ 1modulus p) ≡ 1 + x + x2 + ... + xp~1 ≡ ——— , and, therefore, can only con­

tain p, if xp — 1, and, consequently, x — 1 contains it. Hence, the only root 
of χkx ≡ 0 [mod. p], for this case is x = 1.

Moreover, only p itself, and no higher power of p, can be a divisor of 
the cyclotomie function in question, because

(l+λp)p,∙∙-l = λpH-*+... + b c, + l
(l + λp)p7 — 1 λp'+... 1 1 p p

does not contain p2*.

To save unnecessary fatigue of attention, about a small matter, to my 
readers and myself, I will take, as a representative of the general case, 
k = k1p, k1 = abc, p — mk1 + 1 ; it will easily be verified that the increase 
of the number of distinct prime factors σ, b, c, or the affection of them or of 
p with indices, will in no manner affect the course of the demonstration 
or the validity of the conclusion.* When p = 2 and j=l the third term will not be of a higher power in p than the second term in the development of the numerator, so that the conclusion ceases to hold ; as ought to be the case for the cyclotomie of the 1st species to the index 2, namely, x+l will obviously contain every power of 2 as a divisor.

21—2
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In the above special case
(χabcp _ 1) (<καδ — 1) (xac — 1) (xbc — 1) (xap — 1) (xbp — 1) (xcp — 1) (x — 1) 

%kX = (icαfcc - 1) (xabp - 1) ∖xacp - 1) (xbcp - 1) (zcα - 1) («& - 1) («c - 1) (xp - 1) '
aMbcp _ 1

Let now aA —1 = 0, so that xp-x. Then obviously χkn = χabe∑γ~P,

Hence the resultant of χkχx and χkx is pτ<fc>> (τ(fc1) meaning the totient of Z^1). 
Consequently since χklx = 0 [mod. p] has all its roots real, one root at least of 
χkx = 0 [mod. p] will be a root of the preceding congruence.

It will be noticed that if instead of χ⅛1zc we took χk∖X where k'1 is a factor 
of k1 it would not be true that the resultant of it and χkx would contain p.

For example, if k∖ = ab and xk'* — 1 = 0 we should have 
χabcp+ι _ 1 a,∙αδ - 1 p 1

Xkx — χabc _ 1 ∙ χabp _ i - —

Or again, if k,-i — a and xk' — 1 = 0 we should have
χabcp _ I χab _ j[ χac _ ] χap _ q _ J f

r̂ kx xP,bc — 1 ’ xabp — 1 ’ xacp — 1 xa — 1 ^'pp'^

as before. So that the resultant instead of being p would, in each case, be 1, 
and consequently xk — 1 ≡ 0 [mod. p] and xk'i — 1 = 0 [mod. p] could not 
have a root in common. And so in general it may be shown that if k = kxpi

kand k'1 = y the resultant of xk'l — 1 and χkx is 1, except when δ = 1 in which 

case it is p.
Hence the roots of χkx ≡ 0 [mod. p] are to be sought not among all the 

roots of xk' — 1 ≡ 0 [mod. p], but exclusively among only such of them as 
belong to the congruence χklx ≡ 0 [mod. p].

We have seen that if p, a prime number, is an extrinsic divisor of a cyclo­
tomie function to the index k, any power of p is also a divisor of the function. 
On the contrary, if p is an intrinsic divisor it will appear that p2 cannot 
(and consequently no higher power of p than the 1st, can) be a divisor. For 
if x satisfies the congruence χklx ≡ 0 [mod. p] we must have xkι = 1 + λp and 
xp = xmki. œ = (1 + mp)x, where m represents a series of ascending powers 
of p. Hence

_ xk>p — 1 χab — 1 χac — 1 χbc — 1 χap — 1 
%kX xkι — 1 ' xabp — 1 ' xacp — 1 ' xbcp — 1 xa — 1 " ' ’

where the first factor, being equal to zcfc, <p~1> + zrλ> tp-2> + ... + 1, will be of the 
form p (1 + Pp), P being a series containing only positive powers of p. 
Again,

xab — 1 Qpxab Qzp"iχ'lab
(Γ+Qp)ααδ-^I = + 1 -⅞β6 + (l+tfa6)2+”’=

where Q1 is an infinite series containing positive powers only of p and x.
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— τ rι xap-l (1 + Rp) xa — 1 .In like manner —- = *------- ------------= 1 + Rλp where R1 (like B) is

an infinite series of positive powers of p and x, and so for each separate 
factor.

On multiplying the product of these infinite series by _p(l + Pp)i we 
shall necessarily obtain a finite series of the form p (1 + Gp). Consequently, 
the cyclotomic function will divide by p but not by pi. And we might have 
used this method exclusively to have established the fact of the first power 
of p, under the conditions presupposed, being a divisor of the function. This 
method serves also to establish directly that every root of χkiχ ≡ 0 is a root 
of the congruence χfcic ≡ 0 [mod. y>]. And we thus see that the intrinsic 
divisor, when it exists, is a τ (^1)-fold divisor of the cyclotomic function.

When k is the index to a cyclotomic function, and k = k-ipi, where p is a 
prime not contained in k, let us agree to call k1 the sub-index to p. Then, 
from what precedes, we may draw the conclusion that a cyclotomic function 
of the first species has never more than one intrinsic divisor, which, if it 
exists, is the greatest prime number contained in the index, but is such only 
in the case when diminished by unity, it contains its own sub-index, (a con­
clusion necessarily satisfied when the index is a prime, for then its sub-index 
is unity), and, moreover, that the first power only of such intrinsic divisor, 
when it exists, is a divisor of the function.

It being true and capable of easy demonstration, that when a rational 
integer function contains, as a divisor, each of two numbers prime to one 
another, their product will also be a divisor of the function, it follows that 
any number, each of whose prime factors, diminished by unity, contains the 
index and also every such number multiplied by the highest prime number 
which is contained in the index (provided that when diminished by unity 
that prime contains its own sub-index) is a divisor of a cyclotomic function 
of the first species. This, as I have said, is only another name for that 
irreducible factor of a binomial xk — 1 whose degree in x is the totient of k.

When the cyclotomic function of any species is made homogeneous by 
the introduction of a second variable y, relatively prime to x, it becomes a 
form, (in the technical sense of the word), and may then very conveniently 
be designated a cyclo-quantic.

Title 2. Cyclotomic Functions of the Second Species {Conjugate Class)*. 
I pass on to the theory of the divisors of the function which has for roots 
the sum of the binomial (zweigliedrig) groups of the primitive roots of xk — 1,* When, in the matter comprehended under this title, by inadvertence, cyclotomic functions of the second species are spoken of without a qualification annexed, it is to be understood, in all cases, that only those of the conjugate class or, in other words, those whose roots are all real, are intended. For brevity I shall usually call this class of functions cyclotomics of the second 
sort.

www.rcin.org.pl



326 On Certain Ternary Cubic-Form Equations [39

1 2Α.7Γor, in other words, all the distinct values, - τ {k) in number, of 2 cos y— 

where λ is any number less than k and prime to k.

Such a function, in which the coefficient of the highest power of the 
variable is supposed to be unity, I call a cyclotomie function, or simply a 
cyclotomie, of the second species and conjugate class to the index k. It may 
be found most readily by dividing the corresponding one of the first species, 
whose variable say is x, by ip⅛r(ft), substituting u for # + -, and applying for
successive values of m the trigonometrical formula for expressing cos mθ in 
terms of powers of cos θ, except when the index is a prime number, in which 
case the function in u is given more expeditiously at once by the well-known 
formula
u™ +1 u~→ _ ⅛=J m-, + <∞-2)>-¾⅜ um-,

1 1 1.2
(m-3)(m-4)

+ Γ72

which last coefficient, in the French edition of the Disq. Arith., 1807, it may 

be worth noting, is written erroneously ——- —— .

I have thought it would be useful and convenient for many of my readers 
to be able to see before them the functions of the two sorts, and I accord­
ingly annex a table of their values for all indices up to 36 inclusive.

To the index 1 or 2, the cyclotomie of the second species has no existence. 
Those of the first species to the index 1 or 2, and of the second to the index 
3, 4 or 6 are linear, and of course as forms, have no arithmetical properties, 
but contain every number as a divisor, linear forms being, as it were, the 
protoplasm out of which the higher forms are organized.

Table of Cyclotomie Functions of the first species and the conjugate class of 
the second species for all values of the index from 1 to 36 inclusive.Index

1
2
34
5
6
7
8 
9

10

1st Species
x— 1
x+1
x2+x+l
x2+l
x4+x3+x2 + x+l 
x2-x+l
X6 + X6 + X4 + X3 + X2+X+l 
x4+l 
xβ + x3+l 
x4-x3 + x2-x+l

2nd Species, Conjugate Class
u + 1 
u
u2 + u- 1
u — 1
m3+m2-2m — I 
m2-2. 
u3 - 3m -1 
u2 - u +1
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A very good test (or, in most cases, pair of tests) of the correctness of 
the figures is to write u = + 2 * corresponding to x — + 1 and see if the values 
for the same index agree. Our interest will presently be concentrated on the 
single entry in the right hand column, that which expresses the conjugate 
class of the second species of cyclotomie to the index 9, but the function for 
the neighbouring case of the index 8 is worthy of arresting the reader’s 
attention for a moment, inasmuch as the general theory of cyclotomie divisors 
applied to it will be seen to supply an instantaneous proof that all prime* And a further double test is given by taking u = 0, x=i, as we ought to find χt= ±dτιt^0.

39] On Certain Ternary Cubic-Form Equations 327Index 1st Species 2nd Species, Conjugate Class
11 Λ7lθ+zr9 +...+# +1 w5 + m4-4«3 —3«2 + 3«+ 1
12 ^4-Λ72 + l w2-3
13 Λ712+,r11 + ...+Λ7+l w6 + wδ-5«4 —4u3+6w2 + 3u-1
14 zp6-λ^ + zt4-zr3+zr2-Λ7+1 «3 —«2 + 2« + l
15 zc8-tf7+tf5-tf4+tf3-A’+1 ui — u3 — 4π2 + 4« +1
16 λ^ + 1 ui-4m2 + 2
17 #16+#16 + ...+;r+l «8 + «7—7w6-6u5+15m4 + 10u3-10m2-4« +1
18 xβ-^c3+l w3-3w + l
19 #18+.a?17 + ... + # + l «9+«8-8w7-7u6 + 2Ri5+15n4

+ 10w3-10u2 + 5w + l
20 xs-it6 + λ∙4-zr2 + l u4-5w2 + 5
21 #12-xll+χP-x8+x6-xi u6 — u&-6ui + 6u3+8u2-8u+l

+x3-⅛7+l
22 zrlθ-x9+...-.r+1 u° —ui-4∙u3 + 3w2-3m+1
23 x22+x21 +...+x+l m11 + u10-10«9-9⅛8 + 36w7 + 28u6-56wδ

- 35«4 + 35u3 + 15ω2 - 6u -1
24 xP —λ^ + 1 ui-4w2 + l
25 Λ72θ+j715+,rlθ+tfδ+1 «1θ —10m8 + 35«6+«5 —50w4-5¾3 + 25u2-5«—1
26 d?12—Λ711 + ...-Λ7+l uβ-u5-5w4 + 4u3 + 6m2 — 3u— 1
27 x18- ,rθ+l u9- 9«7+27«6-30m3 + 9m- 1
28 λ?12 —xw+x8-,v6 + ,v4 - #2 +1 m6-7⅜4 +14m2-7
29 Λ728 + zr27 + ...+Λ7+l «14 + «13 —13m12-12mu+66w19÷55m9-165w8

- 120w7 + 210w6 + 126w5 - 126«4 - 56w3 + 28⅛2 + 7-m- 1
30 tf16-zr14 + Λ710-zγ8+λ,6-Λ72+l u8 — 9w6+26m4 — 26u2 +1
31 zr30 + Λ729+... +x+1 m15+w14-14w13-13w12 + 78u11+66ulθ — 220w9

- 165u8 + 330u7 + 210w6 - 252ttδ- 126w4 + 84u3 
+ 28«2 —4«- 1

32 ze16 + l u3- 8m6 + 20m4- 16m2 + 2
33 x2° — χ19 + æ17 — χ16 + #14 — .r13 u1° -u9- 10ιi8 + 10w7 + 34ιt6 - 34⅛5

+#n — x1°+x9 — x7 + x6 — xi - 43m4 + 43«3 + 12«2 —12« — 1
+ A,3-Λ7+1

34 zr16-λ45 + ,t14-...+λ,∙2-#+l u8-ul - 7m6 + 6w5 + 15u4- 10w3- 10m2 + 4w-(-1
35 zr24 — zr23 + ze19 — λ;18 + λj7 — â?16 «12 —«u-12wlθ +11m9 + 54w8-43«7 —113w6+#14 -λA3+λ42-.vu+d?10 —Æ8 +71«5 +110«4—46«3- 40«2 + 8«+l

+x7-x6+x5 -x + 1
36 .v12-λ∕> + 1 i√>-6u4 + 9¾3-3
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numbers of the form Sn + 1, and no other prime numbers have 2 for a 
quadratic residue*.

It is hardly necessary to observe that, when the index is a prime number, 
it may be duplicated without affecting the character of either set of functions, 
the only effect produced thereby being the entirely unimportant one of a 
change in the sign of the variable.

The formula which I have employed for computing cos nθ is that which, 
beginning with the highest power of cos θ, admits of a uniform scheme of set­
ting down the work, which is not the case when the series is started from the

. pθ 
sm 2

other end. It, and the series used for----- , also required for my purposes,
sinγ

may be obtained by a much simpler method than any I have seen given in 
the text-books as follows.

In general, the denominator of — — —-, say the procumulant(tγ ““ ćig ∙ ∙ ∙ Q"n
[α1, a2, ... an] = Ao - A1 + A2 etc., where Ao is a1.a2.... an, A1 is the sum 
of the quotients of Ao by any pair of consecutive elements o⅛. αi+1, J,2 of the 
quotients of Λo by the product of any two such pairs as ai. oq∙+1 • Cbj ∙ Cbj^-γ f 
and so on. If we call the number of such quotients in Ai, Di∏, it is obvious 
that

Di+1n = ^^2Dιt.

Hence D0n = 1, D1n ≈n-l, D2n = (n-2) , Dsn = ——,

and so on.
On making a1 = a2= ... = an = 2 cos 0, it will immediately be seen that 

the procumulant [2 cos θ, 2 cos θ ... to n terms] expresses >
because, calling this un, the equation in difference for finding it is 

un+1 = 2 cos un — un~1 and u0 = 1.
Consequently

sin(π + l⅛⅛ _ cos _ n cθs + (m —l)(π-2)
sm tt 2 ' 7

ττ λ λ „/sin (ft+ 1)0 , sin nθ∖ ,n λ.Hence 2 cos nθ = 2---÷—^÷-----cos θ —.—zι- I = (2 cos θ)n - n(2 cos θ}n~2
∖ sm V sm θ J

2n + 1 .
n — 3, ∩∖n λ at Sin 2 sin (n+ 1)0 sinft0 z_ z,.

2 . 0 sm 0 sm 0 ,
sm2

+ (2 cos 0)n-1 — ft (2 cos 0)n~2 — (ft — 1) (2 cos 0),l~4 + ....f* So, under the third Title, it will be found that u2 + 2 is a non-conjugate cyclotomie of the second species to the index 8, of which, according to the general cyclotomie law, the odd prime divisors are of the , form 8wι + l or 8)« +3.+ This expansion Gauss (Rech. Arith., Paris, 1757, p. 431) suggests deriving by means of the
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Writing u in place of 2 cos θ these are the two expansions which I have
p—1 p~Λ

qq 2   2
used to express xn + — and —γ---- —ι— in terms of powers of x + — in calcu-

Xn X2 — X 2 χ

lating the cyclotomies of the 2nd sort whose values are given in the preceding 
table.

Since (xp~1 — 1) (χp+1 — 1) = — xp+ι _ χP→ q. ij ifj for convenience, we

write x + — = u = 2 cos θ, it is evident that cospθ-cosθ, regarded as an

algebraical function of cos θ, will contain all the cyclotomie functions of the 
second species (conjugate class) whose indices are divisors of p — 1 or p + 1 
and in addition to these (^x — or u2 — 4 derived from the factor x2 — 1

which is common to xp~1 — 1 and trp+1 — 1, but does not give rise to a cyclo­
tomie of this sort until it is squared; cospθ — cos θ is thus a product 
exclusively of cyclotomies of the second sort.

It is well known that cospθ — cos θ ≡ 0 (mod.^>) regarded as a congruence 
in cos θ has the p roots cos θ = 0, 1, 2, 3, ... (p — 1), p being supposed to be a 
prime number.

But more generally the congruence cosjp·?# — cos pi~γθ ≡ 0 mod. pi has 
its full complement of pi real roots—a theorem, this, which is the analogue of 
the theorem of Fermat extended to powers of prime numbers put under the 
form of affirming that xpj — xp3~1 ≡ 0 mod. pi has its full complement of real 
roots ; but, as I do not recall seeing the cosine theorem for modulus pi any­
where stated, and as it is wanted for the theory I am developing, and its 
truth is not obvious, I shall proceed to prove it. For greater simplicity of 
notation let us begin with the case where j — 2. We have then

cos p2θ = (cos θ)p2 — p2 P 2^ (cos ^)p2~2 ∙ (sin ^)2

+Pi (^-i)y-2)(p>-3) .(sinθy...

and cospθ = (cos θ)p — p (cos θ)p~2. (sin θ)2

+ p.⅛-l)(p-2)⅛-8)(cos(s.ne)t 
1 . Λ . o ∙ jc

where of course all the powers of (sin θ)2 are regarded as functions of cos θ. 
It will easily be recognized that every coefficient in the first series will be

∕ /£_ COS 71$)exceedingly awkward and unmanageable process indicated by the formula —_ cQg g , cosbeing previously supposed to be expanded in terms of powers of cos θ. Quandoque bonus dormitat
Homer us.
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divisible by p2 3 with the exception of those terms in which a new multiple of 
p first makes its appearance among the factors of the denominator, which 
will lose one power of p ; the next coefficient to any such as last named 
taking up a new factor of p into the numerator, the fraction to which it 
belongs will recover the lost p and be again divisible by p2.

The difference, therefore, between the two series qua mod. p2 will be 
(cos θyp^* i — (cos βyp

+ PST---- Ώ_:_7 + 1) (cθg py^→p t (s∣n gγp _p P—L (cos θ)p~2 (sin θ)2

(jζ-⅛> + l)
1.2 ... 4∕)

-p⅛-l)(p-2)⅛-3) (cos (sin
J. . Δ ∙ o . *τ

It may be shown that every pair of terms in the above is divisible by p2 
for all real values of cos θ.

(1) (cos θ)pi — (cos θ)p contains p2 by Fermat’s extended theorem.
(2) Qua p, (cos θ)pt~2p ≡ (cos θ)p~2 and (sin θ)2p ≡ (sin θ)2.

Hence qud p2, the sum of the second pair of terms

= 71 p~1 i(∕> + 1)(P~2)(ff-3)...(ff2-2ff+1) _ i l = 0 
~p 2 ( 2.3...(2p-1) ∫-
s L-l(2.3-(⅜-l)- ) 

p 2 (2.3... (2p-1) ∫
(3) Qua p, inasmuch as

p2 — bp + 4 = (p — 1) (p — 4), (cos θ)pi~ip ≡ (cos θ)p~i and (sin θ)ip ≡ (sin θ)i. 
Also, pn — 1 ≡p — 1, ρ2 — 2≡p — 2 and p2 — 3 ≡ p — 3.
Hence the sum of the 3rd pair of terms qua p2

_p(p-l) (p - 2)(p -3) ∖(p2 - 4) (p2 - 5)... (p2 - 4∕> + 1)∣
1.2.3.4 ( 4.5..(4p-1) j

And so each pair of terms may be proved to be congruous to zero qua p2.

The same form of demonstration may be shown to apply to the case of 
the modulus^*, and we may regard as proved the important theorem that 
cos piθ — cos pi~1 θ ≡ 0 [mod. pi] contains the maximum number of roots p. 
It follows that cospθ — cos θ = 0 mod. pi will contain p distinct roots. For, if 
we make θ = pi~1φ, the congruence becomes cos pi φ — cos pi~1 φ ≡ 0 mod. pj,* The reader will please bear in mind that in the expansion of (a + b)p* the number of coefficients in which p enters to the power j, j - 1, ... 2, 1, 0 respectively i»pi-pi~∖ pi~1 -pi~2,... p2-p,p-l, 2.
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which has pi roots. These roots will separate into p groups of pi~1 each, such 
cos (p? 1 φ] will be the same for all the (cos φ),s in the same group, but 
different (qua mod. pi] for any two belonging to distinct groups. For if 
cos φ1 be one of the values regarded as given, and cos (pi~1 φ2) ≡ cos (pi~1φ1) 
mod. pi,

∞s(i√-≠0≡cos≠1l
and cos (∕√~1φ1) ≡ cos φ1∫ ’
If, then, we form the series

cos φ1, cos φ-i +p, cos φ1 + 2p, ... cos φ1 + (pi~1 — l)p,
all the values of cos φ2 must be included among the terms of this series. 
Conversely, if we make cos φ2 = cos φ1 + ∖p, we shall have

cos pi~1 φ2 — cospi~1φ1 ≡ 0 mod. pi.
For, writing q for pi~1,

Q — 1cos qφ2 = (cos φ2fl - q ~~ (cos φ2)5^2 ∙ (sin ≠2)2 + ∙ ■ -

If in this development we take the term containing (cos φ2)q~2t. (sin φ2)2t, 
its coefficient will contain q, except in the case where t contains pi, in which 
case the coefficient will contain Λ but not q, and the index of (cos <∕>2) and

(sin φ2)2 will each contain pi. Hence, since cos φ2 = cos φ1 + λp, and conse­
quently (sin φ2)2 is of the form (sin φl)2 + ∆p, it follows that the difference 
between this term and the corresponding one in the development of cos qφ1 
will in the one case contain qp and in the other Xpi+1, in either case therefore

it contains ρ. q, that is, pi, and consequently making cos φ2 equal to any of 
the pi~1 terms of the series, we shall have cos (pi~1 φ2) ≡ cos (p7^1 φi) mod. pi 
as was to be shown. Hence cospθ — cos θ ≡ 0 mod. pi will have p real roots.

Again no algebraical factor of cospθ- cos 0 can have a superfluity of 
real roots qua mod. pi, for if it had then by the same reasoning as applied to 
the cyclotomies of the first species, it would be necessary for p to be contained 
in the discriminant of c,ospθ — cos 0 regarded as a function of cos#, but qua 
mod. p, this is the same as the discriminant of (cos θ)p — cos θ in regard to 
cos θ or of xp — x in regard to x which is the discriminant of xp~x — 1 multi­
plied by the squared resultant of x and xp~1 — 1, and is therefore a power of 
(p — 1). Hence every algebraical factor of cosp# — cos θ qua mod. pi contains 
its full quota of real roots, that is, as many roots as there are units in its 
degree.

If then p = mk + e, where e = + 1, since cospθ — cos# will contain the 
cyclotomie of the second sort to the index k, such cyclotomie equivalented to 
zero [mod. pi] will have all its roots real, so that (mk + lp will be a τ(^)-fold 

divisor of such function.
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As in the case of cyclotomies of the 1st species we may separate the 
divisors of those of the 2nd sort into intrinsic and extrinsic, according as 
they are or are not divisors of the index.

First, as regards the extrinsic divisors, we may prove that no other prime 
numbers except those of the form k + 1 can be divisors of the 2nd species of 
cyclotomies to the index k.

To show this I proceed as follows: γku is contained algebraically in

sm2θ . 1-cos kθ
----zy, and à fortiori in its square, that is, in y—cos # ’ s0 cos # *s
sin -

a value of u, which makes i∕γ⅛m contain p,
cos kθ ≡ 1 mod. p,

sin r∩θbut also cos pθ ≡ cos θ mod. n,.and if . ∖1 ≡ a + bp,1 sm θ r
1 = (cos θ}2 + α2 (1 — cos θ}2 + cp,

1 _  cos JcOand (1 — α2) (1 — cos θ}2 = cp, and, therefore, α = + 1 mod. p, for ■ ---- θ~
does not contain (1 - cos θ}, and if (1 — coskθ} contains 1 — (cos θ}2, which is

only the case when k is even, 3 ZC°S , does not contain either 1 — cos θ or j 1 - (cos θ}2
1 _  cos Jcθ1 + cos θ, and, therefore, ≠⅛w, which, in that case, is contained in ----- ------π-,1 — (cos up

will not contain either 1 — cos θ or 1 + cos θ.
Hence 1 — (cos θ}2 is not zero, and, consequently, a = + 1, and, there-

fore, β⅛tlmod.p.
sin θ ~ r

Hence, either
cos (p — 1) θ = cos pθ . cos θ + sffpf (sin (py = (cos #)2 + (sin θ}2 ≡ l)

°r siiTn# mθd∙P>
cos (p + 1) θ = cos pθ . cos θ — sin 0 (sin θ}2 ≡ (cos θ}2 + (sin θ}2 ≡ 11

and writing e = + 1, we must have
cos (p — e) θ ≡ 1 mod. p.

If possible, let (p — e) not contain k, and δ (less than k} be the greatest com­
mon measure of k and (p — e).

Let λ (p — e) — μk = δ. Then
. z x n 1 sin λ (p - e) θ ∖ cos λ (p — e) θ ≡ 1 -------÷-5—— = 0sm θ .[ mod. p.j a -1 sm μkθ ^cos μkθ ≡ 1 —r~- ≡ 0sin θ J
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Hence cos 8θ ≡ 1 mod. p, and, consequently, the resultant of ψku and cos 8θ — 1 
in respect to cos θ must contain p. But ψ-ku, when δ is any divisor of k other

ζ*θg _  x
than k itself, is- an algebraical factor of---- <7i—- à fortiori, therefore, thecos oσ — 1 j ’
resultant of this last named function of cos θ and of cos 8θ — 1 must contain p.

This resultant will be the product of the values of c°s-^λ—for every 
cos 8θ — 1 j

root of cos 8θ — 1, it is therefore the δth power of the value of the vanishing
cos <⅛ -1 Γ ∕1∙~j /sin ≠∖

fraction ----- ----- —- where μ = when cos <L = 1, that is, of ---- -— 1cos ώ -1 8 τ > I . ⅛ I
∖ Sm 2 ∕/Mss

when φ = 0. The resultant is, therefore, ( g ), which cannot contain p, since,

by hypothesis, p is not contained in k. Hencep-e = mk, or p = mk ±1. So 
that, for the extrinsic divisors, the law, both as regards what numbers are 
and what are not such divisors, is precisely the same as for the cyclotomies of 
the first species, except that mk + 1 takes the place of mk + 1.

Next, for the intrinsic divisors. Suppose p to be any such, and that 
k = k1pf where k1 is prime to p. Then p is a divisor of cos k1piθ — 1, and, 
therefore, by what has been shown, must be of the form mk-i + 1, unless 
(cos pjθ — 1) contains p, in which case, since

cos piθ = (cos piθ — cos pi~1θ} + (cos pj^1 θ — cos pi~2θ} + ... + cos θ,

cos θ — 1 must contain p, and, consequently, p must be a divisor of ψfc2, that 
is, of χkl, which we have seen is equal to 1, except when k1 = 1. Hence, p 
must be of the form mk1 + 1. To show the converse, that when k = k1pi and 
p = mk1 ± 1, p will be a divisor of ψ∙ku. Taking, first, the case of k1 = 1 or 
k=pf yjrku, for μ — 2 will be equal to χfcl, which, as we have seen, will divide 
by p, and not by p2.

To ascertain if there is any other value of u which will make the function
divisible by p, I observe that, for this case, (ψ⅛¾)2= C°S/. ∖-, which is

j r > ∖τ ∕ COSp7-1t∕-1

of the form C°- -λ—L∑L⅛ and if this function contains p, we must obviously 
cos θ - 1 + lp ’ l j

have cos θ ≡ 1 mod. p.
Proceeding to the more general case where k = k1pi and k1 is other than 

unity, taking as I did for the first species the specimen case k = k1p, k1 = abc, 
p = mk1 + 1, we shall have

(ψitt) =(cos abcpθ - 1) (cos abθ - 1) (cos acθ -1) (cos bcθ - 1) (cos apθ - 1) (cos bpθ — 1) (cos cρθ - 1) (cos fl -1)(cos abcθ - 1) (cos abpθ - 1) (cos acpθ — 1) (cos bcpθ - 1) (cos aθ - 1) (cos bθ -1) (coscθ - 1)
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If, now, cos A∖ 0 — 1 =0, and we suppose cos θ to be a root of ψku = 0,
cospθ = cos(+ 0) = cos 0, (i∕γ⅛m)2 becomes equal to -----y-⅛—γ =p, and pay-COS ∕C-t u —
ing no attention to the algebraical sign which is immaterial to our object, we 
shall have ψku=p, and the resultant of ψ⅛ιtt and χ∣cu will be p⅛τkl, and, 
consequently, since χkιu ≡ 0 mod. p has all its roots real, one of them, at all 
events, will belong to χku≡Q mod. p, and precisely in like manner, as in the 
case for cyclotomies of the 1st species, it may be shown that this reasoning 
ceases to apply if cos 0, although satisfying cos k10 — 1 = 0, does not satisfy 
%klu= θ, in which case the resultant, instead of being a power of p, would 
become unity, so that the value of cos 0, satisfying cos^10- 1 = 0 mod. p, 
could not be a congruence root of rχku ≡ 0 mod. p. Finally, as for the case 
of the 1st species, it may be shown that every congruence root of χ⅛ιM ≡ 0 
[when k = k1pi and p= mk1 + 1] will satisfy the congruence χku ≡ 0 mod. p, 
and that only p, and not p2, will be a divisor of rχku, subject, however, to an 
exception for the case of p = 2, when k = 2 or k = 4, and also for the case of 
p = 2 and p = 3 when k = 6 *. As regards these intrinsic divisors, it is clear 
that any root must be the highest prime factor of the index unless its sub­
index is 3, in which case it may be 2. It is obvious, then, that except the 
index is 6 or 12, the second cyclotomie function can have only one intrinsic 
divisor. When the index is 6, the function is simply u — 1, and contains of 
course every power of 2 and 3, as well as every power of 6f + 1 as a divisor.

Leaving out of consideration the three known cyclotomies, whose indices 
are 3, 4, 6, and the one just referred to, u1 — 3, whose index is 12, we may 
combine the results obtained into the statement that any number, each of 
whose factors, diminished or increased by unity, contains the index, and any 
such number, multiplied by the highest prime number in the index, provided 
that that number, when increased or diminished by unity, contains its sub­
index, and no other numbers but such as satisfy one or the other of these 
two descriptions, will be a divisor of a non-linear cyclotomie function of the 
conjugate class of the second species whose index is other than 12. As 
regards the index 12, any number, whose factors are all of the form 12zn + 1, 
as also the double, treble and sextuple of any such number, will be a divisor 
of the function.

By way of example let us consider the indices 15, 21, 35. 
χ15tf will contain neither 3 nor 5, ψ∙15x will contain 5 but not 3.
χ2ι& will contain 7 but not 3, ψ2ι^ will contain 7 but not 3.
χ36rc will contain neither 5 nor 7, ψ35# will contain neither 5 nor 7.* I may probably show this in full in a future note. But since the vast and dazzling theory for cyclotomies of all species, with an indefinite number of classes to each species, has loomed into view, I must confess to a certain feeling of impatience as regards working out these small details for a single class of a single species. The inordinately augmented amplitude of the subject calls for some broader method of treatment.
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To find a]value of x which makes ψ15zc contain 5, write ψ3w = u + 1 = 0 
mod. 5, then u = — 1.

To find values of x which make ψ2ι^ contain 7, write u + 1 ≡ 0 mod. 7, 
then u ≡ 6 ; and to find values of x which make χ21zr contain 7, write 
x2 + x + 1 ≡ 0 mod. 7, then x ≡ 2 or x ≡ 4.

On turning to the table p. [327] it will be seen that 
≠ι5 (— 1) = 1 + 1 - 4 - 4 + 1 = - 5,
^ψ,2i (~ 1) = 1 + 1 — 6 — 6 + 8 + 8 + l=7,
≠212 = 4096 + 512 + 64 + 8 + 1]-2048-256- 16-2 ] =«81 - 2322 = 2359 = 7 . (16.21 + 1),

and of course since χ21(c2 contains χ21zr as an algebraical factor, χ.214 will also 
contain the intrinsic divisor 7 on the general principle that if λ be any 
number prime to k, 'χkxκ must contain χjfc<r as an algebraical factor, as admits 
of easy demonstration.

Also ψ216 = ψ21 ^2 + ≡ χ212 [mod. 7] will also contain 7. Lastly, to

mod. 5, for x = 0, 1, 2, 3, 4

λ⅛ (+) = 1, 1, 1, 1, 1 j ψ35 (x) = 1, 1, 1, 1, 1 ; 
and to mod. 7, for x = 0, 1, 2, 3, 4, 5, 6,

χ35(tf) ≡ 1, 1, 1, 1, 1, 1, 1 ; ψs5(x) ≡ 1, 2, 1, 3, 3, 1, 2 ; 
so that neither 5 nor 7 is a divisor of either function to index 35.

Title 3. On Cyclotomie Functions of Any Species and Class. The cyclo­
tomie functions, called by me, of the second sort or conjugate class of the 
second species discussed under the preceding title, constitute the leading 
class of a much more general kind of binomial (2wefi7‰drfi7) cyclotomies, 
which it would mislead were I to suppress all allusion to.

Suppose k to contain θ distinct odd prime factors, then we know that the 
number of square roots of unity to the modulus k is 2θ, except when k is 
divisible by 4, in which case it is 2θ+1, or 2θ+2, according as - is fractional
or integer, or, setting apart unity, the number remaining is 2e — 1, 2β+1 — 1, 
2θ+2 — 1 in the three cases respectively. Let √1 (one of the totitives to k) 
denote any specific one of these square roots. Then, if we call p any primary 
&th root of unity and make x = p + p'jl, we shall obtain a completely integer 
function of the degree J τk in x, which may be called a binomial cyclotomie.

k
When k is divisible by 4, one value of √1 will be - + 1, and the value of

kP + p1+2 being zero, the cyclotomie function that ought to be, degenerates
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into a power of x. Hence, when k is not divisible by 4, the number of 
binomial cyclotomics is 2θ-1, when it is divisible by 4, 2θ+1 — 2, or the 
double of the former value, and when by 8, 2θ+2- 2.

All these binomial cyclotomics will be found to possess similar properties 
to those which have been demonstrated under Title 2 concerning their 
leading class, as the annexed examples will serve to demonstrate, where 
the odd prime extrinsic factors it will be seen are of the form mk + 1 or 
mk + */l; that is to say, in respect to the index, are congruous to one or 
the other of the primordinal totitives 1 and √1 where the latter quantity 
has a definite value for each of the cyclotomics in question.

Thus, suppose A; = 15, the square roots of unity (quA 15) are ± 1, + 4. 
Let √1 = 4, and make x = p + p4, then it will be found that xi — zr3 + 2x2 
+ x + 1 will contain the four roots of x and all the odd prime divisors of this 
function are of the form 15m + 1, 4.

Or, again, let a = p + pn, then it will be found that a; is a root of the 
function x4 + x3 + x2 + x + 1, the prime factors of which, other than 5, are of 
the form 15m + 1, 11, which is, in effect, the same as the form 5m + 1.

Again, let A: =20. The values of √1 [mod. 20] are +1, +9. If we 
were to put x = p + ρ11, its value would be zero, but writing x = p+p9, we 
shall find it will be the root of zε4 + 3zr2 + 1, all the prime factors of which, 
other than the intrinsic one 5, are of the form 20m + 1, 9*.

We may now proceed to generalize these results by considering cycloto­
mics of every possible numerosity of grouping for a given index, and of every 
possible order of conjunction for a given numerosity—in a word, we are 
brought face to face with the most general theory of y-nomial cyclotomic 
functions]·.

I have accordingly calculated cyclotomic functions for the cases following:
k = 15 ∕ι = 2 v = 4
A; = 21 ∕ι = 4 r = 3

μ = 3 v = 4
μ = 2 v = 6

k = 26 ∕ι = 4 j√=3
∕χ = 2 v = 6

A; = 28 ∕ι = 4 ι∕ = 12
∕ι = 2 v = 6

k = 25 μ = 5 v = 4
k=='33 μ = o ι∕ = 4

∕ι = 4 v = 5
∕ι=2 v = 10* If k = 8 and we take x=ρ + p3 it will be a root of x2 + 2 of which the odd extrinsic factors will he of the form 8m + l, 3.+ All the species with their several classes here referred to form but a single genus of cyclotomic functions. The second genus will arise from the subdivision of groups into smaller groups and so on continually.
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Understanding by the “totitives” of k the numbers less than k and prime 
to it, these totitives may be arranged in (among others) the natural groups 
hereunder written.

Totitives to 15 for μ = 2, v = 4
141 4 11

2 7 8 13
» to 21 for ∕i == 4, v = 3

1 4 16
2 8 11
5 17 20

10 13 19
» for μ == 3, ι> = 4

1 8 13 20
2 5 16 19
4 10 11 17

» » for μ == 2, v = 6
1 4 5 16 17 20
2 8 10 11 13 19

» to 26 for μ = 4, v — 3
1 3 9
5 15 19
7 11 21

17 23 25
w » for μ = 3, v = 4

1 5 21 25
3 11 15 23
7 9 17 19

» to 28 for ∕x = 4, v = 3
1 9 25
3 27 19
5 17 13

11 15 23

» » for μ = 2, v = Q

1 3 9 19 25 27
8 10 11 17 18 23

n to 25 for μ = 5, v = 4
1 7 18 24
2 11 14 23
3 4 21 22
6 8 17 19
9 12 13 16

s. in. 22
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To save space, I omit the groupings to k = 33.

If, in any of the above tables, we call the totitives of the several rows,

7"l,l, τl,2 ∙ ∙ ∙ T"l, v 

T^2,l> τ2,2 ∙∙∙ τ2,∣'

i, Tμ, 2 ∙ ∙ ∙ v

and if p be a primitive root of xk-l, and we write Rθ = pτβ∙1 + pτβ>2 + ... pτθ'v, 
R1, Ri, ... Rti will be the roots of a cyclotomie of the rth species to the 
index k, or, as we may say, the index k and none v.

The values of the cyclotomie functions may be found most easily by 
calculating all the values of σi∙ (the sum of the tth powers of its roots), from 

i = 1 to i = μ where μ = T .

The value of Xk,v will then be the sum of the terms not containing 
1 51 o-2 V (

negative powers of x in the development of xμ- le x 2χi μχrf .

It will, of course, be recognized that the first row of numbers (the prim- 
ordinal totitives, as we may term them) in any of the foregoing natural 
schemes of decomposition of the &th primitive roots of unity into groups are 
ι∕th roots (not necessarily comprising any primitive root) of unity in respect 
to the index k as modulus.

The values of the cyclotomies are exhibited in the annexed table.

Index Nome Cyclotomie function Primordinal Totitives
15 4 xl — x — 1 1, 4, 11, 14
21 3 xi — a3 — x2∙ — 2x + 4 1,4, 6

4 xi — x2 — 2a; +1 1, 8, 13, 20
5) 6 xl — x — 5 1, 4, 5, 16, 17, 20
26 3 al· — zr3 + 2a∙2 + 4a; + 3 1,3, 9
J? 4 xi~xi -4a;— 1 1, 5, 21, 25
28 3 zκ4-3λj2+4 1, 9, 25
5) 6 a?2 — 7 1, 3, 9, 19, 25, 27

25 4 x5 — 10a;3 + 5a;2 + 10a;+1 1, 7, 18, 24
33 4 χp-%i- 4zr3 + 3a;2 + 3a; — 1 * ±1, ±ιo

?> 5 a4-a^-2a;2 —3a;+9 1, -2, 4, -8, 16
5J 10 a··2 —a; —8 ±1, ±2, ±4, +8, ±16

In each of the above cases calling the index k, its totient μv, the nome v 

and the primordinal totitives θlt θ2...θv it will be found that all the odd 

extrinsic prime number divisors (that is, primes dividing the function but not 
its index) are of the form mk + θ1, θ2, ... θt,.

The values of <r2, <r3, <r4, σs in this case follow the noticeable progression 9, 4, 25, 16.

www.rcin.org.pl



39] On Certain Ternary Cubic-Form Equations 339

Here, for the present, I must be content to leave this great theory, or I 
should be in danger of never finding my way back from it to the original 
object of the memoir which, although its parent, it transcends in importance; 
for Bachmann’s work, as it seems to me, gives proof, that Cyclotomy is to be 
regarded not as an incidental application, but as the natural and inherent 
centre and core of the arithmetic of the future.

Remark on the intrinsic divisors of cyclotomic functions of the lsi species.

It has been seen that if k = - pi~1 = k1pi~1, χkx ≡ 0 mod. pi has all its
roots the same as those of χklx = 0 mod. p and does not contain pi. If, then, 
we make j successively 0, 1, 2 ...j — 1 it will follow that

χ⅛1, Xklp> Xklp2> ∙∙∙ Xklp,~1
will each contain p, but only in the first power for the same τk1 values of x. 

(p-l)√~1
Hence x m — 1, which contains all the above written cyclotomics, will

τ-^ . . ∕n-l∖ . . .
contain pi, so that xm —1≡0 mod.p3 will have τl-----  I primitive roots,

⅛
and it is easy to see that xn- 1 will not have any congruence root in common 
with xk' — 1 in respect to the modulus pi.

The theory of intrinsic divisors, it will thus be seen, contains within itself 
the whole theory of primitive roots, which I notice because it induces me 
to withdraw the remark made in a previous footnote that the exact deter­
mination of the properties of the intrinsic cyclotomic divisors is a matter of 
comparatively small importance.

Notes to Proem.

1. On the rational in- and- exscribed triangle to the cubic curve 
x3 — 3xy2 -y3 + 3.Z3 = 0.

In the proem it was, under another form of expression, intimated in 
advance of what will be shown in the second section of this chapter, that the 
curve a? + y3 + Az3 = 0 has a correspondence with the curve

x3 — 3xy2 — y3 + 3Az3 = 0,
of such a kind that whenever the second equation has a rational solution, 
the same must be true of the first, so that, for example, on making A = 1, 
the solubility of a? — 3xy2 — y3 + 3z3 = 0 in integers implies the like of the 
equation x3 + y3 + z3 = 0. Hence it might, at first sight, be rashly inferred 
(which is what happened to me when writing the 2nd footnote to page [316] 
from a sick bed) that since a cube number cannot be broken up into the sum 
of two others, the former of these last written equations is insoluble in

22—2
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integers. But the fact stares one 
integers, namely,

x : y : z 
x : y : z 
x : y : z

in the face that it has three solutions in

:: 1 : 1:1
:: — 2 : 1:1
:: 1 : - 2 : 1.

In general, (except at points of inflexion or at points whose ⅛th tangen- 
tials are points of inflexion *), one rational point in a cubic gives rise to 
an infinite series of rational derivatives, but in this case the three points 
1:1:1, —2:1:1, 1: — 2:1 are the angles of a triangle in- and- exscribed 
to the curve zr3 — 3xy2 -y3 + 3z3, and are the only rational points on the curve. 
Each of them is its own third tangential, so that, at any one of the three, an 
infinite number of cubic curves can be made to pass having plethoric, or, so 
to say, pluperfect contact with each other (9-point contact) and accordingly 
will not intersect each other in any other point.

To these three points will be found to correspond (as will presently be 
shown in § 2) points for which x or y is zero in the curve a? + y3 + z3 = 0. 
This perfectly explains the seeming paradox.

The sides of the rational in- and- exscribed triangle are easily seen to be 
y — £ = 0, x + y + z = 0, x — z = 0.

In general, if any cubic be thrown into the form x2y + y2z + z2x + ∖xyz, 
it will obviously be in- and- exscribed to the triangle x, y, z↑. In the present 
instance, if we write x — z = u, y — z = v, x + y + z = — w, it will be found 
that the curve x? — 3xy2 — y3 + 3z3 becomes simply uv2 ÷ vw2 ÷ wu2, of which 
the Hessian is the three straight lines u3 + υ3 + w3 — 3uvw. If we take the 
sides of an equilateral triangle whose area is - Δ for the axes of u, v, w, we
shall have u + v + w = Δ, and the three real points of inflexion being in the 
line u + v + w, will pass off to infinity, so that the curve will possess three

2ιγinfinite branches. Writing ω = -θ- > θach asymptote will cut the sides of the
angles of reference in three pairs of segments abutting at the several angles, 
such that the ratio to each other of the segments in the several pairs, taken 
in regular order, will be (for the three asymptotes respectively),

cos ω cos 2ω cos 4ω
cos 2ω ’ cos 4ω ’ cos ω ’
cos 2ω cos4ω cos ω
cos 4ω ’ cos ω ’ cos 2ω ’
cos 4ω cos ω cos 2ω
cos ω cos 2ω ’ cos ω* Thus we have the following distinction of cases as regards the algebraically rational derivatives of any point on a cubic curve : (1) An infinite succession of links. (2) A finite open chain reducing in the case of inflexions to a single point. (3) A closed chain with a finite number of links.t For x will touch the cubic at x, y; y at y, z; z at z, x.
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These ratios, of course, remain the same, for the conjugate cubic 
ιz2-y + v2w + w2u, except that the order of the readings has to be reversed.

According to my departed friend, (of cherished memory), Otto Hesse’s 
dictum, I suppose it may almost be taken for granted without proof, -which 
would obviously be easy, that the two sets of real asymptotes for the 
conjugate cubics will envelop one and the same conic.

In a future excursus I propose to demonstrate the existence of an infinite 
number of polygons in- and- exscribable about any given cubic, and to deter­
mine the number of such polygons for any existent number of sides. Since 
wv2 + vu2 + uw2 = 0 is equivalent to (2z∕w + v2~)2 + (4<u3v — vi) = 0, we are able 
to deduce, from the fact that one cube cannot be the sum of two others, the 
theorem that the equation vi~ ⅛u3v = t2 has no solution in integers*, (zeros 
excluded) which seems to me (the way in which it is got, I mean, not the 
theorem itself) a very surprising inference.

Scholium. On triangles and polygons in- and- exscribable to a general cubic.

The apices of any such triangle must be points which are their own 3rd 
tangentials. Any such point, it may be shown, is completely defined by the 
condition that two right lines, drawn, the first through it and any one chosen 
at will, of the 9 points of inflexion, the second through its tangential and 
some other point of inflexion, shall meet the curve in the same point.

If, then, the cubic be written under its canonical form, and we select the 
point of inflexion (7), for which x = 1, y = 1, and through the point P (x, y, z)i 
which is to be its own 3rd tangential, and I draw a ray meeting the curve in 
P', and through P' and Q, the tangential to P, [that is, the point whose 
coordinates are x (ys — z3), y(zi- tP∖ z(x? — y3)] draw a ray, the point 
(A, Y, Z), where that ray meets the curve, must be a point of inflexion, 
and, vice versa, if the condition is fulfilled, P is its own 3rd tangential.* Suppose the equation u2v + v2w + w2u = 0 is resoluble in non-zero integers. We may regard 
u, v, w as having no common measure, as any such, if it existed, could be driven out of the equation by division. Suppose p to be any prime number enteriug exactly a times into u and β times into v; then writing u=pαu1, v=p^v1, since w2m contains pa, and v2w, ρ~&, we must have 
a = 2β and pi^w12r1 + v-l2w + w2m1 = 0, and proceeding similarly with each prime common measure of μ, v, of v, w and of w, u, it is obvious that, calling the greatest common measure of these three pairs δ, e, θ, we must have δ3u'2v' + e⅛'⅛' + θ3w'2u' = 0, where u', v', to' have no two of them any common measure. Hence, apart from algebraical sign u', v', w, must be each of them unity, and the above equation may be written δ13 + e13 + 013 = 0, the same in form as that which gave birth to the equation £3 - 3ξ√2 + η3=0, of which m⅞ + Λ + wsm=0 is a transformation. It is worthy also of remark that the two equations u⅛ + v2w + w2u = 0 and z3 + i∕3 + 23=0 pass into one another through the medium of the self-reciprocal substitution-matrix

111 pi pX ρ3
a 8, β p3 pa piwhere p is a primitive cube root of unity.
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It will be found that
X: — x∕5ys — yez3 — zgx3 + ⅜x3y3z3 

:: F: — x3y6 — y3zfi — 2⅛β + 3λ⅛∕⅛3 

:: Z : xyz (x3 + y6 + z6 — x3y3 — y3z3 — z3x3),
χ

and we must have X = 0 or F = 0 or---- = 0, the factor which figures in Zxyz σ
being disregarded, because it would lead to the 9 points of inflexion, which 
may be thrown out of account, as for each of them the in- and- exscribed 
triangle reduces to a point.

Combining each of the above equations taken separately with the equation 
to the cubic, we see that there will be 3 × (9 + 9 + 6), that is 72 points 
forming the apices of 24 in- and- exscribed triangles to the cubic. It may 
be shown further that these 24 triangles consist of 12 pairs of conjugate 
triangles, every pair being so situated that each is a threefold perspective 
representation of the other, the three perspective centres being some one of 
the 12 sets of 3 collinear points of inflexion*.

The 24 in- and- exscribed triangles may therefore be distributed into 4 
groups, each containing 3 pairs of conjugate triangles. This theory and the 
general one of in- and- exscribed polygons with any number of sides to a 
cubic curve will be treated more fully in a future excursus. It may, how-

yj
ever, be remarked here that the equation ----= 0 is equivalent to the two1 xyz
a? + py3 + p3z3 = 0, and zr3 + piy3 + pz3 = 0, so that 18 of the points xyz may be 
found by solving two cubic equations between re3, y3 or y3, z3 or z3, x3. The

* ABC, LMN are in threefold perspective when AL, BM, CN; AM, BN, CL; AN, BL, CM meet in three several points. If ABC he taken as the triangle of reference and the coordinates of L, Μ, N are a, b, c; a', b', c'; a", b", c" respectively, the triple “perspectivische lage” requires only the satisfaction of two conditions, namely, ab'c'' — bc'a"=ca'b", so that there is nothing between single and triple perspective relation. This statement constitutes a porism. The double condition ba'c" = cb'a" = ac'b" of course corresponds to the con^ary relation of triple perspective where AM, BL, CN; AL, BN, CM; AN, BM, CL meet in three several points.Let I, I', I", J, J', J", K, K', K" denote three points of collinear inflexions and P, Q the 3rd point collinear with P and Q, any two points on the cubic. If Q is the tangential to P, one of the vertices in question, it may be proved that any inflexion I, being assumed, another ∙J may be found such that IP=JQ. From this it follows that PQ will satisfy the 10 equations
IP =JQ

PP =Q
JP =KQ KP =IQ

1'P =J'Q J'P=K'Q K'P =I'Q
I"P=J"Q J"P=K"Q K"P=I"Q.These will necessarily continue to be satisfied when I and J are interchanged, provided that 4P, 

Q be written KP and KQ or K'P and K'Q or K"P and K"Q, and, consequently, to P, Q, R one in- and- exscript, will correspond another denotable indifferently by KP, KQ, KR, K'P, K'Q, 
K'R, K"P, K''Q, K"R, which will obviously therefore be in triple perspectivische lage with the first named one.
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remaining 54 may be found by substituting for x, y, z respectively (in the 
simple equations which express their ratios)

1°. x + y + z χ + ρy + p2∙sr x + p2y + pz
2°. x + y + pz a' + P2∕ +∙σ px+ y + z

3°. x + y + p2z x 4- piy + z p2x + y + z

(these substituted values, together with the original values of xy y, z, repre­
senting the sides of the 4 triangles which contain 3 points of inflexion on 
each side)*.

We may thus neglect altogether the equations X = 0, F = 0, the values 
of x, y, z, to which they would lead, being comprised among those resulting 
from the above method f.

In like manner, as we have found the number of in- and- exscribable 
triangles, it may be shown that the number of quadrilaterals in- and- ex­
scribable to a cubic is 54, and of ^-laterals, when p is a prime number, 
8 (2p~1 — l)(2p~2 + 1). For a Z>sided polygon, where k is any number what­
ever, the rule is as follows. Let

φx = 8 (2*~1 - (T)z~1) (2z~2 - (I/"2),

and let the totient of k, (supposed to contain i distinct prime factors) be 
expressed in the usual manner as the sum of 2i^^1 positive terms P and the 
like number 2i^^1 negative terms Q.

Then it may be proved (for it requires proof) that ^φP — ΣφQ will 
contain k; the quotient will contain the number of ∕c-sided polygons in- 
and- exscribable about a cubic.

This theorem does not accord with the formula given by Professor Cayley 
in the Phil. Tr. for 1871, as quoted in the Math. Fortschr.i Vol. in.

* When the cubic is x3 + ys + z'3, X, Γ, Z become x9 +6xsy3 +3x3y6 - y9, ..., xyz(x6 + x3y3 + y6) 
X=0 then gives ^=t-t2 if t3-3i + l = 0, that is, t = 2cosζy, 2 cos —, 2 cos θ-; calling the
three values of -~ thus obtained τ1, τ2, r4, one of the two real in- and- exscribed triangles will have y3at its vertices ∣, -=τ1∖ τ2¾ r4^=τ2∖ τ4^, τ1^ = τ∕, τ1K τ2^ respectively, and the triangleconjugate to it will have at its vertices -, -, - equal to the same three systems of ratios. 

y z xt If xz + yi + z3 + ⅛mxyz be the given cubic, one set of 9 points will be found from the equation [(1 - p) y3 + (1 - p2) z3]3 + 27ms (pf∕βz3 + p2y3zβ) = 0,or y9-3{(l-p2) m8-p2} y*z3-{(l-p) m3-p} y3zβ + zθ=0,and the fellow set by interchanging y and z. The disadvantage of this method consists in its leading to equations with imaginary coefficients for finding inter alia real roots which the equations F=0 or Z = 0, being of odd degrees, show must necessarily always exist.
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The number of triangles in- and- exscribable to a curve whose order is x, 
whose class is X and whose number of cusps + three times its class is ξ, is 
there stated to be

X4 + (2«3 - 18«2 + 52« - 46) X3 + (l&c3 + 162x2 - 420x + 221) X2 
+ (52«3 — 420«2 + 704« + 172) X + {x4 — 46x3 + 221«2 + 172«)
+ ξ {9Z2 + (12« + 135) X + (9«2 + 135« - 600)}.

On making « = 3, X = 6 and £ = 18 we ought to have 24 the number of 
in- and- exscribable triangles to a general cubic, but· on making these substi­
tutions the result will be found to be zero. It is quite certain, therefore, that 
this formula requires some correction which has been overlooked by its 
illustrious author. For I have actually, in the text, given a cubic and a 
triangle in- and- exscribable to it, not to add that it is manifestly impossible 
for a general cubic to refuse to pass under the form xy2 + yz2 + zx2 + mxyz.

Before quitting this subject I wish to call attention to the fact that the 
formula above given for composite numbers is a form deduced from the form 
φk precisely as in the excursus, the expression for log χ∣cx was deduced from 
log («* — 1)*. It is clear from general logical considerations that this sort of 
deduction must be continually liable to occur and a name is imperatively 
called for to express it as much as one was formerly wanted to express the 
kind of deduction which leads from an algebraical form to its Hessian. Here 
the deduction depends on the arithmetical constitution of the subject of the 
form, and it is a great impediment to the free course of ratiocination not to 
be able to pass at once, in language and in thought, from the form to its 
deduct. I intend then in future to call such deduct the functional totient of 
the form, say φk, from which it is derived, and to denote it by (<∕>τ) k. This 
constitutes a very important gain to arithmetical nomenclature.

I would further call attention to the fact of an arithmetical theorem, of 
some considerable difficulty to demonstrate (by means of Fermat’s extended 
theorem) in the general case, as any one, who goes through the process of the 
proof for the single case of k = the product of two primes, will easily satisfy 
himself, (I mean the theorem that the functional totient of 8 (2λ~1 — (1)a~1) 

(2a~2 — (I)*-2) is always divisible by k) should admit of an intuitional proof 
through the intervention of a pure property of cubic curves without any re­
course to concepts drawn from reticulated arrangements, as in the applications 
of geometry to arithmetic made by Dirichlet and Eisenstein. This example 
of the possibility of such application (akin to that whereby the binomial
theorem is made to prove that -7r + m) is an integer) is, as far as I can

τrm . πm σ
recall, without a precedent in mathematical history.

* The expression actually there given is for χkx and not its logarithm ; using the notation 
explained above, and calling φk = log (xk -1) the cyclotomic of the 1st species to the index k, 
is e<*τ>*.
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Postscriptum.

Mr Franklin obtains my result as follows: The condition that the 
(⅛ — l)th tangential shall lie on the first polar is of the degree 2.4i~1 + 1; 
the number of points on the cubic (exclusive of inflexions) satisfying this 
condition is 3 (2.4i~1 + 1) — 27 = 24 (4i~2 — 1). But the (⅛ — l)th tangential 
will be on the first polar, not only when it is a true antitangential, but also 
when it is the original point itself or the consecutive point; so that we have 
to deduct from the above number twice the number of points (exclusive of 
inflexions) whose (i — l)th tangentials are the points themselves; that is, 
denoting by wi the number of vertices of in- and- exscribed ΐ-laterals, we have

ai = 24 (4i~2 - 1) - 2tii~1
= 24 {22i~4 - 22i-s + .., + (- 2)i"1 - (1 - 2 + 22 - ... + (- 2)i~3)}
= 8 (2i~1 + (—l)i~2) (2i~2 — (—l)i-2),

which will be the number of the vertices, not only of true ^-laterals, but 
also of all the ^-laterals, (δ being any divisor of i except i itself) as well.
Mr Franklin further suggests that the discrepancy between this result for 
i = 3 and Prof. Cayley’s formula may be due to the latter not taking account 
of the peculiar kind of in- and- exscription in which the curve is in- and- 
exscribed at the same points. Finally, let us call the summant of a number 
k of the form αλ .bμ-. cv (a, b, c being primes) the well-known quantity con­
sisting of (1 + λ) (1 + μ,)(l + 0 ... terms which represents the sum of the 
divisors of k. We may speak of a functional summant to φk obtained by 
prefixing φ to each monomial term in the development of the summant and 
denote it by (φσ) k. The equation (φσ) k = ω (k) has for its solution

= (ωτ) k. My method gives at once, for the functional summant of uk 
(without exclusion of inflexions) (2fc — τfc)2, and accordingly, the functional 
totient to this form divided by k is the simplest expression for the number of 
ex- and- inscribed ^-laterals to the cubic. Thus, for k = 1, 2, 3, 4, 5, 6, that 
number is 9, 0, 24, 54, 216, 648 respectively.

2. On 2 and 3 as cubic residues.

For the benefit of those among my readers in this country who may not 
have access to the later works on arithmetic, it may be as well to point out 
how with the aid of their Gauss or Legendre they may verify the conditions 
which, later on, I shall have need to employ of 2 or 3 being cubic residues to 
k, a prime of the form Qi + 1. The cyclotomic function of the third degree 
in the variable, to the index k, if we make 4& = ??i2 + 27n2, is known to be 

x? + xi----- —— x — ——l-, where e2 = + 1 and m — e contains 3. Con­

necting this with the same function formed in the manner in which the
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cyclotomies in the Excursus under Title 3 have been calculated, calling U the 
number of solutions of the congruence l+β+y≡0 (mod. k), where β, y 
are any two unequal cubic residues to k, and θ the number of solutions 
(1 or 0) of the congruence 1 + 2β ≡ 0 (mod. k), it will easily be found, by 
comparing the constant terms in the two expressions, that

τr 3θ k— 8 + em 
U+2= 18 ∙

Hence, when θ = 1, that is when 2 is a cubic residue, m (and therefore 
also ri) must be even, and consequently when θ = 0, or 2 is not a cubic 
residue, m must be odd, and vice versa.

Again, if we compare the values of the sum of the 4th powers of the 
roots of the cyclotomie as found by the general method with that deducible 
from the given function, we shall find

τr 2 ts k2 + 3k — 66 — 4>mek 
7 + Sa =---------- Ï62---------- >

where V is the number of solutions of the congruence l+∕3 + y + δ≡0, 
plus the number of solutions of the congruence 1 + β + 2y = 0 (β, y, δ 
being cubic residues to k) and ⅛ the number of solutions of the congru­
ence 1 + 3β ≡ 0 (mod. k), that is 1 or 0, according as 3 is, or is not, a cubic 
residue to k.

The numerator is necessarily divisible by 54, but the criterion of ⅛ being 
0 or 1 depends on its being divisible or not by 81. On substituting for k 
its value in terms of m and n, it will be found that 16 times the numerator

(—3—∕------3—i
and consequently is divisible or not by 81 according as n is not, or is, divisible 
by 3. Hence ⅛ = 1 when n is divisible by 3 and otherwise is 0.

The joint effect of these two results may be translated into the following 
statement, which is better adapted than the more complete* form of enuncia­
tion would be to the purposes of this memoir.

7∕ k =f2 + ⅜2> when (f + g) contains 9, 3 is, and 2 is not, a cubic residue; 
when g contains 3, but not 9, 2 is, and 3 is not, a cubic residue ; when g con­
tains 9, 2 and 3 are each of them cubic residues, and in any other case neither 
2 nor 3 is a cubic residue to k↑.

QQ ∙3 A√ 1 I GTYbJc
The equation Z7 + — =------——-— contains a complete solution of the

interesting question, “ How many times, if the cubic residues to a given* I mean more complete in the sense of fixing the cubic character in the case of 3 being a non-residue, which is unimportant to the matter in hand.t In other words, if 4p = m2 + 27n2 [an equation always possible whenp = 6ι + l], n divisible by 2 is the necessary and sufficient condition of 2, and n divisible by 3 is the necessary and sufficient condition of 3, being a cubic residue to p.

www.rcin.org.pl



39] On Certain Ternary Cubic-Form Equations 347

modulus are set out in a regular ascending series, will consecutive terms 
differ from one another by a single unit ? ” When 2 is not a cubic residue, 
the answer is obviously 2 U, for 1 + α + β = n gives two sequences, a, n — β 
and β, n - a, differing by units. But when 2 is a cubic residue, there will be 
three extra sequences not contained among the 2C7 just spoken of, namely,

1,2; 1, *±+ *-2, fc-l.

Z√ ““ 8 ~F* β ∕zz,Hence, in each case, the number is 2 U + 3θ, that is ------∩----- , or, if wey
, . λ ., k + em + 1count in 0 as a residue, ------ θ------ .

Section 2.

On certain 7iumbers and classes of numbers that cannot be resolved into 
the sum or difference of two rational cubes.

Title 1. Theorem on irresoluble numbers whose prime factors other than 2 
or 3 are of the form 18n + 5 or 18zι + 11*. I propose to prove the following 
collective theorem. If A represents any one of the numbers 1, 2, 3, 4, 18, 36 
or any number of the form

P> T P2, 92»
9p, 9q, 9p2, 9ç2,
2p, 4q, 4>p2, 2ç2,

PT Pd>22, Ç1Ç22,
(where any p means a prime number of the form 18n + 5, and any q a prime 
of the form 18w + ll) A will be irresoluble into the sum of two unequal 
rational cubes.

Lemma. If we decompose A (when it is not a prime) into any factors 
f, g, h, prime to each other, other than 1,1, A, the equation fx3 + gy3 + hz3 = 0 
will be irresoluble in integers.

I prove this by showing that the above equation converted into a con­
gruence to modulus 9 is irresoluble in integers.

aτ3, y3, z3, each of them to this modulus is equivalent to one or the other 
of the three numbers 1, 0, 1.

p , p1, p2 to this modulus is equivalent to 4

q > τ > (∕- », » »» -,
P2, Pl2, p? » „ ,, 2
q-, q2> q∙r » >> »» 4,

* This theorem includes and transcends all the cases of irresolubility that had been dis­
covered prior to the date of publication of the Proem in the last number of the Journal, with the 
exception of certain specific numbers whose irresolubility had been determined by the Abbé Pépin.
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and on inspection, it will easily be verified that the limited linear congruence 
∕λ + gμ + hv ≡ 0 [mod. 9], where λ, μ, v must each be picked out of the 
three numbers 1, 0, 1, has no solution.

Hence, if fa? + gy3 + hz3 = 0 and f. y .h = A, and x, y, z are supposed to 
be prime to each other, two of the quantities ∕, g, h will be unities and the 
third equal to A.

Let, now, a? + y3 + 2I23 = 0 be supposed soluble in integers. Then, since 
A contains no 6w + 1 prime, we must have

x + y = Aξ3 1
x2 — xy + y2 = ω3 > when x + y does not contain 3, 
z = -ζω J

and
x + y = 9 Aζ3 j
x2 — xy + y2 = 3ωθ > when x + y contains 3. 
z = — 3ζω J

If x + y is even, since x2 — xy + y2 — + 3 , we must have
oc 4- y x ~ y■ + √(- 3) —~ = {ξ + √(- 3)77}3, when x + y does not contain 3, and
iZ7 __ 7/ CC 4“ 'll+ √(- 3) —θ- = {ξ + √(- 3) η}3, when x + y contains 3. In the one 

case —= £3 — 9τ∕3, —= ⅛%2y — 3y3, and in the other a^-~ = ξ3 — Qrfζ,

ac + y ofc2 o 3—θ~ = 3ξ y - ⅜3∙

In the one case, then, 2ξ (ξ — 377) (ξ + 3rf) = Aξ3, and in the other 
2?y (£ — f) (ζ + y) = Aζ3. In either case, therefore, there is an equation- 
system of the form pστ = — Aζ3, p + σ + τ = 0, to be satisfied; therefore, 
disregarding permutations of ρ, σ, τ, we must have

P=Aι3, σ = gyι, τ = hz13 
f.g.h = A, xly1z1 = -ζ 

fx13 + gyλ3 + ⅛13 = 0,
and consequently by the Lemma zc13 + y3 + ∠1^13 = 0 (or the same equation 
with x1, y-i, z-i interchanged) where x1y1zγ is a factor of z.

Continuing the same process perpetually, as long as the new x and y 
have the same parity, each new x, y, z being contained in the immediately 
preceding z, must perpetually decrease, and if the process could be indefinitely 
continued, x and y must each evidently become unity, since otherwise z 
could go on decreasing without limit. This could only happen when A = 2, 
and even then is excluded by the condition that the cubes are to be unequal
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as well as rational*. Hence, if the proposed equation is soluble at all, 
it must contain solutions in which x and y are one even and the other odd.

On this hypothesis, let us consider separately case (1), where x + y does 
not, and case (2) where x + y does contain 3.

Case (1). Here (x + y)3 + 3 (x — y)2 = 4 (Z2 + 32l∕2) = 4ω3, and all the 
solutions of this equation are necessarily included in those of the system 
7? + 321/2 = ω3, x + y = L + 321/, x — y = L — M.

Hence x + y = ξ13 + 9^127∕1 — 9τ712‰ — 9τ∕13 = Aζ3. On making ξ1 = ξ — 3τ∕1, 
this becomes ξ3 — 36^τ∕12 + 72τ∕13 = Aζ3, or, making η' = Qη1, 3£3 — 3ξη'2 + η'3 
= 3Aζ3, which, on writing η' = η + ξi becomes η3 — 3ηξ2 + ξ3 = 3Aζ3, where 
A unless it is unity contains at least one factor that is not of the form 
18w + 1, or else (in the case when A = 3) the square of 3. Hence, by virtue 
of the cyclotomic law for index 9, species 2 (conjugate class) (see Table, 
p. [327]), the above equation is insoluble in integersj*. z?/ ?/Case (2). Here, using L and M in the same sense as above, —- = L — Mo
and x-y=L+3M or ^i3 — 3^12^1 — 9^1τ∕12 + 3τ∕13 = 3√4ζ^. Here writing 
2η1=z-ξi ξ1≈η + 2ξ, the equation becomes η3 — 3ηξ2 + ξ3 = 3 J. ζ3, and is 
insoluble in integers as before. Hence, since by hypothesis x + y is not even, 
and it has been shown that it cannot be odd, the number A when not unity is 
irresoluble into the sum or difference of two unequal rational cubes+.

When A is unity the equation above written becomes η3 — 3ηξ2 + ξ3 = 3ζ3, 
the necessity for discussing which may be avoided by choosing the x, y out of 
x, y, z (which in this case are indistinguishable) so as to make x + y always* To prove this, let ξ, η, f be the system of variables, for which £=1, n = l and x, y, z the system immediately preceding it. Then we have 2 = 2, ξ = l, ιj=l, f= -1, and either x-y = 0, or x + y — 0. The latter of these equations would imply z = 0 and the former x : y ∙.z :: 1 :1 : - 1, and so continually until we fall back on the original equation in x, y, z. Hence the only possible resolution of 2, if x + y is even, is into two equal cubes.+ 32 not containing any cube, ξ and 32 must be prime to each other, since otherwise 
η, ξ, f would have a common measure. Hence we may make η=ξμ-3A∖, and, consequently, (μ3-3μ + l)ξ3≡0 mod. 32, and, therefore, μ,3--3μ + l must contain 32.This conclusion would not hold if 32 were of the form A1B3 where 21 contained no cube. We could then only infer μ,3- 3μ + l≡0 mod. 21. Thus, in the case of 2 = 9, 32 = ,B3, and our inference would become μ3-3μ + l≡0 mod. 1, which, of course, is satisfied, and, accordingly, 9 ought to be resoluble into two cubes, as it obviously is, namely, into 1 and 8. Thus, the equa­tion x3 -3xy2 + y3=3Az3, when 2 = 9 has an infinite number of solutions, when 2 = 3 has no solution, and when 2 = 1 has just 3 solutions.It may be worth noting that, in general, if (x, y)n=Azn, and 2 = 21Bn, where 21 contains no nth power of a number, (x, l)n will contain 21 as a divisor, provided that the coefficient of xn in 
{x, y)n is a prime to 21. Cases of this inference being drawn of course frequently occur, but the general principle, obvious as it is, I do not recollect to have seen formulated in the text books. It may be made more precise by the statement that any factor of 21, prime to the coefficient of xn, will be a divisor of (x, l)n.t The equations of substitution are: for case 1, i=‰ + 3ιj1, ιj=-fι + 3ιj1∙, and for case 2, ί= -2^1, η=ξ1-η1.
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350 On Certain Ternary Cubic-Form Equations [39

even, which is the ordinary and easier method; but it is not without interest 
to show how the desired conclusion may be arrived at by keeping x + y 
always odd. This may be done as follows: The equation between ξ, η, ζ, 
on writing η+ζ=u, ζ-ξ = v, -η+ξ+ζ=w* becomes uv2 + υw2 + wu2 = 0 
which, as shown in footnote to p. [341], involves the relations u = y'2z', 
v = z'2x', w = x'2y' and consequently x'3 + y'3 + z'3 = 0 where x'y'z, = %∕(uυui).

Let us use in general two or more separate letters enclosed within a 
parenthesis to denote the absolute value of the greatest one of them (their 
dominant as I am wont to call it).

When x + y does not contain 3, x + y = ζ3, x2 — xy + y2 ≈ (ξ12 + 3η12)3. 
Hence ζ<2⅛ (x∖ y⅛) (ξ1, ηi) < 3i (x⅛, yi). Therefore (£, η1, ζ) < 3i (x, y, z)*, 
and consequently since ξ = ξ1 + 3η1 and η = - ξ1 + 3τ∕1, (ξ, η, ζ) < 4.33 (x, y, zf

4 1 4
and therefore (w, v, w) < 4.3κ (x, y, zf. Hence x' .y' .z' < (u, v, w)< 4.3i
to y, Oi∙

In like manner when x + y does contain 3, from the equations ξ = — 2τj1, 
V = ξι~Vι, x + y = ∂ζ3, x2 - xy + y2 = 3 (ξ12 +'3ηf)t, follow ζ<(^∖x, y∕

(£i, vi) < to. y∕, (&. vι, ζ) < to. y, (ξ> v, 0 < to. y, θ∖ x' -y'∙z' < (u> υ> w)
< 3 (x, y, z∕.

In any case therefore x'. y'. z' < 4.3λ {x, y, z)3 < 18 (x, y, ^)3. But the 
difference between any two cubes except 8 and 1 being greater than 8, the 
smallest of the numbers x', y', z' cannot be less than 3, and, since neither

x' .n'. z'33 + 43 nor 33+ 53 is a cube, it follows that , .' , >18, and therefore
to, y,z)

{x, y', z') < (x, y, z~yf, or the dominant of the quantities x, y, z which satisfy 
zr3 + τ∕3 + 23 = 0 is continually replaced by another similar dominant less than 
the cube root of its predecessor, which is impossible.

Hence a? + y3 + z3 = 0 is insoluble. Let us see how this is reconcilable 
with the existence of the 3 rational solutions of if — 3ηξ2 + ξ3 + 3ζ3 = 0, 
namely, ξ, η, ζ = 1, 1, 1 or 2, 1, 1 or 1, 2, 1 respectively.

In case (1) ^=^ι + 3τ∕1 η = -ξι + 3η1 ξ, η = ΐ, 1 gives τ∕1 = 0
ξ, η== 2, 1 gives ητ = -ξ1 ξ, η = 1, 2 gives η1 = ξl. In each instance 
therefore M = 3η1 (ξ12 — η12) = 0 and consequently x + y — L = x- y and 
2∕ = θ∙

In case (2) ^ = -2τ∕1 η = ξ1-η1 ξ, η = ϊ, 1 gives ∣1 = 3ιy1 ξ, η≈2, 1 
gives ‰ = -3t71 and £, 77 = l, 2 gives ‰ = 0.

In each instance therefore L = ξ1 (ξ12 — 9η12) = 0 and therefore x = 0. 
Thus the rational solutions of the equation in ξ, η, ζ in both cases correspond 
to rational but futile solutions of the equation in x, y, z.

* From these equations it is obvious that the dominant, that is, the arithmetically greatest 
of the quantities u, v, w, is less than 3 times the dominant of ξ, η, f,

www.rcin.org.pl



39] On Certain Ternary Cubic-Form Equations 351

CHAPTER I.

Excursus B.—On the Chain Rule of Cubic Rational Derivation.

I think it desirable, while the colours, so to say, are still wet on the 
palette, and my mind is still dwelling upon the subject which has been 
casually introduced in the note to the proem contained in the last number of 
the Journal (and there made use of to determine the number of in-and- 
exscribed ^-laterals to a cubic), without waiting to put forth the titles which 
in natural order of sequence, perhaps, should immediately follow Title 1 of 
Section 2, to proceed at once to develop the theory of derivation which, 
irrespective of the casual use of it alluded to, will be found to be of essential 
importance when I reach that part of my proposed task which deals with 
soluble cubic-form equations, nor less so when, in Chapter II., I have to treat 
of insoluble cases of certain classes of cubic-form equations with four or more 
terms.

Title 1.—On the Natural or Discontinuously Numbered Scale of 
Rational Derivatives to a Point on a Cubic Curve.

Let us take any point on a cubic curve along with its successive tan- 
gentials ad infinitum. We may, by drawing straight lines through any two 
of these points, either contiguous or apart, to meet the curve, obtain an 
additional set of points, and thus form an enlarged system which may again 
be subjected to a like process of collineation or tangentialization, and such 
method of augmentation and amplification may be continued indefinitely. 
Every point thus obtained will obviously be a rational derivative of the 
original point (that is, its co-ordinates will be rational integral functions of 
those of that point), and, at first sight, it would seem as if we might in this 
way obtain a network, or spread*, of rational derivatives; but I shall proceed 
to show that such is not the case, but that only a line or chain of points will 
be thus obtained, usually infinite in extent, although for certain positions of 
the initial point coming to a stop, and in other cases winding round and 
round upon itself so as still to include only a finite number of distinct points. 
It will be shown subsequently that, in order to complete the theory of the 
chain for the purposes of this memoir, it will be necessary to take into 
account the rational derivatives not merely from a single arbitrary point, 
but from such points, combined with a point of inflexion, and that this 
additional element will not alter the surprising fact of the absence of 
reticulation or spread, but merely bring about the insertion into the chain of* Spread, as a noun (scarcely to be found in the dictionaries), I employ in the sense in which it occurs in the phrase spread of foliage. On this continent the word spread is also used to denote a thick coverlet or padded woollen quilt, laid over the bedclothes in winter to keep out the cold; also on both continents as a familiar name for a college banquet.
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points corresponding to missing numbers in it as first described, and to the 
duplication of the chain so completed, owing to every point in it having an 
opposite point also situated on the curve and collinear with it in respect to 
the given inflexion. This duplication will be of little importance in general 
to the arithmetical theory with which we shall be occupied, inasmuch as 
opposite points will correspond to the same arithmetical values, with merely 
a change of name between two out of the three variables which denote the 
co-ordinates of any point. First, let us consider the chain law of derivation 
when a point on the cubic curve alone is given. I shall call the original 
point 1, and its first and second tangentials 2 and 4 respectively, and in 
general use (m, ri) to denote the point on a given cubic collinear with two 
points m, n also situated upon it*. Obviously, then, we shall have (1, 1) = 2 
(2, 2) = 4, using (1, 1) (2, 2) to denote, in either case, two consecutive points 
upon the cubic. It is also obvious that if (m,ri) —p then (w, p)-n and 
(n, p) = m, so that (1, 2) = 1 (2, 4) = 2.

Let us call (1, 4) = 5 (2, 5) = 7 (1, 7) = 8 (2, 8) = 10 (1, 10) = 11 
(2, 11) = 13 and so on. It will be seen that no number which is a multiple 
of 3 is brought into existence by this process. Supposing a, b to be any two 
integers, neither of them divisible by 3, let us agree to signify by a ↑ b that 
of the two values a+ b, a — b which is not divisible by 3. The theorem to 
be established is that the point (m, ri) collinear to m and n will have for its 
value m J n; as, for instance, (4, 4), or the third tangential to 1, will have for 
its value 8, that is, will be identical with (1, 7), that is to say, with {1, [2, (1,4)]}, 
where 2 and 4 are the first and second tangentials to 1, which amounts to a 
rule for obtaining the third tangential, when a point on a cubic and its 
first and second tangentials are given, by collineation alone. The theory of 
residuation, in its simplest form (see Salmon’s Higher Plane Curves, 3rd ed., 
p. 134)f teaches us that the rule of the older chemistry known by the name 
of double decomposition, namely that {(α, ό), (c, rf){ = {{a, c), (b, d)} is applic­
able to the same symbols regarded as points on a cubic curve. This rule of 
double decomposition is all that is required to prove the theorem in question.

Thus, for example, in order to prove that (1, 7) = (4, 4), I write 
(1. 7) = 1(1, 2), (2, 5))= ∣(2, 2), (1, 5)) =(4, 4). Q. E. D.

So, to prove in general that (r, s) = r ∣ s I proceed as follows:* Sometimes, however, it will be found more convenient to use P1, P2 ... Pn', Pi, P{, ... Pn' in lieu of 1, 2, ... n; 1', 2', ... n'.+ The theory of residuation was originally brought by me before the Mathematical Society of London, and subsequently, in the form of questions, in the Educational Times. Dr Salmon makes no allusion to the fact of my applying the theory to curves of all orders : in the case of the quartic, the residual becomes a system of three points ; of a quintic, a system of six points, and so on. I understood Professor H. S. Smith to say that he made use of my theory for the quartic in his memoir which gained half the prize for the subject set by the Academy of Sciences of Berlin, but which I have never seen.
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(1) Suppose r = 3i + 1; β = 3J + 1, where j — i is positive. Then
(r, s) = {(3t - 1, 2), (3y + 2,1)} = {(3ι -1,1), (3J + 2, 2)}

= (3⅛ — 2, 3J + 4) = (r — 3, s + 3).
Hence (r, s) = (r- 3i, s + 3⅛') = (1, s + r — 1) = s + r.

(2) Suppose r = 3⅛' - 1; s = 3) - 1. Then (r, s) = {(3t - 2, 1), (3j +1, 2)}
= {(3i - 2, 2), (3J + 1, 1)} = (3i - 4, 3J + 2) = (r - 3, s + 3),

as before. Hence (r, s) = {r — 3 (t — 1), s + 3 (t' — 1)} = (2, s + r — 2) = s + r.

(3) Suppose r≈ 3i — 1; s = 3j + 1. Then (r, s) = {(3t — 2, 1), (3j — 1, 2)}
= {(3√ - 2, 2), (3j - 1, 1)} = (3t - 4, 3J - 2) = (r - 3, s - 3).

Hence (r, s) = (r - 3t + 3, s - 3i + 3) = (2, s - r + 2) = 5 - r.

(4) Suppose r = 3⅛ + l; s = 3j-1. Then (r, s) = {(3¾ - 1, 2), (3j-2, 1)}
= {(3⅛ - 1, 1), (3J - 2, 2)} = (3⅛ - 2, 3y - 4) = (r - 3, s - 3). 

Hence (r, s) = (r — 3¼ s — 3t) = (1, s — r + 1) = s — r.

Collecting the four cases, it will be seen that I have proved, for all values 
of the points r, s in the chain, that (r, s) = r⅛s. Q.E.D.

The points 2i correspond to tangentials of the ιth order to the point 1. 
It is obvious from the above theorem that no process of continued collinea- 
tion or tangentialization performed upon these points can lead to any points 
extraneous to the series of points 1, 2, 4, 5, 7, 8 ... which form a simple chain 
extending in general to infinity. Moreover, as it follows from the theory of 
residuation that any single point reached through the intervention of curves 
drawn through any number of points on a cubic can be reached by simple 
linear constructions, it follows that by no conceivable geometrical process can 
any rational point be reached not included in the numbered chain, and the 
inference becomes in the highest degree probable, and, as a matter of fact, is 
undoubtedly true (although the reasoning upon which it is here made to rest 
is not absolutely conclusive), that no rational deducts from a general point on 
a general cubic exist save those that belong to the numbered chain, the points 
upon which constitute what may properly be termed a self-contained group, 
infinite or finite (as the case may be) in regard to the number of terms which 
it contains. I shall presently determine the order of each successive deriva­
tive, meaning thereby the order in the co-ordinates of the initial point of any 
one of the three functions which express the co-ordinates of the derived one*.* There is a further question, but which, as not material to the object of this memoir, I shall not discuss here, namely, the degree in the coefficients of each such derivative. For the tan­gential, the degree-order (being that of the minor determinants of the matrix made up of the differential derivatives of the function and its Hessian) we know to be 4, 4. If x, y, z, be the original co-ordinates, and X, Y, Z, those of the tangential, we know that F' (X, Γ, Z) being zero when F (x, y, z) (the given cubic) is zero, must be divisible by F(x, y, z). The quotient will be of the degree-order 13, 12 -1, 3, that is, 12, 9, and is in fact the skew covariant of F.

8. III. 23
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The case in which the chain forms a closed polygon, which can only 
happen when for some number i the ⅛th tangential coincides with the initial 
point, has already been discussed in the note to the proem.

If the chain is an open but finite one, it is necessary that a tangential of 
some order shall fall upon a point of inflexion, in which case the succeeding 
tangentials remain fixed at that point, but otherwise continual new tan- 
gentials could be drawn. These are obviously necessary conditions of the 
chain being finite, whether it be an open chain or winding round upon itself; 
it remains to show that they are sufficient as well as necessary, but that will 
best appear after the theory of derivation from a general point combined 
with a point of inflexion has been discussed.

I shall begin with finding the co-ordinates X, F, Z of a point on the 
cubic curve collinear with any two given points x, y, z∖ ξ, η, ζ. Let

X = ^λχ + μξ, Y=∖y + μη, Z = ∖z + μζ',
then

Y, Z)^F(,, y, z) + ^φv*→ζ^F(., y, z)

+ μ,>F(ξ, v, ζ) + ∖fζ>^^ + y^+z F(ξ, η, ζ).

Hence X, F, Z will be the collineal to (x, y, z), (ξ, η, ζ,) if
- id d d∖ tι,. (i, d d d∖ r, ∕ ∖V⅛+yS, + ¾W',,' ^(⅛+,⅛+⅛F"ii,4

If now we write F (x, y, z) under its canonical form a? + y3 + z3 + Kxyz, it 
will be found, on substituting for λ and μ the quantities to which they are 
proportional, that

X = (y2ηξ — yrfx + z2tfe — zζ2x) + K {yzξ2 — ηζx2)
Y = (z2ζy — zζ2y + x2ξη — xξ2y) + K (zxη2 — ζξy2)
Z — (x2ξζ — xξ2z + y2ηζ — yη2z) + K (χyζ2 — ξyz2').

But these expressions admit of a surprising simplification, namely, we may 
neglect the terms not containing K, for it will be found that the quantities 
affected with the coefficient K are to each other in the same ratios as the 
other three corresponding groups in the values of X, Y, Z. Thus, for 
example

{yzξ2 — yζx2) (z2ζη — zζ2y + x2ξη — xξ2y}
- (zxη2 - ζξy2) (y2ηξ - yv2χ + z2ζξ - zζ2x)
= (ξy - xη) {ξηζ(x3 + y3 + z3) - xyz (ξ3 + η3 + £8)1

hence X : F : Z : : yzζ2 — ηζx2 : zxη2 — ζξy2 : xyζ2 — ζηz2.
We might, instead of these simple expressions, take for X, F, Z the other

three groups and (using x1y1z1∙, xiy2z∙1 instead of x,y,z∖ ξ, η, ζ and (pqy) to
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denote the determinant p\q2- p2qi) say that X, Y, Z are the minor deter­
minants of

X1 . X2 yι ∙ 2/a zι ∙ z2

{yθ (zχ) {χy),
and these are actually the expressions found by Cauchy, and given by him in 
his Exercices de Mathematiques, Paris, 1826, p. 256, 11. 18—21, pp. 257—60. 
I take this reference from a loose page of an article by M. Lucas, but have 
not access either to that article or to Cauchy’s.

It is remarkable that Cauchy should have given quadrinomial expressions 
for the collineal to two given points on a cubic curve, or their connective, as 
I shall hereafter term it, when, as shown above, binomial ones fulfil the same 
purpose. The correctness of these remarkable formulae admits of easy veri­
fication, as follows:

For greater simplicity denote xi, y3, z3, xyz by w, v, w, μ; and ξ3, η3, ζ3, ξηζ 
by u', v,, w', μ respectively. Then

X (yzξ2 — ηζxi)3 = X (υwu'2 — v'w'l(2) — 3μμ {(√ + v' + w') μ — (u + V + w) μ'}
— X (vwu2 — v,w'u2).

Also K {yzξ2 — ηζx2} (zxrf — ζξy2) (xyζ2 — ξηz2)
= — Exyz {ξ3η3z3 + η3ζ3xi + ζ3ζ3yi) + Kζyζ (oeiy3ζ3 + y3z3ξ3 + z3x?rf)
= (u+v + w) (uv'w' + vw,u' + wu'υ') — (u' + v' + wz) (u'vw + v'wu + w'uv)
= X (u2v'ui — Aw).

Hence, giving X, Y, Z the values indicated by the formula, we find 
X3+Y3 + Z3 + KXYZ=0,

which equation depends, as seen, and as we know a priori must be the case, 
on the pure algebraical fact that X3 + Y3 + Z3 + KXYZ is a syzygetic function 
of λγj + y3 + z3 + Kxyz and ξ3 + η3 + ζ3 + Kξηζ, taking no account of the function 
ξηζ (x? + y3 + z3) — xyz (ξ3 + η3 + ζ3), as that is itself a syzygetic function of 
the two others. If we call the syzygetic multipliers of those two Φ and F 
respectively, it will at once be seen from what precedes that

Φ = 3ξ2η2ζ2xyz — ξ3η3Z3 — η3ζ3x3 — ζ3ζ3y3 
F =3xPy3z3ξvζ — x3y3ζ3 — y3z3ξ3 — z3χpη3 *.

I now proceed to apply the foregoing results to the problem of determining 
the order in the co-ordinates of any derivative numbered j (where j = 3i ± 1),

* Thus F= - (yzξ + zxη + xy£) (yzξ+ pzxη +p2xyζ) (yzξ + p2zxη + pxy{)
Φ = -(ηfr + fty + ξηz) (ηfr + pfty + p2ξηz) (ηfx + p2fty + pξηz),and it is worthy of notice that we have incidentally solved with quantic values for F, Φ, U, V, W the simultaneous algebraico-diophantine equations

U3 + F3 + IΓ3=(a3 + b3 + c3) Φ - (α8 + β3 + γ3) F 
UVW=abcΦ-aβyF.

23—2
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which may be called its index, and shall prove that the order of any derivative 
is the square of its index*. It will also be shown that each of the derivatives 
above referred to will be of the form xU, yV, zW, where U, V, W are quantics 
in a?, y3, z3 as variables, since these quantities satisfy the equation

(icH)3 + (ykr)3 + (z'W}3 -∖- KxyzPV'W = 0,

where Kxyz = -χ3-y3- zs.

From this it follows that, calling zr3, y3, z3; a, b, c respectively, the scheme 
of derivatives contains the various solutions of the algebraico-diophantine 
equation

aU3 + bV3 + cW3-(a + b+ c) UVW = 0,

and that, supposing the law of the squares to be demonstrated, U, V, W 
will be of the order ∣ {(3z' + 1)2 —1}, that is, 3⅛2 ± 2i in a, b, c, where i is any 
integer. We thus see that the above equation admits of solutions in which 
U, V, W are of the orders 1, 5, 8, 16, 21, 33, 40 ... respectively. It will 
hereafter be shown, in like manner, that the missing derivatives, whose 
indices are multiples of 3 (belonging to the arbitrary point and point of 
inflexion combined), will satisfy the equation

U3 + V3 + abc W3-(a+b + c) UVW≈ 0,
where U, V, W will be necessarily of the orders 3f2 + 2i, 3i2 + 2i, (i + 1) (3i + 1) 
respectively, i, as before, representing any integer. Thus we see that, if 
a + b + c = 0, the equations

aU3 + bV3 + cW3 = 0 and U3 + V3 + abcW3 = 0 
will admit of an infinite number of solutions in integers, when a, b, c are 
integer. This fact, as regards the latter equation, has been already pointed 
out by M. Lucas in this Journal, and previously by the Abbt> Pepin in his 
memoir in Liouville,s Journal, 2nd series, Tome xv.

Let us begin with applying the formulae to obtaining the co-ordinates of 
the tangential.

Let xi + y3 + z3 ÷ 3kxyz = 0

be the equation to the cubic. If we take x, y, z; x + δx, y + by, z + bz two 
consecutive points, their connective will be the tangential.

Applying the formulae just obtained, we shall obtain for its co-ordinates 
expressions each of the form Pbx + Qδy + Rbz with only one relation between 
bx, by, bz. Hence, if we write bz = λbx + μby the resulting ratios must be

* The proof here supplied is sufficiently exact to dispel any reasonable doubt as to the truth 
of the law; but an exact proof which does not assume but demonstrates the non-existence of 
latent common measures to the reduced values of the co-ordinates of the connective to any two 
derivatives will be furnished under Title 5—one of the most surprising feats of demonstration 
which it has ever fallen to the author’s lot to accomplish.
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independent of λ and μ. Consequently we may make 8z = 0. The two con­
nectives then become

y, z

<r + δzc, y + δy, z,

and the co-ordinates of the tangential will therefore be proportional to 

yz {x + δzr)2 — z(y + 8y) x2 :zx(y + ^y)2 ~ z(x + δx) y2 : z2 {xy — (x + δ^) (y + δy)} 

that is, to x (2y8x — xδy) : y (2xδy — yδx) : z (x&y + yδ<r)

where δx : δy :: y2 + kxz : x2 + kyz.

Hence the co-ordinates required are as

x {2y3 + a? + ⅜kxyz∖ : y {— 2ic3 — y3 — 3fory,σ} : z (a? — y3),

that is, as x (y3 — z3):y (z3 — x3)∙.z(x3- y3),

a result which appears to have been first found by Cauchy for the general 
form, but previously by Euler, and before him by Fermat, for the case k = Q.

If we write a, b, c, instead of x, y, z, and call the co-ordinates of the 
tangential x, y, z, we might find their values by virtue of the condition that 
the connective of a, b, c and x, y, z is a, b, c over again. This furnishes the 
equations

bcx2 — a2yz = am 

cay2 — b2zx = bm 

abz2 — c2xy = cm,

which may be satisfied by writing

x = a(b3 — c3) p ; y = b (c3 — α3) p ; z = c(a3 -b3) p ;

(ae + b6 + cs — a3b3 — b3c3 — α3c3) p2 = m;

but whether or not the above is necessarily the only possible solution is not 
quite clear a prion, and a posteriori it looks as if the solutions might be 
manifold.

The co-ordinates of the point whose index is 4, that is, of the second 
tangential, will be those of the first tangential to the point

x (y3 — zi} : y (z3 — x3)- z (a? — y3),
namely,

x (y3 - z3) {y3 (ze3 - z3)3 + z3 (x3 - y3)3} ∙.y(z3-x3) {z3 (y3 -xi)3 + xs(y3- s3)3}
: z (xs — y3) {zr3 (z3 — y3)3 + y3 (z3 — <r3)3},

and are of the order 16.
To find the co-ordinates of the point whose index is 5, we may take the 

connective of the one last found, and of x, y, z, that is, of 4 and 1. Let us
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call them xU, yV, 2 IF, and, for greater simplicity, denote a?, y3, z3, by u, v, w. 
Then, omitting the common factor xyz,

U = (y- w)2 (w — w)3 + w(u- v)3}2 
-(w-u)(u- ν') {w (y -u)3+u(y- w)3} ∖u(w -v)3 + v(w- u)3},

with similar quantities (mutatis mutandis) set against V and W.
These quantities will have the common measure 

U2 ψ v2 + w2 _ uv _ uw _ vw^

To prove this let either one of its factors, as u + pv + ρ2w, = 0.

Then v-u = p2(w-v) and u — w = p (w — v),
and the representative of U above written becomes

{(w — w)2 -(yv-u){u-∙y)} (w — v)8 = (y2 + w2 + u2 — vw — uw — uv) (w — v)s = 0. 
Hence the representative of U vanishes with, and therefore contains

u2 + v2+ w2— uv — uw — vw

as a factor, and the same must evidently be true for the representatives of 
V and W; hence, U, V, W, will be of the order 10 — 2 or 8, in ui v, w, and 
the co-ordinates xU, yV, zW, of the order 3.8 + 1, that is, of the order 25 
in xyz.

The preceding demonstration depends essentially on the fact that my 
simplified formulae for the co-ordinates of the connective of two points on a 
cubic fail, that is to say, become illusory, for a particular relation between the 
two points, as is easily seen; for let x,y,z∖ x, py, p2z be two points on a cubic, 
then the formulae for X, Y, Z, the connective’s co-ordinates, become

(py. ρ2z — yz) x2; (p2z. x — xzp2) y2∙, (x. py — xypi) z2,
that is, all vanish, whereas it may be remarked that the general expressions 
given at page [354],

JΓ = (y2yζ — yrf<r, + z2ζζ — zζ2x) + K (yzξ2 — ηζχ2)
Y = (z2ζη — zζ2y + x2ξη — xξ2y) + K (zxη2 — ζζy1)
Z = (x2ξζ - xζ2z + y2rfc - yη2z) + K (xyζ2 - ξηz2),

become the minors of
x2 py2 p2z2

<F~p)yz (l-p2)zx (p-l)xy;

that is, (p2 - p) x (y3 - z3), (p - 1) y (z3 - a?), (1 - p2) z O3 - y3),
which are the same as

tf(y3-23), p2y(z3-x3), pz(xP-y3),
and remain perfectly valid.
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This law of the failing case enables me to prove very easily the Law of 
Squares, as follows:

Suppose it proved that for all indices inferior to 67 the order of the 
derivative is equal to the square of its index; then, to prove that the same 
law is true up to 6 (7 + 1), it is only necessary to consider the cases of 67 + 1, 
67 + 5, for, as regards the indices Qi + 2 and Qi + 4, the derivatives may be 
regarded as the tangentials of the derivatives to indices 37 + 1 and 37 + 2, 
and will consequently be of the orders 4(37+l)2 and 4(37 + 2)2, that is, 
(67 + 2)2 and (67 + 4)2 respectively.

Let us further suppose that for derivatives whose indices are inferior to 
67 the co-ordinates are of the form xJ, yV, zW; U, V, W being quantics in 
x3, y3, z3; then, obviously, from the mode of forming the tangential, this will 
be true for derivatives whose indices are 67 + 2, Qi + 4: for the tangential to 
x U,yV,zW⅛

xU(p3V3 — z3W3), yTr(z3W3 — x3li3), zW (x3C3-y3V^3).

Let us consider the point (1) whose co-ordinates x, y, z satisfy the 
equation

a? + py3 + p2z3 — 0.
For such a point y3 - z3: z3 — a? : zc3 — y3:: 1 : p : p2,
and the point (2) becomes x, py, p2z. Consequently the point (4) becomes 
x (y3 — z3), py (z3 — ic3), p2z (x3 — y3), the same as x, p2y, pz; hence the point (5), 
the connective of (1, 4), becomes x (y3 — z3), py(z3 — ze3), p2z(x3 — y3), the same 
as x, p2y, pz, so that, denoting the derivatives by their indices,

5=4 7 = 1, 8 = 1, 1 = 2 10 = 2, 8 = 2,1 = 1 
11 = 4, 7 = 4, 2 = 2 13 = 2, 11 = 2, 2 = 4, etc.

We have, thus, for all values of the point i
97 ± 1, 2, ± 4 = 1, 2, 4,

when 1 is the point for which x3 + py3 + p2z3 = 0.

Hence, if p, p' be any two points for which p — p = 3, then p, p will be 
respectively identical with some two out of the three points 1, 2, 4. And it 
will at once be seen that the simplified formulae for the connective of any two 
of these three points become illusory.

Now the point Qi + 1 is the connective of 37 — 1 and 37 + 2, and the point 
67 + 5 is the connective of 37 + 1 and 37 + 4.

Hence, in each of these cases, the simplified formulae become illusory, that 
is, the expressions for each of the co-ordinates vanish when

x3 + y3 + z6 — χ3y3 — x3z3 — y3z3
vanishes, and must therefore contain it as a common measure. Moreover, the 
simplified formulae for the connective co-ordinates for the points xU,yV,zW;
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xU', yV,, z^W' will contain x2yz, y2zx, z2xy, and will therefore have the common 
measure xyz. Hence the values of the co-ordinates when freed from these 
common measures will be of the order in x, y, z, 2 (3⅛ — 1)2 + 2 (3⅛ + 2)2 — 9 
for the point Qi + 1, and 2 (3⅛ + 1)2 + 2 (3⅛ + 4)2 — 9 for the point 6⅛ + 5, that 
is (6⅛' + 1)2 and (6⅛ + 5)2 respectively, and will obviously continue to be 
quantics in zr3, y3, z3 multiplied by x, y, z respectively. Hence the theorem 
being true for index inferior to 6 is true universally.

It will be observed that any co-ordinate X of the point k must contain 
the X co-ordinate of the point k, where k' is any factor of k', for if k = δk, 
the point k may be obtained by forming the point δ to the point k', and it 
has been shown that the δ derivative to any point has co-ordinates which 
contain respectively those of the initial point. Consequently the X co­
ordinate to any point k may be resolved into factors containing a primitive 
part of the order τk (the totient of k') in the variables, and a non-primitive 
part containing the primitive part of each power of a prime contained in k, 
and with the exception of the single factor x all the others will be quantics 
in zr3, ys, z3'. and, of course, the same remark applies to the other two co­
ordinates Y and Z. We might obtain the point m↑n as the connective of 
m, n. In that case the simplified formulae would give expressions of the 
order 2 (m2 + n2) in x, y, z∖ and as the actual order of the co-ordinates in 
those variables is (ra ∣ n)2, it follows that when m — n ≡ 0, mod. 3, there will 
be a common measure (a symmetrical function of x, y, z) of the order (m — n)2, 
and when in + n ≡ 0, mod. 3, of the order (τn + n)2 running through those 
expressions, and it might be desirable to ascertain its form; but without 
waiting to solve this problem*, which is irrelevant to the matter in hand, 
I shall proceed at once to consider the derivatives corresponding to indices 
which are multiples of the number 3, to obtain which it is only necessary, as 
will be seen immediately, to combine one given point of inflexion with one 
arbitrary point of the curve. But, before doing so, it may be well to notice, 
that while the preceding investigation serves to show that the abridged 
formulae for the connective co-ordinates possess the common measure

xyz (x6 + y6 + z6 — x3y3 — x?z3 — y3z3),
it does not demonstrate categorically that there is no other; or that some 
power of the second factor above written other than the first might not be a 
common measure. Consequently, what we have strictly proved, as will be 
evident on reviewing the argument, is that the order to a derivative of the 
index 3⅛ + 1 cannot exceed the square of that index; but before I come to an 
end of the discussion I trust to be able to establish with Dirichletian rigour 
that the order is actually equal to the square of the index f.

* It is completely solved in the corollary to Title 5.
+ This anticipation (for it was only such when these words were written) will be found fully 

realised under Title 5.
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Title 2.—On the Completed or Continuously Numbered Scale of Rational
Derivatives to an Arbitrary Point on a Cubic, of which one Point of
Inflexion is given.

Let I be the given point of inflexion, and let any point (or system of 
points) and another point (or system of points respectively) collinear with 
the former in respect to I be called opposites. It is obvious that (J, I) = I, 
or that the inflexion is its own opposite. It will be convenient to denote 
the opposite to any point by the same index, but accented.

We have, then, obviously,
(p', p) = I∙, (p'), = p and (p', q)' = I, (p', q) = (I, I), (p,, q)

= (J> p,∖ (Λ 7) = (p, √)∙
Let (∕', 2) = 3; (J,, 5) = 6 ; and in general (∕', 3⅛ — 1) = 3⅛. This is matter 

of definition. Let,now, the infinite system 1, 2, 3, 4, 5, 6, 7 ... and its opposite 
be regarded as a single group. I say, (1), that this will be a closed group, 
in the sense that a straight line drawn through any two points (contiguous 
or apart) of this double chain will cut the cubic in a third point included in 
the group, (2), that the new points will be rational in respect to the co-ordinates 
of the initial point and the given point of inflexion, and, (3), that the order 
in the variables for every point, without regard to its relation to the 
modulus 3, will be, as before, the square of its index.

I proceed to show that the connective of any two points in the double 
chain may be expressed as a single point therein. Several cases present 
themselves according to the form of each of the two connected points in 
respect to the modulus 3, except when the indices are congruent in respect 
to that modulus.

When the residues (r, r'), in respect to that modulus, are dissimilar, the 
result will in general be different according as one of them (as r) belongs to 
the higher or lower index.

In what follows it is to be understood that i j.

Theorem 1. To prove that
3⅛ + l, (3y + l)'∣3∕-3i

and 3f + 2, (3? + 2)'= (3y - 3f)'.
[This will imply that

(3t + l)', 3∕ + l=(3J-8t)'
(3f + 2)', 3j + 2 = 3j-3ι.]

We have
3f + 1, (3j +1)' = (3Ϊ -1, 2), [(3j - 1)', 2'] = (2, 2'), [3t - 1, (3/ - 1)']

= (3t-1)', 3j — 1 = [(3⅛ — 2)', 1'], (3∕-2,1) = (1, 1'), [(3f-2)', 3y-2]
= 3f-2, (3y-2)'.

and
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Hence, 3⅛ + 1, (3y +1)' = 1, (3y - 3⅛ + 1)' = (1, 2), [(3> - 3t -1),, 2']
= (2, 2'), [1, (3j - 3f - 1)'] = 1', (3y - 3ι - 1) = 3y - 3i

and Si - 1, (3y -1)' = J, [3f - 2, (3y - 2)'] = (3j - 3f)'.

Theorem 2. To prove that
3i + l, (3j-l)' = (3i + 3j)'

and 3⅛ — 1, (3J +1)' = 3⅛ + 3J.

[This will imply that
(3⅛ + l)', 3J-l = 3i + 3J

and (3⅛ -1)', 3J + 1 = (3⅛ + 3J)'.]
We have 3»+ 1, (3j-l)' = 3⅛-l, 2; (3J + 1)', 2' = (3⅛-l)', 3J + 1

= [(3i - 2)', 1'], (3j + 2, 1) = Si - 2, (3j + 2)'.
Therefore, 3ι + l, (3J—1)'=1, (3J + Si — 1)' = (3⅛ + 3J)'
and 3⅛ - 1, (3j +1)' = I, [(3⅛ -1)', 3y +1] = 3f + 3j.

Collecting the results of these two theorems, we see that
3f±l, (3J +1)' = 3j + 3» = (3⅛ + 1)', 3y-l ) 

and 3i ± 1, (3>-l)' = (3y ± 3⅛), = (3f + 1)', 3J+1∫, v 7

so that, using p — q (where neither p nor q contains 3), to denote that one of 
the two numbers p + q, p ~ q, which is divisible by 3, (p, q') is always either 
p — q or (j9 -2∙ q}'. Also

3i + l, (3j)' = (3i-l, 2), [l,(3j-l)'] = (l,2), [3i-l, (3J-1)']
= (3j-3ly, 1 = (Γ, 3J —3ι + l), (2, l) = [(l',l),(3j-3i+l, 2)]
= (3J-3i-l)'ι

again 3i, (3j + 1)' = (3i -1, 1'), [(3j - 1)', 2'] = 1', (Sj - Si)’
= (1', 2'), [1, (3j - 3i -1)'] = (1, 1'), [(3; - 3i -1)', 2'] = 3j + 1 - Si;

and lastly Si, (3i +1)' = (3i -1, 1'), [(3i - 1)', 2'] = J, 1' = 1.

Hence, collecting the results, 3t, (3⅛ + 1)' = (3⅛ + 1) ~ 3i, whatever the relation 
of magnitude may be between i and ι.
Similarly, *

3Ϊ - 1, (3j)' = (3Ϊ + 1, 2), [1, (3j -1)'] = (1, 2), [3ι' + 1, (3; - 1)']
= 1, (3t + 3J)' = (3ι + 3j-l)'j

(3t)', 3y -1 = [(3ι - 1)', 1], (3J + 1, 2) = 1, (3f + 3j)' = (3f + 3J -1)'; 
and (3i)', 3f -1 = [(3⅛ - 1)', 1], (3⅛ + 1, 2) = 1, (6⅛'), = (6f - 1)'.
Hence, collecting the results, 3⅛- 1, (3i)' = (3i + 3i- 1)', and we have

3t, (3⅛ + 1)' = (3⅛ + 1) ~ 3i; (3t)', 3i + 1 ≈ [(3f + 1) ~ 3<∩ r
3t, (3⅛-l)' = 3⅛-l + 3ij (3√, 3i-l = (3i-l + 3√. ∫
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Also,

3i, 3ι-l = (3t-1, 1'), (3⅛-2, l) = (3t-l, 3t-2)'=[(3i-l)~3<∣')
3i, 3⅛ + 1 = (3t -1, 1'), (3⅛ + 2, 1) = (3t - 1, 3» + 2)' = (3t + 3⅛ + 1)'. j '

It remains only to determine the connectives of 3⅛, 3t and of 3⅛, (3j)' or 
(3ι)', 3J, which is easily done, for

3t, 3t = (3⅛-1, Γ), (3ι-l, 1,) = (1,, 1,), (3Ϊ-1, 3t-l) = 2', 3i + 3t-2,

Hence (by A) 3t, 3J = (3⅛ + 3J)' and consequently (3ι),, (3i)' = 3r + 3i.
Again

θ⅛ (¾) =(3⅛-1, 1'), [(3y-1)', 1] = (1, 1'), [3⅛-1, (3J —l)']=(by theorem A) 
Λ (3J — 3z)' = 3) - 3⅛'. Hence also 3J, (3⅛)' = (3J — 3ι)'.

These three results may be designated theorem C; and theorems A, B, 
B', C collectively prove that the original scale 1, 2, 4, 5, 7, 8 ..., which 
formed a closed system (so to say “group”), remains still closed when we 
complete it by insertion of multiples of 3, provided that we join on to the 
completed system 1, 2, 3, 4, 5, 6, 7 ... the opposite system 1', 2', 3', 4', 
5', 6', 7' ....

In every case it will be observed the connective of two indices (disregarding 
the accent) is either their sum or their difference.

The double scale may be formed by alternate addition of 1 and 1' in the 
manner following:

1,1=2 1',2 = 3 1,3 = 4' 1,, 4'= 5' 1,5,= 6' 1',6' = 7

1,7 = 8 1,, 8 = 9 1,9 = 10' 1', 10' = ll' 1, 11'=12'...

which gives the numbers 1, 2, 3, 4', 5', 6', 7, 8, 9, 10', 11', 12', etc.; and, in 
like manner, by interchanging 1, 1', we may obtain 1', 2', 3', 4, 5, 6, 7', 8', 9', 
10, 11, 12, etc.

The new points 3, 6, 9 ...; 3', 6,, 9' ... belong to the natural scales 
1, 2, 5 ...; 1', 2', 5' ... collectively and not respectively; and the accented 
and unaccented multiples of 3 might have had their significations inter­
changed without any impropriety. It is now necessary to extend the law 
of the order in the variables to these inserted points, and to prove that for 
them, as for the points in the natural scale, the order of any point, in the 
variables of the initial point, is the square of its index.

If the cubic be thrown into the canonical form zc3 + yi + zi + kxyz, the 
point a?=l, y = — 1, 2 = 0 may be taken to represent I, and if x, y, z be the 
initial point 1, the co-ordinates of 1' (the connective of 1 and I) become by 
the general formula yz, zx, z2, or, more simply, y, x, z.
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To find 3, then, we have to take the connective of y, x, z and x (y3 — z3), 
y (z3 — x3), z (a? — ys); its co-ordinates, accordingly, by the general formula, 
are

yz (z3 — ic3) (xt — y3) y2 — x3z (y3 — z3)2 
xz (zr3 — y3) (y3 — z3} x2 — y3z (zz — zc3)2 
xy (y3 — 23) (z3 — x3) z2 — yxz2 (ic3 — y3)2;

or, neglecting the common factor z, the co-ordinates of 3 are 
y3 (x3 — y3) (x3 — z3) + x3 {y3 — z3}2 
x3 (y3 — ic3) (y3 — z3) + y3 (z3 ~ λj8)2

and xyz (z3 — zc3) (z3 — y3) + xyz (x3 — y3)2;
or y3xf, + ∙z3y6 + a⅛6 — 3zc3y3∙z3

x3y3 + z3x3 + y3z? — 3x3y3z3
and xyz (z6 + y3 + x? — a?y3 — z3x3 — y3z3).

In the particular case where x3 + y3 + z3 = 0, these expressions (writing for 
greater brevity L, M, N^ for x3, y3, z3) become

ML2 -(L + M)M2 + L (L + M}2 + 2LM (L + M)
LM2 -(L + M) L2 +M(L + M)2 + 3LM (L + Jf) 

xyz [(Z + M)2 + L2 + M2 — LM + (L + 71∕)2]
or L3 + QL2M + ⅛LM2 - M3

M3 + QM2L + 3MZ2 - L3
3xyz (L2 + LM + M2);

which remain equally good, as co-ordinates of the point 3 to the initial 
point x, y, z, when the cubic is zr3 + y3 + Gz3, as is easily seen by writing 
C⅛ = ξ,. V

The point 3, it follows from what precedes, is of the order 9 in the 
variables x, y, z, and the same will be true for 3', which is obtained from 3 
by the interchange of x and y, but in order that these points may be 
arithmetically as well as algebraically rational, it is of course necessary that 
the given cubic may admit of being expressed under the form

j4λt3 + Ay3 + Gz3 + Kxyz, 
where A, C and K are integers.

Again, since 6 = 3', 3', 6 is the 2 of 3', and similarly 6' is the 2 of 3; 
since 9 = 3', 6' and 6' is the 2 of 3, 9 is the 3 of 3. So again, since 12 = 3', 9' 
and 9' is the 3 of 3', 12 is the (1, 3) of 3', that is, the 4' of 3' or 4 of 3; and 
similarly 12' is the 4 of 3'. So again,

15 = (3', 12') = (1, 4) of 3, = 5 of 3', and 15' = 5 of 3
18 = (3', 15') = (1, 5') of 3' = 6' of 3' = 6 of 3, and 18' = 6 of 3'
21 = (3', 18') = (1, 6) of 3' = 7' of 3' = 7 of 3, and 21' = 7 of 3'
24 = (3', 21') = (1, 7) of 3' = 8 of 3', and 24' = 8 of 3;
27 = (3', 24') = (1, 8') of 3'= 9' of 3'= 9 of 3 ....
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Hence, in general,

9⅛' + 3 = (3⅛' + 1) of 3; 9⅛' + 6 = (3⅛ + 2)' of 3; and 9i = 3⅛ of 3.
Consequently

35 (3⅛ + 1) = (3⅛ +1) of 3 of 3 of 3 ... (q times repeated), 
and 3? (3f + 2) — (3i + 2)' of 3 of 3 of 3 ... (q times repeated).

From this it follows, obviously, that 35 (3⅛ + 1) and [39(3f + 1)]' are each 
of the order [3® (3⅛ + 1)]2 in the variables, and thus the law of the squares 
extends to all points alike in the completed scale.

Title 3.—On Compound Derivation.

The object of what follows is to show that any derivative of a derivative 
has for its index (due regard being paid to the accents) the product of the 
numerical values of the indices of the operator and operand derivatives, that 
is to say, the ii ofjj==ijj', the mark of interrogation denoting either a blank 
or an accent, as the case may be. Thus, while connection involves addition 
or subtraction, composition involves a process of multiplication.

(1) Let us consider the i of J when neither i nor J contains 3. Then

3k + 1 of j = (2 of j), (3k — 1 of j) and 3k + 2 of j = (1 ofy), (3k + 1 of j).

Suppose the theorem proved up to 3k — 1. Then

3k + 1 of j = 2j, 3kj-j = (3^ +1) j 
3k + 2 of) =t), 3&) +j = (3k + 2)t).

Hence it is true up to 3 (k + 1)- 1, and, being true when k = 1 (since 1 
of j — j and 2 of j =j,j = 2)), it is true universally.

In like manner, since 1 of / =j, and 2 of j, = j', )' = I, (j, j) = (2))', it may 
be shown that i of j, = (ij),. Moreover

1' of J =j,, and therefore 2' of j = (Γ of )), (1' oft)) = )',∕ = 2/

and (3k + 1)' of j = (2' of j), [(3fc - 1/ of j]
(3k + 2)' of j = (1' of j), [(3fc + 1/ of J];

so that, if the equation ϊ of j = (ij), holds good up to i = 3k — 1,
(3k + 1)' of j = [(3fc + 1) j}', and (3k + 2)' of J = [(3k + 2))]';

so that the equation i' of j={ijy will hold good up to 3(& + l)—1, and, 
being true for k = 1, is true universally.

In like manner, since 1, of J' =t), it will follow that i' of )' = ij.

It remains to obtain the corresponding equations when are one or 
both of them multiples of 3.
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Since 3 of 3? = (3«, 3?), (3*)' = (2 .3?)', (3?)' = 3s+1,
9 of 3? = 3 of 3 of 3« = 3 of 3<*+1 = 3«+2,

27 of 3« = 3 of 9 of 3« = 3 of 3«+2 = 3?+3, and so on.
Hence 3p of 3’ = 3p+^.

Again, 3 of 3/ + 1 = (3j + 1, 3/ + 1), (3/ + 1)'
= 6J+2, (3/+ 1), = 9e∕ + 3 by A.

Hence 32 of 3/ + 1 = 3 of 9∕ + 3 = (18/ + 6)', (9/ + 3)' = 27t∕ + 9 by C,
33 of 3/ + 1 = 3 of 27/ + 9 = (54/ + 18)', (27/ + 9)' = 81/ + 27 by C,

and so on. Hence 3p of 3/ + 1 = 3p (3/ + 1).

Again, 3 of 3j + 2 = (3/ + 2, 3/ + 2), (3/ + 2)'

= θ∕ + 4, (3/ + 2), = (9/ + 6)' by A.
Hence 32 of 3t∕ + 2 = 3 of (9J + 6), = 18/ + 12, 9/ + 6 = (27J + 18)' by C, 
and so on. Hence 3p of 3J + 2 = [3p (3/ + 2)]'.

Again, 3/ + 1 of 3? = (2 of 3p), (3/ - 1 of 3p) = (3p, 3p), (3/ - 1 of 3p)
= (2.3*)', (3∕- 1 of 3p)

and 3/— 1 of 3p = (1 of 3p), (3/— 2 of 3p).
Suppose it true that 3/ — 2 of 3p= (3t∕ — 2) 3p for a certain value of ∕.

Then 3/— 1 of 3p = 3p, (3j — 2) 3p = [(3J — 1) 3p]'
and 3/ + 1 of 3* = (2.3p)', [(3∕ - 1) 3p]' = (3/ + 1) 3p.
But 1 of 3p = 1.3p} hence, for all values ofy,

3/ + 1 of 3p = (3/ + 1) 3p = 3p of 3/ + 1 

3/ - 1 of 3p = [(3t∕ - 1) 3p]' = 3p of 3/ - 1.
Hence, by the well-known method of successive transformation, we obtain 

the following results:
When neither m nor n contains 3, when both contain 3, and when one of 

them contains 3 and the other is of the form 3/ + 1, we have
m of n =n of m = m' of n' ≈ n' of m' = mn 
m of n = n' of m ≈m' of n — n of m' = (mn)'.

In the remaining case (namely when of m and n, one contains 3 and the 
other is of the form 3/ — 1), we have

m of n =n of m = m' of n' = n of m = (mri)' 
m of n, = n of m = m' of n ≈n of m' = mn.

This completes the algorithm of rational derivation.
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Title 4.— On Pertactile or Periodic Points on a Cubic Curve.

A pertactile point, or point of pluperfect tactility, on a general cubic is a 
point at which the cubic admits of a higher order of contact with another 
curve than is in general possible. Thus the points of inflexion are pertactile 
points, because a tangent at one of them will meet the curve in three con­
secutive points. The same is the case with Plticker’s twenty-seven points, 
because at each of them a conic of closest contact will pass through six 
consecutive points, the sixth point in which any conic passed through five 
consecutive points cuts the curve coinciding, in this case, with the point of 
contact. So, in general, a curve of the fth order can only be made to pass 
through 3⅛' — 1 consecutive points situated at P; but if the ¾th derivative of 
J* is a point of inflexion, then the 3fth point common to all curves of the fth 
order passing through 3f — 1 consecutive points at P will coincide with P, 
so that such curves will pass through 3f consecutive points, and P may 
accordingly be termed a point of pluperfect tactility, or more briefly, a 
pertactile point.

To prove that this is the case, it is necessary, in the first place, to prove 
that, at a general point P in the cubic, the 3⅛th point in which all curves of 
the fth order passing through 3⅛ — 1 consecutive points at P intersect the 
cubic, is the (3⅛-l)th derivative of P, which may be done inductively as 
follows:

Suppose P3i-1 is the residual of 3f — 1 consecutive points at P. To find 
the residual of 3i + 2 consecutive points there, we may combine 3⅛ — 1 giving 
the residual P3j-1, two more of them giving the residual P2, and one giving 
Q, R, any two points collinear with P. We then combine (P3i-ι, P2), (Q, P) 
and obtain P3i+1, P1 which gives P3i+2 as the required residual. Hence the 
theorem, being true for P2 (the residual of two consecutive points at P) and 
true for P3(i+1)-1 if true for P3i-1, is true universally.

If, now, the residual of 3⅛ — 1 points at P is to fall at P we must have 
Λ = Psi-1.

(1) Suppose i = ⅛k — 1, then P1, Pi-1 = Pt∙-1, P3t∙-1, that is Pl∙ = P2i∙
Hence Pi is a point of inflexion I, or, as we may express it, P is an fth 

sub-derivative of such point, or P = I1.
i

(2) Suppose i = ⅜k + 1, then P1, P2 = P2, P3i-1, that is P1 = P3i+1.

Hence P1, Pl∙+1 = Pf+1, P3t∙+1, that is Pi = P2l∙, and, as before, P = 71.
i

(3) Suppose i = 3k.

Then 1, (i — 1)' = (i — 1)', 3» — 1, that is i' = 2i = i', i,. Consequently i', 
and therefore also i, is a point of inflexion.
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Hence, as in the other two cases, P is an ¾th sub-derivative of a point of 
inflexion*, which may either be the point used to form the scale, or any of 
the eight other inflexions ∙f.

It may be well to notice here that whilst Pi, when i does not contain 3, 
is, as already shown, of the form xU, yV, zW, it follows from the law of 
compound derivation, since P3 is of the form R, S, xyz® (where R, 8, Θ, like 
U, V, W, are quantics in zc3, y3, z3) that Pi, when i is a multiple of 3 or any 
power of 3, will be of the form M, X, xyzΩ (where M, N, Ω are still quantics 
in zr3, y3, z3).

Calling X, Y, Z any fth derivative to xi + y3 + z3 + kxyz = 0, we must 
have X3 + Y3 + Z3 + kXYZ = 0 ; and, in order for such derivative to be a 
point of inflexion, it is necessary and sufficient that JΓ = O or F = 0 or Z = 0; 
combining these equations respectively with the given cubic, we shall obtain, 
in all, 3 times 3? or 9t2 points, sub-derivatives of the ⅛'th grade to one or 
other of the inflexions ; but out of these, whether i be or be not divisible by 
3, nine will correspond to x=0, y = 0, or z — 0 combined with the curve, 
that is, will be the points of inflexion themselves. Moreover, unless i be a 
prime number, it follows from the law of compound derivation, combined 
with the fact that x, y, z enter distributively or collectively into the derived 
co-ordinates X, Y, Z, that, if i' be any factor of i, and X', Y', Z' the 
co-ordinates of the ⅛,th derivative, Z will contain Z' and X, Y or F, X, will 
contain X', Y' respectively. There will thus be a primitive part to X, Y, Z 
which results from driving out all the factors corresponding to any factor 
of i (unity included), and, if we suppose i = aa .bβ . cy ..., the order of this 
primitive part in the variables x, y, z, it is easy to see, will be

α2(β-1) J,2(3-l) c2(y-1) _ {(α2-1)(δ2.1)(c2

which may be called the quadri-totient to i, and is the product of two factors, 
one the totient of i and the other what that totient becomes when + 1 is 
substituted throughout for — 1 in its expression, and which, if a name were 
needed for it, might be called the contra-totient.

The number of proper, or primitive, ⅛th sub-derivatives of any point of 
inflexion will thus be the quadri-totient of i (just as the number of primitive 
fth roots of unity is the totient), and the total number of pertactile points of 
the fth grade, 9 times the quadri-totient of i.

It is easy to see that the points corresponding to the non-primitive factors 
of X, Y, Z satisfy, but in an improper manner, the conditions of the question. 
For, if i’ is any sub-multiple of i ^say i' = and P' is an ⅛,th sub-derivative

* A sub-derivative of an inflexion may conveniently be termed a sub-inflexion.+ The above formulae show that i, i'=3i=3i'; hence 3i and 3i' coincide with the original point of inflexion, whereas i, i’, 2i, 2i' need not coincide with the original point of inflexion.
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of a point of inflexion, through P' may be drawn δ curves each of the order 
i' (constituting an improper curve of the order i∖ each passing through 3√ 
consecutive points, and consequently their ensemble passes through δ.3√or 
3ι' consecutive points. We have now obtained the generalization of the 
theorem of which the enumeration of the points of inflexion and Plticker’s 
points constitute the two first steps, and it is very easy to calculate the 
number of pertactile points N of any given grade i. Thus for

⅛ = 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11,12...
^=1, 3, 8, 12, 24, 24, 48, 48, 72, 72, 120, 96...

The calculation is facilitated by the remark that if i, j are prime to each 
other, the number of (ij)th sub-derivatives to any one point of inflexion is 
the product of the number of Ah by the number of Jth sub-derivatives; the 
quadritotient obeying the same law as the totient in this particular.

If i is the grade of the pertactile point P, so that P1 = P3i.1, then Pi 
is an inflexion, and P^ is I, the original inflexion. Moreover

Pi — Pi, Pi - P3i-1, P2 — P'3i+1

P2 = Pι, P1 = P1, P3i-ι = P8i-2 and also = P2, P4 = P3l∙-2, P4 = Psi+2 
Pi ~ P%> P2 P2> P31—2 ~ P31—4 and also = P2, P3i+2 — P3i+i> and so on.

And again, P'8 = P8, I = Ps, Psi = P'si+3, and therefore P3 = P3i+3; 
and Pÿi_3 = P 3{+3, Pθ = P 3, Pβ — P 3 whence P3 = P 34_i ;

P6 ~ P 3> 1 3 = P 3t+3> P 3l+8 ~ 6Ï+6 U∩d alsθ = P3i-3, P3i-3 = P si—6∙

Thus in general, P3r+1 = P3⅛<3r+1) ; P3r-1 = P3,∙±{3r-ι) 

and 13r = P 344-3r = P 34-3r∙

Thus the natural scale P1P2P4P5...
1+, ι÷, 1 (ΛP2P3P4PsP6...

and the completed scale )p'1p'2p'3p'ip'5p'β

are each of them periodic, the period of the indices being 3t. We may, 
accordingly, describe pertactile by the simpler name of periodic points. 
Every complete set of periodic points forms a closed system. By a complete 
set is to be understood the 9? sub-derivatives of the 9 points of inflexion, 
and by a closed system is to be understood one such that every connective 
and tangential of the points which it contains is itself a point of the system. 
According to what law such closed system may be resolved into partial 
closed systems must form the subject of further inquiry. When i = 2, the 
complete closed system of 36 points we know is resoluble into nine closed 
systems, each containing one point of inflexion and its three collinear anti- 
tangentials, and also, in four different ways, into three closed systems, each 
containing a collinear set of inflexions and their three sets of anti-tangentials.

24S. III.
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We are now in a position to solve the problem of in-and-exscribed 
^-laterals.

Suppose k = 3, then 23 + 1 = 3ι where i = 3, and the point P1 will coincide 
with the point P8, provided P3 is a point of inflexion. So that the apices of 
the in-and-exscribed triangles are the 81 points which satisfy the equation 
P3 = P'3, of which 9 will correspond to the points of inflexion and 72 
remaining over will give 24 finite triangles. If we denote by p, p', p" three 
consecutive points in a straight line at any point of inflexion, pp, p'p,,, p"p 
form an infinitesimal triangle degenerating into a straight line, and this 
furnishes an improper solution of the question.

Calling M, N, xyzΓt the co-ordinates of P3 when P1 =x, y, z, the 72 points 
are given by combining the equation MNΩ, = 0 with the equation to the 
curve.

If k = 4, we make 24 — 1 = 3i where i = 5, and if P1 = P3i-i, we have also 
Pi = P3t∙+1; and the apices of the quadrilateral are found by making Pi, that 
is Pβ, a point of inflexion.

The general form of Pi being xU, yV, zW, the proper sub-derivatives P5 
result from UVW = 0 combined with the equation to the cubic, and there 
result — 2γ—-∖ that is 54 in-and-exscribed quadrilaterals.

Each point of inflexion may still be regarded as yielding an improper 
solution of the question, since pp', pp", p"p, p'p may be viewed as a 
degenerate infinitesimal quadrilateral.

So when ½=5, making 2β + l=3t, i = ll; and there will result 
9(11’—1)
—— ------= 216 in-and-exscribed pentagons.o

27 -u 1 43a — 1
Likewise, since -— = 43, there result 9 —_—, that is 9.264 or 2376 

»5 ∙

in-and-exscribed heptagons.
Let us now consider a case of k a composite number, and to fix the ideas, 

2lβ + 1 . 216 + 1suppose k = 15. Make —jr— = t, then ι = 10923. —θ— , by virtue of its
23 + 1 25 + 1form, contains the factors —-— and ———, that is 3 and 11, and is in fact

equal to 3.11.331. P,∙ will therefore be of the form a∙i∕siZ11U, yV3VιxV
∙zWz3IΓπW (λjCZ8, yV3, zW3 corresponding to Ps, and xUn, yVu, zWn to P11).

Accordingly U, V, W will each be of the degree (3.11.331)s-3* — 112+1, 
and the equation UVW = 0, combined with the equation to the curve, will 
give the apices of the in-and-exscribed quindecagons, not including the 
improper solutions due to the points of inflexion, nor those due to the apices 
of the in-and-exscribed triangles or pentagons, which, in a certain but improper
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sense, each belong to the case of quindecagons. The number of apices of 
the proper quindecagons will therefore be 9 [(3.11.331)2 — 32 - 112 + 1], 
comprising sub-inflexions of several grades, as follows: 9(3312-1) of the 
331th grade, 9 (32 — 1)(112 — 1) of the 33rd grade, 9 ( 32 — 1)(3312 — 1) of the 
993rd grade, 9 (112 — 1) (3312 — 1) of the 3641th grade, and 9 (32 — 1) (112 — 1) 
(3312-1) of the 10923rd grade*. The above number of apices may be 
written 9 [112.32 (3312 — 1) + (32 — 1) (112 — 1)], so that the number of quin­
decagons is 9 [112.32.22.332 + 82].

It may be noticed that the primitive algebraical factor of 215+ 1, namely 
331, is a prime number. But the primitive part of 2fc-1 (k being even) 
or 2λ + 1 (k being odd), that is 2fc - 1 or 2fc + 1 stripped of its obligatory 
factors dependent algebraically on the prime factors of k, may be a composite 
number.

Thus, let us suppose k = 9, the problem being that of finding the nature 
29 + 1and number of the in-and-exscribed nonagons. Here ⅛ = —-— = 171, 29+ 1 o

having, besides the obligatory factor 23 + 1 due to its algebraical form, the 
two factors 3 and 19.

Taking each divisor of 171, namely 3, 9, 19, 57, 171, we see that the 
3rd, 9th, 19th, 57th, and I7lth sub-derivatives of the nine points of inflexion 
will each of them be an apex of an in-and-exscribed nonagon. Of these, the 
3rd sub-derivatives, and they only, give improper solutions of the problem, 
they being the apices of the in-and-exscribed triangles. Hence the aggregate 
of proper apices and the corresponding nonagons separate into four distinct 
groups, corresponding to the primitive sub-derivatives of the 9th, 19th, 57th, 
and 171th grades respectively, of the inflexions. The number of the nonagons 
belonging to the several groups will be the quadritotients of 9, 19, 57, 171, 
that is 92 — 9, 192 — 1, (192 — 1) (32 — 1), (92 — 9)(192 — 1) respectively, that is 
1712-9, exactly the same as if 57 had been a prime number Nt in which 
case the (37V)2 sub-derivatives of an inflexion of the grade 3Æ would be 
subject to the deduction of 9 — 1 for in-and-exscribed triangles, and 1 for 
the point itself.

To make more clear the distinct solutions of which the problem of in-and- 
exscription of a A>lateral in general admits, consider the case of k ≈ 8. Here

2s — 1 94 _ 1l = 2-3-l=l3-l(2<+l) = 8S.

The first factor (the one algebraically contained in i) is 5 and the 
primitive algebraical factor is 17. The total number of octagonal apices* It is obvious that any derivative of an inflexion is itself an inflexion. For instance, if J is an inflexion, J2 is the same as J, and J3 (namely, J', J∙2) is either J, J2, that is J, or (I, J), 
J2, that is, (I, J), J, that is, I (I being some other point of inflexion). Hence if Pi is an inflexion, Pi is also an inflexion. δ

24—2
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will be 9 (852 — 52), the number 52 corresponding to the points of inflexion 
and the in-and-exscribed quadrilaterals. These 2552 - 152 apices will consist 
of points of the form and I^r, the number of the former being 9(172- 1) 
and of the latter 9 (172 — 1) (152 — 1).

It is easily seen that, in general, the number of apices of in-and-exscribed 
∕2λ — lλ∖2^-laterals is nine times the functional totient of i —-—1 , or, what is the

same thing the number of apices is the functional totient of (2i — 1*)2, as 
previously stated in Note to Proem in the last number of the Journal* ; the 
number of ^’-laterals is, of course, the number of apices divided by k. For 
instance, we thus have for the number of apices of quindecagons, nonagons, 
and octagons, respectively,

(2lβ + I)» _ (23 + 1)2 - (25 + 1)2 + (21 + 1)2,
(29 + 1 )2 - (23 + 1 )2, (28 - 1 )2 - (24 - 1)2,

as found above.
Since i is odd, every divisor of i will necessarily be so too. Conversely, 

it is easy to prove that every odd sub-derivative of a point of inflexion is an 
apex of an in-and-exscribed polygon, and to determine the number of its 
sides. For let i, any odd number, be given, and let k be the least number 
which will satisfy the condition that 2k- lλ shall be a multiple of 3ι, then 
the sub-inflexions of the ιth grade will be the apices of an in-and-exscribed 
^--lateral. I give, in the annexed table, the values of k corresponding to a 
given value of i, which, of course, are unique ; whereas to a given value of k, 
in general, several values of i will correspond.

i 3 5 7 9 11 13 15 17 19 21 23 25 27
~k 3 4 6 9 5 12 12 8 9 6 22 20 27

to which may be subjoined the reciprocal table 
k = 3 i = 3
& = 4 i = 5
k ≈ 5 i = 11
k = 6 i = 7,21
k≈ Ί ι = 43
k = 8 i = 17, 85
k = 9 i= 9, 19, 57, 171
k =10 « = 31,341
Jfc=ll « = 683
Jfc = 12 « = 13, Γ5, 35, 39, 65, 91, 195, 273, 455, 1365.[* See p. 345 above.]
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To illustrate the way in which this table is formed, take the case of 
912 _ ι

A; =12; then —-— = 3.5.7 × 13 where 3 belongs to k = 3, 5 to k = 4, o
7 to k = 6; the values of i are found by taking the divisors of 1365, except 
those which are found set against &=3, k=⅛, k = Q, that is 3, 5, 7, 21.

The successive tangentials of any even-graded inflexional sub-derivative 
as 2¾', where i is odd, will evidently consist of a chain of q points attached to 
the ring formed by the apices of an in-and-exscribed polygon of k sides, where 
k is the least number which makes 2fc + 1 divisible by 3⅛.

2fc + 1In all cases (since k is to have the minimum value which makes — o
contain ⅛) 2k must be τ(3f) or a submultiple of it, so that, if i = 3qj, k is 
either 3⅛J or a submultiple of it; when i = 3q, since the cyclotomic functions 
of the first species γ3 2, χ32 2,... χ3β 2 can only contain the first power of the 
intrinsic divisor 3, it follows that k = 3q = i, as is seen in the table to be the 
case for i = 3, 9, 27; or, in other words, a 3?th sub-derivative of a point of 
inflexion is an apex of an in-and-exscribed polygon of 39 sides.

It may be as well to mention again here, by way of a remind, that the 
number of in-and-exscribed /^-laterals whose apices are ⅛th sub-derivatives 
of the inflexions, is always the ∕cth part of nine times the quadritotient of i; 
when i = 3q this number will be ~ — {32? — 329~2}, that is 3i+2 — 39, being thus 
24, 72, 216, etc., for triangles, nonagons, eikosiheptagons, etc.

Title 5.—An Exact Proof of the Scalar Law of Squares*.

I will now give an exact proof of the law that the order in the variables 
of Pn is n2 in regard to the co-ordinates of P, and furthermore that the co­
ordinates when i = 3m + 1 are of the form xU, yV, ^IF, and when i = 3m slyq 
of the form M, N, xyzΩ ∖ x,y, z being the co-ordinates of the primitive P1 
and Z7, V, W, M, N, Ω quantics in x3, y3, z3. Of course the order of a point 
means the order of its system of co-ordinates expressed in its lowest terms, 
that is to say when the values of the three co-ordinates have no common 
measure, and consequently the co-ordinates of any two of them are relatively 
prime in an algebraical sense, as follows from the equation

X3 + Y* + Z3 + kXYZ=Q.
The law to be established comprises, it will be seen, two elements,—one 

numerical, the rule of sqxιares; the other formal, containing two rules, one 
regarding the distribution of x, y, z between the co-ordinates, the other the 
quanticity of the parts not multiplied by x, y, z or xyz in respect to a?, y3, z3.

Let us suppose that the law is true up to n inclusive. I shall show that 
it is true up to 2n inclusive.

[* See below, p. 385. ]
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(1) For the case of 2z where i < n.
Let X, Y, Z be the system of co-ordinates to Pi in its lowest terms; then, 

by the law of compound derivation, P⅛ is

A(F3-Z3), F(Z3-A3), Z(A3-F3).
If these regarded as functions of X, Y, Z had any common measure X, Y 

or X, Z3 — X3 would have a common measure. Hence X, Y, Z would all 
have a common measure. Nor can they have any common factor F, a function 
of x, y, z. For in that case, when F = 0, we should have

F3 - Z3 = 0, Z3 - X3 = 0 or X3 = Y3 = Z3,
and the arbitrary parameter k would be —3.1^, so that the cubic would 
become a triplet of straight lines, a supposition which falls outside the pale 
of the question.

Hence P⅛ will be of four times the order of P<, and therefore, by 
hypothesis, of the order 4>i2, that is, (2t)a. Also, obviously, the form xU, 
yV, zW or Λf, X, xyzΩ (as the case may be) which exists for i is maintained 
for 2f, which is or is not divisible by 3 according as i is or is not so divisible.

(2) Let the index be any odd number less than 2n.
I shall first establish a Lemma concerning the co-ordinates given by my 

formulæ for the connectives of P, Q and P', Q, where P' is the opposite to P 
in respect to a given point of inflexion (say x =1, y ≈ — 1), andλγ, + ys + + kxyz = 0
is the equation to the cubic.

The connectives of (u, v, w) and of (υ, u, w')
(u', v, w') ( u', v', w,)

are represented respectively by
vwu2 — v'w'u2∖ [uwu, — v'w'v2 
wuv'2 — w'u,v2 ∙ and - wrFa — w'u'u2 
uvw'2 — u'v'w2) ∣vuttΛ — u'v'w2,

the 3rd co-ordinate being the same in both systems, which, of course, remain 
to be reduced to their simplest terms, being at present each of the order 
2ta + 2y'a.

I say that the same quantity F cannot divide each of the two sets of 
quantities when u, v, w; u', v,, w' are derivatives, one of an even, the other 
of an odd grade of the same point on the cubic.

For, if so, let F = 0 ; then each quantity in the two systems becomes zero. 

Cal1 ∞, ∞* ∞7∙ ⅛, r∙β'∙ r'∙ s' resPθctivθ,y∙
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Then (1)....... sr'2 — s'r2 = 0 rr'2 — s's2 ≈ 0....... (3)
(2)....... rs'2-r's2 = Q r'r2 — ss'2 = 0....... (4)

(δ)....... rs = r's'.

Writing r3 = R, s3 = S, r'3 = R', s'3 = S'; 5, (3, 4), (1, 2) respectively give 
RS = R'S', RR' = SS,, R'S = RS'. The second and third of these combined 
give R2 = S2, R'2 = S'2 and the first and second combined give R'2 = S2. 
Hence, R2 = R'2 = S2 = S'2, and consequently the original equations (1), (2),
(3) give S = S', R = R', R = S' or r3 = s? = r'3 = s'3.

Let r = as, r' = βs', s = <γs'. Then α3 = β3 = <γ3 = 1, and all the equations 
(1), (2), (3), (4), (5) will easily be found to be satisfied when (and only when) 
α = ∕3γ.

The equations r3 = s3, r'3 = s'3, that is, u3 = v3, u'3 ≈ υ'3, imply that the points 
P, Q are two either distinct or identical anti-tangentials to the same point 
of inflexion zc=l, y = —1. I say that this is impossible when P, Q are 
derivatives of the degrees i, j of the same point U on the curve, if i +j is an 
odd number. It must be noticed that P and Q (two Pliickerian points 
belonging to the same point of inflexion J) are identical with P' and Q' 
respectively.

Any even-degreed derivative of P or Q is I, and any odd-degreed 
derivative is the same point P or Q over again.

• Let now iμ-jv = l. Then U = Uiμ~jv will be (without regard to the 
modulus 3) the connective of δr,∙μ and Ujv, because we may substitute at will 
Ui' for U} and Uj for Uj. But Uiμ and Ujvj if μ, v be both odd, will be I7i 
and U^j over again, or if μ, v be one odd and the other even, will be I and one 
of the two Pliickerian points.

Hence U is the connective of I and a Pliickerian point, or else of two 
Pltickerians which are identical, or of two Pllickerians (both appurtenant 
to ∕) which are distinct.

In the 1st and 3rd cases, then, U is a Pliickerian, in the 2nd case a 
point of inflexion. But every derivative of a point of inflexion is a point 
of inflexion, and every even-degreed derivative of a Pliickerian is also a point 
of inflexion; but by hypothesis (since one of the two numbers ι, J is even) an 
even-degreed derivative of U is a Pliickerian, which is self-contradictory. 
Hence, it follows that the expressions given by vιy formulae for the con­
nectives of Pi, Pj and Pi', Pj when i + j is odd, say P, Q, R∖ P', Q', R’, 
cannot have a common factor; so that if M is a common measure of P, Q, R 
and M' of P', Q', R', M is relatively prime to M,.

Let φ, ∖fs∙, ω be always understood to mean φ (%3, y3, z3), γ (a?, y3, 23), 
ω(%3, y3, z3)∙, let (μ), (p) be understood to mean the prime systems of co­
ordinates u, v, w, u, v', w' which represent μ, v (μ and v being numbers,
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•accented or unaccented, representing derivatives to the indices μ and v); let 
[μ, p] represent the unreduced system of the co-ordinates of the connective 
of μ, v, namely, v'w'v? — υwu'2, w'u'v2 — wuv2, u!vw2 — uvw2; (μ, v) the above 
system reduced by elimination of the greatest common measure of its terms.

If (μ), (r) are each of the form xφ, yψ∙, zω, [∕ι, v∖ is of the form x2yzφ-i, 
xy2zφ∙ly xyz2ωλ, but ∖μ, v], that is, the unreduced connective of yφ, xφ, zω ; 
xφ', yφ', 2ω', is θf the form zφ1, zφ∙1, xyz2ω1.

Again, if (μ) is of the form xφ, y∙φ, zω and (v) of the form φ1, ψ1, xyzω1, 
[μ', r], the unreduced connective of the systems yφ, xφ, zω and φ1, -φ1,xyzωl, 
is easily seen to be of the form zxΦ, zyλV, z2Ω.

Furthermore, the order in the variables of (p') is obviously the same as 
that of (∕>).

Now it has been shown under Title 2 that 
6ι -1 = (3⅛ - 1),, 3i Gi-5≈ (3t- 3),, (3i- 2)' Gi-3 = (3i - 2)', 3i -1.

If, then, (3ι) and (3t — 3)* are of the form φ, ψ, xyzω, and (3t — 2), (3i — 1) 
each of the form xφ, y∙φ, zω, it follows that [6t — 1] and [6i — δ] will be of the 
form zxφ, zyφ-, z2ω, and [6ι - 3] of the form zφ, z∙φ, xyz2ω.

The above inference suffices to show that, if, for all values of 3μ + 1 and 
3μ up to n inclusive, it be true that (3∕χ ± 1) is of the form xφ, yφ^, zω and of 
the order (3μ, + 1)2, and (3μ) is of the form φ, ψ, xyzω and of the order (3/t)a; 
then the same will be true up to 2n inclusive.

That this is true for even values not exceeding 2n appears from what has 
been already shown. Confining, then, our attention to odd numbers less than 
2n; these must be representable by 6i— 5, Gi — 3 or 6i— 1, and by hypothesis 
the form of each of the systems (3ι), (3t—1), (3ι-2), (βi- 3) fulfils the 
conditions of the last paragraph but one; consequently the form of [fit — 5], 
[6i — 3], [6⅛- 1] will be zxφ, zy∙φ∙, z2ω ; zφ, zφ∙, xyz2ω ; zxφ, zy∙φ, z2ω, namely, 
in every case the factor z will be contained in each term of the system 
[(i-1)', i?], which represents an unreduced system of co-ordinates of the 
point 2t —1, the mark of interrogation signifying a blank or an accent as 
the case may be.

But either the point 1 or the point Γ will, in every case, correspond to 
the connective obtained by changing (t—1)' into t —l"f*; moreover, the un­
reduced system of co-ordinates to that connective will have the third term, 
say 7r, in common with the unreduced system to 2ι— 1 above mentioned.

7ΓThis contrary system we know must have the common factor — because 1* (3i - 3)' will obviously be of the same form as 3t - 3.+ For, on consulting Title 2, it will be found that in every case, if the arithmetical value of the index of Pi, Pi is t ±y, that of P∕, Pj∙ is (t φ_/)?.
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and 1' are denoted by x, y, s; y, x, z respectively. Hence the unreduced 
system for 2t — 1 can have no other common factor except z, which they have 
been shown to have; since, were it otherwise, the two contrary systems would 
have some quantity contained in j for a joint common measure, which has 
been proved to be impossible.

Hence, the form of (2z, — 1) is xφ, yy∣r, zω or φ, ψ, xyzω according as 2t — 1 
is not or is divisible by 3, and its order is in all cases 2 (ι — 1)2+ 2t2 — 1, 
that is, (2⅛-1)2.

Hence the form-law of distribution of the simple powers of the variables 
x, y, z and of the quanticity in xrs, ys, z3 of the multipliers of x, y, z or of 1, 1, 
xyz, as well as the numerical law that the order of any derivative is the 
square of its index, will be true up to 2?z inclusive if true up to n inclusive; 
and being true for n= 1, is true universally.

As a corollary we may now do away with the restriction of i +j being odd, 
and affirm that in all cases (the futile one of i=j alone excepted), if the 
reduced system of co-ordinates to the connective of Pl∙, Pj be F, G, H, and to 
that of Pi', Pj be F', G', H', then the unreduced system expressing those 
connectives given by my formulae of connection will be H'F, H'G, H,H; 
HF', HG', HPF, respectively; for the two systems of unreduced co-ordinates 
(each of the order 2⅛2+ 2J2) contain, one of them a common factor of the order 
(2? + 2j-) - (i — j)2, that is, (i+j)2, the other a common factor of the order 
(2⅛2+2J2)-(⅛'+y)2, that is, (i-j)2, and these two factors being prime to each 
other, their product must be contained in the term common to the two 
systems, and being of the same order (i+j)2 + (i-f)2 as that common term, 
must be equal to it.

Hence, if π be the common unreduced term, and Hr, H' the two reduced
terms, we must have 7r = X . -X> or ττ — HH', as was to be shown.

H 11

As a matter rather of curiosity than of real importance I will state the 
analogous law when the connective and cross-connective between two deriva­
tives is expressed by Cauchy’s formulae instead of my own. These formulae, 
it will be remembered, give for the co-ordinates of the connective of u, v, w; <m1, υ1, w1 the minor determinants of the matrix

vw1 — v1w; w1u — wu1∙, uv1- u1v 
uu1 ; υυ1 ; ww1

If, now, the prime system of co-ordinates to the connectives of Pi, Pj∙, Pi, Pj 
be denoted as before by F, G, H; F', G', H', I find by calculation that the 
Cauchian formulae will present these two systems under the unreduced forms 

(F' + G')F, (F' + G')G, (F, + G,')H
(P + G)F', (F + G)G', (F + G)H',

www.rcin.org.pl



378 On Certain Ternary Cubic-Form Equations [39

between which there is no common term; and consequently, had I not 
discovered my own simpler formulae, the method of proof of the Law of 
Squares which I have employed would have been inapplicable, and it is not 
easy to see what other strict method of proof could have taken its place.

I have thus accomplished the very difficult task of proving a negative, in 
this instance the non-existence of latent common factors to the co-ordinates 
of the connective of any two given derivatives. I might have founded a 
much easier proof of the Law of Squares upon Mr Franklin’s geometrical 
solution of the problem of finding the number of in-and-exscribed ^-laterals 
to a cubic (if one could feel quite assured a priori of the strict logic of the 
process*) as follows: He has virtually found (vide last number of the Journal) 
that the number of apices of the in-and-exscribed ^-laterals of every kind 
[and not excluding the points of inflexion] is (2k — lt)2. If, then, 2fc-l* = 3t, 
it follows from what has been shown in the preceding pages, that the order of 
Pi in the co-ordinates of P is ∣ (3t)2, that is, i3.

Let now i' be any number whatever, and τ the totient of 3t'; then τ is 
even, and, by Fermat’s Theorem, 2τ-lτ = 3i'ι".

Hence, if μ!, μ," are the orders of Pιt Pς> respectively, the law of compound
derivation will suffice to lead to the conclusion that μ'μ" will be the order of 

z ∕z
Pχ∙i", and accordingly μ!μf,≈i'ii"i ∖ but it has been proved under a

preceding Title, are neither of them greater than unity: hence each of them 
is equal to unity, and t'a is the order of P√, as was to be shown.

Addendum on the Degorder of the Derivatives to a Point 
on a Cubic in the Natural Scale.

Let n be any number not divisible by 3. The ?ith derivative, it has been 
proved, is of the order n2 in the variables. It remains to determine its degree 
in the coefficients.

When n = 2 we know that the degorder is [4; 4], each new co-ordinate 
being one of the minors of the rectangular matrix

dU dU dU
dx dy dz
dH dH dH
dx dy dz

where U is the cubic and H its Hessian.* In that solution the apices are found as the intersections of the cubic with another curve. Certain of these intersections are seen from geometrical considerations to count twice, and others three times; but while we have no reason to suppose any further cause of reduction, the non­existence of such cause is not proved.—F. F.
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Suppose v to be the degree in the coefficients of the nth derivative. Then 
the degree of the (2n)th derivative regarded as the second of the nth will be 
4r + 4, and regarded as the nth of the second will be n2.4 + v, and these two 
must be equal. Hence 3ι> = (w2 — 1) 4 or v = ∣ (n2 — 1).

Hence the degorder of any nth derivative in the natural scale is
—- ∙ ∙ ∙ ∙

——; n2 . If we substitute the co-ordinates of this derivative in the
L 3 J
given cubic U, the result must be of the form U.R and will be of the 
degorder [1 + 4n2 — 4 ; 3n2]. Hence R is of the degorder [4n2 — 4 ; 3n2 — 3]. 
If the well-known covariant of the degorder [12; 9] be called J, R is of the

n2-l
same degorder as J 3 , and possibly may be found to be identical with it. 
To corroborate the validity of the determination of the degorder of the nth 
derivative, we may proceed as follows :

Imagine, at first, the cubic to be reduced to the canonical form æ3 + y3 + ,σ3 — 3A,λu∕∙s,. The connective of P1, P2 in its reduced form is x, y, z∖ 
but in its unreduced form and prior to all simplification, will, by virtue of 
the theory (Titles 1 and 5), be of the form Mx, My, Mz where

M — x3y6 + y3zβ + z3x6 + xβys + y6z3 + z6xs — Qx3y3z3 
+ kxyz (#® + y3 + z3 — y3z3 — a?a? — apy3) * ;

consequently M expressed (as I shall hereafter suppose) in terms of the 
original coefficients and variables, will be of the degorder [9 ; 9] : for Mx, 
My, Mz are of the degorder [1 + 2.4; 2 (1 + 4)], that is, [9 ; 10] f. Also the 
degorder of Pi will be [4 + 4.4 ; 16], that is, [20 ; 16],

Suppose now we wish to find the degorder of Ps.

The unreduced connective of P1, Pi will be of the form MX, MY, MZ, 
where X, Y, Z are the reduced co-ordinates and 71f is exactly the same thing 
as before. The degorder of the unreduced co-ordinates will be [1 + 2.20; 
2 (1 + 16)], that is, [41 ; 34] ; and consequently, subtracting [9 ; 9], the
degorder of X, Y, Z will be [32 ; 25], that is, 4 & ; 52 .

o
So, again, to find P7 we may regard it as the connective of P2, Pi. The 

unreduced degorder of P7 will thus be seen to be [1 + 2 (4 + 32); 2 (4 + 25)], 
that is, [73; 58], and subtracting, as before, [9; 9], the degorder of the

* It is worthy of remark that, if we make Z7=0, so that 3kxyz becomes equal to x3 + y3 + z3, the expression in the text for ill gives 3il∕ equal to the norm of x + l^j∕ + l^, namely,(æ3 + y3 + z3)3 - 27a¾s23.
1 τ , . , . , . x Γ~fdU dH dU dH∖ d~]2 ττ .t In fact, ill, as may easily be shown, is the covariant y-⅛ . — - . J U, inother words the symmetrical determinant of the 5th order formed by double-bordering the Hessian matrix with the differential derivatives of the Hessian and of the original cubic.
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Γ 72 - 1 Ίreduced co-ordinates of Pr becomes [64 ; 49], that is, 4 —-— ; 72 , agree­
able to what has been previously found ; and so, in general, supposing the

T ( I θ ∖2
degrees of Pfl and Pμ+3 in the coefficients to be 4 — and 4 ------ θ------ ,

o ∙5

Î2 ·£ ∕ i ∖ 2 j λ
— ---- 1- ——------ >-, from

f 2u2 + 6/x + 4)which subtracting 9, the reduced degree becomes 8 j ---———- ,-, which is

the same thing as 4 ^*^ θ----- -∣, as ought to be the case. There is,

therefore, no loophole for doubt left open as regards the degorder of any 
natural derivative to the index k (a number necessarily of the form 3t ± 1) 
being [∣ (k^2 — 1) ; ⅛s], a notable result !

We are now in possession of a method for finding any natural derivative 
to the index n. If n is even, it may be derived immediately from the 
derivative to the index ~ . If n is odd, it must be of the form 2μ + 3 where 
∕± is not divisible by 3.

Taking P as the initial point, Pm and Pfi+3 may be considered as known. 
Calling their co-ordinates X, Γ, Z ; 2Γ1, F1, Z1 respectively, and substituting 
∖X + μX1, λlr + μY-i, ∖Z + μZx in the equation to the cubic, we shall obtain 
an equation of the form ∖2μB + \μ?(3 = 0. The unreduced co-ordinates of 
P2μ+3 will then be CX — BX1, CY — BY1, CZ — BZ1, which will contain a

,, „ +, , , rn ∏1 j CX-BX1 CY-BY1common measure M of the degorder [9 ; 9], and ----- --------» ----- γ∣----->
CZ — BZ---- —- will be the expression for the point P∙2μ+i in its simplest terms.

More generally, if n = 2μ + 3ι, we may obtain, in like manner as above, 
the unreduced co-ordinates of the connective to Pμ, Pμ+3i, and, by an easy 
calculation, it will be found that the new common measure will be of the 
degorder [12? —3; 9?], and will be constant, that is, independent of μ for 
any given value of i, and identical with the common measure to the un­
reduced co-ordinates of P3,∙+2 regarded as the connective to P and P2i+1.

It is well worthy of remark that if X, Ir, Z be the co-ordinates of any 
derivative, and ξ, η, ζ contragredient to zc, y, z, Xξ + Yη + Zξ will be an 
invariantive concomitant to the given cubic. This gives rise to a new series 
of reflexions, the development of which must be deferred to a more convenient 
occasion*.* It is obviously a step towards the attainment of the desideratum of finding the general expression for any derivative in an explicit form, or, at all events, by explicit processes and without the necessity for division of the unreduced co-ordinates by a common measure. This latter, it should be observed however, by virtue of what is stated above, is always known ά priori.
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CHAPTER I.

Excursus C.—On the Trisection and Quartisection of the Roots 
of Unity to a Prime-Number Index.

What follows, so far as it relates to the trisection of the primitive roots 
of unity, may be regarded as auxiliary to Postscriptum 2, [p. 345, above], 

inasmuch as it establishes the equation in ω which, when x = —-—,

becomes the equation there assumed. The rest is episodical, except so 
far as it may be regarded as correlative to the subject matter of Titles 1 
and 2 of Excursus A* [pp. 317 ff.].

It will be seen that the equations to a system of three and four periods, 
usually obtained by long and tedious processes, may, with the aid of one 
simple and well-known principle, be deduced by processes almost elementary 
in their character, and into which enter no algebraical calculations except of 
the very easiest kind.

A sketch of the method was laid by me before the Scientific Congress 
held at Rheims in the month of August last [p. 438, below].

The index p of the roots is, as usual, supposed to be a prime number; 
e is the number of the periods, f the number of roots whose sum forms a 
period, so that ef≈p- 1; the periods themselves will be called η, namely, 
Vι> ‰ ∙∙∙ Vt∙

Preliminaries.

1. I say, in the first place, that the sum of the fth powers of the periods 
will be congruous to — fl~1 in respect to the modulus p.

For, were it not that in the development of the fth power of any one of 
the η,s some of the combinations of the powers of the roots were unity, it is 
obvious that we should have ∑τyl = — e∕l ÷ (∕> — 1), that is, -ft~1, and that

we might regard every term in such development as equivalent to--------1,

without affecting this result. The existence of terms equal to unity will

render it necessary to substitute for any such term 1 instead of — ——- , in

order to obtain a correct result, and if there be N of them, the correction to
be introduced will be ivfl 4---- J, that is, .p; but as it is obvious

∖ p — li p — 1
that the result must be an integer, it follows that N must be double by* In any future redistribution of the contents of the entire memoir, it would be proper to incorporate the matter contained in Postscriptum 2, pp. [345—347], with this Excursus.
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{p- 1), and consequently the value of ∑77' to modulus p will be — fi~∖ that 

is, — - , as was to be shown.

2. From the above it follows that to modulus p,

Σ (eη + l)i≡(- l)i + e (- l)i-1 + e (- l)i"i + etc., ≡ (- 1 ÷ l)e ≡ 0,

or, in other words, ∑ (eη ÷1)* is divisible by p.

But, if Si and σi represent, respectively, the sum of the fary combinations 
and fary powers of the roots of an equation, we know that (—)¼ = coefficient

of xi in e 1 3 3 , so that st∙ multiplied by numbers none exceeding i, is
expressible as the sum of integer multiples of σκσμσr ... where

λ + ρ d^ v d^ ... = f.

3. Consequently, si multiplied by integers none greater than i, when the 
roots in question are the e values of eη + 1 and i > 0, will be divisible by p, 
and consequently, since e is less than p, all the coefficients of the equation to 
which those roots appertain will be divisible by p, the first, of course (which 
is unity), excepted.

Since ∑(βτ∕+ l) = e∑τ∕ + e = 0, the equation whose roots are ω1, ωs, ... we 
where ω = eη + 1 will be of the form ωe + Pωe~2 + Qωe~3 + etc., where P, Q, 
etc., each contain p ; and I may remark, incidentally (although the ‰ct is 
immaterial to the object in view), that, as may easily be seen, ∑ωi will be 
divisible not only by p but also by e, and that consequently the coefficient 
of ωe~i, in the above equation, will contain the greatest common divisor to 
e and i.

4. The coefficient P has one or the other of two determinate algebraical
. p — 1 .

values according as fi that is, —-— , is even or odd.

In the former case, the congruence of + 1 ≡ 0 [mod jo] is soluble, and in 
the latter, insoluble. Accordingly, in the latter case, we shall have ∑p2=- f, 
and in the former '∑η3 = p-f, and in each case -rf will be an odd number. 
Also, when f is odd (which involves the necessity of e being even)

∑ω2 = ∑ {eη + 1)2 = — e2 -—- — 2e + e = — eρ, c

and when f is even ∑ω2 will be this result augmented by erp, that is, 
(e2- e)p.

β β2 — β
Consequently, P = %p, oτ =----- y— p, according as f is odd or even.
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Thus, when e = 3, f being necessarily even, P = — 3jp, and when e = 4, 

P = — 6jp, or = 2p, according as 7 ■ is even or odd*.

5. With regard to what immediately follows it will also be necessary to 
determine the form of Q in respect to certain moduli for the cases of e equal 
to 3 and e equal to 4. In the former case

Xω3 = X (eη + 1)3 = X (e3?/3 + 3e2τy2 + 3eτ∕ + 1) ≡ 3 mod 9, 
and consequently, since Q = — ⅜Xω3, — 3Q ≡ 3 mod 9 and — Q ≡ 1 mod 3.

In the latter case, that is, when e==4, since X772 is always odd Xω3 [to 
mod 32] ≡ 16 — 12+4, that is, ≡ 8, and, consequently, — 3Q≡8 to that 
modulus.

These preliminaries being established, I will now proceed to state the 
principle referred to in the exordium.

Principle.

A rational integer function of any set of periods of the roots of unity 
whose coefficients are all whole numbers, which does not change its value 
for a circular substitution executed upon the periods, it is well-known, must 
be an integer number; but to this I add that if such function, without 
changing its arithmetical value, undergoes a change of sign when such a 
substitution is made, it must necessarily be an integer number multiplied by 
the difference of the two periods into which the entire sum of the roots may 
be divided, that is to say, will be a multiple of √p, when p is of the form 
4K + 1 and of √(- p∖ when p is of the form 4K — If.

As an example, the product of the differences of the roots of the equation 
in η will be an integer number when e, the number of the periods, is odd, 

and an integer number multiple of √jp or √(-py) (according as ■ is even

or odd), when the number of periods is even. As another example, if e= 2e, 
the function

(Vo ~ V.) (77ι - Ve+ι) (% - Vt+2) - ∙ ∙ (ηt-ι - V2t~1), 
which changes its sign but not its quantitative value, when 0, 1, 2, 3, ... 
(2e — 1) are replaced by 1, 2, 3, ... — 1, 0 will be an integer multiple of √p, 
or of √(-jp), according as e is even or odd.* When e = 2, P=p or -p according as f is odd or even, so that the equation in ω takes the known form ωa÷p = 0.t To put the matter more clearly, call the alternating function F and the difference spoken of Δ. Then ΔJF is invariable in sign as well as in magnitude for the circular substitutions in question. Hence but F'i is an Integer ; therefore F=An Integer √(⅛)∙ q.e.d.
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We are now in a position to obtain without difficulty the well-known 
equivalent to the equation corresponding to e = 3, given at p. [34δ], and the 
corresponding pair of equations for the case of e = 4.

A. Case of e≈'3.

The equation in ω, from what has been shown in the preliminaries, must 
be of the form ω3 — 3ρx + pq = O, and it only remains to determine q.

The discriminant of the above equation being q2p2 — 4<ρ3, it follows that 
the product of the differences of its roots will be 27 (4p3 — q2p2). But this 
product is 36 into fη0 — ηl)2 (η0 — tj2)2 (77ι - rh)∖ which latter, by the principle, 
is of the form Jfa. We have, therefore,

4p3 — q2pi ≈ 27M2 = 27m2ρ2.

Hence, 4p = q2 + 27ra2,

which serves to determine the value of q2 absolutely.

To find the value of q, it follows from the preliminaries that qp ≡- 1 mod 3, 
and, consequently, since p ≡ 1 mod 3, q ≡ — 1 mod 3, so that q is perfectly 
determined.

B. Case of e = 4.

ω2 — 2 √joω + R = 0, ω2 + 2 fpω + R' = 0, will be the form of the equations 
containing, respectively, the pairs of roots ω0, ωa and ω1, ω3; for

ω0 + ωa = (4τ∕0 + 1) + (4τ∕a + 1) = 2 {2 (770 + η3) + 1} = 2 (2δ0 + 1), 
and, similarly,

ω1 + ω3= 2 {2 (η-i + 773) + 1} = 2(2δ1 + 1)
where δ0 and δ1 are the two periods which make up together the sum of all 
the roots, so that 2δ0+ 1 and 2δ1 + 1 are the roots of the equation Ω2- p = 0,

17 1 ∙the sign of the last term being fixed from the fact of y being by hypothesis 
even.

Furthermore, R, R' must be of the form Ap + B fp, Ap — Bfp; for 
(R — R') fp, being integer, requires that R, R' shall be of the form 
Aλ + Bfρi Aλ-Bfρ, and then RR, being an integer multiple of p in­
volves the necessity of A12, and therefore of A1 containing p.

The product fη0 — η2) (τ∣1 — η3) consequently becomes 
{(A -l)p + Bfp} {(A -l)p- Bfp},

which by the principle must be of the form m2p, and consequently,
(A — l)2^j — B2 = C2 or (A — 1)2p = B2 + C2.
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The coefficient of ω2 becomes — 4p + 2Ap which, by the preliminaries, 
when is even must be equal to - 6p, so that A = — 1, and when
is odd must be equal to 2p, so that A = 3.

In each case, therefore, (A - 1)2 = 4 and 4p = B2 + C2; consequently, if 
p = g2 + h2, 4g2 ~ B2, and 4Λ2 = C, and the complete equation in ω containing
the roots ω0, ω1, ω2, ω3, becomes (ω2-p)2-4p(ω + #)2 = 0 when i— is even

4

and (ω2 + 3p)2 — 4p (ω + g)2 = 0 when 7 - is odd. In either case g2 is given,

but the sign of g requires to be determined; alike, however, for one case as 
for the other, — 8pg being the 3rd coefficient after the first, we must have, 
as shown in the preliminaries, 24p# ≡ 8 [mod 32], and consequently, since p 
is of the form 4K + 1, 24# ≡ 8 [mod 32]. Hence, 3# ≡ 1 [mod 4], that is, 
g ≡ — 1 [mod 4], which gives the required complete determination of g.

The quartisecting equations thus naturally arrived at are expressed in the 
form in which, according to Bachmann (Kreistheilung, p. 230), they were first 
presented by Lebesgue; the method here given for finding the equations 
for the trisection and quartisection of the roots of unity will be found on 
examination to be incomparably simpler, shorter, and more direct than any 
in common use, and as removing a serious stumbling-block from the path of 
the student, and, occurring, so far as regards trisection, in the natural course 
of the development of my subject, I have thought entitled to a place in this 
memoir. Why I require the trisecting equation is, as will be remembered, 
to enable me to obtain the conditions of 2 and of 3 being cubic residues to a 
given index. The condition for 2 being such, strange to say, is nowhere to be 
found in Bachmann’s Kreistheilung, although the cubic character of 3 is there 
duly and fully made out.

The conditions of the one and of the other being cubic residues were, 
I am informed by M. Lucas, given for the first time in a letter from Gauss 
to Mile. Sophie Germain.

Excursus B.

Title 5 (bis).—On the Law of Squares.

There being errors and inaccuracies not a few in the matter printed under 
this title, owing to my absence abroad as it went through the press, I have 
thought it desirable to rewrite it, rectifying the errors, and supplying some 
steps which were wanting in the demonstrations*. I shall, in what follows,* In the postscript [p. 378 above] which was thought out on hoard the transatlantic steamer, the Bothnia, and written out, as far as I can recollect, at a single sitting a day or two before 

25s. π.
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386 On Certain Ternary Cubic-Form Equations [39

use throughout Pi to denote the ith derivative of P, and xi, yi, zi to signify 
the reduced coordinates of Pi, so that Pλ, x1, y1, z1 will mean the same as 
P, x, y, z respectively, x + y ≈Q, z = 0 will be taken as the auxiliary point 
of inflexion, serving to complete the scale, and will be called I. In the 
natural scale it is easy to see that any derived co-ordinate, as zi, must containposting it at Queenstown, I have not been able to detect any inaccuracy in the results, although some additional steps and explanations might advantageously have been supplied.There is, perhaps, one slight exception to be made to this statement as regards the very impor­tant theorem, stated but not proved [p. 380], concerning the nature of the form Xξ+Yη + Zζ, where the coefficients of ξ, η, f are supposed to be the reduced co-ordinates of any derivative to x, y, z. If f∕=0 is the equation to the cubic in its general form, obviously X, Γ, Z are indeterminate, as each may be augmented by an arbitrary multiple of U of suitable degree and order. Consequently, the theorem ought to have been stated in the following form. The co-ordinates X, Y, Z of any such derivative may be so expressed that Xξ+Yη+ Z£ shall be a mixed concomitant to U. The fundamental invariantive concomitants to a ternary cubic involving not more than one system of cogredients and a single linear system of contragredients are eleven in number and of the types underwritten : 4.0.0 4.4.16.0.0 5.4.11.3.0 7.4.13.3.0 9.7.18.6.0 11 . 7 . 112 . 9 . 0Hence the co-ordinates of every rational derivative in the natural scale to a point on a cubic curve may be expressed as the coefficients of the contragredient variables in a rational integer function of the above eleven quantities, linear in the latter five, and such that its degree and4 (n2 -1)orders for the nth grade are —θ—- ; n2, 1.The particular forms of X, Y, Z which appertain to the concomitant X£+ Yη + Zf, and which may be called the normal forms, it may be added, are those which actually arise from the processes of colligation and reduction described in the excursus. By colligation I mean the determination of the general analytical connective of x, y, z ; x', y', z, by the same method as that applied at pages [354,355] to the canonical quadrinomial form of the cubic. The co-ordinates of such connective are absolutely determinate, inasmuch as the equation which each set of co-ordinates must satisfy is of the order 3, whereas the co-ordinates in question are of the second order only in each set of variables (and of course of the first degree in the coefficients of the cubic). By reduction I mean that when in the co-ordinates of the general connective for 
x, y, z ; x,, y,, z' are substituted the normal forms of the co-ordinates for derivatives of the grades 
μ, μ+3i, their common factor of the degorder (12i2-3, 9i2) is to be cast out.This common factor, it may be noticed, is always a covariant of the cubic. When i= 1, it is seen a posteriori that this is the case, for its value is expressible (see footnote, p. [379]) under the form of a known covariant, say θ (which was obtained by means of using the canonical form of the cubic) ; that it must be true for all values of i may be deduced from the general algebraical theorem that if in a covariant to any given form, in place of the variables x, y, z be substituted
— dΩ dΩ, wjιerθ q jg a invaria∏tive concomitant to such form, and £, η, f are contragredient d£ dη dξto x, y, z, the resulting expression will be itself an invariantive concomitant. To obtain now the reducing factor for the connective to Pμ, Pμ+3i (P∙ [380] ) it is only necessary to substitute in θ xi> Viι zi (*hθ n°1'mal co-ordinates of the ith derivative) in lieu of x, y, z where xiξ + yiη + zi^ is known to be an invariantive concomitant to the cubic. Hence, by the algebraical theorem above stated, the corresponding reducing factor (not containing £, η, f) is necessarily a covariant to the cubic, as was to be shown.
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39] On Certain Ternary Cubic-Form Equations 387

the original one, as z. For when z ≈ 0, P will be a point of inflexion and 
Pi identical with P, hence (a⅛, yi, zi) will express the same point of inflexion, 
and consequently zi = 0 ; hence Zi must contain z. When we leave the rational 
scale, so that i is a multiple of 3, z must contain xyz. For when z = 0, 
the ⅛th derivative P will be one of the three points I, Γ, 1", expressed by 
z = 0, a? + y3 = 0. If P is I, P3 is obviously I; if P is I,, P2 is 1,, and Pi 
will be the connective of P2 and I"; consequently P3 is I and z = 0, and the 
same will be the case if P is I”; hence z3 contains z.

Again, if y = 0, P will be some inflexion P, and the connective to I, 
J being called K, P3 will be the connective of J, K, that is I, as before ∙ 
hence z3 will contain y, and in like manner it will contain x. Also, since 
in each case P3 is I, every derivative of P3 will be I; hence, when xyz = 0, 
z3v becomes 0; consequently zi (if ⅛ is a multiple of 3) contains xyz.

Again, if χi, yi, zi are the reduced co-ordinates of Pi, I say that λ⅛(2∕⅛3 — ⅞8)i yi(zi ~ χP)', %i(χi — yP) will be the reduced co-ordinates of 
χ∙zi > y⅛ > z⅛ ∙

For, if possible, let two of the above co-ordinates have a common factor 
F; then, since xi, yi, zi have no common factor, xf — yi, yi — zi3 have a 
common factor, and when F = 0, xf = yi3 — zi3; but xi3 + yi3 + zi3 + KxiyiZi = 0. 
Hence, unless xi3 = y£ = zi3 = 0, we must have 3 + γzlK = 0, but K is arbitrary. 
Hence, F must be contained in a?;, yi, Zi contrary to hypothesis.

Although it is a consequence of a general law* that zi cannot contain z2, 
for present purposes it will be sufficient to establish that zi cannot, for each 
of two consecutive values of ⅛, contain z2. Thus, suppose ¾~1 and ¾ each 
contained z2, then, because ¾ contains z2, zi must do so too; since, otherwise, 
Xi3 — yf must contain z. If that is possible, let z = 0; then xi3 — yi3 = 0 ; but 
P, and therefore Pi, becomes an inflexion, whereas xi3 = yi3 is the necessary 
and sufficient condition that Pi is a Pluckerian point, which is self-contradictory. 
But since Zi contains z2, z^1 must also contain z2, for ¾-1 will be contained

(see p. [374]) in -(⅜∙yιA,-ι — χi→yi→zf), and therefore, if zi~1 does not contain £
z2, z must be contained in xi or yi, which is impossible. In like manner, 
if z2 is contained in ¾, ¾+ι> it will be contained also in Z{ and zi+1. Hence 
it would be contained eventually in z, which is absurd.

Again, it may be shown that z will be the only common measure to zi~1 
and Zi. For, if possible, let them have any other common measure F, and 
let F become zero. Then Pi~1 and Pi both become points of inflexion belonging 
to the system previously designated as I, 1', I", and by a collineation process* The law is that xi .yi. zi xiyizi, cannot for any value of i contain a square algebraical factor, just as, and en derniere analyse for the same general kind of reason, the binomial exponential (αi + δi) can contain no such factor.

25—2
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388 On Certain Ternary Cubic-Form Equations [39

performed on these points alone or combined with I, P may be obtained. 
Hence P belongs to the same system of inflexions, that is z = 0. Hence 
F would be contained in a power of z, contrary to hypothesis.

I will now show that if the two systems of unreduced co-ordinates 
obtained by the colligation of

a⅛-1> yι→> zi-j £ (yi-ι> a'i-ι> zi-ι 

∙zi y Vi t zi J la∙⅛ > yi > zi

be called F, G, H ; F', G', H ; respectively, the terms F, G, H ', F', G', H 
can have no other measure common to all four than z, or, in other and more 
precise terms, z is the greatest common measure to the greatest common 
measures of F, G, H and of F', G', PL For brevity call the two sets of 
co-ordinates of Pi~1 and Pi, u, v, w ; u', v', w' respectively. Then the unreduced 
co-ordinates in question will be (p. [374])

F = vwu2 — v'w'u2 uwu'2 — u'w'υ2 = F'
G = wuv'2 — w'u'v2 - and - wvv'2 — w vu2 = G' 
p[ = uvw'2 — uv'w- ∖vuw'2 — v'u!w2 = H

into each of which z necessarily enters as a factor, because w, w' have been 
proved each to contain z.

(u, v, it will be observed, cannot have a common factor, for then u, v, w 
would have a common factor contrary to hypothesis; and, in like manner, 
w', v' can have no common factor.)

I say, in the first place, that no indecomposable function of x, y, z, say M, 
not contained either in w or in w', can be common to F, G, F', G,. For, 

if so, let F vanish ; then, calling > » r> s ’ r> s' rθsPθctively,
we have

(1) sr'2 — s'r2 = 0, (3) rr'2-s's2 = 0,
(2) rs2 — r's2 = 0, (4) r'r2 — ss'2 = 0.

Now, none of the terms r, s, r', s' can vanish : for example r cannot vanish, 
for, if so, from (1) it would follow that s = 0, or r' = 0, and from (3) that 
s = 0, or s' = 0, so that either r = 0 and s = 0, or r' = 0 and s' = 0, that is 
the general values of u and v or of w, and v' must have a common factor M, 
which is impossible. Hence, combining (1) and (2) or (3) and (4), we derive 
rs = r,s' (o), as might also be obtained immediately by equating to zero the 
term common to the two systems above.

From (δ), from (3) and (4), and from (1) and (2) we obtain respectively
ÿ»3 g3 — ^∙,3 —— ^3 ^*,3^3 —— ^-»3^^3

the second and third of which are equivalent to r6 = s6, r'β = s'6, and the first 
and second combined give ?·'6 = s6. Hence r6 = 7,'β = sβ = s'6, and consequently 
the original equations (1), (2), (3) give rs = s3 = r'3 ≈ s'3.

www.rcin.org.pl



39] On Certain Ternary Cubic-Form Equations 389

The equations r3 = s3, r'3 = s'3 imply that Pι-1, Pi are each of them distinct 
or identical antitangentials to one of the points of inflexion corresponding to 
z = Q, that is are each of them a Pluckerian point on the cubic, and P or 
(P, 7) will be a residual either to P⅛-1, Pi or to (Pi-1, T), F where I is the 
auxiliary inflexion used to complete the scale. Hence P is either a Pluckerian 
or an inflexion point, and in either case P2 will necessarily be an inflexion. 
Hence one at least of the derivatives Pt∙-1, P⅛ is an inflexion, but each is a 
Pluckerian, which is absurd.

Thus M (an irresoluble factor common to F, G, F', G') must be contained 
either in w or in w'. Suppose it is not z and is contained in w, then it 
cannot be contained in w', for w, w' have no common measure except z, and 
consequently when M = 0, v,u2 — 0, u!v2- 0, vv2 = 0, and u'u2 = 0, and either 
u and v or u' and v, each become zero, which is impossible seeing that neither 
the general values of w, v nor those of u', v can have any common factor. In 
like manner, it follows that M cannot be contained in w'. Consequently, the 
two systems P, G, H; F', G', H can have no other common measure, except 
some power of z.

Finally, I say that the only common measure in question is z itself.
(1) Suppose it were possible (which it is not) that one of the two 
terms w or w (say w) contains z2, then it has been proved that 
the other (w,) cannot contain z2. Hence, if wvv'2 — w'u'u2 contains z2, u 
or u' must contain z, and in like manner, if w' and not w contained 
z, v or v, must contain z, none of which suppositions are admissible.
(2) Suppose that neither w nor w' contains z2. Then writing w = ωz,

r z 
ΙJb fl) Zb Z)w' = ω'z, and writing for —, — ; —7, —„ r, s; r', s' respectively, we shall obtain σ ω ω ω ω j

over again, as before, r3 = s3, r'3 = s'3, indicating as before that Pl∙~1 and Pi are 
each of them Pliickerian points when z = 0, that is, when P is a point of 
inflexion, which is doubly absurd. Hence it follows that the common 
measures of P, G, H and of P,, G', H have the common measure z, and no 
other,

We are now in a position to prove the law of squares. Suppose it is true 
for P;_! and Pi, I say it will be true for P2i-ι∙ For consider the connectives 
of

xi-1» ,Vi-1, zi-1] a∩d θ£ Jy⅛-1> a⅛-1> zi-1 
, Vi ,zi ) \?i , Vi , zi

as expressed by the formulas above employed. Let z2Ω be the third term 
common to the unreduced systems of co-ordinates. J

Allowing (as is the fact) that Ω does not contain z, the reducing factor 
common to the unreduced co-ordinates of P (or it may be its opposite in
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respect to ∕) must be sΩ, and consequently to the other system correspond­
ing to P⅛--i or its opposite, can only be z or zi∖ but the latter is impossible, 
for then ¾~1 would not contain z.

Again, if Ω could be conceived equal to ^Ω1, the reducing factor for P 
or its opposite would be ^1+Ω1, and consequently that for P2i-ι or its 
opposite could not be 22 and would be z as before. Hence the order of P2i-1 
in the variables is necessarily 2 (i — 1)2 + 2i2 — 1, that is, 4t2-4t+l or 
(2t-l)2.

Moreover, it has been shown that if Xi, yi, Zi are the reduced co-ordinates 
for Pi, xi(yi3-zi3∖ yi(zi3-xi3), zi(xi3-yis) are such for P2i, and consequently, 
if the law is true for i, it is true for 2i. Hence, being true for 1, it is true 
for 2, and therefore for 3, and therefore for 4 and 5 and 6, and therefore for 
3 + 4, that is, 7, and for 2.4, that is, 8, and for 4 + 5, that is, 9, and for 2.5, 
that is, 10, and so on for every number, as was to be proved*. Thus, this 
negative proposition, as I have termed it (p. [356]), is completely established. 
There remains to prove the important proposition contained (but incorrectly 
proved) on p. [377], to wit, that the unreduced systems of co-ordinates 
arising from the colligation of

(¾> y<, zι)∖ d f ∫(2∕ι, a⅛, zi}
(xj,yj,zj)i αθ ↑(xj,yj,zj)

will be of the forms LN', MN,, NN,∖ L,N, M'N, N,N, where L, M, N∙ 
L,, M', N' are the reduced systems of the co-ordinates of the connectives of 
Pi, Pj, and Pi,, Pj respectively.

To illustrate this proposition by an example, consider the connectives of 
P', P3, that is, P2 and of P, P3, that is, Pi.

z3 is z (y3 — rc3) and zi is of the form z (y3 — x?) Ω, where Ω is of the order 
12 in the variables.

Call X4, Γ4, Z4 the unreduced co-ordinates arising from the colligation of 
P, P3. Suppose x3 — y3 to become zero, then P becomes a Pltickerian, and P3 
will be also such, namely, one of the nine appertaining to the inflexions given 
by 2=0f. Hence x3-y3 becomes zero. Now X4, Y4 represent yzx^-y3z3xi,* In other words, if the theorem is true up to i inclusive, any number between i +1 and 2i inclusive is either of the form 2j or 2j - 1, where j does not exceed i ; and being true for j, it is true for 2j, and being true for j - 1 and j, it is true for 2j - 1. Hence, if true up to i it is true up to 2i, but it is true for i = l and therefore for all values of i. q.e. d.+ The nine points of inflexion on a cubic curve form a closed group, but so also do any three of them which lie in a right line, and also any single one. In like manner, the nine inflexions with their antitangentials, any three of these lying in a right line with their antitangentials, and any one with its antitangentials, form closed groups containing 36, 12, and 4 points respectively. The ornamental-gardening problem of alignement, anglice allineation, which consists in so disposing a number of points on a plane as to obtain the maximum number or all the various possible numbers of right lines each containing three of the points, finds its systematic solution in the theory of groups of inflexional and sub-inflexional points of various grades.
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xzyf — x3z3y2 respectively, and since
yzx2 . xsziy2 - yzz3x2. xzy£ = zzz (xfyi3 - yW) = 0,

X4 : F4 :: yx£ : xy£, and consequently A43 — F43 = 0; but P4 is a point of 
inflexion and not a Pluckerian; hence X4, Y4 must each contain the factor 
x3 — y3, and Z4 must be of the form z2 (a? — y3)2 ∩, for after division by 
z(a? — y3) it must still contain that factor. Also X4, Y4, Z4 can have no 
other common measure except z (x3 — y3), for after throwing out that factor 
the quotient is of the order 16, the order of z4 given by the law, of squares. 
Thus we see that the third unreduced coefficient common to (P, P3) and 
(P', P3) is equal to z2. z4, as it ought to be according to the proposition in 
question.

In some very old numbers of the Educational Times will be found questions of the kind proposed by me (not reproduced in the Reprint), of which the solution depends on this order of considera­tions. In certain cases that had been studied, I ascertained the possible existence of a larger number of collineations than had previously been imagined by other writers on the subject, among whom Mr S. B. Woolhouse deserves special mention for the ingenuity of his constructions. As far as I am aware, the theory of allineation has never been treated by other writers than myself, except by empirical methods, and its dependence on the theory of the general cubic curve was not even suspected.
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