
CHAPTER XX.

RECTIFICATION OF TWISTED CURVES.706. Let PQ be any elementary arc δs of the curve. Let the coordinates of P and Q be respectivelyandwith regard to any three fixed rectangular axes Ox, 0y, Oz.ThenNbw, if Q be made to travel along the curve so as to approach indefinitely near to P, the chord PQ and the arc PQ ultimately differ by an infinitesimal of higher order than the arc PQ itself, i.e. the chord PQ and the arc PQ ultimately vanish in a ratio of equality.* Hence we have to the second order of small quantities, (1)Now suppose the curve to be specified in one of the two usual ways,(a) as the line of intersection of two specified surfaces
or (b) the coordinates of any point x, y, z upon it expressed in terms of some fourth variable t, and defined by theequations

The First Case.In Case (α) choice must be made of one of the three vari­ables x, y, z to be considered as the independent variable, say 
x, and the equations f=0, F=0 are then to be solved to find*For a discussion of this point see De Morgan, Differential and Integral, 
Calculus, p. 445. See also Diff. Calc., Art. 34, for a plane curve.732
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TWISTED CURVES. 733the other two, y and z, in terms of x. Then differentiating,we express and in terms of x; say
We then have

And when the integration has been effected, the length of the arc between the points specified by any particular limits which may be assigned to x, will have been obtained.
707. A more Symmetrical Mode of Procedure.We might also proceed as follows:Along the line of intersection of f=0 and F=0 we haveandgiving say,being the Jacobians

i.e.

Thenmaking use of the one which is most convenient; and which­ever is used, both the dependent variables occurring must be expressed in terms of the independent one before integration.
708. The Second Case.In Case (b) we have

andwhence
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734 CHAPTER XX.and we obtain the arc by integration, as before, between any two points corresponding to the limits assigned for the variable t.709. If the equations of the curve be presented in the form
we have say.

Similarlywhere J2 and J3 have meanings corresponding to J1.HencewhereHence710. The rectification of a curve therefore depends upon thepossibility of performing the integrationWhen f1, f2, f3, f are rational integral and algebraic functions of t, we have the case of a unicursal twisted curve.The advanced student is referred to the very important memoir by Mr. R. A. Roberts, “ On the Rectification of Certain Curves,” in vol. xviii. of the Proceedings of the London Mathe­
matical Society, which has already been referred to in other places.711. Ex. 1. Find the length of an arc of the curve which is the line of intersection of the parabolic cylinder y2 = 4αx and the cylinder

Here we take x as the independent variable and obtain
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TWISTED CURVES. 735

where x1 and x2 are the lower and upper limits of integration.Hence, in this curve any portion of the arc is √2 times its projection upon the x-axis. In other words, at every point of this curve the tangent makes an angle of π/4 with the x-axis.Taking the same curve, let us put
i.e.Then we then have a case such as that discussed in (b) of the preceding article, having expressed x, y and z in terms of an auxiliary fourth variable u.

Fig. 222.

ThenTherefore
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736 CHAPTER XX.whence
as before.The curve of intersection of the two cylinders is represented in Fig. 222.Ex. 2. To find an expression in the form of an integral for the recti­fication of the line of intersection of two right circular cylinders whose axes intersect at right angles.If we take the axes of the cylinders as the axes of z and x respectively, we may write the equations of the cylinders as

Let us take a > b.From the equations 
we have and

Fig. 223.Put y= bsin0 and let b = ka, k<1.Then
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THE HELIX. 737When the cylinders are of equal radius, k=l, and this becomes
i.e. the result of Art. 573, for an ellipse whose axes are in the ratio √2 :1, to which the curve of intersection then reduces.It is interesting in this connexion to note more generally that when the axes of two equal cylinders cut at right angles, and a sphere rolls completely round in contact with both cylinders, the locus of its centre is two ellipses. In our case the rolling sphere has a zero radius.712. In the “right circular Helix” or “Helicoidal curve,” which is an ordinary thread on a screw, we have a curve traced on a right circular cylinder and cutting all the generators of the cylinder at the same angle.

Fig. 224.Let α be the angle the screw-thread makes with a circular section of the cylinder, P any point on the curve, coordinates x, y, z referred to rectangular axes, the z-axis being the axis of the cylinder and the x-axis taken to cut the curve at a point A. Let θ be the angle the plane OPN through P and the axis makes with the plane of xz, and let a be the radius of the cylinder.We haveHenceandThis is obvious from the fact that in this case the surface may be developed into a plane, and the triangle ANP becomes a right-angled triangle with sides aθ, aθ tan α and s, with one of its acute angles α.
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738 CHAPTER XX.713. Since the curve develops into a straight line when the surface is developed into a plane, the surface itself being supposed entirely inex­tensible, the distance between any two points which it connects upon the cylinder is a minimum distance on the cylinder between those two points. Such lines of minimum length on any surface are termed 
Geodesics (see Smith⅛ Solid Geom., Art. 259).Hence geodesic lines on a right circular cylinder are helices.

714. A Property of Geodesic Lines.It is an obvious property of such curves that if P, Q be any points upon a geodesic line upon any surface, the path from 
P to Q via this line being less than from P to Q via any con­tiguous supposititious paths from P to Q, viz. PBQ, or PCQ, on opposite sides of it and of the same length, and the three

Fig. 225.lengths PAQ the geodesic, and PBQ, PCQ the supposititious paths being unaltered in length by any deformation of the surface on which they are drawn, supposed inextensible, the deformed path to which PAQ is changed will still be in length intermediate between the lengths of the contiguous paths to which PBQ and PCQ are changed and which are equal. Hence, in the limit when PBQ and PCQ and their deformed lengths are made to close up to ultimate coincidence with PAQ and its deformed length, it will be clear that the deformed PAQ is still a line of minimum length on the deformed surface, being entrapped between two supposititious paths which are both of greater length on opposite sides of it. Thus geodesics on inextensible surfaces remain geodesics after any deformation of the surface on which they are drawn.715. It follows that a right circular helix remains a right circular helix if the paper on which it is drawn be transferred from the cylinder upon which it was wrapped to a cylinder of different radius. Let a and 
b be the radii of the first and second cylinders and β the angle the newhelix makes with the circular section. Then  where
θ' is the angle in the new helix corresponding to θ in the original one ;
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CYLINDRICAL COORDINATES. 739and the new coordinates of P can be written down, the axes being placed as described for the first helix.
716. Cylindrical Coordinates.For many cases, particularly for curves drawn upon cylinders, it is desirable to use cylindrical coordinates, viz. 

r, θ, z, i.e. the ordinary Cartesians are transformed to the polar system as regards the x, y plane, and the z-coordinate is left unaltered.Taking r, θ, z and r+δr, θ+δθ, z+δz as the coordinates of contiguous points P, Q on a curve, we have, since δr, r δθ, δz are mutually perpendicular elements,

Fig. 226.For if N, N' be the feet of the perpendiculars from P, Q upon the plane of x-y, we have, to the second order, 
and plainlyHence, if the distance measured along the arc PQ be δs, we have, to the second order, 
whence
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740 CHAPTER XX.which we may write in any of the forms 

or according as it is convenient to take θ, r or z as the inde­pendent variable; or we may also write it, as in Cartesians, as 
in case r, θ, z are expressed in terms of a fourth auxiliary variable t.The most common case is when θ is taken as the inde­pendent variable.

717. Curves on a Right Circular Cylinder.When we are discussing a curve drawn upon the surface of a right circular cylinder of radius a, we have 
and the rectification formula at once reduces to

718. If we apply this to the case of the helix already considered, viz.
we have as before (Art. 712).It will be at once remarked, however, that in all cases of curves drawn upon a right circular cylinder, the length of the arc may as readily be considered by first developing the cylindrical surface into a plane, and in fact the formula above is merely the Cartesian formula 
for the developed surface, dx replacing a dθ,
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SPHERICAL-POLAR COORDINATES. 741719. Ex. Find the length of an arc of the curve of intersection of thecylindersPutting x=acosθ, we have andHence andwhence orIn this case the developed curve is the Catenary of Equal Strength, viz. ξ=αlogsec ξ/a, in which ξ=aψ and s = agd-1ψ (see Ex. 5, Art. 519).
720. General Polar Formulae.The general polar formula for rectification in terms of the radius vector r, the co-latitude θ, and the azimuthal angle, or longitude, Φ, is easily obtained.

Fig. 227.In passing from the point P(r, θ, ϕ) to a contiguous point 
Q(r+δr, θ+δθ, ϕ+δϕ) along an elementary arc δs of a curve, the projections of the chord PQ in the three directions,(α) along the radius vector, increasing r;(b) in the meridian plane, increasing θ;(c) perpendicular to the meridian plane, increasing ϕ, are respectively δr, r δθ, r sin θ δϕ;
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742 CHAPTER XX.and these being mutually perpendicular elements we have, to the second order, and as either r, θ, ϕ or a fourth variable t can be regarded as the independent variable to suit circumstances, we have 
or 
or 
or 721. Modification for Curves on the Sphere and the Cylinder. There are two important cases to consider.(1) If the curve under discussion lie on a sphere of radius a, 
and 
or or if it be deemed desirable to use the latitude l instead of the co-latitude 
or (2) If the curve under discussion lie on the surface of a right circular cone whose semivertical angle is a, and whose axis is the z-axis and vertex the origin, we have 
or
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RHUMB LINES OR LOXODROMES. 743722. Ex. 1. “Rhumb” Line or “Loxodrome” on a sphere.This is a curve on the surface of a sphere which cuts all the meridians at the same angle.

Fig. 228.Let PQ be an element ds of such a line, zOP, zOQ meridian planes. Let a small circle of the sphere parallel to the equatorial plane x-y pass through Q and cut the meridian plane of P in N. Let l and ϕ be the latitude and longitude of P, a the radius of the sphere and α the constant angle NPQ.Then i.e.orwhencewhich, with r=α, form the equations of the curve.AlsoHence in this curve we have andEx. 2. In the case of a spiral traced on a sphere and defined by the equation l = ϕ tan α, where a is constant, we have
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744 CHAPTER XX.and the arc of this spiral is therefore expressible as an arc of an ellipse of semi-major axis a cosec a and eccentricity cos α (see Art. 567).Ex. 3. In the case of a curve drawn upon a conical surface to cut all the generators at the same constant angle α, we have, taking the origin

Fig. 229.at the vertex and the axis of the cone as the z-αxis and β for the semi­vertical angle of the cone, 
as in Example (1), for the sphere, and therefore 
whence where A is an arbitrary constant, determinable when some one point on the curve is specified.The projection of the curve upon the x-y plane is therefore an equi­angular spiral of angle cot-1 (sin β cot α).We also have 
between limits r1, r2.If the spiral passes through the origin, and s be measured from that point, s=rsecα,which is also obvious from the consideration that if the curve be developed upon a plane it will become an equiangular spiral of angle a.
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PEDAL FORMULA. 745

723. The p, r Formula.The p, r formula of Art. 547, viz. still holdsfor curves of double curvature.For, with the same notation as before,and
ϕ being the angle which the tangent makes with the radius vector from the origin ; whence
andFor cases of curves drawn upon a sphere, the centre being at the origin, the formula is useless. For in that case, the tangent being necessarily at all points at right angles to the radius vector, dr/ds=0 and p=r throughout.In the case of a curve drawn upon a right circular cone whose vertex is at the origin, we may use the formula with advantage ; but it is to be remembered that we are doing no more than if we regarded the conical surface as developed upon a plane.Ex. For the case already considered of a curve cutting all the generators of a cone at a constant angle α, we have at once p=r sin αand as in the last article.There are but few curves of double curvature, however, for which the p, r relation is known, with the exception of course of such as, having been originally plane curves, have been laid upon a developable surface. For such cases the formula is useful, as also of course whenever the relation can be readily found.724. Ex. Let BAA'B' be a strip of thin inextensible ribbon lying upon a plane. Let OAA' be a perpendicular from any point 0 of the plane upon AB and A'B' and OPP' any other radius vector from O.Let OA=l0, OP=l, PA=s.Then obviously l2 = s2 + l02.Now imagine this ribbon wrapped tightly without folding or creasing upon a right circular cone of vertex O with OAA' as a generator, the semivertical angle being α, the wrapping commencing with OA in con-
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746 CHAPTER XX.tact with the cone. When the wrapping has been completed, OP coming into contact and becoming a generator, let us unwrap the triangle from the cone, keeping OP in contact and starting the unwrapping with

Fig. 230.releasing the generator OA, keeping O fixed at the vertex ; when the unwrapping is just complete, the triangle has taken the position OYP, Aand is the same triangle as we started with, OYP being a right angle.

Fig. 231.It appears(1) that the arc AP upon the cone has a length(2) that the arc AP upon the cone is a geodesic ;(3) that the locus of Y in the unwrapping lies on a sphere of radius l0and vertex at 0 ;(4) that the p, r equation of this geodesic on the cone is p=l0, for thisis so on the plane from which it was constructed ;(5) the formula . is merely
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INVERSION. 747(6) the Y locus is an involute of the geodesic ;(7) taking a sphere of any radius with centre at O, cutting the axis OZat M, the generator OP at L and OY the perpendicular on the tangent at N, LMN is a right-angled spherical triangle, whereandwhence andIf ϕ be the angle between the plane ZOY and the plane ZOA, and θ the angle ZOY, we have thus shown thatcos θ = cos a cos LN, and thereforeNow, if we take a circle on the plane OPY with centre 0 and radius 
OP, and consider the arc bounded by OP and OY produced, this arc will wrap upon the cone and will coincide with the corresponding arc of the circular section of the cone through P ; whence if χ be the angle between the plane ZOP and the plane ZOA,l sin a. χ = l × angle POY, andHence 
i.e.is the equation of a cone which by its intersection with the sphere of radius l0 and centre 0 gives the Y locus, which is also an involute of the geodesic on the cone.

725. Inversion.The process of inversion may sometimes be employed with advantage. This is particularly the case when a twisted curve lies on the surface of a sphere. By inverting with regard to a point on the surface of the sphere, the spherical surface is inverted into a plane and the twisted curve into a plane curve, and vice versa.Let 0 be the pole of inversion and k the constant, and let the diameter 0A of the sphere meet the plane into which the sphere inverts at C. Then OA . OC=k2,say.
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748 CHAPTER XX.Let the element PQ, viz. Ss, of a twisted curve on the spherical surface invert into P'Q', viz. os', an element of the plane inverse curve.Then 
or ultimatelyLetThen and if this integral for the plane curve can be found, the rectification of the twisted curve on the sphere will have been effected.

Fig. 232.The method may also be used to discover rectifiable twisted curves which lie on a spherical surface.
726. Extension of Art. 230, Diff. Calc., for Present Purposes.The angle between intersecting curves is unaffected by inversion. (Extension of Art. 230 of Diff. Calc.)If two planes QPP'Q', RPP,R' intersect in the line PP' and if PQ, P'Q' make the same angle with PP' in opposite directions as also PR and PR', then the angle QPR=Q'P'R. For, take distances PN and P'N' equal to each other in opposite directions from P and P' respectively on PP' produced, and let two planes perpendicular to the line PR be drawn through N and 

N' to cut PQ and PR at Q and R, and to cut P'Q' and PR in 
Q' and R' respectively.
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INVERSION. 749Then, from the congruent pairs of triangles PNQ and P'N'Q', and PNR and P'N'R respectively, we have NQ=N'Q' and 
A A

NR = N'R', whilst QNR=Q'N'R', and therefore the triangles 
QNR, Q'N'R' are congruent and QR=Q'R'; whence the angles 

A A

QPR, Q'P'R' are also equal.It follows therefore that if PQ, P'Q' be the directions of the tangents at P and P' to inverse elements of curves in the

Fig. 233.plane PP'Q'Q and PR, P'R' be the directions of the tangents at P and P' to inverse elements of curves in the plane PP'R'R, then, as in this case PQ and P'Q' make equal angles with PP' in opposite directions, as also do PR and P'R' (as proved in 
Differential Calculus, Art. 229, for curves in a plane), it will follow that the angle between two curves meeting at P is equal to the angle between the inverses meeting at P'. Hence the result of Art. 230 of Diff. Calc. is now extended to any case of inversion, the curves not being necessarily plane, and the pole of inversion now lying anywhere.

727. Stereographic Projection, etc.If we take as constant of inversion the diameter of the sphere, and the pole of inversion a point 0 on the sphere, the sphere inverts into the tangent plane at the opposite end of the diameter through the pole.If the constant of inversion be taken as 
i.e. radius,the sphere inverts into the equatorial plane of which the origin of inversion is a pole.
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750 CHAPTER XX.In all such cases the inversion amounts to a conical pro­jection with the origin 0 as pole of projection.When the projection is upon an equatorial plane with 0 for pole, it is called a Stereographic Projection.In any of these cases, the angles of intersection of any spheri­cal curves project or invert into equal angles of intersection of the projected or inverted curve. Orthogonal intersection remains orthogonal intersection in the projected curves; curves which touch on the sphere project or invert into curves which touch; circular arcs which pass through the pole 0 invert into straight lines; all other circles, great or small, into circles.Ex. Consider the rectification of the line of intersection of the sphere 
with the elliptic coneInverting with regard to the origin, and with c for constant of inversion, the sphere becomes the plane z=c, and the cone remains unaltered, but cutting the plane z=c in the ellipse x2/a2+y2 /b2= l.
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STEREOGRAPHIC PROJECTION. 751Hence, taking 0 as the complement of the eccentric angle of P', we have for the ellipse, 
and 

where e is the eccentricity. And thus the arc of this curve is expressible by the elliptic integrals of the first and third kinds.
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752 CHAPTER XX.arc PP'=δs. Let 0 be any fixed pole on the sphere, and let 
PY, P'Y' be the great circle tangents at P and P', OY,OY' the great circle perpendiculars to them from 0, and OAx a fixed great circle cutting the curve at A, the point from which s is measured.

Let OP, OP' be the great circle radii vectores of P and P', and let OPY = ϕ.Then, from the spherical triangle OYP, we havecos r = cos p cos t and sin p = sin r sin ϕ.Let PN be the great circle perpendicular upon OP'. Thus, as in plane geometry, we have
and
i.e. (1)Let OY' intersect PY at Z, then, from the right-angled triangle YOZ, sin OY = cot YOZ tan YZ, 

i.e. to the first order, YZ = δψ sin p.Also to the first order,
i.e.And in the limit,
i.e. ∙(2)Formulae (1) and (2) are analogous toandfor plane curves.
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CURVES ON SPHERICAL SURFACES. 753
729. Convention of Sign of t. Closed Oval.In regard to t it is necessary to make a convention with regard to sign. It will be in agreement with the convention for plane curves, Art. 531, if we fix that t is to be reckoned positive when, as in the case of Fig. 185, PY is measured from the point of contact in the direction opposite to that of increase of the arc s.As in plane curves, it appears that if the curve considered be a closed oval on the sphere, t returns to its original value when integration is taken round the oval. Hence for a closed curve surrounding the pole, encircling it once,
If the radius of the sphere be a instead of unity, which has been taken for convenience, the absolute length of the arc will be changed in the ratio a : 1, so that if s’ and t' be lengths, whilst p and r are measured by the angles subtended at the centre of the sphere, formulae (1) and (2) become respectivelyand730. Ex. In the case of a Loxodrome cutting meridians at a constant angle α, let r, θ be the co-latitude and azimuthal angle of any current point P upon the curve.

Fig. 236.Then ϕ = α and sin p = sin r sin a.Hence 
a being the radius of the sphere, i.e.
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754 CHAPTER XX.

Arc of curve measured from the pole (α)as in the case of the equiangular spiral upon a plane. (See also Art. 548.) We also have in this curve
i.e.

i.e.

if when i.e. (b)which is another form of the property .(c)already established in Art. 722, a relation between the latitude and longitude analogous to that between y and x in a Cartesian equation.
731. To find sin p.The expression for sin p in terms of ψ which is required in the integration of Art. 729 may be found as follows. Take the z-axis through 0, the pole of the curve. Let C be the

Fig. 237. (See also Fig. 235.)centre of the sphere and F(x, y, z)=0 be the equation of the cone which cuts the sphere x2 + y2+z2=α2 in the given curve.Then F is a homogeneous function of x, y and z.The tangent plane to the cone at the point x', y', z' of the curve is xFx, + yFy'+zFz'=0.The equation of a perpendicular plane COY through the z-axis is xFy'-yFx'=0.
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THE POLAR CURVE. 755Hence i.e. (A)And the perpendicular P (=ON, Fig. 237), upon the tangent plane from the pole 0, whose coordinates are (0, 0, α), is ∙(B)From F = 0 and equations (A) and (B), the ratios x':y':.z' are to be eliminated, and there will result a relation between
P and ψ, say,

Again,Hence the relation required is sin p = f (ψ).

732. Relation with the Polar Curve.Let any curve be drawn upon a sphere of centre 0 and radius r. and let the cone with vertex 0, and passing through

Fig. 238.the curve, be drawn. Let a plane through the centre of the sphere, and therefore cutting the sphere in. a great circle, roll upon the surface of the cone. The poles of this plane then trace out two equal loci on the surface of the sphere. Either of these equal and similar loci is called the polar curve
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756 CHAPTER XX.of the given curve. The great circle arcs which are the lines of intersection of the sphere and the plane touch the curve as the plane rolls, and are great circle tangents.Let Q, Q' be two positions of one of the poles corresponding to the great circles PT, P'T, intersecting at T and touching a curve C1 drawn upon the sphere. Let the curve locus of Q be referred to as the curve C2. Drawing the great circles 
PQ, TQ, TQ', P'Q', we have

PQ = TQ, both quadrants,
TQ' = P'Q', both quadrants,and TQ = TQ', both being quadrants.Hence, in the limit when P' and P are indefinitely close, 

T ultimately lies upon C1, and is the pole of a tangent plane to the cone with vertex at 0, which cuts the sphere in C2. Hence the relation between the two curves is reciprocal. Each one is the locus of the poles of tangent planes of the cone which defines the other. If QRQ' be the great circle arc joining Q and Q', T is its pole, and the poles of all great circles which pass through T lie on QRQ' or QRQ' produced, that is the great circle chord QRQ' of the arc QQ' of C2 is the path of the poles of great circles through T.The figure bounded by the arc QQ' of the C2 locus and the great circle arc Q'RQ is thus the reciprocal of the figure bounded by the arc PP' of the C1 locus and the two great circle tangents TP, TP'. Also the angle between two great circles being the same as that subtended at the centre by their poles, we haveAngle PTP, = π — QOQ', i.e. π — QRQ'.

733. A Theorem given by Schulz.Let a circumscribed polygon consisting of an infinitely large number of infinitesimal great circle tangents be drawn to the one curve C1, and let the reciprocal inscribed polygon of great circle chords be drawn in C2. Then, if the angles of the one be A, B, C, D, ..., and the angular measures of the corre­sponding sides of the other be a', b', c', d',..., we have
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A THEOREM OF SCHULZ. 757We have Area of the polygon ABCD(Todhunter and Leathern, Spherical Trigonometry, Art. 129) 
if s' be the angular semiperimeter of the polygon A'B'C'D'....

Fig. 239.This remarkable relation is stated by Todhunter and Leathern as “referred to” by Schulz, Spharik, ii., p. 241 * The author­ship does not appear to be clear. Proceeding to the limit when the sides are indefinitely small, if (C1), (P1) be the area and linear perimeter of C1, and (C2), (P2) the area and linear perimeter of Co, we have half the surface of the sphere,and similarly that isThus when the area of the one curve can be found, the perimeter of the other can be found and vice versa.

*See also Williamson’s Integral Calculus, Art. 188.
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758 CHAPTER XX.It appears also that the area included between either curve and any great circle which it does not cut is equal to a

Fig. 240.rectangle of length the perimeter of the other curve and breadth the radius of the sphere.
734. Formula analogous to that for the Area of a Plane Curve 

in Polars.It is a well-known result in the mensuration of a spherical surface that the area of any belt on a sphere is equal to the corresponding belt on the enveloping cylinder whose axis is perpendicular to the bounding planes of the belt. Let APA'

Fig. 241.be any small circle of a sphere of radius a. Let 0 be the pole of the circle and OP any great circle radius vector from 0 of length r, subtending an angle p at the centre. Then the area of the spherical cap cut off by the small circleLet the azimuthal angle of OP be θ. Then we have for the area between OP and OP' for which θ is increased to θ + δθ,Area
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ANALOGY WITH A PLANE CURVE. 759analogous to the result 1/2r2δθ for a plane (and indeed becoming 
1/2r2δθ when we put r/a for p and the radius a becomes ∞).Hence, taking p, θ as coordinates, we have for the area of any portion of the spherical surface bounded by a curve on the sphere, and the meridians θ=θ1, θ=θ2,

in the same way as . for a plane area (Art. 407).If the curve be an oval encircling the pole 0 once,

Fig. 242.The area therefore between the curve and the equatorialplane of 0 is
or if we use l for the latitude, i.e. the complement of p, and θ for the longitude or azimuthal angle,AreaIf, then, this integral be evaluated for the polar or reciprocal curve C2, the result will be aP1, i.e.Perimeter(l, θ) being the latitude and longitude of a point on the reciprocal curve.
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760 CHAPTER XX.

Illustrative Examples.Ex. 1. To test this result in a known case, take C1 as a small circle with pole at 0 and of angular radius p. Its perimeter is obviously2πα sin p.The polar curve is another small circle of angular radius π/2-ρ, and therefore the latitude of any point on it is ρ, in this case a constant.The formula gives
which is in agreement with the stated result.Ex. 2. Find the length of the spiral, traced on a sphere, whose reciprocal is defined by the equation 4p=θ corresponding to limits for θ from 0 to 2π, p and θ having the meanings assigned to them in Art. 734.The area between the reciprocal spiral and the equatorial plane is

Hence the perimeter required = 4α, i.e. twice the diameter of the sphere. (Fig. 243.)

Fig. 243. Fig. 244.Ex. 3. To find the area bounded by any arc of a great circle and two spherical radii vectores.Let the plane of the great circle be at right angles to the plane of the paper and cut the meridian in the plane of the paper at a point A whose co-latitude is a. (Fig. 244.)Then the equation of the great circle iscos 0= cot p tan α,from the spherical triangle OP A, right angled at A.Then we have
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SPHERO-CONICS. 761and the integral

Hence the area between two radii making angles θ1 and θ2 with the meridian in the plane of the paper is
a2(θ2-θ1) — α2[sin-1(sin θ2 cos α) - sin-1(sin θ1 cos α)]. (See Art. 781.)
735. The Case of a Sphero-conic.Def. A sphero-conic is the line of intersection of a cone of the second degree with a sphere whose centre is at the vertex of the cone.

Fig. 245.Let the equation of the sphere be and that ofthe cone
The reciprocal cone has for equation
Putting p for the co-latitude and θ for the azimuthal angle of any point, we have x=d sin p cos θ, y=d sin p sin θ, z=d cos p, and the equations of the sphero-conic and its reciprocal become respectively andin p, θ coordinates.
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762 CHAPTER XX.The area A1 bounded by the arc of the sphero-conic
and the meridians θ = 0, θ=θ is given by

and putting
i.e.

whence
and
and is therefore expressed in terms of a Legendrian integral of the third species.For the reciprocal sphero-conic c2 cot2p = α2cos2θ-b2sin2θ the area A2 bounded by the arc and the meridians θ = θ and 
θ = is given by

say;and putting
i.e.
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SPHERO-CONICS. 763we have 
whence 
and the area of the same curve from θ = 0 to θ = θ is 
where ∏ is the same elliptic integral as occurs in the value of A2 and ∏1 is its complete value.736. Again, for the Rectification of 
the tangent plane to the cone 
at any point P(x', y', z') of the sphero-conic APB (Fig. 245) is

(1)and the perpendicular plane OCY through the z-axis is ∙(2)
giving where ψ is the azimuthal angle of the plane OCY, i.e.

Also the perpendicular ON (=P') from the pole 0 upon the tangent plane at P, viz. CPY, is given by
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764 CHAPTER XX.Therefore, if p be the angle OCY subtended at C by the great circle arc 0Y, P'=dsinp, and we have

(Art. 388, Ex. 7.)Hence, if s and t be the lengths of the arcs of the sphero- conic from P to B, and of .the ‘tail’ PY respectively (Fig. 245), 
and and t remains to be found.Now t is the arcual measure of the great circle arc PY.The equations of CY, CP (C being the centre of the sphere) are, from (1) and (2), and

Hence
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BURSTALL’S THEOREM. 765

Also

Hence t is found, viz.
the negative sign being prefixed because PY is measured from 
P in the direction of the measurement of the arc increasing from P to B. (See Art. 729.) Finally then we have

737. Mr. Burstall's Theorem.A remarkable property of the curve is established by Mr. Burstall, in vol. xviii. of the Proceedings of the London 
Mathematical Society, giving a result analogous to that of Fagnano for the ellipse.

Fig. 246.Let AB be the sphero-conic represented for convenience upon a plane, and let A'B' be an arc of the reciprocal
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766 CHAPTER XX.sphero-conic, A being an end of the major axis of the one and A' being the corresponding point on the reciprocal curve. Let P and P' be corresponding points of the sphero-conic and its reciprocal; and let A'RP’ be the great circle chord of the reciprocal sphero-conic; and AT, PT the great circle arcs tangential at A and P.Then, since the areas ATPMA and A'LP'RA' are reciprocal areas, we haved(ArcAP+tangentP71+tangentTA)=2πd2-areaofA'LP'RA'. Now, putting Δ and Δ' for the spherical areas OA'LP' andrespectively, and
the same indefinite Legendrian integral that has occurred both in the rectification above and in the quadrature of the reciprocal curve with specified limits, we have and where
whilst Δ' can be found free from elliptic integrals (Art. 734∙, Ex. 3).
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BURSTALL’S THEOREM. 767If then we take the angles AOQ(Θ") and A'OP'(Θ') equal and eliminate the integral, we have 
or

— circumf. of a great circle,giving the difference of two arcs in terms of certain arcs of circles and Δ'.

Fig. 248.Hence we have the difference of the arcs AP, AQ expressed in terms of elementary functions, free from elliptic integrals, which is Mr. Burstall's result, and in its peculiarity resembles Fagnano’s result for a plane ellipse.
738. Artifices for the Construction of Rectifiable Twisted Curves.Some artifices for the construction of rectifiable twisted curves may be noted.1. If we take 

where u, υ are any functions of t at our choice, we haveandHence
* For a very similar method, viz. taking 

see Williamson’s Int. Calc., p. 244.
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768 CHAPTER XX.

E.g. consider the line of intersection of the cylinders
Putting

we have the case and2. If we take

where u, υ, w are any functions of t at our choice, then, since
we haveand

E.g. taking
whence we have
the equations of the curve.And for the rectification,
and any specified limits may be taken.3. Again, if we take
we haveand

and the values of u, υ, w are at our choice, as before.
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ARTIFICES FOR TWISTED CURVES. 769In all these cases if u, v, w be chosen as rational integral algebraic functions of t, the equations of the curve can be found and its length between any specified limits.1. Similarly, other algebraic identities which express the sum of three squares as a constant multiple of the square of a fourth expression may be used in the same manner to construct rectifiable twisted curves.
E.g.Hence, putting

with any arbitrary choice of u, υ, w as functions of t , we haveandIt will be noted that all these methods proceed with a view to makinga perfect square and avoiding the necessity ofintegrating an irrational expression.5. One type more may be given illustrating the construction of a rectifiable twisted curve upon the same plan, but of non-algebraic character. Taking u, v, w any arbitrary functions of t, put
Then and
E.g. taking and
Thenthe curve being
Methods 1, 2, 3, 4 either give rise to unicursal twisted curves, viz. those in which the coordinates x, y, z can be expressed as rational algebraic functions of a single parameter t or may be made to give rise to curves in which x, y, z and s are irrational functions of t, this depending upon the choice made for u, υ, w.
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770 CHAPTER XX.

739. Generalised Formulae.If the Cartesian coordinates of a point x, y, z be expressed as functions of any other three independent parameters 
u, v, w, as 
thenAnd if we write 

we have, for the element of distance ds between x, y, z and 
and for two assigned relations between u, v and w, defining a linear path for x, y, z, we have the rectification formula

740. If one relation only between u, v and w be assigned, 
x, y, z travels on an assigned surface. Let the relation be

Then and this being a linear relation between du, dv, dw, one of the letters u, v, w, and one of the differentials du, dv, dw may be eliminated, and the square of the linear element ds may then be expressed as 
where the forms of x, y, z are now

The values of E, F, G derived from these equations are
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GENERALISED FORMULAE. 771741. The quantity EG-F2 is essentially positive.For two similar expressions

say, and is positive.742. Eliminating du, dv from the equations
we have J1dx+ J2dy+ J3dz=0, identically, viz. the differential equation of the surface on which the curve lies.743. Dr. Salmon (Solid Geom., p. 252) shows that the differential equation of the lines of curvature is
and obtains in terms of it and v a formula for the evaluation of the principal radii of curvature.744. Now ds2 is the square of the linear element connecting the point u, v with the point u+δu, v+δv, and lies on the surface x = ϕ1(u, v), y = ϕ2(u,v), z =ϕ3 (u,v).

F⅛. 249.If we travel along a line for which v is constant, we have 
dσ1 = √Edu, and if we travel along a line for which u is constant, we have dσ2=√G dv, and ds is the corresponding
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772 CHAPTER XX.diagonal of the infinitesimal parallelogram whose adjacent edges are dσ1, dσ2. Let ω be the angle between them.Then whence it appears that andand that the area of the elementary parallelogram
We therefore have also a formula for the quadrature of the surface, viz.
When the two families of curves on the surface, viz. 

u =const., v = const., cut orthogonally, we haveandandThis will necessarily be so, for instance, when u=const., 
v= const, are the equations of the lines of curvature on the surface. PROBLEMS.1. Show that the equations of a Rhumb line on a sphere of radius 
r may be written as x2 + y2 + z2 = r2,

2. Show that the curve of intersection of the cylinders 
is given by3. A sphere of diameter K touches the plane of an ellipse of principal axes a, b at its centre C. A is the other end of the diameter of the sphere through C. The ellipse is projected on to the sphere by lines through A. Show that the length of the curve so described will be

[St. John’s, 1884.]
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PROBLEMS. 7734. A curve is drawn upon the surface of a sphere such that
ϕ being the longitude and θ the co-latitude of any point.Show that is the length of the arc betweenpoints where θ= θ1 and θ = θ2, and a is the radius of the sphere.Give a sketch showing the nature of the curve ϕ sin θ = 1 upon the sphere r = a.5. Show that the line of intersection of the sphere
and the coneis rectifiable, and thatAlso show that the conical projection of this curve on the sphere upon the tangent plane at the end of the diameter remote from the origin, the origin being the pole of projection, is an equiangular spiral. Hence deduce the same result by inversion.6. Show that the curve of intersection of the sphere
and the coneprojects conically from the origin into a cardioide upon the plane z = 2a. Hence obtain the rectification of the twisted curve.7. Show that the length of the arc of intersection of the cylinders
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774 CHAPTER XX.10. Show that in the curve of intersection of 
whereShow that the inverse of this curve with regard to the origin is a lemniscate, the constant of inversion being a.11. Show that the rectification of the line of intersection of is given by 
where and show that this curve can be inverted into a parabola lying upon a tangent plane to the sphere.12. A Loxodrome is drawn on a sphere to cut all the meridians at the same constant angle a ; show that the area of the surface of the sphere, included between any arc of this curve and the two meridians through its ends, is
where ψ1 and ψ2 are the latitudes of the ends of the arc and a is the radius of the sphere. [Ox. Π. P., 1900. ]
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