CHAPTER XXIIL

SURFACES AND VOLUMES IN GENERAL, AND THEIR
CENTROIDS, ETC. DOUBLE AND TRIPLE
INTEGRATION.

760. Let the equation of a surface be ¢(z, y, 2)=0 referred
to three mutually perpendicular coordinate axes Ox, Oy, Oz.
Let us discuss the volume contained between the boundaries

2=0, ¢(z, ¥y, 2)=0; y=0, y=F(z); =x=0, z=a.

Let planes X=a, X=x+4dz,

Y=y, Y=y+dy,
Z=z, Z=z+0z,
be drawn.

F-2

£,
Fig. 262.
Planes X=a, X=x+ d2 intercept between them a thin slice

or lamina of thickness dz.
795



796 CHAPTER XXII.

Planes Y=y, Y=y+dy cut from this lamina a prism or
tube on rectangular base dz dy.

Planes Z=z, Z=2+Jz cut from this prism an elementary
rectangular box or “cuboid” of volume §xz dy &z, represented
in the figure as P,Q,R,S,P,Q,R,S,. Regarding dz, dy, 6z as
infinitesimals of the first order, the volume of the slice is a
first order infinitesimal, the volume of the prism is a second
order infinitesimal, and the volume of the cuboid is a third
order infinitesimal. Let the prism intercept on the surface
a curvilineal quadrilateral figure PQRS, and on the plane z-y
the elementary rectangle pgrs, viz. dzdy. These areas are
both infinitesimals of the second order.

If we add up all the complete cuboids on base 8z 8y from
z=0 to z=the smallest of the values of z of the surface
within the quadrilateral PQRS, we get the volume of the
prism, less by a third order infinitesimal, viz. the portion of a
cuboid bounded by a base dz dy for its lower surface, by the
curvilinear quadrilateral PQRS for its upper surface, and by
four plane faces parallel to the %-z or z-z planes. We may
regard the infinitesinal §z as having been taken not less than
the difference of the greatest and the least values of z for
points on the quadrilateral PQRS. This remnant of the
prism is therefore less than one of the elementary cuboids
forming the whole prism, and is therefore an infinitesimal of
not less than the third order.

Next let us add up all the prisms which lie between the
planes X=a and X=ax+dz, and bounded on its upper side
by the specified surface from the plane Y=0 to any definite
value of ¥. The sum of these second order complete prisms
differs from the volume of the lamina between the planes
X=x and X=x+dz by the sum of the third order infini-
tesimal remmants of the prisms, and by a second order tubular
element on a base less than dz §y at the end of the slice, that
is by a second order infinitesimal, the sum of the complete
prisms being of the first order.

Finally, let us add up all the slices or laminae from X=0 to
any definite valuc of X. The sum of the portions of these
laminae made up of complete prisms is a finite quantity.
The sum of the remnants of the laminae is the sum of a set
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TRIPLE INTEGRATION. 797

of second order infinitesimals, and forms a first order infini-
tesimal. Hence it appears that the sum of all the complete
cuboids within the figure bounded by the coordinate planes,
the planes X=zw,, Y=y, say, and the surface, differs from the
whole volume of that figure by a first order infinitesimal at
most, and in the limit when dz, dy, dz are diminished without
limit, we have the volume given by

Vs I ”dw dy dz.

The limits for z are from z=0 to z=the value found from
¢ (x, ¥, 2)=0 in terms of x and vy, say z=f(x, y).

The limits for y will be from y=0 to the value of y specified
in any particular manner, say y=F(z).

The limits for z will be such as to go from 2=0 to z=a.

761. Ex. Consider the volume of an octant of an ellipsoid

e Lifel s
atta=l
TR I
Here the limits for z are 2=0 to z=c¢ Vl ——':—:—'Z—, for the elementary
prism, to add up all the cuboids in the prism.

F

C
P

(e] A x
yB
Fig. 263.

For y; y=0 to y:b\/] —'2—: for the slice, to add up all the prisms
in the slice.
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798 CHAPTER XXIL
For 'v, from =0 to z=a, to add up all the slices.
a B, e T ra o af1-2
And V=/ /”“/' f Vi-g "‘dxdydz:/ f”“/‘ @[4]dz dy,
0 JoO 0 0 JO
and taking [2] between its limits, this integral

_/f Jl"‘Vl—%——MdJ Wnteb} for 1-
~/ ™

cmw
"=51), (‘ “)
=f.’_'b.( _‘ﬂ) ¢, 7 e2a_mabe
b 4 322/ b 4 3 6
And the volume of the whole ellipsoid is 8 V= §wabe.

762. Obviously in cases where the volume of a slice can be
written down at once, the labour of computation may be saved.

In the case just considered, for instance, the section at
distance X=x from the pl&ne of yz is an ellipse, viz.

B (1~—) P <1-—)
whose semiaxes are b\/ 1—— \/ 1 ——2,
and the area of the quarter elhpse in the first octant is
wZ
I7be (1 — CT’)
Hence the volume of the slice in the first octant is

ybe (1 Z—:) o,

to the first order.
And the sum of the slices is
_-n-bc 7rab0
) e, AT
as before.
763. When the volume contained is all that is required, we
may, in general, start with

V:”z da dy,

i.e. we may use the elementary prism on ¢z 8y for base as our
element of volume. This amounts of course to integrating with
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regard to 2 in the triple integral formula || |daz dy dz between

limits 2=0 and z=the ordinate of the surface under con-
sideration.

If the upper surface of the region whose volume is required
is z=f,(, ), and the lower surface be z=f,(x, ¥), instead of
2=0, as taken in Art. 760, we have

v=([ti@ »—ri@ y) dody.

764. Illustrative Examples.
1. The curve z(a2+x2)%=a4 lying in the plane z-z revolves about the
axis of z. Find the volume in the positive octant included between this

surface and the planes =0, 2=aq, =0, y=a. [CoLLEGES ¢, 1883,]
The equation of the surface generated is
at
@+t
and V=f/zda: dy=a‘/ﬂf“;‘l—x—dy—. ‘Write b2 for a%+ 22
o Jo (a""+1‘2+y’)*
tan13 b sec?6) df) 5
Then (b’+./2); j “secig * where y=b tan 6,
=;—,fm-13cos 6 do
0
Nl sl
2 [aT+ b
Hence & i
(az+xn+yz)§ (a"+.z-’)«/2a"*+m-ﬂ
5
and we have to evaluate I= A (a3+.z'2)t:/—a’_?
Let 2=a~/2 tan ¢.
1 p—
Then ="' ab. an/2 sectp dop
(a®+ 24 tan? ) an/2 sec P dop
=q8 f cos  dep
cos?¢p+2sin*e
dsing
T+sin?¢
_asLtan'l (sin ¢):| Vé
1  wa®
=ad ta AL ;
gl g V36
rad
e
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800 CHAPTER XXII.

2, Expl"(zss the volume contained between the surfaces whose equa-
tions are 2?+y%+2t=a? 2°+y?=a? z=a and the coordinate planes in
the forms V=ffzabcdy, V=f/xdz dy; investigating the limits of the
integrations and determining the value of V.

(i) For the portion of the elementary prism on 8z 38y for base lying
between the sphere and the plane z2=a, the length is

a—-Nai =22 —yE

7 X (N
L1

|
R
_‘//7§ ‘
Q S
P
o] A x
" 7
B
Fig. 264.

This is to be multiplied by 8z 8y and summed for values of y from
=0 to y=~a?—2? and afterwards the result is to be summed from
=0 to z=a.

Then, V= f f Vﬂ‘_z.(a Na2—a?—y?) dx dy
Vai—zt

_/ I..a‘y (./\/a2 = V’+a2;zzsin“’~/azy_xa)l

_—.f {a m——(a’——z’)}dx

S e G

a
2
wa®

il

1_f7_r.2_
- Ol
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MOMENT OF INERTIA, ETC. 801

(ii) If we use the formula V= [ f xdz dy, integrating with regard to y

first, we have for the length of the pusm on base 8y 0z intercepted
between the cylinder and the sphere ~a?—z2—+/a?—2z* —42, until the
prism ceases to cut the sphere, z.e. from y= 0 to y=n/a?— 2%, and after-
wards the length of this prism is v/af—3? from y=n/a?—2 to y=a, and
the limits for z are from 0 to a.

Hence

V=fafm(~/a,2 _y‘z_~/a2_zz_yz)dzdy+fafuﬁ\/a—2——y2 dzdy

_/ [_/ Nai— 2 2d3/ /’Va'— Nl ”dy]dz
=j; {[y@-*-%sin—l%]o_[ykw—_;,:l

a?— 2t

+ sin™!—~

Vaaa
d
et Vil e

T ad 1rll3
fz’dz—43

(iii) If we use the formula V= f f xdy dz, integrating with regard to z
before we integrate with regard to y, we have the same peculiarity as
before, viz. that the prism is of length Va*—yZ—a?—y2—2 from z=0
to z=na?—y? and of length va?—y? from z=na?—y? 1/’ to z=a, and

~f fva' l"(s/a’ Pty -22) dy dz +f /q Nat =y dy dz,
Q!—yl
whlch as before, = ﬁ .
7G5. Mass, Moment, Centroid, etc.

If we regard the space bounded as described in Art. 760 to be
filled with matter of specific density p at each point, the Mass
of the elementary cuboid ézdy 8z is p 6z dy 6z, where p may
be either a constant or a variable. And following the same

argument as in finding the volume, we have for the mass of
the body thus enclosed,

M- mp de dy da.

766. In the same way, if the Moment of this mass be
required about any line whose equations are known, say

:vaybz—c

AT T, wr
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L, m, n,‘being direction cosines; then, if p be the perpendicular
from ,y, 2z upon this line, viz.

pPP=@—a)+(y—bp+(z—c)P—[l(z—a)+m(y—b)+n(z—c)]
the moment of the solid about this line is

mpp dzdy da.

767. To determine the coordinates of the Centroid, we have
only to translate the expressions

Il
I
wl
Il

z

into the language of the Integral Calculus. And m being
p 6z 8y 0z, we have

§=m padadyds : Jﬂpy ddyds Jﬂpz dedy ds
[[Jptwayae” " ([{pamayae” ~ [[oacayas

768. If the Moment of Inertia about a straight line be
required, and if p be the perpendicular from (z, ¥, z) upon the
line, we have Moment of inertia=Zmp?

%.e. in the language of the Calculus,

mppz dzdyds.

Thus, if 4, B, C be the moments of inertia about the
coordinate axes Ox, Oy, Oz respectively,

4 =‘”‘Ip(y2+ 2%) dz dy dz,
B =mp (P +a?) dz dy dz,
Oi= ‘Ujlp(xz +y?) dzdy dz.

769. Similarly for “Products of Inertia,” i.e. for quantities
such as

D=3myz, E=3Zmzz, F=3Imay,

we have

D= jﬂpyz dzdydz, E= Hj pzxdzdydz, F= J-pry dzdydz.



CENTROIDS, ETC. 803

770. The integration in all such cases takes the same course
as in the finding of a volume, first as regards the proper
assignment of limits, and second as regards the successive in-
tegrations (1) with regard to z, (2) with regard to y, (3) with
regard to z.

The order of integration may be changed to suit circum-
stances, the several limits being suitably changed to ensure
that the elementary cuboids into which the specified region is
divided are thereby all added up.

As in the case of finding a volume, in some cases one, or
perhaps two, of the integrations may be avoided by taking
the elementary prism, or the elementary lamina described
above, as the primary element, as was done in Art. 762 in the
evaluation of the volume of the octant of an ellipsoid.

771. Ex. In the case of a sphere, viz. 22+y2+22=a? let us find the
mass of an octant of the sphere, the density at any point being
p=kxyz.

Here M=kfffxyzdxdydz.

Z

o
Fig. 265.

The limits for z in the positive octant are
2=0 to z=vVal-azi—g;

for y, from y=0 to y=wa'-2;
for , from z=0 to z=a.
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o R
i M=k f' /V [v aandi &y di

f« /Vul-.: y[zﬂ Va“—zi—-y’
=§f’fv m wy(a®—2®—y?) de dy
__f [(az zz)l_f]mda;

k/’“ {(a,2 22) (az—z-}

=§jﬂ w(a? - 2 de
kot okt o ‘
8L 2
ka®
=%
If D be the density at a specific point, say the centre of the surface

of the octant, 7.e. where z=y=z=%, we have
at
D=kﬁ§ and M= Da3\/3.

ExaAmMPLES.

1. Establish the following moments of inertia for uniform density, #
representing the mass in each case :

2
(1) For an elliptic disc :-:+%2= 14

Mb?

about the # axis, - - - = - -
- 2

about the y axis, . - - - - - . li" ;

about a line through the centre perpendicular a®+b?
M :
to the plane, - - o N - 4

(2) For a rectangle of sides 2a, 2b,

. 2
about a line through the mid-points of sides 2b, y};
3 . . : Ma?
about a line through the mid-points of sides 2a, 5
: about a line through the centre perpendicular } Ma’ + b2
to the plane, - - - ST 3

(3) For a sphere about any diameter —— 2M , @ being the radius.

www.rcin.org.pl



ROUTH’S MNEMONIC RULE. 805

(4) For an ellipsoid of semiaxes a, b, ¢, viz.
22Jal+y2 b2 + 22 e =1,

2 o2
about the axis of length 2a, - K 4 u Mb ‘;c :
21 2
about the axis of length 2, - i o 5 X -;a !
24 p2
about the axis of length 2¢, - 4 i AR ;b i

2. Obtain the position of the centroid of
(1) the quadrant of an ellipse,

4 Lidp s L4h
Gal+yibr=1; F=gz—; §=3_;

(2) the positive octant of the sphere,
22+ yt+2t=a?; E=37=5=%a;

(3) the positive octant of the ellipsoid,
i % A ] _
2443 QloaNda i B W00 e | oY
z2a? + 2%+ 2%c? =1 ; T=g; Y=g ¥=%.

3. Show that in all the above cases for the whole elliptic disc, rectangle,
sphere or ellipsoid, the products of inertia with regard to two axes of
symmetry are zero.

Dr. Routh gave the following useful mnemonic rule for the
moment of inertia of the circular or elliptic disc, rectangle and
sphere or ellipsoid ; viz.

Moment of inertia about an axis of symmetry

sum of squares of perpendicular semi-axes
=Mass x 5
3,40rb

according as the body is rectangular, elliptical or ellipsoidal.

772. Element of Surface.
In estimating the element of surface &S cut from the surface
S by the elementary prism on base éx Jy, we may note that if
v be the angle the normal at P makes with the z-axis,
dx dy=cos y &S to the second order of infinitesimals,
for 8z dy is the projection of &S upon the -y plane.
The equations of the normal are:
X—a Y-y Z-2
$a by s

where ¢,Eg—§, ete.

Hence cos -y=____¢’

WWW.rcin.org.p



806 : CHAPTER XXII.
Then S =J‘J'—¢fﬁ_%’fﬁ——¢’—z dw dy,

when we proceed to the limit and sum the elements by
integration.

y
Fig. 266.

If the equation of the surface be thrown into the form

z=f(z, y),
and if we use the ordinary notation

L. o)
p"ax' q_ay’

this equation becomes S =”J 1+ p?+q2dw dy.

We may note in passing that the equation §xdy=dScosy
also gives another expression for the volume, viz.

V=”z da dy= |z cos y dS.
We have taken, as is ordinarily the case, @, y as the independent

variables.
If this be inconvenient, we should have

s=[[1+ &)+ ,S—;T dy dz,

or S:”«/ mf do des,

according as ¥, 2 or z, « be chosen as the independent variables.
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773. We may note that the coordinates of P, @, S and R,
the coordinates of the curvilinear “parallelogram ” bounding
48 are:

for P, «, Y, z;

for Q, z+dz, y, z+%&c;

for S, =z, ¥+ 8y, z+,§—; Sy to the first order;

for R, z+d8x, y+dy, z-|— é‘x-{-ay

QJa+dx,y, s+22 3ax)

w+dx,p+3y, :+—-6;.+ Gy)

Fig. 267.
and the projections of this curvilinear parallelogram upon the
coordinate planes are parallelograms of areas:
(1) upon the z-y plane, éx dy ;
(2) upon the y-z plane,

+| v, 2, ="l "2 1 =§:6w8'y;
0z 0z
Y, Z+a~58m, 1 0, 556%, 0
oz 0z
8y, z24+—0y, 1 oy, —4é&y, O
Y40y +3y Y Y 3y Y
(3) uapon the z-z plane,
+| 2, ll==x|o 2 1 =g%8w6y;
oz 0z
z- oz, z+a—x6m, 1 o, aé‘m, 0
oz oz
z, z+—468y, 1 0, —¢8y, O
oy % oy

and the area dS is the square root of the sum of the squares of
its projections upon any three mutually perpendicular planes
(C. Smith, Solid Geom., Art. 33).
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Hence 6;5’2=6z36y2[1 + <§—:)2+ (% 2:|,
giving S =J]~/ 1+p?+q2da dy, as before.

774. Element of Volume for Cylindrical Coordinates.

Instead of taking as our elementary volume one defined as
bounded by planes parallel to three coordinate planes, other
choices may be made. In some investigations it may be
desirable to employ cylindrical coordinates, viz. ordinary polar
coordinates 7, 6 in the z-y plane, retaining the Cartesian

z

e
&\

b

Fig. 268.

Ax

z-coordinate. An elementary prism, with this system, will be
on a base 760 ér with a height z, and to the second order its

volume is 7 89 dr X z, and the volume will be J]rz df dr, taken

between suitable limits. If for any reason it be desirable to
subdivide this elementary prism by planes perpendicular to
the z-axis, our expression for the volume will be

[[Jae ar a

Such a necessity would arise, for instance, if the mass of
the solid be required and the density be not a constant, but a
known function of 7, 6, z, when the mass of the elementary

prism is 786 3’1"‘.,0 dz, r and 6 being regarded as constants during

this integration, so as to add up all the elements of varying
density through the elementary prism before summing the

www.rcin.org.pl
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masses of the several prisms themselves. We should then
write the integral as

Mass:jjjpr do dr dz.

1'75. Spherical Polar Element of Volume.

Again, a spherical polar element of volume may be em-
ployed, using r the radius vector, 6 the co-latitude and ¢ the
azimuthal angle as coordinates.

Here the element of volume has three of its edges, mutually
at right angles, ér, » 30 and rsin 6 d¢, and to the third order
of infinitesimals its volume is 72sin @ 86 d¢ or, the difference

PP’= 37
PQ= rd0
PS=7rsin0d¢p

.

Fig. 269.

between this and the actual volume being at least of the
fourth order of infinitesimals.

Upon integrating successively with regard to », 6 and ¢ in
any order, the accumulated difference after the three integra-
tions between the volume of any space required and the sum
of these elements will be a first order infinitesimal at most,
and therefore vanishes when the limit is taken.

Hence we have for the volume required

Jjj,-z sin 0 df dg dr.



810 CHAPTER XXII.

Further, if it be required to integrate any function of
(r, 0, ¢) throughout the volume, say f(r, 0, ¢), that is to
add up all such elements as f(r, 6, ¢)7?sin 6 30 3¢ Jr, the ex-
pression for the result will be

m f(r, 8, $)725in 0 d6 dep dr,
the limits being such as to include in the summation all the

elements f(r, 0, ) r2sin 6 66 8¢ o,

which are included in the region under discussion, and no more.

776. Ex. If we apply this formula to find the volume of a sphere whose
centre is at the origin, ‘

the limits for r are from 0 to a, the radius of the sphere ;
for @ are from O to 7 ;
for ¢ are from O to 27 ;

and V= j: A v [risin g a0 agar
=[’fo" ‘%’sinedadqb

=—2—7;;la fv sin 6 d0
2’:" - co! 59] =4mal,

7'77. Blements of Surface. Cylindrical System.

In the cylindrical system of coordinates the element of
surface &S, viz. the curvilinear parallelogram PQRS, Fig. 270,
has for its projection“upon the z-y plane the polar element
r68€dr. Its projection upon the meridian plane through P is
to the first order, an oblique parallelogram of area d&r. 2—360,
for one of its sides is the change in 2z due to increase of ¢4 in

the independent variable 9, s.e. 3 “ 69, and the perpendicular

0
between this side and the parallel side is ¢r.

And the projection upon a plane through P pa,rallel to the
z-axis and at right angles to the meridian plane, is similarly

T80 g—: dr, for r 60 is the height of this parallelogram, and
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g—:&r is the change in z due to an increase Jr in 7, keeping 6

constant, viz. the difference of the ordinates parallel to the
z-axis of the points P and Q.
Hence

22 .,\2 \ 2
88— 1% (r 80+ (51 5—960) +(r 80 1) (gj) |
and taking the square root, proceeding to the limit and

integrating, %
_jjJr2+r2 ) +( )d@oh' ............... 1)
0
z
P, ",0,'
/1 “ ‘: ) r+6r,0,t+f'—f87
7,0+20 /& Q
x+—50 N
RY7+3t, 0430, 2+ 225r-+ 3250
(6) é Y x
36 5
«
£y
Fig. 270.

Similarly, if it were found preferable to take the pair z and
0 for the independent variables, or the pair 7 and 2, we should
have in these respective cases,

S_”\/fr% (gr) & )d " I (2)

and b ”J 1 +q~2 + re (89) i il (3)

To establish (2) an elemenb is taken on the surface bounded
by lines on the surface along which z is constant and 6 const.,
viz. z, 24682, 0, 0436, and projected upon the same planes as
in Case (1), the areas of the projections being

r898s, 00 (%’z" 6z) and 8 (%’ )

And to establish (3) an element is taken on the surface
bounded by lines on the surface along which r=const. and

www.rcin.org.pl



812 CHAPTER XXII.

z=const., viz. r, r+ 4, 2, 2+ Jz, and projection is made upon
the same planes as in Case (1), the areas of the projections being

20 20
A ('ra—z 8z) ér and (r;r&r) dz.
The figures are, however, somewhat troublesome, and we

shall deduce these fcrmulae from a more general result later.

778. In the spherical polar system of coordinates let the
meridian planes ¢ and ¢-+d¢ cut the surface in the curves

Z|

Fig. 271.

PQ, SR, and let the cones 0, 6430 cut the surface in curves
PS, QR. Then PQRS is our element of surface. Let the
coordinates of the points P, @, R, S be respectively :

for P, r, 0, b,
or
for Q, T+a_9‘ 89, 0+80’ ¢:
or
for S, r+a—¢ 3¢, 6, ¢+,

CA
o¢
The projections of this elementary area upon

(1) a plane through P at right angles to the radius vector;

for B, 75060+ ox i, 0436, -+5¢.
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(2) the meridian plane through P ;
(3) a plane through P perpendicular to these two planes
are respectively, to the second order,

g or A /or
r86.7sinf é¢p, rJG.(al; 6¢) and 7s8infdgp. \3—880),
and to the fourth order we have for 8S, the element of area
i or\? 2
. 2 -4 el 2 a1 =it .
88, —I:r‘sm O+ (a¢> +r smzf)(ag) ]&Gz&pz,

whence, extracting the root, taking the limit and integrating,

_”\/I:r"sm*b?—i-rz ; +rzsm29( ) ]dG ag. e (1)

779. If it be more convenient to take r and 0 as the inde-
pendent variables and ¢ dependent, elements must be chosen
on the surface bounded by 7, r+dr and 6, 0-+80, and the
resultant expression for the elements will be

83,2 rsint0 ()" 1 rasine (22) [ somer,

the areas of the projections on the same planes, as in Case (1),
being
r86. ér, (r sin 02%’87) .ré80 and (rsinf ¢30> or,

and the formula for S being

([ [reinto(GR) - oot (B) Jaoar ....c2

And in the same way, if we wish to regard r and ¢ as the
independent variables and 6 dependent, an element of surface
is to be chosen bounded by 7, r+dr, ¢, ¢+J¢, and its pro-
jections upon the same planes, as in Case (1), being

(rsinf é¢). (rg—f&r), (rggégo) .0r, (rsinfdg).dr,

we have

882 =[ risin®6 (%) + r’(g%)z-l- rasint | 391 ors
. sdl S=H\/[r‘sin39(%f)a+r’(%)a-l-rzsinzﬂ]dcpdr....(3)
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But the figures required are, as in the Cases (2) and (3), for
cylindrical coordinates somewhat troublesome, and we propose
to deduce these formulae from the more general result of
Art. 790.

780. Areas on a Spherical Surface, the Origin being at the
Centre.

Let @ be the radius of the sphere. Then, putting r=a, the
general formula

S= jj\/f‘ 8in20 --72sin20 (6()) + ri( ¢) do d¢
reduces to S =a2”sin 0do d¢p

=a?|[—cos §1d¢.

If we apply the result to find the area bounded by two
meridian arcs and some specified curve, 0=f(¢), the limits
for 0 are from =0 to 6=f(¢), and

S—a*{[1—cos (4] dg,
the result of Art.734.
Cor. For the whole sphere f(¢$)=m, and

S=2a? j: " dp=4ma?,

B

781. Spherical Triangle.
Ex. Let us apply the formula obtained to the case of the area bounded
by a great circle and two meridian arcs, the radius of the sphere being a.
Take as the plane of xz that through the centre which cuts the great
circle perpendicularly, andet p be the spherical perpendicular from the
pole upon the great circle arc. The equation of the great circle is then
_cotf
“cotp’
cosec?f dG
cot'p
(1 — cos 6) cosec?d
eot?p —cot?f
A:: A~ cos"‘g—z:—g+ sin“%‘—g
=[$1+x),
where x is the angle a meridian makes with the great circle and ¢ is the
azimuthal angle.

Then sin pdp=

and Area.=a,’f(1 —cos 6) d¢=a’f

www.rcin.org.pl
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If we take limits ¢=a to ¢p=a+4, the limits for y will be 7—-C to B
where ABC is the spherical triangle formed by the meridians 4B, AC
and the arc BC.

z
A

ly
Fig. 272.

This area is therefore a?[4 + B — (7w —C)]
=a*l4+B+C -]
=alk,
where E is the spherical excess, a result readily established in an
elementary manner. (GIrARD’S THEOREM. See Todhunter and Leathem,
Sph. Trig., Art. 127.) Other illustrations have been given earlier. (See
Art. 734.)
782. Case of a Solid of Revolution.

In the case of any solid of revolution about the z-axis
¢ varies, but 7 is independent of ¢ and depends only upon the
revolving curve generating the solid.

The general formula

S=”\/{r‘sin29 +72sin%26 (%2)2+ 72 (%)2} db d¢

now reduces to

S=jjr sin 4/r2 4 (%)2d9 d¢

=27Ir sin 4 /r2+ <%>2d6=21rjr sin 0 ds,

in conformity with the result of Art. 748.
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783. In the case of solids formed by the revolution about the
z-axis of circles whose planes pass through the z-axis, centred at
the origin, but of varying radius, r is a function of ¢ alone, and

S= J rzsm29+ ¢> dp dé.

The shape of the surface may be pictured as somewhat resem-
bling the hermit-crab shell.

Ex. Let the surface be r=ae?.
S=a? /f e \/1+sin?0 db de,
and 6, ¢ are independent,
ot (i Sl .
= e’¢]¢lJ2[~/l — % cos?@ df.

Let 0=72—r—x.
S=a—2(e7¢2—e2¢1)/‘, NT—%sin?yd,
NG ¥ i

3
=a2/2 (e - e‘Z%)'/; N1 —4sin?x dy

0 1
=a?/2 (¥ —¢¥1) E,; mod. 7
and if the area be taken from r=0, i.e. ¢,= — © to any value of r,
o 1
8=rn/2 E,; mod.:/—i- .
784. In the case of an area of a portion of a right circular

cone, vertex at the .origin, axis the z-axis and semivertical
angle a, the general formula

szﬂ\/{ﬂsmze( O 40 (20 ¢) +risint6 | dgdr

reduces to '”‘r sin a d¢ dr=8il; a-‘.[r’] de.

And supposing the area in question to be bounded by some
curve drawn upon the cone, say r=f(¢), and two generators,
we have [r2]={f(¢)}? the lower limit being »=0, and

sm a

o 8="52 (91 dg

WWW.rcin.org. pI
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785. The formula is obviously the same thing as
%J.rzd(gb sin a),

which is the area of the portion of the cone developed upon
a plane, the angle between two generators so developed and
corresponding to azimuthal angles ¢ and ¢+ J¢ on the cone,
being d¢ sin a.

786. Or again it is the same thing as
% I(r sin a)?d¢ =S sin q,
.. the area of the projection upon the z-y plane, all elements
of the cone making an angle 12" —a with the z-y plane.

As a particular and elementary case, the area cut off by a
plane perpendicular to the axis and intercepting generators of

length [ is
s—wr-’j d¢ = mal,

where a is the radius of the base=( sina and [ the “slant
height,” the ordinary mensuration formula.

787. In the case of any cone with vertex at the origin, the
equatien is of the form ¢ =f(0), » being absent from the

equation. Hence —15 =0. The general expression

Si= ”'\/{,,.4 sin%6 (%f—)z +7r24728in20 (%(?) } de dr

in this case reduces to

II?‘ \/ 1+4sin26 (%)2 dodsr,

ie. S=3 1 +sin20<§—3)2d9.

Hence, if a surface cut a cone whose vertex is the origin,
viz. ¢ =f(0), the area of the cone between two of its generators
and the curve in which it meets the surface is

% 2 {(1+sin20f2(0)} do.
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788. Ex. The equations of a cylinder and a cone are
rsin@=a and cot@=sinh .
If A4,, 4, A; be the areas of the cone from ¢=0 to ¢=B-0a, 8 and
B+a respectively, then will
A+ A3=24,cosh a. [Marg. Tripos, 1875.]

In this case - cosec?@=cosh ¢‘Z—$

Hence 72 A/1+sin? 0(3—) df= —smsg \/1 cc(::;xc:ido

= ~a? cosh pdp A1+ j;‘;’:‘ﬁ
= —a2V/2 cosh ¢ d¢p,
and S= —a?/2 [sinh ¢]. ‘
Ai+4y_ sinh S—a+sinh B+a_
Hence S = =2cosha.

789. Generalised Results. Orthogonal Coordinates.

If f(z,y,2)=X\ be any surface, it is required to find the
wormal distance between the surface and the contiguous sur-

z+0x, y+dy, 2+dz

Fig. 273.

face A+ 0\ at the point (z,7;2). Let the normal at P to the
surface \ cut the surface A 46\ at @, whose coordinates are
z+ 8z, y+Jy, 2+ 9z

Az Ay A,

The direction cosines of the normal are R where

suffixes represent partial differentiations and h2=72+\,2+72
Then projecting the broken line 8z, 8y, 6z upon PQ, we have

PQ=da =+ oy N 4502 =

NVWW. rcin ora pl
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ORTHOGONAL COORDINATES. 819

Let  filmy.2)=\ fLh@y.2)=p fizy2)=y
be three mutually orthogonal surfaces. Consider the small
element of space whose faces are the three surfaces A, u, v
and the contiguous surfaces A +6\, u+du, v+ dv.

C

’

B C
Fig. 274.

Let P be the point (A, u, v), PP’ the diagonal through P
of the element and A+ 6\, u+du, v+ v the coordinates of P
Let the edges of this element be P4, PB, PC, P’'A’, P'B, P'C’
etc, PA being an element of the normal to A, etc. This
elementary space is ultimately an infinitesimal rectangular

parallelepiped or ‘cuboid.’ Its edges are %A, %’—‘-, %, where
1 2 3

h12 =X+ Ayg +A22 h22 g ,“zz e ,uy2+ ,llz2, h32 =+ l’y2 o sz-

4 O\ S Oy
Its volume is NK

Moreover, if (I,, m;, n,), (;, my, n,), (l5, My, ), be the
direction cosines of the elements

A o &
hy' hy' kg
%l,:the projection of PA upon the z-axis
1

=the small change in 2 due to increase of A to
A6\, u and v remaining unaltered,

oy

- o\ ;

ox

hence Li=whs N

/WW.rcin.org.pl
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oA %Y o\ oA Oz

Similarly i my=z> E ™M=3x oA,

Jlu _aa; 4
h_2 lz—-a—‘” J,u, etc. 3
hence we have
oz oy oz
fur i Wyhoas | WP s

0z

ox
ly=hy Y my=h, Ny=hy o’

%y
23#'
o 9, 2
ly=hy 3 Mg=hy a—'y, Ng=hy ="

Thus J or 2% %:2) . the Jacobian* of =, y, z with regard

Wi a e | IR
i by, 'n‘ L 1
hlh2h3 lg ) mz ) hlhth
l, my, 'n,3

(See C. Smith, Solid Geomelry, Art. 46.)

Thus the volume of the elementary cuboid is =J 6X du &y,

and V, the volume of any region which is divided up into
elements by this system, is given by

V=_[UJd>\ i g

The ambiguity of sign disappears when the limits have been
suitably assigned for the evaluation of the whole volume

under consideration.
Cor. (1). In the Cartesian system

A=2, u=y, v=2, Rkh=h=h=1,
and the formula reduces to

v=([fdzayaz;

the formula of Art. 760.
(2) In the cylindrical system A=7, u=6, v=2, z=rcos6,
y=rsinf, z=2z, and the elements are Jr, 69, dz,
1
h1=1: h2=;n hs=1,

*See Diff. Calc., Art. 534.

www.rcin.org.pl
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and the formula reduces to

Vzmrdedrdz;

the formula of Art. 774.
(8) In the spherical polar system A =7, u=6, v=4¢,
r=rsinfcos ¢, y=rsinfsing¢p, 2z=rcosb,
and the elements are &r, 7 36, rsin 6 §¢, and

1 1
hl_]" hzz;, h3=m—e,

and the formula reduces to
v=|[[rsin0a ag ar,

the formula established in Art. 775.

790. Element of Surface.
Suppose the region bounded by any surface S to have been
divided up in the manner described by three families of ortho-

’

9] Q B

A > y = P

L ‘W "

Y

B R C
Fig. 275.

gonal surfaces whose distinctive parameters are A, u, v; any
pair, say u, v, with their contiguous surfaces u-+du, v+ dv, form
a tubular region within 8. Suppose this tube to cut the tangent
plane at P to the surface in the plane P’RP(Q, which may in
the limit be regarded as an indefinitely small parallelogram
element of the surface. Its area is an infinitesimal of the
second order. We may take it as axiomatic that the difference
between the area of the intercepted portion 88y of the surface,
and the area of this parallelogram is at least of the third
order, on the supposition that the curvature is finite and
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continuous over the portion considered. The area of the
parallelogram P'RPg is readily found from the fact that the
square of any plane area is the sum of the squares of its
projections upon any three mutually perpendicular planes
(C. Smith, Solid Geom., Art. 33). Let the cuboid element of
the u-v tube, for which PP’ is a diagonal, be constructed as in
Art. 789, with P4, PB, PC for adjacent edges through P and
P4, PB, PC for opposite edges through P’ (Fig. 275).
Let QN and RM be drawn at right angles to PA. Join C'N
and B'M. Thus the parallelograms PBA4'C, PQB'M, PRC'N
are the projections of PRP'Q upon three mutually perpen-
dicular planes. The areas of these figures are respectively

PB. PO PCYPM 'PB.PN, ‘
and it will be observed that PN=RC'=MA, 1.e.
PM+{PN=PA.

Now, as we have taken f,(z, ¥, 2)=\, fo(%, ¥, 2)=u and
fs(%, 9, 2)=v, We can express &, ¥, 2z in terms of A, u, v, and the
equation of the surface S may be expressed in the form
F(\, u, v)=0 by substituting for z, y and z these values. In
fact A, u, v form a new system of coordinates; and of these
we are regarding u and » as independent and A depending
upon them. When u and » change to u+d8u and v+ dy, the

total change of A is 8>\=27): 6;4+%i§ dv to the first order.

Now, in our Fig. 275, PM represents that part of P4 which
depends upon Ju, and M4, that is, PN represents that part of
P4 which depends upon dy, %.e.

1 oA 1 oA

}Tl 5— 6,‘4 and PN=-— 1 —a;’

the two making up the total length of P4, i.e. (};:
We thus have, to the fourth order,

8S\2=(PB. PC)+(PC.PM):+(PB.PN):

- )@ R me) G iR

or 38y [hﬂ-l-h a") +ht(2 )]h%%

PM= d,
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Similarly, if wé had taken », A or A, u as the independent
pair of parameters and constructed the corresponding tubes,
we should have had

L (4G 05

88,2 et +-hyt (20) A2 (2 ) h‘ji‘;‘i’,tz

and any of the three surface elements ¢S,, 8S,, 88, intercepted
by u-v tubes, »-A tubes or A-u tubes respectively, may be
taken as an element of the surface for integration for the
whole.

Thus we obtain, when we proceed to take the square root
and integrate,

8o '(»\ oA\2du dy
H‘/" e (3 +"2( )hlhh
o ou\2dvdX

_ﬂ\/h +h 2( ) e (3 hohoiy

or\2dA du

[ ) e G it

791. Cor. 1. If the Cartesian system be taken,

A=z, p=Yy, v=2 h=h=h=1,

and the elements are dz, dy, 6z, and

s=[[N1+(5) +(5) dvds
~{f JW dz da
”\/ A b az dm dy,

viz. the formulae of Art. 772.

Cor. 2. If the cylindrical system be taken,
A=r, wp=0, v=2

g=rcosd, y=rsinf, 2=z,
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and 'r,.9, z form an orthogonal system, the elements being

ér, rd8, 6z and h=1, h2=%, hy=1;

s 2

88,2=(r 00 . 82)* +(62)* §-’; 38) +(r807 (3, 52)
20, \? 6 .\

6So 2(82‘67')2"'(3,")2(,,‘562 +(6Z)$(’)”§r‘ 8”') )

2
88.2=(8r .7 39)2 +(r 80)? (% o) +Gry 'c?_; 80) 4

according as 7, 0 or z is the dependent variable, giving the

formulae S=” ( e (Z—:)zde g
e ”J 1 +7a(g_z)z+ r’(%%)zdz dr
iy “\/ru o (%f g (%)z&r @,

which are in agreement with those of Art.777.

Cor. 3. In the spherical polar system,
A=r, p=0, v=¢
and z=rsinfcos ¢, y=rsinfsing, z=rcosh,
and 7, €, ¢ form an orthogonal system, the elements being
1

or, 789, rsinfdp and k=1, h2=%‘, h3=75_iﬁ;

whence
38,2=1250% . 72 8in?0 6%+ 12 sin?Q gt (— 8)

12892 (a— 59)"
88,=r25int0 842 o1 +ér8 (r a¢)

+r25intg 52 (r 2] 8 or)”
85,2=3r2 13502 47362 (rsin 6 o aq-)

+Jr? ('r sin 0 69)
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giving the formulae

s-_-” \/r4sin6 -+ 12 sintd (g—;)zwa (%)”do dg
“ ‘U\/ 7 8in20 412 (gg)”ﬂ* sin?0 %)'dqb dr

=‘”«/'r’+'r‘ sin?0 (g%)’ +1%5in20 (g‘—f’)’dr de,

according as 7, 6 or ¢ is taken as the dependent variable,
formulae in agreement with those of Arts. 778 and 779,

792. CHANGE OF THE VARIABLES. Form of Element of
Area.

Supposing the coordinates x, y of any point in the plane
of x-y to be expressed in terms of two new variables u, v, let
us consider the nature of the figure bounded by the four
curves obtained by assigned values of u, v, viz.

w, u+ou, v, v+dv.

Let the figure thus bounded be PQRS,

du being zero along PS8,
&v being zero along PQ.

Fig. 276.

The several Cartesian coordinates of the four corners are,
to the first order,

for P, o, Y5
o %Y.
for Q, w-}—a—u&u, y+a—u<¥u,
o %Y.
for S, x—}-a—vév, y+5—vév,

for R, w+%8u+%6v, y+% 6u+%yav.
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%y du,

The direction ratios of PQ and SR are — Bx w, =

ox oy
and of PS and QR 556'0, 55611.
Hence the chords joining the corresponding points are such

as, to the first order, to form the four sides of a parallelogram
whose area is

w2y a(a, y)
5 3w du dv or 5u, )8u6
ox oy

v w

This then is, to the second order, the area of the elementary
curvilineal “parallelogram” PR, the difference between this
area and that of the chordal parallelogram being at least of
the third order of infinitesimals. Hence, taking the limit and
integrating between any assigned limits, for w and v, we have

Area,—” (@, y)du dv:”J du dv,

where J is the Jacobian of x, ¥y with regard to » and v.

It will be remembered that if J’ be the Jacobian of w, v
with regard to @, y, we have JJ'=1 (Diff. Cale., Art. 540).

And in cases where w and v are already expressed in terms
of x and ¥, instead of , y in terms of w and v, this rule will
often facilitate the calculation of J.

Similarly, if we wish to integrate any function of « and y,
say f(x, y), over the area considered, 7.e. to find Zf(x, y) 64
where §4 is an infinitesimal element of the area, it is only
necessary to express « and ¥ in terms of « and v, and then to
transform the function f(z, ¥) so as to express it as a function
of w and v, say F(u, v), then to multiply it by J éu v, and
integrate, the result being

j F(u, v)J dudv.
793. Illustrative Examples,

1. Find the area of the Carnot’s cycle bounded by the isothermals
2y =, ZYy=ay, and the adiabatics zy?=p,, zy¥=p,.
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Putting 2y=u, 2y¥=v, take an element of the area bounded by the
curves u, v, u+0u, v+0ov.

, |ou ow
Here J=§‘”,a—x=."l, 9

ou y-1
a, f‘a; Z, YyxY

=(y-1) zy¥=(y-1)v;

» = 1 u].
. J-——_—l ;,
F
(o]
4 Fig. 277.
g bl LT |
and Area required = f f — * —dudv

2y 317-—1 v

=%10ggf. (See page 63, Ex. 28.)

2. The portions of the curves zy=a? 2*—y*=0b% which lie in the
positive quadrant, are drawn intersecting at B. The former intersects
the asymptote of the latter in C, and the latter meets OX in 4. If every
element of the area OABC be multiplied by the square of its distance
from the origin O, the sum will be equal to $a2b%. [CoLLEGES a, 1884.]

794. CHANGE OF THE VARIABLES. Form of Element of
Volume. :

Again, let the coordinates z, y, z of any point in space be
expressed in terms of three new independent variables u, v, w,
the surfaces w=const., v=const., w=const., not necessarily as
in Art. 789, forming an orthogonal system.
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Let us consider the nature of the figure bounded by the
six surfaces obtained by assigned values of u, v, w, viz.

w, w+dw, v, v+dv, w, w+dow.

Let the figure thus bounded be PQS'RP'Q'SE/,

du being zero over the surface PRQ'S,

év being zero over the surface PQR'S,

dw being zero over the surface PQS'R,

Fig. 278.

Fig. 278.

The several coordinates of these eight corners are, to the
first order,
for P, ) @, Y, 2,

for Q, m+gm—uau, y+% su, z+ g—fLSu,
for R, w+g%av, y+%6’u, z+g—z6v,
for S, w+%6w, y+;—y”8w, z+,§—zw6w,
for @, w+g—2 8v+éa—::08w, ete.,
for R/, m+§%6w+%8u, ete.,
for S, a:+%l—% 8u+% dv, ete.,

for P, w+% 6u+%m— 6‘11+%%8w, ete.

www.rcin.org.pl
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The direction ratios of PQ, RS, Q' P’, SR’ are
ox oy oz

6u, B du, 0 ou;
those of PR, QS’, R'P’, SQ’ are
., Oy, Oz
%61), %Sv, -
and those of PS, R, S'’P’, QR are
0z

6’!0, 3—56

ov,

x oy
o000 By

Hence the chords joining the corresponding angular points
are such as, to the first order, to form the eight edges of an
oblique parallelepiped, whose volume is

% %y oz

' Be Ee T

oy % _o®y2 .,

% o0 =30, v, ) " S0 .
o oy o

ow' ow’ ow

This is, to the third order, the volume of the elementary
solid PP, the difference between this volume and that of
the oblique paralielepiped being at least of the fourth order
of infinitesimals. Hence, taking the limit and integrating
between any assigned limits for , v, w, we have

V= Haa((: g’ :p))du dv dw—j”J du dv dw,

where J is the Jacobian of #, ¥, z with regard to %, v, w; and,
as noted in Art. 792, it is to be remembered that if J’ be the
Jacobian of u, v, w with regard to z, y, 2, we have JJ'=1
(Diff. Cale, Art. 540). And for cases where u, v, w are
expressed as functions of z, y, 2, instead of , y, 2, in terms
of u, v, w, this rule will facilitate the calculation of J.

795. Ex. Find the volume enclosed by the six hyperbolic cylinders
yi=a,  yi=ay,
w=by,  aw=bp,
zy=cl,  FY=qt
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Putting yr=u, x=v, IY=w,

J'=[0, 2 . y|=zay+ymx=2Vuow;
g 1 O Mg
3/, 9

— _4(a, —a,)(by—b,)(cg—¢y).

‘*’dudvdw
2 a2 .A

1 Jos

796. It follows that 1f we wish to integrate the function
f(z,y, z) throughout the volume bounded by surfaces specified
by two specific values of u, two specific values of v and two
specific values of w, 7.e. to add up all quantities of the form

f(x, y, z) X an element of volume at z, ¥, 2,
we have only to express z, ¥, z in terms of w, v, w, and sub-
stitute these values for z, y, z in f(z, y, 2), obtaifing, say
F(u, v, w), as the transformed function. Then taking, as
before, the same element of volume, viz. J dudvdw, the
integral required will be

” F(u, v, w)J du dv dw.

797. Thus, if we wished to obtain the product of inertia with regard
to the y, z axes in the above example (of Art. 795), each element of mass
pJ 8u 8v 8w is to be multiplied by yz, 7.e. #, and assuming a uniform volume

density p, the product of inertia required is j / f pud dudvdw, or
Efff — du dv dw=4%p(a,®—a,®) (b,— b,)(c;—¢,)
=3 (a22+a,a2+a2*),
where M is the mass of the solid in question.

798. If we wish for the z-coordinate of the centroid of the solid,

F2me ff pad du dv dw f[f o ‘i“j:viv
s f”deudmzw U @_:d@_

28 uvw

dud dv dw
jf _ (loga, —loga,) (b — b,%)(cs — ;)
ff du Jv dw 8(ag—ay)(by—b,)(c;— 1)

lM&zﬂQ s (%),
G

and similarly for other integrals.

w R e Co
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799. We consider next the case in which the three co-
ordinates z, y, z are expressed, or expressible, in terms of two
independent parameters u and v, and therefore the point travels
upon a definite surface. Consider the four points P, @, S, R
on the surface defined by the values

(u,v), (u+du,v), (u, +6v), (w+du, v+4dv),

te. Y, 2
o oy DA
x-}——a—uSu, y+a—ué'u, z+a—u6u,
z+a—x&), y+g—vy8v. z+%6v;

z+ 6u+ 8v y+ay8u+ y&v z+ 6u+ on.
v

i Fig. 279.
The direction ratios of PQ and SR are each .

ox oy oz

a—u&u, a—uﬁu, Su du,
and those of PS and QR are each

ox oy oz

3_1) 8’0, 5”— 8’0, 570 6’0,

and to the first order PQRS is a parallelogram. Let its area
be §8.
The coordinates of the projections of P, @, S, R on the plane

of z-y are 2
@ @ y), (w+a—u8u, y+a—z<su), ete.,

and the area of this projection is

o o or oz,
o+, y+ o, 1|e=|Z, X 3uav—ag ’y;&wv
% o %y
x—l—av&v, y+ Otm il 53y

x, Y, i
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and similarly its projections upon the other coordinate planes

are 9(y, 2) (2, )
O(u, v)s Ao o(u, v) 6 o

whence its area &S is given by

_[o(y, )P 9(z, z) (z, y)
asz_[g(m} Burdut+| S v)] ou 23v2+[a(u )] Sudue.

Hence, proceeding to the limit and integrating,

“”\/ [ {5 +{Se D auds

ie. ”\/Jz-i—J2+J2dudv
oy, 2 "
where == agz v; Jy=ete., J;=ete.

Also if the surface integral of any function f(w, ¥, z) be
required, f(z, v, z) is to be expressed in terms of u and v,
as ¢(u, v), and the surface integral required is

j ¢ (u, V)T 2T 2T 2 du dv.
If we write

E=C) +@)+(E). F=S T A A 2

o~ )+

we have, from the algebraic identity,
(mn’ —m'n)2+ (0l — w12+ (Im'—Um)2+ (I +mm’ +nn' )
s =(lz+m2 +n2) (l’2+ m’2+n’2),
J 24+ J 2+ J 2= EG—F?;
*. the surface integral may be written

”¢(u. V)W EG— F2du dv,
as shown otherwise in Art. 744.
800. Results connecting ¢V and §8S.
If 88 be an element of the area S of a surface, and P be the
perpendicular from the origin on the corresponding tangent

plane, we have for the volume of the cone whose vertex is at
the origin and base S, 1P §8S.
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Hence the volume of any region bounded by a given surface
and a cone with vertex at the origin, and generators passing
through the perimeter of any closed curve drawn upon the

face, i
surface, is V=%IPdS;

or, which is the same thing, if /, m, n be the direction cosines
of the normal to the element §S, so that

P=lz+my+mnz,
is the equation of the tangent plane, we have

V= %J(lx +my+mnz)dS.

801. If the equation of the surface be written as z=f(z, y),
the equation of the tangent plane at z, y, 2 is

Z—-z=p(X—2)+q(Y —y),

oz oz
where P=3 =’¢3_y’
and the perpendicular P from the origin upon it is
e ek
/] +P2 +q2'
Hence the formula for the volume, viz. %_‘.P dS, becomes

1
3 j(pw+qy—2) dz dy,

N

for oz dy =48 cosw=m,

where cosa, cos 3, cosy are the direction cosines of the normal,

ie. V= %“[pz+q3/ —f(z,y)] de dy.

802. Let the inward drawn normal at a point P on a surface
make an angle y with the radius vector from the origin, and
let p be the perpendicular from the origin upon the tangent
plane at P, r the radius vector from the origin to P, and §S
an element of the surface about P

Then £=cosx, and the formula for an element of volume

forming an elementary cone with vertex O and base ¢S, viz.
3p 88, becomes }r cosy 5.
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Hence we have another expression for the volume bounded
by any curved surface and a cone whose vertex is the origin
and passing through the perimeter of the region defined by a
given closed curve drawn upon the surface, viz.

V=ljrcosx as;

3

Fig. 280.
or again, seeing that this element of volume is

" sind 80 3.
yo s,
we have 0S= o 636 ¢

and 8 =J‘J‘;’—s sinf df d¢.

803. Ex. Find the surface and the volume of the solid formed by the
revolution of the cardioide r=a(1+cos @) about the initial line.

Fig. 281.
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Here X=g, p=rcos x=2acos3g-
L 217.3
§= —sin 0d6 d
[ o

L Jufyl
(2a) Jo

=9r. cosag-2sin Qcosgd()

2

1 i 0
$ud 2 e
16wa/; cos' 2sm2d9

=16ra? [ - g cos® g]; =32ra?
Also Vo f f f r2sin 0 d de dr,

the limits for » being 0 to @(1+cosf),
¢ from O to 2m,
6 from O to .

Hence f’=gﬂ—a3f'(l +cos §)3sin 6d0
3 Jo

3 Lk
J% [_WJ —§ra®. (SeeArt.751, Ex.3)
0

804. Tetrahedral Volume.
An expression for the evaluation of a volume for a surface
given by a tetrahedral equation may be obtained in the same

Fig. 282.

way as that adopted for an area in areal coordinates (Art. 461).
For let V, be the volume of the tetrahedron of reference,
and let a, 3,7y, 8 be the tetrahedral coordinates of a point P,
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and z, y, z be their Cartesian equivalents with reference to
some given rectangular system of axes; then z, y and z are
linear functions of @, 8 and vy, for we have a+B8+y+d=1.

Hence V=”]dz dydz=K J.‘Uda dpdy,

where K is some determinate constant (Art. 794).

To determine K, apply the formula to the fundamental
tetrahedron itself. If we integrate first with regard to a for
the tube bounded by two given planes 8 and B8+4J8, and
two planes y and vy + dy, keeping B and y constant, the
limits for @ will be from the point at which this tube cuts
the plane a=0 to the point in which it cuts §=0, s.e. from
a=0 to a=1—B—y. Then we have

Vo=EK[[0-8—y)ap dy.

Next, integrating this with respect to 3, keeping y constant,
the limits for B will be from 8=0 to the point where a=0
and 6=0, 7.e. where B—l—y, a,nd

—as)2

VO_KI 5———7,3 4 72 KI(I Wy,
X
6

Lastly, integrating from 'y=0 toiy=1, Vo=
Hence K=6V,; therefore the formula is

V=6V,,m dadf iy,

805. Surface generated by the Revolution of a Tortuous Curve
about an Axis. =

Let a curve of double curvature revolve round the z-axis;
it is required to find the surface generated.

Let PP’ be the element ds of the curve.

Let revolution about the z-axis be made through the angle
d@, and let the perpendiculars PN, PN’ turn into the positions
PN, -P/'N:.

Then PP, =NEB:d9;

PR '=N'P d9=NPdo
to the first order, and NP =4/22 442, and the area of the ele-
ment PP, PP is NPdf.ds sin x to the second order, where x

WWW.rcCin.o
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is the angle between PP and P, P/, i.e. between directions
whose direction cosines are

de dy dz —y z
ds’ ds’ ds sad Vet Je+y? 0

Hence cosx= (x %—yj—:)/\/ﬁ—-l-yi

2
and sin x = «/(w2+y2)— (x%—yz—:) /A/$2 +42
2
N

N Pr

@y

A2

“d
Fig. 283.

Hence Area of element PP, PP’

Gy B b
=Jz2+y2d0de2+dy2+dzz,\/(z2+y’)—— x%%—y%) /Jz2+y3

=dfJ(2?*+ y?)(da® + dy? + d2*)— (x dy —y d)?
=d0V(zdr+ydy)?+ (@ +y?) d22

Hence, for a complete revolution the area traced out is

27_‘-J {(xdz+y dy2+ (22 +y?) d2%,
or in cylindricals, (p, ¢. 2).

=2wj'p JIP TR

WWW.rcin.org.pi
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That is the area of the surface described is the same as
would be traced out by a rotation about the z-axis through
the same angle, of a new plane curve constructed by first
swinging back each point of the tortuous curve from its
actual position without alteration of its distance from the
axis of rotation into a corresponding position upon the initial
plane.

And if ds’ be an elementary arc of this new curve,

ds'?=dp?+dz?,
and therefore Area= 27rJ- pds'.

806. Ex. Let us employ this formula to find the surface of a hyper-
boloid of revolution included between two planes perpendicular to the

z

4 a/ x

Fig. 284,

&

axis, the surface being regarded as generated by the revolution of a

straight line about the axis, which we take as the z-axis, the line making

a constant angle with the z-axis and not cutting it. The equations of the

line are x=a cos § —ztan asin 6,

y=asin @+ztanacos 6.
Hence 22+ y?=a’+22tan’a

and zdz+ydy=zdztania;

S=27rf\/z"’dz2 tanda+ (a® + 22 tana) d2?
=27 f Na?+ 2% tan?a sec?a dz

=27 ta.naseca.f\/zz+azc—oﬂ'dz

sinfa

www.rcin.org.pl
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Hence

TR 2 0ot : P

costa  a?costa . zsina )%

S=mtanaseca z'Vz’+a,2 =g = —mth A T ] 3
sinfa. ' sina acosia

807. Case of an Annular Element of Surface. Surface of the
Ellipsoid
a,2+ =1 (a>b>e).
Legendre’s Formula.
The equations of the normal at z, y, z are
X—2x Y-y Z—2
R
a? Iz c?

and its direction cosines are 2% s ’Ib)g/ o where p is the central

>

perpendicular upon the tangent pla,nes at x, y, 2, viz. such that

P S ol
pZ—a4 ,b4
z]
c
s :
ss

o 4

Fig. 285.

Let a cone be drawn whose vertex is at the origin 0, and
cutting the ellipsoid at all those points at which the normal
makes a constant angle 6 with the z—axis Its equation ig
22 z2

pz
t_=cosf or
c? at +

Acos?d
Let S be the area of the ellipsoidal cap cut oﬂ‘ by this cone.
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If we eliminate z between the equation of the cone and the
equation of the ellipsoid, we obtain the projection of this
curve of intersection upon the plane of zy, viz.

sec2d . oy

c? <1_ﬁ_b_2) b4+ < Eg_'b-z')

or ey ;:20 (a?sin?P +c? cOsi‘(‘)).}.b4 T (b2 sin26 +¢2 cos?f) =1,
viz. an ellipse of area

A ralb? 8in%60

Ja?sin?0+¢2 cos?0 /b2 sin?0 + ¢® cos?6

If we increase 0 to 0443, we increase S and A respectively
to S+4JS and 4+464. Now ¢4, the difference betvgeen the
areas of two ellipses, is the projection of §S upon the z-y plane.
And when 40 is indefinitely small, all elements of &S cut off
by contiguous meridian planes make the same angle 6 with
their projections, which are the corresponding elements of d4.

Hapon 64=488cosf® and 6S= (‘:i?—AG'
and taking the limit and integrating
a4
o cos@’
To effect the mtegratlon of dAo,we shall change the variable.
We have
sin20
Y vl sin .
4 Ja2—(a?—c?) cos?0 /b2 —(b:—c?) cos®d
Put cos 6 =\/(I,_:L—-—C¥Sin ¢= :—;2—3 , where c=a cos y.
_sin%¢p
in2
Then A =ma?b? i ‘y

ot
@ Cos ¢ . le B i s1112¢
_ mab _ sin’y—sin¢
~ siny cos ¢p/1—k2sinZg
82 mab smzy__sLn?i) TP, S a2(b2—c2)
sin®y  cos A b*(a2—c?)
which is <1, and A%2=1 —k2sin2¢.

www.rcin.org.pl
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And  dS=sin ysiA¢

Wi A cos ¢

it d ¢+ sin’¢

LS OTIEA A, Tab smz-y—smz¢ cos ¢

ok ol ot ¢ i "sin®y Acos¢  sin’g ¢:|

. abil d sm’y—sm%p) sin?y—sin2¢
T sinyl (A sin ¢ cos ¢ oA sin®¢

= Tab i d sin?y—sin%¢)\ = sin?y d __d_ﬂ
siny L Asin¢cos¢ Asin2¢

c s2
Now d¢(A cot ¢p)=— 2 s1n2¢
_—Ic2+1—A2_ 1 k2 sin’p
i A Asin’g
T 1
" Py
Hence
_ wab in%y—sin%¢
dS_sin y[d A sin ¢ cos ¢

4sin?y { <£—A) dp—d(A cot ¢)}-‘%’]

_ 7wab sin?y—sin%¢ i
“siny ¢ (Asm¢cos¢ A YOOt(P)

—sin?yA d¢p—cos?y %]

_ mab tang e s ., e

i T d{—A (1 —k?sin%¢p sin®y —1—k2sin?y)
2(h2_ p2 2__ a2

where 1—k2sin2y=1— a?(b*—c?) a®—c® 2

b2 (a2 — a,’—c*) BV el
and the limits for 6 are 0 to = 5 for the upper half of the

ellipsoid, and the consequent limits for ¢ are y to 0, and
double to take in the lower half of the surface.

www.rcin.org.pl
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Thué for the whole surface

_27rab ta.n(/) R R T M _p_a ]0
—-'Sill—y[ A (l—k sin (,b.SlD ¥ b2> L

+2:7rab sinz'yJ’v A ol<l>—i—cos"‘-yj'v (%]

sin vy

=2m¢ 2-{— [sz.y E(y, k)+-cos?y F(y, k)],

where cos y=&, a form due to Legendre.*

808. Cg,ses.
In the case of the oblate spheroid, a=b, k=1, and the
elliptic functions degenerate,

.

E becoming J-v V1—sin?¢ dp=siny

and F becoming j d;”q’—log tan (2 - 4)

l:sm3 v+ cos?y log tan (% + Z)]

giving N 27rc”+

__27ra2+ log tan (‘y )
and for the prolate spheroxd b=c, k=0, E=y and F=1, giving

i (1 tain Y COS 7y
2mrac

sin y
809. Another Method for the Surface of an Ellipsoid.

From the formula ;S=jL dA
) cos 0
we may deduce another form of expression for the area of an
ellipsoid. Substituting the value of d4, we have

1 1
dS: 2b2 d .
T cos O N(a®+c? cot?0) (b2 + ¢ cot?6)
~/7\ '

Put.cot 0=—~=

or (y+sin y cos y).

*See Serret, Calcul Intégral, pages 338-342 ; Legendre, Exercices du Calcul
Intégral, p. 193.
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Then
dS _JA+c® 1
2 V(@@ + ) (B*+N)
o J’Wc‘z[ o iy dx
A LT ER 2@ RN
dax
=BE LT a2+7\+b2+>\>2J7\(a2+>\)(b2+>\)(c2+>\)
L. o ) dX
oy a2+7\ bz+7\ N WA (@) (BP+N)(E+A)

i 1 1) AdA
2 a2+7\ b2+>\ AN A IX(@2FN)(BEFN) (2N
and the limits of integration for the upper half of the ellipsoid
are =0 to 6——, 2.e. A= to A=0. The result must be
doubled to lnclude the lower half of the surface.
1 Bt 'y VX dX
Now j a2+>\+b2+)\+02+>\_X)J(a2+7\)(b2+k)(cz+7\)
Pl A
0 d>\ (@) (B2 +N) (E+2)
2N g
=—2 =0
I;/(aﬁ-{—7\)(1)24»A)(cz—l—)\):L
(See Art. 363, Ex. 5.)
dX b
2
Frbe I ( 2+x+bz+x+c2+x) INEIN BN (ETN)
for the whole area of the surface of the ellipsoid.

Hence

810. We now revert to the consideration of the generalised
system of orthogonal coordinates discussed in Art. 789.

It will be remembered that we there obtained expressions
(:Z\ %’u ;S—y in terms of
partial differential coefficients of x, y, 2 w1th regard to N, w, v

We may also readily express the same direction cosines in
terms of partial differential coefficients of A, u, v with regard
tox, vy, 2.

for the direction cosines of the elements

* Mathematical Tripos, 1896.
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S\ J,u v

Regard A’ h 71.‘ as the directions of a new set of three

coordinate axes OA OB, 0C.
Referred to such axes the direction cosines of the original
axes are: for Oz; U, 1, Iy,
for Oy; m,, my, my,
for-0z; \ny, my, Mas

(L)
Fig. 286.
then [,6x is the projection of §z upon 04
=a small element on O4 due to an increase of

Z to x4 dz, ¥ and 2z remaining unaltered,

_1loa,
Th ax e

£

Similarly i 6z—‘h— ai‘ sz and ls&t“‘}T 2 5,
1 9

m, 0y = T 3y 6y, ete. ;
and we have the system of equations
S N L G .
e LR Ol h
iagsjponalih by gjj ks epiogy
b g Py by
WL e v O
8 Phg 000" 8" hy Oy’ _h oz
whence it follows that J’, z.e. M,
oz, v, 2)

=hhshg | L, My, My |=hihohy,
ly my my
by mg my
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which might have been anticipated from the theorem JJ'=1
(Deff. Cale., Art. 540).

We thus have the following relations between the several
partial differential coefficients, by comparing with Art. 789, viz.
h20%_0ON 450y OA 29‘”123_)\,
2N &’ MON oy’ 1OoN o2

o Ou 2%=_ail. B2 202 ’9,_4,
T’ *ou oy ®ou 0z
hzax o g0y D .02 _Dv
32u 0%’ 3 % oy’ b v o7’
"1 =>\z2+>\y2+>\z2=h14(m)\2+yl\2+zk2),

h2

and ’—Ll—zzxﬁ + i 422
1

Similarly I}—?=zﬂ2+y"2+z“2’
o

l?: v2+yv2+zv2-

811. It is plain that the areas of the three faces of the ele.
mentary cuboid which lie on the surfaces A =const., u =const.,
v=const., are respectively

Sudv dvoA  SASum
h2h3 . h3hl ; hth 7
and that the infinitesimal distance between z, v, z and z+ dz,

y+ 8y, z-+0z, viz. the diagonal through P of the elementary
cuboid, is

682=8w2+6y2+6z2— +h2+h 3

[See Todhunter, Functions of Laplace, Lamé and Bessel, pages
210-233 ; also E. J. Routh, Anal. Statics, vol. ii., Arts. 109, 110.]

812. Elliptic Coordinates.

The most remarkable case of these orthogonal surfaces is
that of the three confocal conicoids, (@ >b>c),

z2 2?

a”-i—)\_{_bz +c”+7\ L az—}-,u.++=1’ cz_z—ﬂ++=l’
viz. an ellipsoid, a hyperboloid of one sheet and a hyperboloid
of two sheets respectively, so that A is & —¢? u between
—c? and —02 and v between —b? and — a2
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To express z, ¥ and z in terms of the parameters A, y, v, we
resort to a well-known algebraical device, viz.

Consider the equality

e 9 —14 A=0)(u—6)(v—0)
2rotErot aro- L Teroerro@roy W
where «,y, z have the values obtained from the above equa-
tions. This is either an equation to find 6, or it is an identity
true for all values of 6.

If an equation, it is of quadratic nature; for 6% disappears
upon muitiplying up by (a2+6) (b>+6) (c*+ 60). Hence it
could not be satisfied by more values of § than two. This
equality, however, is obviously satisfied by 6 =), 6 =u and
0 =y, 1.e. more than two values. Hence it is not an equétion,
but an identity and true for all values of 6.

Multiply then by 6+ a2

o e Mg LU A—6)(u—6)(v—6)
#=(1-m'p c2+6) @+0)+ "t 6y(c2 1 )
In this identity put 6=—a?; hence

QA+ @) (uta?)(vta?)
(@ =% (@*—c?)

Similarly = (7\+( ::) (ZZ;bb:) (;;)F )
and (7\—12 cc:)( :z_);.( ;,-:)(Z:)_ &)

Hence 29,,8_)\ ((:2+ Z:)) ((;/2-{-_ t:; azi ?
that is 2%=F%\'

40 [ (] 2
and similarly 2 a—;{ = l%’ 9 AEIN
Again, if we differentiate the identity (A) with regard to 6,
we obtain another identity, viz.
z* G (A—0)(u—06)(v—0)
@O Lo @ T OO

1
x[x—9+,‘—9+u~

9+a2+0+b2+0+02+0]’
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and putting 6=A in this result,
G+ @+ &) e ey

. i Ay
™ o =T

where Ay = (a2+N)(b2+A)(c2+N), A, =ete, A, =ete.
Hence
1 2 e
hl T h Y '_A )
J@—Axx 0 g RS -
2 afgh
hy=——o—/—A,.
I Py s
We thus have for an expression for a volume divided up
into elementary cuboids defined by the faces of the three
confocals A, u, »,-and the three contiguous confocals

A+6N, wt6wm v+oy,
_[fferdudy (e—»)(v— >\)(7\ i)
V-H 8H d\id gy

hyhohs V=B84
813. In case of integration throughout the volume contained
by the ellipsoid, @ P P
atETE™

the limits are: for A, from A=0 to A=—c¢2;
for u, from u=—c? to u=—"0%
for y, from y=—"0% to v=—a?

814. If any function F(z, y, 2) is to be integrated through
any specific region bounded, say, by confocals A;, Ag, py, s,
vy, v, We must convert F into a function of A, u, v by sub-
stituting for z, y, 2z their values, obtaining, say, F (A, u, ),
and then the required summation will be

(r—r)(r—A)A—p)
8 M-[HIVLF (>\’ = V) "/_AAAFAV

815. For instance, if the function to be integrated be

d\ du dy.

V—A\ALA,
F“N””*wu—»u—xxx—m*““
we have I—= J. J >\,u,v d\ du dv
M Jprdn

= 3‘10\2 >\12) (w 22"#12)(1’22_ Vlz)'
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816. Tn particular we may gather from the known volume
of an ellipsoid, viz. g§wabc, that the value of the definite
integral

Y () (=N A —p) ;
2= Cdhdudy is abc.
.fo .[—0'.“-6’ ‘/_AAAMAV g 3117"

817. The elements of surface of the three confocals at a
point of intersection are respectively

TOROVe 75 Nir—A)A—nu)

dSl iy h2h3 =3(u—v) —s/A,L—A.," ’
0N WA= (=)

s, — % =1(v—2) e
&, Weme=N),

d‘Ss“ hlh2 =1(A—n) I,

818. We may thus, for instance, express the area of any
portion of the ellipsoid A=0, bounded by confocals w;, u,,

Vi Vg, 88 2 T et i My
,s:d "' ("“")‘/—A,,A,d"d"'

KrJv1

819. The distance s from A, u, v to A+0\, u+du, v+dv is
given by 852 = S+ Sy + 62
_d b, 8
o T U PR

=i[(”—_7‘:)(27_!‘_)3x2+ +]-

And
= S sod 5§ v VA ) Vi~ 4
s=%j[<x ”A)AO\ ) iy & 2(: A) gy It xgi ®) dyz]

In the case where the line lies on the ellipsoid A=0,
8____%.‘.{#(12“ V)d,u’+ "("Ayll)dvz}é.
And when the curve on the ellipsoid is further defined by
a relation between u and v, further reduction may be effected.
For instance, along the line of curvature which is the inter-
section of the intersection of A =0 with u=-const.= u,, say,

_ 1 fv(v—mo)
o=z | VTR

vy v
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or writing
vt ar=w? potai=d? al—B=b? a’—c=c?,
(@ =b o)
for the length of a specified arc of a specified line of curva-
ture upon the ellipsoid.
820. If we write

A+a2=klz, y.—l—a2=,u.12, V+a2 Vl >

A+ D=2 2—b2 utb2=p2—b2 v+ b=y2—-0p2

A E=A2—c? ut P=ul—c? v+ F=pl—c?
the conicoids become

2
AI+A 2y 2+>\2

we have 8 =j

2 a?
1; ;;"" b 2+
2 22
2+2y“+

=1,

Zef ——c’

ey
and we have a certain amount of simplification of the
formulee, but with a loss of symmetry.*

Thus we obtain

A A=) (= b)) (m—e,?)

o
2o R (b Ly )b 2
e D) = ) (i—0r®)
(¢2—b.2) c?

—b%) (7\12_012)(#12_b12)(012_,“—12')@—1i: w)(et—?)’
and for the volume of the ellipsoid
2 22

ok ey IO
AT A2—bp T ap—op

V—;Hjs/(h o D6y A DO ,) Ay €0 00y

=1’

the limits are: for A, from ¢, to A;;
for u,, from b, to ¢, ;
for v, from 0 to b,.

Hence it follows that the value of the definite integral

rl.rl .rl (11® =) (1 =N (A2 —wy®) AN, dps, dy
edoJo 202 (A2 —c,?) (12— b:2) (02— 1, 2) (02— 12) (c,2—1y?)
is 3 A VAZE—bEVA R —c?,

being an octant of the ellipsoid.

*This is the notation adopted by Todhunter, Functions of Laplace, Lamé
and Bessel ; Bertrand, Cale. Int.
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The suffix has been retained to prevent misconception as to
the meanings of the several letters, but may now be dropped.
For this and the values of other definite integrals of similar
nature, see Todhunter, Functions of Laplace, Lamé and
Bessel, Chapter XXT.

821. Solid Angle.

Let C be any closed curve, plane or twisted, bounding any
region upon a surface, O a fixed point, and S a sphere of
unit radius, with centre 0. Let a cone with vertex O and
generators passing through the perimeter of C, isolate on the
unit sphere an area ». Then o is called the “solid angle”
subtended at O by the portion of surface bounded by C.,

Fig. 287.

The area of a sphere being 47 X (radius)?, it follows that
the solid angle subtended by any closed surface at a point
within it is 47 ; at a point upon it which is not a singularity,
27 ; at a point outside, 0. The solid angle subtended at a

corner of a cube by the rest of the cube is %:g At a

point on the line of intersection of two planes cutting at right
angles, each of the regions into which space is divided by the

two planes subtends a solid angle 4%’:7:-. At the vertex of

a right circular cone of semivertical angle q, the solid angle
is the area of the portion of unit sphere, centre at the vertex,
cut off by the cone, .. 27 .1.(1—cos a), .. 27 vers a.
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A circular disc of radius a subtends at a point O on the axis
whose distance from the plane of the disc is A, a solid angle

27 [1 —cos (tan'l %)] =97 (1 _J—a;_bﬁ)'

Ttan 5

Fig. 288.

822. In the spherical polar system of coordinates, the face
of the elementary cuboid 72sin 6 §9 é¢ ér, which is at right

Fig. 289.

angles to the radius vector, is 72sin 6 60 d¢, and if dw be the
solid angle subtended at the origin O, we have
r28inf 80 6¢p _ 1?
) Iy
i.e. the area pqrs, viz. dw, intercepted upon unit sphere by
radii vectores to the boundary of the element whose face is
PQRS, viz. r?sin 0 86 d¢, is given by
dw=sin 0 86 d¢.
The element of volume 72sin@ d8 ¢ dr may therefore be
written as 728w ér, and

V=Hrzdwdr=%jw oo

In the case of the sphere » is constant, and
=318 . 4w =4§7rd.
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823. Let the inward drawn normal at any point of a
closed surface make an angle x with the radius vector » to
the point, and let &S be an element of the surface about the

——p D)

N

Fig. 290.

point; then the projection of &S upon a plane cutting the
radius vector perpendicularly is dScosy, and in the limit
when &S is infinitesimal, we have

¢

88 cos 2 :
o X— 7 or 8S=r?sec x dw,
to the second order ; whence
S=|r2sec y do.

Also, if p be the perpendicular upon the tangent plane at
the point 7, 6, ¢, we have

p=rcosy and S=J.’%dw.
Obviously it follows also that
[X as=fdo—a,

and if the closed surface surrounds the pole O, this gives

.[osxds 4,
If O lies at a point on the surface where there is no
singularity, Icos X i6.ivs

If O lies outside the closed surface,
I 8 X 48—0.
3 "
If O lies at a conical point of solid angle w,

I%’;X dS=w.
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These theorems are of great importance in the theory of
attractions, and are due to Gauss. (See E. J. Routh, Anal.
Statics, vol. ii., Art. 106.)

824. Solid angle subtended by a triangle at a point not in its plane.

Let ABC be a triangle of sides a, b, ¢ lying anywhere in a given plane
XY, let O be a point not in this plane, and let 04, OB, OC be respec-
tively p, ¢, 7. Let the planes OBC, OCA, OAB intercept on the unit
sphere, centre O, the spherical triangle A4’B’C” of sides a/, ¥, ¢, and let p’
be the great circle perpendicular from 4’ on B'C", and let w be the solid
angle subtended by 4BC at O, and E' the spherical excess of the triangle
A'BC.

Fig. 291.

Then w is measured by the area of 4’B'C), i.e.
o=E=4"+B+C -
Hence it appears that triangles bounded by planes such that the
sum of the angles between them is constant subtend the same solid

angle at O.
Cagnoli’s theorem gives

. E' /sing'sin (s'—a)sin (s = ') sin (s'—¢')
sin 5-= 7 g s
. 2cos % col €oS =
2 2 2

or, which is the same thing,
sina’sin b’ sin '
HrL LA LU

4 cos % cos E CoS -
2 2 2

[Todhunter and Leathem, Spherical T'rigonometry, Art. 132.)
Now let the volume of the tetrahedron OABC be called V ; then

}.4grsina’ . psinp’'=",
e pqrsina’ sin b’ sin €’ =constant=6V.
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Again, ¢ +1r2—a?=2qgrcosa’,
.e. (g+7)?—a?=4qr cos? %’,
and if II? represent [(g +7)?—a®][(r+p)*— b4 [(p+q)*—c?], we have

; P 1% 052 cos? & b B i Soene £
I12=64p%%?cos g cos’z cos 5 and H—Spgrcos2cos g s 5.
) |4

Hence sino= 12ﬁ'

Also, if & be the distance of O from the plane of 4BC and A the area
of the triangle, P A
: V=34 and sing=4hp.
If then the triangle moves in its own plane in such manner as to make
(g+r)-a?][(r+p)* -b1 [(P+g)* - ") =constant,

the solid angle at O will remain constant.

If the triangle 4ABC be a fixed non-conducting lamina uniformly
electrified, this equation will determine the lines of equal density of
electricity induced upon an infinite parallel plane conducting and
uninsulated.

825. ILLUSTRATIVE EXAMPLES.
1. To find the volume of the portion of the paraboloid

cut off by the plane lz+my+nz=p.

A
F-3
C
A
al
C.
B
Q) ) %
a
g

Fig. 292.
The difference of the z-ordinates of the plane and the paraboloid is

p-le—my 1 (2 o
S 2(a+b

Q"v",,'" 'W.[Cl \.' =::'.':f;
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3. To calculate the value of j f / ¢(a,+b2+1)dxdy dz, the integra-

tions being conducted through the volume of the ellipsoid
x’/w’+y’/b’+z2/c2 =1

Take a’+'z’ 63—8
The volume of the ellipsoidal shell bounded by the similar ellipsoids &
and 8+d8 is d($mabest) =2 rabodt s,

and ¢(8) is constant throughout this shell.
Hence fff ¢(a,+ wta )dxdy dg= 21rabcf H(8) V8dd

4. Find the mass of a thick focaloid,* i.e. a shell bounded by confocal
ellipsoids, the layers of equal density being confocal surfaces, and the
density at each point inversely proportional to the volume contained
by the confocal through the point.

a8 YL
Let amatimatam
i T s 2
Ftata=l, S+H+s=1

=1 be the confocal through the point, and let

be the outer and inner surfaces of the shell.
The volume contained by the ellipsoid A is

=4mV/(a®+ A)(B2+X) (2 + ).
The volume of the layer between the surfaces A and A+dA\ is

1 1 1
av =3 @ FNEFNEFN) Gy + gty I
The law of density is
p=kj4w~(a®+ A)(B®+A)(c2+ A), k being a constant.

Hence the mass of the layer is
V=5 (gt )
PEV=g\@+ATB+A T &+

and the mass of the thick shell is

I /:, _a’pdV=[glog(a*+)\)(b’+)t)(c’+)x)]ou_ ;

=Elogamiet - Elogarpr a1 - a(crar-a)

—kloga e for a?—a?=b?-b"?=c%-c?;
and if D be the density of the outer layer,
k
D=§—_l .
Hence M =4mabeD log obe

ahe
*For this term see remarks by E. J. Routh, 4nal. Statics, vol. ii., p. 97, and
Thomson and Tait’s Natural Philosophy.

WWW
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The area of such a section is
ﬂf-”(azubmuzpn)

[C. Smith, Solid Qeometry, p. 99.]
The thickness of a slice is p.
The slice of zero area is such that

al?+bm?+ 2p;n =0,
21 being the corresponding value of p.
The limits of integration with respect to p are from p, to p.

’”/“" f (al +bn?+2pm) dp

Hence V=

’-'i/“—lf [(al’+bn’)(p—px)+n (p’—pn’)] .

’."“/— 2))

r\/ab 1r\/m

n3

—i (2pn +al? +bn?)?,

as before.

We may note that frusta of finite thickness whose bases are parallel
to a given plane are such that their volumes vary as the squares of
their thicknesses ; also that frusta of given thickness are such that their
volumes vary as the squares of the secants of the angles which the
normals to their bases make with the axis of the paraboloid.

2. To calculate the value of ff/ ¢ (lz+my +nz)dx dy dz, the integra-
tions being conducted through the volume of the ellipsoid
- 22/a+ y3b2+ 22/c? =1,
1, m, n being such that B+ m2+n?=1.

Let le+my+nz=34.
The area of this section of the ellipsoid is
abc &?
A Lo (1 ey
P 7

where p?=a??+b*m?+ c*n?.

Consider the ellipsoid divided into thin slices parallel to this plane.
The volume of such a slice is 4d8 to the first order, d8 being the thick-
ness of the slice, and ¢(8) is, to the first order, constant through the slice.

Hence

[[[ $tta+my-+nz) azay dz=%é—°./1 (1 —;’T:)da.
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3 o8
3. To calculate the value of f f f ¢(§,+%+§,)dzdy dz, the integra-
tions being conducted through the volume of the ellipsoid
22a? + y3/b% + zz/c” =1

x2
Take a,+%,+ 2=3
The volume of the ellipsoidal shell bounded by the similar ellipsoids &
and 8+d8 is d($mabest) =2 rabest ds,

and ¢(8) is constant throughout this shell.
A i !
Hence fff¢((—1’—,+§+;,)dzdydz—2wabcj;¢(8) J5ds

4. Find the mass of a thick focaloid,* i.e. a shell bounded by confocal
ellipsoids, the layers of equal density being confocal surfaces, and the
density at each point inversely proportional to the volume contained
by the confocal through the point.

e Y
Let - . Iy R < i )‘+ c, 7 )\ =1 be the confocal through the point, and let
whicBend 7 !
F+a+a=1, 7,+b,,+c—,=1

be the outer and inner surfaces of the shell.
The volume contained by the ellipsoid A is

V=4 V(@ + N (B2 V) ([ @+ A).
The volume of the layer between the surfaces A and A+dA is
AV =3 S @F N E TN EF ,\)(#\ﬁ—,—bﬁ E,%)d/\.
The law of density is
p=k/4m~(a®+ A)(B*+A)(c2+ L), % being a constant.
Hence the mass of the layer is

k 1 1 1
paV=5 (e +tmata)
and the mass of the thick shell is

M=), pa7=[Flog@+ @+ +1) ]

=§ log a%?? - I§t log a’?(b%+a"% —a?)(c?+a'? —a?)
=kloga%::-,, for a? —a?=0*-b"2=c?-¢?;

and if D be the density of the outer layer,

k
D=Wc. abc
Hence M =4rabeD log o

*For this term see remarks by E. J. Routh, 4nal. Statics, vol. ii., p. 97, and
Thomson and Tait’s Natural Philosophy.
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5. Consider the region bounded by
(1) a sphere 22+3%+2t=a?;
(2) a right circular cylinder 2?+3°=bz (a<d);
(3) the two planes y= +x tana.
We shall first find the volume enclosed by these surfaces in the positive
octant of space.
Take cylindrical coordinates 7, 0, z

4

>
Fig. 293.

The elementary prism on base 80 8r has volume 7z 8 &r to the second
order, and
V= f [redodr
=ffn/a’—r’d0dr

i —%f[(aﬂ—rf)*]da,

and the equation of the trace of the cylinder upon the z y plane being
r=bcos @, the limits for r are 0 to bcos@, whilst the limits for § are
from 6=0 to §=a.

Hence V=:—13/a {a®— (a? —b“cos’@)‘}}da

}
——ai"a,——fl I———icosza) dé.
Writing =5 —qb and a———,B in the integral,

V——a’ f‘lAw,,
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2 bB in?
where A =(1 — g2 Sin d>),

r=5G-8)-5{(L-[)wess)

and by Legendre’s formula (No. 10, p. 399),

2 Lk 2
f" A3d<i>=k§Asin4>cos44>+g3—%}2 E—k_ F;
o 3

and if E;, F, be the real quarter periods, we have

3 3 2 S
V=%(7§r—ﬁ)——% —-%%sinﬁcoﬁ'\/l —Zisin’ﬂ

-2 (B, - B)-Yr (B~ Y},

N ey P 4
where E=fo '\/l—ﬁmn’zpd«# and F=j; -\71—_};‘;—2‘;
- s

And for the whole volume of the sphere included between the specified
boundaries, we have four times this quantity.

When the cylinder just touches the sphere, s.e. b=a, the elliptic
functions degenerate.

‘We then have for the volume in the positive octant

=°l3’ f (1 -sin%6) d0

a’® (1 _3sinf—sin 30)110

+

Tl 4

= i‘—; [4a—3(1 —cosa)+3(1—cos 3a)]

3
=;’~6 (12a. - 9 vers a.+ vers 3a) ;

and in the case where the planes y= + 2 tana coincide with the y-z plane,
i.e. a=7§r, the whole volume cut out of the sphere by the cylinder

r=acosl is § .
4V=%(61r—8)=2%(31r—4).

To find the surface of the sphere thus bounded in the positive octant,
we have
S=ffsec‘y.rd0dr,

v being as usual the angle the normal to the sphere at 7, 6, z makes with

! Jai=r?
the z-axis ; that is cosy=£-= aa ®
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Hence S=ff‘\/—':":—’d0dr
-7
bcos o
Rl f [Jaz—i cos 20

=afl {a —~Na®=bicost0}dl ;

and putting as before 6= g~ ¢ and a=g LA
s=a=(g-3)+aﬂf \/l—a,sin%dqb

o5 [ [N T
e(5-a)ra(s(a2)-5 B}

and when b=a, we have
=q? - gl
S a-[(l sin §)d0
=a?(a—versa) ;

and for the further particular case when a=2,

S=a’(’2—r—1)

And in each case the whole of the surface of the sphere intercepted in
this manner is four times the portion which has been found.

6. At every point of an elliptic Jamina a straight line is drawn
perpendicular to the plane of the lamina and of such length that the
volume (p, say) of the rectangular parallelepiped formed by this length
and the distances of the point from the foci of the elliptic boundary is
constant. Given that @ and b are the semiaxes of the elliptic boundary,
show that the volume of the solid thus formed is

£ 1rp.] a+b
a-b [CoLLEGES, 1891.]
Taking z+wy=ccos (6 +tp), we have
z=ccos @ coshp, y= —csin @ sinh ¢,
and the loci ¢=-constant, § =constant are the confocal conics

_____rx’ +—y—r’ =1 and -,——-xﬂ ol
Feosh?$p ' Fsinhigp - N cfcos?d csin?f
and the focal radii r;, r; are such that 7, +7, =2¢ cosh ¢, r; —7,=2c cos 6.

Let the elliptic area be divided up into elements by confocals in this
way, taking the element bounded by 6, 0 +86, ¢, -+ 8¢ as a type.

Now ﬁr(z, g/)dzdy=ff F\(6, $)J d0 dep,

where F, is the equivalent of F in terms of 0, ¢.
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Also J= %%%; =| —esin@cosh¢h, ccosfsinhp
—ccos @sinh ¢, —csin 6 cosh ¢
=c?(sin? cosh?¢p +cos?@ sinh?¢)
=c?(cosh?¢ — cos?f)
=HE1+m) (1 -1l }=nry
and by the condition of the question p=zrr,.
Thus

Vomume= V=f[zdxdy=j/#.rlrgd9d¢=;n[0][¢],

and the limits for § are =0 to f=x, and for ¢ from ¢=0 to the value

b
for which ¢ cosh ¢ =a and ¢sinh dx—b, that is ¢ =slnh—'7ﬁ.

Fig. 294.

Thus .
T a+
V= ,ugsmh Jap ,.:.2 °~/’ —lga B

7. In the evaluation of such integrals as /,= f ;—‘3 taken over the

surface of an ellipsoid of semi-axes a, b, ¢, where the surface is S and the
volume V, p being the central perpendicular upon any tangent plane,
consider three points 7, ¢, 2 on the surface, which are the extremities
of three semi-conjugate diameters. Let 88, 8S,, 8S; be any elements
of the surface about the three points and p,, p;, P; the corresponding
perpendiculars.

Then I,= 9, dS:, or a5

— or n
»" P Ps
f(dSl dS, )
Pz P
Now suppose these elements of area &3, 8S;, 8S; to have been so

chosen that SS, e 88, & 38, 88»
B e Py g

say.
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j R N T YT e

Then, since 7_’1_2+P22+P ’=672+1?+c_"

have f —3 dS
- L= 3 Pl Pz 3z pat
% i
t.e. I“=§(¢?2+I;§+?)In_g;
we also have I, =fp dS=3V, and I,=S;

whence we can readily infer the values of I, I, I, etc., viz.

Iy oS E2gL 01 LY
¥y 3ﬂ(aﬂ+b2+c'=)

PROBLEMS.

1. Find by integration the volume of a frustum of
(1) a pyramid on a triangular base,
(2) a pyramid on a square base,
(3) a cone.

2. Find the volume of the portion of a sphere bounded by planes
through the centre which cut the sphere in the sides of a given
spherical triangle 4BC.

3. Show that the volume cut off from the paraboloid

2%+ 92 =4az

by the plane z+y+z=a
is 18mad.
4. Show that the volume of the solid bounded by

2:—:] wabe.
5. Show that the volume bounded by the surface

252 ()%

and the planes g=0, [ g=h

mwabh (h\2»
n+1 E)

ie

is
6. Show that the volume of a slice of the ellipsoid
a? gt 2
2tEteE= 13
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bounded by the parallel planes
lz+my+mnz=38,,

lx + my + nz=3,,

; abc
g 1;? (8, — 85)(3p® - 8% - 8,3, - §,7),
where p is the central perpendicular upon a tangent plane parallel
to the faces of the slice.

7. If A4 be the area of a central section of an ellipsoid parallel to
the tangent plane at the elementary area &S, show that

as
Ja-+

the integration being taken over the surface of the ellipsoid.

8. Prove that over an ellipsoid of semiaxes a, b, ¢,
I pdS=dmabe,

dS__41r ég_'_ca ab
7 3"\& r‘?)’

SR e S (e |
?=§(?+ﬁ+ﬁ)’

dS being an element of surface, and p the central perpendicular
upon the tangent plane.
as

Investigate also the value of I—s.
b4

9. Apply the formula 7 =%J- (lz + my +nz) dS to find the volume

of an ellipsoid, z, 7, z being the coordinates of any point on the
surface, and [/, m, n the direction cosines of the normal there.
[CoLLEGES a, 1881.]
10. If the ellipsoid of semiaxes @, b, ¢ be very nearly spherical,
then its area is, to the first order (inclusive) of the small quantities,
represented by the difference of the axes
4radbich. [TRINITY, 1891.]

11. Show that a portion of a spherical surface (radius unity) may
be bent into the surface of revolution defined by the equations

a:=kcospcos%, y=kcospsin]gc, z=E(p,k)(=I V1 - sin?pdp);
0

and explain the geometrical theory, distinguishing the two cases
k<1; k>N [Marh. Tripos, 1887.]
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12. The curve z=f(x), y=0 revolves about the axis of z, and the
surface thus formed is intersected by the right cylinder y= ¢ (z),
which is symmetrical with respect to the axis of z: prove that the
cylinder cuts off from the first surface a portion the area of which
can be determined by the evaluation of the integral

GaNE. et/
g -1
IZ«/1+<dm> sin zdz
between proper limits. [Oxrorp II. P., 1888.]
13. Show that the cylinder (2 —¢)? + y%=(a — c)? cuts off from the
sphere z?+ 42 + 22=a? a portion of which the area is

8a {acos™(cta~¥) - ch(a - o)},

a being supposed greater than c. [Oxrorp IL. P., 1888.]
14. Prove that the volume cut-off from the paraboloid
at g 2_,
atiiptiieg
by the plane 2=pr+qy+r
. wabc (a?p?  b%%  2r\?
b AT (‘cz—"' < t7)'  [OxForp IL P, 1902

15. Show that the volume enclosed between the surface
2{ (@ + 12 + ) — 4e2a?} = ¢
and the cylinder 2+yi=c
is (- 2)cs. [OxForp II. P., 1886.]

16. By application of the formulae /"= %I pdS, V= [ zcos ydS

to the evaluation of the volume of an ellipsoid, establish the results
) ¢ (1% —v3)dupdv T,

NN e et

e SEBHE A g g
2 22 o dpudv = c2(c® - B%).
@ [[[ 6 - Tp=iain 4 =54 -
(See Art. 820 for the notation.) [Lame.]

[TopruNTER, Functions of Laplace, Lamé and Bessel, pages 216, 217 ;
BerTrAND, Cale. Int., pages 424, 426.]

17. Show that the volume bounded by the surface

ahtigl z
ati=2(G+5)+0
and the planes 2=0, 2=2
is 9rab I [b(2)]? da.
0
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18. A cavity is just large enough to allow of the complete
revolution of a circular disc of radius ¢, whose centre describes a
circle of the same radius ¢, while the plane of the disc is constantly
parallel to a fixed plane, and perpendicular to that in which the
centre moves. Show that the volume of the cavity is

2?63 (37 +8).
19. If O be a point without a sphere of radius e and centre C,
and 7 the distance of any point of the sphere from 0, show that,

integrating % over the surface, we have

AR | ) .
L—n=n—_—2';[<v—a>*-"—(c+q)2”"1 if nt2,
St 9r21og =2 if n=2.
c c+a

What will be the results if O lies within the sphere ?

20. A surface is obtained by making the diameter 2a of a semi-
circle move parallel to itself, the path of the centre being perpen
dicular to the initial plane of the semicircle, whilst the plane of the
semicircle rotates round the diameter; and when the plane has
moved through an angle @ the distance which the diameter has moved
is ¢sinf. Prove that the volume of the whole surface so generated is

§mad + m2ca’, [TriniTY, 1890.]

21. Use the theorem

P Hdzdydz=”j.]dudvdw

to find the volume of the parallelepiped enclosed by the planes
as+by+ez=0, az+by+cz=0, ax+by+cz=0,
az+by+ez=d, ap+dy+ez=d,, ax+by+cz=d,.
92. Prove that the area of that portion of the surface
(m2 - 1) (22 +y?) =22
which is cut out by the surface
2=a"123+ b1y}

where a and b are positive, is

™
gm(m* - D@ +8).  (oreon 1. P, 1890,
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23. Show that when f(2) is a slowly changing function,

b
j f(z)dx
is approximately equal to :
b— +b
S () +10)
Prove that this formula may be used to calculate exactly the

volume cut from a hyperboloid of one sheet by parallel planes
meeting it in elliptic sections. [COLLKGES a, 1881.]

24. Prove that the volume included in the positive octant between
the surface (22 + 12 + a?) P2 + 2a%)n = gy
and the planes 2=0, =0, y=a, Y=o
ma® 1.3.5...(4n-3) -
" Hn2.4.6... (4n-2)’
n being a positive integer.
25. Show that the area of that part of the sphere r=1, enclosed
by the cone tan g =3 cos ¢, is 7.

is

[CoLLEGES a, 1881.]
26. Show that the volume of the solid, the equation to the
surface of which is 22 4 g2+ 282y + By? = 2z,
i 6
3 JaB-02 [CoLLEGES, 1882.]
27. If in the tangent plane at the vertex of a paraboloid two
ellipses be described whose axes are in the principal sections and
proportional to their parameters, the cylinders whose bases are these
ellipses, and whose generators are parallel to the axis of the
paraboloid, will intercept on the surface a portion whose area is
proportional to the difference between the radii of curvature of
eisher of the principal sections at the points where it intersects the
bounding curve. [CoLLEGES, 1892.]

is

28. If the density of a tetrahedron at any point vary as the n*
power of the sum of the distances of the point from the faces of the
tetrahedron, show that the mass of the tetrahedron

3 1.9.8 Py
NG D 2 G r PGP
where 7 is the volume ; p,, p,, 74, 2, are the perpendiculars from the
corners upon the opposite faces, and % the density at the centroid of
the volume.

Examine what happens in the case of a regular tetrahedron.
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29. Find the volume contained between any two planes perpen-

dicular to the axis of « and the surface whose cquation is
42+ 222 =(a? + Bz)y? + (0’ + B'2) 2%

[ST. JonN’s, 1884.]

20. Show that the mass contained between a paraboloid of revolu-

tion and a sphere, with centre at the vertex and diameter 2a, equal

to the latus rectum of the paraboloid, where the density at any point

varies as the square of the latus rectum of the paraboloid containing

it and having the same vertex and axis as the bounding paraboloid, is

15(1-4V2) e,
where p is the density at the external surface of the paraboloid.
[CoLLEGES &, 1883.]
31. Find the volume between the surfaces
P+ =0, P+E=4fg y=bz
(P +20) =0y, P +2=4f7, y=by
[CoLLEGES 3, 1881.]
32. Prove that if a, b, ¢ be any positive quantities in descending
order of magnitude, the solid angle of that part of the cone
ag?a? + (by? — c2?) (2 +y%) =0
which lies on the positive side of the plane zy is equal to
| c\} b\E. c(a+b)\ 4
4sin~! (E) -4 (a—-l-b) sin1 {a((cib;} :
[CoLLEGES B, 1891.]
33. Prove that the volume common to a sphere and a circular
cylinder which touches it, and also passes through the centre, is
Loics of the volume of the sphere. [ST. JouN’s, 1891.]

2 3r
Also show that the sum of the two spherical caps cut off by the

cylinder forms 2ot of the area of the sphere.
2 iar

34. A sphere of radius a is cut by two diametral planes so as to
form a lune of angle ¢, which is itself cut in two by a plane inclined
at an angle B to its edge and passing through one end of it, and
equally inclined to the two faces of the lune ; show that the volume
of the pointed part is

sin S cos? B tan %

1 +sin?f tan? g
[St. JonN’s, 1881.]

%a“sin B4 (2 + cos?B)tan—? (sin B tan g) +
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35. Prove that the moment of inertia about the axis of z of the
part of the paraboloid 2z = aa? + by?, cut off by the plane
lz+my+nz=p, is
(012 + am? + 2pnab)*{bl* (a + Tb) + am? (Ta + b) + 2pnab(a + b)},

24n6(ab)*
the density being taken as unity. [MaTs. Trreos, 1890.]

36. If A+B+C=0 and the coordinate axes be rectangular,
prove that

”{(A, B, C, D, E, F}z, y, 22 x (4, B, C, D, E, F §z,y, 2)?}do
* f—’; (AA'+ BB +CC +2DD' + 2EE +2FF),

where the integration extends over the whole surface of a sphere of

unit radius whose centre is the origin of coordinates.
[CoLLEGES, 1892.]

Also show that the unconditional result is

15 Z[4(34+B+C)+B(3B+C+A4)+C(3C+4+B)
+4DD' +4EE +4FF).

37. A flexible envelope is in the form of an oblate spheroid, such
that ¢ is the eccentricity of a meridian section: the part between
two meridians, the planes of which are inclined to each other at the
angle 27 (1 —¢), is cut away, and the edges are then sewn together.
Prove that the meridian curve of the new surface is the ““curve of
sines,” and that the volume enclosed is changed in the ratio

3me2: 8. [ST. Jonn’s, 1889.]

38. A surface is such that 4BCD being any rectangle in the plane
of z, y, with its sides parallel to Oz, Oy, and 4P, BQ, CR, DS being
drawn parallel to 0z to_meet the surface in P, @, R, S, the volume
of the solid ABCDPQRS is equal to the base 4BCD, multiplied by
the avithmetic mean of 4P, BQ, CR, DS. Prove that the surface
is a hyperbolic paraboloid. [Mars. Tripos, 1876.]

39. Show that the integral

J._”e Va'+b'+='dx dy dz

taken over the volume of the ellipsoid

P 2
a2 + b2 +3 @ ol
4 1rabc o
18 (62 +3¢ 2)‘ [CoLLEGES, 1885.]
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Prove more generally that
&4mytnz
‘He Vartiitedy dy dz
over the volume of the ellipsoid
41rabc

(& cosh % — sinh &),

and find the values of

” eda dy da; jﬂezwdz dyils; mewﬂdx dypde

through the same space.

40. On a closed oval surface of volume 7 and surface S, whose
curvature is everywhere finite, rolls a sphere of radius a ; the surface
of the envelope of the sphere is S'. Prove that the volume of the

envelope is V+a(S +S) - 4wad.  [Marn. Trrros, 1886.]

41. Show that the volume of the pedal of an ellipsoid taken with
the centre as origin is less than that taken with regard to any other
origin ; and that the sum of the volumes of the pedals, taken with
regard to the extremities of three semi-conjugate diameters, is six
times that taken with regard to the centre. [MaTE. TrIPOS, 1887.]

42. Show that the moment of inertia of the ellipsoid
aa® + by? + c2® + 2fyz + 292 + 2hay =1
about the axis of z is
1M (ca - g%+ ab - h?)(abe + 2fgh — af? - bg? — ch?)™1,
where M is the mass of the ellipsoid. [TriNITY, 1890.]

43. Find the envelope of the conics 22sec®d —y2tan®6 =a? where
0 is the variable parameter. Show that in addition to certain lines
it consists of a curve whose asymptotes are z= +a. Also, if the
area between the axis of z, an asymptote, and the corresponding
branch of the curve be 4, and the volume generated by the revolu-
tion of this branch about the axis of z be 7, prove that

V=rad= ;mar(sin o)t ds.

44. Show that the value of

”‘j zyzdz dydz
Ny e

[CoLLEGES 3, 1890.]
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taken throughout the positive octant of the ellipsoid
a-22 + b2 4 c-23 =1
a?h?c be + ca+ab
15 (b+c)(c+a)(a+b) [Oxromrp IL P., 1888.]

45. Prove that the mass of a sphere of radius a, whose density at

is

any point P is 2’% , where % is a constant and 4 is a fixed point

distant f (> @) from the centre of the sphere, is equal to
4 wka®
[OxF. I P., 1914.]
46. Prove that the volume which lies within the sphere
22+ yt 42t =a?
and the ellipsoid
#?sin2a cosec? B + ycos?a sec? + 22 = a?,
where 0 <a<fB<3m, is
$0°(7 — 23 + 2a.5in 2B cosec 2¢).  [Oxr. L P., 1916.]
47. P is a point of abscissa z (>0) on the parabola
=2ay, 2=0,
and Sa? is the area of the segment bounded by the arc OP and the
radius vector OP; the straight line PQ of length 2Sa is drawn
parallel to Oz. The locus of @ being a curve which passes through
the origin, prove that
(1) the length of the arc 0Q is z + 23/6a2 ;
(2) the cylindrical area bounded by the arecs OP, 0Q and the
straight line P@ is
a?/45 + (322 - 2a%) (2% + a?)}/90a%. [Ox. I. P, 1916.]
48. Show that the two cylinders 22/a?+22/c2=1 and y?=2b(c —2)
intercept on the plane z=/% (where k?< ¢?), a rectangle of area
4a(1 - k/c)2b(c + ).
Show that the volume cut off from the cylinder 2?/a? + 2%/c?=1 by
the cylinder 3%=2b(c - 2) is

1280¢./be. [Oxr. L P., 1917.]
49. The sphere 2% + 32 + 22 =a? is intersected by the cylinder
22 + 12 =q2.

Prove that the ratio of the spherical area cut off by the cylinder
to the cylindrical area cut off by the sphere is
T-2:2 [OzF. 1. P., 1915.]
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W S j Uo 2 yz [Oxr. L. P., 1915.]

- dzdy
51. Find the value of j @+ B+ taken all over the plane
7, y ; p being greater than unity. [Oxr. L P., 1915.]

52. Find the four points where any line parallel to the axis of #
intersects the surface (22 + 42 + 22)% = 4 (a22% + 2%2).

Prove that the volume enclosed by that part of the surface which
lies above the plane z=0 is a3, [OxkF. II. P., 1915.]

53. If the coordinates of a point on a certain surface be expressed as
z=asinu, y=asinv, 2Z=aCcoSu+acos?,
prove that the area of the portion of the surface bounded by
=0, u=im, v=0, v=3m,

: wa? nibes ol et

! 2545415
_(@r-1)(2r-3)...1

where (O -9)... % [Oxr. IL P., 1915.]



	CHAPTER XXII. SURFACES AND VOLUMES IN GENERAL, AND THEIR CENTROIDS, ETC. DOUBLE AND TRIPLE INTEGRATION
	760-764. Volumes. Cartesinas
	765-771. Mass, Moment, Centroid, etc.
	772-773. Surface. Cartesians
	774. Cylindrical Coordinates
	775-776. Spherical-Polar Element of Volume
	780-781. Areas on a Surface ; Spherical Triangle
	782-788. Solid of Revolution
	789-791. Orthogonal Coordinates
	792-793. Plane Area. Change of the Variables
	794-799. Volume Elements. Change of the Variables
	800-803. Connection between δ V and δS, etc.
	804. Tetrahedral Coordinates
	805-806. Revolution of a Twisted Curve
	807-809. Annular Element of Surface. The Ellipsoid
	810-811. Generalised Coordinates
	812-820. Elliptic Coordinates
	821-824. Solid Angles. Gauss's Theorems
	825. Illustrative Examples
	PROBLEMS



