
CHAPTER XXII.SURFACES AND VOLUMES IN GENERAL, AND THEIR CENTROIDS, ETC. DOUBLE AND TRIPLE INTEGRATION.760. Let the equation of a surface be ϕ(x, y, z)=0 referred to three mutually perpendicular coordinate axes Ox, Oy, Oz. Let us discuss the volume contained between the boundaries
Let planes 

be drawn.

Fig. 262.Planes X=x, X=x + δx intercept between them a thin slice or lamina of thickness δx. 795
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796 CHAPTER XXII.Planes Y=y, Y=y+δy cut from this lamina a prism or tube on rectangular base δx δy.Planes Z=z, Z=z + δz cut from this prism an elementary- rectangular box or “ cuboid ” of volume δx δy δz, represented in the figure as P1Q1R1S1P2Q2R2S2. Regarding δx, δy, δz as infinitesimals of the first order, the volume of the slice is a first order infinitesimal, the volume of the prism is a second order infinitesimal, and the volume of the cuboid is a third order infinitesimal. Let the prism intercept on the surface a curvilineal quadrilateral figure PQRS, and on the plane x-y the elementary rectangle pqrs, viz. δxδy. These areas are both infinitesimals of the second order.If we add up all the complete cuboids on base δx δy from 
z=0 to z=the smallest of the values of z of the surface within the quadrilateral PQRS, we get the volume of the prism, less by a third order infinitesimal, viz. the portion of a cuboid bounded by a base δx δy for its lower surface, by the curvilinear quadrilateral PQRS for its upper surface, and by four plane faces parallel to the y-z or z-x planes. We may regard the infinitesimal δz as having been taken not less than the difference of the greatest and the least values of z for points on the quadrilateral PQRS. This remnant of the prism is therefore less than one of the elementary cuboids forming the whole prism, and is therefore an infinitesimal of not less than the third order.Next let us add up all the prisms which lie between the planes X=x and X=x + δx, and bounded on its upper side by the specified surface from the plane Y=0 to any definite value of Y. The sum of these second order complete prisms differs from the volume of the lamina between the planes 
X=x and X=x + δx by the sum of the third order infini­tesimal remnants of the prisms, and by a second order tubular element on a base less than δx δy at the end of the slice, that is by a second order infinitesimal, the sum of the complete prisms being of the first order.Finally, let us add up all the slices or laminae from X=0 to any definite value of X. The sum of the portions of these laminae made up of complete prisms is a finite quantity. The sum of the remnants of the laminae is the sum of a set
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TRIPLE INTEGRATION. 797of second order infinitesimals, and forms a first order infini­tesimal. Hence it appears that the sum of all the complete cuboids within the figure bounded by the coordinate planes, the planes X=x1, Y=y1, say, and the surface, differs from the whole volume of that figure by a first order infinitesimal at most, and in the limit when δx, δy, δz are diminished without limit, we have the volume given by
The limits for z are from z=0 to z=the value found from ϕ(x, y, z)=0 in terms of x and y, say z=f(x, y).The limits for y will be from y=0 to the value of y specified in any particular manner, say y=F(x).The limits for x will be such as to go from x=0 to x = α.761. Ex. Consider the volume of an octant of an ellipsoid

Here the limits for z are z=0 to for the elementaryprism, to add up all the cuboids in the prism.

Fig. 263.

For ?/; to for the slice, to add up all the prismsin the slice.
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798 CHAPTER XXII.For x; from x = 0 to x = a, to add up all the slices.And and taking [z] between its limits, this integralWrite
Now

And the volume of the whole ellipsoid is 8V= 4/3πabc.762. Obviously in cases where the volume of a slice can be written down at once, the labour of computation may be saved.In the case just considered, for instance, the section at distance X=x from the plane of yz is an ellipse, viz.
whose semiaxes are and the area of the quarter ellipse in the first octant is

Hence the volume of the slice in the first octant is 
to the first order.And the sum of the slices is 
as before.763. When the volume contained is all that is required, we may, in general, start with 
i.e. we may use the elementary prism on δx δy for base as our element of volume. This amounts of course to integrating with
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VOLUMES. 799regard to z in the triple integral formula betweenlimits z=0 and z=the ordinate of the surface under con­sideration.If the upper surface of the region whose volume is required is z=f1(x, y), and the lower surface be z=f2(x, y), instead of 
z=0, as taken in Art. 760, we have

764. Illustrative Examples.
3]. The curve z(α2+x2)3/2 = α4 lying in the plane z∙x revolves about the axis of z. Find the volume in the positive octant included between this surface and the planes x=0, x=α, y=0, y=a. [Colleges e, 1883. ]The equation of the surface generated is

and Write b2 for α2+x2.
Then where y=b tan θ,

Hence
and we have to evaluateLet x=a√2 tan ϕ.Then
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800 CHAPTER XXII.2. Express the volume contained between the surfaces whose equa­tions are x2+y2 + z2 = αz, x2+y2 = a2, z = a and the coordinate planes in the forms V= ∫∫ zdxdy, V= ∫∫ xdzdy; investigating the limits of the integrations and determining the value of V.(i) For the portion of the elementary prism on 8x8y for base lying between the sphere and the plane z = a, the length is

Fig. 2G4.This is to be multiplied by δx δy and summed for values of y from 
y=0 to y=√a2-x2, and afterwards the result is to be summed from 
x=0 to x=a.Then
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MOMENT OF INERTIA, ETC. 801
(ii) If we use the formula integrating with regard to yfirst, we have for the length of the prism on base δyδz interceptedbetween the cylinder and the sphere until theprism ceases to cut the sphere, i.e. from y=0 to and afterwards the length of this prism is from y to y=ay andthe limits tor z are from 0 to a.Hence

(iii) If we use the formula integrating with regard to zbefore we integrate with regard to y, we have the same peculiarity asbefore, viz. that the prism is of length from z=0to and of length from to z=α, and
which, as before,765. Mass, Moment, Centroid, etc.If we regard the space bounded as described in Art. 760 to be filled with matter of specific density p at each point, the Mass of the elementary cuboid δx δy δz is p δx δy δz, where p may be either a constant or a variable. And following the same argument as in finding the volume, we have for the mass of the body thus enclosed,

766. In the same way, if the Moment of this mass be required about any line whose equations are known, say
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802 CHAPTER XXII.
l, m, n, being direction cosines; then, if p be the perpendicular from x, y, z upon this line, viz.
the moment of the solid about this line is

767. To determine the coordinates of the Centroid, we have only to translate the expressions 
into the language of the Integral Calculus. And m being 
p δx δy δz, we have

768. If the Moment of Inertia about a straight line be required, and if p be the perpendicular from (x, y, z) upon the line, we have Moment of inertia = ∑mp2, 
i.e. in the language of the Calculus,

Thus, if A, B, C be the moments of inertia about the coordinate axes Ox, Oy, Oz respectively,

769. Similarly for “Products of Inertia,” i.e. for quantities such as we have
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CENTROIDS, ETC. 803770. The integration in all such cases takes the same course as in the finding of a volume, first as regards the proper assignment of limits, and second as regards the successive in­tegrations (1) with regard to z, (2) with regard to y, (3) with regard to x.The order of integration may be changed to suit circum­stances, the several limits being suitably changed to ensure that the elementary cuboids into which the specified region is divided are thereby all added up.As in the case of finding a volume, in some cases one, or perhaps two, of the integrations may be avoided by taking the elementary prism, or the elementary lamina described above, as the primary element, as was done in Art. 762 in the evaluation of the volume of the octant of an ellipsoid.771. Ex. In the case of a sphere, viz. x2 + y2+z2=α2, let us find the 
mass of an octant of the sphere, the density at any point being 
ρ=kxyz.Here

Fig. 265.

The limits for z in the positive octant aretofor y, from y=0 tofor x, from x=0 to x=a.
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804 CHAPTER XXII.
Hence

If D be the density at a specific point, say the centre of the surface of the octant, i.e. where x=y=z=α/√3, we have
and
Examples.1. Establish the following moments of inertia for uniform density, M representing the mass in each case :(1) For an elliptic discabout the x axis,

about the y axis,about a line through the centre perpendicular to the plane,(2) For a rectangle of sides 2α, 2b,about a line through the mid-points of sides 2b,
about a line through the mid-points of sides 2α,about a line through the centre perpendicular to the plane,(3) For a sphere about any diameter a being the radius.
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ROUTH’S MNEMONIC RULE. 805(4) For an ellipsoid of semiaxes a, b, c, viz.
about the axis of length 2α,about the axis of length 2b,about the axis of length 2c,2. Obtain the position of the centroid of(1) the quadrant of an ellipse,

(2) the positive octant of the sphere,
(3) the positive octant of the ellipsoid,
3. Show that in all the above cases for the whole elliptic disc, rectangle, sphere or ellipsoid, the products of inertia with regard to two axes of symmetry are zero.Dr. Routh gave the following useful mnemonic rule for the 

moment of inertia of the circular or elliptic disc, rectangle and sphere or ellipsoid ; viz.Moment of inertia about an axis of symmetry
according as the body is rectangular, elliptical or ellipsoidal.

772. Element of Surface.In estimating the element of surface δS cut from the surface 
S by the elementary prism on base δx δy, we may note that if 
γ be the angle the normal at P makes with the z-axis,

δx δy=cos γ δS to the second order of infinitesimals, for δx δy is the projection of δS upon the x-y plane.The equations of the normal are :
where etc.Hence
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806 CHAPTER XXII.
Then when we proceed to the limit and sum the elements by integration.

Fig. 266.If the equation of the surface be thrown into the form 
and if we use the ordinary notation 
this equation becomesWe may note in passing that the equation δx δy=δS cos γ also gives another expression for the volume, viz.
We have taken, as is ordinarily the case, x, y as the independent variables.If this be inconvenient, we should have 
or according as y, z or z, x be chosen as the independent variables.
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SURFACES. 807773. We may note that the coordinates of P, Q, S and R, the coordinates of the curvilinear “ parallelogram ” bounding 
δS are:for P, x, y, z;for Q, x+δx, y,

for S, x, y+δy,for R, x+δx, y+δy,

to the first order;

Fig. 267.and the projections of this curvilinear parallelogram upon the coordinate planes are parallelograms of areas:(1) upon the x-y plane, δxδy;(2) upon the y-z plane,

(3) upon the z-x plane,

and the area δS is the square root of the sum of the squares of its projections upon any three mutually perpendicular planes (C. Smith, Solid Geom., Art. 33).
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808 CHAPTER XXII.Hencegiving as before.
774. Element of Volume for Cylindrical Coordinates.Instead of taking as our elementary volume one defined as bounded by planes parallel to three coordinate planes, other choices may be made. In some investigations it may be desirable to employ cylindrical coordinates, viz. ordinary polar coordinates r, θ in the x-y plane, retaining the Cartesian

Fig. 268.z-coordinate. An elementary prism, with this system, will be on a base r δθ δr with a height z, and to the second order itsvolume is r δθ δr × z, and the volume will be takenbetween suitable limits. If for any reason it be desirable to subdivide this elementary prism by planes perpendicular to the z-axis, our expression for the volume will be
Such a necessity would arise, for instance, if the mass of the solid be required and the density be not a constant, but a known function of r, θ, z, when the mass of the elementary prism is rδθδr∫pdz, r and θ being regarded as constants during this integration, so as to add up all the elements of varying density through the elementary prism before summing the
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VOLUME ELEMENTS. POLARS. 809masses of the several prisms themselves. We should then write the integral asMass
775. Spherical Polar Element of Volume.Again, a spherical polar element of volume may be em­ployed, using r the radius vector, θ the co-latitude and φ the azimuthal angle as coordinates.Here the element of volume has three of its edges, mutually at right angles, δr, r δθ and r sin θ δϕ, and to the third order of infinitesimals its volume is r2 sin θ δθ δϕ δr, the difference

Fig. 269.between this and the actual volume being at least of the fourth order of infinitesimals.Upon integrating successively with regard to r, θ and ϕ in any order, the accumulated difference after the three integra­tions between the volume of any space required and the sum of these elements will be a first order infinitesimal at most, and therefore vanishes when the limit is taken.Hence we have for the volume required
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810 CHAPTER XXII.Further, if it be required to integrate any function of 
(r, θ, ϕ) throughout the volume, say f(r, θ, ϕ), that is to add up all such elements as f(r, θ, ϕ) r2 sin θ δθ δϕ δr, the ex­pression for the result will be 
the limits being such as to include in the summation all the elements which are included in the region under discussion, and no more.776. Ex. If we apply this formula to find the volume of a sphere whose centre is at the origin, the limits for r are from 0 to a, the radius of the sphere ;for θ are from 0 to π ;for ϕ are from 0 to 2π;and

777. Elements of Surface. Cylindrical System.In the cylindrical system of coordinates the element of surface δS, viz. the curvilinear parallelogram PQRS, Fig. 270, has for its projection upon the x-y plane the polar element 
r δθ δr. Its projection upon the meridian plane through P is to the first order, an oblique parallelogram of area δr ∙ δθ, for one of its sides is the change in z due to increase of δθ in the independent variable θ, i.e. δθ, and the perpendicular between this side and the parallel side is δr.And the projection upon a plane through P parallel to the z-axis and at right angles to the meridian plane, is similarly 
rδθ δr, for r δθ is the height of this parallelogram, and
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SURFACE ELEMENTS. CYLINDRICALS. 811is the change in z due to an increase δr in r, keeping θconstant, viz. the difference of the ordinates parallel to the z-axis of the points P and Q.Hence
and taking the square root, proceeding to the limit andintegrating, (1)

Fig. 270.Similarly, if it were found preferable to take the pair z and 
θ for the independent variables, or the pair r and z, we should have in these respective cases, (2)and (3)To establish (2) an element is taken on the surface bounded by lines on the surface along which z is constant and θ const., viz. z, z + δz, θ, θ + δθ, and projected upon the same planes as in Case (1), the areas of the projections beingandAnd to establish (3) an element is taken on the surface bounded by lines on the surface along which r=const. and
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812 CHAPTER XXII.z=const., viz. r, r+δr, z, z+δz, and projection is made upon the same planes as in Case (1), the areas of the projections beingandThe figures are, however, somewhat troublesome, and we shall deduce these formulae from a more general result later.778. In the spherical polar system of coordinates let the meridian planes ϕ and ϕ+δϕ cut the surface in the curves

Fig. 271.

PQ, SR, and let the cones θ, θ+δθ cut the surface in curves 
PS, QR. Then PQRS is our element of surface. Let the coordinates of the points P, Q, R, S be respectively:for P, r, θ, φ,for Q, θ+δθ, ϕ,for S, θ, ϕ+δφ,for R, 0+δ0, ϕ+δϕ.The projections of this elementary area upon(1) a plane through P at right angles to the radius vector;
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SURFACE ELEMENTS. POLARS. 813(2) the meridian plane through P;(3) a plane through P perpendicular to these two planes are respectively, to the second order,andand to the fourth order we have for δSr the element of area 
whence, extracting the root, taking the limit and integrating,∙(1)779. If it be more convenient to take r and θ as the inde­pendent variables and φ dependent, elements must be chosen on the surface bounded by r, r+δτ and θ, θ+δθ, and the resultant expression for the elements will be 
the areas of the projections on the same planes, as in Case (1), being 
and the formula for S being

(2)And in the same way, if we wish to regard r and φ as the independent variables and θ dependent, an element of surface is to be chosen bounded by r, r+δr, ϕ, ϕ+δϕ, and its pro­jections upon the same planes, as in Case (1), being 
we have 
and (3)
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814 CHAPTER XXII.But the figures required are, as in the Cases (2) and (3), for cylindrical coordinates somewhat troublesome, and we propose to deduce these formulae from the more general result of Art. 790.
780. Areas on a Spherical Surface, the Origin being at the 

Centre.Let a be the radius of the sphere. Then, putting r=α, the general formula 
reduces to

If we apply the result to find the area bounded by two meridian arcs and some specified curve, θ=f(ϕ), the limits for θ are from θ=0 to θ=f(ϕ), and 
the result of Art. 734.Cor. For the whole sphere f(ϕ)=π, and

781. Spherical Triangle.Ex. Let us apply the formula obtained to the case of the area bounded by a great circle and two meridian arcs, the radius of the sphere being a.Take as the plane of xz that through the centre which cuts the great circle perpendicularly, and let p be the spherical perpendicular from the pole upon the great circle arc. The equation of the great circle is then
Then

and Area
where χ is the angle a meridian makes with the great circle and ϕ is the azimuthal angle.
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SPHERICAL TRIANGLE. 815If we take limits ϕ=a to ϕ = a + A, the limits for χ will be π-C to B where ABC is the spherical triangle formed by the meridians AB, AC and the arc BC.

Fig. 272.This area is therefore 
where E is the spherical excess, a result readily established in an elementary manner. (Girard’s Theorem. See Todhunter and Leathern, 
Sph. Trig., Art. 127.) Other illustrations have been given earlier. (See Art. 734.)

782. Case of a Solid of Revolution.In the case of any solid of revolution about the z-axis ϕ varies, but r is independent of ϕ and depends only upon the revolving curve generating the solid.The general formula 
now reduces to 

in conformity with the result of Art. 748.
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816 CHAPTER XXII.783. In the case of solids formed by the revolution about the z-axis of circles whose planes pass through the z-axis, centred at the origin, but of varying radius, r is a function of ϕ alone, and
The shape of the surface may be pictured as somewhat resem­bling the hermit-crab shell.Ex. Let the surface be r=αeϕ.
and θ, φ are independent,

Let 

and if the area be taken from r=0, i.e. ϕ2= - ∞ to any value of r,

784. In the case of an area of a portion of a right circular cone, vertex at the origin, axis the z-axis and semi vertical angle α, the general formula 
reduces toAnd supposing the area in question to be bounded by some curve drawn upon the cone, say r=f(ϕ), and two generators, we have [τ,2] = {f(ϕ)}2, the lower limit being r = 0, and
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AREAS ON A CONE. 817785. The formula is obviously the same thing as 
which is the area of the portion of the cone developed upon a plane, the angle between two generators so developed and corresponding to azimuthal angles ϕ and ϕ+δϕ on the cone, being δϕ sin α.786. Or again it is the same thing as 
i.e. the area of the projection upon the x-y plane, all elements of the cone making an angle π/2-α with the x-y plane.As a particular and elementary case, the area cut off by a plane perpendicular to the axis and intercepting generators of length l is 
where α is the radius of the base = l sin α and l the “ slant height,” the ordinary mensuration formula.787. In the case of any cone with vertex at the origin, the equation is of the form ϕ = f(θ), r being absent from the equation. Hence dϕ/dr = 0. The general expression 
in this case reduces to 
i.e.Hence, if a surface cut a cone whose vertex is the origin, viz. Φ = f(θ), the area of the cone between two of its generators and the curve in which it meets the surface is
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818 CHAPTER XXΠ.788. Ex. The equations of a cylinder and a cone areandIf A1, A2, A3 be the areas of the cone from ϕ=0 to ϕ=β-a, β and 
β+a respectively, then will [Math. Tripos, 1875.]In this case

Hence
andHence

789. Generalised Results. Orthogonal Coordinates.If f(x,y,z) = λ be any surface, it is required to find the normal distance between the surface and the contiguous sur-

Fig. 273.face λ + δλ at the point (x,y,z). Let the normal at P to the surface λ cut the surface λ+δλ at Q, whose coordinates are 
x+δx, y + δy, z+δz.The direction cosines of the normal are wheresuffixes represent partial differentiations and h2 = λx2 +λy2 +λz2. Then projecting the broken line δx, δy, δz upon PQ, we have
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ORTHOGONAL COORDINATES. 819Letbe three mutually orthogonal surfaces. Consider the small element of space whose faces are the three surfaces λ, μ, v and the contiguous surfaces λ + δλ, μ + δμ, v+δv.

Fig. 274.Let P be the point (λ, μ, v), PP' the diagonal through P of the element and λ+δλ, μ + δμ, v + δv the coordinates of P'. Let the edges of this element be PA, PB, PC, P'A', P'B', P C' etc., PA being an element of the normal to λ, etc. This elementary space is ultimately an infinitesimal rectangularparallelepiped or ‘ cuboid.’ Its edges are where
Its volume isMoreover, if (l1, m1, n1), (l2, m2, n2), (l3, m3, n3), be the direction cosines of the elements

the projection of PA upon the x-axis=the small change in x due to increase of λ to λ + δλ, μ and v remaining unaltered,
hence

www.rcin.org.pl



820 CHAPTER XXII.

Similarly 

hence we have

Thus J or the Jacobian* of x, y, z with regard
to λ, μ, v,

(See C. Smith, Solid Geometry, Art. 46.)
Thus the volume of the elementary cuboid is ±Jδλδμδv, 

and V, the volume of any region which is divided up into 
elements by this system, is given by

The ambiguity of sign disappears when the limits have been 
suitably assigned for the evaluation of the whole volume 
under consideration.Cor. (1). In the Cartesian system

λ=x, μ=y, v=z, h1=h2=h3=1,
and the formula reduces to 

the formula of Art. 760.
(2) In the cylindrical system λ = r, μ = θ, v = z, x=rcosθ, 

y=r sin Θ, z=z, and the elements are δr, rδθ, δz,

*See Diff. Calc., Art. 534.
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GENERALISED RESULTS. 821

and the formula reduces to 

the formula of Art. 774.
(3) In the spherical polar system λ = r, μ = θ, v=ϕ, 

x=r sin θ cos ϕ, y=r sinθ sin ϕ, z=r cosθ, 
and the elements are δr, r δθ, r sin θ δϕ, and

and the formula reduces to 

the formula established in Art. 775.
790. Element of Surface.

Suppose the region bounded by any surface S to have been 
divided up in the manner described by three families of ortho­

Fig. 275.

gonal surfaces whose distinctive parameters are λ, μ, v; any 
pair, say μ, v, with their contiguous surfaces μ+δμ, v+δv, form 
a tubular region within S. Suppose this tube to cut the tangent 
plane at P to the surface in the plane P'RPQ, which may in 
the limit be regarded as an indefinitely small parallelogram 
element of the surface. Its area is an infinitesimal of the 
second order. We may take it as axiomatic that the difference 
between the area of the intercepted portion δSλ of the surface, 
and the area of this parallelogram is at least of the third 
order, on the supposition that the curvature is finite and
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822 CHAPTER XXII.
continuous over the portion considered. The area of the 
parallelogram P'RPQ is readily found from the fact that the 
square of any plane area is the sum of the squares of its 
projections upon any three mutually perpendicular planes 
(C. Smith, Solid Geom., Art. 33). Let the cuboid element of 
the μ-v tube, for which PP' is a diagonal, be constructed as in 
Art. 789, with PA, PB, PG for adjacent edges through P and 
P'A', P'B', P'C' for opposite edges through P' (Fig. 275). 
Let QN and RM be drawn at right angles to PA. Join C'N 
and B'M. Thus the parallelograms PBA'C, PQB'M, PRC'N 
are the projections of PRP,Q upon three mutually perpen­
dicular planes. The areas of these figures are respectively 

and it will be observed that PN=RC'=MA, i.e.

Now, as we have taken f1(x, y, z)=λ, f2(x, y, z)=μ and 
f3(x, y, z)=v, we can express x, y, z in terms of λ, μ, v, and the 
equation of the surface S may be expressed in the form 
F(λ, μ, v)=0 by substituting for x, y and z these values. In 
fact λ, μ, v form a new system of coordinates; and of these 
we are regarding μ and v as independent and λ depending 
upon them. When μ and v change to μ+δμ and v+δv, the 

dλ dλtotal change of λ is δλ= δλ/δμ δμ+δλ/δμ δv to the first order.∂μ ∂v
Now, in our Fig. 275, PM represents that part of PA which 

depends upon δμ, and MA, that is, PN represents that part of 
PA which depends upon δv, i.e.

and

the two making up the total length of PA, i.e.

We thus have, to the fourth order, 

or
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GENERALISED RESULTS. 823

Similarly, if we had taken v, λ or λ, μ as the independent 
pair of parameters and constructed the corresponding tubes, 
we should have had 

and any of the three surface elements δSλ, δSμ, δSv intercepted 
by μ-v tubes, v-λ tubes or λ-μ tubes respectively, may be 
taken as an element of the surface for integration for the 
Whole.

Thus we obtain, when we proceed to take the square root 
and integrate,

791. Cor. 1. If the Cartesian system be taken, 

and the elements are δx, δy, δz, and 

viz. the formulae of Art. 772.Cor. 2. If the cylindrical system be taken,
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824 CHAPTER XXII.and r, θ, z form an orthogonal system, the elements being 

according as r, Θ or z is the dependent variable, giving the formulae 

which are in agreement with those of Art. 777.Cor. 3. In the spherical polar system,
and x = r sin θ cos ϕ, y = rsinθsinϕ, z = r cos θ,and r, θ, ϕ form an orthogonal system, the elements beingandwhence
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CHANGE OF THE VARIABLES. 825

giving the formulae

according as r, θ or ϕ is taken as the dependent variable, 
formulae in agreement with those of Arts. 778 and 779.

792. Change of the Variables. Form of Element of 
Area.

Supposing the coordinates x, y of any point in the plane 
of x-y to be expressed in terms of two new variables u, v, let 
us consider the nature of the figure bounded by the four 
curves obtained by assigned values of u, v, viz.

Let the figure thus bounded be PQRS,
δu being zero along PS, 
δv being zero along PQ.

Fig. 276.

The several Cartesian coordinates of the four corners are, 
to the first order,

for P, x,

for Q,

for S,

for R,
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826 CHAPTER XXII.The direction ratios of PQ and SR are
and of PS and QRHence the chords joining the corresponding points are such as, to the first order, to form the four sides of a parallelogram whose area is

This then is, to the second order, the area of the elementary curvilineal “parallelogram” PR, the difference between this area and that of the chordal parallelogram being at least of the third order of infinitesimals. Hence, taking the limit and integrating between any assigned limits, for u and v, we have 
where J is the Jacobian of x, y with regard to u and v.It will be remembered that if J' be the Jacobian of u, v with regard to x, y, we have JJ'=1 (Diff. Calc., Art. 540).And in cases where u and v are already expressed in terms of x and y, instead of x, y in terms of u and v, this rule will often facilitate the calculation of J.Similarly, if we wish to integrate any function of x and y, say f(x, y), over the area considered, i.e. to find ∑f(x, y)δA where δA is an infinitesimal element of the area, it is only necessary to express x and y in terms of u and v, and then to transform the function f(x, y) so as to express it as a function of u and v, say F(u, v), then to multiply it by J δu δv, and integrate, the result being

793. Illustrative Examples.1. Find the area of the Carnot’s cycle bounded by the isothermals xy=α1, xy=a2, and the adiabatics xyγ=β1, xyγ=β2.
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CHANGE OF THE VARIABLES. 827Putting xy=u, xyγ=v, take an element of the area bounded by the curves u, v, u + δu, v+δv.

Here

Fig. 277.

and Area required
(See page 63, Ex. 28.)2. The portions of the curves xy=a2, x2-y2=b2, which lie in the positive quadrant, are drawn intersecting at B. The former intersects the asymptote of the latter in C, and the latter meets OX in A. If every element of the area OABC be multiplied by the square of its distance from the origin 0, the sum will be equal to 1/2α2b2. [Colleges a, 1884.)

794. Change of the Variables. Form of Element of 
Volume.

Again, let the coordinates x, y, z of any point in space be 
expressed in terms of three new independent variables u, v, w, 
the surfaces u=const., v=const., w=const., not necessarily as 
in Art. 789, forming an orthogonal system.
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828 CHAPTER XXII.Let us consider the nature of the figure bounded by the six surfaces obtained by assigned values of u, v, w, viz.
Let the figure thus bounded be PQS' RP'Q'SR', 

δu being zero over the surface PRQ'S, 
δv being zero over the surface PQR'S, 
δw being zero over the surface PQS'R,

Fig. 278.

Fig. 278The several coordinates of these eight corners are, to the first order,for P, x. y, z,for Q,

for R,

for S,for Q', etc.,
for R', etc.,
for S', etc.,for P', etc.
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CHANGE OF THE VARIABLES. 829

The direction ratios of PQ, RS', Q'P', SR' are

those of PR, QS', R'P', SQ' are

and those of PS, RQ', S'P', QR' are

Hence the chords joining the corresponding angular points 
are such as, to the first order, to form the eight edges of an 
oblique parallelepiped, whose volume is

This is, to the third order, the volume of the elementary 
solid PP', the difference between this volume and that of 
the oblique parallelepiped being at least of the fourth order 
of infinitesimals. Hence, taking the limit and integrating 
between any assigned limits for u, v, w, we have 

where J is the Jacobian of x, y, z with regard to u, v, w; and, 
as noted in Art. 792, it is to be remembered that if J' be the 
Jacobian of u, v, w with regard to x, y, z, we have JJ'=1 
(Diff. Calc., Art. 540). And for cases where u, v, w are 
expressed as functions of x, y, z, instead of x, y, z, in terms 
of u, v, w, this rule will facilitate the calculation of J.795. Ex. Find the volume enclosed by the six hyperbolic cylinders
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830 CHAPTER XXII.Putting

796. It follows that if we wish to integrate the function f(x, y, z) throughout the volume bounded by surfaces specified by two specific values of u, two specific values of v and two specific values of w, i.e. to add up all quantities of the form 
f(x, y, z) × an element of volume at x, y, z,we have only to express x, y, z in terms of u, v, w, and sub­stitute these values for x, y, z in f(x, y, z), obtaining, say 

F(u, v, w), as the transformed function. Then taking, as before, the same element of volume, viz. J δu δv δw, the integral required will be
797. Thus, if we wished to obtain the product of inertia with regard to the y, z axes in the above example (of Art. 795), each element of mass 

ρ J δu δv δw is to be multiplied by yz, i.e. u, and assuming a uniform volumedensity p, the product of inertia required is or

where M is the mass of the solid in question.798. If we wish for the x-coordinate of the centroid of the solid,

and similarly for other integrals.
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CHANGE OF THE VARIABLES. 831799. We consider next the case in which the three co­ordinates x, y, z are expressed, or expressible, in terms of two independent parameters u and v, and therefore the point travels upon a definite surface. Consider the four points P, Q, S, R on the surface defined by the values
i.e. x, y>

Fig. 279.The direction ratios of PQ and SR are each 
and those of PS and QR are each
and to the first order PQRS is a parallelogram. Let its area be δS.The coordinates of the projections of P, Q, S, R on the planeof x-y are etc.,and the area of this projection is
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832 CHAPTER XXIIand similarly its projections upon the other coordinate planes are whence its area δS is given by
Hence, proceeding to the limit and integrating, 
i.e.whereAlso if the surface integral of any function f(x, y, z) be required, f(x, y, z) is to be expressed in terms of u and v, as ϕ(u, v), and the surface integral required is

If we write 
we have, from the algebraic identity,

the surface integral may be written 
as shown otherwise in Art. 744.

800. Results connecting δ V and δS.If δS be an element of the area S of a surface, and P be the perpendicular from the origin on the corresponding tangent plane, we have for the volume of the cone whose vertex is at the origin and base δS, 1/3P δS.
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SOME SPECIAL FORMS. 833Hence the volume of any region bounded by a given surface and a cone with vertex at the origin, and generators passing through the perimeter of any closed curve drawn upon thesurface, is
or, which is the same thing, if l, m, n be the direction cosines of the normal to the element 8S, so that
is the equation of the tangent plane, we have

801. If the equation of the surface be written as z=f(x, y), the equation of the tangent plane at x, y, z is
whereand the perpendicular P from the origin upon it is

Hence the formula for the volume, viz. becomes
forwhere cos a, cos β, cos γ are the direction cosines of the normal,
i.e.802. Let the inward drawn normal at a point P on a surface make an angle χ with the radius vector from the origin, and let p be the perpendicular from the origin upon the tangent plane at P, r the radius vector from the origin to P, and δS an element of the surface about PThen p/r = cosχ, and the formula for an element of volume forming an elementary cone with vertex 0 and base δS, viz. 1/3p δS, becomes 1/3r cosy δS.
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834 CHAPTER ΧΧII.Hence we have another expression for the volume bounded by any curved surface and a cone whose vertex is the origin and passing through the perimeter of the region defined by a given closed curve drawn upon the surface, viz.

Fig. 280.or again, seeing that this element of volume is 
we have 
and

803. Ex. Find the surface and the volume of the solid formed by the revolution of the cardioide r=α(l+cos0) about the initial line.

Fig. 281.
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TETRAHEDRALS. 835

Here

Also
the limits for r being 0 to α(1+cos0), ϕ from 0 to 2π, 

θ from 0 to π.
Hence

(See Art. 751, Ex. 3.)
804. Tetrahedral Volume.

An expression for the evaluation of a volume for a surface 
given by a tetrahedral equation may be obtained in the same

Fig. 282.

way as that adopted for an area in areal coordinates (Art. 461).
For let V0 be the volume of the tetrahedron of reference, 

and let a, β, γ, δ be the tetrahedral coordinates of a point P,
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836 CHAPTER XXII.and x, y, z be their Cartesian equivalents with reference to some given rectangular system of axes; then x, y and z are linear functions of a, β and γ, for we have α +β+γ + δ = 1.Hence where K is some determinate constant (Art. 794).To determine K, apply the formula to the fundamental tetrahedron itself. If we integrate first with regard to a for the tube bounded by two given planes β and β + δβ, and two planes γ and γ + δγ, keeping β and γ constant, the limits for a will be from the point at which this tube cuts the plane α=0 to the point in which it cuts δ=0, i.e. from 
a=0 to a=1—β—γ. Then we have

Next, integrating this with respect to β, keeping γ constant, the limits for β will be from β=0 to the point where α=0 and δ=0, i.e. where β=1-γ, and
Lastly, integrating from γ=0 to γ=1,Hence K=6V0; therefore the formula is
805. Surface generated by the Revolution of a Tortuous Curve 

about an Axis.Let a curve of double curvature revolve round the z-axis; it is required to find the surface generated.Let PP' be the element ds of the curve.Let revolution about the z-axis be made through the angle 
dθ, and let the perpendiculars PN, P'N' turn into the positions 
P1N, P1'N'.Then  PP1 = NPdθ,

P'P1' = N'P'dθ = NPdθto the first order, and NP = √x2 + y2, and the area of the ele­ment PP1P1'P' is NPdθ . ds sin χ to the second order, where χ
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REVOLUTION OF A TORTUOUS CURVE. 837is the angle between P1P and P1P1', i.e. between directions whose direction cosines areand
Hence 

and

Fig. 283.Hence Area of element PP1P1'P'

Hence, for a complete revolution the area traced out is 
or in cylindricals, (p, ϕ, z),
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838 CHAPTER XXII.That is the area of the surface described is the same as would be traced out by a rotation about the z-axis through the same angle, of a new plane curve constructed by first swinging back each point of the tortuous curve from its actual position without alteration of its distance from the axis of rotation into a corresponding position upon the initial plane.And if ds' be an elementary arc of this new curve,
and therefore

806. Ex. Let us employ this formula to find the surface of a hyper­boloid of revolution included between two planes perpendicular to the

Fig. 284.axis, the surface being regarded as generated by the revolution of a straight line about the axis, which we take as the z-axis, the line making a constant angle with the z-axis and not cutting it. The equations of theline are
Henceand
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ANNULAR ELEMENT OF SURFACE. 839

Hence

807. Case of an Annular Element of Surface. Surface of the 
Ellipsoid

Legendre’s Formula.

The equations of the normal at x, y, z are

and its direction cosines are where p is the central
perpendicular upon the tangent planes at x, y, z, viz. such that

Fig. 285.
Let a cone be drawn whose vertex is at the origin 0, and 

cutting the ellipsoid at all those points at which the normal 
makes a constant angle θ with the z-axis. Its equation is

or

Let S be the area of the ellipsoidal cap cut off by this cone.
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840 CHAPTER XXII.If we eliminate z between the equation of the cone and the equation of the ellipsoid, we obtain the projection of this curve of intersection upon the plane of xy, viz.
orviz. an ellipse of area

If we increase θ to θ+δθ, we increase S and A respectively to S+δS and A+δA. Now δA, the difference between the areas of two ellipses, is the projection of δS upon the x-y plane. And when δθ is indefinitely small, all elements of δS cut off by contiguous meridian planes make the same angle θ with their projections, which are the corresponding elements of δA.Hence andand taking the limit and integrating
To effect the integration of ,we shall change the variable.We have
Put , where c = a cos γ.

Then

wherewhich is <1, and ∆2=1 -k2sin2ϕ.
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SURFACE OF AN ELLIPSOID. 841

And

(1)
Now

Hence 

where 

and the limits for θ are 0 to π/2 for the upper half of the 

ellipsoid, and the consequent limits for ϕ are γ to 0, and 
double to take in the lower half of the surface.
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842 CHAPTER XXII.Thus for the whole surface

where a form due to Legendre*808. Cases.In the case of the oblate spheroid, α = b, k = l, and the elliptic functions degenerate,
E becomingand F becominggiving 

and for the prolate spheroid b=c, k=Ο,Ε=γ and F=γ, giving 

or
809. Another Method for the Surface of an Ellipsoid.From the formula we may deduce another form of expression for the area of an ellipsoid. Substituting the value of dA, we have
Put

* See Serret, Calcul Integral, pages 338-342; Legendre, Exercices du Calcul 
Integral, p. 193.
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SURFACE OF AN ELLIPSOID. 843Then

and the limits of integration for the upper half of the ellipsoid are Θ=0 to Θ=π/2, i.e. λ=∞ to λ=0. The result must be doubled to include the lower half of the surface.
Now

Hence (See Art. 363, Ex. 5.)
for the whole area of the surface of the ellipsoid.810. We now revert to the consideration of the generalised system of orthogonal coordinates discussed in Art. 789.It will be remembered that we there obtained expressionsfor the direction cosines of the elements in terms ofpartial differential coefficients of x, y, z with regard to λ, μ, v.We may also readily express the same direction cosines in terms of partial differential coefficients of λ, μ, v with regard to x, y, z.

* Mathematical Tripos, 1896.
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844 CHAPTER XXII.Regard as the directions of a new set of threecoordinate axes OA, OB, 0C.Referred to such axes the direction cosines of the originalaxes are: for 0χ∙, l1, l2, l3, for 0y ; m1, m2, m3, for Oz; n1, n2, n3;

Fig. 286.then l1δx is the projection of δx upon 0A=a small element on 0A due to an increase of
x to x+δx, y and z remaining unaltered,

Similarly andetc.;and we have the system of equations

whence it follows that J', i.e.
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GENERALISED COORDINATES. 845which might have been anticipated from the theorem JJ'=1(
Diff. Calc., Art. 540).We thus have the following relations between the several partial differential coefficients, by comparing with Art. 789, viz.

andSimilarly
811. It is plain that the areas of the three faces of the ele- mentary cuboid which lie on the surfaces λ = const., μ = const., 

v = const., are respectively
and that the infinitesimal distance between x, y, z and x+ δx, 
y + δy, z+δz, viz. the diagonal through P of the elementary cuboid, is 

[See Todhunter, Functions of Laplace, Lame and Bessel, pages 210-233 ; also E. J. Routh, Anal. Statics, vol. ii., Arts. 109,110.]
812. Elliptic Coordinates.The most remarkable case of these orthogonal surfaces is that of the three confocal conicoids, (α>b>c), 

viz. an ellipsoid, a hyperboloid of one sheet and a hyperboloid of two sheets respectively, so that λ is < — c2, μ between — c2 and — b2, and v between — b2 and - α2.
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846 CHAPTER XXII.To express x, y and z in terms of the parameters λ, μ, v, we resort to a well-known algebraical device, viz.Consider the equality (A)where x, y, z have the values obtained from the above equa­tions. This is either an equation to find θ, or it is an identity true for all values of θ.If an equation, it is of quadratic nature; for θ3 disappears upon multiplying up by (α2+ θ) (b2 + θ) (c2+ θ). Hence it could not be satisfied by more values of θ than two. This equality, however, is obviously satisfied by θ = λ, θ = μ and 
θ = v, i.e. more than two values. Hence it is not an equation, but an identity and true for all values of θ.Multiply then by 0+α2.

In this identity put θ=-a2; hence
Similarly 

and
Hence 

that is 
and similarlyAgain, if we differentiate the identity (A) with regard to θ, we obtain another identity, viz.
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ELLIPTIC COORDINATES. 847and putting θ=λ in this result,
i.e.where etc., etc.Hence

We thus have for an expression for a volume divided up into elementary cuboids defined by the faces of the three confocals λ, μ, v, and the three contiguous confocals
813. In case of integration throughout the volume containedby the ellipsoid,

the limits are: for λ, from λ=0 to λ=-c2; for μ, from μ=—c2 to μ=-b2; for v, from v=-b2 to v=-a2.814. If any function F(x, y, z) is to be integrated through any specific region bounded, say, by confocals λ1, λ2, μ1, μ2, v1, v2, we must convert F into a function of λ, μ, v by sub­stituting for x, y, z their values, obtaining, say, F1(λ, μ, v), and then the required summation will be
815. For instance, if the function to be integrated be

we have
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848 CHAPTER XXII.816. In particular we may gather from the known volume of an ellipsoid, viz. ⅛πabc, that the value of the definite integral is817. The elements of surface of the three confocals at a point of intersection are respectively

818. We may thus, for instance, express the area of any portion of the ellipsoid λ=0, bounded by confocals μ1, μ2,

819. The distance δs from is
given by

And
In the case where the line lies on the ellipsoid λ = 0,
And when the curve on the ellipsoid is further defined by a relation between μ and v, further reduction may be effected. For instance, along the line of curvature which is the inter­section of the intersection of λ = 0 with μ = const. = μ0, say,
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ELLIPTIC COORDINATES. 849or writing
we havefor the length of a specified arc of a specified line of curva­ture upon the ellipsoid.820. If we write
the conicoids become
and we have a certain amount of simplification of the formulae, but with a loss of symmetry.*Thus we obtain

and for the volume of the ellipsoid
the limits are: for λ1, from c1 to λ1; for μ1, from b1 to c1; for v1, from 0 to b1.Hence it follows that the value of the definite integral
isbeing an octant of the ellipsoid.

*This is the notation adopted by Todhunter, Functions of Laplace, Lame 
and Bessel; Bertrand, Calc. lnt.
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850 CHAPTER XXII.The suffix has been retained to prevent misconception as to the meanings of the several letters, but may now be dropped. For this and the values of other definite integrals of similar nature, see Todhunter, Functions of Laplace, Lame and 
Bessel, Chapter XXI.

821. Solid Angle.Let C be any closed curve, plane or twisted, bounding any region upon a surface, 0 a fixed point, and S a sphere of unit radius, with centre 0. Let a cone with vertex 0 and generators passing through the perimeter of C, isolate on the unit sphere an area ω. Then ω is called the “solid angle” subtended at 0 by the portion of surface bounded by C.

Fig. 287.The area of a sphere being 4π × (radius)2, it follows that the solid angle subtended by any closed surface at a point within it is 4π ; at a point upon it which is not a singularity, 2π ; at a point outside, 0. The solid angle subtended at a corner of a cube by the rest of the cube is 4π/8=π/2. At a ο 2point on the line of intersection of two planes cutting at right angles, each of the regions into which space is divided by the 4πtwo planes subtends a solid angle 4π/4 = π. At the vertex of a right circular cone of semivertical angle α, the solid angle is the area of the portion of unit sphere, centre at the vertex, cut off by the cone, i.e. 2π . 1. (1 — cos α), i.e. 2π vers a.
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SOLID ANGLES. 851

A circular disc of radius a subtends at a point 0 on the axis 
whose distance from the plane of the disc is h, a solid angle

Fig. 288.

822. In the spherical polar system of coordinates, the face 
of the elementary cuboid r2 sin θ δθ δϕ δr, which is at right

Fig. 289.

angles to the radius vector, is rt sin θ δθ δϕ, and if δω be the 
solid angle subtended at the origin 0, we have

i.e. the area pqrs, viz. δω, intercepted upon unit sphere by 
radii vectores to the boundary of the element whose face is 
PQRS, viz. r2 sin θ δθ δϕ, is given by

The element of volume rt sin θδθδϕδr may therefore be 
written as r2δωδr, and

In the case of the sphere r is constant, and
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852 CHAPTER XXII.823. Let the inward drawn normal at any point of a closed surface make an angle χ with the radius vector τ to the point, and let δS be an element of the surface about the

Fig. 290.point; then the projection of δS upon a plane cutting the radius vector perpendicularly is δScosχ, and in the limit when δS is infinitesimal, we haveorto the second order; whence
Also, if p be the perpendicular upon the tangent plane at the point r, θ, ϕ, we have andObviously it follows also that 

and if the closed surface surrounds the pole 0, this gives
If O lies at a point on the surface where there is no singularity,
If 0 lies outside the closed surface,
If 0 lies at a conical point of solid angle ω,
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GAUSS’S THEOREMS. 853

These theorems are of great importance in the theory of 
attractions, and are due to Gauss. (See E. J. Routh, Anal. 
Statics, vol. ii., Art. 106.)824. Solid angle subtended by a triangle at a point not in its plane.Let ABC be a triangle of sides a, b, c lying anywhere in a given plane 
XY, let O be a point not in this plane, and let OA, OB, 0C be respec­tively p, q, r. Let the planes 0BC, OCA, OAB intercept on the unit sphere, centre O, the spherical triangle A'B'C' of sides a', b',c', and let p' be the great circle perpendicular from A' on B'C', and let ω be the solid angle subtended by ABC at 0, and E' the spherical excess of the triangle 
A'B'Cv.

Fig. 291.Then ω is measured by the area of A'B'C', i.e.

Hence it appears that triangles bounded by planes such that the sum of the angles between them is constant subtend the same solid angle at O.Cagnoli’s theorem gives 
or, which is the same thing,
[Todhunter and Leathern, Spherical Trigonometry, Art. 132.]Now let the volume of the tetrahedron OABC be called V ; then
i.e. pgr sin α' sin b' sin C=constant= 6V.
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854 CHAPTER XXII.Again, i.e.and if ∏2 represent we haveand
HenceAlso, if h be the distance of 0 from the plane of ABC and Δ the area of the triangle, andIf then the triangle moves in its own plane in such manner as to makeconstant,the solid angle at O will remain constant.If the triangle ABC be a fixed non-conducting lamina uniformly electrified, this equation will determine the lines of equal density of electricity induced upon an infinite parallel plane conducting and uninsulated.
825. Illustrative Examples.1. To find the volume of the portion of the paraboloid 

cut off by the plane lx+my + nz=p.

Fig. 292.The difference of the z-ordinates of the plane and the paraboloid is
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ILLUSTRATIONS. 857

3. To calculate the value of the integra­tions being conducted through the volume of the ellipsoid
TakeThe volume of the ellipsoidal shell bounded by the similar ellipsoids δ

and δ + dδ isand ϕ(δ) is constant throughout this shell.Hence4. Find the mass of a thick focaloid,* i.e. a shell bounded by confocal ellipsoids, the layers of equal density being confocal surfaces, and the density at each point inversely proportional to the volume contained by the confocal through the point.Let be the confocal through the point, and let
be the outer and inner surfaces of the shell.The volume contained by the ellipsoid λ is

The volume of the layer between the surfaces λ and λ+dλ is
The law of density is

k being a constant.Hence the mass of the layer is
and the mass of the thick shell is

and if D be the density of the outer layer,
Hence
*For this term see remarks by E. J. Routh, Anal. Statics, vol. ii., p. 97, and 

Thomson and Tait’s Natural Philosophy.
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856 CHAPTER XXII.The area of such a section is
[C. Smith, Solid Geometry, p. 99.] The thickness of a slice is δp. The slice of zero area is such that
p1 being the corresponding value of p.The limits of integration with respect to p are from p1 to p.Hence

as before.We may note that frusta of finite thickness whose bases are parallel to a given plane are such that their volumes vary as the squares of their thicknesses ; also that frusta of given thickness are such that their volumes vary as the squares of the secants of the angles which the normals to their bases make with the axis of the paraboloid.2. To calculate the value of the integra­tions being conducted through the volume of the ellipsoid
I, m, n being such thatLetThe area of this section of the ellipsoid is
where p2=a2l2+b2m2 + c2n2.Consider the ellipsoid divided into thin slices parallel to this plane. The volume of such a slice is Adδ to the first order, dδ being the thick­ness of the slice, and ϕ(δ) is, to the first order, constant through the slice.Hence
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ILLUSTRATIONS.

3. To calculate the value of
857

the integra­tions being conducted through the volume of the ellipsoid
TakeThe volume of the ellipsoidal shell bounded by the similar ellipsoids δand δ+dδ isand ϕ(δ) is constant throughout this shell.Hence4. Find the mass of a thick focaloid,* i.e. a shell bounded by confocal ellipsoids, the layers of equal density being confocal surfaces, and the density at each point inversely proportional to the volume contained by the confocal through the point.Let be the confocal through the point, and let

be the outer and inner surfaces of the shell.The volume contained by the ellipsoid λ is
The volume of the layer between the surfaces λ and λ+dλ is
The law of density is k being a constant.Hence the mass of the layer is

and the mass of the thick shell is

and if D be the density of the outer layer,
Hence
*For this term see remarks by E. J. Routh, Anαl. Statics, vol. ii., p. 97, and 

Thomson and Tait’s Natural Philosophy.
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858 CHAPTER XXII.5. Consider the region bounded by(1) a sphere x2+y2 + z2= a2;(2) a right circular cylinder x2+y2=bx (a<b);(3) the two planes y= ±x tan a.We shall first find the volume enclosed by these surfaces in the positive octant of space.Take cylindrical coordinates r, θ, z.

Fig. 293.The elementary prism on base rδ0δr has volume rzδ0 δr to the second order, and 

and the equation of the trace of the cylinder upon the x y plane being r=bcosθ, the limits for r are 0 to bcosθ, whilst the limits for θ are from 0 = 0 to 0 = α.Hence
Writing and in the integral,
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ILLUSTRATIONS. 859

where
and by Legendre’s formula (No. 10, p. 399),
and if E1, F1 be the real quarter periods, we have

where and
And for the whole volume of the sphere included between the specified boundaries, we have four times this quantity.When the cylinder just touches the sphere, i.e. b=a, the elliptic functions degenerate.We then have for the volume in the positive octant

and in the case where the planes y = ± x tan α coincide with the y-z plane, 
i.e. α=π/2, the whole volume cut out of the sphere by the cylinderis

To find the surface of the sphere thus bounded in the positive octant, we have
γ being as usual the angle the normal to the sphere at r, θ, z makes withthe z-axis ; that is
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860 CHAPTER XXII.

Hence

and putting as before and

and when b=α, we have 
and for the further particular case when

And in each case the whole, of the surface of the sphere intercepted in this manner is four times the portion which has been found.6. At every point of an elliptic lamina a straight line is drawn perpendicular to the plane of the lamina and of such length that the volume (μ, say) of the rectangular parallelepiped formed by this length and the distances of the point from the foci of the elliptic boundary is constant. Given that a and b are the semiaxes of the elliptic boundary, show that the volume of the solid thus formed is 
[Colleges, 1891.]Taking we have

and the loci ϕ=constant, θ = constant are the confocal conicsandand the focal radii r1, r2 are such that r1 + r2 =2ccosh ϕ, r1-r2=2ccosθ. Let the elliptic area be divided up into elements by confocals in this way, taking the element bounded by θ, θ +δθ, ϕ, ϕ+δϕ as a type.Now where F1 is the equivalent of F in terms of 0, ϕ.
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Also

and by the condition of the question μ=zr1r2. Thus V01ume
and the limits for θ are θ=0 to 0 = π/2, and for ϕ from ϕ = 0 to the valuefor which ccosh ϕ=a and c sinh ϕ=b, that is

Fig. 294.Thus
7. In the evaluation of such integrals as taken over thesurface of an ellipsoid of semi-axes a, b, c, where the surface is S and the volume V, p being the central perpendicular upon any tangent plane, consider three points P, Q, R on the surface, which are the extremities of three semi-conjugate diameters. Let δS1, δS2, δS3 be any elements of the surface about the three points and p1, p2, p3 the corresponding perpendiculars.Then
Now suppose these elements of area δS1, δS2, δS3 to have been sochosen that
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Then, since
we have
i.e.

we also have andwhence we can readily infer the values of I1, I2, I3, etc., viz.
PROBLEMS.

1. Find by integration the volume of a frustum of

(1) a pyramid on a triangular base,

(2) a pyramid on a square base,

(3) a cone.

2. Find the volume of the portion of a sphere bounded by planes 
through the centre which cut the sphere in the sides of a given 
spherical triangle ABC.

3. Show that the volume cut off from the paraboloid

by the plane

is

4. Show that the volume of the solid bounded by

is
5. Show that the volume bounded by the surface

and the planes

is

6. Show that the volume of a slice of the ellipsoid
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bounded by the parallel planes

is

where p is the central perpendicular upon a tangent plane parallel 
to the faces of the slice.

7. If A be the area of a central section of an ellipsoid parallel to 
the tangent plane at the elementary area δS, show that

the integration being taken over the surface of the ellipsoid.

8. Prove that over an ellipsoid of semiaxes a, b, c,

dS being an element of surface, and p the central perpendicular 
upon the tangent plane.

Investigate also the value of

9. Apply the formula to find the volume

of an ellipsoid, x, y, z being the coordinates of any point on the 
surface, and l, m, n the direction cosines of the normal there.[Colleges α, 1881.)

10. If the ellipsoid of semiaxes a, b, c be very nearly spherical, 
then its area is, to the first order (inclusive) of the small quantities, 
represented bv the difference of the axes [Trinity, 1891.]

11. Show that a portion of a spherical surface (radius unity) may 
be bent into the surface of revolution defined by the equations

and explain the geometrical theory, distinguishing the two casesk<1, k>1. [Math. Tripos, 1887.]
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12. The curve z=f(x), y = 0 revolves about the axis of x, and the 
surface thus formed is intersected by the right cylinder y= ϕ(x), 
which is symmetrical with respect to the axis of x: prove that the 
cylinder cuts off from the first surface a portion the area of which 
can be determined by the evaluation of the integral

between proper limits. [Oxford II. P., 18S8.]

13. Show that the cylinder (x - c)2 + y2 = (a - c)2 cuts off from the 
sphere x2 + y2+ z2= α2 a portion of which the area is

a being supposed greater than c. [Oxford II. P., 1888.]

14. Prove that the volume cut off from the paraboloid

by the plane

is [Oxford II. P., 1902.]

15. Show that the volume enclosed between the surface

and the cylinder 
is [Oxford II. P., 1886.]

16. By application of the formulae

to the evaluation of the volume of an ellipsoid, establish the results

(1)

(2)

(See Art. 820 for the notation.) [LamE.][Todhunter, Functions of Laplace, Larne and Bessel, pages 216, 217 ; Bertrand, Calc. Int., pages 424, 426.]

17. Show that the volume bounded by the surface

and the planes

is
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18. A cavity is just large enough to allow of the complete 
revolution of a circular disc of radius c, whose centre describes a 
circle of the same radius c, while the plane of the disc is constantly 
parallel to a fixed plane, and perpendicular to that in which the 
centre moves. Show that the volume of the cavity is

19. If 0 be a point without a sphere of radius a and centre C, 
and r the distance of any point of the sphere from 0, show that,

integrating over the surface, we have

if

and

What will be the results if 0 lies within the sphere ?

20. A surface is obtained by making the diameter 2a of a semi­
circle move parallel to itself, the path of the centre being perpen 
dicular to the initial plane of the semicircle, whilst the plane of the 
semicircle rotates round the diameter; and when the plane has 
moved through an angle θ the distance which the diameter has moved 
is c sin θ. Prove that the volume of the whole surface so generated is[Trinity, 1890.]

21. Use the theorem

to find the volume of the parallelepiped enclosed by the planes

22. Prove that the area of that portion of the surface

which is cut out by the surface

where a and b are positive, is

[Oxford IT. P., 1890.]
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23. Show that when f(x) is a slowly changing function,

is approximately equal to

Prove that this formula may be used to calculate exactly the 
volume cut from a hyperboloid of one sheet by parallel planes 
meeting it in elliptic sections. [Colleges a, 1881.]

24. Prove that the volume included in the positive octant between
the surface

and the planes

18

n being a positive integer.

25. Show that the area of that part of the sphere r=l, enclosed

by the cone 1S 7Γ. [Colleges a, 1881. ]
26. Show that the volume of the solid, the equation to the

surface of which is

is [Colleges, 1882.]
27. If in the tangent plane at the vertex of a paraboloid two

ellipses be described whose axes are in the principal sections and 
proportional to their parameters, the cylinders whose bases are these 
ellipses, and whose generators are parallel to the axis of the 
paraboloid, will intercept on the surface a portion whose area is 
proportional to the difference between the radii of curvature of 
either of the principal sections at the points where it intersects the 
bounding curve. [Colleges, 1892.]

28. If the density of a tetrahedron at any point vary as the nth 
power of the sum of the distances of the point from the faces of the 
tetrahedron, show that the mass of the tetrahedron

where V is the volume; p1, p2,p3,p4 are the perpendiculars from the 
comers upon the opposite faces, and k the density at the centroid of 
the volume.

Examine what happens in the case of a regular tetrahedron.
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29. Find the volume contained between any two planes perpen­
dicular to the axis of x and the surface whose equation is

[St. John’s, 1884. ]
30. Show that the mass contained between a paraboloid of revolu­

tion and a sphere, with centre at the vertex and diameter 2α, equal 
to the latus rectum of the paraboloid, where the density at any point 
varies as the square of the latus rectum of the paraboloid containing 
it and having the same vertex and axis as the bounding paraboloid, is 
where p is the density at the external surface of the paraboloid.[Colleges δ, 1883.]

31. Find the volume between the surfaces

[Colleges δ, 1881.]
32. Prove that if a, b, c be any positive quantities in descending 

order of magnitude, the solid angle of that part of the cone 
which lies on the positive side of the plane xy is equal to

[Colleges β, 1891.]

33. Prove that the volume common to a sphere and a circular 
cylinder which touches it, and also passes through the centre, is 
1 2

1/2 -2/3π of the volume of the sphere. [St· John’s, 1891.]

Also show that the sum of the two spherical caps cut off by the 
cylinder forms of the area of the sphere.

34. A sphere of radius a is cut by two diametral planes so as to 
form a lune of angle α, which is itself cut in two by a plane inclined 
at an angle β to its edge and passing through one end of it, and 
equally inclined to the two faces of the lune; show that the volume 
of the pointed part is
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35. Prove that the moment of inertia about the axis of z of the 

part of the paraboloid 2z = ax2 + by2, cut off by the plane

is

the density being taken as unity. [Math. Tripos, 1890. ]

36. If A+B+C=Q and the coordinate axes be rectangular, 
prove that

where the integration extends over the whole surface of a sphere of 
unit radius whose centre is the origin of coordinates. [Colleges, 1892.] 

Also show that the unconditional result is

37. A flexible envelope is in the form of an oblate spheroid, such 
that e is the eccentricity of a meridian section: the part between 
two meridians, the planes of which are inclined to each other at the 
angle 2π(l -e), is cut away, and the edges are then sewn together. 
Prove that the meridian curve of the new surface is the “curve of 
sines,” and that the volume enclosed is changed in the ratio

3πe2:8. [St. John’s, 1889.]

38. A surface is such that ABCD being any rectangle in the plane
of x, y, with its sides parallel to 0z, 0y, and AP, BQ, CR, DS being 
drawn parallel to 0z to meet the surface in P, Q, R, S, the volume 
of the solid ABCDPQRS is equal to the base ABCD, multiplied by 
the arithmetic mean of AP, BQ, CR, DS. Prove that the surface 
is a hyperbolic paraboloid. [Math. Tripos, 1876.]

39. Show that the integral

taken over the volume of the ellipsoid

is [Colleges, 1885.]
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Prove more generally that

over the volume of the ellipsoid

and find the values of

through the same space.

40. On a closed oval surface of volume V and surface S, whose 
curvature is everywhere finite, rolls a sphere of radius a; the surface 
of the envelope of the sphere is S'. Prove that the volume of the
envelope is [Math. Tripos, 1886.]

41. Show that the volume of the pedal of an ellipsoid taken with 
the centre as origin is less than that taken with regard to any other 
origin; and that the sum of the volumes of the pedals, taken with 
regard to the extremities of three semi-conjugate diameters, is six 
times that taken with regard to the centre. [Math. Tripos, 1887.]

42. Show that the moment of inertia of the ellipsoid

about the axis of x is

where M is the mass of the ellipsoid. [Trinity, 1890.]

43. Find the envelope of the conics x2 sec30-y2tan30 = α2, where 
θ is the variable parameter. Show that in addition to certain lines 
it consists of a curve whose asymptotes are x= ±a. Also, if the 
area between the axis of x, an asymptote, and the corresponding 
branch of the curve be A, and the volume generated by the revolu­
tion of this branch about the axis of x be V, prove that

[Colleges β, 1890.]

44. Show that the value of
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taken throughout the positive octant of the ellipsoid

is [Oxford II. P., 1888.]
45. Prove that the mass of a sphere of radius a, whose density at 

any point P is where k is a constant and A is a fixed point

distant f (> a) from the centre of the sphere, is equal to

[0xf. I. P., 1914. ]
46. Prove that the volume which lies within the sphere

and the ellipsoid

where 0 < a < β <1/2π, is [0xf. I. P., 1916. ]
47. P is a point of abscissa x (> 0) on the parabola

and Sa2 is the area of the segment bounded by the arc OP and the 
radius vector OP; the straight line PQ of length 2Sa is drawn 
parallel to 0z. The locus of Q being a curve which passes through 
the origin, prove that

(1) the length of the arc 0Q is x + x3∕6a2 ;
(2) the cylindrical area bounded by the arcs OP, 0Q and the

straight line PQ is [0xf. I. P., 1916.]
48. Show that the two cylinders x2∕a2 + z2∕c2 = l and y2 = 2b(c- z) 

intercept on the plane z = k (where ka<c2), a rectangle of area

Show that the volume cut off from the cylinder x2∕a2 + z2∕c2 = 1 by 
the cylinder y2 = 2b(c - z) is [0xf. I. P., 1917.]

49. The sphere x2 + y2 + z2 = a2 is intersected by the cylinder

Prove that the ratio of the spherical area cut off by the cylinder 
to the cylindrical area cut off by the sphere is [0xf. I. P., 1915. ]
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50. Integrate [Oxf. I. P., 1915. ]

51. Find the value of taken all over the plane

x, y; p being greater than unity. [Oxf. I. P., 1915. ]

52. Find the four points where any line parallel to the axis of z 
intersects the surface (x2 + y2 + z2)2 = 4 (α2z2 + x2y2).

Prove that the volume enclosed by that part of the surface which 
lies above the plane z = 0 is 16/3 a3. [Oxf. II. P., 1915.]

53. If the coordinates of a point on a certain surface be expressed as

x = a sin u, y = asinv, z = a cos u + a cos v,
prove that the area of the portion of the surface bounded by

is

where [Oxf. II. P., 1915.]
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