
CHAPTER XXIV.

EULERIAN INTEGRALS, GAUSS’ ∏ FUNCTION, ETC.853. The Original Forms of the Eulerian Integrals.The properties of the two important integrals 
were the subject of several remarkable memoirs by Euler. His investigations were published in the Institutiones Calculi 
Integralis, 1768-1770, and are of great importance in the general theory of Definite Integrals. The notation above, viz.and is that used by Euler, and the above forms are those in which the integrals were studied both by Euler and Lagrange. In each of these the value of the integral was supposed to change by the variation of p and q; the 
n which occurs in the first integral was supposed to be a constant.Legendre, for the purpose of characterising these integrals and honouring their great discoverer, named them “ Integrates Euteriennes.” * The second part of Legendre’s Exercices de 
Calcul Integral is devoted to a discussion of their properties. He adheres to the notation for the first integral, but suggests the notation r(p/q) for the second, regarding Γ(α) as a continuous function of a.

* Exercices de Calcul Integral, par A. M. Legendre, 1811, p. 211.
49
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50 CHAPTER XXIV.854. The More Convenient Modern Forms.The above forms of the integrals are not the most convenient in practice. Taking the first integral, write xn=y, and put 
p=nl, q=nm.Then

Taking the second integral and writing log1/x=y, that is 
x=e-y, and putting p/q=n,

855. Definition.We shall therefore define the First and Second EulerianIntegrals as 
and and refer to them respectively as the Beta and Gamma Functions. This is now the commonly accepted notation and nomenclature.856. In Gregory’s Examples (p. 470), the digamma F(l, m) is used to denote what we have above defined as the Beta function. It will be observed that B(l, m) is n times the integral discussed by Euler, that is n(p/q).We shall assume in our subsequent work that all the quantities l, m, n are positive but not necessarily integral, and further that they are real unless the contrary be expressly stated.857. The Beta Function is symmetric in l and m, that is,B(l, m)=B(m, l).If in the Beta function
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THE BETA FUNCTION. 51we write 1—y for x, we obtain 

whence it appears that B(l, m) is a symmetric function of l and m, the land m being interchangeable and
This property might be exhibited by writing B(l, m) as
858. Case when l or m is a Positive Integer.When either of the two quantities l, m is a positive integer, the integration is expressible in finite terms.Suppose m is a positive integer, 

and by continued integration by parts

Similarly, if l be a positive integer, 
and if both be positive integers,

859. Various Forms of the Beta Function.The Beta function may be thrown into many other forms by a change of the variable, and therefore many other integrals are expressible in terms of the Beta function.
www.rcin.org.pl



52 CHAPTER XXIV.

Thus: (1) Let
Then

Hence
(2) Let
Then 

and since l, m are interchangeable this must also 
which would have appeared immediately if we had made thesubstitution instead ofNote also that the symmetry in l, m may be exhibited as 
whilst for all positive values of l and m we have

So that, for instance,

(3) Putting
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ABEL’S TRANSFORMATION. 53

HenceThis is Abel’s transformation (OEuvres, Vol. I., p. 93).(4) PutThen 

andHere the limits have been changed to any arbitrary constants a and b.(5) Transform by the formulaHere the limits remain unaltered, for if y = l we have x=l, and if y = 0, x=0.

Hence 
also obviously and if we write
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54 CHAPTER XXIV.(6) In the last transformation, putThen
l, m, a and b being positive constants.(7) is expressible in the same way interms of a Beta function.Let

This also follows from No. (6) by putting a=b=l.860. Properties of the Gamma Function.Consider next the Gamma function, viz.
Integrating by parts

and whatever n may be, provided it be finite and >1, 
—χn-1e-x vanishes at both limits.HenceSimilarly, and so on.In the case then, where n is a positive integer,
andwhence in that case.
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THE GAMMA FUNCTION. 55

861. Working Properties.We then have the properties 
and when n is a positive integer,

The Gamma functions of the positive integers are then

etc.,from which a rough idea of the march of Γ (x) as a continuous function may be inferred, viz. a minimum existing somewhere between x=l and x=2, and then after x=2 a quantity increasing more and more rapidly.862. In any case the equation Γ(n+l)=n Γ(n) furnishes a means of reduction of the Gamma function of any number greater than unity to a Gamma function of a number less than unity.
For instance

That is, the Gamma function of any number greater than unity can be connected with the Gamma function of a number which is not greater than unity; so that it is already obvious that when we come to the calculation and tabulation of the numerical values of Gamma functions it will be unnecessary to tabulate Γ(x) for any values of x except those which lie between 0 and 1.863. A Caution.The student should guard against the idea that the equations 
are co-equi valent. They are not so. The latter is a conse-
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56 CHAPTER XXIV.quence of the former, not the former of the latter. The latter is a functional or difference equation, viz.
and such equations may have many solutions. What is provedis that is a particular solution ofBut so also are when A is any constant, orsuch an expression as
where A, B, C, D are constants, for these multipliers are not altered when x is increased by unity. Nor does it followthat occurs as a factor in all solutions of thedifference equation.The solution of ux+1=xux is obviously
when A is either a constant or some arbitrary periodic function of x whose periodicity is unity, and which therefore does not alter when x is increased or decreased by any integer, and ur any assumed initial value of ux. We shall return to this matter later.

864. Transformation of the Gamma Function.As in the case of the Beta function, transformations of the variable will give rise to other integrals.(1) We have seen that or produces
the form studied by Euler.(2) If we write kx for x,

whenceprovided k be a real constant (see Arts. 1159 to 1162 and 1327).
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THE GAMMA FUNCTION. 57(3) If we put xn==y where n is positive,

In this case, if we put
and this leads to an easy calculation of Γ (1/2).For and as x and y are independent variables and the limits constant, we may write this as

Now, regarding x, y as the Cartesian coordinates of a point we have to sum all such elements as e-(x2+y2) δx δy through an infinite square in the positive quadrant, two of whose sides are the coordinate axes.

Fig. 313.Transforming to polars, we have to sum 
through the same square.Let x=a, y=a, where α=∞ , be the other two sides of the square. Then for the portion of the square which lies insidethe circle the limits for θ are 0 and and for r0 and ∞.
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58 CHAPTER XXIV.Hence the portion within the circular quadrant contributes
At points of the square outside the circle the elements are never greater than e-a2rδθ δr, and when a is made sufficiently great this becomes an infinitesimal of higher degree than the second, and hence in the double integration disappears. Therefore the portion of the area between the circle and the square, exterior to the circle, contributes nothing.Hence the value of Γ (1/2) is +_ √, and as all the Gamma functions are from the definition essentially positive quantities,
865. We may also regard the investigation of asthe problem of finding the volume bounded by the plane of 

x-y and the surface formed by the revolution about the z-axis of the curve z=e-x2, for this volume may be regarded as

Fig. 314.being built up of cylindrical shells whose axes coincide withthe z-axis. The volume of this solid is then where
u is the radius of a section parallel to the x-y plane,

* Euler, Tom. V., des anciens Memoires de Petersbourg, p. 44. 
 Airy, Errors of Observation, p. 12.
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BETA AND GAMMA FUNCTIONS. 59But dividing it by planes parallel to the coordinate planes of x=0 and y=O, the volume is also expressed by

whenceThis gives another geometrical interpretation to the work of the preceding article.86G. When n is diminished without limit be-comes infinite. For the formula Γ(n + l)=nΓ(n) holds for all positive values of n. Hence
This is also obvious from the integral itself. For theintegrand (for the case n=0) takes an ∞ value at thelower limit, and the principal value of the integral becomes infinite (see Art. 348).
867. Connection of the Two Functions.We shall next prove that the Beta function is expressible in  terms of Gamma functions, the connection being
Consider the double integral

[that is xy is written for x in the integrand of Γ(l), and this is multiplied by the factors of the integrand of Γ(m+l)], i.e.
Integrating first with regard to x, we have
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60 CHAPTER XXIV.But changing the order of integration, taking y first,

Hence
868. Deductions.It 6urther follows that 

and therefore that 
which is a symmetric function of l, m, n. Hence we have

Hence also
869. It now follows that the results of the transformations of the Beta function given in Art. 859 could be further expressed as Gamma functions.Thus

etc.The last of these integrals has already been used in earlier chapters, for convenience of calculation, with a temporary and limited definition of Γ.
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THE INTEGRAL 61870. We have also in Art. 859, Case 2, the integral
Put l+m=1. Then, since Γ(1)=1, we have 

where m is a positive proper fraction.We have then to consider this integral next.
871. The Integral where
The integration may be separated into two parts, viz.
In the second part putThen
Henceand by division
Hence
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62 CHAPTER XXIV.Now
(Hobson, Trigonometry, p. 335.)Hence

and since in the limit when k is made indefinitely large thelast term of the series for I, becomes zero,the portion of I within the brackets becomes
Also as to the remainder, we maynote that as x lies between 0 and 1 and is a positive proper fraction, xk+1 is diminished indefinitely by an infinite increase in k. If then this integration be expressed as a summation according to the definition of Art. 11, each term of the summation is diminished without limit, and may be regarded as an infinitesimal of the second or higher order when k is sufficiently increased.Henceand we are left with where
872. An Important Result.It now follows that
As a particular case put

and as has been seen before, Art. 864.
www.rcin.org.pl



GAUSS’ THEOREM. 63

2igain, put

Put etc.
Hence Γ(3/4), Γ(5/6), etc., are expressed in terms of Gamma functions of numbers which are <1/2; whence it will appear that if all Gamma functions were tabulated from Γ(0) to Γ(1/2), all others could be found by this theorem, together with the theorem Γ(n+l)=nΓ(n).The result was temporarily borrowedin an earlier chapter, Art. 592, in the calculation of a certain arc of a Lemniscate.Since andthis formula may be written
873. To show that

We are now able to consider the continued product
where n for the present is any positive integer.By writing it down again in the reverse order, multiplying the results, and noting that

we have
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64 CHAPTER XXIV.and since
(Hobson, Trigonometry, p. 117),we have in the limit when 0=0,

Hence and P being positive, we have
874. Gauss’ ∏ Function.Taking the original Eulerian form of the Gamma function, viz.

and remembering that (Diff. Calc., Art. 21)
we may write 
where e is something which vanishes in the limit when μ becomes infinite.Let us take μ as a positive integer.ThenIn the first integral put x=yμ.Then and as μ is a positive integer, (Art. 858).

Hence
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WALLIS’ THEOREM. 65Hence, making μ increase without limit, the integral ultimately vanishes, and 
or, which is the same thing, 
and writing n+l for n,

This limit is known as Gauss’ ∏ function, and is written 
or, which is the same thing,

Here μ is integral, and n is essentially positive but not necessarily integral.875. The limiting form at which we have arrived at the end of the last article plays an extremely important part in the development of the general theory of Gamma functions. It will be very desirable for the student to pay considerable attention to it, and we propose therefore, in due course, to consider at some length the general behaviour of the functionfor different values of μ andfor different values of x, and the only restriction we shall place upon it at present will be that μ is to be a positive integer, not necessarily large.Two theorems, however, are required in dealing with such expressions as will arise, viz.(1) Wallis’ Theorem, which states that when n is a verylarge positive integer, and become infinite in a ratio of equality, i.e.
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66 CHAPTER XXIV.(2) Stirling’s Theorem, which states that when n is a very- large positive integer andbecome infinite in a ratio of equality, that is
The first of these appears in most treatises on Trigonometry, for instance, Hobson’s Trigonometry, p. 331, Ex. 1, but scarcely appears to receive the prominence in the text-books that it deserves. The second, Stirling’s Theorem, is less available for the student; hence these theorems are reproduced here for present use.
876. Digression on Wallis’ and Stirling’s Theorems.Wallis. Expressing sin 0 as to ∞ ,and putting we have

where e becomes indefinitely small when n becomes indefinitely large.Hence, when n is large, we have
ultimately;and since n is very great, we have

and may be replaced by these expressionsbeing ultimately equal. This is Wallis’ Theorem.
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STIRLING’S THEOREM. 67877. Stirling. Stirling’s Theorem states that for very largevalues of n, 1.2.3 ... n and are ultimately equal.WriteThenandHence Wallis Theorem, which may be written as
gives

LetThen
i.e.To solve this functional equation, write 2n for n.ThenSimilarlyand
p being a positive integer.Now, putting

Let p increase indefinitely and n decrease indefinitely in such way as to keep the product 2pn finite. Also let
be called k.Then F(x)=κx, which indicates the form of F to be exponential. We have to determine k.Takingchange n to n+l.

Hence, by division,
i.e.
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68 CHAPTER XXIV.in the limit when n is indefinitely large. Hence k=e-1, andtherefore 1.2.3 ... n and become infinite with n,in a ratio of equality, or, what is the same thing,
This is Stirling’s Theorem. The result will be considered further in a subsequent article (Art. 884).This particular form of proof was given by Dr. E. J. Routh in lectures at Cambridge (see also Dr. Glaisher on Stirling’s Theorem in the Messenger of Mathematics).

878. Illustrations of the Use of Stirling’s Theorem.Stirling’s Theorem is useful in such cases as involve factorials of large numbers.
1. Thus the middle coefficient of the expansion of where n is

a positive integer, is ultimately when n is very large,

This is the limiting form. It is of course infinite itself, but for large 
values of n a close approximation will be thus obtained. Thus, for in
stance, even taking a case when n is not exceedingly large, in calculating

from the logarithm tables the latter only exceeds

the former by about 0-7 per cent. ; and in calculating and

l the latter only exceeds the former by about 0-25 per cent.; and the

error is diminishing as the magnitude of the numbers dealt with increases. 
Ultimately, for exceedingly large values of n, the middle coefficients of 

the successive expansions (l+x)2n, (l+x)2n+2, etc., form what is nearly a g.p. with common ratio,

i.e.

as is also directly obvious.
2. The nth number of Bernoulli, viz. (see Diff. Calc., p. 502), being

given by

we have, when n is large,
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STIRLING’S THEOREM. 69
Similarly if be the coefficient of xn in the expansion of sec x + tan x,

it is known that

which embraces the cases of Bernoullian numbers and Eulerian numbers 
together, viz.

K2n≡ the nth Eulerian number,

(see Diff. Calc., Art. 573, etc.),
and we have when n is very large,

In this expansion, viz.

the ratio of the (n+1)th term to the nth is

and when n is large this becomes

It appears that, since the coefficients increase with great

rapidity ultimately, and the series will be divergent for values of

3. In the series which gives rise to the Bernoullian numbers, viz.

the ratio of the (n +1 )th term to the nth is
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70 CHAPTER XXIV.

and when n is large,

The series is therefore divergent for values of x2 <fc (2π)2, and as

ultimately,

the Bernoullian numbers ultimately increase with great rapidity.

It will be noted that coth x/2 becomes infinite if x have the unreal value 

2ιπ. When x is complex it is therefore necessary to limit expansion to 
the case for which the modulus of the complex is < 2π.*

879. A method of Calculation of the Numbers of Bernoulli and the 
Numbers of Euler is explained in the Differential Calculus, Art. 573. 
Both sets have been calculated for many coefficients of their respective 
series (see Proceedings of the British Association 1877), and probably far 
enough for all practical purposes for which they will ever be required. 
Several are quoted on pages 106 and 501 of the Differential Calculus. A 
few extra results are put upon record here for reference, for the con
venience of the reader. Also, as we are about to deal with such sums as 
      to ∞ ≡ Sp, which for even values of pare to be found from 

we tabulate a few of these results also.

The values of Sp up to S35 reduced to decimals will be found tabulated 
later for purposes of evaluation of integrals to be discussed (Art. 957).

880. For other methods of Calculation of Bernoulli’s Numbers etc., 
see Boole, Finite Differences, Chapter VI.

881. We note that B1 >B3 >B5< B7< B9< etc., and the coefficient B5 
is the smallest of Bernoulli’s Numbers, after which they rapidly increase.

*See Bertrand, Calc. Diff., Art. 412.
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GAUSS’ ∏ FUNCTION. 71

882. The Value of ∏(1/2).Consider next the case of Gauss’ ∏ function for n= 1/2.

whenceIt will be remembered that for positive values of n,

therefore and
which agrees with Art. 864.

883. The Graph of y = xne-x.We shall next study the nature of the family of curvesfor various values of n.The subject of integration in the Gamma Function Γ(n+l) viz. xne-x, has a maximum value when
i.e. whenand the maximum ordinate of the curve y = xne-x for positive values of x is nne-n.The graphs of the members of this family for n = 0, n = 0,5 n=1, n = 2 are shown in the accompanying figure for the first quadrant, which is all we require.
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72 CHAPTER XXIV.The case n = 0, viz. y = e-x, is a logarithmic curve, and cuts the y-axis at a point y = 1. It has no maximum ordinate

Fig. 315.The case n = 05 has a maximum ordinate at and then runs to the positive end of the x-axis asymptotically.The case n = 1 has a maximum at
The case n = 2 has a maximum atAll the curves have the x-axis as an asymptote, and all gothrough the point where they cross.For values of n between 0 and 1, the curves touch the y-axis at the origin.The case n=1 touches the line y = x at the origin.The cases for n > 1 touch the x-axis at the origin.The several maxima, viz. nne-n, diminish for various values of n from n = 0 to n = 1, and then increase again, all the crests the curves lying upon y = xxe-x, i.e.

the least of the maximum ordinates being at x=l, and belonging to the curve y = xe-x.The area bounded by any of these curves y = xne-x, the x-axis and the ordinate at x = ∞, is 
and increases without limit as n increases.
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STIRLING’S THEOREM EXTENDED. 73
884. Extension of Stirling’s Theorem.We have shown (Stirling’s Theorem) that when n is a large 

positive integer, 
the meaning of the equality sign being that these quantities become infinite in a ratio of equality.We proceed to show that even when n is not integral, but still positive, when n is indefinitely increased.We haveLet us transform this integral by putting ∙(1)which is legitimate, as nne-n has been shown to be the maximum value of xne-x.Now, as t ranges from — ∞ through zero to + ∞,

x ranges from 0 through n to + ∞.Thus
and we have to find Let x = n(l + τ).

Then (2)Clearly τ vanishes with t, and as t can be expressed in terms of τ by expanding the logarithm, we can by the ordinary process of reversion of series expand τ in terms of t.LetThen, differentiating equation (2), (3)whence, by substituting the series for τ and equating coefficients, we can readily obtain the values of A1, A2, A3, etc.
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74 CHAPTER XXIV.

Now 
and by writing κt for x in the result of Art. 223, Ex. 4, 
and as is obvious, for the negative elements of the summation cancel out the positive ones.Hence 

and it remains to obtain the numerical values of the coefficients.Substituting the series for τ in the differential equation (3), 

whence 

and generally
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EXPANSION OF Γ(l+n). 75
i.e.

i.e.

the series proceeding as far as the greatest binomial coefficient in (1+z)n+1, and the last term of the series being halved if n be odd.Thus

etc.,giving
Hence, finally, etc.
When n is indefinitely large, we therefore have 

which removes the limitation that n should be a positive integer, as supposed in Art. 877. Moreover, it will be noted thatan expansion of is effected in powers of viz.
the law of formation of being as above stated.

885. Ex. 1. In calculating 10 ! in thia way,
(Chambers’ seven-figure logarithms) ;

(the last figure doubtful).
Carrying the series to four terms, viz.

we get etc.
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76 CHAPTER XXIV.

The true value is 3628800, so there is only an error in the last figure 
in the approximation.

Ex. 2. Calculate 100 ! Here

indicating a number of 158 figures, beginning with 933262, viz. 
9'33262 × 10157.

[The logarithms from 1 to 100 add up to 157'9700038, which is in 
agreement with this result, except for the seventh figure of logarithms.]

886. Properties of Gauss’ ∏ Function.We may now proceed to discuss the nature and properties of Gauss’ ∏ function.Let us start again with a consideration of the expression
where μ is a positive integer, not necessarily large, at present, and x is a fixed number, either real or unreal, positive or negative, integral or fractional, but finite. Call the expression ∏(x, μ), and abbreviate it further into ∏(x) when in the limit 
μ is ∞, so that ∏(x) stands for ∏(x, ∞ ).Consider the graphs of
for different values of μ.There are μ asymptotes parallel to the y-axis.

y is positive from x=∞ to x= — 1, negative from x= —1 to x=-2, positive from x=-2 to x= —3,and so on.And if μ be >1, the x-axis is an asymptote at its negative extremity only;also when x=0, y=1 ;when x=l,

when x =2, etc.;
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GAUSS’ ∏ FUNCTION. 77and these ordinates approximate to 1, 1, 2!, 3!, ... as μ increases, whilst at the same time the number of asymptotes increases.The cases of μ=l, 2, 3 and 4 are shown in the accompanying figures, which are intended to exhibit graphically the general characteristics of the functions, but are not drawn to scale.The case μ=l gives a rectangular hyperbola, withy=0, x=-1 for asymptotes.

Fig. 316.
The case μ=2 gives

Fig. 317.
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78 CHAPTER XXIV.

The case μ=3 gives

Fig. 318.The case μ gives

Fig. 319.
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GAUSS’ ∏ FUNCTION. 79The lengths of the ordinates for various values of x and μ are shown in the table :

887. General Remarks.From these considerations it will appear that in these curves, viz. μ = 2, μ=3, μ=4, etc.,(1) At x=0 all the ordinates are =1, and any two of the curves cross each other.(2) At x=1/2, 1, 2, 3, 4,... the ordinates of the several curves form an increasing series, so that the curves as μ increases are such that of any two the one with the greater μ has the greater ordinate.(3) As x increases through zero the curves are all initially approaching the x-axis. The limiting case of the hyperbolacontinues to do so, the others all ultimately have
www.rcin.org.pl



80 CHAPTER XXIV.ordinates > 1, and therefore have minimum ordinates in the first quadrant. Moreover it may be shown that
μ=2 has a minimum ordinate between 1 and 2, μ=3 „ „ „ 0∙9 and 1,
μ=4 „ „ „ 0,7 and 0,8,etc.As μ increases, the minimum ordinate begins to approach the y-axis, but does not do so without limit. For in the case μ=∞ it lies somewhere between 0 and 1.(4) On the negative side of the y-axis at x=-1/2 the successive ordinates of the curves μ=l, μ=2, μ = 3, etc., form a diminishing set.(5) μ = l has one asymptote parallel to the y-axis, 

μ=2 has two asymptotes parallel to the y-axis, μ=3 has three asymptotes parallel to the y-axis,etc.μ = l is asymptotic to the x-axis at both ends.
μ=2, μ=3, μ = 4, etc., are only asymptotic to the x-axis at its negative end, and alternately from above and below the x-axis.(6) Observe the behaviour between the several asymptotes.Between x=-l and x= — 2 the several ordinates at x=-3/2 are all negative but numerically increasing, i.e. the more asymptotes there are the further do these branches recede from the x-axis. Similarly between the asymptotes x= — 2 and 

x= —3, or any consecutive pair.Note also that for each given value of μ the branch between two consecutive asymptotes has a numerically greater ordinate midway between those asymptotes than is the case for a branch between two consecutive asymptotes more remote from the y-axis.(7) The limiting case 
becomes, when x is positive, the curve y = Γ(x+l), as has been shown.The shape of this limiting form will be more carefully considered later in Art. 922.
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GAUSS’ ∏ FUNCTION. 81But there is this difference between the functionsandthat though they coincide in value for all positive values of x, the former becomes infinite at the values x=-1, x=-2, 
x=-3, etc., but has finite values for other negative values of 
x, whilst the definite integral is permanently infinite for all negative values of x+l.

888. That the factor form has finite values, when μ becomes infinitely 
large, for negative values of x between the asymptotes may be made 
clear by taking a case. Take x= —

Then

Similarly at the corresponding limit is

at the corresponding limit is

and so on.
These mid-ordinates, half way between the successive asymptotes, thus 

form a regular descending series

889. It is worth noticing that ∏(x, μ) may be written as
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82 CHAPTER XXIV.

where P indicates that the product of all such fractions as 
r = lfollow it is to be taken from r=l to r=μ.And in the limit, when μ=∞ , 

or, what is the same thing, when x is real and positive,

890. Reduction of ∏ (x+ 1).Again,

Hence 
which is the law of connexion of the successive values of ∏(x, μ) for unit differences in x.In the case when μ is indefinitely increased, the factor 
becomes unity, and we are left with
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COMPARISON OF II AND Γ. 83and changing x to x—1, ∏(x)=x∏(x-1). This is true for all finite values of x, positive or negative.In the case of values of x>0 we have Π(x) = Γ(x+l), and therefore Γ(x+1)=xΓ(x), the formula already established for the Gamma function.
891. The Case when x is a Positive Integer.When x is a positive integer we may multiply the numerator and denominator of by ®!

obtaining in that case and then removing 

so that when μ is indefinitely increased, x remaining finite, ∏(x) becomes x!, which is in accordance with the result Γ(x+l)=x! of Art. 860.
892. Comparison of the Gamma Function with Gauss’ Function.It will now be clear, from Art. 887, that the two functions ∏(x) and Γ(x+1) are identical for all real values of x greater than —1; but that ∏(x) is a more general function, embracing real or unreal values of x quite unrestricted as to sign. That ∏(x) becomes infinite for all negative integral values of x, but has finite values for negative fractional values of x, whilst Γ(x) 

e-vvx-1dv is infinite for all negative values of x. Graphically this means that the curves y=∏(x-1) and 
y = Γ(x) absolutely coincide for all positive values of x, but do not do so for negative values of x. If we had restricted the definition of Gauss’ function, viz.
to real values of x greater than —1, the identity of ∏(x) with Euler’s Gamma function Γ(x+1) would have been complete.
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84 CHAPTER XXIV.893. We have, from the definition,
andHence multiplying them together, and assuming that x is not an integer,

and when μ increases without limit, being finite,and we have
It will be noticed that in proving this result no assumption has been made with regard to x except that it is not to be an integer, either positive or negative. For such values one or other of the ∏ functions would be infinite, as also of coursewouldTaking positive values of x less than unity, and remembering that in that case Π(x) = Γ(x+l), we have

as previously found.894. If we were to base the discussion of the properties of Γ(x) on this method of procedure, we could therefore infer thevalue of the definite integral of Art. 870 to bewhere 0<x< 1, instead of investigating the integral first andthen deducing the result
www.rcin.org.pl



THE DIFFERENCE EQUATION. 85

895. An Unreal Value of x.We note also that if x be unreal and = ιy,

but that Γ, as defined in the Eulerian manner, loses its meaning. See, however, Art. 900 for an extension of the definition of Γ.896. Both functions, viz. ∏(x) and Γ(x+1), have been shown to satisfy the equation of differences
Let us see from this point of view what can be ascertained as to the nature of the function ux.It has already been stated that this equation necessitates one form of the result to be 

where A is a constant or some arbitrary periodic function of x of unit periodicity, and ur is some initial value of ux to be chosen at pleasure.Following Laplace’s mode of procedure in such cases, assumeas a trial solution,
where the form of F(t) and the limits of integration are reserved for future choice.

Then since

the integration being by parts, and the square brackets denoting as usual that the term integrated is to be taken between the limits ultimately chosen.Hence the choice must be such as to satisfy the equation
* See Boole, Finite. Differences, p. 257.
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86 CHAPTER XXIV.Let us then take F(t) so that F'(t)+F(t)=0, and the limits such that [F(t) tx+1] =0.Our choice is now complete, and there is no further latitude.The first equation gives i.e. where Cis an arbitrary constant as regards t.This determines the form of the function F in our trial solution.The limits must then be such as will satisfy the equation
Supposing x+1 to be positive, this will be effected by taking

t - 0 and t=∞ , for in each caseHence a solution of the equation for positive values of x+1 is

So ux=CΓ(x+1) is a solution, provided x+1 be positive where C is any arbitrary constant as regards t.To put the possible dependence upon ∙x in evidence call
Thenbut

whence it is clear that vx is either an absolute constant or some arbitrary periodic function of x whose periodicity isunity, such as where A, B, C, D areabsolute constants, such functions returning to their original values when x is increased by unity.Thus ux=f(x)Γ(x+1) satisfies the difference equation considered when f(x) is such a periodic function as described.It appears, therefore, that the equation ux+1 = (x+1)ux, is not co-equivalent with ux= Γ(x+1), i.e. Euler’s Gamma function, or with ux=∏(x), i.e. Gauss’ ∏ function, but that
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EULER’S CONSTANT. 87these are particular forms of the solution, as has been previously pointed out.897. Euler’s Constant.The limiting value when n is made infinitely great of 
is finite, positive and less than unity. This limit plays an important part in our subsequent work. It is called Euler’s constant and denoted by γ. Its value has been computed to over 100 places of decimals (Proc. Royal Society, vol. xix. and vol. xx., p. 29).The first twenty figures are*
We shall presently show how it is to be computed. For the present it is sufficient to show that it is a positive proper fraction, and this admits of elementary proof.For

a convergent series if
= positive, since r ≥ 1, for every bracket is positive;is positive;

is positive:
is positive;and as is positive.

*See Todhunter, Integral Calculus, p. 256; Serret, Calc. Integral, p. 183; Legendre, Exercices, p. 295; De Morgan, D. and I. Calculus, p. 578.
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88 CHAPTER XXIV.Secondly,
etc., a convergent series if r > 1 ;

which, when n = ∞, 
are all convergent 
series,=a negative quantity.Therefore is a negative quantity,

i.e. is a negative quantity,
and is less than 1,and it has been shown to be positive.Hence, making n increase indefinitely, γ is a positive proper fraction.

898. Closer Limits for γ.
Let

Then positive, if n be finite, and ultimately vanish

ing when n = ∞, i.e. u∞=v∞ = γ.

Now positive; negative;
therefore, as n increases, un increases and vn decreases towards the common 
limit γ ; and un<γ<vn, whilst n remains finite.

Taking Bottomley’s tables of Reciprocals and Napierian Logarithms, we 
readily find

etc.
etc.

We thus have an approaching set of inferior and superior limits for γ, and 
note that it must lie between 0∙56 and 0∙60. It will be seen later that 
γ=0∙5772... (Art. 917).

899. Except for negative integral values of z, ∏(z) is Finite 
whatever z may be, Real or Complex.If u1, u2, u3, ...un... be any series of real positive quantities, r= ∞each of which is less than unity, the infinite products ∏ (l + ur), r=∞ r=1∏ (1 — ur) are convergent or divergent according as the infinite r=l

www.rcin.org.pl



GAUSS’ FUNCTION IS FINITE. 89series ∑ur is convergent or divergent (see Smith’s Algebra, p. 423,* and Hobson’s Trigonometry, p. 319), and if the quantities u1, u2, ... un... be complex quantities, the modulus of each beingless than unity, the product converges if the seriesΣ mod ur converges. (See Hobson’s Trigonometry, p. 320.) It can be shown that though the infinite product to infinity,which occurs frequently in the present chapter, is obviously divergent, yet if we multiply the several factors byetc., respectively,!we arrive at a product
which is absolutely convergent for all values of z positive or negative, real or complex.Foris a series absolutely convergent if mod z < n for some finite value of n; whence

i.e.
say,where en is a series absolutely convergent which for finite values of z ultimately vanishes when n is infinitely large;

* Also see Arndt, Grunert, xxi. 78.Weierstrass, Abhandlungen Acad, of Berlin, 1876. See also Hobson, Trigo
nometry, p. 327.
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90 CHAPTER XXIV.Suppose E the greatest of the moduli of 1 + en for all values of z within a range for which the greatest modulus of z does not exceed a given finite quantity, then is an absolutely convergent series, and therefore also∞ is an absolutely convergent series, and since
 is absolutely convergent when Σ mod un is convergent, 

is an absolutely convergent product, as is also
Now Gauss’ ∏ function being defined as 

can be written 

where γ is Euler’s constant, which shows that for all values of z, real or complex, positive or negative, excepting negative integral values, 
and is therefore finite.

900. Extension of Meaning of Γ(z).So far it has been convenient to adhere to the Legendrian definition of the symbol Γ(x), viz.
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EXTENSION OF MEANING OF Γ(z). 91and to regard x in this Eulerian integral as representing a real variable. It has been shown to be identical with Gauss’ ∏ function, ∏(x-1), for all real positive values of x. Having drawn attention to the difference of behaviour of the function defined as an integral and the factor-function of Gauss for negative values of x, it is scarcely worth while observing the distinction further, and we propose to extend the use of the symbol Γ(z) to negative and unreal values of z, which means that, when z is negative or unreal, Γ is defined by
and that when z is positive it is defined either in this wayor as and therefore we shall in general regard ∏ (z)as identical with or  for all values of z.901. Thus a meaning will be given to such an expressionas viz.

(Art. 899).
902. Ex. 1. The modulus of

(Art. 895)

Ex. 2. If 1, α, α2,... αn-1 be the nth roots of 1 (n odd), we have

and

Hence say,
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92 CHAPTER XXIV.

thus 

where 1, α, α2, ... are the nth roots of unity.

903. Gauss’ Theorem.This theorem is a generalization of that of Art. 872, and includes it. It states that for any value of z 
or, what is the same thing, as will be seen,

Let the left-hand member of the first equality be called ϕ(z). Then, first, we shall show that ϕ(z) is independent of z.By definition, 

where D is the product of the factors

i.e.
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GAUSS’ THEOREM. 93Hence
Again, writing nμ for μ in Gauss’ expression for Π(nz),

Hence 
from which the z has disappeared.Hence, ϕ(z) is independent of z. It remains to find its value. To do this we may either obtain the limit of the righthand side directly, or avoid this by comparison with a known case, for a particular value of z, which will be a legitimate process, inasmuch as its value, not containing z at all, is an absolute numerical constant containing n.Adopting the direct method and employing Stirling’s result.

Hence, finally,
904. If we adopt the plan of comparison with a known case, take the case of a real value of z, viz. z=0.Then, remembering that ∏(x)=Γ(1 +x), 

or, reversing the order, by Art. 873.
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94 CHAPTER XXIV.Writing etc., we have
i.e. reversing the order of the factors in the numerator, with the exception of Γ(z+1), and writing Γ(z+l)=zΓ(z) and

i.e.which may be written as
905. Cases of Gauss’ Theorem.Putting we have the result of Art. 873, viz.
Particular cases are

i.e.

i.e. putting for x,

gives etc.906. The case n=2 may be deduced directly from
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GAUSS’ THEOREM. 95For putting q=p, we have

and writing 2θ = ϕ,

907. An interesting proof of this result is due to M. Serret, 
(Calc. Integ., p. 174).Since we have

And since the integrand assumes equal values, whether we put a,==1/2+h or 1/2—h, its values are symmetric about x= 1/2.Hence Writing

i.e.
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96 CHAPTER XXIV.or writing 2p = q+1,
908. Another form of the general theorem is writing x/n for z 

i.e.

909. To proveTaking Gauss’ Theorem for a real variable x,

we have, upon taking logarithms,

from r=0 to r=n- 1,
when n is indefinitely increased,

if v be put for x+y.Thus, by Art. 884,

910. This expresses the area bounded by the x-axis, the curve y=logΓ(x), and two ordinates at unit distance.Changing x to x+l, and adding to the former,
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DIFFERENTIATION OF logΓ(x). 97and so on, and more generally, 
where n is a positive integer.

911. Expressions for the Differential Coefficients of the Function 
ψ(x), logΓ(x+l), and Expansion of log Γ(x+l).Let us write for i.e.Then taking the logarithmic differential of Gauss’ Theorem, 

and differentiating again,
Hence from to

i.e.

i.e. or writing v for in thelimit when v is infinite, and therefore ψ'(v) ultimately vanishes.That is vanishes when x is indefinitely increased.NowHence, taking the logarithmic differential,
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98 CHAPTER XXIV.and differentiating again,
and it has just been proved that ψ'(x+n+l) ultimately vanishes when n has been indefinitely increased. to ∞. ...(1)

The series (1) is obviously convergent for all values of x > 0 becoming infinite at x=0.Integrating this equation between limits 1 and x, we have
(2)which is a convergent series; for the test expression, viz.

and is greater than unity. (See Smith’s Algebra, Art. 342.) Again, we have seen that
and nutting x=1. from r=0 to r=n-1.Hence when n increases indefinitely,

That is, (3)Putting x=∞ in equation (2), to ∞ ,
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EXPANSION OF logΓ(x+l). 99

i.e. by equation (3),
— Euler’s Constant γ,

i.e. or (4)Hence, by equation (2), to ∞
to ∞ (5)which may also be written as

Again, differentiating equation (1) n — 2 times, we haveto ∞
(6)

i.e.

where which is convergent if n> 1; or, what is the same thing,
(7)

Alsowe thus have
and where n is < 2.Maclaurin’s Theorem then gives 
a result otherwise established in a subsequent article, and which will be thrown into a more convergent form, by the addition of other known series, for working purposes. This series is convergent if x be numerically < 1.
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100 CHAPTER XXIV.912. Collecting for convenience other useful results of the above article, we have(α) and in
any case . to ∞ ,and is positive.when n is infinitely large.

(c) and
(d) to ∞.
(e) Since is continuously positive for all positivevalues of is an increasing function as xincreases from 0 to ∞ , starting from the value — ∞ at x=0 ; or, putting this geometrically, the tangent to the graph of y=logΓ(x) is continuously rotating in a counter-clockwise direction as x passes from zero to infinity; and the curve is always convex to the foot of the ordinate.913. The student may note the following particular valuesof viz. taking
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EXPANSIONS OF Γ(1+x), logΓ(1+x), etc. 101
which indicate how is decreasing as x increases,but always remaining positive.914. Since wemay write as

which expands Γ(x+1) as far as cubes of x, and which might be useful for very small values of x, but the presence of powers of γ renders calculation troublesome, and less inconvenient methods of calculation will be given later.915. It is noticeable, too, that 
and that the several differential coefficients of this expression are therefore free from Euler’s Constant γ, viz.

And, similarly, if m be any positive integer, 

where (m+l)r denotes (m+l)(m)(m-1)... to r factors, if 
n ≤ m+1, and is free from γ if n > m+ 1 ; also that
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102 CHAPTER XXIV.

916. Expansion of log Γ(l+x) deduced from the ∏ Function.The series
may be arrived at at once by taking the logarithm of the Gauss formula in the form
viz.
and expanding· the logarithms, supposing — 1 < x< 1,
whereand Lt(S1-log μ)= Euler’s Constant γ, and the series Sr (r > 1) are all convergent.Hence.

(1)Now, the even terms may be removed by the addition of
For ad inf.;and taking logarithms and expanding,

(2)Adding to equation (1),
(3)The coefficients S3, S5, ... all begin with a unit. This may be removed and the series reduced to a much more convergent form by the addition of the series for tanh-1x to each side, viz.  

www.rcin.org.pl



EULER’S CONSTANT. 103And we then obtain
(4)The values of γ, S2, S3, ... S35 are all calculated, and the tabulated results are given in Art. 957. Euler calculated 

S2 to S15. Legendre* gave the values S2 to S35 to sixteen decimal places. The list in Art. 957 is taken from Legendre’s list as given by De Morgan, Diff. Calc., p. 554. The series (4) converges rapidly and is used for the calculation of the values of logΓ(x). Legendre gives a table of values of LΓ(x), i.e. 10+logΓ(x), from LΓ(1.OOO) to LΓ(2.000) to seven decimal places, in his Exercices du Calcul Integral, pages 301 to 306. A table is also given by Bertrand, Calc. Int., p. 285.
917. Calculation of Euler’s Constant γ.These series may be used for the calculation of Euler’s Constant γ by taking a value of x, for which Γ(x) is otherwise known, viz. x=1/2, for which Γ(x)=√π.Equation (1) gives

and putting (5)Equation (3) gives, by changing the sign of x,

and putting x=1/2 in this, (6)which is more rapidly convergent than the former. Formula (4) gives
i.e. (7)

* Traite des fonctions elliptiques, Legendre.
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104 CHAPTER XXIV.This is the best of the three series to employ to find γ.And with the aid of the tables of values of Sp the calculation to seven places, which is all that is likely to be wanted for ordinary purposes, may be readily performed.The value of γ is
andThe value of loge10 is of course required. It is
and the modulus918. The numerical calculation of values of logΓ(1+x), and therefore of Γ(x) itself, will now present no difficulty. Withthe values of etc., inserted, the working formulastands* as

and is rapidly convergent for the small values of x less than 
x=1/2, 210 being 1024. Hence the last term 0002231x9 in the case x=1/2 becomes .0000004, whilst for x=1/3, which is the largest value of x for which it will be necessary to use the series (see Art. 921), the error in omitting all the remaining terms of the series will not affect the seventh decimal place. Hence we have here all that is necessary for the construction of seven-figure tables for log Γ (x).919. It is worth noting that the addition of log(1 + x) and log(1-x) respectively to Γ(1+x) and Γ(1-x), viz.
and

* Bertrand, Calc. Integral, p. 250.
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DEVICES FOR MORE RAPID CONVERGENCE. 105give
and
whence

But i.e. adding,

the same series as before, which may be written 
and putting x=l, since 
and putting x=1/2, since (cf. Art. 917).These series are given both by Serret and Bertrand for the calculation of Γ(l + x) and γ.The formulae 

and
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106 CHAPTER XXIV.were given by Legendre (Exercices, p. 299). But the addition of the series for tanh-1x adds to the rapidity of the convergence.920. Since we have, on puttingfor m, (i)
But (Art- 905).
Hence, writing in place of x,

∙(ii)
From equations (i) and (ii), eliminating we have

.(iii)
921. By means of the four formulae(1) (2)

(3) (4)
it may be shown that Γ (x) can be calculated for all values of 
x when those between Γ(1/6) and Γ(1/3) have been calculated.(a) For 1 < x < ∞ , reduce by continued application of formula (I) to a case 0 < y < 1.(b) For 2/3 < x < 1, reduce by formula (2) to a case 0 < y < 1/3. (c) For ⅜ < x < 2/3 reduce by formula (4) to a case 1/6 < y < 1/3.For if and
and if and
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GRAPH OF Γ(x). 107(d) If the case needs no reduction.(e) If use formula (3). This involvesand lies between 1/2 and 2/3, and therefore falls under case(c), and an application of formula (4) reduces to casesin which the arguments lie as before, viz.In Γ(2x), which occurs in the numerator of formula (3), if 0 < x < 1/6, we have 0 < 2x < 1/3, and if 2x > 1/6, no further reduction is necessary.But if we haveandWe then use formula (3) with 2x written for x,

i.e.Similarly if use
and so on.Hence it follows that the use of series will be only necessary in the case of Γ(x), where x lies from 1/6 to 1/3, and that when this group is calculated by the series, all others follow by the above rules.

922. Graph ofRegarded as defined by the integral, it is plain that so long as x is real and positive Γ(x) is a positive function, and that it becomes infinite if x = 0, as may also be seen from the factthat and thereforeWe have seen that
and therefore is infinite when x = 0, but for all values of x from 0 to ∞ it remains positive and finite. Hence
is an increasing function of x, and its value at x = 0 is obviously — ∞ , for (Art. 911).
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108 CHAPTER XXIV.Also, when x is + ∞, to ∞ = + ∞.
Hence increases from — ∞ through zero to + ∞ as xincreases from 0 to ∞ and as Γ(x) remains positive throughout, Γ'(x) changes from negative to positive once, and once only, as x increases from 0 to ∞ .Therefore Γ(x) has one, and only one, stationary value, and that is a minimum, and Γ(x) decreases from ∞ when x = 0 to Γ(I) = 1 when x = 1, and since Γ(2)= 1 and Γ(1) = 1, the ordinates at x=1 and x = 2 are equal, and the minimum lies somewhere between x=l and x = 2, and is numerically less than unity. From x = 2 to x=∞ the value of Γ(x) is continually increasing.The curve then(α) lies entirely on the upper side of the x-axis; (b) it is asymptotic to the y-axis;(c) it has a minimum between x = l and x = 2; (d) it recedes from the x-axis from x = 2 to x = ∞ .The equation to find the exact position of the minimumordinate is or writing
Also
Hence

and t is to be found by trial from
and substituting for S2 and S3 their values in decimals to a few places, an approximate value for t may be obtained, and by the usual approximation methods the result may be found as nearly as desired. Serret gives the result to seven places, viz.
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GRAPH OF Γ(x). 109
i.e. the abscissa of the minimum ordinate is 
and the value of the corresponding ordinate is found to be

In the tables for LΓ(x), i.e. 10+logΓ(x), we find in the vicinity of the minimum

Fig. 320.So we see from the tables that the minimum ordinate is in the vicinity of 1.462, and the value of the corresponding* Bertrand gives 0.8556032, page 283, and again page 284, line 3, and the result is given elsewhere. This is evidently an error. The result is given correctly in Serret, Calc. Integ., p. 186.
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110 CHAPTER XXIV.logarithm, 1.9472392, indicates an ordinate 0.885603 approximately. The minimum ordinate is reached, therefore, a little earlier in the march of x from 1 to 2 than the half-way 1.5, which might have been expected from the very rapid fall of value in Γ(x) between Γ(0) = ∞ and Γ(1) = 1 and the much slower rise on passing x=2, Γ(2)=1, Γ(3) = 2, Γ(4) = 6, Γ(5) = 24, etc.For large values of approximates to
and the graph of y=Γ(x) to the curveWe have now seen to what shape the several curves in the graphs in Art. 886 are gradually tending, and comparison should be made between the figures given there and the graph of the limiting form y=Γ(χ) in Fig. 320 of this article.

923. It will be noted that since Γ(x) is decreasing from 
x=0 to x=1.4616321... and increasing from x=1.4616321... to x=∞ much more slowly, the differences are negative for the first part of the march of Γ(x) and positive for the second. Similarly for the differences in the tables which give logΓ(x) or L Γ(x). The tabulation is only effected from x=1 to x=2, for by virtue of the reduction formula Γ(x+l)=xΓ(x) this is all that is necessary. In using the tables care should be observed with regard to the change of sign of the differences, and those who wish to make close calculations should observe the remarks made by Bertrand, Calc. Integ., p. 284, with regard to the behaviour of the differences both of the first and second orders.

924. The rule of interpolation commonly used is
(Boole, Finite Differences, Art. 2),rather than the ordinary rule of proportional parts, which stops at the second term.
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EXPRESSION BY DEFINITE INTEGRALS. 111

925. Expressions for

etc.,

as definite integrals.The expressions for etc., viz.
(1)

to < (2)

to (3)can readily be converted into definite integrals by aid of theresults (α)
and .(b)(α) has been proved in Art. 864.(b) can be established thus:

Integrating with regard to k between limits 1 and k,

To convert
the right side may be written, by aid of (α) and (b),

(A)for the second integral disappears when n is made infinite.
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112 CHAPTER XXIV.

926. With regard to it may bedesirable to make a closer investigation, for though for all values of β between e and infinity where e is a given small finite quantity the factor e-nβ destroys the integrand when n is made infinite, there may be some doubt as to the behaviour of the expression in the immediate proximity of the lower limit.We note that
and is finite for all given positive values of x, however small 
β may be, tending to the finite limit x—1/2 when β is indefinitely diminished.Let K be its greatest numerical value betweenandThen the portion of the integral I between 0 and e does notexceed i.e,. and therefore vanishes inthe limit when n is indefinitely increased.Hence vanishes when n is madeinfinite, for all positive finite values of x.927. To convert
the right-hand side may be written by theorem (αα),

(B)and this includes the case
(C)

928. The same method of treatment will apply in many other cases.
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EXPRESSION BY DEFINITE INTEGRALS. 113Thus the sum

(D)
929. Again,

(E)Similarly
(F)And whenever such series occur the conversion to a definite integral form follows at once. For instance, in the expansion 

(Diff. Calc., Art. 574)

n odd,
and n even;(G)
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114 CHAPTER XXIV.Thus the nth Bernoullian number
.(H)and the nth Eulerian number

(I)If we write as

we have
.(J)

a result due to Plana. (Mem. de l'Acad. de Turin, 1820.)*
930. Another Method of obtaining Expressions for

as Definite Integrals isas follows:Differentiating the equation we have
(1)

But
and integrating this between limits 1 and a with regard to a,

(2)

* See Boole, Fin. Diff., p. 110.
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EXPRESSION BY DEFINITE INTEGRALS. 115and changing the order of integration,
(3)Integrating this with regard to x between limits x=1 and
(4)Putting x=2,

Multiply this by x— 1 and subtract from equation (4);
(5)Now put
(6)Differentiating this with regard to x,

(7)and a further differentiation with regard to x gives (8)Differentiating (8) n — 2 times with regard to x, we get
(9)Results (6), (7), (8), (9) give logΓ(x), and its differential coefficients expressed as definite integrals.From (9), expanding (1—e-β)-1 we have

tothe formula of Art. 911 (6).
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116 CHAPTER XXIV.And so far as formulae (7), (8) and (9) are concerned, these definite integral forms are the same as those obtained in Arts. 925 to 927 from the result of Art. 911 (6).
931. Approximate Summation. Maclaurin’s Formula.As we are dealing with many series of the form

and other forms in which in some cases an exact summation has not been effected, it is desirable to explain the method usually adopted for approximate evaluation of such summations.Defining the symbols E, Δ as in Differential Calculus, Art. 550, viz. such thatand orand also remembering the symbolical form of Taylor’s theorem,wherewe have the following identity of operators:
and it was pointed out in the Differential Calculus that these operative symbols obey the same elementary rules of algebra as quantities, viz. the three fundamental rules:(α) the associative law,(b) the commutative law,(c) the index law for positive integral exponents,with the exception that they are not commutative with regard to variables. Hence, bearing this exception in mind, there is an algebra of operators bearing formal analogy with the ordinary algebra of quantities, and such theorems as the binomial, multinomial or exponential expansions hold.Let us define another symbol, Σ, to be such that
where ua is some fixed term of the series.Then
i.e.and therefore ∑ represents the inverse of the operation Δ,
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MACLAURIN’S SUMMATION FORMULA. 117
which may be written as or ; and since where
C is a constant and f(x) is any function of x, is equal to 
so that the constant disappears, so in reversing the process, if such reversal be possible, we must restore the constant, so that we shall regard ∑ux as Δ-1ux+C where C is an arbitrary constant to be determined in each special case.In this respect the symbol of finite summation, or integration, ∑ behaves exactly as the sign ∫dx of the integral calculus.

ThusNow it has been shown that
(Diff. Calc., Art. 148)whence dividing out by t and writing D in place of t, we have the following equivalence of operators, viz.

in which all the operations on the right side represent direct differentiations except the first, which represents an integration.Applying this to any function of x, viz. ux,

For this and many other formulae derived from the same principles, the student may consult Boole, Finite Differences, p. 89, etc.932. Apply this theorem to the case of the series
HereHence
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118 CHAPTER XXIV.The constant C must be determined in such examples, either by reference to some known case of the summation, or by absolute calculation of the result for a particular value of x, and when once found, the formula can be used with the determined constant for summation for other values of x.In the present case, putting x=∞ , Euler’s constantIf this be available (see Art. 897) the series can be used for the calculation of the harmonic series to any degree of approximation required. If C be not available take the case x=10, and insert the values of Bernoulli’s coefficients, viz.etc. (see Art. 879).Now
Also

(Euler’s constant),which is correct to eight places of decimals.Hence to the same degree of approximation we may now proceed to sum the series to any other number of terms by the result etc.It will be noted that to obtain eight decimal places of Euler’s constant only three of the terms on the right-hand side affected the result.
933. Take the case

Here
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APPROXIMATE SUMMATION. 119

except in the case n=l, when log x replaces

Hence

etc.,

and this series can be calculated to any degree of approximation when C 
has been found.

In the case when n is even, the exact sums for an infinite number of 
terms are known for the earlier values of n. The values for n = 2,4,6,8,10 
are given in Art. 879.

When this is the case the exact value of C is known, e.g. if n=2,

(Euler), and

etc.

If (Euler), and for even values of n higher than 10,

C can be found from (See Art. 879.)

934. For odd indices we proceed as in Art. 932, and the value of the constant is to be calculated, as it is not available otherwise.
Thus, if n=3,

Take the case x=10 It will be found to give C = 1.202056903... to 
the first nine places of decimals, and to that approximation with this 
value of C the formula can be used for finding the sum of any other 
number of terms.

The value of C is the sum to infinity, in all these examples, viz.

 except when n = l, a case which has been considered.

935. Consider finally the case

Here
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120 CHAPTER XXIV.

and when x is made very large

i.e.

i.e.

as a close approximation. (Cf. Arts. 877, 884.)936. It will be seen that the formula etc.will be of the greatest service when methods of exact summation fail. The student should, however, test the formula for himself in cases with known results, such as 
to gain familiarity with it.Enough has been said to show that the summations we require in the present chapter, such as 
can be readily calculated, when wanted, to any degree of approximation which may be required, without the labour of calculating out each term separately, except for a few terms to determine the value of the constant. We have, for finding C, chosen 10 terms for the obvious reason that the arithmetical calculations of the right-hand member of the equality are thereby much simplified.*See De Morgan, Differential Calculus, p. 312.
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CAUCHY’S THEOREMS. 121
937. A Theorem due to Cauchy.It is a well-known theorem in trigonometry that

where Rm is a quantity which may be made as small as we please by taking m large enough (see Hobson, Trigonometry, Art. 293). This is so whether z is real or complex. Also, when m is indefinitely increased the series is absolutely convergent for all values of z, with the exception of such as are expressed by z= ±rπ for integral values of r.Writing in place of z, we have
where R'm, like Rm, can be made indefinitely small by increasing m without limit, and
and can be written either as

Hence
or Now, by division,
where and is a positive proper fraction for all realvalues of z, and the series would be convergent, and could be continued to infinity, provided z<a if real, or mod. z<α if z be complex.Write in this identity α=2π, 4π, 6π... 2mπ successively, and indicate by suffixes 1, 2, 3,..., the corresponding values of e, and let Srm denote
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122 CHAPTER XXIV.Then we arrive at m equations of the type
and, adding these equations together,
whereand if η be the greatest of the quantities e1, e2, ,
and therefore e' is also, like e1, e2, e3, etc., a positive proper fraction.We thus have, taking ez to have its principal value,

and if we increase m without limit, the series S2m, S4m, S6m, being all convergent, to andHence

where θ is a positive proper fraction; or, what is the samething, the same expression.
And if we write for we have

where 0<θ<1 for all real values of z.

www.rcin.org.pl



CAUCHY’S THEOREMS. 123938. Now Cauchy has shown that Maclaurin’s Theorem for the expansion of a continuous function of x, viz. F(x), for the case of a real variable, still holds for a complex variable which is such that its modulus has a value lower than that for which F(x) ceases to be finite or continuous (see Art. 1299).The function only becomes infinite for valuesof z which are given by z=2λπ, where λ is a positive or negative integer other than zero. This function is therefore capable of expansion by Maclaurin’s Theorem in a convergent series within the circle of convergence of radius 2π for any real or complex value of z, whose modulus is <2π and the form of that expansion has been given in Diff. Calc., Art. 148, asto infinity
orand the various coefficients were defined as Bernoulli’s numbers.This series then is convergent when z is a real variable which lies between — 2π and +2π, exclusive. It is also true and convergent when z is a complex variable and z lies within a circle of convergence of radius 2π.And when the infinite series is not convergent, i.e. when z does not lie between the limits specified, the series may be stopped atany term and the error is then numericallyless than the next term, This theorem is due to Cauchy.939. Lemma. As a preliminary to what follows we mayremark that such an integral as where lies
intermediate between and where θ1 and θ2are the greatest and least values of θ between x=a and x=xTherefore for some value of θ between θ1and θ2, and therefore, if θ1 and θ2 are positive proper fractions, so also must θ be a positive proper fraction.
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124 CHAPTER XXIV.940. Now we have established the equation(Art. 930, 8)or, what is the same thing, 
Hence, substituting for the finite series established byCauchy (Art. 937),

i.e.

Integrating this result, 

where 0 < Θ1 < 1, by the lemma of the last article, A being a constant to be determined.Let x become infinite. Then
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CAUCHY’S THEOREMS. 125Hence

Again integrating,

by the lemma, where A' is a constant to bedetermined.Let x become an infinite integer,
Hence

This result is also due to Cauchy.941. The series, if carried to infinity, is known as Stirling’s Series. It is divergent, however great x may be. For the general term
and the ratio of this term to the preceding term is
i.e. ultimately and however great x may be, willultimately be > 1 when n is large enough. The formula can, nevertheless, be made useful for approximative purposes for calculating Γ(x+1). For, as in the series of Art. 938, the
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error in stopping at the term involving has been shownto be i.e. the error is lessthan the succeeding term. And as the ratio of two consecutive terms, viz. is less than unity
until exceeds 4π2x2, the absolute valuesof the several terms go on diminishing until this happens, and then increase again. Hence the closest approximation will be obtained by continuing the series until that term is reached which precedes the smallest term.942. We have as successive approximations

etc.
And since etc.,

etc.,
i.e.

etc.
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ON THE CALCULATION OF GAMMA FUNCTIONS. 127943. In order to facilitate calculation from the series

it is desirable to arrange so that x shall not be small. For this purpose Legendre puts x=4+α; whence
and

where u is the modulus of the logarithm tables, viz.
Thus, if be required, and etc.

and by this artifice it is possible to avoid the calculation of all but the earlier terms of the series. We could make x=5+α, 6+α,..., equally well, and the choice is in the hands of the calculator.Legendre remarks as to his calculations of the seven-figure tables of log Γ(x) with regard to the above : “ de cette maniere on n’a jamais eu besoin de calculer plus de deux ou trois termesde la serie etc., pour avoirapproche jusqu’a sept decimales, dans tout l’intervalle depuis α=1 jusqua α=2” (Exercices, p. 300).Legendre’s m, k, A', B', C' are what we have called μ, x, 
B1, B3, B5 respectively.

944. The Case when x is a Commensurable Number.We have established the result (Art. 930 (7).)
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128 CHAPTER XXIV.And we have seen that Euler’s constant y is the value ofwhen (Art. 911 (4).)
that isHence, adding

In the case when x is a commensurable number * this integral can be reduced to the integration of a rational integral algebraic expression, and the integration effected in finite terms in terms of the ordinary algebraic, logarithmic and inverse circular functions.Let , where p and q are positive integers, and letThenand the integrand is a rational integral algebraic function of t.If q= l, i.e. if x be an integer, the value of isgiven by

as might be expected from Art. 911 (2).
945. Expansion of Γ (x+l) derived from the Integral Definition 

(De Morgan).The expansion of log Γ(1+x) in powers of x may be obtaineddirectly from the definition of
For we have
Hence

* See Serret, Calc. Integral, p. 184.
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DE MORGAN’S INVESTIGATION. 129Let Then and
Let a positive integer.

i.e.

i.e.

or, expanding the logarithms, assuming x<l, 

and when b is indefinitely increased 
for values of x,This investigation is due to De Morgan.*It was felt desirable to deduce this series directly from the integral, rather than to base it upon results deduced from the property Γ(x+ l)=xΓ(x), i.e. the difference equation ux+1=xux, inasmuch as Legendre’s tables of the values of the Gamma function are derived from this series and others obtained from it. And in default of direct derivation of the series from the integral itself, some doubt might be felt as to whether Legendre’s tabulated results were the values of the integral itself or the values of the integral multiplied by some periodic function of x whose period is unity, which, as explained in Art. 863, would equally be a solution of the difference equation.*De Morgan, Diff. Calc., p. 584.
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130 CHAPTER XXIV.946. From De Morgan’s investigation given above, the formal identification of Γ(x+1) with ∏(x) for all positive values of x, may proceed as follows:

and if and positive.If x lies between 1 and 2, say x=1+ζ, then, sinceandandit follows that
i.e. when x lies between 1 and 2.Similarly if x lies between 2 and 3, etc.Hence, for all positive values of x, ∏(x) and Γ(1+x) are identical.

947. The Integration of not infiniteIn considering the integration of e-vvndv between limits 0 and a, where a is not infinite, we must have recourse to either(1) an expression in series or (2) a continued fraction.(1)
and by the continued use of this rule,
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INTEGRATION BY CONTINUED FRACTIONS. 131a series which is always convergent for any finite value of α, but only slowly so if a be > 1. A little consideration will show that the integral remainder is ultimately infinitely small. Or we may proceed thus:Let
whence

If n be a positive integer, the integration can be effected in finite terms. But if n be negative or fractional, the series on the right-hand side is divergent if continued to infinity whatever a may be. The terms however ultimately take alternate signs, and when such is the case, and when there is convergence for a certain number of terms, and then ultimate divergence, we can apply the principle adopted in Arts. 938, 941, the convergent part making a continual approximation to the arithmetical value of the function under consideration, and the error being less than the first term omitted.*If then Jn be thus approximated to,
and

948. (2) De Morgan has shown how such an integral as can
be converted into a continued fraction.

When this is done as before.

Let where V is some function of v.

Then differentiating with regard to v,

or
Consider the equation

∙(1)*De Morgan, Differential Calculus, p. 226 and p. 590.
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132 CHAPTER XXIV.

Putting we derive an equation

(2)
where

Putting in equation (2), we derive an equation

.(3)
where
and so on.

Then

In our case
etc.

whence

etc..
The expression converges rapidly for large values of v.
The process above employed by De Morgan is similar to that employed 

by Boole, Differential Equations, p. 92, in the solution of Riccati’s equation

The equation we have just solved is a very similar equation, viz.

949. More generally, consider the differential equation

where P, Q, R, S are functions of x alone.
Let etc.
Take y1, y2, y3, ... successive new dependent variables, such that

Then when A, B, C,... a, β, γ,... have been properly determined, we have

viz. a solution in the form of a continued fraction. [Lacroix, t. II., p. 288.]
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DEVELOPMENT IN FACTORIAL SERIES. 133

To begin with, using accents for differentiations,

i.e.

or
where

At the second substitution, viz. the differential equation
becomes

where P2, Q2, R2, S2 are formed from P1, Q1, R1, S1 in the same way as 
the latter were formed from P, Q, R, S, and so on.

Again assuming the expansion of y in powers of x to be of the form 
Axa + A1xa+1 + ... and the expansion of y1 to be Bxβ + B1χβ+1 + ..., and 
so on, we can by substitution in the several differential equations they 
satisfy obtain the values of A and α, B and β, etc., by an examination of 
the lowest order terms occurring, and thus express y in the form of a 
continued fraction.

950. Development of in a Factorial
Series.

Since

we have

and generally

Let
where
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134 CHAPTER XXIV.
Then

Hence
etc.,

where , means the value of  when x is put =0.
Hence

a series which will terminate in the case when a: is a positive integer 
and is in any case convergent for real and positive values of x and a.

The value of i.e. can be found for any particular

value of a by means of the series

etc.

of Art. 940.

951. In the case when α = l, we have

and (Euler’s constant).

Since  this may be written symbolically as

i.e.

952. Other properties of the ψ function are :
Since we have by logarithmic differentiation

(α)

Since 1 we have similarly

(b)
Since we have similarly

.(c)
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PROPERTIES OF THE FUNCTION ψ. 135

Since we have similarly

(d)

Since

we have similarly

953. The equation is of considerable service in
summation of series.

1. A sum of the form

to n terms, viz.

can be written

2. A sum of the form

to 2n terms

E.g.
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But by

the series is

which is well known otherwise, being Gregory’s series for tan-1l.

3. Sum the series

Here

Now by

.∙. S=log2, which is well known otherwise. 
We may note that it follows that

and

Hence

and

954. Gause has established a remarkable result, giving for the function 
ψ(x) the value of ψ(1 -x) + ψ(x) in a series of trigonometric terms in the 
case when x is any commensurable proper fraction. This result taken with

will enable us to calculate the value of ψ(x) in all such cases.
The theorem is given by Bertrand in Art. 307 of his Calcul Integral. 
For shortness we shall denote

by

Then when or or

www.rcin.org.pl



GAUSS’ METHOD OF CALCULATING ψ(x). 137

Writing the fundamental 6quation

as

and putting where r > q, and both are positive integers, we have

Taking r=l, 2, 3, ...q in this equation, multiplying by cos θ, cos 2θ, 
cos 3θ, ... cosqθ respectively, and adding, we get

Now the coefficients of log 1, log 2/2, log 3/2, etc., all vanish and since cr=cq+r, 
etc., the remaining terms form a continuous series to infinity, viz.

viz. an equation connecting ψ1, ψ2, ψ3,... ψq-1, ψq, the last of which terms

is where γ is Euler’s constant. That is

So far θ has stood for any of the quantities . or Say

the first. Then similar results will hold for the rest, i.e. if we take 20,
30, ...(q-l)0 in place of 0. We thus get q-1 linear equations from

which we can find , viz.

and in addition we have

which is merely a case of the identity (e) of Art. 952, for the coefficients 
cosq0, cos2q0, etc., each =1.

To solve these equations we multiply them, and the identity, respec-
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Now note that cλcμ + c2λc2μ + c3λc3μ+... + cqλcρμ for any integral values 

of λ, μ (the last term being unity, since qθ = a multiple of 2π)

and that each of these sums is zero, except in the two cases λ±μ=a 
multiple of q, and that in the cases we have to consider λ and μ each range 
in value from 0 to q - 1. Hence the only cases of this kind are when λ=μ 
or λ=q-μ, and both would happen if λ = μ = q-μ, i.e. if q be even, and

and when q is even and

The latter case will occur when, q being even and therefore q- 1 odd, 
there is a middle term in the system of unknowns, viz. ψp=ψq-p=ψ(1/2), 
and the case need not be distinguished from the others. Thus, after multi
plication by cp, c2p,,... cqp and addition, the coefficients of all the unknowns 
vanish except those of ψp and ψq-p, and the coefficients of these terms are 

each q/2 ; and if q - 1 be odd and p = q/2, all vanish except that of ψ(1/2), which 

is the middle unknown of the series, and the coefficient of this term will 
be q.

And on the right-hand side we have

In the bracket, terms equidistant from the ends pair, but if q be even 
there will be an unpaired term left in the middle of the series. This term

is which reduces, since

Hence the right-hand side becomes

or (q even).

We thus have

{q odd),

or (q even),
and this, as pointed out above with
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TABLE OF RESULTS. 139
will enable us by addition and subtraction to obtain both

for any integral values of p and q (p< q).
It will be observed that these theorems give the tangents of the 

slopes of the curve y = logΓ(x) at equal distances on opposite sides of 
the ordinate at x=0.5.

Ex. If p = l, q = 3,

955. List of Results.As the results obtained in the present chapter are very numerous and necessarily scattered over many pages in the gradual development of the theory of Eulerian integrals, it may be convenient to the reader to have the principal facts arrived at collected together for ready reference. A synopsis is therefore added in two groups, the second group referring more particularly to the ψ function, which entails some repetition. Group I. (Art. 857.)1.

2. If l, m be positive integers,If l only be a positive integer, (Art. 858.)
3. (Art. 859 (2).)
4. (Art. 859 (4).)
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5. (Arts. 859, 869.)
6. (Arts. 859, 869.)7.

(Arts. 854, 864, 874, 889.)8. (Arts. 860, 890.)9. ] (Arts. 864, 882.)10. (Arts. 872, 893.)11. (Art. 871.)
12. (Art. 873.)
13.

(Arts. 903, 905.)14. (Art. 877).
15. (Art. 884.)16. (Arts. 897,917.)17. (Art. 910.)
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TABLE OF RESULTS. 14118.
ad inf. (Art. 911 (5).)19. ad inf.(Art. 911 (1).)20. (Art. 911 (3).)21. (Arts. 911,916.)22. (Art. 919.)23. Min. ordinate of (Art. 922).24. (Art. 930 (6).)

25. (Art. 925.)also (Art. 930 (3).)
26. (Art. 930 (9).)
27.

(Arts. 928, 929.)
28. (Art. 929.)

www.rcin.org.pl



142 CHAPTER XXIV.
29. (Art. 931.)30.

(Art. 940.)31.
(Art. 940.)32. See also No. 15. (Art. 942.)956. II. Group of ψ Formulae.Since the ψ-function, viz. is a veryinteresting function, and very useful in itself, we gather together the principal results which refer to this function in particular.1. (Art. 911.)2. (Arts. 911 (3), 922, 923.)3. (Art. 911.)4. (Art. 911.)

5. (Arts. 925, 930 (3) and (7).
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TABLE OF RESULTS. 1436. (Art. 930 (8).)
7. (Art. 940.)8. (Art. 940.)9. (Art. 944.)10. (x integral). (Art. 944.)

11. (From 10.)12. (Art. 950.)13. (Art. 952.)14. (Art. 952.)15. (From 14.)16. (Art. 952.)17. (Art. 952.)
18. (Art. 952.)19. etc.(Art. 95O.)20.

(q odd)(Art. 953.)
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957. Table of Values of ad inf.up to p=35, which is the last in which the tenth decimal place is affected; all remaining ones to this approximation may be regarded as =1. (De Morgan, D.C., p. 554.)

PROBLEMS.

1. Show that (i) (ii)
2. Show that

3. Show that
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PROBLEMS ON GAMMA FUNCTIONS. 145

4. Show that where n is a posi
tive integer. [Oxford II. P., 1888.]

5. Show that provided

6. Show by means of the transformation xy = u, y = u + v, that

[Coll, γ, 1901.]
7. By means of the integral prove that

[St. John’s, 1884.]
Show that this integral may be expressed as

8. Show that the product of the series

etc.

and etc. is[Colleges a, 1883. ]
9. Prove by the substitution x2 = ξ that

where n is a positive integer. 
[See also Art. 223 (5).] [Colleges α, 1890.]
10. Show that if K be any positive constant,

and by proceeding to a limit express B(l, m) in terms of Gamma 
functions. [Oxf. II. P., 1902.]

11. Show that the sum of the series

is
where n > - 1, and m < 1. [Coll. 7, 1899.]
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12. From the value in Gamma functions ofshow that

for all real values of p. [Trinity, 1886.]
13. Prove that nearly. [Trinity, 1896. ]
14. Prove that

to ∞[Oxford II. P., 1888.]
and [Oxford II. P., 1903 ]

15. Show that, when x is positive,

[Math. Trip., 1897.]
16. Prove that, if x be positive,

[Math. Tripos, 1897.]
17. Show that, when x is a real positive quantity not greater 

than unity, 

where f(x) is a function of x not greater than unity.[Math. Tripos, 1897.]
18. If n lie between zero and unity, prove that

[Coll. α, 1890. ]
19. Show that the perimeter of a loop of the curve rn = an cos nθ is
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20. Show that if x, y be a point on the ellipse x2∕α2 + y2∕b2 = 1, 

ard 2r be the conjugate diameter, and the integral be taken round 
the whole perimeter, then

[Colleges, 1892. ]
21. Express in Gamma functions

[Trinity, 1896.]
22. Express in Gamma functions the area of the curve ycx = axc 

(c > 0) for positive values of x (0 to ∞ ), also the volume generated 
by its revolution round the axis of x. [St. John’s, 1883.]23. If where

and is some function of n, prove that

remains unaltered when 1 - n is written for n. [Colleges α, 1881.]
24. Prove that

where[De Morgan, Diff. Cal., p. 591.]
25. Prove that

[De Morgan, p. 591.]
26. Prove that

[De Morgan, p. 593.]27. If ) and a: be a positive integer, show that

Prove further that

and has a finite value. [I. C. S., 1898.]
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28. If where n is any positive

quantity, prove that

[Math. Tripos, 1895. ]
29. Prove that if

r being any positive quantity.
[If r > 1 both integrals generally = ∞ .][Wolstenholme, Educ. Times.]

30. Prove by changing the order of integration or otherwise
that

[Math. Tripos, 1875.]
31. Show that

[Lacroix, Calc. Diff., vol. ii., p. 292. ]
Deduce expressions for and tan-1x as continued fractions.

32. Prove that

where ω[St. John’s, 1891.]
33. Evaluate the modulus of [Smith’s Prize, 1875.]
34. Show that for very large integral values of n, Γ(n + 1/2) is 

very nearly the geometric mean between Γ(n) and Γ(n + 1).[Oxford, 1892.]
35. If b be a large whole number, show that, provided x > - 1,

very nearly.[De Morgan, Diff, Calc., p. 585.]
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36. Writing prove by the aid of Wallis’
theorem that when x is large.

Then show that for any value of x,

(α)

(b)

(c) (d)

(e)
where θ0, θ1, θ2, ... are numbers between 0 and

(f)

and finally deduce Stirling’s theorem,

where ex denotes a positive quantity which vanishes when x = ∞ .[Serret, Calc. Integ., p. 207.]
37. Show that, if a: be a whole number,

[Gudermann.]
38. Show that

when x is large. [Serret, Calc. Integ., p. 213.]
39. Writing

and

prove that

Hence deduce Gauss’ theorem,

[Serret, Calc. Integral, p. 190.]
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40. Prove that

[Cf. De Morgan, Diff. C., p. 594.]
41. Prove that

and that

where C is a certain constant. [Math. Tripos, Pt. II, 1915.]
42. If the binomial expansion for a positive index be written

show that

Prove also that

43. Show that (1000)! lies between
and

and is a number with 2568 figures in the ordinary system of 
numeration, its logarithm being 2567.6046442....[Cournot, Theorie des Fonctions, vol. ii., p. 472.]

44. Show that if

then

where and θ is a positive proper fraction.[Liouville, Journal de Mathematiques, Tom. iv., p. 317.]
If λ2n+2 be the maximum numerical value of f2n+2(α) between the 

limits α = 0, α = ∞ , show that

and examine the nature of the approximation attained by the 
omission of all the terms which contain Bernoulli’s coefficients.[Liouville, J. de M.; also Cournot, Theorie des Fonctions, p. 474.]
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45. Starting with

and putting R for the two terms with negative indices in the
development of Q in ascending powers of β, namely let

and

Then show that(1) (2)

(3) (4)
(5) That when x is large eω(x) differs but little from unity.
(6)

and

(7) Deduce the equation,

[BertranD, Calc. Integral, p. 265.]
46. Show that(1)

(2) [Todhunter, Int. Calc., p. 392.]
47. If Ar be the acute angle whose tangent is the nth power of 

the reciprocal of the rth of the prime numbers 2, 3, 5, ..., show that

. to

where Bn is the nth number of Bernoulli. [Math. Tripos, 1897. ]
48. If . show that
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49. If and show that

where

and write down the values of in
similar form.

50. Show that [Oxford I. P., 1914.]
51. Prove that the volume in the positive octant bounded by the 

planes x = 0, y = 0, z = h and the surface z∣c= xm∣am + ym∣bm is equal to

[Math. Trip., Part II., 1913. ]
52. Prove that 

and apply the result to prove that if 1 + 4hk be positive,

[Math. Trip., 1870 (Wolstenholme).]
53. When n is a positive integer, we have evidently 

prove that this equation, when expressed by means of the function
Γ, is true for any positive value of n. [Sir G. G. Stokes, S. P., 1870.]

54. Prove that the limiting value of 

when n is indefinitely increased, is log 2. [R. P.]
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GAUSS’ ∏ FUNCTION. 81But there is this difference between the functionsandthat though they coincide in value for all positive values of x, the former becomes infinite at the values x=-l, x=-2, 
χ=-3, etc., but has finite values for other negative values of 
x, whilst the definite integral is permanently infinite for all negative values of a?+l.

888. That the factor form has finite values, when μ becomes infinitely 
large, for negative values of x between the asymptotes may be made 
clear by taking a case. Take x= —

Then

Similarly at the corresponding limit is

at the corresponding limit is

and so on.
These mid-ordinates, half way between the successive asymptotes, thus 

form a regular descending series

889. It is worth noticing that ∏(x, μ) may be written as
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