CHAPTER XXIV.

EULERIAN INTEGRALS, GAUSS II FUNCTION, ETC.

853. The Original Forms of the Eulerian Integrals.
The properties of the two important integrals

|
1 -1, 1 q
I,= <§> Ejo _x"_{_::_j and I,= [g] = J-o (log i) dz
(I—zm)*
were the subject of several remarkable memoirs by KEuler.
His investigations were published in the Institutiones Calculi
Integralis, 1768-1770, and are of great importance in the
general theory of Definite Integrals. The notation above, viz.

(I—;> and [g] is that used by Euler, and the above forms are

those in which the integrals were studied both by Euler
and Lagrange. In each of these the value of the integral
was supposed to change by the variation of p and ¢; the
n which occurs in the first integral was supposed to be a
constant.

Legendre, for the purpose of characterising these integrals
and honouring their great discoverer, named them “ Intégrales
Eulériennes.”* The second part of Legendre’'s Ezercices de
Calcul Intégral is devoted to a discussion of their properties.

He adheres to the notation (I—q)) for the first integral, but
suggests the notation I‘<§> for the second, regarding I'(a) as
a continuous function of a.

* Hxercices de Calcul Intégral, par A. M. Legendre, 1811, p. 211.
49
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50 CHAPTER XXIV.

854. The More Convenient Modern Forms.
The above forms of the integrals are not the most convenient
in practice. Taking the first integral, write "=y, and put

p=nl, g=nm.

Then
et 0
" - _d1

xﬂ’“‘dx i 1Y ny ‘/_1“'1 3 e
5. L1 pmra—grm-rdy.
(1—a P -y " .
Taking the second integral and writing log5=y, that is

z=e¢Y, and putting }—; =at

2.3
1 1\¢ Mg AN
IZ:.L <log 5) dx=L eVy"ldy.

855. Definition.
We shall therefore define the FIRST AND SECOND EULERIAN

INTEGRALS as 1
B(l, m) EJ =11 —z)m1dw
0

and T'(n) Ej e 1dz,

0
and refer to them respectively as the BETa and Gamma
Functions. This is now the commonly accepted notation and
nomenclature.

856. In Gregory’s.Ezamples (p. 470), the digamma F(l, m)
is used to denote what we have above defined as the Beta
function. It will be observed that B(l, m) is n times the

integral discussed by Euler, that is n(%)

We shall assume in our subsequent work that all the quanti-
ties I, m, n are positive but not necessarily integral, and
further that they are real unless the contrary be expressly
stated.

857. The Beta Function is symmetric in / and m, that is,
B(l, m)=B(m, I).
If in the Beta function
1
B(, m)_——_j d=1(1 —z)n-1dr
0
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THE BETA FUNCTION. b1

we write 1—y for z, we obtain
0 1
B(l, m)= —L (1 —y)""y”“ldy=j Y11 —yy-1dy
0
|
=j ™11 —a)-'de=B(m,);
0

whence it appears that B(l, m) is a symmetric function of
I and m, the I and m being interchangeable and
B(l, m)=B(m, ).
This property might be exhibited by writing B(l, m) as

B(l, m)=%£ [zl—l(l -—x)m—l_*_xm—l(l__z)l_]]dx.

858. Case when / or m is a Positive Integer.
When either of the two quantities I, m is a positive integer,
the integration is expressible in finite terms.
Suppose m is a positive integer,
1
B(, m)=j #-1(1 —z)m-1da,
0

and by continued integration by parts
_[zl m—1 kil 1)1 m—2
=|7(1-2) +—m-)(m— )1 —2)

l
i
+m+—2)(’”“1)(’m_2)(1 —zyi+ ...
xl+m—1 1
T (l+m_1)(m—1)(m—2)...2.1]0
(m—1)!

. T}
Similarly, if I be a positive integer,
(=1t
m(m+1) ... (m+1—1)
and if both be positive integers,
I—1)!{(m—1)!

859. Various Forms of the Beta Function.

The Beta function may be thrown into many other forms
by a change of the variable, and therefore many other integrals
are expressible in terms of the Beta function.

B(l, m)=
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52 CHAPTER XXIV.

Thus: (1) Let Y=

YRS

Then B(l, m) jl Y (1—y)m-dy
-—I —— iy l dz
=&t—+i——1_‘.o @-1(a—z)m-1dx.

Henee rx“‘(a-—x)"‘-ldz=a’+"'“B(l, m).
0

I e
Y =1+«

Then B(, m)aj1 Y (1—y)m-tdy

0

(2) Let

-1
=r<—lr () vata
®  am-1
j (1+ x)l+m
and since [, m are interchangeable this must also
SR Sy
| e
which would have appeared 1mmedmtely if we had made the

substitution y—m instead of y—ﬁ

Note also that the symmetry in [, m may be exhibited as

1 lzl—l_*_zm—-l

whilst for all positive values of I and m we have
1851
L (4= )t+m" " do=0.

So that, for instance,

25(1 —2°) 25(1 42%)
/(; (l+w)“dx =073 and _[ (1+a)* Ao 20=2B(6, 12).

: dw
(3) Putting %=;_%l, dy=a(a+l)m,
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ABEL’S TRANSFORMATION. 53
1
B, m)= . g (1—y)m-1dy

= rar () e () et G

—p\m—1
=a’"(l+a)‘jo%f%n———dx.

J'l Z-1(1—g)m-1 e B(l, m)
o (atz)ytm ~am(1+a)
This is Abel’s transformation (Fuvres; Vol. 1., p. 93).

(4) Put y—Lg

1
Then B(, m)aj Y (1—y)mdy
0
¢ (x—b\I=! fa—x\™1 dx
_L (a—b) (a—b) a—b
1 (1
— —hY-1{qg_—p\m-1
(a——b)”'”“‘jb (z—b)-(a—x)™dx,
and r (z—b)Y(a—z)mdz=(a—Db)}+m-1B(l, m).
b
Here the limits have been changed to any arbitrary con-

stants @ and b.
(5) Transform by the formula g—f;:u—b.

Hence

Here the limits remain unaltered, for if y=1 we have =1,
and if y=0, =0.

1
B(,m)=| v —yyidy

:]‘1 { bx }l_l{i(l —x) }’"‘1 ab dx
olat(b—a)z] lat(b—a)z) {at+(b—a)}
e G
Hence j: {aw’_i:‘((_gl_——_aa;)% de= "‘b‘
also obviously j: {ZD%EC(LI—_—%Z"}:M de= ulbm

and if we write a—b=c¢,

lmt—x (1 _w)m—l
J -+ oay ™™ dz= bF ),me(l m).

B, m);

B(, m);
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54 CHAPTER XXIV.

(6) In the last transformation, put z=sin*6.

T gin%-20 cos?™-20 ;
o (@cost 0+ sin? Gy ™ 2 sin 6 cos 0 de“-mgz B(, m),

x
7 Sanl-l 0 cos?m—l e

o (@ cos? 04 b sin? )+

{, m, @ and b being positive constants.

Then j

q.6 do= 5 mblB(l m),

x

(T L ——*". sin? § cos? 6 d is expressible in the same way in
0

terms of a Beta function.

Let sin O=vz, i Sul, L
/e
tal gy
=[P T s pde
1 P+l 9+1_
e s
0
p+1 q+1
-85 1)

This also follows from No. (6) by putting a=b=1.

860. Properties of the Gamma Function.
Consider next the Gamma function, viz.

T'(n)= J. et
+ Integrating by parts
F(n)=[ —x”“e—":] +(n——l)j efolRda;
- 0 0

and whatever m may be, provided it be finite and >1,
—a" e~ vanishes at both limits.

Hence I'(n)=(n—1)T'(n—1).
Similarly, I'n—1)=n—2)I"(n—2),
and so on.

In the case then, where n is a positive integer,
I'(n)=(n—1)(n—2)(n—8)...8.2.1T'(1),

and : F(1)=Ime“dz=[—e"]:= ;

whence I'(n)=(n—1)! in that case.
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THE GAMMA FUNCTION. 55

861. Working Properties.
We then have the properties

LUnHel) =y Py £ ol Joias iicaiiies 1
L) L s i sisan vacitehmasions ¢biias - b 1L
and when 7 is a positive integer,
L (Bl eI 4 s s e b e s e L1
The Gamma functions of the positive integers are then
r(1)=1,
T')=1.1=1,

I'3)=2T(2)=1.2,
I'4)=3T(3)=1.2.
I'{(3)=4T(4)=1.2.
ete.,
from which a rough idea of the march of I'(z) as a continuous
function may be inferred, viz. &8 minimum existing somewhere
between z=1 and z=2, and then after =2 a quantity
increasing more and more rapidly.

862. In any case the equation I'(n+1)=mn I'(n) furnishes a
means of reduction of the Gamma function of any number
greater than unity to a Gamma function of a number less
than unity.

3,
3.4,

For instance
D) =3 T =3¢ ¥ T =4 ¥ § T =4 % . §.§T(®)
=% 4.5.8. 3 TG)

That is, the Gamma funetion of any number greater than
unity can be connected with the Gamma function of a number
which is not greater than unity ; so that it is already obvious
that when we come to the calculation and tabulation of the
numerical values of Gamma functions it will be unnecessary
to tabulate I'(x) for any values of a except those which lie
between 0 and 1.

8G3. A Caution.
The student should guard against the idea that the equations

o0

I‘(w)=j e*v*1dy and TI'(z+1)=cxI'(z)
0
are co-equivalent. They are not so. The latter is a conse-
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56 CHAPTER XXIV.

quence of the former, not the former of the latter. The latter
is a functional or difference equation, viz.

p@+1)=zp(®) Or Ug,=TUs,
and such equations may have many solutions. What is proved
is that u,=j e v dw is a particular solution of U, =Tu,.

0 %0
But so also are AJ. e*v*1dv when A is any constant, or
0

such an expression as
A+ Bcos* 27
C+ D sin® 27
where 4, B, C, D are constants, for these multipliers are not
altered when z is increased by unity. Nor does it follow

%0
I e~ v*-ldy
0

thatI e?v*1dy occurs as a factor in all solutions of the
0

difference equation.
The solution of u,,,=xu, is obviously
Axz(z—1)(z—2) ... (r+1)ru,

when 4 is either a constant or some arbitrary periodic function
of 2z whose periodicity is unity, and which therefore does not
alter when z is increased or decreased by any integer, and u,
any assumed initial value of u, We shall return to this
matter later.

864. Transformation of the Gamma Function.
As in the case of the Beta function, transformations of the
variable will give rise to other integrals.

(1) We have seen that x=log:11/ or y=e~* produces

0 /| 1 n-1
I‘nEI Sy =j g MY TN
O e
the form studied by Euler.
(2) If we write kx for «,

I‘(n)=I o~ fngn-1 g
0

whence Jme"“ PR da:=£]§"i)
. 0 v

provided % be a real constant (see Arts. 1159 to 1162

and 1327).
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(3) If we put z*=y where n is positive,
I‘(fn)=,—:;J‘o v dy ;
. j v dy=nT(n)=T (n+1).
0
In this case, if we put n=%,

J evdy= et da=iT@Q)
0 0
and this leads to an easy calculation of I'(3).

For {%F(é)}’=j:e"’dxxI:e'y’dy,

and as 2 and y are independent variables and the limits
constant, we may write this as
“-m“hme_(z.+y') dxdy.
0Jo

Now, regarding «, ¥ as the Cartesian coordinates of a point
we have to sum all such elements as ¢~ @+¥) §x §y through an
infinite square in the positive quadrant, two of whose sides are
the coordinate axes.

3,

[ X
Fig. 313.

Transforming to polars, we have to sum
e~"r 88 or
through the same square.
Let 2=a, y=a, where a=o0, be the other two sides of the
square. Then for the portion of the square which lies inside

the circle 22472=q?2 the limits for 6 are 0 and g, and for »
0 and oo,
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Hence the portion within the circular quadrant contributes

» oF i o % § ! o o no——"r
L-‘-Oe rdrde—g-‘-o')e d'r=§|:—§e ]0 G T

At points of the square outside the circle the elements are
never greater than e~%r 8 §r, and when « is made sufficiently
great this becomes an infinitesimal of higher degree than the
second, and hence in the double integration disappears. There-
fore the portion of the area between the circle and the square,
exterior to the circle, contributes nothing.

Hence the value of I'(}) is = /7, and as all the Gamma
functions are from the definition essentially positive quantities,

I()=vr* y
865. We may also regard the investigation ofj e~ du as

the problem of finding the volumet bounded by the plane of
z-y and the surface formed by the revolution about the z-axis
of the curve z=e-#', for this volume may be regarded as

g

sl iy

X
Fig. 314.

being built up of cylindrical shells whose axes coincide with
the z-axis. The volume of this solid is bhen_[ 27w dw. z, where

w is the radius of a section parallel to the x-g; plane,
=27rj we=* du=m.
0

* Euler, Tom. V., des anciens Mémoires de Pétersbourg, p. 44.
t Airy, Errors of Observation, p. 12.
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But dividing it by planes parallel to the coordinate planes
of =0 and y=0, the volume is also expressed by

I:H:e—wm dy] d“fl e~ da Iiwe-rdy
ifieeny

whence I ~®dr= i/w
0 2
This gives another geometrical interpretation to the work
of the preceding article.

866. When 7 is diminished without limit,j e~*g*~1dx be-

0
comes infinite. For the formula I'(n+1)=nI'(n) holds for
all positive values of n. Hence

1 1
LtyooT(m)= Lt - D pg o2 oo,
1.e. T'(0)=cc.

This is also obvious from the integral itself. For the
integrand gx_’ (for the case n=0) takes an oo value at the

lower limit, and the principal value of the integral becomes
infinite (see Art. 348).

8(G7. Connection of the Two Functions.
We shall next prove that the Beta function is expressible in
terms of Gamma functions, the connection being

_TI'(}).T'(m)
B(, m)__I‘(L+'m) .
Consider the double integral
I=Imj°° e_zy(xy)l——l X e—ﬂxm(lw dy
0Jo

[that is @y is written for « in the integrand of I'(l), and this is
multiplied by the factors of the integrand of I'(m+1)], s.e.

I=r r e~ Vg m-1y1-1dy do,
0Jo
Integrating first with regard to @, we have

A8 l+4m)
f o e X d
.‘.o y (1+y)lm ¥

=T'(I+m)B(l, m), by Art. 859 (2).
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60 CHAPTER XXIV.
But changing the order of integration, taking y first,
I =E J: ervgttm-lyl-lemerde dy
=J‘°° e—apitm- L0 &5
0 at
=I'() r e~z dr
=T({) Io‘(m).

Hence B(!, m)=F(l) kit

T(l+m)’
868. Deductions.
It further follows that

I‘(l-!-m) ['(n)
B(l+m, n)= T'(l+m+n)’
and therefore that
B(l, m)B(l+m, n)=%~m,

which is a symmetric function of 7, m, n. Hence we have
B(l, m) B(l+m, n)=B(m, n) B(m+n, )=B(n, [) B(n+I, m).
Hence also

B(l, m) B(l+m, n) B(l+m+n, p)_I‘(l) L(m) () L(p) ,

T'+m—+n+p) ’

869. It now follows that the results of the transformations
of the Beta function given in Art. 859 could be further expressed
a2 Gamma functions.

Thus

Wl—olds 1 g, 1 THT(m)
L bFeam — prapm b ™= Browm Titm)
T gin%-10 cos™-10 R | 1 T()I'(m)
j (@ cos?0 1 bsintayrm s = gy Bl ™) =5 T (i Fm) *

i g TR
(F 1) :

ete.

L2 1
Io sin? @ cos? 0 df== B

The last of these integrals has already been used in earlier
chapters, for convenience of calculation, with a temporary and
limited definition of T



THE INTEGRAL f ————d:t

870. We have also in Art. 859, Case 2, the integral

J‘ am—1 T'() T'(m)
o (I Fa)itm T(+m)’
Put I+m=1. Then, since I'(1)=1, we have

de=B(l, m)=

m—1
1+=

where m is a positive proper fraction.
We have then to consider this integral next.

dz,

T'(m) T(1—m)= j

871. The Integral /= j 1_: dx where 0 <n <1.

The integration j may be separated into two parts, viz.
0

e

In the second part put ac=}/.

Then
® gn—1 l 0 ?/l—n ok il i} x—n
Ix ﬁ@dx_jll-kl( Jdu= J- 1+y _Ll-i-w
Y
H I= lwn—l_*_x—ndz
ence “_[0——1+z )
and by division
1 b+l

i-_P;;:]—:40-}—:1;2——:1:”+...-}—(—1)":1,"+(——1)"+‘

Hence

I= r(w"—l—l—x-") (1—a+a*—...+(—1)ka")

+(—1)’=+II s

14-2
ol z 1 iy |
e TR s s T e
1 il 1 1
i P b e e P o L v 4 by

+(—1)’f+1joxk+‘ LA

1+

61

i

ol
1 k—n+1
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Now cosecz=
GRS R Rl 4
z 247 z—=w 2427 ' 2—27 2437 2z2—387

(Hobson, Trigonometry, p. 335.)

+...to 0.

Hence
1 1 1 1 1 1 1
TR e Ry i e xa m A
—_— w- 4
T sinnr’

and since in the limit when % is made indefinitely large the
i

last term of the series for I, viz. (—1)¥ ———— becomes zero,
k—n+1

the portion of I within the brackets becomes — sl
sin nar

zn—l_*_ xrn

142
note that as z lies between 0 and 1 and is a positive proper
fraction, z¥+! is diminished indefinitely by an infinite increase
in k. If then this integration be expressed as a summation
according to the definition of Art. 11, each term of the sum-
mation is diminished without limit, and may be regarded as
an infinitesinal of the second or higher order when % is
sufficiently increased.

1
Also as to the remainder, viz. ‘[ Zk+1 dz, we may
0

zn—l+z—n

14+ goweil

1
Hence Ty j. Zh+1
» 0

and we are left with
® n—-1
B ey e btV o<n<l.
o LFT sinnwr

872. An Important Result.
It now foliows that

') I'(l—n)=

sin nw {Fansi)

As a particular case put n=4%.
(-2

and I'(3)=+/m, as has been seen before, Art. 864.



GAUSS’ THEOREM. 63

Again, put n=1.

ey
Put n=1.
} 5 £ 4 b, 1 '5) _‘z_vr_’
F<6 I‘<6> Sin% ) I‘<6) p(%) ete

Hence I'($), I'(§), etc., are expressed in terms of Gamma
functions of numbers which are <}; whence it will appear
that if all Gamma functions were tabulated from I'(0) to I'(3),
all others could be found by this theorem, together with the
theorem I'(n+1)=nI'(n).

The result I'(n)I'(1—n)=

o™ .
o Was temporarily borrowed

in an earlier chapter, Art. 592, in the calculation of a certain
arc of a Lemniscate.

Since I'(l14+n)==nI'(n) and TI'(n)T (1——7;)——

: sinnw’
this formula may be written

L1427 M(l—n)=-_ (0<n<]).

s nw

873. To show that

rQr(r(d). r(eg)-eo

3
n
We are now able to consider the continued product

per(r()r()- 152,

where n for the present is any positive integer.
By writing it down again in the reverse order, multiplying
the results, and noting that

(- e<n

sm -7
n

™ ™ ™ ™

T 2 3" . (n—1)7’
sin — sin— sin— sin——
n n n n

we have Pi=
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64 CHAPTER XXIV.
and since

i ”6=2"'1 sin (6+:—:> sin (6+277r) sin <6+§%> ... 8IN (6-!—17:] w)

sin 6 n

(Hobson, Trigonometry, p. 117),
we have in the limit when 6=0,

Sl 2% B . (m—1=
n=2""1sin — sin — sin — ... 8in (—)——
n n n

Hence P2=."’;:—1 271, and P being positive, we have
n_‘—_l
QR et

874. Gauss' IT Function.
Taking the original Eulerian form of the Gamma function, viz.

I'(n)= I: (log é)n-ldx,

1—a*

and remembering that Lf,_., =10g% (Diff. Cale., Arxt. 21)

1
. o
we may write

1 n—1
(]00 1>"—1= <1;”‘__).] L
t=] i -]: " 4
M J
,where ¢ is somethiig which vanishes in the limit when u
becomes infinite.
Let us take u as a positive integer.

1

1 \n=1 1
Then l“(n)=“r0 ,14“’1(1—1:“) da:—%—jo e dz.

In the first integral put z=gy~.

1 1
Then I‘(n)-—-y"j yﬂ'l(l—y)”"ldy—{—j edz,
0 0
and as u is a positive integer,

J" (1S )Py (u—1)! (Art. 858).
A , nn+1)...(n+u—1)

Py (u—1)! '
Hence T'(n)=pn n(n+1)’f.. (n+#—l)+jo e da.
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Hence, making u increase without limit, the integral ulti-
mately vanishes, and

" % (u—1)!
F(n)=Lt,...u n(n—f—l),-‘-- (n+pn—1y

or, which is the same thing,
L) =Lt apt>

and writing n+1 for n,
T(n+1)=Lt,_,p"

! 3
n(n+1)...(n+u—1)’

] L T S
(n+T1)... (n+u)

This limit is known as Gauss’ IT function, and is written
3 il e k!

= Lot G Ty Gt )
or, which is the same thing,
I e

G-

Here u is integral, and n is essentially positive but not
necessarily integral.

875. The limiting form at which we have arrived at the
end of the last article plays an extremely important part in
the development of the general theory of Gamma functions.
It will be very desirable for the student to pay considerable
attention to it, and we propose therefore, in due course, to con-
sider at some length the general behaviour of the function

1 28R
(z+1)(@x+2)(z+3) ... (
for different values of z, and the only restriction we shall
place upon it at present will be that x is to be a positive
integer, not necessarily large.

Two theorems, however, are required in dealing with such
expressions as will arise, viz.

(1) Wallis' Theorem, which states that when n is a very

S w® for different values of u and

2.4.6.. .
large positive integer, m and +/nm become in-

finite in a ratio of equality, v.e.
y 3 T &

n=e 173 5.. (2n 1)¢7=1'

Lt
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66 CHAPTER XXIV.

(2) Stirling’s Theorem, which states that when n is a very
large positive integer

1.2.3...n and 2nw.n".en

become infinite in a ratio of equality, that is
! el
y 5 S n—ni—*—\/ 2.

The first of these appears in most treatises on Trigonometry,
for instance, Hobson’s T'rigonometry, p. 331, Ex. 1, but scarcely
appears to receive the prominence in the text-books that it
deserves. The second, Stirling’s Theorem, is less available for
the student; hence these theorems are reproduced here for
present use.

876. Digression on Wallis’ and Stirling’s Theorems.

WaLLis. Expressing sin 6 as 9(1—%) (1—2—.?%) eiu 0. 00,

and putting 6——— we have

() D)

1.3 3.5 5.7 (@n—1)@n+1)
2 ® e T (2np

12,32, 5% ,.+(2n—1)
22 4%, 6%... (2n)?

@n+1) x (1—e),

where e becomes indefinitely small when n becomes indefinitely
large.
Hence, when » is large, we have

2.4.6.. \/
m (2n-+1) ultimately ;

and since n is very great, we have
2.4::%n 1

b 1Y R | L et
and ——2—i@?—1—) may be replaced by »/nr, these expressions

being ultimately equal. This is Wallis’ Theorem.
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STIRLING’S THEOREM. 67

877. StIRLING. Stirling’s Theorem states that for very large
values of n, 1.2.8...n and V/2n7 e~"n" are ultimately equal.

Write ¢(n) for1.2.3...n.
Then ¢(2n)=1.2.3.......2n
and 2np(n)=2.4.6... 2n.

Hence Wallis’ Theorem, which may be written as
9242 62... (2n)

1.2.3.4...@n—1) ST,
gives %)—)E=\/ n.
$(n)

Let oy n be called F(n).

Then  22[n"/2n7 F(n)P=n/nm(2n)2"/4nr F(2n),
1.e. F(2n)=[F(n)]2

To solve this functional equation, write 2n for n.

Then F(22)=[F(2n)2=[F(n)]*"

Similarly F(2*n)=[F(n)]?’, etc.,
and F(2°n)=[F(n)]?,

p being a positive integer.
Now, putting 2n=ua,

flizeyal.ofe
F(o)= {[F@)T) - ,
Let p increase indefinitely and n decrease indefinitely in
such way as to keep the product 2’n finite. Also let
1

Lt,~o[F(n)]*
be called k.

Then F(z)=Fk®, which indicates the form of F to be expon-
ential. We have to determine £.

Taking 1.2.8... n=¢(n)=n"/2nmk",
change n to n-1.

1.2.8...n. (n4+1)=(n+1)"/2n+F Lwkn+t,

1D Jatl

Hence, by division, n-

n N i
ie. F=(1+2)"(1 +:‘¢)&
=e
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in the limit when » is indefinitely large. Hence k=e, and
therefore 1.2.8...n and ~/2n7 n"e-" become infinite with =z,
in a ratio of equality, or, what is the same thing,

e™n! oy
Ltn=m nT_H—=\/27".

This is Stirling’s Theorem. The result will be considered
further in a éubsequent article (Art. 884).

This particular form of proof was given by Dr. E. J. Routh
in lectures at Cambridge (see also Dr. Glaisher on Stirling’s
Theorem in the Messenger of Mathematics).

878. Illustrations of the Use of Stirling’s Theorem.
Stirling’s Theorem is useful in such cases as involve factorials
of large numbers.

1. Thus the middle coefficient of the expansion of (1+4x)** where » is

!
a positive integer, viz. ((in'));’ is ultimately when # is very large,
_\/mr(2n)”"e“”‘_ 9w
T2 e | A
This is the limiting form. It is of course infinite itself, but for large
values of # a close approximation will be thus obtained. Thus, for in-
stance, even taking a. case when 7 is not exceedingly large, in calculating
!
0Ch= (248 iy and \/_ from the logarithm tables the latter only exceeds
the former by about 07 per cent. ; and in calculating 100, = (5%—.0')2 and
9100
the latter only exceeds the former by about 025 per cent.; and the
~/5—07;‘r ik 4 p
error is diminishing as the magnitude of the numbers dealt with increases.
Ultimately, for exceedingly large values of n, the middle coefficients of
the successive expansions (14 2)%, (1+2)*+? etc., form what is nearly a
@.P. with common ratio,

22n+2 /22" 4
e 4:1
o el s N R

as is also directly obvious.
2. The »* number of Bernoulli, viz. B,, , (see Diff. Calc., p. 502), being
given by o
2(2n)! 1 1
BzH:W(l-i-?—"-FW-F“.)’
we have, when # is large,
: N2n . om (2n)in e—2n
@rym
. 471,—2n+§e-—2nn‘2n+l_

an-l =2
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Similarly if K" be the coefficient of 2 in the expansion of sec x +tanz,

it is known that
oft+in |
o= Ut PRt L S (R Rt ),

which embraces the cases of Bernoullian numbers and Eulerian numbers

together, viz.
K,, = the n** Eulerian number,

” gm(gm ]
K 2n—-1= —%;_") B?n-—l

(see Diff. Cale., Art. 573, etc.),
and we have when # is very large,
2 on+2 +1%
Ky '—T\/2n1m"e“"—2”+“(ﬂ_) (R

In this expansion, viz.

secx+tanar=1+K, i '+1122 '+1133'

the ratio of the (n +1)* term to the a* is
Ay &
Ky n’

and when n is large this becomes

2n+i< >n+i

2”+i< £ v L

.2'
n

12 1 Yot .
_Lthe (1_1)" ni(n—1) -
n
b g e BN AT
me € n ™

Kl

It appears that, since Lt Ve 2ﬂ_ , the coefficients increase with great
Ln—1

rapidity ultimately, and the series will be divergent for values of x 4 %

3. In the series which gives rise to the Bernoullian numbers, viz.

P x x % E
gcothé 1+§—-]+B1 B34|+B"(,l vk (=1)" ‘Bgﬂ_l(m+...,
the ratio of the (n+1)"* term to the »* is

o, By 2t
Byy 3 (2n—1)(2n)’
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and when 7 is large,

LV 47'.—2n+«] e—2n”2n+} 22

R 4= Hig=It2(y _1)=1 (2n-1)2n

e R 1 1 3 22

= Lt7—'_2 —2<———ﬁ_1) n¥(n—-1) '(———2n-1)2n
| S| 22

=—Lt1?‘8—2‘5:2.”2.m

Ein .

T 4t

The series is therefore divergent for values of 22 4 (27)2 and as

LeBma_ g, (—%-1‘—4—%)—2—1—‘ ::_2 ultimately,
an—3

the Bernoullian numbers ultimately increase with great rapidity.

It will be noted that coth'g becomes infinite if # have the unreal value

2ur. When 2 is complex it is therefore necessary to limit expansion to
the case for which the modulus of the complex is < 2m.*

879. A method of Calculation of the Numbers of Bernoulli and the
Numbers of Euler is explained in the Differential Calculus, Art. 573.
Both sets have been calculated for many coefficients of their respective
series (see Proceedings of the British Association 1877), and probably far
enough for all practical purposes for which they will ever be required.
Several are quoted on pages 106 and 501 of the Differential Calculus. A
few extra results are put upon record here for reference, for the con-

venience of the reader. Also, as we are about to deal with such sums as

11—,+%+l+ ... to @ =8, which for even values of p are to be found from

3
2(2n) !
B2n—1 (é.,r)zn San

we tabulate a few of these results also.

B,=}, By=3y, Bs=1]§, B =45, By=o5, Bu=2F%, Bis=}

By =%, Bu=4348" Bu=13A%";
E,=1, B,=5, By=61, Ey=1385, E;,=50521;
=, t pr el 10

5= Si=g5 So=515 Ss=5550' S~ g3555"
The values of S, up to Sgs reduced to decimals will be found tabulated
later for purposes of evaluation of integrals to be discussed (Art. 957).

880. For other methods of Calculation of Bernoulli’s Numbers etc.,
see Boole, Finite Differences, Chapter VI,

881. We note that B, >B; > By< B;< B,< etc., and the coefficient By
is the smallest of Bernoulli’s Numbers, after which they rapidly increase.

*See Bertrand, Calc. Diff., Art. 412,

1.0rg.pl
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882. The Value of II(3).
Consider next the case of Gauss’ II function for n=1}.

H(%)=Lt,.=.,, 1.2.3—2#..-{21#*

2
Z L 22,42.62... (2u)?
TN 8. ) B+
2% (ul)?
= Lymn o554
=T 22T, uie ., v #§
e t"=°°\/(4«,;+2)1r(2,4+1)2"+1e‘(2f‘+1)

3
=Lt,—wedn 1 1 =

ol
53

whence 1I (2)

It will be remembered that for positive values of n,
{I(n)=T(n+1);

3\ _ (1) _x 8 a1y,
therefore F(ﬁ) ’"H(Q) —-— and P<§) =3 I"(Q) :
» TH)=vm
which agrees with Art, 864.
883. The Graph of y=a"e"~.
We shall next study the nature of the family of curves

=gt ®

for various values of n.
The subject of integration in the Gamma Function I'(n+1)
viz. "%, has a maximum value when

na*le*—gre*=0, 4. whenz=n (n>0),

and the maximum ordinate of the curve y=a"e— for positive
values of  is nme—".
The graphs of the members of this family for n=0, n =05
n=1, n=2 are shown in the accompanying figure for the first

quadrant, which is all we require.

www.rcin.org.pl
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The case n=0, viz. y=e7%, is a logarithmic curve, and cuts
the y-axis at a point y=1. It has no maximum ordinate

b ¢
2
S \
2
5 4
Y e
() =
»Z 2 2 — s
G 3
gy g I g
0 06 1 2 x

Fig. 315,

The case n =05 has a maximum ordinate at =}, viz. Joe
and then runs to the positive end of the z-axis asymptotically.

3 Tl
The case n=1 has a maximum at z=1, viz. 34

The case n=2 has a maximum at =2, viz. eéz
All the curves have the z-axis as an asymptote, and all go
through the point (1, %) , where they eross.

For values of n between 0 and 1, the curves touch the y-axis
at the origin. 3

Tle case n=1 touches the line y =z at the origin.

The cases for » > 1 touch the z-axis at the origin.

The several maxima, viz. n"e~", diminish for various values
of n from n=0 to n=1, and then increase again, all the crests
the curves lying upon y =%, ..

1=

the least of the maximum ordinates being at x=1, and
belonging to the curve y=ze=.
The area bounded by any of these curves y=z"¢~2, the
z-axis and the ordinate at z= 0, is
‘J’we"’xﬂ dz, e I'(n+1),
0

and increases without limit as » increases.
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884. Extension of Stirling’s Theorem.

We have shown (Stirling’s Theorem) that when n is a large
positive integer,
1.2.8.... n=+2nmn"e"

the meaning of the equality sign being that these quantities
become infinite in a ratio of equality.
We proceed to show that even when n is not integral, but

still positive, [(n+1)=+2n7 nre-n,
when 7 is indefinitely increased. :

We have I'(n+1)= L ahe-*dz.

Let us transform this integral by putting

gt

Zhe-R=lnPeMe 3, L i Baiciakt b fona (1)
which is legitimate, as m”¢™ has been shown to be the
maximum value of z"e2

Now, ast ranges from —co through zero to + o,
z ranges from 0 throughn to +o.

Pin+1) (" ~jedzg,

Thus s e OF =
and we have to find :i;: Let z=n(147).
Then (n+nT)re—ne~"T=mne e Vol t‘;

LN 5 2
L (L4rperr=e " and log(l+7)—r=—5. ..(2)

Clearly T vanishes with ¢, and as fcan be expressed in
terms of 7 by expanding the logarithm, we can by the
ordinary process of reversion of series expa.nd T in terms of ¢.

Let T= A11|+A22, "’d'+
Then, differentiating equation (2),
R R @)

whence, by substituting the séries for 7 and equating
coefficients, we can readily obtain the values of 4,, 4,, 4,, etc.
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Now I‘('n,-l_-l)= d—zdt_"‘ 3 2ud-r
nhen " dt r

© ge $ t
='nj—we 2 [A1+A2F+Asg+A‘m+...]dt

and Jm {2 Jf — M__I)J—

21: 2041
by writing «t for z in the result of Art. 223, Ex. 4,
2p+1
r{ i)
el
and I tor+le—'t'di = (),

as is obvious, for the negative elements of the summation
cancel out the positive ones.

Hence

Lntl)_, (4, L), 4y F(?l+2lp(’*’)+etc.}
e T

P et 1’12 {45 2A5
_~/2n1r[111+§.%.?+ = 71, + ]

and it remains to obtain the numerical values of the coefficients.
Substituting the series for = in the differential equation (3),

44! ')X(A1+A21!+A321+ )

\A11'+A,2'+A gy

33(

Et(1+A11,+A22,+A,3,+...)-
whence x14—?Al=]
‘%‘%fé—?dfﬁ‘—?,
and generally
llh(nA 1)1+121!(nA é)ﬁ'g (nA"§2)1+ +A e (7;4:—11)!’

www.rcin.org.pl
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; il 1 2
i.e. nAlA”+ZL—(1—n.T_)A2An_1+7L("1—2)(";__)

+..+4,4,=n4

A An—2

n=D

PR UL R W e e g

9 3 n-2
i =nAy
the series proceeding as far as the greatest binomial coefficient
in (142)* and the last term of the series being halved if n
be odd.
Thus 4,=1,
34,4,=24,,
44,4,+34,2=34,,
54,4,+104,4;=44,,
64,4;4+154,4,+1042=54,,
TA Ag+214,45,+35A4;4,=64,,
8A1A7+28A,A8+56A3A5+35A42= T4,

ete.,
giving 4,=1, A4,=3}, Ay=3%, Ad;=—4% Ads=4%
- P 9 1 8 PREFIRLN
Aeg=18v, Ar7=—7% As=1} Ay=—+0 ete.

Hence, finally,

I'(n+1)= \/2n7rn"e""[1+12rn 288n’+ :I

When = is indefinitely large, we therefore have
T'(n+1)=V2nrnre™,
which removes the limitation that = should be a positive
integer, as supposed in Art. 877. Moreover, it will be noted that

an expansion of J_g—%'}e—)'" is effected in powers of ,’%, viz.
DinbD) Ll L 300 1, A B
nwanen 12m 288w 51840%% T plmpl T

the law of formation of 4,41 being as above stated.

885. Ex. 1. In calculating 10! in this way,

log &/2m.10. 101 ¢~10 = 6-3561451 (Chambers’ seven-figure logarithms) ;
. A27.10. 1010¢-10=3598695 (the last figure doubtful).

Carrying the series to four terms, viz.

1+ 135+ z5doo — s1a%0000 = 1°00836537,
we get 10 1 =3598695 x 1'00836537 = 3628799" ete.

www.rcin.org.pl
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The true value is 3628800, so there is only an error in the last figure
in the approximation.

Ex. 2. Calculate 100! Here
log (100 !)=1log {/2r . 100 . 1001%¢~2°(1 + 13455 + zgwdovs —
=157°9700036,
indicating a number of 158 figures, beginning with 933262, viz.

933262 x 10157,
[The logarithms from 1 to 100 add up to 157:9700038, which is in
agreement with this result, except for the seventh figure of logarithms.]

886. Properties of Gauss’ I Function.

We may now proceed to discuss the nature and properties
of Gauss’ IT function.

Let us start again with a consideration of the expression

10124 Bk
I W) =G @t 9wt 8@t

where u is a positive integer, not necessarily large, at present,
and 2 is a fixed number, either real or unreal, positive or
negative, integral or fractional, but finite. Call the expression
II(z, u), and abbreviate it further into II(z) when in the limit
w is o, so that II(z) stands for II(z, ).

Consider the graphs of

: 1.2.8..
cEny [F2s ezl

for different values of s

"There are u asymptotes parallel to the y-axis.

vy is positive from z=ow to z=—1,

negative from z=—1 to z=—2,

positive from z=—2 to z=—3,
and so on.
And if x be >1, the z-axis is an asymptote at its negative

extremity only ;
also when 2=0, y=1;
when z=1, v it
. 1.2 08
h =92 —
T Y et D t2)
ete.;
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and these ordinates approximate to 1, 1, 2!, 3!, ... as u in-
creases, whilst at the same time the number of asymptotes
increases.

The cases of u=1, 2, 3 and 4 are shown in the accompanying
figures, which are intended to exhibit graphically the general
characteristics of the functions, but are not drawn to scale.

The case u=1 gives y= 5—:'1_—1, a rectangular hyperbola, with

y=0, z=—1 for asymptotes.
A

\k

o x
Fig. 316.
. .8 i
The case ’L=2 gives y=@-}-—D—M2 .
- 4
-2 - 0 i 2 R

Fig. 317.
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The case u=

CHAPTER XXIV.

J

142063

3 gives y=(w+1)(x+2)(w+3)3x'

¥

s |2 |1
Fig. 318.
: PRl 3l 1.2.3.4 5
The case u=4 gives y—(z+1)(w+2)(w+3)(:v+4~)4 s
X
-a -3 -2 =1 O 1 2 8

Fig. 319,
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The lengths of the ordinates for various values of z and u
are shown in the table :

x=5 =4 2=3 =9 sl x=% ¢=0
r=1 0°167 0200 | 0250 | 0333 | 0'500 0667 1
n=2 1'524 1067 | 0800 | 0667 | 0667 0754 1
n=3 4-339 2-314 1350 0-900 0750 0792 1
u=4 | 8127 | 3657 | 1820 | 1067 | 0-800 | 0813 1
M=00 120 24 6 2 1 0-886 1
1 3
z=—§ z= -1 z:—é r= -2 x=—§ z=-3 2=‘; x=-4
p=1 2 ® -2 -1 | -0667 | —0°500| —0400 | —0-333
n=2 1-886 ) -2828| oo +0471 | 0125 0-047 0021
n=3 1847 o | -3079| o | +1026 ® -0'068 | —0013
n=4 1829 ® -3200| o +1:333 ) -0-200 ®
p=0 | 1772 ® -3545| o 2363 ® -0-945 ©

887. General Remarks.

From these considerations it will appear that in these curves,
viz. ,u.=2, ,u=3, ;L=4-, ebc.,

(1) At =0 all the ordinates are =1, and any two of the
curves cross each other.

(2) At 2=}, 1, 2, 8, 4, ... the ordinates of the several curves
form an increasing series, so that the curves as u increases
are such that of any two the one with the greater u has the
greater ordinate.

(3) As =z increases through zero the curves are all initially
approaching the z-axis. The limiting case of the hyperbola

s continues to do so, the others all ultimately have

www.rcin.org.pl
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ordinates >1, and therefore have minimum ordinates in the
first quadrant. Moreover it may be shown that
#=2 has a minimum ordinate between 1 and 2,
u=3 " - b 0'9 and 1,
n=4 Ik il 5 07 and 0°8,
ete.

As p increases, the minimum ordinate begins to approach
the y-axis, but does not do so without limit. For in the
case u=o0 it lies somewhere between 0 and 1.

(4) On the negative side of the y-axis at 2= —} the succes-
sive ordinates of the curves u=1, u=2, u=3, ete, form a
diminishing set.

(5) =1 has one asymptote parallel to the y-axis,

#=2 has two asymptotes parallel to the y-axis,
#=3 has three asymptotes parallel to the y-axis,
ete.
#=1 is asymptotic to the z-axis at both ends.
n=2, u=3, u=4, ete., are only asymptotic to the z-axis
at its negative end, and alternately from above and
below the z-axis. ]

(6) Observe the behaviour between the several asymptotes.

Between 2= —1 and = —2 the several ordinates at z==—3
are all negative but numerically increasing, i.e. the more
asymptotes there are the further do these branches recede from
the z-axis. Similarly between the asymptotes z=—2 and
= —3, or any consecutive pair.

Note also that for each given value of x the branch between
two consecutive asymptotes has a numerically greater ordinate
midway between those asymptotes than is the case for a branch
between two consecutive asymptotes more remote from the
y-axis.

(7) The limiting case

12N
(z+1)(2+2)... (x+nm)
becomes, when x is positive, the curve y=I'(z+1), as has been
shown.

The shape of this limiting form will be more carefully
considered later in Art. 922.

Y=Lt w2, viz. y=IL(z)



GAUSS’ II FUNCTION. 81

But there is this difference between the functions

1 BRGNS i
b= 1)z +2) ... e+ )"
that though they coincide in value for all positive values of z,
the former becomes infinite at the values a=-—1, z=—2,

=—38, etc., but has finite values for other negative values of

z, whilst the definite integral is permanently infinite for all
negative values of 1.

Lt

and je‘”v"dv,
0

888.' That the factor form has finite valu;as, when p becomes infinitely
large, for negative values of # between the asymptotes may be made
clear by taking a case. Take r= —3.

1523 opui -3
Then Lty=o 1)(1) ?ﬁ) (2"‘_3)54,
(’é 2 (2 i )
o 286690 1
—““1.1.3.5 .(2n=3) ut
Lin 22,42, 62... (2u)? (2u—-1)

1.2.3.4...(20-3)(2n-2)(2—1)(2p)
(VZprr pre ) (2u-1)

e |

AR R
2ng—2
Ndpr (2p) e ,u.%
Rk T e L
SN 1
oy 5 : IS
Similarly at = -3 the corresponding limit is i3 N,
ata= P the corresponding limit is — 1 T
RIS ROEADR BB Sl

and so on.
These mid-ordinates, half way between the successive asymptotes, thus
form a regular descending series

g oo oy g iy i
-1vm 73vm -

o4
1.35. 7~/1r, etec.

889. It is worth noticing that IT(z, x) may be written as

b T .
@+ D) (@+2)z+3)... @+

HIBIM AN G
<1+i)(1+§)(1+g)...(1+z) 1

I (=, M):

lll
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I )" ’;)"(1-*";)1

EAVES] ,=1(1+§>

where P indicates that the product of all such fractions as
r=1

follow it is to be taken from r=1 to r=p.
And in the limit, when u=o0

1\#*
A )
Ay

)

’

or, what is the same thing, when « is real and positive,
i
o m(l+ )
r=1 <l+ )

890. Reduction of IT (x+1).

I'(l42z)= P

Again,
T(o+1, u)= . 1.4.4.. o
CTOETEr D) G T EF At
R
{ZI+ +1 II(z ,“)
Hence
1

II(z+1, p)=(@+1)II(2, p) X =——,

1-|ﬁ'%1

which is the law of connexion of the successive values of
II(z, 1) for unit differences in 2.
In the case when u is indefinitely increased, the factor

1\~-1
e

becomes unity, and we are left with II(z+1)=(z+1)IJ(z)
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and changing z to 2—1, II(z)=«II(z—1). This is true for all
finite values of z, positive or negative.

In the case of values of >0 we have II(z)=F(z+1), and
therefore I'(z+1)=2I'(z), the formula already established for
the Gamma function.

891. The Case when 2 is a Positive Integer.
When 2 is a positive integer we may multiply the numerator
and denominator of

1.9,
0@ =Gy aF Y
obtaining in that case  II(z, u)= (xxJ'r"'), -,
and then removing u!,
1.2
0 W)= G T 45 T ™
R e

=(1+%)<1+%)...(1+§)’

so that when u is indefinitely increased, z remaining finite,
II(z) becomes w!, which is in accordance with the result
I'(z+1)=a! of Art. 860.

892. Comparison of the Gamma Function with Gauss’ Function.

It will now be clear, from Art. 887, that the two functions
II(») and I'(z+1) are identical for all real values of  greater
than —1; but that II(z) is a more general function, embracing
real or unreal values of z quite unrestricted as to sign. That
II(z) becomes infinite for all negative integral values of =, but
has finite values for negative fractional values of x, whilst I'(z)

defined as j e~?v®1dy is infinite for all negative values of .
0

Graphically this means that the curves y=II(r—1) and
y=I'(z) absolutely coincide for all positive values of z, but do
not do so for negative values of #. If we had restricted the
definition of Gauss’ function, viz.

12184

Lo U@ W =Lhue T8y . G

to real values of z greater than —1, the identity of II(x) with
Euler’s Gamma function I'(z+1) would have been complete.
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893. We have, from the definition,

4> 9. 0eg (e 1
I(== W=g—E=a6=a) .. G=1— =" "

il .23 (# 1),“- uE=
and H(w—l,#)—z(x+1)(x+2) @tru—D" j

Hence multiplying them together, and assuming that @ is
not an integer,

(=, W) I(z—1, u)

g 12,228, (u—1) p
T (P=2)( =) (F—2Y).. {(u—1)—"} u—z
X M

LR TN

and when y increases without limit, Lt —Tt—l x being finite,
and we have

I(—2)I(z—1)=

1 it
z2 @* ~sinwa’
2(1-5)(1-5) - to
It will be noticed that in proving this result no assumption
has been made with regard to z except that it is not to be an
integer, either positive or negative. For such values one or
other of the IT functions would be infinite, as also of course

would ———
sin zm

Taking positive values of & less than unity, and remembering
that ir that case II(z)=I"(z+1), we have

'd—z)l'z)=-=

sin z7’
as previousiy found.

894. If we were to base the discussion of the properties of
I'(z) on this method of procedure, we could therefore infer the

value of the definite integral I g e dv of Art. 870 tobe

where 0<z<1, instead of investigating the integral ﬁrst and

then deducing the result I'(1— z)I‘(a:)-—gﬁm_
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895. An Unreal Value of .

We note also that if # be unreal and =y,
5 .
JI(—y) Iy — l)“gﬁmg‘/y
but that T, as defined in the Eulerian manner, loses its meaning.
See, however, Art. 900 for an extension of the definition of T

896. Both functions, viz. II(z) and TI'(z+1), have been

shown to satisfy the equation of differences
Ugyy=(C+ 1)U,

Let us see from this point of view what can be ascertained
as to the nature of the function u,.

It has already been stated that this equation necessitates
one form of the result to be

wy=Az(z—1)(x—2)... (r+1)ru,,

where 4 is a constant or some arbitrary periodic function of «
of unit periodicity, and w, is some initial value of w, to be
chosen at pleasure.

Following Laplace’s mode of procedure in such cases, assume

as a trial solution,
s =j = F (t) dt,*

where the form of F(f) and the limits of integration are
reserved for future choice.
Then, since U,y =(T+1)w,,

ItwﬂF(t) dt=(z+1) jth(t) dt
=IF(t)(a;+1)t” dt

=[F(t)t=+1]— jt“lﬁ"(t) dt,

the integration being by parts, and the square brackets de-
noting as usual that the term integrated is to be taken between
the limits ultimately chosen.

Hence the choice must be such as to satisfy the equation

[entrot Fana=roe

* See Boole, Finite Differences, p. 257.
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Let us then take F(t) so that F'(f)4+F(t)=0, and the limits
such that [F(f){*+]=0.
Our choice is now complete, and there is no further latitude.
The first equation gives ;,'g) —1, t.e. F(t)=Ce~*, where C
is an arbitrary constant as regards t.
This determines the form of the function F in our trial
solution.
The limits must then be such as will satisfy the equation
[Ce-tta+1]=0.
Supposing z+1 to be positive, this will be effected by taking
o+1
t=0 and t=o0, for in each case Lt%=0.

Hence a solution of the equation for positive values of 1 is
L CI et di
0

=0T (2+1).

So u,=CT'(z+1) is a solution, provided z+1 be positive
where (' is any arbitrary constant as regards t.

To put the possible dependence upon ‘'z in evidence call
C, v,.

Then n,=v,(z41),
uz+1=vz+1f‘(w+2)=vz+1(w+1)1"(90+1),
but en=(+1)u,
" Vg1 =g

whence it is clear that v, is either an absolute constant or
some arbitrary periodic function of # whose periodicity is
g—_ig sios: g:: where 4, B, C, D are
absolute constants, such functions returning to their original
values when « is increased by unity.

Thus w,=f()T'(z+1) satisfies the difference equation con-
sidered when f(z) is such a periodic function as described.

It appears, therefore, that the equation w,, =(z+1)u,
is not co-equivalent with w,=I'(z+1), i.e. Euler's Gamma
function, or with w,=1II(z), i.e. Gauss’ II function, but that

unity, such as cos" 27z or

www.rcin.org.pl



EULER’S CONSTANT. 87

these are particular forms of the solution, as has been pre-
viously pointed out.

897. Euler’s Constant.
The limiting value when » is ma.de infinitely great of

1+1+1+ + —logn
is finite, positive and less than unity. This limit plays an
important part in our subsequent work. It is called Euler’s
constant and denoted by 5. Its value hds been computed to
over 100 places of decimals (Proc. Royal Society, vol. xix.
and vol. xx., p. 29).
The first twenty figures are*

v=0377 215 664 901 532 860 60....

We shall presently show how it is to be computed. For the
present it is sufficient to show that it is a positive proper
fraction, and this admits of elementary proof.

For

_+1 gr+1 r log(l—}-)
1 1

_2_72_%—}-4?—5;—5-%..., a convergent series if

r=1,

LGyl

=npositive, since r = 1, for every bracket is positive ;
( +log \—i—( +log 3)+ +< +log +1) is positive ;

+ + e e +1 _-5-—. n+llspos1t1ve

1+1+1+ +-—log(n+ 1) is positive ;
and as log (n+1) > logn,
%-{—%—{—%—{— +,,1,—1°g"' is positive.

*See Todhunter, Integral Calculus, p. 256 ; Serret, Calc. Intégral, p. 183 ;
Legendre, Exercices, p. 295; De Morgan, D. and I. Calculus, p. 578.
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Secondly,
1
—-H ———-————Hog (1——>
kit te roent series if r > 1;
=—5a— g5 ¢be, a convergen ;

i1 which, when n=co

' i(?%logT) 22_“'"241 -..,{are all convergené

series,
=a negative quantity.

Therefore

1—|—1+1—l— = +l gl . g; . 2 ﬁ%l is a negative quantity,
.6 1—{—l—i-l—i- A= ——logn is a negative quantity,
and .°. 1+§+§+...+ﬁ—lognis less than 1,

and it has been shown to be positive.
Hence, making n increase indefinitely, y is a positive proper
fraction.

898. Closer Limits for v.
Let u,.=ir“—]og (n+1), v,.=ir"—log n (n>1)
1 3
Then v, — u,=log (1 - %):positive, if 2 be finite, and ultimately vanish-

ing when n=c, ie u, —11,,=‘y.

Now Uy—tup_1= 1+ log —— =positive; v, - v,_1= ’-1& +log & ; : =negative;

n4-1
tusrefore, as n mcrea.ses, u,.tncreases and v, decreases towards the common
limit y ; and u,<y<v,, whilst » remains finite.

Taking Bottomley’s tables of Reciprocals and Napierian Logarithms, we
readily find

Uy ="3069, uy;='4014, ... u;0="5311, uy="5532, wu4="5610, etc.

v, =10000, v,="8069,... v,,="6264, v,,="6020, vy ="5938, etc.
We thus have an approaching sct of inferior and superior limits for y, and
note that it must lie between 056 and 0'60. It will be seen later that
y=05772... (Art. 917).

899. Except for negative integral values of z, II(z) is Finite
whatever z may be, Real or Complex.

If w,, uy, uy, ... u,... be any series of real positive quantities
each of which is less than unity, the infinite products II (14+w,),
s
II (1 —u,) are convergent or divergent according as the infinite
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series 2u, is comvergent or divergent (see Smith's Algebra,
p. 423,* and Hobson’s T'rigonometry, p. 319), and if the quantities
Uy, Uy, ... Uy,... be complex quantities, the modulus of each being

less than unity, the productrf[w(l ~+wu,) converges if the series
r=1

2 mod «, converges. (See Hobson’s T'rigonometry, p. 320.)
It can be shown that though the infinite product

1:3(1+§), ie. (149) (142) (145) (142) ... to infinity,

which occurs frequently in the present chapter, is obviously
divergent, yet if we multiply the several factors by

e, e? e 3 ete, respectively,t

we arrive at a product

0494

which is absolutely convergent for all values of z positive or
negative, real or complex.
i

e log(l+> n 2" 3nd

is a series absolutely convergent if mod 2z <<n for some finite
value of n; whence

z z : oL
W RN ‘°3(‘+;.)e“:>7.n+37=—-~

2% zl

S

i.e. (1 +£>e—5=e_'-’_"'(l+"')
Z2
= 1——@ (14e¢,), say,

where ¢, is a series absolutely convergent which for finite
values of z ultimately vanishes when n is infinitely large ;

L B+ D)e r=B[1- gt

* Also see Arndt, Grunert, xxi. 78.
t+Weierstrass, Abhandlungen Acad. of Berlin, 1876. See also Hobson, Trigo-
nometry, p. 327.
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Suppose E the greatest of the moduli of 14-¢, for all values
of z within a range for which the greatest modulus of z

does not exceed a given finite quantity, then >} mod —2—,’%
1
is an absolutely convergent series, and therefore also

el 2
i ;—nz (1+e¢,) is an absolutely convergent series, and since
1
;(1 +u,,j is absolutely convergent when ¥ mod u,, is convergent,
1

B(or e

is an absolutely convergent product, as is also

®» 2 ;.z_
B(i-7)e
Now Gauss’ IT function being defined as
Gt 1498 ...0 y
HE)=Ltu-e o T2+ 3) o o)

w

() () (04)
ez (101;#-%—%—%—...—-}‘)

can be written =1Lt

Fe
e "

e B(E)e

where y is Euler’s constant, which shows that for all values
of 2, real or complex, positive or negative, excepting negative
integral values,

oY
H(z)_a finite function of 2z’
and is therefore finite.
900. Extension of Meaning of I'(z).
So far it has been convenient to adhere to the Legendrian
definition of the symbol I'(z), viz.
P(w)zj e=vve-1 db,

0
0
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and to regard « in this Eulerian integral as representing a real
variable. It has been shown to be identical with Gauss’
II function, II (z—1), for all real positive values of . Having
drawn attention to the difference of behaviour of the function
defined as an integral and the factor-function of Gauss for
negative values of , it is scarcely worth while observing the
distinction further, and we propose to extend the use of the
symbol I'(z) to negative and unreal values of 2z, which means
that, when z is negative or unreal, I is defined by
802 28
Tet1) =M =K-a ey r sy ... GF
and that when z is positive it is defined either in this way

or as j e~"v* dv, and therefore we shall in general regard II (2)
0
as identical with T'(z+1) or zI'(z) for all values of 2.

901. Thus a meaning will be given to such an expression
as I'(a-+v/—1b), viz

,uu+tb

(a+1b)< +a+zb><1+a—{2—‘b> (l_l_a-l-tb)

e-v(@atw)
" a finite function of (a+b)

Lo

(Art. 899).

902. Ex. 1. The modulus of I'(} +ta) is ¥T'(3+ta) (3 —ta)

=N{T}+wa)T(1-+a)= «/ (Art. 895)

sin($+ta)m

T
cosh ar’

Ex. 2. If 1, a, a?,... a®* be the 2* roots of 1 (» odd), we have
(14+2)(1+az)(1 +a’2) ... (1 +a™12)=1+42a",
and l14+a+a’+...+a1=0.
r=n-1
Hence II(z)II(az)II(a%)...II(a®2)= P IlI(a"z), say,
r=0

r=n—1 Zar

L9 za’ xa” ra”

e (1+—“)(1+i)...(1+—)
1 2 W

= 1 n>1;

an " an )
(H'F)(l +§;,)(1+3,,) o s

ag A2




92 CHAPTER XXIV.

a (”‘ )(H )(“'sﬂ) '“toinf'zﬂ(x)ﬂ(u)ﬂ(:zx)...H(o."“:v)
R e 1 1

J "1-) ) {II(a )} —”I—’l T'(1+a%2) x"“l';ll‘(a'x)
0 3

i 1
s (L 5) (1) (145 ) T (@) o). ()
where 1, a, a2, ... are the 2 roots of unity.
903. Gauss’ Theorem.
This theorem is a generalization of that of Art. 872, and
includes it. It states that for any value of z

n"ﬁI(z)H(z—%)H(z—g) H(z—u>

o
II (n2) b
or, what is the same thing, as will be seen,
1 2 —1
nnzI‘(z)F<z+;b>l‘<z+;&>...l‘<z+”7> L
=(21r) # n5

I'(n2)

Let the left-hand member of the first equality be called

¢(2). Then, first, we shall show that ¢(z) is independent of z.
By definition,

L WA 1.2.8. 4
H<Z n) e (1+z—£><2+z—£>...<u+z—£>

L TP O
— t#=w(n+nz_r) (2”,—'—”2-—7') (}Ln—l‘”z 7)

nnzn(z)n<z_}t>“.H<z_’n;l>=Ltnﬂznnu,unz5 & (M!)”’

where D is the product of the factors

n+nz, 2n-+nz, Ibnz, T un—+nz,
n+nz—1, 2n+nz—1, 3n+nz—1, ...... un+nz—1,
n+nz—2, n+nz—2, m+nz—2, ...... un+nz—2,

n+nz:—(n—'1), 2n+:nz—(n—l), 3n—+.—nz—(n—l), ,un—{—'nz—(n—l)
z.e.
[(nz41) (nz+2) ... (nz+n)][(nz+n+1) ... (n2+2n)]...[ ... (nz+ un)]
=(nz+1)(nz+2)...(nz4 un).
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Hence

» {1 Pl ine n"’n”"u"’n_,%l(nl)" ¥
n (I (z—)- 1 (=) = = e D e T2 - (na-Fam)

Again, writing nu for x4 in Gauss’ expression for IT(nz),
g g N M p

g (np)" (np!)
Tt} = Bt T s 12)... (R

-1
e e ()
()™ (npe),

=ht.. 5 n"“/u—l;“1 (i)
i (nu!)

Hence o(z)=1Lt

from which the 2z has disappeared.

Hence, ¢(2) is independent of z. It remains to find its
value. To do this we may either obtain the limit of the right-
hand side directly, or avoid this by comparison with a known
case, for a particular value of z, which will be a legitimate
process, inasmuch as its value, not containing z at all, is an
absolute numerical constant containing n.

Adopting the direct method and employing Stirling’s result,

1 (J2umure ")
= Rl e T
LN Hew e Wiy /Zn,u-n-(n,;)"“e o

=1 n-1 n
’n""p. 2 (21r) e ,u.”,u"“‘e""" (27)
bn%(nl‘)”ﬂ-e—”ﬂ- n&

n-1
2

=1t

Hence, finally,
—1
n"’H(z)H(z—%)H(z-%)...H(zﬂn_n_) (2.,,.)"‘-;!
¢(Z) 2 H(’nz) it n% .

904. If we adopt the plan of comparison with a known
case, take the case of a real value of 2z, viz. 2=0.
Then, remembering that IT(z)-=T"(14z),

$(2)=(0) = r(l)r(l—}b)r@—g). 1~— /1"(]),

or, reversing the order,

e Or@r().. (") =CI% vy ansm
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Writing TI(z)=T'(2+1), etc., we have
) n—1\ ., n—2 ¥ n-1
n I‘(z+1)I‘<z+——n r(z+"—= )...1‘(z+n)_(2w)T
I'(nz+1) Tah, Ik
t.e. reversing the order of the factors in the numerator, with

the exception of I'(z+1), and writing I'(z41)=2I'(z) and
T'(nz+1)=nzI'(nz),

n”’zF(z)I‘( ) (Z+ ) (z+n; > (21r) P

nzI'(nz) n}
nnzl‘(z)l‘(z—i—;b)l‘(z—l—f—&)...f‘( +’%1)_(2 e
I'(n2) bl LiE.

which may be written as
1 2 n—1 ot -nz
P@T(e+,; )T (2+2) ... D(e+" 1) =Tna)(2m) * nd=".
905. Cases of Gauss’ Theorem.

Putting z=}z we have the result of Art. 873, viz.

FOr)r(). (D) e

Particular cases are
n=2, T@T(z+ +3)=D(2a). (2m)2h~*,
: 3
s I‘(z)I‘(w-{—%) om 2, [(2)
p+

for z,
F(ﬂizr“lﬁ(ﬁzﬂ):ﬁﬂpﬂ);

n=3 gives T@D(a-+3 )T () =om; I(3a), ote.

t.e. putting

906. The case n=2 may be deduced directly from

p+1)p(gtl
I{Sinﬁecos¢9d9=F( 2 )F< . >
: r(tey1)
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For putting g=p, we have

; rEH}

j.o sin? 6 cos? @ d9=m ;

. it 38
. Vrsin”20d9—27’{—r<—2—l}-'
ol —C Tel(p+Y)

and writing 20=¢,
4 - T
[, sinr20 a0y sinr g ag=| sinrg dg
r(ZHra)
T ER)”
) e
p - )
T )

2.e. 2°T <Q:;—1~> B (p—";~2>=1rir(l7+l)'

907. An interesting proof of this result is due to M. Serret,
(Cale. Integ., p. 174).

Since B(p, q)= j aP-1(1—a)9-'dx we have

B(p. p)= [ (s—atp-tdo=| h—G—oyp-tds.
0 0
And since the integrand assumes equal values, whether
we put =45 or }—7, its values are symmetric about z=14.

Hence

B(p,p)= 2j [{— (3 —a)?]P-'dx. Writing %—x——\izz

B p=2, g (1=9 ()=

i 1
224«—1_“ 73 (1 —Z)p_ld”ZWB(‘}’P):

CEIE__1 TATE) | gy
I(p) T TFD O 0

2.e.

I'(p+3)=v=I'(2p)

www.rcin.org.pl



96 CHAPTER XXIV.
or writing 2p=q+1,
q+1 q+2\ =
21 (L) r(LE2)=vrrg-+1)
908. Another form of the general theorem is (writing % for z)

) (99:—1) r( A r () (@7)’ 7 nis,

n
25

ie. T(Hr(3)..rE)-rar( +$)(21r)”_2—_ nh==,

n n

+1
909. To prove r log I' (x) dx=2a log x— 2+ } log 2.
z
Taking Gauss’ Theorem for a real variable z,

P@ (et )0 (2+2)... T (a4 221 ) =D (na)@m) T mi=ws,

we have, upon taking logarithms,
n—1 |
i—log { I‘(nz)(27r)T'n*-""}

1 1 n—1
=’E{logI‘(z)+logI‘<x+q—l)+...+logl" <w+T>}
=Z 71; log I‘(z-{—%), from =0 to r=n—1,

1
=I log ' (z+ %) dy, when n is indefinitely increased,
0

z+1
:j log'(v)dv, if v be put for z+y.

Thus, by Art. 884,

Z+1 1 [/ 2nam (nz)rre—n it
L log I‘(v)dw:LtFwﬁlog L#ﬁ*»@r) g ni—nz]
=4 log 274 log x—z=log :v‘c-”(27r)i.
910. This expresses the area bounded by the z-axis, the
curve y=logI'(z), and two ordinates at unit distance.
Changing z to 41, and adding to the former,

42 :
J- . log I‘(x)dleog{x“(x—i—l)’+1c—"e"”+“(27r)3},

z
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and so on, and more generally,
%
J log I (z)dx

z

=log{x‘°(x+1)"+1(m+ 2)#42. . (z+n—1)%n-le ~”_(l;lrf(%r):-'l},
where 7 is a positive integer.

911. Expressions for the Differential Coefficients of the Function
(%), log I'(2+1), and Expansion of log I'(z+1).

I'(z)
‘T’

Then taking the logarithmic differential of Gauss’ Theorem,

F(nw)=n”[‘(m)l‘<x+%> : ( +*——>/(27r)”"1n'}’

Let us write \ () for % log T'(z), ¢

ny(n2)=n log ntp @) +v (w43 )+ .oty (242770,
and differentiating again,
/ 7, 2, 1 7 _—‘1
R T )
Hence

ny'(nz)=>, }z \[/(:c—l-%:), from r=0 to r=n—1,
©.e. Lty - ' (n) =J-l\//(a:—|—y) dy= [\p (av—l—y)]y=1

=yr(z+1) —\,b(:z;)— log I'(z+ 1)—— log I'(z)
1 I+1)_d k.
dx] % T@ dzlogz_x’
t.e. Lty_.,(n@)/(nz)=1; or writing v for nz, \[/(U)z% in the
limit when o» is infinite, and therefore +/'(v) ultimately
vanishes.
That is d_zz log I'(z) vanishes when 2 is indefinitely increased.
: I'(z+n-+1)
o T z(z+1)(z+2)...(x+n)"
Hence, taking the logarithmic differential,
Jo 1

1

WWW.rcin.org.pil



98 CHAPTER XXIV.

and differentiating again,

V(@)= :1:2+(x+1) (a;+2)2+ +( )2+\b(1+n+1):
and it has just been proved that y/(z+n-1) ultimately
vanishes when n has been indeﬁnitely increased.

d2

The series (1) is obviously convergent for all values of 2> 0
becoming infinite at z=0.
Integrating this equation between limits 1 and @, we have

-y W=~ [+~ [+ s
=G—alz>+(ilz—quu—1)+<%‘z-1€2)+ W @)

which is a convergent series; for the test expression, viz.

_ Unig)_ n(z+4+2n)
L‘"=°°”<1 . )“L‘(n+1)(z+n)“2’

and is greater than unity. (See Smith’s 4lgebra, Art. 342.)
Again, we have seen that
i n—1
npr(nz)=mnlog n+r(x)+ (x +q—1)+ ety (x—}- s ) 5
and putting =1,
¥ (n)=logn+] %\[f (1 +%), from r=0 to r=n—1.

Hence when 7 increases indefinitely,
1
Ltu-alp(m)—log m]= [y (142) do

=|:log I‘(1+a;):|:=log P£1;=log 1=0.

That is, Lt,,“,(;g ;—log o R O (3)

Putting z=» in equation (2),

V@) (D)= + gty to o,
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t.e. by equation (3),
—\//(l)=Lt,,=,,(%+%+ ...+%——10g'n)
=ZEuler’s Constant v,

1.e. Y (1), or {%log I‘(z-{-l)} = — i s eoa(4)
z=0
Hence, by equation (2),

L1ogT @)=y @=—y+(j—2)+(3— )+ to o

2 xz+1
lz—1 12—1 z—1
= -yfrare +2a:+1+ +n5+n—+"' to o, ......(5)
which may also be written as
d 1 1 1
t—h—:log P(ZJ['l)——Lt,.:,;I:lOgn—m—m—...—m].
Again, differentiating equa.tion (1) n—2 times, we have
ar B 1
dznlogI‘(x)~( 1) (n—1)! (x+1),,+(x+2)" . to oc]

e Laldnsl (1), on {;ﬂ—;logI"(x)}z:1=(—l)"(n—l)!S,.,

{indft bt
where S"_T;‘+_27'+37'+’
which is convergent if n>1; or, what is the same thing,
{%logl“(wl)} =(—1)"(n—1)!8,. cceerueene. )
Also {log I‘(x+1)} =logI'(1)=0;
=0

we thus have

{log I(z+ 1)}z=o=0 ; {d%log I'(z+ 1)}z=0= i

and {%log I‘(:z:—}-l)} =(—1)"(n—1)!8,, where n is < 2.
z=0
Maclaurin’s Theorem then gives
log I‘(x+1)=——yx+82 ol . +s, +(—1)ns,,%+...,

a result otherwise established in a subsequent article, and which
will be thrown into a more convergent form, by the addition
of other known series, for working purposes. This series is
convergent if  be numerically < 1.



100 CHAPTER XXIV.

912. Collecting for convenience other useful results of the
above article, we have

(a) il no(;lzlogl‘(ar:) =0 and Lt,, oszlogI‘(z)-—oo and in
@
any case dx2log I'(z)= x2 (w+1)2+(w+2)2+
and is positive.
I(n) . - S
(b) F (n)—log n when nis infinitely large.

() {d%log P@+1)} =—y and . {d%log F(“)}Fl: L

z=0
(@) dizlogl‘(x—i—l) y+(1 a:—li—l)_l—(%_a%)_l_"' to .

;x" log I'(z) is continuously positive for all positive
d
values of z, —xlog I'(x) is an increasing function as

(e) Since

increases from 0 to o, starting from the value —oo
at £=0; or, putting this geometrically, the tangent
to the graph of y=Ilog I'(z) is continuously rotating
in a counter-clockwise direction as z passes from zero
to infinity ; and the curve is always convex to the
foot of the ordinate.

913. The student may note the following particular values
2
of L;10gT(z), ie. '(a), vin taking =*=9'8696044011,

o e e A it
W (5)= (—5 W‘i‘(gy‘*'...=4<1—2+3?+5—2+-..>=4.%=%=4'9348022,
2 2 3
1 e
v (1)—12+2;+32+ G =16449341,
e e o a WING |
\1,(15)_4(32+52+...>_4 8'?)‘?'4 = 9348022,
! :
¢'(2)=§12+§12+4—1,,+...=%-1 = ‘6449341,
AR S ey N g D f vt S O\ 5 L |
¢(25)_4(52+,ﬁ+.4.)_4(§—1—2—§,)_§-44 = 4903578,
o 7 1 1 7

V¥'(3)= 3‘ 42+51+ 'g—ﬁ—gz=g—125 = 3949341,
etc.

Y() =0,
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which indicate how %zlog ['(z) is decreasing as x increases,

but always remaining positive.

2 4
914. Since log D(w+1)= —ya+8,5— 8,5 +8,5— ..., we

may write I'(z+1) as
AR OY
F(m+l)=e'7’es27e_s"“es‘

‘...
( yz+72”2 7;’,”3 ...)(1+S%2...>(1 Sx3 ......

=1yt S) 5 (P By, 280 +

which expands I'(z+1) as far as cubes of #, and which might
be useful for very small values of x, but the presence of
powers of vy renders calculation troublesome, and less incon-
venient methods of calculation will be given later.

915. 1t is noticeable, too, that
logI'(z+1) T x? 2
Lx———_ ~y+82§~—83§+84 T
and that the several differential coefficients of this expression
are therefore free from Euler’s Constant vy, viz.
il_"_ log I'(z+1)

dzn T

A0 it 8, ne (n11)! nis (R +2)!
Tk l{n-ljllnl n—;22 1! +n—|j% 21 }

= n— Spiz_n+1 8040 "+1n+2§nﬂ Bl
PR {n-}:i——i-—n+2x T T Heg }

And, similarly, if m be any positive integer,
dr d\" A S
p g log I' (z+ 1)=(d—z) [—yx'"+1+24(~1)'—7{z'"+']

— = (et Dyt 3 (1) )i,

where (m+1), denotes (m+1)(m)(m—1)... to r factors, if
n < m+1, and is free from y if n >m+-1; also that

rdmi
| @ logT@+1) | =—(m+1)1y
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916. Expansion of log I'(1+a) deduced from the I Function.
The series

2 8k
log F(1+x)=—yz+82%—33%+8474——

may be arrived at at once by taking the logarithm of the

Gauss formula in the form
x

= b /2 .
gl A N
V1Z.

log I’(l+z)=xlog,u—log<1 —I-:;)—log(l +g>—log<l +§>—
and expanding the logarithms, supposing —1 < z<l,

logI'(1+42z)=Lt | z (log u—3S,)+38, ——;S3 3 =2 :'

) VS i |
where S'=l_'+2—’+73_'+""

and Lt(S;—log u)=Euler’s Constant y, and the series S, (r > 1)
are all convergent.

Hence,
7° 3
log P(l+z)=—-yx+S2§ Ss3+ v (— 1)"S +
( L a<1): (1)
Now, the even terms may be removed by the addition of
}log sTr{m—7r

o 920 (1 £)(1)(1-5) ot

and taking logarithms and expandlng,

z* zt
=log =BT B i )
Adding to equation (1),
i z°
log I‘(l+z)=?zlogsiiww—yx—&g—&,g——.... 1 08)

The coefficients S;, S;, ... all begin with a unit. This may
be removed and the series reduced to a much more convergent
form by the addition of the series for tanh~'z to each side,

viz.
tanh"lx—% logl+x x—}-%a—i—%ﬁ—{—... )

www.rcin.org.pl
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And we then obtain

logT'(1+2)=14log siﬁrmr— tanh—'z+(1—vy)z

tg e eyl st 1y

The values of y, S,, S;, ... Sy are all calculated, and the
tabulated results are given in Art. 957. Euler calculated
S, to S;;. Legendre* gave the values S, to Sy to sixteen
decimal places. The list in Art. 957 is taken from Legendre’s
list as given by De Morgan, Diff. Calc., p. 554. The series (4)
converges rapidly and is used for the calculation of the values
of logI'(z). Legendre gives a table of values of LI'(z), t.e.
10+log I'(z), from LT'(1:000) to LI'(2:000) to seven decimal
places, in his Ewercices du Calcul Intégral, pages 301 to 306.
A table is also given by Bertrand, Cale. Int., p. 285.

917. Calculation of Euler's Constant 7.

These series may be used for the calculation of Euler’s
Constant y by taking a value of z, for which I'(z) is otherwise
known, viz. =%, for which I'(z)=/.

Equation (1) gives

——logI‘(:z;-l—l)—i—;S22 S +S el
and puttmgx 3,

Loda
y log, +3 S2 33 322+ 8423 ............ (5)

Equation (3) gives, by changing the sign of z,

log T(1—2)=} log =27+ ya+ 8, 5+8, 5+ ...

and putting z=4 in this,

] 1
y=log 2— Sazo 5 524 S72" o A ()

which is more rapidly convergent than the former.
Formula (4) gives

- 1 1= 8,1 1. 8s—151

105*/ __lglr 3o 3+——’i—5'—‘,,)—2—3 el o
. O B lily B h 1 81 4
ie. v= log, : Do wn v Sl Smoi e LD 140

* Traité des fonctions elliptiques, Legendre.
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This is the best of the three series to employ to find .

And with the aid of the tables of values of S, the calcula-
tion to seven places, which is all that is likely to be wanted
for ordinary purposes, may be readily performed.

The value of y is

v="57721 56649-01532 8606...,
and - 1—y="42278 43350 98467 139%4....
The value of log,10 is of course required. It is
log,10=2-30258 50929 94045 68401 79914 ...,
and the modulus log;ge="43429 44819 ....

918. The numerical calculation of values of log I'(1+4-), and
therefore of I'(z) itself, Will now present no difficulty. With
S;— 1 S;—

B el

the values of —_— etc., inserted, the working formula

stands* as
1og,r‘(1+x)_-log, 2T 21 g,1+’”+ 49278437
067352302
007385525
—001192727
—00022312®
—ete,

and is rapidly convergent for the small values of z less than
z=4, 2 being 1024. Hence the last term -00022312° in
the case z=} becomes ‘0000004, whilst for =1}, which is the
largest value of z for which it will be necessary to use the
geries (see Art. 921), the error in omitting all the remaining
terms of the series will not affect the seventh decimal place.
Hence we have here all that is necessary for the construction
of seven-figure tables for log I'(z).

919. It is worth noting that the addition of log (1+z)
and log (1 —x) respectively to I'(1+) and I'(1—z), viz.

2
log I'(1+2) = — yz+ S, %—;8'3 g-{—&%—

and log I'(1—2)= w+S Las, -+S4%+..

* Bertrand, Calc, Intégral, p. 250.

www.rcin.org.pl
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give logI'(14+2)=—log (1+z)4+(1—y)=
(Ao e T
Al [y )—2_—( 5o )’3_'}'( s )‘47—
and logI'(l—z)=—log(l1—2)—(1—y)z
2 (L‘3 4
+HEG-DF+E-DFHE~D T+

whence
i+ z
%logl.‘zl x;——tanh"lx—l-(l y):z: (S, —l)-;—
z°
——(Ss—l)g—-....
w5 3 ;
But %logl‘(l+x)1‘(l—-z)=élogsinwm, i.e. adding,

—tanh—l2+4(1—y) @

log I'(1+2)=} log si;'fr x

o A 0 v

) (Szn41— )m’

the same series as before, which may be written
T l—z ganEL

i Sl o (sm T 1+x>+(1 y)w——Z( s 1)2n-|-1’

1—% —1 1
and putting z=1, since Li,- g o

Szn-i_-l 1

y-—}lov2+z sy

and putting 2=}, since I'(3)=4+/r,

1—y=log 1 5+2(§S2¢Wﬁ (cf. Art. 917).

These series are given both by Serret and Bertrand for the

calculation of I'(1+2) and +.
The formulae

log I’(1+m)=% yx—lSsz"—%Ssﬁ—... ;

™
S gin 7z

2ty a St 38t

logI'(1— a:)—— log —

sin Tz

and y=log2—~sa—5r 5= Foe T
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were given by Legendre (Ezercices, p. 299). But the addition of
the series for tanh—'z adds to the rapidity of the convergence.

920. Since I‘(m)I‘(l—m)=s—in—1rﬁ_’—r, we have, on putting
142z

3
r{E)p(=2)L e )

sin T  COS &
2 2

But I'(z)= 21—2=f SRSl (vt D05),
2+””)

Hence, writing 3 in place of z,

r(5)=2-rvr—os

for m,

F<;+§> witann o si(in)

From equations (i) and (ii), eliminating I‘(#), we have

e

2’—"coszzl- F(l%x) i

I'(z)= ... (ild)

921. By means of the four formulae
['(@)=(@—1)I'(z—-1),..(1); T'@)I(l—-2)=

(2);

sinzm’ "’

il DAT)

21-2 cos z—w r (1~§ﬁ)

it may be shown that I'(z) can be culculated for all values of
z when those between I'(}) and I'(3) have been calculated.

(@) For 1<z <o, reduce by continued application of
formula (1) to a case 0 <y < 1.

(b) For 3 <=z < 1, reduce by formula (2) to a case 0 < y < }-

(¢) For} <z <%, reduce by formula (4) to a case 3 <y < }.

I'(2z)
'3 +=)’

[ (z)=2"/x .(3); D)= (4);

¥ 1 -2 _1.
Forlfm>3, §>é and T<3’

’ 2 A € 1—-2z_ 1
and if x<§, §<:§ and T>6'
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(d) If + <2 <1, the case needs no reduction.

(e) If 0 <z <L, use formula (3). This involves I'(}42),
and 4 lies between } and %, and therefore falls under case
(¢), and an application of formula (4) reduces I'(z+43%) to cases
in which the arguments lie as before, viz. 3} <y <3}.

In I'(2z), which occurs in the numerator of formula (3), if
0<z<} we have 0 <2z <3, and if 22>}, no further
reduction is necessary.

But if 0 <z < 5, we have

0<2c <3 and 0<4x <3

We then use formula (3) with 2z written for ,
. o T (4ae)
= 1-4z y
i.e. T (22)=m 214 129
Similarly if 0 <2z < 3, use

N J—o1ss. L (82)
F(4‘.’L)—~/7"2 W’

and so on.

Hence it follows that the use of series will be only
necessary in the case of I'(z), where « lies from % to 1, and
that when this group is calculated by the series, all others
follow by the above rules.

922. Graph of y= ["(a;)=j e—22%-1 .
0

Regarded as defined by the integral, it is plain that so long
as @ is real and positive I'(z) is a positive function, and that it

becomes infinite if =0, as may also be seen from the fact

that I‘(a;):él‘ (z+1), and therefore F(O)—ll) Qg

We have seen that
) olog I'(z)= (a:+1)‘+(.’l:+ Z)Z+

and therefore is infinite when z=0, but for all values of =
from 0 to o it remains positive and finite. Hence

I"(z)

(=)’

is an increasing function of 2, and its value at =0 is
obviously — oo, for

jx log I'(z) = (1 —%)Jr (%—x_il)*“ (A, 911),

d ;
= log I'(z), ..
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.Also, when z is + 0,

dlogT'(z) _

R sy —y+3+34...to 0 =-o0.

Hence gg; increases from —x through zero to + as x
increases from 0 to « and as I'(x) remains positive throughout,
I"(z) changes from negative to positive once, and once only,
as z increases from 0 to .

Therefore I'(x) has one, and only one, stationary value, and
that is a minimum, and I'(z) decreases from « when 2=0 to
I'(1)=1 when =1, and since I'(2)=1 and I'(1)=1, the ordi-
nates at =1 and =2 are equal, and the minimum lies
somewhere between z=1 and #=2, and is numerically less
than unity. From =2 to #=x the value of I'(z) is con-
tinually increasing.

The curve then

(a) lies entirely on the upper side of the z-axis;
(b) it is asymptotic to the y-axis;

(c) it has a minimum between =1 and z=2;

(d) it recedes from the z-axis from z=2 to z=o.

The equation to find the exact position of the minimum

ordinate is d_gg_)=(), or writing z=1+¢, dtP(l—H) 0.
dlogT(1+¢) T'(1+1)
s at “r(1+z)'
Hencec-lz (14+t)= I‘(1+t)[ 1+ F+(1—y)+(S,—1)¢
—(Ss—l)tz—{-...:l,

and ¢ is to be found by trial from
L%
Vet
and substituting for S, and S, their values in decimals to a few
places, an approximate value for ¢{ may be obtained, and by

the usual approximation methods the result may be found as
nearly as desired. Serret gives the result to seven places, viz.

t=04616321...

= 0422784 ...+ (8,— 1)t — (S,— 1) 2+
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1.e. the abscissa of the minimum ordinate is
z=14t=14616321...,
and the value of the corresponding ordinate is found to be
y=0'8856032... .*
In the tables for LTI'(z), 7.e. 10+log I'(z), we find in the
vicinity of the minimum
@ LT (x) x L1 (x)
145 9-9472677 1'463 99472396
146 99472397 147 » 9:9472539
1461 99472393 148 9-9473079
1462 9:9472392

CXC
I
T s

FY
»
e~

o.

3

-

°
@
r=1772

oo
N
T
011000

3.0} 2/000
R | 6j000

T 0 0N [
e & A @

34
34
36
am
3-8
40
4

00
o2
o4
08
o8

Fig. 320.

So we see from the tables that the minimum ordinate is in
the vicinity of 1462, and the value of the corresponding
* Bertrand gives 0'8556032, page 283, and again page 284, line 3, and the

result is given elsewhere. This is evidently an error. The result is given
correctly in Serret, Calc. Intég., p. 186,
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logarithm, 1-9472392, indicates an ordinate 0885603 approxi-
mately. The minimum ordinate is reached, therefore, a little
earlier in the march of  from 1 to 2 than the half-way 1-5,
which might have been expected from the very rapid fall of
value in I'(z) between I'(0)=o and I'(1)=1 and the much
slower rise on passing z=2, I'(2)=1, I'(3)=2, TI'(4)=6,
I'(5)=24, etc.

I'(z+1) 2T xT e
z

For large values of z, approximates to B mo

and the graph of y=I'(z) to the curve y= ] (E)x

z \e
We have now seen to what shape the several curves in
the graphs in Art. 886 are gradually tending, and com-
parison should be made between the figures given there and
the graph of the limiting form y=I'(z) in Fig. 320 of this
article.

923. It will be noted that since I'(z) is decreasing from
z=0 to x=1'4616321... and increasing from z=14616321...
to =0 much more slowly, the differences are negative for
the first part of the march of I'(z) and positive for the second.
Similarly for the differences in the tables which give log I'(2)
or LT'(x). The tabulation is only effected from z=1 to 2=2,
for by virtue of the reduction formula I'(z+1)=xT'(z) this
is all that is necessary. In using the tables care should be
vbserved with regard to the change of sign of the differences,
and those who wish to make close calculations should observe
the remarks made by Bertrand, Calc. Intég., p. 284, with
regard to the behaviour of the differences both of the first
and second orders.

924. The rule of interpolation commonly used is

x

Uy =Uy+ A+ f;l) Auyt-. .
(Boole, Finite Differences, Art. 2),

rather than the ordinary rule of proportional parts, which
stops at the second term.
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925. Expressions for

d
d——xloz Bix);

as definite integrals.

& 10T (@),

2B log I'(x), ete.,

d'n

The expressions for %logI‘(x) az 210" I'(z), ete., viz.
Ll

d
d_JOgF(x)=L‘ﬂ= {log" <a:+:v+l sr2t +x+n 1>} i

&
b 5 log I'(x)= (a;+1)2+(x+2)‘ ST, OT e e e T R (2)
%logl‘(z) (—l)”l‘(n)[ (le)"+(ﬂ127‘+ P w], 3)

can readily be converted into definite integrals by aid of the

Gy b j gimegeotpgin R g ol o 23 (a)

D ,—2___ p—hkz
snd j SRR At it ult, ot )

0
(@) has been proved in Art. 864.
(b) can be established thus:

—k2 1
e“"dz:[—e——] =7.
J: el T e

Integrating with regard to k between limits 1 and £,

—lz R ,—z___ p—kz
log k=j :| dzzj L Sevde:
1 0 Z

To convert

d &
d—x log P(m)-—Lt”=¢, {log n—;;—m_a?Z“ PR —'m
the right side may be written, by aid of (@) and (),

=Lg”=w[r<e_p_;36_"ﬂ“e_pr_e_ﬁ(x+‘)—"'_e—ﬁ(ﬁn—l)) dIB:I
0

5 ] Gl AP e P Y
= Ltaea] [} (G~ 1) i o (5 ors) 8]

=_[:(e,3ﬂ R Aot (A)

for the second integral disappears when n is made infinite.

1 1 1 1 }

WWW.rc
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w4 * B
926. With regard to /, j. e-nﬁ<B— le )d,B it may be

desirable to make a closer investigation, for though for all
values of 3 between ¢ and infinity where e is a given small finite
quantity the factor e~ destroys the integrand when = is made
infinite, there may be some doubt as to the behaviour of the
expression in the immediate proximity of the lower limit.

We note that

I 1 fo(z—1), 1
B i—e" R e | LS
and is finite for all given positive values of x, however small
3 may be, tending to the finite limit z—} when B is inde-
finitely diminished.
Let K be its greatest numerical value between
B=0 and  B=e
Then the portion of the integral I between 0 and ¢ does not

exceed K jeeﬂﬂ dag, i.e. K i _m, and therefore vanishes in

0
the limit when n is indeﬁnitely increased.
Hence j i

0 :3 1"‘3—
infinite, for all positive finite values of .

}d,B vanishes when n is made

927. To convert

l. 1 Sl

the right-hand side may be written by theorem (a),
=(_l)nr[6~zpﬁn—1+e—(x+1>aﬂn—l+e—(x+?>ﬂ,6ﬂ—l+ ...]dB;
0

%,,bgr(x)=( jo Rt ﬂd,B (n42), ...(B)

and this includes the case
d? B
g log T (z)= J F i NEred o 1C: B! SEEUR CEPATS 0 RN RN (C)

928. The same method of treatment will apply in many
other cases.
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Thus the sum

1 1 1

1) rﬂ" e rhetite s B
1

e AR e
P(p)j Tecs
g [ grles -—g 1 f“’ﬁp—-le-gdﬁ p
< 0 e—e e 0 Slnh§
929. Again, ‘
el 1 1
—17,+7,+.—,,+—,,—I—... (p>1)
1T e A B -
e 1 Br-1
I‘(P),‘. e~ B = or P)j sinh B e eI (E)
Similarly
M ilinee b (i
o =ﬁ_§p+§p—ﬁ+...
_pE B2 ey g ikl ® Br-1
—‘F(P)jo 14e % dﬁ_glﬂ(p)jo cosh[)’d'B' b gyl

And whenever such series occur the conversion to a definite

integral form follows at once. For instance, in the expansion
(Deff. Cale., Art. 574)

secrt+tanx=1+4+4 +A29,+A —|-

11| 33y

—{<><><>}

I Brle-F+e-%te-%+e-"+..]dB, n odd,
0
2 n4l [
ol ;r j Brle-P—e-3+e-%—e-7+..1dB, n even;
0
2 n+lf® Bﬂe B
2(2) L T gyrg BB oo (G)

www.rcin.org.pl
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Thus the n** Bernoullian number

2n 2n '82"'1
BE"_I=W‘1’)A2M1=(2273_])12"_‘- sinh 8 o AL

and the n** Eulerian number

E,,.=A,,.=(2)’"+1L - B B0 i laiv, (I

If we write B,,_, as

_2(2n)! 1 b1 3 o1
B,"_,_(é;),n[1+§ﬁ+§ﬁ+...]_2(2n)1§l)w

=4-nj Bin-l(e—2Pte 4P+ er...) dB,
0
we have

1 BZn—le—"rp j” ﬁzn 16_"’
By y=dn| G dB=2n | (g, )

a result due to Plana. (Mem. de I'Acad. de Turin, 1820.5*

930. Another Method of obtaining Expressions for log I'(x),
d d?
%logl‘(a;), 3—52108 Pla), . d:c" log I'(x) as Definite Integrals is

as follows:

Differentiating the equation I‘(z)=-“ e~*a*~!da, we have
0

%ﬂ=j eiivafr Yloga daps yusoudw. find (1)
0
But j e‘“dz:[ue_u] =1,
0 s M
and integrating this between limits 1 and a with regard to a,
5 z

: dI'(z) =jwe"a'_l {I g";e:‘_‘dz} da
0 ) A

dz
o rw
e—u—z_c—ﬂ.(l+z)
=j j a*-1 dadz;

0Jo z

* See Boole, Fin. Diff., p. 110.
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and changing the order of integration,

Bl il gL i 0 s rl 4 gl :
L L a . dz da=T(z) " z{e (l+z)*}dz’

A dlogI‘(z) L) d I (@)

L 1
depi % 57 T () iy og{e _ﬁ+—z)’}dz' ..... (3)

Integrating this with regard to @ between limits x=1and
z=2,

~] 142)-1—(14+2)-*
logI‘(z)=J.0;{(x——l)e"——( +ﬁlg(1i;;z) }dz. LA
Putting =2, 1

o=, e —Togirra) &

Multiply this by #—1 and subtract from equation (4);
= b -
log I'(z)= j {(w 1)(142)2— _(1+42)'—(1+2) } dz

z log(1+2)
(%)
Now put 1+42z2=¢’,
e\ d

log I'(z)= j {@—1)e ﬂ—iT—eT} g .......... (6)
Differentiating this with regard to ,

d T fenf i lgr e i

4 1og I‘(w)=L (75- el R %

and a further differentiation with regard to @ gives

a2 zp

R j Al TR T ()

Differentiating (8) n—2 times with regard to z, we get
B Jog T(2)=(— 1)..J"° Bl * 08 (n2) ©)
dz® ° g il S nidgiagedves sne :

Results (6), (7), (8), (9) give log I'(x), and its differential
coefficients expressed as definite integrals.
From (9), expanding (1—e~#)~1, we have

;xulogP(x) (— l)nj Br-1(e- e~ DA fg- 4D ) dB

! 1
=( "]) F(n)[z" (x+l)”+(x'+_2—)n+-.. t() oo],
the formula of Art. 911 (6).
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And so far as formulae (7), (8) and (9) are concerned, these
definite integral forms are the same as those obtained in
Arts. 925 to 927 from the result of Art. 911 (6).

931. Approximate Summation. Maclaurin’s Formula.
As we are dealing with many series of the form

1 b
F’+§"+3—P+"' @>1),

and other forms in which in some cases an exact summation
has not been effected, it is desirable to explain the method
usually adopted for approximate evaluation of such summations.

Defining the symbols E, A as in Differential Calculus,
Art. 550, viz. such that

Buy=u,,; and Au,=u,,—u,=Fu,—u, or (E—1)u,;

and also remembering the symbolical form of Taylor’s theorem,
d
"Pu,=1u,,;, Where DE% ;

we have the following identity of operators:

E=eP=A+1,
and it was pointed out in the Differential Calculus that these
operative symbols obey the same elementary rules of algebra
as quantities, viz. the three fundamental rules :

(@) the associative law,
(b) the commutative law,
. (¢) the index law for positive integral exponents,

with the exception that they are not commutative with regard
to variables. Hence, bearing this exception in mind, there is
an algebra of operators bearing formal analogy with the
ordinary algebra of quantities, and such theorems as the
binomial, multinomial or exponential expansions hold.

Let us define another symbol, £, to be such that

Zuz=ux~1+uz—2+ Ug-gt .o +Filg,
where u, is some-fixed term of the series.
Then Uy — U=y,
i.e. ; 2 A=,

and therefore ¥ represents the inverse of the operation A,

www.rcin.org.pl
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which may be written as %or A-1; and since A{f(x)+C}, where

(' is a constant and f(z) is any function of z, is equal to
[f(@+1)+C]—[f(2)+ Cl=f(z+1)—f(),
so that the constant disappears, so in reversing the process, if
such reversal be possible, we must restore the constant, so that
we shall regard Zu, as A-'u,+C where C' is an arbitrary
constant to be determined in each special case.
In this respect the symbol of finite summation, or integration,

Y behaves exactly as the sign Idx of the integral calculus.

1 1
Thus Eu,EC+ET_—1 uz50+e—5:i Uz,
Now it has been shown that
t a4, 4B ;
i 1— 51357 Ze-r t4+ 5 t—... (Diff. Cale., Art. 148);

whence dividing out by i and wrltmg D in place of ¢, we have
the following equivalence of operators, viz.
B
PN D RO A o il | 5 5
FmfoTe At e
in which all the operations on the right side represent direct
differentiations except the first, which represents an integration.
Applying this to any function of , viz. u,,
1 B, du, B, d*u,  B;du.
wa=Ct [ do—g et 3} G5 G
For this and many other formulae derived from the same
principles, the student may consult Boole, Finite Differences,
p. 89, ete.

932. Apply this theorem to the case of the series
Tedil 1
e

1 ko8 'L 1
Here u{t=5, Equ—1+§+§+-.-+x_;.l.
Hence
1 d /1 da /1
gttt ot [T 20 @@+
i Y. By Bl
~O+logatg—3 3+ p—g gt
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The constant C' must be determined in such examples, either
by reference to some known case of the summation, or by
absolute calculation of the result for a particular value of z,
and when once found, the formula can be used with the deter-
mined constant for summation for other values of z.

In the present case, putting z=cc,

O=15t. o (l +%+%+ +;:—Iog a:)=Euler’s constant=1+.

If this be available (see Art. 897) the series can be used for
the calculation of the harmonic series to any degree of approxi-
mation required. If C be not available take the case z=10,
and insert the values of Bernoulli’s coefficients, viz.

B,=1}, By=45, By=3s, B,=3%, By=d% etc. (see Art.87Y).

Now

I+3+3+1+3+H3 35+ 3+ 7 =2928 968 254...

Sk log, 10=2302 585 09 ;
. 2:998 968 25...—2:302 585 00...
¥ RN T
X 4T 102+12o 10+ 252 10° T 940 108

626 383 16...=C-"049 167 496;
C'="577 215 66... (Euler’s constant),

which is correct to eight places of decimals.

Hence to the same degree of approximation we may now
proceed to sum the series to any other number of terms by the
result

L 1 LR T !
1+§+...+5='57121066...+10g¢x+2—z + 4 z‘

It will be noted that to obtain eight decimal places of Euler’s

constant only three of the terms on the right-hand side affected
the result.

933. Take the case

1 i 1
],,+2,,+,;,,+ Tt (n>1).

1

Here Un= s
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. S dec 11 B, d1 B a B.d‘(l)

Zuptm=mtC+ | s mt i g 11 d.z3<x")+ﬁ¢—i—;‘ )"
Sl Ui T w1 R T)es) 1
T at n—1 271 9zn 12 pnHl 720 am+s

except in the case n=1, when log x replaces — n—é—l ?.l—_—l

bk ¥
Hence mtontaattoa 1 (n>1)
Jol de byl 1 (s hlNnte) 1.
e A-1ait3 12 gt 720 Zvs — otey

and this series can be calculated to any degree of approximation when C
has been found.

In the case when n is even, the exact sums for an infinite number of
terms are known for the earlier values of n. The values forn=2,4,6,8,10
are given in Art. 879.

When this is the case the exact value of C is known, eg. if n=2,

2
(o) =% (Euler), and

Yiod T o 0 el (G L R O R B |
ptat-tna=g st ertwz ot

If n=4, C’=£ (Euler), and for even values of m higher than 10,

C can be found from C—(Z—ﬂ-)l‘ B, (See Art. 879.)

.n 1 C=5(gny1 Bomr . 879,

934. For odd indices we proceed as in Art. 932, and the
value of the constant is to be calculated, as it is not available
otherwise.

Thus, if n=3,

i 1 )bk 58 TR T WA 10
ptptpt ot a=O-gatan- i at At
Take the case x=10. It will be found to give C'=1'202056903... to
the first nine places of decimals, and to that approximation with this
value of € the formula can be used for finding the sum of any other
number of terms.
The value of C is the sum to infinity, in all these examples, viz.

'g: ’1——”, except when n=1, a case which has been considered.
935. Consider finally the case
log 1+log2+log3+...+log 2.

Here u,=logx;



120 CHAPTER XXIV.

- log (# !)=C’+log.z’+flogxdx—]—logx+ §1— (—;—i—logw

| =

1
e 6' M(log z)=...

3 I e | 1+ e
122 360 2° " 1260 2°

A4 T

~3011d5 8753

=C+logx+z(loge— 1)—-llogx+
e R (O il

=O’—x+zlogx+§10gx+i§ 273603126028 "

and when z'is made very large
log (Jiﬂrz‘e“)=0+x]ogw+%logx- z
5 C=logn2r ;
1.1 ) 9 | [

S log (15 9.8 'v)——10021r x+(x+ )Ing+ﬁ;:_§6_0P+l260.z‘ 250

1 1 1

ie. | 1.2.8..z=NBwzercteTe % JNF 4
2 1 139 ]
fe. 1.2.3...z= ~/21r.zz‘e“[l+12t+288r Sigint

as a close approximation. (Cf. Arts. 877, 884.)

936. It will be seen that the formula
1 B, du,
O'+J.um dax— 5%t g) & (dw —ete.
will be of the greatest service when methods of exact summa-
tion fail. The student should, however, test the formula for
himself in cases with known results, such as

B gp .. 4as=TCHT

to gain familiarity with it.
Enough has been said to show that the summations we
require in the present chapter, such as

VI S0 N1 1
=gt mtgttz (>,

can be readily calculated, when wanted, to any degree of
approximation which may be required, without the labour of
calculating out each term separately, except for a few terms to
determine the value of the constant. We have, for finding C,
chosen 10 terms for the obvious reason that the arithmetical
calculations of the right-hand member of the equality are
thereby much simplified.

*See De Morgan, Differential Calculus, p. 312.
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937. A Theorem due to Cauchy.
It is a well-known theorem in trigonometry that

PR 92

cot z=;—}lJ 7‘_—272—22+Rm’
where R, is a quantity which may be made as small as we
please by taking m large enough (see Hobson, Trigonometry,
Art. 293). This is so whether z is real or complex. Also,
when m is indefinitely increased the series is absolutely con-
vergent for all values of z, with the, exception of such as are
expressed by z= +r= for integral values of 7.

Writing %Z in place of z, we have

Al 20 L 2z v
geoth 5=+ 2 gearpt fm

where R, like R,,, can be made indefinitely small by increas-
ing m without limit, a.nd

1 etk
th2 Q(e’ 1)
and can be written elbher as
il +1 or as A %.e . .
e—1" 2 RPN DL SRS hipite T g
Hence b —i—l—l
e—1 2.2 _Zm) 2z R
1 1 1| <« w-,rZ+z2+ ik
or el e
l—e2? 2 2
Now, by division,
1 1 22 2 22n—2 22n
P i R A Tl e L

2
where €=t;§(}-l-—22 and is a positive proper fraction for all real

values of z, and the series weuld be convergent, and could be
continued to infinity, provided z< a if real, or mod. z<<a if z
be complex.

Write in this identity a=2m, 4w, 67 ... 2m=r successively,
and indicate by suffixes 1, 2, 3,..., the corresponding values of
¢, and let S,m denote

Lot gt gt it
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Then we arrive at m equations of the type
1 1 2 s et £ i eel
(2r7r)2+z’—(2_rvr_)_2—(ﬂ)_‘+ r PR 1(2r7r)2"+(—— 1) @rm)ere
and, adding these equations together,

b 1 Sm S Z 5 (—1)”8{,‘.’.223” ’
214 z,,rz_,_zsz_(j:?)é_(z )4+ S & (27,.)2,. + (@m)n+2 €5

m
: €
where esm =\
42 214 et

and if 5 be the greatest of the quantities e, €,, ...,
A mn 1 5 .
€ 2n+2<'lzl:m1 ne €<n,

and therefore ¢’ is also, like ¢, €, €5, etc., a positive proper
fraction.

We thus have, taking ¢* to have its principal value,

gt e R R 28,m
<ez_1+§_2) @y’ (27)4z3+(2 o

282, 283, I
(Tt e T 1)"(2,,;2:izz’ W+ R,

and if we increase m without limit, the series S,™, S, Sg™,
being all convergent,

Lt,n:,,S,"':ll;-{—%,—i—... VT S s X A

Hence
( 1 1 1> 28, 28, 28, R

=113 2) @Y @) T @y

) 28,5, 2835 i
+(— 1)7»-1 (2‘”32"22”-1_*_ (=1 (27'_;2:+22z2 +19,
where © is a positive proper fraction; or, what is the same
thing, (1—:18—_2— %—:i):the same expression.
And if we write (B2"'_)1‘ for (SS)M we have
l( Rl ke &
z\e¢—1 2 z
B Bs 22 Bs n—-1 ﬂn— 2n—2
or —2| + Z"— +( 1) (z,n)|z
i 1 A bkt B
E(l—e—l 2 z) +(—‘1)"@72r+21), 2%0,

where 0<<O <1 for all real values of 2.
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938. Now Cauchy has shown that Maclaurin’s Theorem
for the expansion of a continucus function of #, viz. F(x), for
the case of a real variable, still holds for a complex variable
which is such that its modulus has a value lower than that
for which F(x) ceases to be finite or continuous (see Art. 1299).

The function Ezl—_l—k;———lz— only becomes infinite for values
of z which are given by z=2\(m, where X is a positive or
negative integer other than zero. This function is therefore
capable of expansion by Maclaurin’s Theorem in a convergent
series within the circle of convergence of radius 27 for any real
or complex value of z, whose modulus is <27, and the form of
that expansion has been given in Diff. Calc., Art. 148, as

1A NEIAE BN B cinB SR
;<;:_1+§—.;> 2’ 4‘,’2 +bf — ... to infinity
or e i 8B 3z‘+ - P

e—1 2 2!

and the various coefficients were defined as Bernoulli’s numbers.

This series then is convergent when z is a real variable
which lies between —27 and -+ 2w, exclusive. It is also true
and convergent when z is a complex variable and z lies within
a circle of convergence of radius 2.

And when the infinite series is not convergent, ¢.e. when z does
not lie between the limits specified, the series may be stopped at

any term (— I)n-! @ 2"; 227—2 and the error is then numerically
B
\n 2n+1 2n
less than the next term, (—1) @n 2),z :

This theorem is due to Cauchy.

939. Lemma. As a preliminary to what follows we may

x |
remark that such an integral as -“ 2ola:, where 0 <0< 1, lies

intermediate between 6 I —dx and G.Zj‘ — dx, where 6, and 6,

are the greatest and least values of §between x=a and z=2.
Therefore z%dx=9rd-—; for some value of © between 0,
and 6,, and therefore, if 6, and 0, are positive proper fractions,

80 also must © be a positive proper fraction.
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940. Now we have established the equation
V(@)= log D(z)= I Be —dB3  (Art.930, 8);

or, what is the same thing,

==

Hence, substltutmg for e"%’ the finite series established by
Cauchy (Art. 937),
¥ (z+ 1)__;wzlog Fx+1)= J. c—xp[l Bl J i3y ;3‘—{-

+<-1>"*?5;;w"+<—1>"~<;;fr23!ﬁ“+2e]dﬁ

0<6<1),

w1 Bana['@n+1)
Fo (D g — e

Bynyy T'(2n+3
yORRL (2n2++21)!'z2T3)

1 1 TQ

Tz 2 ?

BIF(3) Ba ()

+

0210 O 1),
%.e.

) d? g il il s il

v (z—l—l)st-i?]og P@+1)=_—55+ ;3‘~;§+...

H(—prBaay (_ipPaa g, 0<0<)

2n+3

Integrating this result,
d il s )
Y(z+1)=_log I‘(:v+1)=A+Iogz+2—z—2—x1§+Ei—

Bzu—l ( ),. B2n+1 elr

__( l)n—l W

where 0<0, <1, by the lemma of the last article, 4 being a
constant to be determined.
Let  become infinite. Then

i i I z—{-l IM(z+1)
Akt Ty~ log | =L i)~ loB(a+1)

&7, el log(1+:;)=0, by Art. 911 (3).
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Hence
d i
\b(x+1)-—_—%logl‘(w+l)=]0gx+ 2z2+
an—l B2ﬂ +1 (s}

gmamn (1) ) O
(0<B6,<1).

_(__l)ﬂ—l

Again integrating,

log T(¢+1)=4'+z(logz—1)+ jlogo+ Dr1_Bs Lo
g g 1.2z 3.4 z°

B2n—1 an-e-l i
@n—1)2n zZn— =1 g 1) an ) 7 O
(0<©O,<1), by the lemma, where 4’ is a constant to be
determined.

Let  become an infinite integer,

A'=Lt,_,[log I'(w+1)—x(log z—1)—4 log x]
=Lt [log (V2w x®e~%)—(z+1) log 2+ 2]

(1

=log /2.
Hence
log Tle 1)=3 log St (osh o+ danbl oot ey,
1.2z 3.42
oy B, 4 By 1
HeE e 1)2nxzn—l+( D @n1y (@n T2 22 O
(0<6,<1).

This result is also due to Cauchy.

941. The series, if carried to infinity, is known as Stirling’s
Series. It is divergent, however great  may be. For the
general term

B,,.; 1 1 1 2(2n)!
(2n—1)2n a1 (2n—1)2n " 221 (27)%
and the ratio of this term to the preceding term is
(2n—38)(2n—2)  Sau
(2mz)? Szn—z’

Szm

RE
t.e. ultimately p ) and however great x may be, will

ultimately be > 1 when » is large enough. The formula can,
nevertheless, be made useful for approximative purposes for
calculating I'(z+1). For, as in the series of Art. 938, the
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has been shown

error in stopping at the term involving 2}1_1

to bo O 5 j;"(;n 5 iz (0<O<1), i the error is less

than the succeeding term. And as the ratic of two con-
(2n—3)(2n—2) S,,

@ma)t i Gy less than unity

secutive terms, viz.

until (2n 3)(2n—2) S—L exceeds 47222 the absolute values
2n—2

of the several terms go on diminishing until this happens, and
then increase again. Hence the closest approximation will
be obtained by continuing the series until that term is reached
which precedes the smallest term.

942. We have as successive approximations
log ['(z+1) > & log 27+ (z+}) log z—=,

logl"(:v—{-l)<Qlog2r+(9;+§)loo:v—z+1 2;

s tie lih
log I'(x+4-1) > } log 27+ (4 4) logz— z—l— 2:0—3— et
log I'(z+1) < } log 27+ (z+ %) logz—=

By 1 1
= P E R
; 1
And since B,= Bs 30, B5=E' ete.,
Nz +1)
>N 2wrrxce?,
1
<JZmzzrere™,
1 1
> J2rzate-Tel% W0 ete.
t.e.
I'(z+1)
>N 27rxTte ",
<\/27ra;z'e—”(1+ AL 5 )
12z ' 28822
eaedriy !t o 1 139 571
>J2maate (1+m+2(12w)"‘—30(12m)3_120(123:)4'")'

ete.
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943. In order to facilitate calculation from the series
log I'(x+ 1)=%Iog 27+ a:—i-}) log z—2
SRS RV
i1l 2 z 3. 4:703 L o T

it is desirable to arrange so that « shall not be small.
For this purpose Legendre puts =4+« ; whence

log I'(z+1)=log +log I'(z)=log =
+log I'(a)+log a(a+1)(a+2)(a+3)

Bladiln Byl
logyoI'(a)= 10g1027’+(-’”—‘)1081090 ,Um'l"“_s) 5;_:‘3%1‘ 28

and

Beioy
+"_g i
where u is the modulus of the logarithm tables, viz.
n=log,e="4342944819....
Thus, if log,, I'(1-25) be required, =525, and

—logya(a+1)(a+2)(a+3),

logsoT'(125)= 3 logyo2m -+ 475 log,e5:25 — u5-25+ £ -1 ete.

—log,o [(1:25)(2:25)(3:25)(4°25)],
and, by this artifice it is possible to avoid the calculation of
all but the earlier terms of the series. We could make
x=5+a, 6+4a,..., equally well, and the choice is in the
hands of the calculator.

Legendre remarks as to his calculations of the seven-figure
tables of log I'(x) with regard to the above: “de cette manitre
on n’a jamais eu besoin de calculer plus de deux ou trois termes
md’ mB , mC
1.2673. 4215 6k
approché jusqu’a sept décimales, dans tout l'intervalle depuis
a=1 jusqu'a a=2" (Ezercices, p. 300).

Legendre’s m, k, A’, B', (" are what we have called yu,
B,, B,, B; respectively.

de la série —ete., pour avoir log I'(«)

944. The Case when « is a Commensurable Number.
We have established the result

e—f e R

0%10g1‘(x)=j:<3 =) dB. (Axt. 930 (7))
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And we have seen that Euler’s constant y is the value of

—(—%logI‘(m) when =1 (Art. 911 (4).)

i = Yer R e~ B
that is A== _L (TB__ lfe—-ﬂ> dg.
Hence, adding

d “© e~ P—eg-Br

In the case when z is a commensurable number* this
integral can be reduced to the integration of a rational
integral algebraic expression, and the integration effected in
finite terms in terms of the ordinary algebraic, logarithmic
and inverse circular fnnctions.

Let x=§, where p and q are positive integers, and let e -#=12.

d R
Then J;-plog P(z)—'—y—qj‘ot—(l_—mdt,

and the integrand is a rational integral algebraic function of .

If g=1, i.e if z be an integer, the value of %log I'(z) is
given by
1 l_ta:—l

d
-log P(x)+y=J'o -t

=r(1+t+t2+ v t=2) dt
& 0

Wil il 1
Si1tatat e
as might be expected from Art. 911 (2).

945. Expansion of I'(xz-1) derived from the Integral Definition
(De Morgan).
The expansion of log I'(1+) in powers of z may be obtained

directly from the definition of I'(14-2) as “‘ e~ v dv.
0

=8,

__p-an\ T
For we have Lt,=o(l 2 )

Hence I —+—:z:)=Lta=0Jwu f;v(l_;:_—ufrdv.
0

* See Serret, Calc. Intégral, p. 184.
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Let ¢-2*=y. Then adv=—dy and

b

I'(142)= Lt~—I il —y)=dy

=Lt (Lz+1 <&, z+ 1) (Let }L=b, a positive integer.)
g a2 LO(+1)
=l Py
T .
C(z+b+1)

it (z+b)(z+b—1) .. (z+l)I‘(w+1)
g (b=1)(b—2)... 1.b=+1

e Lty -, b=+t Sl

1€,

o z z .
log'(1+2)=Lt| zlog b—log(1+i)——log<l+§>-— adznf.],
or, expanding the logarithms assuming <1,

log ['(14-2)= Lt[ 1+3+5+-tp—logh)a

+o(pt gt g)e—g (gt )t
and when b is indefinitely increased
z® 2° xt
logT'(1+42)= —-yx+32§ -8, 3—+S4Z—

for values of z, 0<z<1.

This investigation is due to De Morgan.*

It was felt desirable to deduce this series directly from the
integral, rather than to base it upon results deduced from the
property I'(z+1)=zT(z), 1.c. the difference equation 1, ,; =xu,,
inasmuch as Legendre’s tables of the values of the Gamma
function are derived from this series and others obtained from
it. And in default of direct derivation of the series from
the integral itself, some doubt might be felt as to whether
Legendre’s tabulated results were the values of the integral
itself or the values of the integral multiplied by some periodic
function of z whose period is unity, which, as explained in
Art. 863, would equally be a solution of the difference equation.

* De Morgan, Diff. Calc., p. 584.
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946. From De Morgan’s investigation given above, the
formal identification of I'(z+1) with II(z) for all positive
values of #, may proceed as follows:

H(x)=Lt,.=m#’/(l+§)<l +’2f) (1 +%);
. log II(a:)=Lt“=,,[x log ,‘—log(1+";)_1og (1_*_;)_

—log (1+E)]

and if z<1, =—-yw+%z”—-%’z’+...;

. II(z)=T'(z+1) if z<<1 and positive.

If z lies between 1 and 2, say z=1+¢, then, since
andIII‘gig?—_?li?)IrI‘((ﬂg)} and TI(¢)=T'(14+£) (0<£<1),
it follows that II(14£)=TI'(2+¢),

.e. II(z)=T"(1+4z) when « lies between 1 and 2.
Similarly if z lies between 2 and 3, ete.

Hence, for all positive values of z, II(z) and I'(1+2) are
identical.

a
947. The Integration of J‘ e~ "v"dv, (@ not infinite, n> —1).
0
In considering the-integration of e~*v"dv between limits
0 and a, where ¢ is not infinite, we must have recourse to either
(1) an expression in series
or (2) a continued fraction.
= e"v"dv— = A re—"v"“dv
[ n+1]p 'n +1
e—a an+l &
n +l e 7 T TR n + 1 n+l ’
and by the continued use of this rule,

: o agmHl l: & a? a’
STIRET n+1 n+2 (n+2)(n+3) (n+2)(n+3)(n+4)
+...adinf.:|,
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a series which is always convergent for any finite value of «,
but only slowly so if @ be > 1. A little consideration will
show that the integral remainder is ultimately infinitely small.
Or we may proceed thus:

Let Ja= cme—"v"dv=[—e—"v" m-i—nJ,,_,

=e¢~%a"+nd,_,;
whence

J e“’a”[l-*-n+"(n 1)+ iy n(n /—1)...(n—r+.1):|

a
+n(n—1)...(n—7)d,_, ;.

If » be a positive integer, the integration can be effected in
finite terms. But if » be negative or fractional, the series on
the right-hand side is divergent if continued to infinity what-
ever ¢ may be. The terms however ultimately take alternate
signs, and when such is the case, and when there is convergence
for a certain number of terms, and then ultimate divergence,
we can apply the principle adopted in Arts. 938, 941, the
convergent part making a continual approximation to the
arithmetical value of the function under consideration, and
the error being less than the first term omitted.*

If then J, be thus approximated to,

I”=—[:e—°v"dv=(j: —I:) e~vvndy,

and I,=T'(n+1)—J,.

948. (2) De Morgan has shown how such an integral as f e~"v"dv can
be converted into a continued fraction.

‘When this is done/ e~v"dv=I"(n+1) —f e~"v"dv, as before.

Let f -*y"dv=e-vv" V, where V is some function of v.

Then differentiating with regard to »,
—e"v=e~"v"V'+ne-"v I V—-—e""V;
LoV +nV —ovV=—v,
or vVW'=(v-n)V-o
Consider the equation
VW (O G RY = O POVR [0 s v siinnnsisasned (1)

*De Morgan, Differential Calculus, p. 226 and p. §90.
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Putting V= V we derive an equation
1+Icl 1
Oy =0 ) W = Ug g S s, v ocaensnvassasnes (2)
where by—ay=ky, by=ky=b—a,, ay=—(ay+1).
Putting V‘__V' in equation (2), we derive an equation
14k, -2
vV2'=(v S B R B P S SRS (3)
where by—ay=ky, by=ky, as=—(az+1),
and so on.
r_ 1 kv kgt kvt
Tho Pl TR0 1 o
In our case
a;=mn, b =0, b= -n=b,;
a,= —(1+mn), by=—-n, ky=1=by;
az=mn, b3=]) k3=_(n_1)=b4;
a=—(n+1), by=-(n-1), ky=2=0b;;
a=n, b;=2, kg=2-n=b;;
ete. ;
whence
X ~ceun[[ 1 nvt vt (=1)vl 207 (n— 2)0-! ]
formdmeel o S =000 ete.

The expression converges rapidly for large values of .
The process above employed by De Morgan is similar to that employed
by Boole, Differential Equations, p. 92, in the solution of Riccati’s equation

d .
xd—i—ay+by’=cm ;
The equation we have just®solved is a very similar equation, viz,

d
xd-%+a,y—b,y’= -z +xy.

949. More generally, consider the differential equation

P1Qy+ Ry +8% =
where P, @, R, 8 are functions of x alone.
Let X,=Az", X,=B2f X,=0C2" etc.
Take yy, ¥2, ¥s, ... successive new dependent variables, such that
Xy X, X,

' l+?/l :’/l=1+y’1 Yo= 1+y1 ete.

Then when 4, B, C, ... q, f3, ¥, ... have been properly determined, we have

Ax* BxP Ca¥
LR B G E sk

viz. a solution in the form of a continued fm.ct,xon. [Lacrorx, t. IT., p. 288.]
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DEVELOPMENT IN FACTORIAL SERIES. 133

To begin with, using accents for differentiations,
X(1+y,) - Xy,
(I+y,)* :

. P+Qo1 X, LR X,? X (1+y1) - Xay'y _ =0,

e (A e (EEA L
ie. (P+QX,+RX2+8X")+(2P+QX,+8X")y,+Py,>—8X,y',=0,
or P1+Qxflx+ Ry 2 +8,91=0,
where P,= P+QX,+ RX>+8X’,,

Q,=2P+QX, +8X’,,,

R,= P,

8y

ST,

At the second substitution, viz. y,=
becomes

lfJ the differential equation
Py+Quya+ Byud +8,9,=0,

where P,, @,, R,, 8; ave formed from Py, @, R,, 8, in the same way as

the latter were formed from P, @, R, S, and so on.

Again assuming the expansion of y in powers of # to be of the form
Axe+ Apetl4 ... and the expansion of y, to be BxB+ ByB+14..., and
so on, we can by substitution in the several differential equations they
satisfy obtain the values of 4 and a, B and f3, etc., by an examination of
the lowest order terms occutring, and thus express y in the form of a
continued fraction.

950. Development of v (a+x) Edi log I' (@ +a) in a Factorial
Series.
Since

AY(a+2)=ylatz+1) =y (a +.z-)=dii[10g P(a+2+1)-logT(a+4)]

d 1
=& st a=gg
we have
1 1 (=)

& A8 Ll el (sl AL
AW (a+2)= Aa+l Tatz+1 atz (ata)(ato+1)’

Leagtilie o (-1)(-2)
A351/(a+z)—A”a+x “(at+ax)(at+r+]1)(atx+2)

and generally
At (a+2z)=A""1—

Let
2 zm
‘l’(a+x)" 0+A11’+A22'+A33|+ +Anny )

(1)1 (n—1)!
a+v T(ata)(ate+])...(a+z+n—1)

where 2 =2(x—1)... (x—n+1).
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20 22
Then AVr(a+:c)=A,+A,ﬁ+A3$+...,
xﬂh
AW (a+x)= A,+A,1 |+A,2,
ete.
Hence

Ag=y(a+0), A;=A¢(e+0), A;=A%(a+0),...etc
where A™r(a +0) means the value of A™(a+2) when z is put =0.
Hence
z la(z-1), 1z(z-1)(z-2)
et %h“r(“”) V@ +z-3a@r) T3 a@r)@r2)
_laz@-1)(z—-2)(z-3)
4 a(a+1)(a+2)(a+3)
a series which will terminate in the case when x is a positive integer
and is in any case convergent for real and positive values of z and a.

Tl

The value of yr(a), t.e. 0% log.I'(a), can be found for any particular
value of @ by means of the series
‘%log,I‘(z+ 1)=log,z+5—— =+~ ete.
of Art. 940.

951. In the case when a=1, we have
z 1lz(z- 1) 1 z(z-1)(x-2)

V(1 +2)=e(l)+ -3 =543 &
1z(z-1)(z—2)(z-3) 3)
g 41
and ~V¥(1)=1y (Euler’s constant).
Since Az™=nz"-1), this may be written symbolically as

1 1
Vr(l+x)-— —‘)’+A<K—'2—A‘+3'-As— >Z= '-‘y+A log(l+5) x,

. d E
t.e. d_:clog T'(l+z)=-y+Alog (Z)z.

952. Other properties of the y function are :
Since I'(x+1)=2I" (z), we have by logarithmic differentiation

S VI T R (@)
Since I'(2) I' (1 —x)=s~—-h:rn, we have similarly
Y(@) =P (1=2)= =T COLET. ceeeverirrrnneeennninnennd (b)
Since 2% I'(z) T (} +%)=2+/7 I'(2z), we have similarly
V(@) + (B +2)=2¢(22) —210g 2. .eeerriiiiiann, (¢)
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Since 2 I'(x) F(l 3 4 —c2o J%I‘ (2) we have similarly
Y(@)- w( ) (%) Hlog2+Ftan T )

Since I'(z) I‘(:: +;) I‘(z+%) e [y (z+n%l)=n""ﬂ(2'1r)l;—lr(nx),

we have similarly
Y(@)+¢ (x+l) +y (w+—2-)+ vty (:c+”;l)=m/z(m:) —nlogn. (e)

953. The equation A¢(a+z)=——i‘ is of considerable service in
summation of series.
1. A sum of the form
1 1 1 i
a—+b+m+m+... to m terms, viz.

can be written

o a-b
=ﬁ>,2A‘/’(—2F+) 2bZA¢(2b+')
1 -b n+1 41
sl )] -aL¥ (5+0)]]
Eg. (@) {+3+3+H+ by

15 =S avaan=1[va+n ] -y aem-va@)

®) -4 +i-}+adinf.
“13mmt3m
=130y (H+7) - 1SAYE+1)
=ifva+n] -tlva+n],
~Hy®-vd)
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But by (b)) (¢=3), V@)-y@)=r;

Gl o T
*. the series is=7,

which is well known otherwise, being Gregory’s series for tan—1.
3. Sum the series
8=}-3+3-1+}- adinf
Sl & il
i ke TRL

=3TAY (3 +7)-33A¢(1+7)
=i[va+a] -4[va+n]

=3y ) -y@)
Now by (¢) (v=4),  ¢()+¢F)=2¢(1)-2log2;
S ) -y(@d)=2log2;
- 8=log 2, which is well known otherwise.
We may note that it follows that
Y(B)=y(1)~-2log 2=~y -2log 2
= —05772157 - 1'3862944
= —19635101....
By (o) ¢ +¢ D=2y () -2log2=2{¢(1)~2log 2} - 2log 2
=-2y—6log2
and Y@ -y =m

Hence v = g —y-3log2,

‘ p(y=-5-y-3log2
and Y3)=—-y-2log2.

954. Gauss has established a remarkable result, giving for the function
V() the value of /(1 —2)+y(x) in a series of trigonometric terms in the
case when x is any commensurable proper fraction. This result taken with

V(1 —2)- Y (x)=mcotam
will enable us to calculate the value of Y(z) in all such cases.
The theorem is given by Bertrand in Art. 307 of his Calcul Intégral.
For shortness we shall denote

log z by lz, ¢(-;:> by ¥, cosrf by ¢, log4sin? Cg by ZL,.

2 -—
Then when B AR ATVINE, | g VI 1)"'"
: q q 3
Cq=Cyq=Cou=...=1; Coup=Coppp=...=C; C+C+...4+¢= ?c,=0.
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Writing the fundamental équation

Y (2)= Lt.._.,[logn—;—m—m-—...—ﬁ:m]as
P P e g aads W HT TR S

and putting x=§’ where r 3} ¢, and both are positive integers, we have

G e e DY

Taking r=1, 2, 3,... ¢ in this equation, multiplying by cos 6, cos 26,
c0s 36, ... cos g0 respectively, and adding, we get

icr‘l’r“’(i:crll i: Sy +(icrl‘ q+'c,.)+ +(écflﬁ—l—inqq+'c,)+...

Now the coefficients of log 1, log %, log 2, etc., all vanish and since ¢, =¢,,,
etc., the remaining terms form a continuous series to infinity, viz.

2 cr cq+1‘ CW-H‘ Gt oa r q 2?__*
q[i +iq+1+22q+r+ ] qZ log4sm L,,

~ ?”r‘/’r=§ Ll ’
viz. an equation connecting ¥y, ¥y, ¥g, ... Yo, Yq, the last of which terms

is \l/(%)::ﬁ(l): —7, where y is Euler’s constant. That is

eVt eVetes Vst e Vo= ng'f')’-

So far @ has stood for any of the quantities 27”, 4?1r, ss OF 2q 7 m. Say

the first. Then similar results will hold for the rest, we. if we take 26,
36,...(¢—1)0 in place of 6. We thus get g—1 linear equations from

which we can find xp(é), Y (%), ¢(q_—q—_l>’ viz.

it afatet Gt Gobeptot  Guber=8Li+y,
aat caatiit o op¥pt.t Cae ot t cNﬂ—l)‘lb«—l:%Lz"'y,

cs¥i+ coat...t+  CpV¥pt...t  Cygpiept...t ca(q—l\‘l'q—l'_“%La'*'Yy

CoaPr + veoFCgp ¥t oo HCgligpWgpt oo Clg—1)a—1¥e—1 =% -1ty

and in addition we have
coateaat..ot  Cup¥pt .o+ CapPop + oo+ O o= —(q— 1)y—gqlogg
which is merely a case of the identity (e) of Art. 952, for the coefficients

cos g6, cos 2¢6, etc., each =1.
To solve these equations we multiply them, and the identity, respec-

tively by ¢, Capy Caps o2+ Cops
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Now note that cyc, +cgycy, +e35¢3,+ .+,

of A, u (the last term being unity, since g6 =a multiple of 2r)

for any integral values

=3 %3 c(x+u)r+%$c(x—»)r ;

and that each of these sums is zero, except in the two cases A+p=a

multiple of ¢, and that in the cases we have to consider A and p each range

in value from O to ¢ —1. Hence the only cases of this kind are when A=p

or A=q—p, and both would happen if A=u=g-p, t.e. if ¢ be even, and
q )

A.=,U.=§.

and when ¢ is even and A=p=g, i;:c(x+“),+§é;c(x_“),=q.

The latter case will occur when, ¢ being even and therefore ¢—1 odd,
there is a middle term in the system of unknowns, viz. Y,=v,_,=y(3),
and the case need not be distinguished from the others. Thus, after multi-
plication by ¢,, ¢sp, ... ¢, and addition, the coefficients of all the unknowns
vanish except those of , and ¢,_,, and the coefficients of these termsare

each 12 ; and if ¢— 1 be odd and p=g , all vanish except that of y(}), which

is the middle unknown of the series, and the coefficient of this term will
be q.
And on the right-hand side we have

g(cl'Ll+clPLl+-"+clq—l)PLv—l)+7(cp+clP+'“+c¢P)—QchP -gqloggq.c,

=g(chl+“st+---+c(q-m=Lq—1)—9)"QIOEQ-

In the bracket, terms equidistant from the ends pair, but if ¢ be even
there will be an unpaired term left in the middle of the series. This term

is g cos %pe log 4 sin? 54—‘-9 which reduces, since gf=2m, to g(—1)"log 2.

Hence the right-hand side becomes

q(c,,Ll+c,,,L.+... +c,%1’L.,_;_1)—qy—qlogq (g odd),

or q(c,, Ll+c,,,L,+,..+cv_2PLq -g)—-qy —qlogg+gq(—-1)?log2 (q even).
2 2
We thus have

@=1/2

HI’(I _§)+ ¢(§)=2 { 12 eple—y— logq} (g odd),
(¢=272

or =9 ; c,,L,—y-—logq+(—l)"log2} (g even),

and this, as pointed out above with

¢(1 —g)—¢(§)=1r coth—)-tr,
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will enable us by addition and subtraction to obtain both

_1_’) and (2)
‘p( q 4 q
for any integral values of p and ¢ (p< g).

It will be observed that these theorems give the tangents of the

slopes of the curve y=log I'(x) at equal distances on opposite sides of
the ordinate at z=05.

Ex. If p=1, ¢=3,
Y@ - Y@= ot =T,

v(3)+ |//(§)=2[:—y—log3+cosg;—r'log4sinz§]
=2[—y-—log3—}log3]
=-2y-3log3;

s Sy il b I 7
o W@)=-y-glog3+ o, }

m
l//(é):‘~ —-y—%log!}—m.

955. LisT oF RESULTS.

As the results obtained in the present chapter are very
numerous and necessarily scattered over many pages in the
gradual development of the theory of Eulerian integrals, it
may be convenient to the reader to have the principal facts
arrived at collected together for ready reference. A synopsis is
therefore added in two groups, the second group referring

more particularly to the 1 function, which entails some
repetition.

Group I.
1. B(l, m)= B(m, l)=-‘.; 2Y(l—z)»1da. (Art. 857.)
9. If &, m be positivé integers, B, m)=%)—!
If I only be a positive integer,
B(, m)= L . (Art. 838.)

m(m+1)...(m+1—1)

Bl gl il &
3. B(, m)=L Trayeto=), (i de (Art.859 (2))

4. r (@ —b)-1(a—z)"t do=(a—by+"1B(l, m).
' (Art. 839 (4).)
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& P+1\n (91
3 r(®3)r ()
5. | sin?@cos?0df= (Arts. 859, 869.)
0 or (p_"'i_} 1)
F gin¥-10 cos?m-19 2
i st bty 0= g B m).  (Arts. 850, 860

7. F(”)=r$"“le"‘dx P—]f?=j xn-le—kzdy,
0

(1+7) Ls.

P10 Y Yo @)= Lpm oy 0 9) o i )
(Arts. 854, 864, 874, 889.)

8. I'(n+1)=nI'(n)=II(n).

O(n+1)=(n+1)II(n). (Arts. 860, 890.)
9. T })=Vr=II(—3) (Arts. 864, 882.)
10. I'(@)T'(1 —z)=m cosec zm =II(—2)II(z—1).

I'(1+42) I'(1—z)=2xm cosec 2. (Arts. 872, 893.)
11. j:%dx:gmlt; (0 < 1<), (Art. 871.)

1\ . /2) /3 1\ @emT

12. r()r(G)r)...r )2('T . (Art. 873)
13, nmr(z)r(m+1)r‘ a+2)...T (ot 1) I‘(na:)(21r) b,

P(x)r(x+§)—2,,_,1‘(2x) r(Bd )r(’““) I‘(p+1)

2
(Arbs. 903, 905.)
1.2.3..n

W Dhiee pen (Art. 877).
MY 5 1,y ot ;
15. ~/2n1r phe—n 2 2:;; ! b (Art. 884.)

16. y=0'57721566...=Lt,.=w<i+%+...+i~—logn>.
(Arts. 897,917.)

r+n fige ”_1 n
17. j " log I'(z) dz=1log [“'(’“)’“ (:v;rj:)" 1)=+ (2vr)f].
® ng+ g

(Art. 910.)
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18.

19,

20.

21.

22.

23.

24.

26.

27. 8,

28.

TABLE OF RESULTS. 141

d Tt
2108 T@=Ltaeo[log n— oy

By 2k’ 1 :
Ly RIS LN, T L AR TR TR £
y+(1 m>+<2 m+1>+ 4 i (Art. 911 (5))
‘ii;log I‘(a;)=l2+—ll—é+—_*—_l?—z+... ad inf.
& Al fet2) (Art. 911 (1))
f,'((:))—logn)=o. (Art. 911 (3).)

x? a8
logT'(1+2)=—yz+8, 3 -8, ]

Lt,,ﬂ(

5y L
+S‘E_"' 7
(Arts. 911, 916.)
log I'(1+4x)=4%log gi—%;r—t&nh-lm—}-(l —y)®

—(33—1)%3—(85f1)’i55_.... (Art. 919.)

Min. ordinate of y=TI'(z) is at =14G16.... (Art. 922).

log T @)= [@=Des- =571

s | g (Art930(6)

: ;1ogr(z) j ("Bﬁ—%_—ﬁ) dg; (Art. 925.)

gh & j:{e“ﬂ T W}dﬁ (Art. 930 (3).)

d‘fvﬂ log I'(x)=(— 1)"'[ g dB (m<2). (Art. 930 (9).)

bip S e ___IJ‘BP—le2
p—'ﬁ+§5+§,‘,+---———‘) = H a8,
2

Il

g R LB
ptetept =g o (p Lsth’B

s’—l _1_+_1_ j
2N T e 2F(p)ocosh,8

x n 62'5— j 21;—16-15
Bans (2 — 1)72",[0 sinh 8 AT 44 o sinh 7@ @B,

dB. (Arts. 928,929.)

PED! (;)2,.“]0 5(;%:3 dg. (Art. 929.)
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K 1 B, du, By d*u, , By d® Uy
o 2““_C+I“’ —3%t g gy 41 i@ T 6! dP

(Art. 931.)

d
30. —leog I‘(z+1)=logx+2z 2a:2+

By 1

a0 i S |
g b0 on

B, 1
—(Cr Gy an® <6<
(Art. 940.)

31. logT'(z+1)=4%log 27+ (zv-+3)log z—z+ IB—‘2 i-s—%zl—;s+

an—l 1 n -an+l 1
@n—-1)2n 7TV Gy @nyz) 70 ©
0<O0<1). (Art. 940.)

32 M sk 139 7 i TR
" 2wz ate® 12x 2(1295)z 3012z 120(12z)F " "

See also No. 15.  (Art. 942.)

+(=1p

956. I1I. Group OF » FORMULAE.
Since the +-function, viz. \b(x)—- log I'(z), is a very

interesting function, and very useful in itself, we gather
together the principal results which refer to this function
in particular.

I'(z) 1 1
1 \/,(z)_P( )-L ,.,w[lo n—i—m—...—m]
(Art. 911.)

2 Y(0)=—wm, Y(l)=—y, Y(14616...)=0, (x)=co.
(Arts. 911 (3), 922, 923.)

3. v @—¥W=(1—3)+ -5+ G-3)+

(Art. 911.)
4 \lr’(z)=l+——1-+—1—+ (Art. 911.)
i z* (:t;—}-l)z (z+2)* " i
5 1 _1\dB
s vo-| (TS5 %) o -malE

(Arts. 925, 930 (3) and (7).)
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10.

11

12.

13.

14.
15.
16.

176

18.

19.

20.

TABLE OF RESULTS. 143

. \//(z)=j:1£% dg. (Art. 930 (8).)
. \/,(x+1)=1ogz+2lz—272+4—z4—.... (Art. 940.)
Wen=2-Laa By (Art. 940.)
: ¢(z)+y_j S (Art. 944.)
\p(x)+y=j:]1— "t ( intogral). (Art. 944.)
\,b(l-{-a)—\[;(l—}-b):ﬁ t;—:tt:dt. (From 10.)
A\p(a+z)=a_}_—2} ; (Art. 950.)
Y@+ 1) =y (@)=;. (Art. 952.)
VY (1—2)— (x)="1m cot z. (Art. 952.)
Vv (3+2)— (3 —2z)=m tan z. (From 14.)
V(@) + V(3 +2) =24 (22)— 2 log 2. (Art. 952.)

V(@)— Jﬂ/,( 52) =t (5)+log2+3 tan’. (Art. 952)

Y@+ (o) +9 () oty (a7 00)
=n (nz)—n log n. (Art. 952.)

z lz@—1) lz(@-—1)(z—2)
a 2a(a+1)" 3a(a+ 1)(e+ o
(Art. 950.)

— ete.

V(a+z)=y(@)+

o

—1

=2 y(1)-log g+ z 008 227 Jog 4 sin? "] (godd)
7 (Art. 953.)

T .
=2|:\//(1)—log g+ > cos L e log 4 sin? %r]+(—— 1y 2log 2
X 1

(q even).
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1 30y Wy Bt ’
—1_1’+ﬁ+3—1’+4_‘;’+"' ad 'Lnf
up to p=35, which is the last in which the tenth decimal
place is affected ; all remaining ones to this approximation may
be regarded as =1. (De Morgan, D.C., p. 554.)

957. Table of Values of S,=

P S, to sixteen places of decimals.

;1 | 057721 56649 01532 9...+log o (Euler’s Const. + «)
2 | 164493 40668 48226 4

"3 | 1'20205 69031 59594 3 & 3

4 | 108232 32337 11138 2 Ty

5 | 103692 77551 43370 0 £

6 | 101734 30619 84449 1 g a

7 | 100834 92773 81922 7 8.2

8 | 1000407 73561 97944 3 g =~

9 | 100200 83928 26082 2 Tt A
10 | 1:00099 45751 27818 0 Sl 2
11 | 1:00049 41886 04119 4 HE 'S8
12 | 100024 60865 53308 0 e=) 8%
13 | 1:00012 27133 47578 5 £< gq
14 | 1:00006 12481 35058 7 N -
15 | 100003 05882 36307 0 Ra O i
16 | 1:00001 52822 59408 6 EE fge
17 | 1°00000 76371 97637 9 48 29
18 | 1-00000 38172 93265 0 By S
19 | 100000 19082 12716 6 g iR
20 | 100000 09539 62033 9 228853
21 | 1°00000 04769 32986 8 SEB&HES
22 | 100000 02384 50502 7 R
23 | 100000 01192 19926 0 =3 58S ™
24 | 100000 00596 08189 1 88l By 1
25 | 100000 00298 03503 5 T oE=%
26 | 100000 00149 01554 8 <8 8
27 | 100000 Q0074 50711 8 g e 8
28 | 100000 00037 25334 0 g% %
29 | 100000 00018 62659 7 W W
30 | 1:00000 00009 31327 4 R =
31 | 1:00000 00004 65662 9 oS
32 | 1:00000 00002 32831 2 =
33 | 1:00000 00001 16415 5 2%

34 | 1°00000 00000 58207 7
35 | 1:00000 00000 29103 8

PROBLEMS.

1. Show that (i) r(%)r(§)=f/—’%; (i) T(3) (3 =rt2t T(2).

2. Show that 3H{T'(3)}2==23 T(3).

3. Show that T(1) T(2) T(-3)...T'(‘9) =(3T6 .

9
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PROBLEMS ON GAMMA FUNCTIONS. 145
(2n — 1)/, where n is a posi-

4. Show that 2*T'(n+31)=1.3.5...
[Oxrorp II. P., 1888.]

tive integer.
5. Show that I'(3 — #) I' (3 + ) = (§ - 2?) 7 sec =z, provided
-l<22<1.

6. Show by means of the transformation 2y=wu, y=u + v, that

F TR i 20 Ll - vt DY Ol
.‘- 0 I o (1 —azyymin-l dedy = B(m, n).
[CoLL. ¥, 1901.]

1
7. By means of the integralj 2m=1(1 - 2%)ndx, prove that
0 .
1 ¢ | Ugmd § 1 g e B o
(myn!” (m+a)(n-1)! 11" (m+2a)(n—-2)12!" """ (m+mna)n!
a”
=m(m+a)(m+2a) oo (m+ma)’

[St. Joun’s, 1884.]

n!l"(%)

Show that this integral may be expressed as ~e——
ar (G +n+1)

8. Show that the product of the series
digla™Eal.  1iskid.0o 1
+ ete.

It 7te i Bt 76 O

q 1117 1.8 1 1.8 Bipak af g di e

i RO AL il |
[CoLLEGES a, 1883.]

9. Prove by the substitution 22 = ¢ that
i 1.3.5...(2n-1)
—x2 20 g — ook e Ssmbil e, e~ 222+
.‘-o e ende =\Jm - o 6 N L 22t g
where n is a positive integer.

[See also Art. 223 (5).]
10. Show that if X be any positive constant,
! e~ yl+m—1 d,,,

K (K—x 1
j J‘ =Y i1 ym—-l dx d]/ =j. ( | B ,v)l—l =1y . I
0 0

0 Jo
and by proceeding to a limit express B(l, m) in terms of Gamma
[Oxr. IL. P., 1902.]

[CoLLEGES a, 1890.]

functions.
11. Show that the sum of the series
1 1 mm+1) 1 mm+1)(m+2) 1
S e
n+4

2! n+3 3!
is I'(n+1)T'(1 = m)/T'(n—-m+2),

where n > -1, and m < 1.

m
n+1+ n+2

[CoLL. ¥, 1899.]
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¥
12. From the value in Gamma functions of | sin?@ cos?6dé,
show that i 43 ?
p+1 _) X =
wr (23 )r( t2) o yaT(p+1)
for all real values of p. [TrisITY, 1886.]

13. Prove thatj e—*dr=¢"2x 009811 nearly. [TrinTy, 1896.]
5
14. Prove that

(141) (o) (o)

I‘(n)-—— whe= : n)' 1+?)...toco
( +1) ( *3 ( 3/ [Oxrorp II. P., 1888.]

(1 +11_>".

(1 *r ) [OxForp IL. P., 1903.]

and T'(n+1)= l='I

15. Show that, when « is positive,
T(z) " "= "2l ]
T@+1) w<o22nln!z+n’
[MaTn. Trie., 1897.]

22-1B (z, ) =7

16. Prove that, if z be positive,
1.3.8 — (% T'(x)

1_.8
x(l +z)9<2+x)2.4(3+x>2.4.u e =e~/ L nz“)a

2 3 1
[MaTH. Trrros, 1897.]

Ed

17. Show that, when 2 is a real positive quantity not greater
than unity, ot 1
(@) =f@)+ E va(x+1)(x+2)... (x+m)

where f(2) is a function of # not greater than unity.
[MaTn. Trrpos, 1897.]

18. If » lie between zero and unity, prove that

x

J. (tan a)rdz = %——”—
3 sin——
2 [CoLL. a, 1890.]

19. Show that the perimeter of a loop of the curve " =a”cos n8 is

L 2
FrRIE)
n in n,

www.rcin.org.pl



PROBLEMS ON GAMMA FUNCTIONS. 147

20. Show that if z, y be a point on the ellipse z%/a®+y%/b*=1,
and 2r be the conjugate diameter, and the integral be taken round
the whole perimeter, then

1+1\)?2
9 S
j o ds= {F( . >} L
72043 P (Z +1) Tab’ [CovLEGES, 1892.]

21. Express in Gamma functions

1 1
j (1 —a™)n de.
0

[TriN1TY, 1896.]

22. Express in Gamma functions the area of the curve yc®=ax°
(¢ > 0) for positive values of z (0 to ), also the volume generated
by its revolution round the axis of z. [ST. Joux’s, 1883.]

23. If 2sinnr T'(n) ¢ (n)=2r)"p(1 —n){(-)» 1+ "1} where
«=+-1 and ¢(n) is some function of n, prove that

i b (g’) =i (n)

remains unaltered when 1 —# is written for n. [COLLEGES a, 1881.]
24. Prove that

e ! i) A 2 3¢ 4 1
L “"‘”=%[ﬁ PR ] WHES - P
[DE MoreaN, Difl. Cal., p. 591.]
25. Prove that
i vl vl ol 2071 201 3yl 3yt
I. 0 Sy [‘°8”+1+ iy gl T gl prg ey
[De MoRrGAN, p. 591.]
26. Prove that
} gz-1), la(@-1)(z-2)
1.%: "3 1 R
[DE MoORGAN, p. 593.]

—-logI‘(l+a:)— -y+2

27. If ¢(x)=g;: log I'(1 +2) and « be a positive integer, show that

@) =p(O) + 145 +3 4.4

Prove further that
$(0) =I e~*log  du,
0
and has a finite value. (L C. 8., 1898.]
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28. If (1+z)»=1+4x+42%+..., where n is any positive
quantity, prove that
‘)2n P(n ¥ l)
2 o 2 LT
1+A4.2+4°+... = ETm+l)
[MaTH. Triros, 1895.]
29. Prove that if

£(%)=F(0) +zf'(0) +§ () + ot 2 f(6),
rf"«m ip DO DT (" @)

0 Tn+r) Jo 2" %

r being any positive quantity.
[If » > 1 both integrals generally = .]
[WoLSTENHOLME, Educ. Times. ]

30. Prove by changing the order of integration or otherwise

that < dy (vS@IE_
[ 25 G- ve-ron.

[MArH. TrIPOS, 1875.]
31. Show that

an niz" (n+1)%"
de  z n+l(n+1)(2n+1) Cn+1)(3n+1)
j1+1-"_1+ 1+ I+ 1+
(2n)%n (2n + 1)%n
Bn+1)(4n+1) (4n+1)(5n+1)
1+ 1+ ete.

[Lacroix, Calc. Diff., vol. ii., p. 292.]

Deduce expressions forJog 1 +z and tan~'z as continued fractions.

32. Prove that
® 3 2o
1}”(1 +Z—3) =273/ () I' (z0) I' (z0?), where w=¢3 .
[ST. JouN’s, 1891.]
33. Evaluate the modulus of I'(} +V — 1a). [Smrre’s Prize, 1875.]
34. Show that for very large integral values of n, I'(n+1) is
very nearly the geometric mean between I'(n) and I'(n +1).
[OxForD, 1892.]
35. 1f b be a large whole number, show that, provided z > - 1,
(z+1)(@+2) .., (x+b)= lr‘rgi—i%, very nearly.
[DE MoreAxN, Diff, Calc., p. 585.]
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36. Writing ¢(x) =e?. 2!/J/2r 2+}, prove by the aid of Wallis’
theorem that ¢ (2z)=|¢(x)]? when z is large.
Then show that for any value of z,

(a) 4’(16) =e—1+(z+})|og(1+1;).

$(z+1)
® tog gt = et o gy
@ Fogn <™ @ Yog g < Ty
) f((‘,?) x3+(xf1)2+(m21)2+ (in—ll)z'

where 00, 0., 6,, ... are numbers between 0 and ;.
(@) _ 2
(f) ¢(5) )—e (0<0<T7)
and finally deduce Stirling’s theorem,
1.2.3...2=2re 22 (]l + ),

where ¢, denotes a positive quantity which vanishes when z=c0.
[SErRET, Calc. Intéy., p. 207.]

37. Show that, if z be a whole number,
logT(z+1)=1log 27 —z+ (z+3)logx

e ieste)- ]

[GUDERMANN.]

38. Show that :
1.2.3...2>J2rx 2% and <mﬂe—x+m

when z is large. [SErRET, Calc. Intég., p. 213.]
39. Writing
! 7 pymn+1 m| o n
$() = Lt "X )=, and w,= R L‘%)l’
(mn)!m *
prove that

S
2

Uy = "), Uy= f\/(—z)—\/"w, é(n) =nt (27)
Hence deduce Gauss’ theorem,

nmI‘(x)I‘<z o ) I‘(a:+

> — (27) T niT (na).

[SERRET, Oalc. Intégral, p. 190.]
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40. Prove that

2 1 (-1)n 11 ” P
2l’{(::;+1')" 7"} T'(n) (logv) 1dv.

[Cf. DE Moraax, Diff. C., p. 594.]
41. Prove that

ilogI‘(z):logx+j { (l+t)"‘}dt
dx o
1 oz 11 T
and tht\,t: I‘—(ﬂ;ﬁ—) =€ "I=Il <1 +’ﬁ) € ‘],
where C is a certain constant. [MaTs. Trreos, Pt. II., 1915.]
42. If the binomial expansion for a positive index be written
(@+by=3 <:f) @b,
/n
show that 2\1.)]}(7b—’l‘+1, r+1)=1.
Prove also that
2w o L (DT (a0 (B (e
3J3‘1+ 31 5 +GF T
43. Show that (1000)! lies between
4:02387 x 102567 and 4:02388 x 102567,
and is a number with 2568 figures in the ordinary system of

numeration, its logarithm being 2567:6046442... .
[CourNoT, T'héorie des Fonctions, vol. ii., p. 472.]

44. Show that if
B B

log T'(z+ 1) =log /27 + (x + 1) log z — g 47 al B st
4 B R
S = IR oo VR I P e (TN
D m Ty Ewaa S @y
then R=j ¢~ "+ (Ga) da,
0

where f(a)= eaa; i

[LiouviLLE, Journal de Mathématiques, Tom. iv., p. 317.]

and 6 is a positive proper fraction.

If A,,+, be the maximum numerical value of f?"+?(a) between the
limits a =0, a=2%, show that
R Nonss 1
@n+2)l < @+ l)(2n+2)
and examine the nature of the approximation attained by the
omission of all the terms which contain Bernoulli’s coefficients.
[L1oUVILLE, J. de M. ; also CourNot, Théorie des Fonclions, p. 474.]
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45. Starting with
i _, e B-—e-*]df
lOgF(z)=I0 [(m—l)c B— ——l—_—'é'j'ﬁ— 73—

=,[ (P+Qe~=F) dp, say,
0
and putting R for the two terms with negative indices in the

development of ¢ in ascending powers of §, namely /%-l- 91,3’ let

Flz)= r (P+Re-=#)dB and () =r (Q - R)e-*8dp.
Then show ‘Lhat :
(1) (3)=} log 5. (2) F@)=}log>r.
(3) F(x)- FA)=1-z+(x-)logz. (4) I'(z)=e-%a=-1/2r en(a),
(5) That when z is large ¢@(@) differs but little from unity.
(6) logT'(x+1)=2log 2w+ (x+1)logz -2

& 1 Binl ap
sl Byl 211 Sl 0
+.[o (]_e—ﬁ B 2)8 it s
(7) Deduce the equation,

logT'(z + 1) =1 log (27) + (z+ %) log z — T+ l_z aud Wy

n— B ~1 1 n B2n+1 1
o 9t l(21; —nl) m xl"—1+( 1) Zn+1)(2n+2) xz"“e’

0<B<l. [BERTRAND, Calc. Intégral, p. 265.)

46. Show that

1) r(l_a 4 ﬁ ¢-Bdp.

) log T(z+1)= r { "‘:’:’}dﬁ.

[ToDHUNTER, Int. Calc., p. 392.]

47. If 4, be the acute angle whose tangent is the n** power of

the reciprocal of the 7** of the prime numbers 2, 3, 5, ..., show that
cos 24, cos 2.4, cos 24, cos 24 =2 Bin {(on)y e
24, c0824,c0s244c0824, ... to B2 (an)l

[MaTH. TrIPOS, 1897.]

where B, is the »'* number of Bernoulli.

48. If I= :J-—l_d—if_—xa, show that
r@)=ntotstsl, r@)=nt2isin,

@) =r'28371r Y, 1(g)=nbols it
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L da 1 xdx
49. 1f I= L T and J= [ ZEE, show that
()= ,‘_r‘og%kﬁsl-%sfl LY ()= #p’xﬁg;bg;iji‘]k,

I'(3%)= 199~ eesﬁiSl%S{lS}I%J_%, T (%)= he 2-%%%5;%5;%1-{]{
o G- S0 b e O, 4_11'
where S, =sin 10° Sy =sin 10’ Sy =sin 10° Sy=sin 16°

and write down the values of I'(y%), I'(%), I'(:%) T'(%) in
similar form.

0 4
50. Show that j a?(log (1 +¢%) - ] "“;%'
0

[Oxrorp I. P., 1914.]

51. Prove that the volume in the positive octant bounded by the
planes =0, y=0, 2=/ and the surface z/c =a™/a™ + y™/l™ is equal to

ot (T
g e b

[MaTtH. Tr1p., ParT II., 1913.]

52. Prove that e “’ {#(2)} —TI e~V (z + 2yh) dy,
and apply the result to prove that if 1+ 44k be positive,
[ Kzt
¢ dz'{u_w} et Al e T4 4hk
(1 + 4hk)?
- [MaTtH. TrIP., 1870 (WOLSTENHOLME).]

53. When = is a positive integer, we have evidently
12638 Bp22% 1] 39 . in. 3. 28 80— 1)

prove that this equation, when expressed by means of the function
T, is true for any positive value of n. [Sir G. G. StoxEs, S. P., 1870.]

54. Prove that the limiting value of

" s (2n+ 1)»
e T 1)
when 7 is indefinitely increased, is log 2. [R. P.]
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But there is this difference between the functions

1 BRGNS i
b= 1)z +2) ... e+ )"
that though they coincide in value for all positive values of z,
the former becomes infinite at the values a=-—1, z=—2,

=—38, etc., but has finite values for other negative values of

z, whilst the definite integral is permanently infinite for all
negative values of 1.

Lt

and je‘”v"dv,
0

888.' That the factor form has finite valu;as, when p becomes infinitely
large, for negative values of # between the asymptotes may be made
clear by taking a case. Take r= —3.

1523 opui -3
Then Lty=o 1)(1) ?ﬁ) (2"‘_3)54,
(’é 2 (2 i )
o 286690 1
—““1.1.3.5 .(2n=3) ut
Lin 22,42, 62... (2u)? (2u—-1)

1.2.3.4...(20-3)(2n-2)(2—1)(2p)
(VZprr pre ) (2u-1)

e |

AR R
2ng—2
Ndpr (2p) e ,u.%
Rk T e L
SN 1
oy 5 : IS
Similarly at = -3 the corresponding limit is i3 N,
ata= P the corresponding limit is — 1 T
RIS ROEADR BB Sl

and so on.
These mid-ordinates, half way between the successive asymptotes, thus
form a regular descending series

g oo oy g iy i
-1vm 73vm -

o4
1.35. 7~/1r, etec.

889. It is worth noticing that IT(z, x) may be written as

b T .
@+ D) (@+2)z+3)... @+

HIBIM AN G
<1+i)(1+§)(1+g)...(1+z) 1

I (=, M):

lll
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