CHAPTER XXV.

LEJEUNE-DIRICHLET INTEGRALS, LIOUVILLE INTEGRALS, ETC.

958. We have seen that the formula (i_{1} and i_{2} both $+^{\text {ve }}$)

$$
\int_{0}^{1} x^{i_{1}-1}(1-x)^{i_{2}-1} d x=\frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}\right)}{\Gamma\left(i_{1}+i_{2}\right)}
$$

leads at once, by putting y for $a x$, to

$$
\int_{0}^{a} x^{i_{1}-1}(a-x)^{i_{2}-1} d x=a^{i_{1}+i_{2}-1} \frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}\right)}{\Gamma\left(i_{1}+i_{2}\right)}
$$

Now, consider the double integral

$$
I=\iint x_{1}^{i_{1}-1} x_{2}^{i_{2}-1} d x_{1} d x_{2}
$$

for all positive values of x_{1} and x_{2}, which are such that their sum cannot be greater than unity.

Fig. 321.
Then the limits for x_{2} must be from 0 to $1-x_{1}, x_{1}$ remaining constant in the integration with regard to x_{2}, and the limits for x_{1} will be from 0 to 1 .

The geometrical interpretation is that we are adding up all such products as $x_{1}^{i_{1}-1} x_{2}{ }^{i_{2}-1} \delta x_{1} \delta x_{2}$ as lie within the triangle formed by the axes $O x_{1}, O x_{2}$, and the straight line $x_{1}+x_{2}=1$. We use this notation rather than the ordinary $x-y$ notation for Cartesians, because we propose to generalise the theorem for any number of variables. The limits must then be such as to add up all elements in a strip $N Q$ parallel to the x_{2}-axis, i.e. x_{2} increases from 0 to $1-x_{1}$, and in summing the strips, x_{1} increases from $x_{1}=0$ to $x_{1}=1$.

Then $\quad I=\int_{0}^{1} x_{1}^{i_{1}-1}\left[\frac{x_{2} i_{2}}{i_{2}}\right]_{0}^{1-x_{1}} d x_{1}=\frac{1}{i_{2}} \int_{0}^{1} x_{1}^{i_{1}-1}\left(1-x_{1}\right)^{i_{i}} d x_{1}$

$$
=\frac{1}{i_{2}} \frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}+1\right)}{\Gamma\left(i_{1}+i_{2}+1\right)}=\frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}\right)}{\Gamma\left(i_{1}+i_{2}+1\right)} .
$$

959. Take next the case of the triple integral

$$
I=\iiint x_{1}^{i_{1}-1} x_{2}^{i_{2}-1} x_{3}^{i_{3}-1} d x_{1} d x_{2} d x_{3}
$$

for positive values of x_{1}, x_{2}, x_{3}, such that $x_{1}+x_{2}+x_{3} \ngtr 1$.

Fig. 322.
The geometrical interpretation is that we are to add up all elements such as $x_{1}{ }^{i_{1}-1} x_{2}{ }^{i_{2}-1} x_{3}{ }^{i_{3}-1} \delta x_{1} \delta x_{2} \delta x_{3}$ which lie within the tetrahedron bounded by the coordinate planes $x_{1} O x_{2}, x_{2} O x_{3}$, $x_{3} O x_{1}$ and the plane $x_{1}+x_{2}+x_{3}=1$.

Then dividing by planes parallel to the coordinate planes in the same way as explained in previous chapters, we have first to integrate with regard to x_{3}, keeping x_{1} and x_{2} constant, that is, for all values of x_{3} which lie between $x_{3}=0$ and $x_{3}=1-\mid x_{1}-x_{2}$, which, interpreted geometrically, means the addition of all elements which lie in an elementary prism parallel to the x_{3}-axis and whose ends lie respectively in the plane of $x_{3}=0$ and the plane $x_{1}+x_{2}+x_{3}=1$. Then, keeping x_{1} constant, we have to integrate for all values of x_{2} from $x_{2}=0$ to the value of x_{2} which makes $1-x_{1}-x_{2}$ vanish; which means that we are to add up all the prisms which lie in a thin slice parallel to the plane of $x_{1}=0$. Finally, we are to integrate from $x_{1}=0$ to $x_{1}=1$, which means that we are to add up all the slices within the tetrahedron.

Then $I=\int_{0}^{1} \int_{0}^{1-x_{1}} \int_{0}^{1-x_{1}-x_{2}} x_{1}^{i_{1}-1} x_{2}^{i_{2}-1} x_{3}^{i_{3}-1} d x_{1} d x_{2} d x_{3}$

$$
\begin{aligned}
& =\int_{0}^{1} \int_{0}^{1-x_{1}} x_{1}^{i_{1}-1} x_{2}^{i_{2}-1} \frac{\left(1-x_{1}-x_{2}\right)^{i_{3}}}{i_{3}} d x_{1} d x_{2} \\
& =\int_{0}^{1} x_{1}^{i_{1}-1} \cdot \frac{B\left(i_{2}, i_{3}+1\right)}{i_{3}}\left(1-x_{1}\right)^{i_{2}+i_{3}} d x_{1}
\end{aligned}
$$

[by applying the result $\int_{0}^{k} x^{i_{1}-1}(k-x)^{i_{2}-1} d x=k^{i_{1}+i_{2}-1} B\left(i_{1}, i_{2}\right)$].
Hence

$$
\begin{aligned}
I & =\frac{B\left(i_{2}, i_{3}+1\right)}{i_{3}} \cdot B\left(i_{1}, i_{2}+i_{3}+1\right) \\
& =\frac{\Gamma\left(i_{2}\right) \Gamma\left(i_{3}\right)}{\Gamma\left(i_{2}+i_{3}+1\right)} \frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}+i_{3}+1\right)}{\Gamma\left(i_{1}+i_{2}+i_{3}+1\right)}=\frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}\right) \Gamma\left(i_{3}\right)}{\Gamma\left(i_{1}+i_{2}+i_{3}+1\right)} .
\end{aligned}
$$

960. Similarly, in the case of four or more variables; but geometrical interpretation fails. It is, however, clear that if we are to integrate

$$
I=\iiint \int x_{1}^{i_{1}-1} x_{2}^{i_{2}-1} x_{3}^{i_{3}-1} x_{4}^{i_{4}-1} d x_{1} d x_{2} d x_{3} d x_{4}
$$

for positive values of $x_{1}, x_{2}, x_{3}, x_{4}$, which are such that

$$
x_{1}+x_{2}+x_{3}+x_{4} \ngtr 1 \text {, }
$$

(1) when x_{1}, x_{2}, x_{3} are kept constant, x_{4} will range from $x_{4}=0$ to such value of x_{4} as will make

$$
1-x_{1}-x_{2}-x_{3}-x_{4}
$$

zero, i.e. from $x_{4}=0$ to $x_{4}=1-x_{1}-x_{2}-x_{3}$.
(2) Having integrated with regard to x_{4}, we now keep x_{1}, x_{2} constant, and in integration with regard to x_{3}, x_{3} must vary from $x_{3}=0$ to such value as will make $1-x_{1}-x_{2}-x_{3}$ vanish, i.e. x_{3} must not exceed $1-x_{1}-x_{2}$, i.e. the limits are 0 and $1-x_{1}-x_{2}$.
(3) Integration with regard to x_{4} and x_{3} having now been completed, x_{1} is to be kept constant whilst integration with regard to x_{2} is effected, and x_{2} must range from $x_{2}=0$ to such a value as will not make $1-x_{1}-x_{2}$ negative, i.e. x_{2} must not exceed $1-x_{1}$. The limits are therefore 0 and $1-x_{1}$.
(4) Finally, the limits for x_{1} are 0 to 1 .

Hence

$$
\begin{aligned}
I & =\int_{0}^{1} \int_{0}^{1-x_{1}} \int_{0}^{1-x_{1}-x_{2}} \int_{0}^{1-x_{1}-x_{2}-x_{3}} x_{1}^{i_{1}-1} x_{2}^{i_{2}-1} x_{3}^{i_{3}-1} x_{4}^{i_{4}-1} d x_{1} d x_{2} d x_{3} d x_{4} \\
& =\int_{0}^{1} \int_{0}^{1-x_{1}} \int_{0}^{1-x_{1}-x_{2}} x_{1}^{i_{1}-1} x_{2}^{i_{2}-1} x_{3}^{i_{3}-1} \frac{\left(1-x_{1}-x_{2}-x_{3}\right)^{i_{4}}}{i_{4}} d x_{1} d x_{2} d x_{3} \\
& =\int_{0}^{1} \int_{0}^{1-x_{1}} x_{1}^{i_{1}-1} x_{2}^{i_{2}-1}\left(1-x_{1}-x_{2}\right)^{i_{3}+i_{4}} \frac{B\left(i_{3}, i_{4}+1\right)}{i_{4}} d x_{1} d x_{2} \\
& =\frac{B\left(i_{3}, i_{4}+1\right)}{i_{4}} \int_{0}^{1} x_{1}^{i_{1}-1}\left(1-x_{1}\right)^{i_{2}+i_{3}+i_{4}} B\left(i_{2}, i_{3}+i_{4}+1\right) d x_{1} \\
& =\frac{B\left(i_{3}, i_{4}+1\right)}{i_{4}} B\left(i_{2}, i_{3}+i_{4}+1\right) B\left(i_{1}, i_{2}+i_{3}+i_{4}+1\right) \\
& =\frac{\Gamma\left(i_{3}\right) \Gamma\left(i_{4}\right)}{\Gamma\left(i_{3}+i_{4}+1\right)} \cdot \frac{\Gamma\left(i_{2}\right) \Gamma\left(i_{3}+i_{4}+1\right)}{\Gamma\left(i_{2}+i_{3}+i_{4}+1\right)} \cdot \frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}+i_{3}+i_{4}+1\right)}{\Gamma\left(i_{1}+i_{2}+i_{3}+i_{4}+1\right)} \\
& =\frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}\right) \Gamma\left(i_{3}\right) \Gamma\left(i_{4}\right)}{\Gamma\left(i_{1}+i_{2}+i_{3}+i_{4}+1\right)},
\end{aligned}
$$

and the rule indicated obviously holds for any number of integrations, viz.

$$
\iiint \ldots \int x_{1}^{i_{1}-1} x_{2}^{i_{2}-1} \ldots x_{n}^{i_{n}-1} d x_{1} d x_{2} \ldots d x_{n}
$$

for positive values of the variables such that their sum does not exceed unity $=\frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}\right) \ldots \Gamma\left(i_{n}\right)}{\Gamma(\sigma+1)}$, where $\sigma=i_{1}+i_{2}+\ldots+i_{n}$.
961. An Extension.

Similarly, if the limiting equation had been

$$
\left.x_{1}+x_{2}+\ldots+x_{n} \ngtr c \quad \text { (instead of } \ngtr 1\right),
$$

the limits would have been,
for x_{n}, from 0 to $c-x_{1}-x_{2}-\ldots-x_{n-1}$;
for x_{n-1}, from 0 to $c-x_{1}-x_{2}-\ldots-x_{n-2}$,
etc.;
but we may deduce the result from that already obtained by putting so that

$$
\begin{gathered}
x_{1}=c x_{1}^{\prime}, \quad x_{2}=c x_{2}^{\prime}, \text { etc. }, \\
x_{1}^{\prime}+x_{2}^{\prime}+\ldots \ngtr 1 .
\end{gathered}
$$

Thus we obtain

$$
\begin{aligned}
I & =c^{\sigma} \iint \ldots \int\left(x_{1}\right)^{i_{1}-1}\left(x_{2}^{\prime}\right)^{i_{2}-1} \ldots\left(x_{n}\right)^{i_{n}-1} d x_{1}^{\prime} d x_{2}^{\prime} \ldots d x_{n}{ }^{\prime} \\
& =c^{\sigma} \frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}\right) \ldots \Gamma\left(i_{n}\right)}{\Gamma(\sigma+1)}, \text { where } \sigma=i_{1}+i_{2}+\ldots+i_{n}
\end{aligned}
$$

962. Dirichlet's Theorem.

We are now in a position to establish a remarkable theorem due to Gustav Peter Lejeune-Dirichlet,* who was successor to Gauss at Gottingen in $1855 . \dagger$

The theorem is known as Dirichlet's Theorem, and is of great use in analysis.

The theorem is that when there are any number of variables $x_{1}, x_{2}, \ldots x_{n}$, and integration is conducted for all positive values limited by the condition

$$
\left(\frac{x_{1}}{a_{1}}\right)^{p_{1}}+\left(\frac{x_{2}}{a_{2}}\right)^{p_{2}}+\ldots+\left(\frac{x_{n}}{a_{n}}\right)^{p_{n}} \neq 1,
$$

then

$$
\begin{aligned}
I \equiv & \equiv \iint \ldots \int x_{1}^{i_{1}-1} x_{2}^{i_{2}-1} x_{3}^{i_{3}-1} \ldots x_{n}^{i_{n}-1} d x_{1} d x_{2} d x_{3} \ldots d x_{n} \\
& =\frac{a_{1}^{i_{1}} c_{2}^{i_{2}} \ldots u_{n}^{i_{n}}}{p_{1} p_{2} \ldots p_{n}} \cdot \frac{\Gamma\left(\frac{i_{1}}{p_{1}}\right)\left(\frac{i_{2}}{p_{2}}\right) \ldots \Gamma\left(\frac{i_{n}}{p_{n}}\right)}{\Gamma\left(\frac{i_{1}}{p_{1}}+\frac{i_{2}}{p_{2}}+\ldots+\frac{i_{n}}{p_{n}}+1\right)}=\frac{\prod_{1}^{n}\left\{\frac{a_{r}^{i_{r}}}{p_{r}} \Gamma\left(\frac{i_{r}}{p_{r}}\right)\right\}}{\Gamma\left(1+\sum_{1}^{n} \frac{i_{r}}{p_{r}}\right)},
\end{aligned}
$$

the several quantities $i_{1}, i_{2}, i_{3}, \ldots i_{n} ; a_{1}, a_{2}, \ldots a_{n} ; p_{1}, p_{2}, \ldots p_{n}$, being all positive, and Π denoting the product of the factors indicated.

[^0]The limiting equation $\left(\frac{x_{1}}{a_{1}}\right)^{p_{1}}+\left(\frac{x_{2}}{a_{2}}\right)^{p_{2}}+\ldots \ngtr 1$ may be made linear by the change of variables $\xi_{1}=\left(\frac{x_{1}}{a_{1}}\right)^{p_{1}}, \xi_{2}=\left(\frac{x_{2}}{a_{2}}\right)^{p_{2}}$, etc., which give $\quad \frac{1}{\xi_{1}} \frac{\partial \xi_{1}}{\partial x_{1}}=\frac{p_{1}}{x_{1}}, \frac{1}{\xi_{2}} \frac{\partial \hat{\xi}_{2}}{\partial x_{2}}=\frac{p_{2}}{x_{2}}$, etc., and

$$
J^{\prime}=p_{1} p_{2} \cdots p_{n} \frac{\xi_{1}}{x_{1}} \cdot \frac{\xi_{2}}{x_{2}} \cdot \frac{\xi_{3}}{x_{3}} \cdots \frac{\xi_{n}}{x_{n}}
$$

The transformed integral is then

$$
\begin{aligned}
I & \equiv \frac{1}{p_{1} p_{2} \cdots p_{n}} \iint \cdots \int \frac{x_{1}{ }_{1} x_{2} 2_{2} \ldots x_{n}^{i_{n}}}{\xi_{1} \xi_{2} \cdots \xi_{n}} d \xi_{1} d \xi_{2} \ldots d \xi_{n} \\
& =\frac{a_{1}^{i_{1}} 2_{2}^{i_{2}} \ldots a_{n}^{i_{n}}}{p_{1} p_{2} \cdots p_{n}} \iint \cdots \int \xi_{1}^{\frac{i_{1}}{p_{1}-1}} \xi_{2}^{\frac{i_{2}}{p_{2}}-1} \cdots \xi_{n}^{\frac{i_{n}}{n_{n}}-1} d \xi_{1} d \xi_{2} \ldots d \xi_{n},
\end{aligned}
$$

with the limiting equation $\xi_{1}+\xi_{2}+\ldots+\xi_{n} \ngtr 1$;
$\therefore I=\frac{a_{1}{ }_{1}{ }_{1} a_{2}{ }_{2} \ldots a_{n}{ }^{i_{n}}}{p_{1} p_{2} \ldots p_{n}} \frac{\Gamma\left(\frac{i_{1}}{p_{1}}\right) \Gamma\left(\frac{i_{2}}{p_{2}}\right) \ldots \Gamma\left(\frac{i_{n}}{p_{n}}\right)}{\Gamma\left(\frac{i_{1}}{p_{1}}+\frac{i_{2}}{p_{2}}+\ldots+\frac{i_{n}}{p_{n}}+1\right)}=\frac{\prod_{1}^{n}\left\{\frac{a_{r}^{i_{r}}}{p_{r}} \Gamma\left(\frac{i_{r}}{p_{r}}\right)\right\}}{\Gamma\left(1+\sum_{1}^{n} \frac{i_{r}}{p_{r}}\right)}$
as stated.
963. As before, if our limiting condition had been

$$
\left.\left(\frac{x_{1}}{a_{1}}\right)^{p_{1}}+\left(\frac{x_{2}}{a_{2}}\right)^{p_{1}}+\ldots+\left(\frac{x_{n}}{a_{n}}\right)^{p_{n}} \ngtr c \text { (instead of } \ngtr 1\right)
$$

we should have, after transformation as above,

$$
\xi_{1}+\xi_{2}+\ldots+\xi_{n} \ngtr c,
$$

and making the further transformation

$$
\begin{gathered}
\xi_{1}=c \xi_{1}^{\prime}, \quad \xi_{2}=c \xi_{2}^{\prime}, \ldots \text { etc. } \\
\xi_{1}^{\prime}+\xi_{2}^{\prime}+\ldots+\xi_{n}^{\prime}>1
\end{gathered}
$$

and the result would be

$$
I=\frac{a_{1}^{i_{1}} a_{2}^{i_{2}} \ldots a_{n}^{i_{n}}}{p_{1} p_{2} \ldots p_{n}} c^{\sigma} \frac{\Gamma\left(\frac{i_{1}}{p_{1}}\right) \Gamma\left(\frac{i_{2}}{p_{2}}\right) \ldots \Gamma\left(\frac{i_{n}}{p_{n}}\right)}{\Gamma(\sigma+1)},
$$

where

$$
\sigma=\frac{i_{1}}{p_{1}}+\frac{i_{2}}{p_{2}}+\ldots+\frac{i_{n}}{p_{n}}
$$

i.e. $\quad \quad \quad I=c^{\sigma} \prod_{1}^{n}\left\{\frac{a_{r}^{i_{r}}}{p_{r}} \Gamma\left(\frac{i_{r}}{p_{r}}\right)\right\} / \Gamma\left(1+\sum_{1}^{n} \frac{i_{r}}{p_{r}}\right)$.
964. Ex. Find the centroid of an octant of the solid bounded by

$$
\left(\frac{x}{a}\right)^{2 k}+\left(\frac{y}{b}\right)^{2 k}+\left(\frac{z}{c}\right)^{2 k}=1
$$

the volume-density at any point being given by $\rho=\mu x^{\prime} y^{m} z^{n}$.

Here

$$
\bar{x}=\frac{\iiint \rho x d x d y d z}{\iiint \rho d x d y d z}=\frac{\iiint x^{z+1} y^{m} z^{n} d x d y d z}{\iiint x^{2} y^{m_{2}} z^{n} d x d y d z}
$$

The Numerator $=\frac{a^{l+2} b^{m+1} c^{n+1}}{2 k .2 k .2 k} \frac{\Gamma\left(\frac{l+2}{2 k}\right) \Gamma\left(\frac{m+1}{2 k}\right) \Gamma\left(\frac{n+1}{2 k}\right)}{\Gamma\left(\frac{l+2}{2 k}+\frac{m+1}{2 k}+\frac{n+1}{2 k}+1\right)}$.
The Denominator $=\frac{a^{l+1} b^{m+1} c^{n+1}}{2 k .2 k .2 k} \frac{\Gamma\left(\frac{l+1}{2 k}\right) \Gamma\left(\frac{m+1}{2 k}\right) \Gamma\left(\frac{n+1}{2 k}\right)}{\Gamma\left(\frac{l+1}{2 k}+\frac{m+1}{2 k}+\frac{n+1}{2 k}+1\right)}$.

Hence

$$
\bar{x}=a \frac{\Gamma\left(\frac{l+2}{2 k}\right)}{\Gamma\left(\frac{l+1}{2 k}\right)} \frac{\Gamma\left(\frac{l+m+n+3}{2 k}+1\right)}{\Gamma\left(\frac{l+m+n+4}{2 k}+1\right)}
$$

In the case of an octant of a uniform ellipsoid $l=m=n=0, k=1$,

$$
\bar{x}=a \frac{1}{\Gamma\left(\frac{1}{2}\right)} \frac{\Gamma\left(\frac{5}{2}\right)}{\Gamma(3)}=a \cdot \frac{\frac{3}{2} \cdot \frac{1}{2}}{2}={ }_{\alpha} a .
$$

Similarly for \bar{y} and \bar{z}.

965. A Particular Case.

In the case when

$$
\begin{aligned}
& p_{1}=p_{2}=\ldots=p_{n}=1 \\
& a_{1}=a_{2}=\ldots=a_{n}=a
\end{aligned}
$$

and
the theorem reduces back to

$$
\begin{aligned}
I=\iint \ldots \int x_{1}^{i_{1}-1} x_{2}^{i_{2}-1} & \ldots x_{n}^{i_{n}-1} d x_{1} d x_{2} \ldots d x_{n} \\
& =a^{i_{1}+i_{2}+\ldots+i_{n}} \frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}\right) \ldots \Gamma\left(i_{n}\right)}{\Gamma\left(i_{1}+i_{2}+\ldots+i_{n}+1\right)}
\end{aligned}
$$

and the limiting equation is

$$
x_{1}+x_{2}+\ldots+x_{n} \ngtr a,
$$

viz. the fundamental case of Art. 961 assumed.

966. Extension.

If the lower limits had not been zero in each case, but such that $x_{1}+x_{2}+\ldots+x_{n}$ is to be not less than b nor greater than a,
i.e. $b<\Sigma x_{r}<a$; then plainly we must subtract from the result obtained, the integral found by making

$$
x_{1}+x_{2}+\ldots+x_{n} \gg b \text {, }
$$

and the result will be

$$
\left[a^{i_{1}+i_{2}+\ldots+i_{n}}-b^{i_{1}+i_{2}+\ldots+i_{n}}\right] \frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}\right) \ldots \Gamma\left(i_{n}\right)}{\Gamma\left(i_{1}+i_{2}+\ldots+i_{n}+1\right)}
$$

967. If the difference between a and b be an infinitesimal difference δb, then to the first order

$$
\begin{aligned}
a^{i_{1}+\ldots+i_{n}}-b^{i_{1}+\ldots+i_{n}} & =(b+\delta b)^{i_{1}+\ldots+i_{n}}-b^{i_{1}+\ldots+i_{n}} \\
& =\left(i_{1}+i_{2}+\ldots+i_{n}\right) b^{i_{1}+\ldots+i_{n}-1} \delta b,
\end{aligned}
$$

and the result will be

$$
b^{i_{1}+i_{2}+\ldots+i_{n}-1} \delta b \frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}\right) \Gamma\left(i_{3}\right) \ldots \Gamma\left(i_{n}\right)}{\Gamma\left(i_{1}+i_{2}+\ldots+i_{n}\right)}
$$

For example, to verify this in a simple case, consider the volume of a triangular plate bounded by the coordinate planes, and the planes

$$
\begin{gathered}
x+y+z=b \quad \text { and } \quad x+y+z=b+\delta b \\
i_{1}=i_{2}=i_{3}=1, \quad p_{1}=p_{2}=p_{3}=1 \\
V=b^{2} \delta b \cdot \frac{1 \cdot 1 \cdot 1}{2}=\frac{1}{2} b^{2} \delta b=\delta\left(\frac{b}{3} \cdot \frac{b^{2}}{2}\right)
\end{gathered}
$$

Here
i.e. the change in the volume of the tetrahedron bounded by the coordinate planes, and the plane which makes intercepts b on the axes, when b increases to $b+\delta b$.

968. Liouville's Extension.

If we require to find the value of
$I=\iint \ldots \int x_{1}^{i_{1}-1} x_{2}^{i_{2}-1} \ldots x_{n}^{i_{n}-1} f\left(x_{1}+x_{2}+\ldots+x_{n}\right) d x_{1} d x_{2} \ldots d x_{n}$, subject to the conditions that $x_{1}, x_{2}, \ldots x_{n}$ are all positive, but

$$
x_{1}+x_{2}+\ldots+x_{n} \ngtr a \text { and } \Varangle b \text {, }
$$

we may then take the case when

$$
x_{1}+x_{2}+\ldots+x_{n}
$$

lies between v and $v+\delta v$, for which

$$
x_{1}+x_{2}+\ldots+x_{n}
$$

differs from v by an infinitesimal ϵ.
Then for this limitation the integral takes the value

$$
\begin{aligned}
& v^{i_{1}+i_{2}+\ldots+i_{n}-1} \delta v f(v+\epsilon) \frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}\right) \ldots \Gamma\left(i_{n}\right)}{\Gamma\left(i_{1}+\ldots+i_{n}\right)} \\
= & v^{i_{1}+i_{2}+\ldots+i_{n}-1} \delta v f(v) \frac{\Gamma\left(i_{1}\right) \ldots \Gamma\left(i_{n}\right)}{\Gamma\left(i_{1}+\ldots+i_{n}\right)}
\end{aligned}
$$

to the first order of infinitesimals. And therefore, for the whole range of values from $v=b$ to $v=a$,

$$
I=\frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}\right) \ldots \Gamma\left(i_{n}\right)}{\Gamma\left(i_{1}+i_{2}+\ldots+i_{n}\right)} \int_{b}^{a} v^{i_{1}+i_{2}+\ldots+i_{n}-1} f(v) d v .
$$

969. Exactly in the same way, if we require
$I=\iint \ldots \int x_{1} i_{1}-1 \ldots x_{n}^{i_{n}-1} f\left\{\left(\frac{x_{1}}{a_{1}}\right)^{p_{1}}+\ldots+\left(\frac{x_{n}}{a_{n}}\right)^{p_{n}}\right\} d x_{1} \ldots d x_{n}$
for all positive values of the variables such that

Let

$$
\begin{gathered}
\left(\frac{x_{1}}{a_{1}}\right)^{p_{1}}+\left(\frac{x_{2}}{a_{2}}\right)^{p_{2}}+\ldots+\left(\frac{x_{n}}{a_{n}}\right)^{p_{n}} \ngtr h_{1} \text { and } \Varangle h_{2} . \\
\left(\frac{x_{1}}{a_{1}}\right)^{p_{1}}+\left(\frac{x_{2}}{a_{2}}\right)^{p_{2}}+\ldots+\left(\frac{x_{n}}{a_{n}}\right)^{p_{n}}
\end{gathered}
$$

lie between v and $v+\delta v,=v+\epsilon$, say, where ϵ is an infinitesimal.
Then for this limitation,
$[I]_{v}^{v+\delta v}=\frac{a_{1}^{i_{1}} a_{2}^{i_{2}} \ldots a_{n}^{i_{n}}}{p_{1} p_{2} \ldots p_{n}} v^{k-1} \delta v f(v+\epsilon) \frac{\Gamma\left(\frac{i_{1}}{p_{1}}\right) \Gamma\left(\frac{i_{2}}{p_{2}}\right) \ldots \Gamma\left(\frac{i_{n}}{p_{n}}\right)}{\Gamma(k)}$,
where

$$
k=\frac{i_{1}}{p_{1}}+\frac{i_{2}}{p_{2}}+\ldots+\frac{i_{n}}{p_{n}}
$$

and $\delta v f(v+\epsilon)$ differs from $f(v) \delta v$ by a second-order infinitesimal at most, supposing $f(v)$ and $f^{\prime}(v)$ finite and continuous for the range. Hence in the limit, when we integrate with regard to v from $v=h_{2}$ to $v=h_{1}$,

$$
\begin{aligned}
& \quad I=\frac{a_{1}{ }_{1} a_{2}{ }_{2}^{i_{2}} \ldots a_{n}^{i_{n}}}{p_{1} p_{2} \ldots p_{n}} \frac{\Gamma\left(\frac{i_{1}}{p_{1}}\right) \Gamma\left(\frac{i_{2}}{p_{2}}\right) \ldots \Gamma\left(\frac{i_{n}}{p_{n}}\right)}{\Gamma\left(\frac{i_{1}}{p_{1}}+\frac{i_{2}}{p_{2}}+\ldots+\frac{i_{n}}{p_{n}}\right)} \int_{h_{2}}^{h_{1}} v^{k-1} f(v) d v, \\
& \text { where } \quad k=\frac{i_{1}}{p_{1}}+\frac{i_{2}}{p_{2}}+\ldots+\frac{i_{n}}{p_{n}} .
\end{aligned}
$$

This extension of Dirichlet's theorem is due to Liouville.*

970. An Application.

As an example of this theorem, consider

$$
\iint \ldots \int \frac{d x_{1} d x_{2} \ldots d x_{n}}{\sqrt{a^{2}-x_{1}^{2}-x_{2}^{2}-\ldots-x_{n}^{2}}}
$$

for positive values of the variables with the condition

$$
x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}=v a^{2} \ngtr a^{2} .
$$

* Liouville's Journal, vol. iv., p. 231.

Here

$$
p_{1}=p_{2}=\ldots=p_{n}=2, \quad i_{1}=i_{2}=\ldots=i_{n}=1
$$

$$
a_{1}=a_{2}=\ldots=a_{n}=a ; \quad h_{1}=1, h_{2}=0, k=\frac{n}{2}
$$

Then $I=\frac{a^{n}}{2^{n}} \frac{\left[\Gamma\left(\frac{1}{2}\right)\right]^{n}}{\Gamma\left(\frac{n}{2}\right)} \int_{0}^{1} \frac{v^{\frac{n}{2}-1}}{a \sqrt{1-v}} d v=\frac{a^{n-1}}{2^{n}} \frac{\left[\Gamma\left(\frac{1}{2}\right)\right]^{n}}{\Gamma\left(\frac{n}{2}\right)} \int_{0}^{1} v^{\frac{n}{2}-1}(1-v)^{\frac{1}{2}-1} d v$

$$
=\frac{a^{n-1}}{2^{n}} \frac{\left[\Gamma\left(\frac{1}{2}\right)\right]^{n}}{\Gamma\left(\frac{n}{2}\right)} \cdot \frac{\Gamma\left(\frac{n}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{n+1}{2}\right)}=\frac{a^{n-1}}{2^{n}} \frac{\pi^{\frac{n+1}{2}}}{\Gamma\left(\frac{n+1}{2}\right)}
$$

Thus, for example, in the case $n=2$,

$$
\iint \frac{d x_{1} d x_{2}}{\sqrt{a^{2}-x_{1}^{2}-x_{2}^{2}}}=\frac{a}{4} \frac{\pi^{\frac{3}{2}}}{\frac{1}{2} \pi^{\frac{1}{2}}}=\frac{\pi a}{2}
$$

Hence the area of the portion of a sphere $x^{2}+y^{2}+z^{2}=a^{2}$ which lies in the first octant, and which is

$$
\iint \frac{a}{z} d x d y, \text { i.e. } a \iint \frac{d x d y}{\sqrt{a^{2}-x^{2}-y^{2}}}, \quad \text { is }=a \cdot \frac{\pi a}{2}
$$

and the area of the surface of the whole sphere $=4 \pi a^{2}$.

$$
\text { Again }(n=3), \quad \iiint \frac{d x_{1} d x_{2} d x_{3}}{\sqrt{a^{2}-x_{1}{ }^{2}-x_{2}{ }^{2}-x_{3}{ }^{2}}}=\frac{\pi^{2} a^{2}}{8}
$$

(Gregory's Examples, p. 474).
and $(n=4), \quad \iiint \int \frac{d x_{1} d x_{2} d x_{3} d x_{4}}{\sqrt{a^{2}-x_{1}{ }^{2}-x_{2}{ }^{2}-x_{3}{ }^{2}-x_{4}^{2}}}=\frac{a^{3}}{16} \frac{\pi^{\frac{5}{2}}}{\Gamma\left(\frac{5}{2}\right)}=\frac{\pi^{2} a^{3}}{12}$,
etc.

971. Boole's Theorem.

Consider $I=\iint \ldots \int F\left(a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}\right) d x_{1} d x_{2} \ldots d x_{n}$ for all real values of $x_{1}, x_{2}, \ldots x_{n}$ negative or positive, such that

$$
x_{1}^{2}+x_{2}^{2}+\ldots \ngtr c^{2} .
$$

Change the variables by the orthogonal transformation in the margin.

Then $J=1$ and the relations of the transformation system are

$$
\begin{array}{r}
\Sigma l^{2}=1, \text { etc. } \\
\Sigma l m=0, \text { etc., }
\end{array}
$$

and

	u_{1}	u_{2}	u_{3}	\cdots
x_{1}	l_{1}	l_{2}	l_{3}	\cdots
x_{2}	m_{1}	m_{2}	m_{3}	\cdots
x_{3}	n_{1}	n_{2}	n_{3}	\cdots
\cdots	\cdots	\cdots	\cdots	\cdots

*Gregory's Examples, p. 474.
and suppose the transformation to have been so chosen that

$$
a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}=k u_{1}, \quad \text { where } k^{2}=\sum_{1}^{n} a_{r}^{2}
$$

Then

$$
I=\iint_{(n \text { signs })} \ldots \int_{1} F\left(k u_{1}\right) d u_{1} d u_{2} \ldots d u_{n}
$$

Now for the first $n-1$ integrations, u_{1} remains constant, and

$$
\iint_{(n-1} \ldots \int_{\text {signs })} d u_{2} d u_{3} \ldots d u_{n}
$$

where

$$
\begin{aligned}
& u_{2}{ }^{2}+u_{3}{ }^{2}+\ldots+u_{n}{ }^{2} \ngtr c^{2}-u_{1}{ }^{2}, \\
& =2^{n-1} \frac{\left(c^{2}-u_{1}\right)^{\frac{n-1}{2}}}{2^{n-1}} \frac{\left(\Gamma \frac{1}{2}\right)^{n-1}}{\Gamma\left(\frac{n+1}{2}\right)},
\end{aligned}
$$

the first factor 2^{n-1} occurring because at each of the $n-1$ integrations the result is to be doubled to take into account the possible negative signs of the respective variables. Hence, dropping the suffix, we have

$$
I=\frac{\pi^{\frac{n-1}{2}}}{\Gamma\left(\frac{n+1}{2}\right)} \int_{-c}^{c} F(k u)\left(c^{2}-u^{2}\right)^{\frac{n-1}{2}} d u
$$

(See "Catalan's Theorem," Liouville's Journal, vol. vi., p. 81, and Boole's remarks upon it, Cambridge Math. Journal, vol. iii., p. 277.)
972. Consider next the integration
where

$$
I=\iint_{(n \text { signs })} \ldots \int \frac{F\left(a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}\right)}{\sqrt{c^{2}-x_{1}{ }^{2}-x_{2}{ }^{2}-\ldots-x_{n}^{2}}} d x_{1} d x_{2} \ldots d x_{n}
$$ for real values of $x_{1}, x_{2}, \ldots x_{n}$.

Changing the variables by the same orthogonal transformation as before,

$$
I=\iint_{(n \text { signs })} \ldots \int_{c^{2}-u_{1}^{2}-u_{2}^{2}-u_{3}^{2} \ldots-u_{n}^{2}} d u_{1} d u_{2} \ldots d u_{n}
$$

Now for the first $n-1$ integrations, u_{1} remains a constant, and

$$
\iint_{(n-1 \text { signs })} \ldots \int \frac{d u_{2} d u_{3} \ldots d u_{n}}{\left(c^{2}-u_{1}{ }^{2}-u_{2}{ }^{2}-u_{3}{ }^{2} \ldots-u_{n}{ }^{2}\right)^{\frac{1}{2}}}=2^{n-1} \frac{\left(c^{2}-u_{1}^{2}\right)^{\frac{n}{2}-1}}{2^{n-1}} \frac{\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}\right)},
$$

by Art. 970 , the first factor 2^{n-1} being introduced because the several variables are not now restricted as to sign as was the case in Art. 970, so that at each of the ($n-1$) integrations the result must be doubled. Also at the final integration the limits must be $-c$ to $+c$ for the same reason. Hence, dropping the suffix,

$$
I=\frac{\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}\right)} \int_{-c}^{c} F(k u)\left(c^{2}-u^{2}\right)^{\frac{n}{2}-1} d u .^{*}
$$

973. Further Generalisation.

We next consider the still more general integral

$$
I=\iint \ldots \int F\left(\frac{x_{1}{ }^{2}}{a_{1}{ }^{2}}+\ldots+\frac{x_{n}{ }^{2}}{a_{n}{ }^{2}}\right) f\left(A_{1} x_{1}+\ldots+A_{n} x_{n}\right) d x_{1} \ldots d x_{n}
$$

for all real values of $x_{1}, x_{2}, \ldots x_{n}$, such that

$$
\frac{x_{1}{ }^{2}}{a_{1}{ }^{2}}+\frac{x_{2}{ }^{2}}{a_{2}{ }^{2}}+\ldots+\frac{x_{n}{ }^{2}}{a_{n}{ }^{2}} \ngtr 1 .
$$

First we expand $F(v)$ in powers of $1-v$, say $\Sigma B_{p}(1-v)^{p}$ [or if it be possible to expand in positive integral powers of $1-v$, we may write $1-v=w$; then $F(v)=F(1-w)$, and by Maclaurin's theorem, we may put

$$
\left.F(v)=F(1)-w F^{\prime}(1)+\frac{w^{2}}{2!} F^{\prime \prime}(1)-\ldots+(-1)^{p} \frac{w^{p}}{p!} F^{(p)}(1)+\ldots\right]
$$

Then we consider the integration of

$$
\iint \ldots \int\left(1-\frac{x_{1}^{2}}{a_{1}^{2}}-\ldots-\frac{x_{n}^{2}}{a_{n}^{2}}\right)^{p} f\left(A_{1} x_{1}+\ldots+A_{n} x_{n}\right) d x_{1} \ldots d x_{n} .
$$

If I_{p} be the result of this integration, the whole result will be $\left[\begin{array}{c}\sum B_{p} I_{p} \\ \text { or } \quad I_{0} F(1)-I_{1} F^{\prime}(1)+\frac{I_{2}}{2!} F^{\prime \prime}(1)-\ldots+(-1)^{p} \frac{I_{p}}{p!} F^{(p)}(1)+\ldots,\end{array}\right.$ as the case may be].

To obtain I_{p}, first put

$$
x_{1}=a_{1} \xi_{1}, \quad x_{2}=a_{2} \xi_{2}, \quad x_{3}=a_{3} \xi_{3}, \ldots \quad x_{n}=a_{n} \xi_{n} .
$$

Then $J=a_{1} a_{2} \ldots a_{n}$ and
$\frac{I_{p}}{a_{1} a_{2} \ldots a_{n}}=\iint \ldots \int\left(1-\xi_{1}^{2}-\ldots-\xi_{n}^{2}\right)^{p} f\left(A_{1} a_{1} \xi_{1}+\ldots+A_{n} a_{n} \xi_{n}\right) d \xi_{1} \ldots d \xi_{n}$.

* See Todhunter, D.C., Art. 281 ; Gregory, D. and I.C., p. 474.

Now make a further transformation to variables $u_{1}, u_{2}, \ldots u_{n}$ by the orthogonal transformation formulae in the margin. The Jacobian of this system is unity, and

$$
\xi_{1}^{2}+\xi_{2}^{2}+\ldots=u_{1}^{2}+u_{2}^{2}+\ldots
$$

and further choose u_{1} to be

$$
\left(A_{1} a_{1} \xi_{1}+A_{2} a_{2} \xi_{2}+\ldots\right) / k
$$

where $k^{2}=A_{1}{ }^{2} a_{1}{ }^{2}+\ldots+A_{n}{ }^{2} a_{n}{ }^{2}$.

	u_{1}	u_{2}	\ldots	u_{n}
ξ_{1}	l_{1}	l_{2}	\ldots	l_{n}
ξ_{2}	m_{1}	m_{2}	\cdots	m_{n}
\ldots	\cdots	\cdots	\cdots	\cdots
ξ_{n}	\cdots	\cdots	\cdots	\cdots

Then $\quad I_{p}=a_{1} \ldots a_{n} \iint \ldots \int\left(1-u_{1}{ }^{2}-\ldots-u_{n}{ }^{2}\right)^{p} f\left(k u_{1}\right) d u_{1} \ldots d u_{n}$.
In the integration with regard to $u_{2}, u_{3}, \ldots u_{n}$, the remaining variable u_{1} remains constant, and

$$
\begin{aligned}
& \iint_{(n-1 \text { signs }} \ldots \int_{1}\left(1-u_{1}^{2}-u_{2}^{2}-\ldots-u_{n}^{2}\right)^{p} d u_{2} d u_{3} \ldots d u_{n} \\
& =\frac{1}{2^{n-1}} \frac{\left[\Gamma\left(\frac{1}{2}\right)\right]^{n-1}}{\Gamma\left(\frac{n-1}{2}\right)} \int_{0}^{1-u_{1}^{2}} z^{\frac{n-1}{2}-1}\left(1-u_{1}{ }^{2}-z\right)^{p} d z
\end{aligned}
$$

if restricted to positive values of u_{2}, u_{3}, etc.; and if the several variables may have full scope as to sign between the specified limits, each of these $n-1$ integrations must be doubled.

The result of the $n-1$ integrations is in that case

$$
\begin{aligned}
& \frac{\Gamma\left(\frac{1}{2}\right)^{n-1}}{\Gamma\left(\frac{n-1}{2}\right)} \frac{\Gamma\left(\frac{n-1}{2}\right) \Gamma(p+1)}{\Gamma\left(\frac{n+1}{2}+p\right)}\left(1-u_{1}{ }^{2}\right)^{\frac{n-1}{2}+p} \\
= & \frac{\pi^{\frac{n-1}{2}} \Gamma(p+1)}{\Gamma\left(\frac{n+1}{2}+p\right)}\left(1-u_{1}{ }^{2}\right)^{\frac{n-1}{2}+p} .
\end{aligned}
$$

Therefore, as the limits of the final integration with regard to u_{1} are from -1 to +1 ,

$$
I_{p}=a_{1} a_{2} \ldots a_{n} \frac{\pi^{\frac{n-1}{2}} \Gamma(p+1)}{\Gamma\left(\frac{n+1}{2}+p\right)} \int_{-1}^{1}\left(1-u^{2}\right)^{\frac{n-1}{2}+p} f(k u) d u
$$

it being now unnecessary to retain the suffix of the u. Hence

$$
I=u_{1} a_{2} \ldots a_{n} \pi^{\frac{n-1}{2}} \sum B_{p} \frac{\Gamma(p+1)}{\Gamma\left(\frac{n+1}{2}+p\right)} \int_{-1}^{1}\left(1-u^{2}\right)^{\frac{n-1}{2}+p} f(k u) d u
$$

where

$$
k^{2}=A_{1}{ }^{2} a_{1}{ }^{2}+A_{2}{ }^{2} a_{2}{ }^{2}+\ldots+A_{n}{ }^{2} a_{n}{ }^{2} .
$$

This result, of course, includes former cases discussed.

974. Extension.

If the limits had been defined so that

$$
x_{1}^{2} / a_{1}^{2}+x_{2}{ }^{2} / a_{2}^{2}+\ldots+x_{n}{ }^{2} / a_{n}{ }^{2} \ngtr a^{2} \quad(\text { instead of }>1),
$$

we could deduce the new result from the former by writing $a_{1} \alpha$ in place of $a_{1}, \quad a_{2} \alpha$ in place of a_{2}, and so on, and therefore $\quad k a$ in place of k; and, finally, if the scope of the range of the variables is still further limited by

$$
x_{1}^{2} / a_{1}^{2}+\ldots+x_{n}{ }^{2} / a_{n}^{2} \ngtr a^{2} \text { and } \nless \beta^{2} \text {, }
$$

we must subtract all cases for which $x_{1}{ }^{2} / a_{1}{ }^{2}+\ldots+x_{n}{ }^{2} / a_{n}{ }^{2}$ is $\ngtr \beta^{2}$, and we shall have

$$
I / a_{1} a_{2} \ldots a_{n} \pi^{\frac{n-1}{2}}
$$

$$
=\Sigma B_{p} \frac{\Gamma(p+1)}{\Gamma\left(\frac{n+1}{2}+p\right)} \int_{-1}^{1}\left(1-u^{2}\right)^{\frac{n-1}{2}+p}\left[a^{n} f(k \alpha u)-\beta^{n} f(k \beta u)\right] d u .
$$

975. Deductions.

Compare with the foregoing results the series of integrals

$$
\begin{array}{ll}
\int x_{1}^{i_{1}-1} x_{2}^{i_{2}-1} d x_{1}, & \text { where } x_{1}+x_{2}=1 \\
\iint_{1} x_{1}^{i_{1}-1} x_{2}^{i_{2}-1} x_{3}^{i_{3}-1} d x_{1} d x_{2}, & \text { where } x_{1}+x_{2}+x_{3}=1
\end{array}
$$

etc.,
$\iiint \ldots \int x_{1}^{i_{1}-1} \ldots x_{n}^{i_{n}-1} d x_{1} \ldots d x_{n-1}$, where $x_{1}+\ldots+x_{n-1}+x_{n}=1$, for positive values of the several variables.

Take for instance the second. Here $x_{3}=1-x_{1}-x_{2}$, and the integration

$$
I \equiv \iint x_{1}^{i_{1}-1} x_{2}^{i_{2}-1}\left(1-x_{1}-x_{2}\right)^{i_{3}-1} d x_{1} d x_{2}
$$

is to be conducted for all positive values of x_{1}, x_{2}, such that $x_{1}+x_{2} \ngtr 1$,

Then

$$
\begin{aligned}
I & =\frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}\right)}{\Gamma\left(i_{1}+i_{2}\right)} \int_{0}^{1} v^{i_{1}+i_{2}-1}(1-v)^{i_{3}-1} d v \\
& =\frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}\right)}{\Gamma\left(i_{1}+i_{2}\right)} \frac{\Gamma\left(i_{1}+i_{2}\right) \Gamma\left(i_{3}\right)}{\Gamma\left(i_{1}+i_{2}+i_{3}\right)}=\frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}\right) \Gamma\left(i_{3}\right)}{\Gamma\left(i_{1}+i_{2}+i_{3}\right)} .
\end{aligned}
$$

976. Similarly, in the general case,

$$
I=\iint_{(n-1 \text { signs })} \ldots \int_{1} x_{1}^{i_{1}-1} x_{2}^{i_{2}-1} \ldots \dot{x}_{n-1}^{i_{n-1}-1} x_{n}^{i_{n}-1} d x_{1} d x_{2} \ldots d x_{n-1}
$$

for positive values of $x_{1}, x_{2}, \ldots x_{n}$, such that $x_{1}+\ldots+x_{n-1}+x_{n}=1$,

$$
I=\iint_{(n-1} \ldots \int_{\text {signs })} x_{1}^{i_{1}-1} \ldots x_{n-1}^{i_{n-1}-1}\left(1-x_{1}-\ldots-x_{n-1}\right)^{i_{n-1}} d x_{1} \ldots d x_{n-1}
$$

where $x_{1}+x_{2}+\ldots+x_{n-1} \ngtr 1$

$$
\begin{aligned}
& =\frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}\right) \ldots \Gamma\left(i_{n-1}\right)}{\Gamma\left(i_{1}+i_{2}+\ldots+i_{n-1}\right)} \int_{0}^{1} v v_{1}+i_{2}+\ldots+i_{n-1}(1-v)^{i_{n-1}} d v \\
& =\frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}\right) \ldots \Gamma\left(i_{n-1}\right)}{\Gamma\left(i_{1}+i_{2}+\ldots+i_{n-1}\right)} \frac{\Gamma\left(i_{1}+i_{2}+\ldots+i_{n-1}\right) \Gamma\left(i_{n}\right)}{\Gamma\left(i_{1}+i_{2}+\ldots+i_{n-1}+i_{n}\right)} \\
& =\frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}\right) \ldots \Gamma\left(i_{n}\right)}{\Gamma\left(i_{1}+i_{2}+\ldots+i_{n}\right)} .
\end{aligned}
$$

Thus, if $A \equiv \iint \ldots \int x_{1}{ }^{i_{1}-1} \ldots x_{n}^{i_{n}-1} d x_{1} \ldots d x_{n}$, for $\sum_{1}^{n} x_{r} \ngtr 1$,

$$
\text { (} n \text { signs) }
$$

and

$$
B \equiv \iint_{(n-1 \text { signs })} \ldots \int_{1} x_{1}^{i_{1}-1} \ldots x_{n}^{i_{n}-1} d x_{1} \ldots d x_{n-1}, \text { for } \sum_{1}^{n} x_{r}=1
$$

we have $\left(i_{1}+i_{2}+\ldots+i_{n}\right) A=B=\frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}\right) \ldots \Gamma\left(i_{n}\right)}{\Gamma\left(i_{1}+i_{2}+\ldots+i_{n}\right)}$.
977. In the same way, if we require the value of

$$
I=\iint_{(n-1 \text { signs })} \ldots \int_{1} x_{1}^{i_{1}-1} x_{2}^{i_{2}-1} \ldots x_{n-1}^{i_{n-1}-1} x_{n}^{i_{n}-p_{n}} d x_{1} d x_{2} \ldots d x_{n-1}
$$

for positive values of the variables, such that

$$
\left(\frac{x_{1}}{a_{1}}\right)^{p_{1}}+\left(\frac{x_{2}}{a_{2}}\right)^{p_{2}}+\ldots+\left(\frac{x_{n-1}}{a_{n-1}}\right)^{p_{n-1}}+\left(\frac{x_{n}}{a_{n}}\right)^{p_{n}}=1
$$

we have

$$
x_{n}=a_{n}\left\{1-\left(\frac{x_{1}}{a_{1}}\right)^{p_{1}}-\ldots-\left(\frac{x_{n-1}}{a_{n-1}}\right)^{p_{n-1}}\right\}^{\frac{1}{p_{n}}}
$$

and $I=\iint_{(n-1 \text { signs })} \ldots x_{1} x_{1}^{i_{1}-1} x_{2}^{i_{2}-1} \ldots x_{n-1}^{i_{n-1}-1} a_{n}^{i_{n}-p_{n}}$

$$
\times\left\{1-\left(\frac{x_{1}}{a_{1}}\right)^{p_{1}}-\ldots-\left(\frac{x_{n-1}}{a_{n-1}}\right)^{p_{n-1}}\right\}^{\frac{i_{n}}{p_{n}}-1} d x_{1} d x_{2} \ldots d x_{n-1}
$$

where

$$
\left(\frac{x_{1}}{a_{1}}\right)^{p_{1}}+\ldots+\left(\frac{x_{n-1}}{a_{n-1}}\right)^{p_{n-1}} \ngtr 1
$$

$$
=\frac{a_{1}^{i_{1}} \ldots a_{n-1}^{i_{n-1}}}{p_{1} \cdots p_{n-1}} a_{n}^{i_{n}-p_{n}} \frac{\left.\Gamma\left(\frac{i_{1}}{p_{1}}\right) \ldots \Gamma \frac{\left(i_{n-1}\right)}{\left(p_{n-1}\right)}\right)}{\Gamma\left(\frac{i_{1}}{p_{1}}+\ldots+\frac{i_{n-1}}{p_{n-1}}\right)} \int_{0}^{1} v^{\lambda-1}(1-v)^{\frac{i_{n}}{p_{n}}-1} d v
$$

where

$$
\begin{gathered}
\lambda=\frac{i_{1}}{p_{1}}+\frac{i_{2}}{p_{2}}+\ldots+\frac{i_{n-1}}{p_{n-1}} ; \\
\therefore I=\frac{p_{n}}{q_{n}^{p_{n}}} \frac{a_{1}^{i_{1}} a_{2}^{i_{2}} \ldots \alpha_{n}^{i_{n}}}{p_{1} p_{2} \cdots p_{n}} \frac{\Gamma\left(\frac{i_{1}}{p_{1}}\right) \Gamma\left(\frac{i_{2}}{p_{2}}\right) \cdots \Gamma\left(\frac{i_{n}}{p_{n}}\right)}{\Gamma\left(\frac{i_{1}}{p_{1}}+\frac{i_{2}}{p_{2}}+\ldots+\frac{i_{n}}{p_{n}}\right)} .
\end{gathered}
$$

978. Ex. Find the value of $\iint x^{\lambda-1} y^{\mu-1} z^{\nu-1} d x d y$ for all points of the ellipsoidal surface $x^{2} / x^{2}+y^{2} / b^{2}+z^{2} / c^{2}=1$ which lie in the positive octant.

Here $i_{1}=\lambda, i_{2}=\mu, i_{3}=v+1, \quad p_{1}=p_{2}=p_{3}=2, \quad a_{1}=a, a_{2}=b, a_{3}=c$,

$$
I=\frac{2}{c^{2}} \frac{\alpha^{\lambda} / \mu^{2} c^{\nu}+1}{2.2 .2} \frac{\Gamma\left(\frac{\lambda}{2}\right) \Gamma\left(\frac{\mu}{2}\right) \Gamma\left(\frac{v+1}{2}\right)}{\Gamma\left(\frac{\lambda+\mu+\nu+1}{2}\right)}
$$

Thus, for instance,

$$
\iint z d x d y=\frac{2}{c^{2}} \frac{a b c^{3}}{2 \cdot 2 \cdot 2} \frac{\pi \Gamma\left(\frac{3}{2}\right)}{\Gamma\left(\frac{2}{2}\right)}=\frac{1}{b} \pi a b c=\frac{1}{4} \cdot \frac{1}{3} \pi a b c .
$$

979. Relation of the Integral Forms discussed.

We note then that the two integrals

$$
\begin{aligned}
& A \equiv \iint_{(n \text { signs) }} \ldots \int_{1} x_{1}^{i_{1}-1} x_{2}^{i_{2}-1} \ldots x_{n}^{i_{n}-1} d x_{1} d x_{2} \ldots d x_{n}, \text { for } \sum_{i}^{n}\left(\frac{x_{r}}{u_{r}}\right)^{p_{n}} \ngtr 1, \\
& B \equiv \iint_{(n-1 \text { signs })} \ldots \int_{1} x_{1}^{i_{1}-1} x_{2}^{i_{2}-1} \ldots x_{n-1}^{i_{n}-1} x_{n}^{i_{n}-p_{n}} d x_{1} d x_{2} \ldots d x_{n-1}, \text { for } \sum_{1}^{n}\left(\frac{x_{r}}{a_{r}}\right)^{p_{r}}=1,
\end{aligned}
$$

for positive values of the variables in each case, are so related that

$$
\sum_{1}^{n} \frac{i_{r}}{p_{r}} A=\frac{a_{n}^{p_{n}}}{p_{n}} B=\frac{a_{1}^{i_{1}} a_{2}^{i_{2}} \ldots a_{n}^{i_{n} n_{n}}}{p_{1} p_{2} \ldots p_{n}} \frac{\Gamma\left(\frac{i_{1}}{p_{1}}\right) \Gamma\left(\frac{i_{2}}{p_{2}}\right) \ldots \Gamma\left(\frac{i_{n}}{p_{n}}\right)}{\Gamma\left(\frac{i_{1}}{p_{1}}+\frac{i_{2}}{p_{2}}+\ldots+\frac{i_{n}}{p_{n}}\right)}
$$

980. A Lemma.

In order to abbreviate the work of the articles which follow, let us note that the Binomial expansion

$$
(1-z)^{-n}=1+n z+\frac{n(n+1)}{2!} z^{2}+\ldots+\frac{n(n+1) \ldots(n+r-1)}{r!} z^{r}+\ldots
$$

may be written as $\sum_{0}^{\infty} K_{r}^{(n)} z^{r}$, where $K_{r}{ }^{(n)}=\frac{\Gamma(n+r)}{\Gamma(n)} \frac{1}{r!}$,
and that, writing $i_{1}+i_{2}=j_{2}, i_{1}+i_{2}+i_{3}=j_{3}$, etc., we have

$$
\begin{gathered}
K_{r}^{\left(j_{2}\right)} \frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}+r\right)}{\Gamma\left(i_{1}+i_{2}+r\right)}=\frac{\Gamma\left(j_{2}+r\right)}{\Gamma\left(j_{2}\right) r!} \cdot \frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}+r\right)}{\Gamma\left(j_{2}+r\right)} \\
=\frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}\right)}{\Gamma\left(j_{2}\right)} \cdot \frac{\Gamma\left(i_{2}+r\right)}{\Gamma\left(i_{2}\right) r!}=\frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}\right)}{\Gamma\left(i_{1}+i_{2}\right)} K_{r}^{\left(i_{2}\right),} \\
K_{r}\left(j_{3}\right) \frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}\right) \Gamma\left(i_{3}+r\right)}{\Gamma\left(i_{1}+i_{2}+i_{3}+r\right)}=\frac{\Gamma\left(j_{3}+r\right)}{\Gamma\left(j_{3}\right) r!} \cdot \frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}\right) \Gamma\left(i_{3}+r\right)}{\Gamma\left(j_{3}+r\right)} \\
=\frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}\right) \Gamma\left(i_{3}\right)}{\Gamma\left(j_{3}\right)} \cdot \frac{\Gamma\left(i_{3}+r\right)}{\Gamma\left(i_{3}\right) r!}=\frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}\right) \Gamma\left(i_{3}\right)}{\Gamma\left(i_{1}+i_{2}+i_{3}\right)} K_{r}^{\left(i_{3}\right),} \\
\text { etc., }
\end{gathered}
$$

and

$$
\begin{gathered}
K_{\rho}^{\left(j_{3}+r\right)} \frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}+\rho\right) \Gamma\left(i_{3}+r\right)}{\Gamma\left(i_{1}+i_{2}+\rho+i_{3}+r\right)}=\frac{\Gamma\left(j_{3}+r+\rho\right)}{\Gamma\left(j_{3}+r\right) \rho!} \cdot \frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}+\rho\right) \Gamma\left(i_{3}+r\right)}{\Gamma\left(j_{3}+\rho+r\right)} \\
=\frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}\right) \Gamma\left(i_{3}+r\right)}{\Gamma\left(j_{3}+r\right)} \cdot \frac{\Gamma\left(i_{2}+\rho\right)}{\Gamma\left(i_{2}\right) \rho!}=\frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}\right) \Gamma\left(i_{3}+r\right)}{\Gamma\left(i_{1}+i_{2}+i_{3}+r\right)} K_{\rho}^{\left(i_{2}\right)}, \\
\text { etc. }
\end{gathered}
$$

981. We propose now to consider integrals of the class

$$
I_{n}=\iiint \ldots \int \frac{x_{1}^{i_{1}-1} x_{2}^{i_{2}-1} \ldots x_{n}^{i_{n}-1} f\left(\sum_{1}^{n} A_{r} x_{r}\right) d x_{1} d x_{2} \ldots d x_{n}}{\left(\lambda+a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}\right)^{i_{1}+i_{2}+\ldots+i_{n}}}
$$

for all positive values of the variables, such that

$$
h_{1}<A_{1} x_{1}+A_{2} x_{2}+\ldots+A_{n} x_{n}<h_{2},
$$

all the letters involved representing positive quantities.

Putting

$$
\begin{gathered}
A_{1} x_{1}=\xi_{1}, A_{2} x_{2}=\xi_{2}, \text { etc., and } \frac{a_{1}}{A_{1}}=b_{1}, \frac{a_{2}}{A_{2}}=b_{2}, \text { etc., } \\
I_{n}=\frac{1}{A_{1}^{i_{1}} A_{2}^{i_{2}} \ldots A_{n}^{i_{n}}} \iint \ldots \iint \hat{\xi}_{1}^{i_{1}-1} \ldots \xi_{n}^{i_{n}-1} f\left(\xi_{1}+\ldots+\xi_{n}\right) d \xi_{1} \ldots d \xi_{n} \\
\left(\lambda+b_{1} \xi_{1}+b_{2} \xi_{2}+\ldots+b_{n} \xi_{n}\right)^{i_{1}+i_{2}+\ldots+i_{n} .}
\end{gathered}
$$

Consider first the case of a double integral,

$$
I_{2}=\frac{1}{A_{1}^{i_{1}} A_{2}^{i_{1}}} \iint \frac{\xi_{1}^{i_{1}-1} \xi_{2}^{i_{2}-1} f\left(\xi_{1}+\xi_{2}\right)}{\left(\lambda+b_{1} \xi_{1}+b_{2} \xi_{2}\right)^{i_{1}+i_{2}}} d \xi_{1} d \xi_{2}
$$

a particular case of which is discussed by Todhunter (Int. Calc., p. 263). Of the two quantities b_{1}, b_{2}, let b_{1} be the one which is not less than the other. Then

$$
\lambda+b_{1} \xi_{1}+b_{2} \xi_{2} \equiv\left\{\lambda+b_{1}\left(\xi_{1}+\xi_{2}\right)\right\}-\left(b_{1}-b_{2}\right) \xi_{2}, \quad=u-v, \text { say, }
$$

where $v=\left(b_{1}-b_{2}\right) \xi_{2}$. Then as $\lambda+b_{1} \xi_{1}+b_{2} \xi_{2}$ is a positive quantity, we have $v<u$, and

$$
\begin{aligned}
\left(\lambda+b_{1} \xi_{1}+b_{2} \xi_{2}\right)^{-\left(i_{1}+i_{2}\right)} & =(u-v)^{-\left(i_{1}+i_{2}\right)}=u^{-\left(i_{1}+i_{2}\right)}\left(1-\frac{v}{u}\right)^{-\left(i_{1}+i_{2}\right)} \\
& =u^{-\left(i_{1}+i_{2}\right)} \sum_{0}^{\infty} K_{r}^{\left(i_{1}+i_{2}\right)}\left(b_{1}-b_{2}\right)^{r}\left(\frac{\xi_{2}}{u}\right)^{r}
\end{aligned}
$$

a convergent binomial expansion. Hence the integral becomes

$$
\begin{aligned}
& \frac{1}{A_{1}^{i_{1}} A_{2}^{i_{2}}} \iint \frac{\xi_{1}^{i_{1}-1} \xi_{2}^{i_{2}-1} f\left(\xi_{1}+\xi_{2}\right)}{u^{\left(i_{1}+i_{2}\right)}} \sum_{0}^{\infty} K_{r}^{\left(i_{1}+i_{2}\right)}\left(b_{1}-b_{2}\right)^{r}\left(\frac{\xi_{2}}{u}\right)^{r} d \xi_{1} d \xi_{2} \\
& \quad=\frac{1}{A_{1}^{i_{1}} A_{2}^{i_{i}}} \sum_{0}^{\infty} K_{r}^{\left(i_{1}+i_{2}\right)}\left(b_{1}-b_{2}\right)^{r} \iint \frac{\xi_{1}^{i_{1}-1} \xi_{2}^{i_{2}+r-1} f\left(\xi_{1}+\xi_{2}\right)}{u_{1}^{i_{1}+i_{2}+r}} d \xi_{1} d \xi_{2},
\end{aligned}
$$

and u being a function of $\xi_{1}+\xi_{2}$, we have, by Art. 968 ,

$$
\begin{aligned}
& I_{2}=\frac{1}{A_{1} i_{1} A_{2}^{i_{2}}} \sum_{0}^{\infty} K_{r}^{\left(i_{1}+i_{2}\right)}\left(b_{1}-b_{2}\right) \frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}+r\right)}{\Gamma\left(i_{1}+i_{2}+r\right)} \int_{h_{1}}^{h_{2}} \frac{\left.i_{1}+i_{1}+r+b_{1} t\right)^{i_{1}+i_{2}+r}}{}(t) d t \\
& =\frac{1}{A_{1}{ }^{i_{1}} A_{2} i_{2}} \sum_{0}^{\infty} \frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}\right)}{\Gamma\left(i_{1}+i_{2}\right)} K_{r}^{\left(i_{2}\right)}\left(b_{1}-b_{2}\right)^{r} \int_{h_{1}}^{h_{2}} \frac{i_{1}+i_{2}+r-1}{\left(\lambda+b_{1} t\right)^{i_{1}+i_{2}+r}} d t \\
& =\frac{1}{A_{1}^{i_{1} A_{2} i_{2}}} \frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}\right)}{\Gamma\left(i_{1}+i_{2}\right)} \int_{h_{1}}^{h_{2}} \frac{t_{1}+i_{2}-1}{\left(\lambda+b_{1} t\right)^{i_{1}+i_{2}}} \sum_{0}^{\infty} K_{r}^{\left(i_{2}\right)}\left(b_{1}-b_{2}\right)^{r} \frac{t^{r}}{\left(\lambda+b_{1} t\right)^{r}} d t \\
& \left.=\frac{1}{A_{1}{ }^{i_{1} A_{2}}{ }^{i_{2}}} \frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}\right)}{\Gamma\left(i_{1}+i_{2}\right)} \int_{h_{1}}^{h_{2}} \frac{t_{1} i_{1}+i_{2}-1}{}\left(\lambda+b_{1} t\right)^{i_{1}+i_{2}}\right)\left\{1-\frac{\left(b_{1}-b_{2}\right) t}{\lambda+b_{1} t}\right\}^{-i_{2}} d t \\
& =\frac{1}{A_{1}^{i_{1} A_{2} i_{2}}} \frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}\right)}{\Gamma\left(i_{1}+i_{2}\right)} \int_{h_{1}}^{h_{2}} \frac{t^{i_{1}+i_{2}-1}\left(\lambda+b_{1} t\right)^{i_{1}}\left(\lambda+b_{2} t\right)^{i_{2}}}{\left(i_{2}\right.} d t \\
& =\frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}\right)}{\Gamma\left(i_{1}+i_{2}\right)} \int_{h_{1}}^{h_{2}} \frac{t^{i_{1}+i_{2}-1} f(t) d t}{\left(A_{1} \lambda+a_{1} t\right)^{i_{1}}\left(A_{2} \lambda+a_{2} t\right)^{i_{2}}} .
\end{aligned}
$$

982. Next take the case of the triple integral

$$
I_{3}=\frac{1}{A_{1}^{i_{1}} A_{2}^{i_{2}} A_{3}^{i_{3}}} \iiint \frac{\xi_{1}^{i_{1}-1} \xi_{2}^{i_{2}-1} \xi_{3}^{i_{3}-1} f\left(\xi_{1}+\xi_{1}+\xi_{3}\right) d \xi_{1} d \xi_{2} d \xi_{3}}{\left(\lambda+b_{1} \xi_{1}+b_{2} \xi_{2}+b_{3} \xi_{3}\right)^{i_{1}+i_{2}+i_{3}}} .
$$

Of these three quantities b_{1}, b_{2}, b_{3}, let b_{1} be that which is not less than either of the other two. Then

$$
\begin{aligned}
\lambda+b_{1} \hat{\xi}_{1}+b_{2} \xi_{2}+b_{3} \hat{\xi}_{3}=\left\{\lambda+b_{1}\left(\hat{\xi}_{1}+\hat{\xi}_{3}\right)\right. & \left.+b_{2} \xi_{2}\right\} \\
& -\left(b_{1}-b_{3}\right) \xi_{3},=u-v, \text { say }
\end{aligned}
$$

where $v=\left(b_{1}-b_{3}\right) \xi_{3}$, and is $<u$ and positive. Let $i_{1}+i_{2}+i_{3}=j_{3}$. Then
$\left(\lambda+b_{1} \xi_{1}+b_{2} \xi_{2}+b_{3} \xi_{3}\right)^{-j_{3}}=u^{-j_{3}}\left(1-\frac{v}{u}\right)^{-j_{3}}=u^{-j_{3}} \sum_{0}^{\infty} K_{r^{\left(j_{3}\right)}}\left(b_{1}-b_{3}\right)^{r}\left(\frac{\xi_{3}}{u}\right)^{r}$, a convergent binomial expansion.
$\therefore I_{3}=\sum_{0}^{\infty} \frac{\left(b_{1}-b_{3}\right)^{r}}{A_{1}^{i_{1}} A_{2}^{i_{2}} A_{3}^{i^{i_{2}}} \int} \iint \frac{\xi_{1}^{i_{1}-1} \xi_{2}^{i_{2}-1} \xi_{3}^{i_{3-1}} f\left(\sum_{1}^{3} \xi_{r}\right)}{u^{j_{3}}} K_{r}^{\left(b_{3}\right)}\left(\frac{\xi_{3}}{u}\right)^{r} d \xi_{1} d \xi_{2} d \xi_{3}$,
where u is, however, $\lambda+b_{1}\left(\xi_{1}+\xi_{2}\right)+b_{2} \xi_{2}$, and is not this time a function of the sum of the variables. Hence a further transformation is necessary.

We may write

$$
\begin{aligned}
u \equiv \lambda+b_{1}\left(\xi_{1}+\xi_{2}\right)+b_{2} \xi_{2} & =\left[\lambda+b_{1}\left(\xi_{1}+\xi_{2}+\xi_{3}\right)\right]-\left(b_{1}-b_{2}\right) \xi_{2} \\
& =U-V, \text { say },
\end{aligned}
$$

where $V \equiv\left(b_{1}-b_{2}\right) \xi_{2}$ is $<U$, and U is a function of

$$
\xi_{1}+\xi_{2}+\xi_{3} .
$$

Also, writing $i_{1}+i_{2}+i_{3}+r=j_{3}^{\prime}$ where necessary to shorten

$$
u^{-j_{3}^{\prime}}=U^{-j_{3}^{\prime}}\left(1-\frac{V}{U}\right)^{-j_{3}^{\prime}}=U^{-j_{3}^{\prime}} \Sigma K_{\rho}^{\left(i_{3}^{\prime}\right)}\left(b_{1}-b_{2}\right)^{\rho}\left(\frac{\xi_{2}}{U}\right)^{\rho},
$$

a convergent binomial expansion.
Hence

$$
\begin{aligned}
& \iiint \xi_{1}^{i_{1}-1} \xi_{2}^{\xi_{2}^{i_{2}-1} \xi_{3}^{i_{3}+r-1}} \frac{u^{i_{1}+i_{2}+i_{3}+r}}{} f(\Sigma \xi) d \xi_{1} d \xi_{2} d \xi_{3} \\
& =\iiint \frac{\xi_{1}^{i_{1}-1} \xi_{2}^{i_{2}-1} \xi_{3}^{i_{3}+r-1}}{U^{j_{3}}} f(\Sigma \xi) \sum_{\rho=0}^{\rho=\infty} K_{\rho}^{\left(j_{j}\right)}\left(b_{1}-b_{2}\right)^{\rho}\left(\frac{\xi_{2}}{U}\right)^{\rho} d \xi_{1} d \xi_{2} d \xi_{3} \\
& =\iiint_{\rho=0}^{\rho=\infty} K_{\rho}{ }^{\left(j_{3}^{\prime}\right)}\left(b_{1}-b_{2}\right)^{\rho} \frac{\xi_{1}^{i_{1}-1} \xi_{2}^{i_{2}+\rho-1} \xi_{3}^{i_{3}+r-1}}{U^{j_{3}^{\prime}+\rho}} f(\Sigma \xi) d \xi_{1} d \xi_{2} d \xi_{3} \\
& =\int_{h_{1}}^{h_{2} \rho=\infty} \sum_{\rho=0} K_{\rho}^{\left(j_{3}^{\prime}\right)} \frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}+\rho\right) \Gamma\left(i_{3}+r\right)}{\Gamma\left(i_{1}+i_{2}+\rho+i_{3}+r\right)}\left(b_{1}-b_{2}\right)^{\rho} \frac{t^{j_{3}+\rho-1} f(t)}{\left(\lambda+b_{1}\right)^{j_{3}+\rho}} d t
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{h_{1}}^{h_{2}} \frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}\right) \Gamma\left(i_{3}+r\right)}{\Gamma\left(i_{1}+i_{2}+i_{3}+r\right)} \frac{t^{j_{3}^{\prime}-1}}{\left(\lambda+b_{1} t\right)^{j_{3}^{\prime}}} \sum_{\rho=0}^{\rho=\infty} K_{\rho}^{\left(i_{2}\right)}\left(b_{1}-b_{2}\right)^{\rho} \frac{t^{\rho}}{\left(\lambda+b_{1} t\right)^{\rho}} f(t) d t \\
& =\frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}\right) \Gamma\left(i_{3}+r\right)}{\Gamma\left(i_{1}+i_{2}+i_{3}+r\right)} \int_{h_{1}}^{h_{2}} \frac{t^{j_{3}-1}}{\left(\lambda+b_{1} t\right)^{j_{3}^{\prime}}}\left\{1-\frac{\left(b_{1}-b_{2}\right) t}{\lambda+b_{1} t}\right\}^{-i_{2}} f(t) d t \\
& =\frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}\right) \Gamma\left(i_{3}+r\right)}{\Gamma\left(i_{1}+i_{2}+i_{3}+r\right)} \int_{h_{1}}^{h_{2}} \frac{t^{j_{3}^{\prime}-1} f(t) d t}{\left(\lambda+b_{1} t\right)^{i_{1}+i_{3}+r}\left(\lambda+b_{2} t\right)^{i_{2}}} ;
\end{aligned}
$$

$$
\therefore I=\sum_{r=0}^{r=\infty} \frac{\left(b_{1}-b_{3}\right)^{r}}{A_{1}^{i_{1}} A_{2}^{i_{1}} A_{3}^{i_{3}}} K_{r}^{\left(j_{3}\right)} \frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}\right) \Gamma\left(i_{3}+r\right)}{\Gamma\left(i_{1}+i_{2}+i_{3}+r\right)} \int_{h_{1}}^{h_{2}} \frac{t^{j_{3}^{\prime}-1} f(t) d t}{\left(\lambda+b_{1} t\right)^{i_{1}+i_{3}+r}\left(\lambda+b_{2} t\right)^{i_{3}}}
$$

$$
=\frac{1}{A_{1}^{i_{1}} A_{2}^{i_{2}} A_{3}^{i_{3}}} \frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}\right) \Gamma\left(i_{3}\right)}{\Gamma\left(i_{1}+i_{2}+i_{3}\right)} \int_{h_{1}}^{h_{2}} \frac{t^{j_{3}-1} f(t)}{\left(\lambda+b_{1} t\right)^{i_{1}+i_{3}}\left(\lambda+b_{2} t\right)^{i_{2}}} \sum_{r=0}^{r=\infty} K_{r}^{\left(i_{3}\right)\left(b_{1}-b_{3}\right)^{r} t^{r}} \frac{\left(\lambda+b_{1} t\right)^{r}}{(t)} d t
$$

$$
=\frac{1}{A_{1}^{i_{1}} A_{2}^{i_{2}} A_{3}^{i_{3}}} \frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}\right) \Gamma\left(i_{3}\right)}{\Gamma\left(i_{1}+i_{2}+i_{3}\right)} \int_{h_{1}}^{h_{2}} \frac{t^{j_{3}-1} f(t)}{\left(\lambda+b_{1} t\right)^{i_{1}+i_{3}}\left(\lambda+b_{2} t\right)^{i_{2}}}\left\{1-\frac{\left(b_{1}-b_{3}\right) t}{\lambda+b_{1} t}\right\}^{-i_{3}} d t
$$

$$
=\frac{1}{A_{1}^{i_{1}} A_{2}^{i_{4}} A_{3}^{i_{3}}} \frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}\right) \Gamma\left(i_{3}\right)}{\Gamma\left(i_{1}+i_{2}+i_{3}\right)} \int_{i_{1}}^{h_{2}} \frac{t^{j_{3}-1} f(t)}{\prod_{1}^{3}\left(\lambda+b_{s} t\right)^{i_{s}}} d t
$$

$$
=\frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}\right) \Gamma\left(i_{3}\right)}{\Gamma\left(i_{1}+i_{2}+i_{3}\right)} \int_{h_{1}}^{h_{2}} \frac{t^{j_{3}-1} f(t) d t}{\prod_{1}^{3}\left(A_{s} \lambda+a_{8} t\right)^{i_{s}}}
$$

983. Exactly the same process will hold for a multiple integral of higher order, so that in general we have

$$
I_{n}=\frac{\Gamma\left(i_{1}\right) \Gamma\left(i_{2}\right) \ldots \Gamma\left(i_{n}\right)}{\Gamma\left(i_{1}+i_{2}+\ldots+i_{n}\right)} \int_{h_{1}}^{h_{2} t_{1} t_{1}+i_{2}+\ldots+i_{n}-1} \frac{\prod_{1}^{n}\left(A_{s} \lambda+a_{s} t\right)^{i_{s}}}{\prod_{1}} d t
$$

984. Extension.

The result may obviously be extended to the integral

$$
\begin{aligned}
& I_{n}=\iint \cdots \int \frac{x_{1}^{i_{1}-1} x_{2}^{i_{2}-1} \ldots x_{n}^{i_{n}-1} f\left(\sum_{1}^{n} A_{r} x_{n} x_{r}\right) d x_{1} d x_{2} \ldots d x_{n}}{\left(\lambda+a_{1} x_{1}{ }^{\alpha_{1}}+a_{2} x_{2} a_{2}+\ldots+a_{n} x_{n}{ }^{\alpha_{n}}\right)^{k},} \\
& k=\frac{i_{1}}{a_{1}}+\frac{i_{2}}{a_{2}}+\ldots+\frac{i_{n}}{a_{n}},
\end{aligned}
$$

where
all the letters involved being positive quantities and the conditions of the limits being

$$
h_{1}<A_{1} x_{1}^{a_{1}}+A_{2} x_{2}^{a_{2}}+\ldots+A_{n} x_{n}^{a_{n}}<h_{2} .
$$

For putting $A_{1} x_{1}{ }^{a_{1}}=\xi_{1}, A_{2} x_{2}{ }^{a_{2}}=\xi_{2}$, etc., $\frac{a_{1}}{A_{1}}=b_{1}, \frac{a_{2}}{A_{2}}=b_{2}$, etc., we have

$$
\begin{aligned}
I_{n} & =\frac{1}{\prod_{1}^{n} a_{r} A_{r}} \frac{i_{r}}{a_{r}}
\end{aligned} \int \ldots \int \frac{\xi_{1}^{\frac{i_{1}}{a_{1}}} \ldots \xi_{n}^{\frac{i_{n}}{a_{n}}} f\left(\xi_{1}+\ldots+\xi_{n}\right)}{\left(\lambda+b_{1} \xi_{1}+\ldots+b_{n} \xi_{n}\right)^{k}} \frac{d \xi_{1} d \xi_{2} \ldots d \xi_{n}}{\xi_{1} \xi_{2} \ldots \xi_{n}} .
$$

Thus in all such cases the multiple integral is reduced to a single integration.
985. Differentiation with regard to a parameter contained in the integrand.

In a multiple integral

$$
u=\int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} \cdots \int_{a_{n}}^{b_{n}} \phi\left(x_{1}, x_{2}, \ldots x_{n}, c\right) d x_{1} d x_{2} \ldots d x_{n}
$$

which contains a constant c, differentiation with regard to c may be effected by the same rule as for a single integral, provided that the limits of the several integrals are all independent of c. That is

$$
\frac{\partial u}{\partial c}=\int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} \cdots \int_{a_{n}}^{b_{n}} \frac{\partial \phi}{\partial c} d x_{1} d x_{2} \ldots d x_{n}
$$

The proof of this is the same as in the case of a single integral.
986. Liouville's Integral.

Consider the case

$$
I=\int_{0}^{\infty} \int_{0}^{\infty} \ldots \int_{0}^{\infty} e^{-t} x_{1}^{\frac{1}{n}-1} x_{2}^{\frac{2}{n}-1} \ldots x_{n-1}^{\frac{n-1}{n}-1} d x_{1} d x_{2} \ldots d x_{n-1}, *
$$

where $t \equiv x_{1}+x_{2}+\ldots+x_{n-1}+\frac{a^{n}}{x_{1} x_{2} \ldots x_{n-1}}$,
an integral discussed by Liouville.
Differentiating with respect to α,

$$
\frac{d I}{d a}=-n a^{n-1} \int_{0}^{\infty} \ldots \int_{0}^{\infty} e^{-t} x_{1}^{\frac{1}{n}-1} x_{2}^{\frac{2}{n^{-1}}} \ldots x_{n-1}^{\frac{n-1}{n}-1} \frac{d x_{1} \ldots d x_{n-1}}{x_{1} x_{2} \ldots x_{n-1}}
$$

* Bertrand, Calc. Intéyral, p. 476.

Now introduce another variable x_{n} defined by

$$
x_{1} x_{2} \ldots x_{n-1} x_{n}=a^{n},
$$

i.e. change to a system

$$
x_{1}=\frac{a^{n}}{x_{2} x_{3} \ldots x_{n}}, \quad x_{2}=x_{2}, \quad x_{3}=x_{3}, \ldots x_{n-1}=x_{n-1}
$$

Then

$$
J=\frac{\partial\left(x_{1}, x_{2}, \ldots x_{n-1}\right)}{\partial\left(x_{2}, x_{3}, \ldots x_{n}\right)}=(-1)^{n-1} \frac{a^{n}}{x_{2} x_{3} \ldots x_{n}^{2}} .
$$

Then $t \equiv x_{1}+x_{2}+\ldots+x_{n-1}+\frac{a^{n}}{x_{1} x_{2} \ldots x_{n-1}}$ is replaced by

$$
x_{2}+x_{3}+\ldots+x_{n}+\frac{a^{n}}{x_{2} x_{3} \ldots x_{n}},=t^{\prime} \text { say }
$$

and $x_{1}^{\frac{1}{n}-1} x_{2}^{\frac{2}{n-1}} \ldots x_{n-1}^{\frac{n-1}{n}-1} \frac{d x_{1} d x_{2} \ldots d x_{n-1}}{x_{1} x_{2} \ldots x_{n-1}}$ is replaced by

$$
J\left[\frac{a^{n}}{x_{2} x_{3} \ldots x_{n}}\right]^{\frac{1}{n}-1} x_{2}^{\frac{2}{n}-1} x_{3}^{\frac{3}{n}-1} \ldots x_{n-1}^{\frac{n-1}{n}-1} \frac{d x_{2} d x_{3} \ldots d x_{n}}{a^{n} / x_{n}}
$$

i.e. $\quad(-1)^{n-1} a^{1-n} x_{2}^{\frac{1}{n}-1} x_{3}^{{ }^{\frac{2}{n}}-1} x_{4}^{\frac{3}{n}-1} \ldots x_{n}^{\frac{n-1}{n}-1} d x_{2} d x_{3} \ldots d x_{n}$,
and in the transformation of the multiple integral the sign is adjusted by a proper assignment of the limits.

Hence, as x_{n} is ∞ when x_{1} is zero and vice versa, we have

$$
\frac{d I}{d a}=-n a^{n-1} \int_{0}^{\infty} \ldots \int_{0}^{\infty} a^{1-n} e^{-t} x_{2}^{\frac{1}{n}-1} x_{3}^{\frac{2}{n^{-1}}} \ldots x_{n}^{\frac{n-1}{n}-1} d x_{2} d x_{3} \ldots d x_{n}
$$

$$
=-n I \text { (for if } a \text { is increased } I \text { is decreased). }
$$

Hence $\frac{d I}{I}=-n d a, \quad \log I=-n a+$ const., $\quad I=C e^{-n a}$.
To find C, take the case $a=0$.
Then I becomes

$$
\int_{0}^{\infty} \int_{0}^{\infty} \ldots \int_{0}^{\infty} e^{-\left(x_{1}+x_{2}+\ldots+x_{n-1}\right)} x_{1}^{\frac{1}{n}-1} x_{2}^{\frac{2}{n}-1} \ldots x_{n-1}^{\frac{n-1}{n}-1} d x_{1} d x_{2} \ldots d x_{n-1}
$$

and as the variables are independent and the limits constants, this may be written

that is $\Gamma\left(\frac{1}{n}\right) \Gamma\left(\frac{2}{n}\right) \Gamma\left(\frac{3}{n}\right) \ldots \Gamma\left(\frac{n-1}{n}\right)$ or $(2 \pi)^{\frac{n-1}{2}} n^{-\frac{1}{2}}$.
Hence

$$
C=(2 \pi)^{\frac{n-1}{2}} n^{-\frac{1}{2}} .
$$

Hence the value of the integral is

$$
I=(2 \pi)^{\frac{n-1}{2}} n^{-\frac{1}{2}} e^{-n a}
$$

987. Liouville's Method of proving Gauss' Theorem.

Consider the product

$$
\Gamma(x) \Gamma\left(x+\frac{1}{n}\right) \Gamma\left(x+\frac{2}{n}\right) \ldots \Gamma\left(x+\frac{n-1}{n}\right)
$$

This may be written
$\int_{0}^{\infty} e^{-x_{1}} x_{1}^{x-1} d x_{1} \times \int_{0}^{\infty} e^{-x_{2} x_{2}}{ }^{x+\frac{1}{n}-1} d x_{2} \ldots \times \int_{0}^{\infty} e^{-x_{n}} x_{n}^{x+\frac{n-1}{n}-1} d x_{n}$
$=\int_{0}^{\infty} \int_{0}^{\infty} \ldots \int_{0}^{\infty} e^{-\left(x_{1}+x_{2}+\ldots+x_{n}\right)} x_{1} x-1 x_{2}^{x+\frac{1}{n}-1} \ldots x_{n}^{x+\frac{n-1}{n}-1} d x_{1} d x_{2} \ldots d x_{n}$.
Now change the variables according to the scheme

$$
x_{1}=\frac{z^{n}}{x_{2} x_{3} \ldots x_{n}}, \quad x_{2}=x_{2}, \quad x_{3}=x_{3} \ldots x_{n}=x_{n}
$$

Then $J=\frac{n z^{n-1}}{x_{2} x_{3} \ldots x_{n}}$, and the integral may be written

$$
\begin{aligned}
& \int_{0}^{\infty} \int_{0}^{\infty} \ldots \int_{0}^{\infty} e^{-\left(x_{2}+x_{3}+\ldots+x_{n}+\frac{z^{n}}{x_{2} x_{3} \ldots x_{n}}\right)} \frac{n z^{n-1}}{x_{2} x_{3} \ldots x_{n}} \\
& \quad \times\left(\frac{z^{n}}{x_{2} x_{3} \ldots x_{n}}\right)^{x-1} x_{2}^{x+\frac{1}{n}-1} x_{3}^{x+\frac{2}{n}-1} \ldots x_{n}^{x+\frac{n-1}{n}-1} d z d x_{2} d x_{3} \ldots d x_{n}
\end{aligned}
$$

that is

$$
\begin{aligned}
& n \int_{0}^{\infty} \int_{0}^{\infty} \ldots \int_{0}^{\infty} e^{-t} z^{n x-1} x_{2}^{\frac{1}{n}-1} x_{3}^{\frac{2}{n}-1} \ldots x_{n}^{\frac{n-1}{n}-1} d z d x_{2} d x_{3} \ldots d x_{n} \\
& \quad=n \int_{0}^{\infty}(2 \pi)^{\frac{n-1}{2}} n^{-\frac{1}{2}} e^{-n z} z^{n x-1} d z \text {, by the preceding article, } \\
& \quad=n^{\frac{1}{2}}(2 \pi)^{\frac{n-1}{2}} \int_{0}^{\infty} e^{-n z} z^{n x-1} d z=n^{\frac{1}{2}-n x}(2 \pi)^{\frac{n-1}{2}} \Gamma(n x)
\end{aligned}
$$

viz.

$$
n^{n x} \Gamma(x) \Gamma\left(x+\frac{1}{n}\right) \ldots \Gamma\left(x+\frac{n-1}{n}\right)=n^{\frac{1}{2}}(2 \pi)^{\frac{n-1}{2}} \Gamma(n x)
$$

which is Gauss' result.

PROBLEMS.

1. Find the mass of the triangular lamina bounded by the axes of coordinates and the line $x+y=a$ for a law of surface density $\mu x^{p} y^{q}$.
2. Find the mass of the tetrahedron bounded by the coordinate planes and the plane $a^{-1} x+b^{-1} y+c^{-1} z=1$, the volume density being $\rho=\mu x y z$.
3. Find the centroid of the area in the first quadrant bounded by the lines $x+y=h_{1}, x+y=h_{2}$, for a law of surface density $\sigma=\mu x^{p} y^{q}$.
4. Find the centroid of the volume in the first octant bounded by the coordinate planes and the two planes

$$
a^{-1} x+b^{-1} y+c^{-1} z=\delta_{1}, \quad a^{-1} x+b^{-1} y+c^{-1} z=\delta_{2}
$$

for the following laws of volume-density :
(i) $\rho=\mu\left(a^{-1} x+b^{-1} y+c^{-1} z\right)$,
(ii) $\rho=\mu x x^{p} y^{\eta} z^{r}$,
(iii) $\rho=\mu\left(x^{2}+y^{2}+z^{2}\right)$.
5. Apply Dirichlet's theorem to find the mass of an octant of an ellipsoid in which the density at any point varies as the square of the product of the distances of the point from the principal sections of the ellipsoid.
6. Find the moment of inertia about the x-axis of the portion of the sphere $\dot{x}^{2}+y^{2}+z^{2}=a^{2}$, which lies in the positive octant, supposing the law of volume density to be $\rho=\mu x y z$. Obtain the corresponding result for an octant of the ellipsoid $x^{2} / a^{2}+y^{2} / b^{2}+z^{2} / c^{2}=1$.
7. Find the mass of the positive octant of a sphere of radius R, whose centre is the origin, for a law of volume density

$$
\rho=\mu(a, b, c, f, g, h)(x, y, z)^{2} .
$$

8. Find the mass, centroid and moments of inertia about the axes, of the positive octant of the ellipsoid $x^{2} / a^{2}+y^{2} / b^{2}+z^{2} / c^{2}=1$, for a law of volume density $\rho=\mu\left(x^{2}+y^{2}+z^{2}\right)$.
9. Show that the volume of the solid, the equation of whose surface is $a^{-4} x^{4}+b^{-4} y^{4}+c^{-4} z^{4}=1$, is $\frac{a b c \sqrt{2}}{12 \pi}\left\{\Gamma\left(\frac{1}{4}\right)\right\}^{4}$.
10. A homogeneous solid is bounded by the surface

$$
(x / a)^{\frac{2}{3}}+(y / b)^{\frac{2}{2}}+(z / c)^{\frac{2}{3}}=1 .
$$

Show that the centroid of the portion of it in the positive octant is the point

$$
\left(\frac{21 a}{128}, \frac{21 b}{128}, \frac{21 c}{128}\right)
$$

[Oxf. II, Pub., 1901.]
11. Find the position of the centroid of the portion of the solid bounded by

$$
(x / a)^{2 l}+(y / b)^{2 m}+(z / c)^{2 n}=1,
$$

which lies in the positive octant, the volume density being $\mu x^{p} y^{q} z^{r}$.
12. Show that $\iint x^{2 l-1} y^{2 m-1} d x d y$ for positive values of x and y, such that $x^{2}+y^{2}>c^{2}$, is

$$
\begin{equation*}
\frac{1}{4} c^{2 l+2 m} \frac{\Gamma(l) \Gamma(m)}{\Gamma(l+m+1)} . \tag{I.C.S.,1893.}
\end{equation*}
$$

13. Obtain an expression for the value of

$$
\iint x^{2 l-1} y^{2 m-1} f\left(a x^{2}+b y^{2}\right) d x d y
$$

for all positive values of x and y, such that $a x^{2}+b y^{2} \ngtr c^{2}$.
[I. C. S., 1893.]
14. Prove that the value of the volume integral

$$
\iiint(\lambda x+\mu y+\nu z)^{2 n} d x d y d z
$$

taken through the volume of the ellipsoid $x^{2} / a^{2}+y^{2} / b^{2}+z^{2} / c^{2}=1$, λ, μ, ν being constants and n a positive integer, is

$$
\begin{equation*}
4 \pi a b c\left(\lambda^{2} a^{2}+\mu^{2} b^{2}+\nu^{2} c^{2}\right)^{n} /(2 n+1)(2 n+3) . \tag{I.C.S.,1912.}
\end{equation*}
$$

15. Find the value for positive values of x, y, z of

$$
\iiint x y z \sin (x+y+z) d x d y d z
$$

with condition $x+y+z<\frac{1}{2} \pi$.
[I. C. S., 1899.]
16. Prove that $\int_{0}^{\infty} \int_{0}^{\infty} \phi(x+y) x^{\alpha} y^{\beta} d x d y$

$$
=\frac{\Gamma(u+1) \Gamma(\beta+1)}{\Gamma(\alpha+\beta+2)} \int_{0}^{\infty} \phi(z) z^{a+\beta+1} d z, .
$$

and extend the theorem to any number of variables. [Coul. γ, 1887.]
17. Prove that the area of the curve

$$
(a x+b y)^{2 n}+(b x-a y)^{2 n}=1 \quad \text { is } \quad\left[\Gamma\left(\frac{1}{2 n}\right)\right]^{2} / n\left(a^{2}+b^{2}\right) \Gamma\left(\frac{1}{n}\right) .
$$

[CoLl. γ, 1891.]
18. Find the volume enclosed by the surface

$$
(x / a)^{2 n}+(y / b)^{2 n}+(z / c)^{2 n}=1
$$

where n is an integer.
[Math. Trif., Part II., 1919.
Show that the distance of the centroid of the portion for which x is positive from the plane $x=0$ is

$$
\bar{x}=\frac{3 a}{4} \Gamma\left(\frac{1}{n}\right) \Gamma\left(\frac{3}{2 n}\right) / \Gamma\left(\frac{2}{n}\right) \Gamma\left(\frac{1}{2 n}\right) .
$$

19. Prove that $\iint\left(1-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\right)^{p-1} f(\alpha x+\beta y) d x d y$

$$
=\sqrt{\pi} a b \frac{\Gamma(p)}{\Gamma\left(p+\frac{1}{2}\right)} \int_{-1}^{1}\left(1-t^{2}\right)^{p-\frac{1}{2}} f(k t) d t,
$$

where $k=\left(a^{2} \alpha^{2}+b^{2} \beta^{2}\right)^{\frac{1}{2}}$, the double integral being taken for all values of x and y, such that

$$
x^{2} / a^{2}+y^{2} / b^{2}<1
$$

20. Show that, $x y z u$ being equal to a^{4},

$$
\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{4}+y^{4}+z^{4}+u^{4}\right)} y z^{2} d x d y d z=\frac{\pi^{\frac{3}{2}}}{32 \sqrt{2} e^{4 a^{4}}}
$$

[St. John's, 1882.]
21. Show that

$$
\iiint \frac{d x d y d z}{\left(\rho+a x^{2}+\beta y^{2}+\gamma z^{2}\right)^{\frac{6}{2}}}=\frac{\pi}{6} \frac{a b c}{\rho \sqrt{\left(\rho+a^{2} a\right)\left(\rho+b^{2} \beta\right)\left(\rho+c^{2} \gamma\right)}},
$$

where x, y, z have all positive values such that

$$
x^{2} / u^{2}+y^{2} / b^{2}+z^{2} / c^{2}<1 . \quad[\text { CoLLEGES } \gamma, 1891 .]
$$

22. Prove that
$\iint \frac{(1-x-y)^{k-1} x^{m-1} y^{n-1}}{(\rho+\alpha x+\beta y)^{k+m+n+1}} d x d y$

$$
=\frac{\Gamma(k) \Gamma(m) \Gamma(n)}{\Gamma(k+m+n+1)}\left\{\frac{k}{\rho}+\frac{m}{\rho+\alpha}+\frac{n}{\rho+\beta}\right\} \frac{1}{\rho^{k}(\rho+\alpha)^{m}(\rho+\beta)^{n}},
$$

the integral extending to all positive values of x and y such that

$$
x+y<1 .
$$

[Colleges $\gamma, 1891$.]
?23. Show that

$$
\begin{aligned}
& \iint \ldots \int \frac{x_{1}^{i_{1}-1} x_{2}^{i_{2}-1} \ldots x_{n}^{i_{n}-1} f\left(x_{1}^{i_{1}}+x_{2}^{i_{2}}+\ldots+x_{n}^{i_{n}}\right)}{\left(\lambda+a_{1} x_{1}+a_{2} x_{2}^{i_{2}}+\ldots+a_{n} x_{n}^{i_{n}}\right)^{n}} d x_{1} d x_{2} \ldots d x_{n} \\
& \quad=\frac{(-1)^{n-1}}{i_{1} i_{2} \ldots i_{n}} \frac{1}{\Gamma(n)} \Sigma \frac{1}{\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right) \ldots\left(a_{1}-a_{n}\right)} \int_{0}^{1} \frac{f(t)}{\lambda+a_{1} t} d t,
\end{aligned}
$$

the summation referring to a cyclical change of letters from a_{1} to a_{n}, and the integration being effected for all positive values of the variables for which $\quad x_{1}^{i_{1}}+x_{2}^{i_{2}}+\ldots \ngtr 1$.
24. Prove that, n, r being positive whole numbers,

$$
\int_{0}^{\infty} \int_{0}^{\infty} \cdots \int_{0}^{\infty} \frac{d x_{1} d x_{2} \ldots d x_{2 n}}{\left(a^{2}+\sum_{1}^{2 n} x_{r^{2}}\right)^{2 n+2 r+1}}=\frac{\pi^{n}}{2 a^{2 r+1}} \frac{(n+r-1)!}{(2 n+2 r-1)!} \frac{(2 r)!}{r!}
$$

[Math. Trip., 1870, Wolstenholme,]
25. Prove that

$$
\begin{aligned}
& \int_{0}^{x_{1}} \frac{d x_{2}}{\left(x_{1}-x_{2}\right)^{\frac{n-1}{n}}} \int_{0}^{x_{2}} \frac{d x_{3}}{\left(x_{2}-x_{3}\right)^{\frac{n-1}{n}}} \int_{0}^{x_{3}} \frac{d x_{4}}{\left(x_{3}-x_{4}\right)^{\frac{n-1}{n}}} \cdots \int_{0}^{x_{n}} \frac{f^{\prime}(\xi) d \xi}{\left(x_{n}-\xi\right)^{\frac{n-1}{n}}} \\
&=\left\{\Gamma\left(\frac{1}{n}\right)\right\}^{n}\left\{f\left(x_{1}\right)-f(0)\right\}
\end{aligned}
$$

(See Ex. 30, Ch. XXIV.)
[Math. Tripos, 1875.]
26. Prove that

$$
\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x_{1}+x_{2}+\frac{a^{3}}{x_{1} x_{2}}\right)} x_{1}{ }^{\frac{1}{3}} x_{2}^{\frac{2}{3}} \frac{d x_{1}}{x_{1}} \frac{d x_{2}}{x_{2}}=e^{-3 a} \Gamma\left(\frac{1}{3}\right) \Gamma\left(\frac{2}{3}\right)
$$

[Liouville.]
27. If n be a positive integer, show that for an integration conducted over a triangle of area Δ in the $x-y$ plane

$$
\iint y^{n} d x d y=\Delta H_{n}
$$

where H_{n} is the arithmetic mean of the homogeneous products of the ordinates of the corners, and find the corresponding result for any plane polygon.
[Routh, Rigid Dyn., p. 425.]
28. Show that if the integration be conducted for all positive values of $x_{1}, x_{2}, x_{3}, x_{4}$ such that $x_{1}+x_{2} \ngtr 1$ and $x_{3}+x_{4} \ngtr 1$, then

$$
\begin{aligned}
\iiint \int x_{1} i_{1}-1 & x_{2}^{i_{2}-1} x_{3}^{i_{3}-1} x_{4}^{i_{4}-1} d x_{1} d x_{2} d x_{3} d x_{4} \\
= & \Gamma\left(i_{1}\right) \Gamma\left(i_{2}\right) \Gamma\left(i_{3}\right) \Gamma\left(i_{4}\right) / \Gamma\left(i_{1}+i_{2}+1\right) \Gamma\left(i_{3}+i_{4}+1\right)
\end{aligned}
$$

29. If $t \equiv x_{1}^{n}+x_{2}{ }^{n}+\ldots+x_{n}{ }^{n}$ and $x_{1} x_{2} \ldots x_{n}=a^{n}$, evaluate the integral

$$
\int_{0}^{\infty} \int_{0}^{\infty} \cdots \int_{0}^{\infty} e^{-t} x_{1}{ }^{1} x_{2}{ }^{2} x_{3}{ }^{3} \cdots x_{n-1}^{n-1} \frac{d x_{1}}{x_{1}} \frac{d x_{2}}{x_{2}} \cdots \frac{d x_{n-1}}{x_{n-1}}
$$

30. If $t \equiv x_{1}{ }^{\frac{n}{1}}+x_{2}{ }^{\frac{n}{2}}+x_{3}{ }^{\frac{n}{3}}+\ldots x_{n}{ }^{\frac{n}{n}}$ and $x_{1}{ }^{\frac{1}{1}} x_{2}{ }^{\frac{1}{2}} x_{3}{ }^{\frac{1}{3}} \ldots x_{n}{ }^{\frac{1}{n}}=a$, show that

$$
\int_{0}^{\infty} \int_{0}^{\infty} \cdots \int_{0}^{\infty} e^{-t} d x_{1} d x_{2} \ldots d x_{n-1}=\frac{n!}{n^{n+\frac{1}{2}}} \frac{(2 \pi)^{\frac{n-1}{2}}}{e^{n a}}
$$

[^0]: * Liouville's Jonmal, vol. iv., p. 168.
 \dagger Cajori, Hist. of Math., p. 367 ; Kummer, Gedächnissrerle auf G. P. LejeuneDirichlet,

