CHAPTER XXVIIIL

DEFINITE INTEGRALS (IIL).

1121. The Three Integrals,

Il=j'cospecos q0d0=0 (p+q); °r72—r (p=q),
I,=j sin pOsin q0 dO=0 (p=+q); or (19 )

I,=I sin p6 cos g6 d0=0 (p-q even); or]!—);__]';q2 (p+q odd),
0

where p and ¢ are integers, are of very special importance in
the Theory of Definite Integrals.

(i) I,=ﬁ'cosp0cosq0d0=1f'[cos(p+q)0+cos(p—q)@]d()

[sm(p+q)0 sin (p— 4)0]
59 p+q r—1 0

=0, if p and ¢ be unequal.
Butif p=g, Lt,,_.,=o[“‘“(” 9 ] [0] =r;

s I1=0if p#+¢ and =g if p=q.

In the latter case, viz. p=¢, we may obtain the result directly without
taking a limit ; for

1+ cos 2p6 sin 2p0 T
= A cosgpeda f ———-—d0—2[0 :L g

(ii) In the same way
I,=-/;'sinp95inq0d6=0 if p+g or =7-;- if p=gq.
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294 CHAPTER XXVIIL
(iii) Finally
: 3 ¢ d
I,=/; sin p@ cos g6 d0=§j: [sin (p+4¢) 60 +sin (p—q) 0] d6

i _cos(p+q)0_w8(p—q)9]'

2 p+gq r-q
Y 1—(-1)m+1_(_1)v—«
2 p+q P—9q

M Lo 70 g e i 14 S neg
— p+q+p_q}, for (= 1)-0=(~ 1)+,

={1 "(— I)M}plfqi

=0 or )

2p
-
according as p+¢ is even or odd, and p, ¢ unequal.
And if p=gq,

= % f'sin 2p0 db = é [ —252—213?]' =l—_—c——Z;—2ﬂr=0, p being an integer.
0 /i 0
1122. Important Applications.

If then F(0) be a function of 6 capable of convergent

expansion in a series of sines or cosines of integral multiples
of 6, say,

F(0)=A4,+ A4, cos 0+ Aycos 20-+...+ A, cosnb+...,
we have I'F(G) cosnfdf=A4, - 12r and JWF(G) do=A.
0 0
For upon multiplying by cosnf and integrating between

limits 0 and 7 all the terms vanish except A,,J-“cosznOdO,
0

which becomes 4, . g
When therefore such an expansion for F(6) is possible, this
result gives a means of obtaining the several coefficients, viz.

4,= 1" F@ya8, 4,=2( F(8)cosnddb.
il Tar il m™ Jo

Similarly, if F(6) be expressible in the form
F(0)=B, sin 6+ B, sin 20+...+ B, sinnf+...

we have B, =§j" F(6) sinnb do.
0
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In the same way, if F(0)EA.+§ Ay cosrf,
1

then Lr F(6) cosmOcosn()dH:éj: F(6) {cos (m+n) @+ cos (m —n) 6} d6

1
Ta g(dm+n+Am—n)7 m+ 7,
and f F(0) cos’m0d0—-— —(2A.+A,,,,)
Again f F(6) sin 2m6 db = A‘+4m3 3 A3+4mt”_" 5,A5+

and so on for other similar apphcat.lons of the rules.

1123. There are then two cases for which the rules are
particularly useful.

1. When F(6) is a known expansion of one of the forms
Ao+ A, c0870, D, B,sin7b,
T T

2.e. such that the coefficients 4,, 4,, 4,, ... or By, B,, ... are
known, the method may be used to obtain definite integrals of
the forms

j:F(O) o, j F(@) oo pf 5o g0 o, j FO) ¢ ©os* 946,
ete.

2. Conversely, if #(6) has not been already expanded in such
form, i.e. in a convergent series of sines or cosines of integral
multiples of 6, and if such expansion be possible, and if it

be possible to obtain the value of j F(6) cosmBdh, or of
IF(G) sinnd dO, the values of the several coefficients may
then be deduced as 4 —-ﬁj F(6)de,

=2J‘WF(9) cos n@ db, Bn=_I F(0)sinnfdf, (n>>0),
T Jo TJo

and the expansion thus obtained holds for all values of 6
between 0=0 and O=m.

1124. Again, if there be two convergent expansions of the same
kind, viz.
F(O)=A4,+ A cos 6+ Agcos 20+ Agcos 30 +...,
f(6)=€, + C, cos 6+ Cy cos 20+ C3co830 + ...,
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296 CHAPTER XXVIII

then plainly, upon multiplication and integration between limits 0 and ,
AoCy+ 4,0, + 450y + 4,Cy+ .. =;r2-ﬁ'f(0)F(0) d6 - 4,0,
and as a case, if f(f) and () be the same series,
At A Ape die =2 [TIROR0- 42
1125. Further, if
P@)= Ao+ Ao+ A+ A3+,
Y(2)=Co+ Cio+ Cpa?+ Ca®+ ... ;
then writing ¢ =ze¥, v=2ze—1,
b () +p()=2(4o+ 4,2 cos G+ 4,22 cos 20+ 4423 cos 36 +...),
Y(u)+ ¢ (v)=2(Cy + Cyz cos O + Cpa? cos 20+ Cyzdcos 30 +...) ;
ACo. m+ 4,00 T+ AyCpA T+ 430508 T+ ..

=f' ¢(u)+2-¢(v), ¢(u)-2i-¢(v) a6

z.e. A Co+ 4,012%+ 4,00t + 4,058 + ...
=5r [ [$(0)+$ O () + P16 4sCo
and as a particular case, if ¢ and ¥ be identical,
Ad+ A AP AR . =5 L‘ () + p)Pd6 - Ak,

i.e. when the several terms of a series can be summed, we can express the
sum of the squares of these terms in the form of a definite integral, and
the sum of the squares of the coefficients will be expressible by means of
the’same integral, putting #=1, provided the series is convergent for
that value of z, 7.e.

G+ AP 424 404 =g [ [Be)+ b e PdO - A
0
1126. Ex. Thus for the series (1+)", » being a positive integer,

Ao2+A12+A23+...=21—ﬂ_/ [(1 40+ (1 + e Pdf -1
0

f M0 mB\2/ .6 8\ 20041
=-1—/ (62 +e 2 )(e?+e 2) clt9—l=2_n_ / (cos’igcos" >d0 1.
0 Jo

2m 2

Similarly for the series ¢*=1+- ., we have

L_ |_
1z+<11>‘ (1>2+(|13> ad. inf.=5— f (4 e~ 9ap -1

__g 2co8 0 2(s1 £
._TT.{o €290 cog?(sin 60)d6 - 1.
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1127. Again we may express as a definite integral the sum of the first
r terms of any series,
b(@)=do+ A x+ A2+ A2+ ... ad inf.
For writing as before, u =xze6, v=2e-19,

M}M=A,+Alxcos9+A?z‘2cos20+A,z3cos30+...

to an infinite number of terms,

sin 1 (r 1)0
_ Also ——/—=1+cos 0+cos20+...+cos (r—1)4.
sin g

Multiply and integrate from 0 to = ;
. Ao+ A+ A + A2+ ...+ 4,27

r6
sin
f ¢(u)+4>(v) g - 21)0d0—A..
sin 3
1128. If we take as our auxiliary series,
sin 1
—-%cos%—t;—_1 6O =cos k@ +cos (k+1)0+cos (k+2)0+... to r terms,
sin —
2
we have

A+ Ag 12 4 4 A 2FH1

) sin —-

0
f ¢(u)+4>(v 2 szk+2r—1

6do,
sin -é'
t.e. the sum of r terms of ¢(z) starting from any particular term, £ > 0.
Obviously other modifications may be made. And provided ¢(x)
remains a convergent series when #=1, we may put 1 for x before the
integration is performed if it be required to sum the several coefficients in
any of the above cases.

1129. Examples of Integ’rals derived from the Foregoing Principles.

Since 93 costtp =9 2 Yan Cp cos (2n — 2p)x +27C,,
P»=0
p=n
23+ copltitiy =9 n+10p cos (2n+ 1 - 2p) 2,
»=0
P=n—
(—1)*22msin ’“x=2 ( 1)? 3% Cpcos (27 — 2p) 2+ (~1)" 2" C,,,

and (- 1)121+1gin M+ip=9 (= 1)P+10, sin 22+ 1 - 2p) 2,

=0

N Twl Y
i
:O
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we have, by aid of the previous article,

l cos?z cos 2nx dor = 5= 2“, /: cos?"yz cos (2n — 2p) x dx="Cp 2,1,,,

f I cos*®zcosradz=0, (r+0),

0
where 7 is odd, or even and not lying within the range from 2n to —2n
inclusive. (A)
X "
j; cos?* iz cos (2n+ 1)z dr= Q:Iﬂ—x’
-L cos?™ 1z cos (2n+ 1 — 2p) 2 dx=2"+1C) - 5,—%,

f' cos* iy cosredr=0, (r+0),
o

where 7 is even, or odd and not lying within the range from 2n+1 to
—(2n+1) inclusive. (B)

/ sin?tz cos 2nw dr=(—1)"
<0

j; sin®ty cos(2n — 2p)a dz=(—1)"1P(0)p —2—15";,,

Z’",

f sin®**x cos ra dz=0, (r+0),
()

where 7 is odd, or even and not lying within the range from 2» to —2n
inclusive. (©)

j; sin?Mpgin (2n+ 1) dr=(-1)" 2—::—...1’

j: sin?™ 1z sin(2n + 1 — 2p)x do= (- 1)"P 2n+10) 2:::4.1'

2 -
' f sin®*+lgsin rz dz=0,
0

where 7 is even, or odd and not lying within the range from 2241 to
—(2n+1) inclusive. (D)
All six statements in (A) and (B) may be summed up in the result

v —x T
j;cos"xcos;wdx— CA_;;'LQX, (p+#0),

2

where *Cx— is the number of combinations of A things N at a time
P)
and is unity when p=A, or zero if /—\———-  be not a positive integer.

The three statements in (C) may be mmllally summed up as
f sinAz cos pw do = C'A—,. el = l) 2 (A even, p#0),
0
and the three statements in (D) may be summed up as

2A=p—1
fsin)«.z'sin,wdx= CA—u2—)‘(—]) 3 (A odd).
» f
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1130. Similarly, (1) 227 J;" cos®™z sin 2sx d
=./;' [2’,:2:’,;1 *Cp cos 2(n — p)x sin 28z + 2" C, sin 28x:| dx
=0, by Art. 1121 (iii).
(2) 2”‘Lﬂ cos*z sin(2s+ 1)z dx
=j;' [21,;2:);1 n(p cos 2 (n— p)x sin (28 + 1) 2 +2"C,, sin(2s+ 1)z |dz

o+ m(y 2

p=n-1 2(2s41)
=2 ?2 A s

0 gt g (2s+1)2—(2n —2p)?

(3) 2812 _/; " cost™ g sin 28z dx

P=n
=f'[2 2 W10, cos(2n+ 1 —2p)xsin 2sx:|dx
0 =0

zn 2.9
= ML Oyt e 1y S SR
Ao TS
4) 2"‘+1f' cos? 1z sin(2s+ 1)z dz
0

[ PSP b

=f [2 2 10y cos(2n+1—-2p)wsin(2s+ 1)z |dx
(] p=0

=0

(5) (-1) 2'"];' sin®® 2 sin 2sz dw

” p=n—1

=/ [2 2 (—1)?*mCycos(2n —2p)zsin2sz+(—1)* ‘"C’nsin2xx] dz
0 =0

=0

(6) (~1)n2 " sin® zsin (2s+1)a de
N

- p=n—1
= ]; [2 péo (=1)? 280y cos (2n—2p)xsin(2s + 1)z + (—1)" 2" O, sin(2s + l)a:] dx

2
241"

PREE T 2(2s+1 -
=2 8 Pl Gy H (-1

(7) (=1)» 2"‘+1j;" sin?"+1x cos 25w dx
™ P=n
=f [2 (=1)?P274+10), sin(2n 4+ 1 — 2p)x cos 2sx)] dx
0 =0

n 2(2n+1—2p)
=2 2 DG g T gy - e

(8) (—1)m e+t L " sin®™ 1z cos(2s+1) 2 d

£ ] p=n

=f [2 > (—l)"’”+‘0psin(2n+l—2p)xcos(2s+1)x:|da:
o L p=o

=0.
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Thus we have considered in Arts. 1129 and 1130 all cases of
j; " cos* 2 cos p di, j; " cos? zsin pa dix,
ﬁ' sin z cos p dz, _/;* sin® z sin px dz,
for which A and p are integers, A being positive.

1131. The eight expressions
cos?x cos 22, cos?™Hlzcos(2s+1)z, cos*asin(2s+1)z, cos*tlzsin 2sz,
sin®®x cos 25z, sin?*"+lz cos 25z, sin®®zsin(2s+ 1)z, sin**+lzsin(2s+ 1),
have the same values when we put = — in place of .
But the eight expressions

cos®®xcos(2s+1)2z, cos? g cos 28z, cos®™x sin 28z, cos*®Hlasin(2+1)w
8in?*" 2 cos(2s+ 1)z, sin?+lzcos(2s+1)z, sin*tasin2sz, sin*'+1zsin 2sz,
change sign if we put 7 —2 in place of 2.

From these considerations the integrals from 0 to g of the eight in the
first group are each half the result from 0 to .

And the integrals of the eight in the sscond group from 0 to 7 all
vanish. This is in conformity with the results found.

The integrals from O to ~ of the eight in the second group must there-
g 3 g group

fore be found by another method, viz. the reduction formulae of
Arts. 249-257,

1132. We have also, by putting for sin®®z its equivalent in a series of
n
cosines of even multiples of z, say 4,+ 2 4,, cos 2rz,
1
:/(:xsin”'z dx:];"z(Ao;- Aycos 22+ A cos 4z + ...+ Ay, cos 2nz)dx ;

and therefore integrating by parts,

(. =[ { sin 22 sin 42 sin2m:}:lr
jo zsinzdzr=| z{ dgz+ 4, 3 +4, 7 +...+4,, o !
22 cos 2x ”
—[Aog—A,v2—,—...]o
2 r? 7r2 1 12(2")!
=Ao(""2_§)=§ 0=_2_§2_nm0”=m,

with other similar results.
This may be obtained otherwise, thus :

" 0 "
[ zsin®rdr=— f" (m —x)sin*x dx=f (m —x)sin* 2 dz ;
Jo 0
An T[T .
f zsinz dz= 3 f sin®®z dz
0 0

m-122-3 1 =_ , (20)!
n m-278 2T gwmd(y ()

\A/AAAN FOIN Ora nl
V'V \ A" i .,'1\5.“./!
b )
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1133. The former process may be extended to find jr" 2Psin*y dz,
where p and » are positive integers. ?

Thus
1 A ] n P+l o n

f 2Psin?ty dx=f 2P(Ag+ 3 Agpcos 2ra)du=A4, + j 2P 3 Ay, co8 2 da

(] 0 5 p+ 0 3

P+1 n n
u x"ziz_!sin 2rx—px"“(—2(g—zgzcos 21-.17)

Pt
+p(p—1)x”"*( 2(22’ sm2m‘) p(p-1)(p- 2)1”"‘}:(2 )‘cos2m+...

=4,

— 1) S A =5 L 1 o
+(=1)%p! 2(2 ),H_lcos(2rx p+1 ):L
A
-1 p—3 2r
A0p+1+pﬂ' 2(2 )2 -p(p-1)(p-2) 2(2 DL
and p being integral and positive the series will terminate,

Also
A .= 1 2n 1 m( 1 m( ( 3 1)r=”
0=52n Cp, 2= Tgm-1 Un—D A4=2W——1 n—gy etc, A= gin—1 Cnr

+

Hence
P+1
. 1w
/ zPsin "xd.r—2m_1 gp¥i

=M=

on P—1 Sl i 2n,
Cp +pm @n? Cpr

~plo-D@-2r S me, 1 )

We may obtain similar results for
” ” > ”
f aPsintt oy de, f % cos*® zdx, / 2% cos™tly dx,
o o ° 0

or in fact for any integral of form ’.z"F(z) dz, where F(z) can be ex-
0
pressed as a series of sines or cosines of integral multiples of #. For

instance,
” . H ”
fz’cosmwdz=f 2P (1+ cos 22 +cos 4z + ... + cos 2nx) dx
0 sinx 0
wP+l [p”s1n2rz pa & (=1)cos2rx 8 (—1)sin 27y
Ty ) e s
L S R G - TN R T
”
cos(2rx p+1 )jl

2 1)”P'ZW)W——

P+1 P-1n 1
=%_‘T 1'1-2—2%;;—1’(?‘1)(1’-2)—2.—§;.+
1134. Results derivable from Well-known Series.
Many well-known series are established in books on Trigo-
nometry whose terms involve sines or cosines of integral
multiples of 6. And such series furnish many definite

integrals by the application of the rules of Art. 1121.
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For convenience we quote a number of the more important :

1-a? A 2 3 2
S o ey e =1+ 2a cos 6+ 2a2cos 20+ 2a%cos 30 +... , at<l,
2 2 2
r =—l—(—lcosa—?cos20—?00839—..., a?>1,
sin @ 3 4 . 4 "
2. p Ay s =sin §+asin 20+ a?sin 36 +..., at<l1,
w =l,sin 0+lssin 20+l4sin30+..., a?>1,
a a a
1—acosf g r 4 3
3. Im =1+acos 0+ a?cos 20 + a COE30+..., a <],
o =—%‘cos€—:—.‘cos 20—al3cos30-—..., a2>1,
cos 0 e ruldal s 3
L s lid =jogtiog (cosb+acos20+a cos360+...), a’<1,
A MR T i
or w7 7= l)+a2 - l(cos0+ cos 260 + 2coa30+ ),a -4 !
5. log (1 —2acos 0+ a?)= —2(a cos 0+1}a’cos20+§a300530+ ) a’<l1,
or =loga’—2( coxa(}+2 zcos20+ 5c08 30 +.. ), a?>1.
_, asinf i . i N
6. tan T=acid =asin 0+3}a®sin 20 +3a’sin 36 +..., a*<1,
or =r—0- ( sin 6+ 2sm29+ ssm30+ ), a'>1

and in each of these cases @ may be changed to —a.
We also have

7. log (‘Bcosg)= cose—%cosz'O-f-%cosaB—..., (-mr<f<m).
8. lo (2sing)=—cosG-——l-cos20—-1cos30~ (0< @< 2m).
. log 2 3 3 L ¥y
9. log(2sinf) = —cos20—}cos40—3}cos60—..., (0<f<m).
10. g = sin 0-—%sin 20+%sin 30-..., (—w<l<m).
11. 1;—0 = gin 0+%sin20+%sin30+..., 0<f<m).
T 7 { i
12. 3 = _ sin 0+§sm30+5mn50+..., (0<f<m).

It will be noted that if n < 1,
’ 2a
log (1 -7 cos @) is a case of log(l ~T3a3%® 9),

the value of @ being given by 1+a2=2;a,

or putting a=tan 9, n=sin a.

www.rcin.org.pl
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1135. Derivation of Other Series.

303

Other series may be obtained by differentiation with regard

to 6.

Let u=1-2acos 0+a’
Taking the series

il
.l 1+ 2a cos 0+ 2a%cos 20+ 2a3cos 36+ ... .........
and gs_:l_e___a sin 0+a?sin 20+ a®sin 30+ ... cceviveniieninnnns

Differentiate (1) with regard to 6,
2a(1 —a?)sin 6

- =2a sin 0+ 4a’sin 26+ 6a’sin 36+ ...,

(1- sn: 4 sin 360 +... +na"?sinnf + ..

and differentiating (2) with regard to 6,
(1+a?) cos 0 - 2a
u?

Equation (1) may be written,

u?

=cos 0+ 2a cos 20+ 3a2cos 30+... +na™cosnh +...

=1+2a cos 6+ 2a%cos 20+ ... +2a"cosnf+... .....

(1), a’<1,

(2), a*< 1.

al<l1,

#1(3), at<1,

(), a?<1.

D), at <1,

Multiply (4) and (5) by 2a(1 —a?) and 1+ a? respectively, and add, then

(1—;(:i)3= 1+a%+4a cos 0+ 2a2(3 — a?) cos 20+ 2a3(4 — 2a?) cos 30+ ...
+2a" {n(1—a?)+(1+a%)}cosnf+... ......cceeen.

and so on with further differentiations.
And similarly when a? is > 1, we have

e
“ul=1+gcos0+%cos20+%cos30+..., ........
as;ne $ m0+—§sm20+-—,sm30+ .............

Differentiate (1) with regard to 6,
2a(a? - l) sin§ _ 2
ot

o (a? 11‘2 sinf_1

sin 6+ Jsm 20+3 Bsin30+..

and differentiating (2') with regard to 6,
(1+a*)cosf—2a 1
BEEET G

and equation (1) may be wrltten,

(a2-1)(1 3:1c050+a’) 1+ c030+

- sin 0+3sin 20+E,sin30+... ARt

zcosO+ scos20+ c0830+...5 ...

Z2°08 20+ 3cos30+ .....

...(6), a¥<1,
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Multiply (4’) and (5°) by 2a (a?—1) and a®+1 respectively, and add, then

(a’;-zl) =a’+1+4acos 0+&?———) cos20+..,+wﬁf—(ﬁ—l—)}cosn0+... . 4(67)

ete.

1136. Successive Derivation of Further Series.
Again we have

a 1 _d mBsing  mBcosf(4 + B cos 0) +m(m+1) BX(1 — cos*d)
dg® (A+Bcos )™ df (A+BcosGy™H (4 + Bcos G)™+2
A+,u(.4+Bcos 6)+v(A4 + Bcos 6)? e
(4 + B cos g)ym+2 )
where A+pd+vAi=m(m+1)B%) giving A=-m(m+ 1)(A2—Bz),]
pB+2vAB=mAB, p=m(2m+1)4, -
VBi= — B, v —m}, J
p m(m+1)(42-B%) m(2m+1)4 m? a1
! ( u’?‘g' 7.9 T ) = AR T where u=A4 + B cosf.
Hence when series for ul'" and 1—,%_—1 in terms of cosines of integral
multiples of § have been found, a series of the same kind can be deduced
1
for —— el
Thus, putting 4=1+a?and B= —2a, we have
m(m+1)(1-a?)?_m@m+1)(1+a%) m* a2ty W
um+2 1"”_*_,. —W—da’ 1‘1’” o sssesasaeas

Putting m=1 and taking the case a? < 1,

—a?
1.2(11‘3 a.)’=1.3(1:’+a’)_:7 d; (expa,nslon of )

A e oo o]

£y 1+a2 [1 +$ 2a™ cos nﬂ]
—s [§ 2n%a™ cos nﬂ]

=2(1(-1— 4f2;a‘)+2 9an [3(1 +a ){(n+1) (n— l)a2}+ l] cos nf,

ie. e “) _(1+4a2+a4)+2A cosn,

where 4,=a"[(1- a2)2n7+ 3(1-a*)n+2(1+4a%+a%)).
And further applications of the formula (1), viz. putting m=2, 3, etc.

will furnish successively the series for —; il ete.; and similarly in the
case when a2 > 1.

1137. Moreover the differentiation of any one of these series furnishes

A ! . g sin ¢ .
another, e.g. omn=i furnishes the series for in terms of series of

sines of integral multiples of 6, as was seen in equation (3) of Art. 1135.

www.rcin.org.pl
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Thus, since
(1_a2)a @
u_“=l +a24+ X 2a" (1l -a?)+(14+a?)]cosnf, o <],
1
2_1)3 ©
or La——z—ll=a'-’+l+2 %[n(a’-—l)+(a”+l)]cosm9, ke
w 1 a

we have, by differentiating,
sinf & na"

=2 W[;z(l-a2)+(l+a2)} sinz0, %<1,
or =:2 2(a£n Iy a n+1 {n(a?-1)+(a?+1)]sinnb, o> 1,
and so on.
3 : cos 0 4 : o
Again a series for % may be found in terms of the series for o and
1
it cosf_1 l4at-u_l4a? 1 _1 1

7 A TR R TR
1138. Other powers of sin @ or cos § in the numerator may be readily
arranged for.

Thus, since L 0— lm_lf > na®1sin nf, (a®<1), we have
%Q 2(1 i R Zaza"—l 2 sin @ sin 0
(1 2 }, na™{cos (n — 1)0 — cos (n +1)6}
=$ 1323 [1 4 2a cos @ + (3a%— 1) cos 20+ (4a® — 2a) cos 36

+(5at—3a? cos 46+...], a?< 1.

And if o* > 1, a similar result may be obtained. These results are
mainly interesting from the definite integrals which may be obtained
from them by the aid of the results of Art. 1121 ; and to this matter we
now turn,

~ 1139. Definite Integrals immediately derivable.

By the application of the rules of Art. 1121 to the series of
Art. 1134, we have at once the following definite integrals.
Put 1—2a cos 0+a?=u, and consider in each case n to be a
positive integer.

40 - x

(1) 5 —Z—l—az o

@ j"’cosn(i dg:l ™ San
o U —a \ from Series 1.
mdf T

,)j; o a1 a?>1

At LT doR ngty S SN Y

@ | S 0= aTr gl
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W g
3) ﬁ = 0de=’2—'
at<1
(4 ﬁ sin 97.~:1nnficw=1§ra”_1 '
2g from Series 2.
’ T 8in —L
(3),[0 u  2a? ‘i
w
sin Osm ng = 1
(@) [einbeinnd_= L
() [ 120 ag=rx
<l
[ e g_c_‘wos_"ﬁ B=Tum (n>0)
(5’) [ ljﬂgd(;:()
et >1

0y [(Qmacosthoonnd gy 2 2 L >0

cos 0

\ from Series 3.

W [ da_l#tﬁ a?< 1
2
(8) [__—cos()cosn(}d0=g}i.zzaﬂ_l (n > 0)
™ f cosede 1 le 2< 1
<
, cos @ cos 'nG ma?+1l 1 0 g
(8) /; T e e d0—-—2 R | a”‘“ (n> )
i \
(9)/; log udf —Q*
: at<1
i T
(10) /; cos nf logudf =_ﬁan1-
(9% '/;”logud0 =7 log a®*
™ lT a?> 1
(10’)1) cosnf log u df =_1ﬁra—n )

=0*, when a=1,

a1 [Toguds

\ from Series 4.

\ from Series 5.

from Series 9.

from Series 6.

gl _, asinf@ il
(12) [) sin nf tan~! —- acosﬁda 3, @ a'<1
i Ls sin 6 T 1
1 LI 2
) ./o W @ — cos (~)d0 spant 4¢>1

* Poisson, Journal de I'Ecole Polytechnique, xvii.
 Legendre, Exercices, vol. ii., p. 123.
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(14) fo" cos nf log (2 cos g) 47 e 2—’; , from Series 7.

(15) /:r cos nf log (2 sin g) df=— %1, from Series 8.

TLLUSTRATIVE EXAMPLES.
1140. Denoting 1 —2a cos 0+ a* by # :
1. Deduce from j;' logudf=0 or wloga? as a? is < or > 1, by
integration by parts,

ﬁ'g%qd0=%log(l+a)’ (< 1)

A IV
or _%10g<1 +a) (a<1).
2. Deduce from Series 3 and 3’, Art. 1135,
(76inf 0 2 (@ ks L
jo ) 0—(1—112)2’ (a®< 1), or @ (a?>1).

3. Show by direct integration that

7sin 6 1
j; Tun i “2a(n-1) {(a— E—0 " (@ + l)""*’”} (n#1)

sin 1, l+a
/;'Td0=alog——a (a’-’< 1)

or =éloga_ (a® >1).
4. Prove that pi.. Gsm n0d0_1ir o (a?< 1),
o a"’
—n-1
or =n~21 h (a?>1).
d0 1+4a +at
5. Prove that ~a=ap (a?<1).
6. Prove that
[ c0sn6 4g~T I az)sm — ) +3(1- a)n+2(1 + 4+ (at<1).
7. From the formulae of Art. 1137, deduce
sin®@
K d0—§ (——1)-3 (a?< 1)
1
or ='§ m (a’ > 1).
sin 0 sin 20 na™
[ endennd 4 = i a,),,,[n(l A+ (1+a)] (at<1)
na"
or 7; @= )S[n(a“ -1+ (a®+1)] (a2>1).
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1141. Series for Evaluation when the Integral is nof expressible
in Finite Terms.

Again we may obtain the values of many definite integrals
of this class in the form of series which, though they may not
be capable of summaticn, will nevertheless serve for their
numerical calculation.

For instance, f' sin 20 log (1 —2a cos @ +a?) df (a® < 1)
o

=-2 /'sin 20(acos 0+}a2cos 20+la3cos30+...)d0

2[22 12+3 22 32+5 22 52+ ]
a® a’ a®
—8[ I 4 35+35 vte T et Te. 11+‘"]'

1142. Again, since sin (p+1)0—sin (p—1)6=2 sin 6 cos pO
we have

J. &gp_(p_—{—l)_@de J"wd9=2rcosp9d0=0,
g 0

sin 6 o a0
when p is integral.

That is, putting w,= j e pG

o 8in6

d0, we have

Upty= Up—1=Up—g=c6tC,,

de=j" 2 cos 0d0=0;
0

™ gin 0 ™ sin 20

St Wy LGl By

) u2n=01 u2n+i=7r'
Again, p and q being integral,
j smp@ cos gf d9= j sin (p—l—q)Q—}-:-xin(p—-q)()d6
0 0

sin 6 sin 6
=0 if p4-q be even, or if p+¢ be odd and p < g,
=0 if p4g be odd and p>q.

Hence if F(0) be a function capable of convergent expansion as a
series of cosines of multiples of 6, say

F(f)=A4,+4,co80+4,c0820+...+ A4, cos70+...,
™ sin 2p6
TR F(0)d0=(dy+ At ..+ Ay )

{* sin (2p+1)0
0

sind F0)d0=(do+dg+ A+ ... + dz) .
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TLLUSTRATIVE EXAMPLES,
1143. 1. Thus, since
i 1
cos? = o |:§ MO, 4210y, c08 204270 15 cOS 40+ ... +20(),, cO8 2n0:|,
we have, if p>n,
f" sin(2p+1)6
0

sin 0 i ﬂle—2’""l [2 Mgt " Cataghe +m02”:]

=g | "o O + 210y | = (1 1=,
whilst, if p <=,

rrsin(2p+1)60 r=n+p
h %%B—Lc"smoda—w-l [2 iyt R L 21:"r=n—p g
2. Apply Art. 1142 to show that, if v =1- 2a cos §+a?,
msin 206 cosB 1+a® 1-qa%
/; sinf u H-ﬁ’rl—a" 1-a? el
3. Prove that
™sin 2n6 a*™?
j; e logudf = -2 1+3+3+...+-2m (a®<1).
1144. A Reduction Formula.
Let u=1—2acos0+a?
We have seen that
" »
Ilzj Sy LR e and Z (a2> 1),
0o W 1-a
p being a positive integer.
Let I,,=f°°8£’9do.
ol
cos pf
Then —-——-—2 J- oty (cos O —a) dO
cos ph l—a‘—u 1—a? n
i I unf_’l do=n-— 1,,“-;1,,;
1 a dI . i
. In+1"l ag( n+n d )r v.e. In+1———;;2 d(l/"(a In)s( )

an equation by means of which the successive values of
I, 1,, 1,, etc., may be deduced.

1145. We have

wa?

(1-af)?

K,, where K,=(p+1) —(p-1)a?,
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IS:iTIEi% (aI,), which after a little reduction takes the form

1 (T Kor where Ky=(p+1)(p+2)-2(p+2)(p ~2)a+ (p-2) 2~ 1,

?
I,= i lag da3(a 1I,), which after reduction becomes 31 . (lraa?yK
where K,=(p+1)(p+2)(p +3) - 3(»+2)(p+3)(p - 3)a?
+3(p+3)(p-3)(p-2)a* - (p-3)(p-2)(p-1)a",
and so on, the law of formation of the successive values of K, being
obvious, and it may be verified inductively by substitution in Equation (1)
that the general form of the result is

ma? P = 1=D)(n—-2-p
I s s ""C’p[l+" 10, 1+ppal+n 10‘( ) ( )

e 9@+
1o (=1-P)(n—-2-D)(n-3-D)
1
G =
a form due to Legendre (Exercices, p. 374).
If we replace "+?-1() by its equivalent (p+1)(p+2) (n(pt)n D th

same formula, with the sign changed and —» wnt.t,en for p, will suffice
for the calculation of the corresponding integrals in the case when a?> 1.

1146. As particular cases we have, if a? <1,

[ T N R R B e

'cospG al ?  (p+2)(p+1) 2-p 2-p(- P)
ﬁ - aa’)" T.9 [l+2l+p G Tn)°

U e+ ) (049 20+ 9p-2e+ (- o),

ete. ;
and if a?> 1,

/:’ cos?gda (az )a[(l )+(1 +p)a2],

[ a5 Tl -7 @~ 2)+2@-p)@+P)a*+@+2) (1 +2)a%),
ete.

1147. Some Special Cases.
The special cases when p=0 and p=n— 1 are interesting.
If p=0,
"L LRy
o uh (1 = a:)m—l
the several coefficients being the squares of those of the binomial
expansion of (1+2z)"1,

(147102 + 710,204 4 %1C2a +...],
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"do_ _w
b u 1-a?’

*df_
uﬂ (1 aj).i (1 +a )’ ’

df_ L(
b W3 (1—a??®
d0

Thus

0

1+2%%+at),

==y a’)’ (1+ 3%?+ 3%t +af),
d0 -0 a2) s (1+4%2 + 6%* + 4%° + af),

ete.
If p=n-1, we have

cos(n—1) 6 o
e 40— g ™
Cases where a®>1. Take for instance I,= A d;?-

Here »=0 and I‘=_(1__1r¢_{‘i)—3(1+az)=@t_L])3(l+“2)'
d0
@@=

and it will appear genemlly that in the case of p=0, the only change
necessary in the previous results will be to replace 1—a? by a?—

Again, I,= )5(1+2-a-+a*), ete. ;

1148. Extension of the Reduction Formula.
It may be remarked that any integral of the form

j T0aq

~ is subject to the same reduction formula as that used in the

last article, viz.

L i B 4
IrHl = m.‘ W(a”l,,).

J. #(0) (cos O0—a) d()=nj'r 19} wd{)

1 +1
unrt o U™ a

1—a? n

=n I'H'I—EI”’

giving, as before, I "+1=1—l1'ﬁ dia" (a”L):

Hence in all such cases, if I, can be obtained in finite terms,
so also can all the rest of the group I,, I,, I,, ete.
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1149. We shall show for instance that this is the case with
the class of integrals

I"=_[ 81?‘50 dB, p being a positive integer.
0

To do this it is only necessary to show that I, is expressible
in finite terms, and we shall find that

1 a®!din p0 a?~1—a—(-1) p—-3_qg—(9-3) ,p=5_qg—(p—5)

2 Jb 4= 1 hE 3 i 5

+ oee
tog or P+ terms — (@”—a~?) tanha. ...... 1), (@*<1). ..
Take the case p odd=2)\+1, say,
1-a® ("sin(2A+1)0

2 J u

,,z.9=fo" sin(2A+1) [} +a cos 0 +a2cos 20 +...]d6

gk . a? at ue ¥
=gyt el [(2A+1)2—22+(2A£'i)i— 2t ey (2)\)2]
2A+2 a2A+4

2)H'l)|:(2,\+2)2 PREsy A Cy e ey R ‘"f']
Ja 1w 1 1 WAL oo e el | )
=+ [“2<1-2,\‘3+2,\)+“‘(3—2A 5+2A)+"'+“ (—1 4A+1]

(™2 - o)+ (- s )+ o i

2\ 2A—2 2\
a a 2 1 a? a
S TN TR P B v G e T % |
-1 2\+1 AA+1
i PL R b 1 t _(il_a_”_ _a _a Ay
[a tanh—'a GZH_l(ta.nh a T A7 W ) W Rty wrs
L /"’sin(2/\+l)0 e )
e —3 i - df= i + 3 +

a?—a=? _ ont1_ —(2a41) x

+ oy e -a } tanh—'a.
And in exactly the same way, if p be even =2\,

1—-a? (7sin 2)\0d A GE LR T oA B Ly 8)

f= e et nlin
2 b " u 1 3 il T

— @ -a M tanh'a (@< 1),
which establishes the result stated.
If we write a=e™ we may exhibit the result as

sin p0 sinh py tanh—a 2 sinh (p—1)y , sinh (p-3)
A u =3 sinh y a ‘—lcosechy[ 1 + 3 L.
P s ikl
to ) or B) terms],

according as p is even or odd.
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1150. Particular Cases.
The particular cases when p=1, 2, 3, etc., are

fsmodﬁ =———2—:<a—l)ta,nh—‘a=gtanh"la,
0 1-a? a a

u

f'sm—%dﬁ= * (a l) (“2"l)tanh'la:| 21+a tanh—‘a—é
b 1-a* a %!

2 4 o4
‘ L 30 ——df= . 5| (a®— } ) <a3 — —1—) tanh™la |=2 5L i tanh—a -2 : +a
0 1-a?* a? a? a?

ete.

1151, General Conclusion derived.

It appears then that 'I;" %lw is in all cases, when p is a positive
integer and a®< 1, of the form
P+Qtanh™a,
where P and @ are known algebraical functions of a.
And in any such case the reduction formula

s g
Tnta=1—Gi g7 @)

may be used to determine I,, I3, I, etc.
It will be observed that the first case of this result follows at once

from the series fors-'-m—e (No. 2 of Art. 1134).

For j;"smado f(sm0+asm20+azsm30+ )de (at< 1)

- _g o g §
—2(1+3+55 +...)—amnh a.
If a® be > 1,

f”‘“"da f ( O 35"1204- 4sm30+ )d0

g e
~2< 3¢t*+5a°+ )

VY- t,'cmh"‘l P coth™a.
a a a

The general case when a?>1 for

in the case a®< 1, using the series  °
a?-1

1—2acos @+a?

and it will be clear that all that will be necessary to modify equation (1)

of Art. 1149 will be to replace 1-a® by a?—1 on the left-hand side and

¥ Wdﬂ may be investigated as

=1+?cos 6’+gzcos20+...,
a a

@ by a' on the right, which leaves the formula for ];'sl_rfup_ada
unchanged, except that tanh—ta will be replaced by coth—1a.
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Thus, in all cases whether a? > or < 1, and p a positive integer, we have

1—a” [ sin pf aP-l-.q=-1) oP—3_g-(»-3)
2 J0 A% s 1 " 3 by

to ]—23 or 1742-_1 terms —(a? —a~?) X,

where .Y =tanh~'a or coth—'a, according as a? < or > 1.
1152. General Formulae.
sit

Let the expressions /: Eous_fO df and fr— ],? 9 df be respectively

u
called C(p, n) and S(p, n).
Then
™ cos pl cos qf 1 [mcos(p+q)0+ -q)0 1
[recepleonabg [ @tAOtcs(B=00yy _L o(ptg,n+C(p-g,

™ sin pd sin g 1 /™ —c +q)0+c -q)6 1
fo Pun q d€=§j; 03 (p Q)u” os (p—¢) do=3[-C(p+q, 1)+ C(p—g,

™ @sin g0 1 [=si —sin(p— 1 ,
/; cospu,s'mq d0=§ﬁ sm(p+q)0u”sm(p q)Hda =_2[ S(p+q, n)-S(p—g, 0

msinpfcosqgl ,, 1 [msin(p+gq)0+sin(p—q)f iyl it
fo d0—2j; do =3[ S(p+g,n)+S8(p-g,n

un u®
Hence all such integrals can be computed, p, ¢ and n being positive
integers.

1153. Integrals of the Class ru" cos pO df (Legendre, Ezer-
0

cices, p. 375), n a positive integer.
Ve have
wm=(1—2a ccs 6+a?)"=(1—ae?®)"(1 —ae~%)"
=(Ky+ K9+ Ko+ ...) (Kg+ Kye~ 9+ Ko =204 ..),

n(n—1)...(m—p-+1) |
1.2..p i

where K,=(—1)?a?
The coefficients of ¢? and ¢~#% in the product are each
KoK+ Kp Ky + Kpyo Kyt Kp oKt
giving rise to the term
(KpKy+ Ky Ky + Ky o K+ ...) 2 cos pb,

and in the integration this is the only term we shall require,
for all the others vanish by virtue of the theorem of Art. 1121.

Hence IEjvu" cos p0 d0=m (K Ko+ Kp Ky + Ky o Ko+ ...).
0
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Koy _an—P Kp+2=a2(n“P) (n—p—1)

=—g—1_ L L/ ete,
S p+1’ K, P+)(p+2) °
and K= —qiq-'a, K2=:n-(1i—-‘2ﬁaz, ete.;
ool n(n—1)...(n—p+1) n n-p
- Amid e 1.2..p [1+ p+la2

phncd) (v P)n-p-1) ,

1.2 (p+1)(p+?) @t |

1154. The Particular Case p =0 gives
I=n(Kl+ K2+ K2+ K2 +...),

ie. f " undf=m (1402 +"CRad+ " Cat + ...).
0

We have seen (Art. 1147) that

udni‘ (1(1,—_1:)‘"_‘”(1 + 012a1‘+"032a‘+"032a°+ ...) H

whence it follows that
[ undo =1 —arpnss[* 99 (aoe Art. 1185); ...ooovnrnnna. a)
0 o utH

and more generally, since

[’cospﬁdﬁ_ ma?  (p+1)(p+2)...(p+n)
wntl (1= Pyt 112.3...n

P 5, n(n-1) (n-p)(n-p-1)
(”1 p+1" AT g 1 (p+1)(p+2) “““")’

by writing n+1 for » in the formula of Art. 1145, we have, by comparison
with the resulv proved above for ﬁ i u™ cos pl db,

mcospf ., (=1 (n+1)(n+2)...(n+p) [~
J R 0= e ) gy Vo208,

or

- iy n(n—1)...(n—p+1) [mcospl
ﬁ u"cosp0d0~(—l)1’(1—a2)2"+1(%+1)(n +2)...(n+p)Jo utt! 46. @)

In the value of f " um cos p0df established in Art. 1153, it is to be
0

noted that p has been assumed not greater than n.
If » be > n no term containing cos pf would occur in the expansion

of ut; . fo’r utcos pf d@=0 (p >n).
If n=p, we have _{0” u™ cos nf df=(—1)*ra™

The results of this article are due to Euler (vol. iv., Calc. Intéy.,
p- 194, etc.). The method of proof is that of Legendre (Ewercices, p. 576).
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1155. The Equation Jw urdf=(1— q?)in+1 : udgl

0
lished directly by the transformation

(1—2a cos 0+ a?) (1 — 2a? cos ' +a?)=(1—a??
which has an interesting geometrical interpretation due to the
late Dr. N. M. Ferrers.*

Moreover, so far it has been assumed that n is a positive
integer. It will be seen from what follows that this limita-
tion is no longer necessary.

Take a circle of radius @ and centre O and a point B within
the circle at a distance b from the centre.

Fig. 336.

Let PBP be any chord through B, and let the portions
PB BP subtend angles 6, 6 at the centre; then
PB*=a?+b*—2ab cos 6,
BP?=q?+}b>—2ab cos ¢,
and
(a®+b2% —2ab cos 0) (a®+b%—2ab cos §')=PB?. BP?=(a®—b%?2
Also, if QB be a contiguous position of the chord, the
elementary triangles BP(Q), BQ'P’ are similar; hence
BEy BE <a2+b2—2ab cos 6 ’1'__ a’—b? i
a’+b2—2ab cos 9’) " a®+b*—2abcos 0"’
(a2 _b2)2n (a2 b2) 6’
(a®+b*—2ab cos 0')" a®+b*— 2ab cos &
i (a2 —b2)2n+1 i
(a®+b%—2ab cos @)r+1 7

* See Solutions of Senate House Problems and Riders, 1878. Edited by
Mr. J. W. L. Glaisher.

& _ . PQ_
—ag-Lpy=lgg=pp=

" (a®+b%—2ab cos B)" dO=
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If the chord be allowed to rotate so that 6 increases
from 6=0 to @=m, then @ decreases from 6'== to 6'=0.
Hence, integrating and replacing ¢ by 6,

5 do
o (@®—2ab cos 0%+
Taking the radius @ to be unity and replacing b by a, we

have the equation established otherwise by Euler and Legendre
above.

r (a*—2ab cos 0+b%)" dO— (a* - b)2n+1 j
0

Writing ccos3, ¢ sin% for @ and b respectively, the equation

may be thrown into the compact form

r (1 —sin a cos )" d0=(cos a)?r+! j

0

e i DSl
o (L—sin a cos )"+

1156. Another Interpretation of the Integral.

The integral may also be interpreted in connection with the
angles known in elliptic motion as the True and Eccentric
Anomalies.

Let S and C be the focus and centre of an ellipse, 4’ the end
of the major axis most remote from S, and 4 the nearer

Q

Fig. 337.

end, P a point on the curve, NP its ordinate, and @ the cor-
responding point on the auxiliary circle. Then 4’SP is the
supplement of the “true anomaly,” and SCQ is the “eccentric
anomaly.” Let these angles be 6" and 6 respectively.
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Then, from the polar equation of the ellipse,

gé‘(s—lng’l —ecos @,
and also SP=C0A—e¢.CN=CA(1—ecos0).
Hence (1—ecos6)(l—ecos )=1—¢?;
and if we write sin a for e, 7.e.
e=2t_m‘2_=_222b_ (where tan -;—=é>,
Lphe ,a a?+b? @

we have
(a®+b%—2ab cos ) (a®+ b2 — 2ab cos ') = (a?—b?)? as before.

The case when n=1, viz.

s Yl Al . 9
9.5 2 == 2 p2)2 de
LJa 2ab cos 6+ b2dO=(a>—b?) L (a®—2ab cos 6+ b?)F

may be written

J“r \/(;—l-b)2— 4ab cos? g d9=(a?—b2)? J-" do
0

0 ((a+b)2— 4ab cos? g)i :

or putting g=g—¢ il ::)rk e
5 Iy
—F2 12 4 _— a_b i d¢
L (1—kein*g) dg (a+b) Io (1—Ksin? gt
= T
that is, I Ad¢=k/zj %%’,
0 0

and is therefore Legendre’s Elliptic Integral formula of trans-

formation, Ex. 1, p. 399, with the superior limit 72-5

1157. A Group of Integrals of Different Form.

Generally, if we have a known series of one of the forms
f(@)=A4,+ 4, cos cx+ 4, cos 2cx+ A, cos 3cx+...
¥(z)= B, sin cz+ B, sin 2¢z+ By sin 3cz+-... ,

we have, by the integrals of Arts. 1048...1051, viz.

“ sincx * cos cx T
I 2(1+a) % 2“ ) Iol+—z’dx_§e-c’

Z sin ¢z
J, e

www.rcin.org.pl



DEFINITE INTEGRALS (IIL). 319

where ¢ is positive,

f(z) @ 5 80 e
./:1+.1:’ dz —§(A°+A1e 4+ Ae + dze°+..)),

L s de=3 (B0 -+ Ball = )4 Byl - ™) ..

F (2 2
[50 g =T (Bieet Byt Buetes..).

Accordingly, taken in conjunction with the particular class
of series given in Art. 1134, we obtain another numerous
group of definite integrals.

ILLusTRATIVE ExAMPLES. (¢ positive throughout.)

sin cx

1158. 1. Siuce =sin cr+asin 2cx +a*sin 3ex+... (a®<1), where

u=1-2acos cxr+a? we have
x sincx

U e o (e i 2
b Al o S dw f1+x,(s1ncz+asu)2cx+a sin 3ex+...) dv

=1—; (e*+ae® +ate 3 +...)

[LEGENDRE, Ezercices, vol. ii., p. 123.]
v, ime iy ddaes
(1+22)u 21-a?l-ae

il dhes? o
or st s o o e (a®>1).

2. Show that /: (a®< 1)

£ sin cw Y 1 T
1+23)u®""  21-a*(l—ae)?

ro
3. Show that jo ( (a® < 1).

4. Show that
dx m 1  14a*+(2a—3a%)e—3a?e "+ 8ale%

b T+ wt” 2(1—a?)? (=aey (a®<1).

asin cx
l1-acoscr

5. Show that /o l-fx’ tan—1 dr=— glog (1-ae™) (a*<1),

Trotbi g ERae TR ey Lo g
,/;l+z’ta'n a-—coscxdx 2log(l a’ g )

YIS e ™
6. Show that fo T2 log(2 cos —2—)((x=~2- log (14€¢7°).

) ks T
7. Show that /; e log<2 sin ——)dx=§ log (1 —e™).

1+ 2
8. Show that j; l(;_L‘:,tzbv:=1rlog (I1—ae™) (a*<1)
or =wlog(a—-e*) (a®>1).
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9. From the last example deduce

3 cxidx l-e—
fo logtan 3 72~ 3% T
[GeorcEs BinoNE, Mém. de Turin, vol. xx.]

ExXAMPLES.

1+a?
1r(1 —a?y?
where u=1-2acosz+a?and a? < 1.

1. Show that ["@_.;':
0

Ccos nx

15

. Show that f

3. Show that
fﬂ' sina sin AT g T na®
0 w3 40z

dr= 1r 2)“('n-i-l) (n-1)a%} (a®<1).

)3{(n+1) (n-1)a?} (a2<1).

rcosnedr _w 1 (1-a?)e™—2a"+!sinhd
O*+2h)u 261-a* 1-2acosh b+a*

4. Show that f

og tan x
142
cos nf 9" (3)".

o 25—24cosf = 7\4

5. Show that fl dx=7—;log tanh e.

6. Show that

7. Show that f' log (25 — 24 cos §) df = 4 log 2.

8. Show that (a) f ﬁd_%d(;:}_

sin 6 1 1 1
®) _/; (25 —24 cos 0)"d0=§1 : ;L—:_i(l i 49"“)'

@sin O T, .3
9. Show that 5 md@ =% log 3
10. Show that pug 0==

) (5—4 cos )

11. Show that ™ sin @ sin n6 0=n(3n+5) T

, (5—4cost)? onts 9T
sin® 6 A

12. Show that 4 my)‘sde—z-,
13. Show that f’r sin pd log u d

bt 2. a1 (- 1)v+"] L (@< 1)

1

1-—cos -
or e logaf . -(—1)"+"]pz_,,z (a?>1),

where the term for which n=p is omitted in the summation, p being
a positive integer.
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14. Show that

" 0
j;smp d9—(1 az)s[(1+4a2+a4)%ﬂ+zrln{l (- 1)P+ﬂ}

=

a2 =1)
the term where n=p being omitted in the summation (Art. 1136). {

1159. On the Transition from a Real Value of £ to a Complex

Value of % in the Formula for ’[ e ®xn-1dy. M. SERRETS
INVESTIGATION. y

In establishing the result
T'(n)

e
it was assumed throughout the proof that & was real. We
cannot therefore assume the theorem as still true for complex
values of & without further investigation. We consider the

integral ©
g I e-@-Drgn-1dy  where 1=+ —1.

j e-kogn-1 dg— (n>0), (Art. 864),
0

0

Then I will be finite if a be positive.
Since e~(*=®)*—¢-%(cos bz} sin bw) the integral consists of
two separate integrals, viz.

j e %% cosbz "1 dzt je""‘ sin bz 2" da.
0

Let R, ® be respectively the modulus and argument of I.
Thus

©
Re@:j- e-—-(a—:.b)a: gn—1 dx'
0

Let b=a tan ¢, ¢ lying between —;—r and —|—;—r, so that

@

Rem: j p—0% gLax tan ¢wn-l dx.
0

Then differentiating with regard to ¢,

log R &
J — 2 —a® guax tan ¢ pn o
Re 3 +¢a¢ =@ sec ¢L e—a%g " du.
Integrating by parts,
e—(a—w)z pn n i
—-(a—nb) n o ' —(a=ud)x -1
L zgn do [—(a—:b)] a—tbjo e "1 da,

and the portion between square brackets vanishes at both
limits, « being positive.
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ologR 0%
o¢ i ¢

Hence R e‘°< ) e nl & sec’pRe?®

=n(i—tan ¢p)Re?;
# alg—gl—z=—ntan¢ and a%:n;
‘. logR=nlogcos¢p+logd and P=n¢+B,
where 4 and B are independent of ¢.
€. R=Acos"¢p, $=ng¢+ B.
But when ¢ vanishes =0, and the integral is

Jm e—azpn—1 dm=r_(n_)
0

ar ’

and ® vanishes.

Hence B=0 and A=I‘a(f); hence R——(i) cos"p, P=ng¢.

Hence
= Linj oot : Tw __ T'(w)
I==—"=_"—"* (cos ng-+sin ng) =y,
So the theorem jm e—ka pn—1 dw:E}ng)
0

still holds when Ik is complew, provided the real part a of the
complex 18 positive.*

If n be a fractional quantity, g , (a—b)"* will be susceptible
of ¢ values and no more, if its argument be unrestricted in

valze. We must then obtain the argument of (1—ib)" by
multiplying by m the argument of a—b taken between the

limits e and =

1160. We then have the two integrals
_‘- e~9% cos bw -1 de=—_—" F( ™) cosn ¢ cos ngp= I‘é:&) in" ¢ cos neg,
i SLAtA)
I 6% gin bif a1 dw=ra+f') cos™ ¢ sin n¢=I%:l) sin® ¢ sin ng,

o I'(n)

b
e~%%x"~1cos ba do=——-—"— cos (n tan-1 —),
0 (a2 2)v a

o
o
[

o —a® pn—1 g1 ( ) b
e—%%gm1gin b de=——"_gin (n tan—1-
0 (a2+b2 )7 a

*See Serret, Calcul Intégral, p. 193.
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These results (A) are then so far established on the under-
standing that a is a positive quantity.
1161. When « vanishes the integral r’ e "1 dy may still
be finite if n be a positive proper fra.ctiox(:.
Consider either integral, say j” e~%#gin bz " dx (b, 4°).
This is equ&l to :

(r + D
.“ +j j +.. +‘ +.. e—" sin b " da.
("+bl)vr
Let (— 1)'u,=J-r e-%%gin bz "1 dz, and write Z—i;)r" for z,
z4rmw
Crun e sre\t do
(—1) u,—Le sin (z+r7) - ( 3 > b’
j |

g - gt
z.e. I o sin z. (2+rx)"1dz,

bn
and the whole integral j —a gin be x"1dx is made up of such

terms as this with alternate signs, viz. Z —1)u,, t.e.

=Uy— Uy +Usg— Uzt ...,

which is convergent if @>0, for the terms diminish as r
increases and are of alternate sign. But in the case when

a=0, w, becomes u,’s.%l J.r sin z(z+rx)"1dz, and when r
0

becomes indefinitely large this does not ultimately vanish
unless n<<1. When this is so, the series

Uy — Uy + Uy —Ug + ...
is convergent, and its sum will be the same as the sum
Ug—Uy Uy — Ut ...
for the value a=0, n<1.
For if S =u, —u, +u; —ug +... ad inf.,

S’ =uy —u,+u —us+...,
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and S,,, S,, be the sums of the first m terms and R,,, R, the

remainders respectively,
S=8+ R,
S—8'=

2.

§'=8,+R,,
Su—Sp+Ru— Ry,

But S,,—8S,=0 when «=0, and R, R,, separately diminish

indefinitely as m increases indefinitely. Hence S—8'=

a=0 and 0 <n<1.

0 when

Hence formulae (A) become, when a=0, and therefore ¢=%r )

- I'(n)  nxw
b 2

0
.[ .
0

nm

0

j a"1gin bx de= Flf:i) sin —,

(B), where = is a posi-
tive proper fraction
(b positive).

1162. Putting z=2* and nA==p, we have

"Q) e

J. 2P"1cos b2r dz= coso—
22’

y B

i3 r(?

I 2P 1gin bz dz= <7;) sin }2’—;

P AbY

?

1163. Since I‘(n)I‘(l—n)—

™
z"1cos bx do=

(B), where p <A and
r  both are positive
(b positive).

)
— the integrals (B) may be

1

written
)

m™

—am P T(I=n)
S]nT

; ..(0)

z"-18in br de=

l

nw 20" (1—n)’
all 7

1164. M. Serret points out that the latter integral remains
finite when n is indefinitely diminished to zero, and that the

formula then reduces to
J’ “ sin bz
0o X

™

d$=‘§

(b positive).
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1165. If we write 1—n=imn, m being a positive proper
fraction, the formulae (C) take the form
J‘ * cos bx FRIPTIO. bm-1
ol L2 L 2I'(m)’

Dt ‘ g o<m<l1
I sin b Frad il e .| (b positive). (D)
0 ™ gin T 21" (m)

1166. The case m=}% gives
J“"’ cos bm'dxz x bt =2/i
o AE TR TV
4
“ sin bx x b U=

C
ooy W) N
4

(b positive). ...(E)

si
Putting z=2?% in these integrals,

oy S 1 3
Io cos bzzdz=jo sin bz2dz=§ \/ﬁ;?, (b positive);

o

and if we put b=§, we have
et S 1
L cos —- dz= L sin - dz~§. ............ (F)

These two integrals are known as Fresnel's Integrals, and
will be considered more fully in Art. 1169.
~ The groups of integrals of these articles are due to Euler
(Cale. Intégral, vol. iv., p. 837, ete.). They are also discussed by
Laplace, vol. viii., Journal de I Ecole Polytechnique, p. 244, etc., by
Legendre, Ezercices, p. 367, ete., by Serret, Calc. Intég., p. 193, ete.

1167. Further Results.

Returning to formulae (A), viz.
_/; %2 cos be dr= -ltl—g,zf—) cos™ ¢ cos nep,
T'(n)

a®

cos”¢ sin ne,

} where b=a tan ¢,

2
f e~ 2" gin br dr=
0

and putting n=1, we have the well-known results

—ax s a
j: €% cos bx dx-a————2+ b2’}

ikt ey
_/:e 3111bxdx—a—~2+b2.
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Again remembering that b=atan¢, we have b"=a™tan™¢, and

keeping a constant,
b™1db =a™ tan™ ¢ sec®p dp.

Hence multiplying the integrals by the sides of this identity, and
integrating with regard to b from =0 to b=w, and therefore with

regard to ¢ from ¢=0 to 4;— , and taking 1>m>0,

Pin)a™ j; sin’"“d) cos"™™1¢ cos np dp= j; j; e~ 21 o™ cos bx dw db,
and

7 6
T (nya= [ sin-1 s cos==1ssin npdp= [~ [ e-exar-1m-1sin b o b

The right-hand sides of these integrals are respectively (ta.king n>m),

] F("l) f —ax —lr(m)
/: ar - Co dz‘ and [ sin 2% 3 LT g
by formulae (B),
1.6 I‘Z:_mm) T'(m) cos r_rg_r and I‘(n — m) I'( ) sin 28
whence we obtain
f‘ sin™ ¢ cos" ™1 ¢p cos nep dep = M((-ﬁ)—i) —, n>m,
P 1>m>0.
4 G
/; sin™ ¢ cos"™ ™ sin n¢d¢—E(L)]%%—m o -5 @

and taking n=m+1,
7
'/; sin"~2¢ cos ne d¢=7% sin n?",
(30201) iinid (H)
nr

7 - 1
i 2 i BT A WY e
) _/; sin"?¢ sin ne ddp = oy i

Replacing ¢ by g-— ¢ in formulae (H), we derive

t
t; cos" ¢ cos n dp =0,

SR AR Y, 16 i L DR N A B I
[[ st sinngp =L
, cos ¢ sinn g
that is the formulae (G) still hold good in the limiting case m=1.
1168. Since I'(m) I'(1- m)- formulae (G) may be written
7 vy 3 I"(n —m) T
/1 sin™-1 ¢ cos™ ™1 ¢ cos np dp = )
Jo ) I'(1-m) 25in ™ | (n>m),
- (1>m>0).
I'(n—m) T J)
b

J; sinm-sgp con s i mpap = LT So0™T
CO8 —(—
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When m diminishes indefinitely to zero, the limiting form of the first
of these integrals is infinite. The second takes the limiting form
d sin n¢ T
N—1 _——
ﬁ cos™1 ¢ g d¢—2. ........................... (K)
It will be noted that the integral (K) is independent of n.

These results are given by M. Serret, Calc. Intég., pp. 199 to 201.
Differentiating the equations

cos nf
rﬂ

sin nd
r"

[ 2" 1e~0% cog brda=

T'(n), b
where r=na®+5* and §=tan—! 5

f 2"1e% gin bx dx = T'(n),

with respect to n, we have

fsx"“ Rl R oty o 008 nd dT'(n) (0 sin 76 + cos nf log r) I'(n)
o = ™ i

o dn
g sinnd d T'(n) , /60 cosnf —sinnflogr
/:.1;"“ e~%gin bz log x dz = - d7£ ) +( :;n %8 ) T'(n);
and eliminating d—g;il) )

f” 4"1e~% sin (nf — bz) log ;, do= rﬁn I'(n);

0

and if n=1, [e—“ sin (6 — bz) log%d«::?

where r=na?+b* and 6=tan"lg.

Also %‘é_”) could be approximated to by means of the tables for

log T'(n) if required.
- These results are due to Legendre (ZEzercices, p. 369).

1169. FRESNEL'S INTEGRALS.
We have met the integrals
L cos ;_r x? dw=jo sin %rw" dx =%,

known as Fresnel’s Integrals, in an earlier chapter, viz. in the
tracing of Cornu’s Spiral ks*=1, (Art. 560). They are of
importance in the Theory of Light. Students interested in the
employment of the integrals in Physical Optics are referred to
Verdet's Guvres, tom. v., or to Preston’s Theory of Light, where
the various methods adopted in the construction of tables for
their values between limits 0 and » will be found explained at
length.
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Preston gives in the form of examples with hints at solution
a very excellent condensation of the chief results arrived at by
various investigators—Fresnel, Gilbert, Cauchy, Knockenhauer
and Cornu (Preston, Theory of Light, pages 220-223).

1170. We may consider shortly some modes of calculation
of the more general integral

jvcos ¢(x) dx, where ¢(x)=42"+ 4,21+ 42" 24-....
0
Take first two near limits, « and a+%, where % is small.

+h h
Then r cos ¢ (x) dx=j cos ¢(a+vy) dy, by putting c=a+y,
a 0
h
— | costp(@)+y #'@)dy nearly,
0
since ¥y lies between 0 and %, and is therefore itself small,
__sin{¢(a)+/ ¢'(a)} —sin ¢(a)
#'(«) :
Hence, by taking the limits successively, 0 to A, h to 27,
2h to 3h, ete., and adding the results, we may obtain a close

nearly.

approximation to J‘Mcos ¢(x) d, provided, of course, that ¢(x)
0
is such that ¢'(z)=0 has no root between 0 and nh.
1171. A closer approximation may be made as follows :

2
Since F(p+y)=F(p)+yF (r) +'g—! F'(p)+...,
we have, Dy integration between limits —;—l and g,
h
1248 ., 125
j’_hnwy) dy=hE() + o e B (1) + oy o P 4.

bl 28
7

and if F(r)=cosp(z), p=a+
h

a+h )
j 009d>(‘x)d-r=j o8 b(p-+)dy

3

-

3 and z=p+y,

1 A% d? 175 d
=lzcos¢(u)+§ 3 (',—’-L.‘,cos ¢('U.)+5~—! I Wcos¢(p)+...

=hcos ¢(p) -f{; [cos () p(pn) +sin p(p) ()] +...,

from which result we may proceed as before, taking limits 0 to 4, 4 to 24,
2h to 3k, ete., and adding the several results.
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1172. Fresnel’s calculations were based in the manner described above
upon a preliminary consideration of the integrals

A +h
/;N cos %‘2 da, [ sin 12@;2 dz,

where the interval % is so small that its square can be rejected.
In this case, putting x=v+z2,

v-+-h
/; cos 7—2'7':2- dx:lr coS & (vz+ 2u)dz= — [sm 3 (v?+ 2vh) — sin —]
and
v+h
[ ein ™ de= /: sin 7 (v%4+202)de= — = [ con T (42-+ 20h) ~cos 72" |

Then taking as intervals A= {;, and making » in succession 0, ¥4, +%,
15 «++, the values of the integrals were approximated to.

1173. The integrals
wv? . ot f" we? (] smyt
]; cosTdv, f’ sin -§—dv or | cos5- av, j., sin 2 dv
may each be expressed in the form X cos——2—+ Ysin =X where X and ¥

are series of ascending powers of v, in integr atmg from O to »; or
descending powers of » when the integration extends from » to iufinity.
In both cases the integration is performed by “ Parts.”

In integrating from O to » we proceed as follows :

© 45 mph L i
j; cos - dv=|:‘vcosT] +-lrO v”sm—z—dv,

/vzsm———dv l: sm’w2 = 'v‘cosﬂzdv,
3 g

/v“cos—-dv [5cm——— fv“sm——dv,
[’u“sm—dv [—sin—~ fvscos—vsdu
el AU o ot #0

Henice) thiltiplylogoby 1, g0 g 75 T8 5570
and adding,

, ete,,

M d L I . ool iy D '_‘l
[,c"s v T TR TG L R
wo? [ wod w37 L o :I
A BT T/376.7 ' 1.3.0 79011

+sin —
' F ooy T T oin T
=Xcos 3 + Ysin 3

Vi g : .o’
and proceeding in the same way with f, sin -~ dv,
0

. mod L . vl
£5|11—2——dv——1c057+Xs1n—2—,
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and the sum of the squares of the integrals (which gives a measure of the
intensity of iillumination in a certain case in Physical Optics *) is X2+ F2
It is interesting to note that the series X, ¥ satisfy the equations

‘(liX+m)Y— Z—I-’—m)X=0
E 1d/1d s 1.d 3
1.6 ;4—{)(; %)A"}-W’X— —a and vd’v(v d’l))Y+ Y—
AO\L e 1 T
i [Ge)+F]x=-5 (a;a) +T]r-5

1174. If it be desired to express the integrals with limits » to o in
descending powers of v, the integration by parts must be conducted in
the opposite order. Thus

2 @
fncos%dv=.[ ﬂ}v(rvcosT)dv = —sm v’] +_/'w1—r1v—,,sin’%—’dv

1 .m0 A ] o | mad 1 wv?
T—vsslanv=j: 1'_2—1)3(‘""05]“-—2—)(1‘1’= —1r2—1}3co. ;’T—:&f;"'—,‘cos?-dv

1 LA [ 24 wo? Y f"l-rr_‘v’
A ‘n_Tv‘cosTdv—j: -——sb(rvcos ——-)dv [ 5 len—- +5 5880 dv,
2 C-)
ﬂ_}vsqin "'2” dv=f' ﬂ_}v,(mj sin —)dv [ e ,cos 7f |,cos—dv,

ete,
Hence multiplying by 1,1,-1.3,-1.3.5, +1.3.5.7, etc,and adding,

"’ 1:B..1.3:B.7
2
cos 5 T 2 dy=sin T ( 1rv+ - iadenr - g +)

'irv2 T8k B 28, e s 9_
G v ( o R A )
’ v2 72 2
=X cos—z——}’ sin —2—, BRY o tlies vot AVeRtEs s divs ob sesssbas ?)
R | g e AL g T
where X'= =ap— oy Hete. and }'—Fv-—ﬂ_,——v,+etc
flop! Tv? L
and similarly f sm—dv—Y’cos T+X mT

And, as before, the sum of the squares of the integrals is X2+ ¥
Also X, ¥ satisfy the differential equations

-7 =my¥’' -1, - = —mvkX’,
; ol DR T
., mvw”‘f-w S sl s,
d 73 d ™ I_’r
or [(dv’) 4]X [(—) Z]Y i?

We also obviously have
v 2
/'v cos’rzl’ dv=-(: cos g—v’dv—ﬁ cos ﬂgdv—l— Xcos%”—’— Ysin %,

* See Preston’s Light.
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and similarly
s GG ok . v /’.m;'__l vt A
_/:‘sm~2—dv-/: sm?dv—- A s1n—2—dv—2+Ycos 3 — X'sin 5
Also

ofv 2

f cos"—v-dv=fcosﬁ’dv—f cos—-dv--]-—X’cos—v—’+Y’sm v”
] v 2 2 2

f’ sm—dv—fsm—dv /wsxn—dv-l—Y’cos’r—v,—X’smf—v—'
0] 2 2 2

1175. The expansion (1) in ascending powers of v is due to Knocken-
hauer.* The expansion (2) in descending powers of v is due to Cauchy.t

For the student of the Integral Calculus, perhaps the most interesting
of Mr. Preston’s quotations is one which expresses Cauchy’s series of the
last article in the form of definite integrals. These expressions are
quoted from the investigations of Gilbert, published in the Mémoires
couronnés de l’Aoa,d de Bruzelles, tom. xxxi., p. 1.

Wrmng =u, we have
fo i 1rv’ dy=—— \/21'_ onuu du, fo ; sin ~/;1r o“ si;lau du.
Also f: z-te*dr= I:u(f) :;;
# fo' cos =~ dv—\—/gfvcos % [J—f e—"dx] du,
e BN e"“J_c{_:sudu dz,

or changing the order of integration, which does not alter the limits,

rJz/ f -—e—"'cosudxdu

.z'cosu. smu
e S dz
o L e
gz TCOS U= sinu
,—sz [1+x2 i LT e ]d
v ez
_m[j; m,dx—cosufo 72 dx+smuj Jx(1+z‘) ]
. J e a
Now A i+—i‘,dx=f~/tan¢7d0, by putting 2=tan 6,

~ / * (Jian -+ Voot 0) d,

~/_, by Ex. 8, p. 162, Vol I.
* Knockenhauer, Die Undulationstheorie des Lichts, p. 36 ; Preston, Theory
of Light, p. 220.
t Cauchy, Comptes Rendus, tom. xv. 534, 573.
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Hence
wv? 1 m}’ e S N -;rv2 x—te—ux
/‘:cos—2—dv—2—cos F U 1_1_.7”,,d\7c+ sin —- ﬂ/2 Tra
and similarly 4
/' ot _tf dv-—l—cos w2 ol x—ie‘"‘dx sin ™% 1rv2 1 zhe~v*
0 2 2 2h 1427 2 xu2Jo 1+a?

2
where u=%’; ‘which express Cauchy’sseries X’, ¥’ in the respective

definite integral forms

v biofitulient e f'
Sivih e w0l TECm) Tea

2zt e—“‘dm.

1176. Several other interesting relations amongst these integrals are
given by Mr. Preston, to whose book the reader is referred.

A table of the values of Fresnel’s integrals, as given by Gilbert, is
quoted in Art. 1177 from Mr. Preston’s book. The table is carried up to
v=50. The oscillatory character of the results is exhibited in the graph
of the Cornu Spiral in Art. 560. X

1177. GiLBeErRTS TaBLEs oF FrESNEL'S INTEGRALS. Quoted from

Preston’s Theory of Light.

(v v 2 v 2 v
v jo cos 12”—2 dv J; sin % dv v j; cos % dv ﬁ sin %2 dv
00 00000 0°0000 26 03389 05500
01 00999 00005 27 03926 04529
02 0°1999 00042 28 04675 03915
03 0'2994 0014k 29 05624 04102
04 0-3975 00334 30 06057 04963
05 04923 00647 31 05616 05818
06 05811 01105 32 04663 05933
07 0'6597 01721 33 04057 0'5193
08 07230 02493 34 04385 04297
09 07648 03398 35 0'5326 0'4153
10 0°7799 04383 36 05880 0'4923
ik 07638 05365 37 0'5419 05750
12 071564 0'6234 38 04481 05656
13 0'6386 0'6863 39 0'4223 0°4752
14 05431 07135 40 0°4984 04205
15 04453 06975 41 05737 04758
16 0'3655 06383 42 05417 05632
1% 03238 05492 43 04494 05540
18 0'3363 04509 44 04383 04623
19 0°3945 0:3734 45 05258 04342
20 04883 03434 46 05672 0:5162
21 05814 0'3743 47 04914 05669
22 06362 0°4556 48 04338 04968
23 06268 05525 49 05002 04351
24 05550 06197 50 05636 04992
25 0°4574 06192 @© 05000 05000
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1178. Soldner’s Function.
The integral ysrl—dx— is known as Soldner’s Integral. It
olog

is denoted by the symbol li(z), which is Soldner’s original
notation. The letters li are suggested by the phrase
‘logarithm-integral.’

It is obvious that the integrand has an infinity when z=1.
Hence, in accordance with the theory of Principal Values
(Chapter IX.), when the upper limit is greater than unity, we
shall understand this integration to mean

S, "+, g

where ¢, 5 are made to diminish indefinitely in a ratio of
equality.

1179. Properties of the Function.

It follows that %H(x):Io—::'. Hence

(m+l),z"' s

d m+1 a .. -.—b_
HZ ) logv"l+l “loga’ lel(a+bz)_log(a+bx)’

iR LA T e A e
—h( . noge"c =z’ PPl ’—loge“_ x’
d .. Caa efe® isiie s el
= li (e%+) = fog e = ata’ p li(sin 2) P RRRD

Hence conversely we may express certain integrals in terms of a
Soldner’s function, viz.

f%p dz  =li(@™)+C, or between limits fb "% de  =li(@™1)—1i (™),

li(a+bx) _li(a+bp) - ll(a+bp

f log(@a+bx) b

limi 2] dx
+C, or between limits /ﬁ ey e
e® 4,45 s 2
[; dz =li(e®)+ 0, ‘e f ;dx:h(e“)—h(eb), and so on.
13

1180. To enable the arithmetical calculations of such results to be made,
Soldner constructed a table of the values of li(#) to seven decimal places
for values of z, from x="00 to =100, at the latter of which the function
is infinite, the values being negative ; and a further table of the values
of lix, giving the values to seven places, for =1, 11, 1'2, 1'3, 14, which
are negative, and 15, 1'6, ..., 2, 2'5, 3, 4, 5, ..., 20, which are positive,
and at certain intervals from 22 to 1220, all taken to eight significant
figures.
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It is unnecessary to give the tables here. They will be found reproduced
in De Morgan’s Diff. and Int. Calculus, pages 662 and 663. A few extracts
from these tables will indicate the shape of the graph :

2 |[U@E 2 |li@(-) 2 |li@E)
00 | ‘000 60 547 10 ®
05 013 70 781 11 | 1676
‘10 032 80 | 1134 12 | 0934
‘15 056 90 | 1776 13 | 0480
20 085 95 | 2444 14 | 0145
25 119 98 | 3345
30 157 99 | 4033
40 253 100 ©
50 379

z | @ s | @@

15 | 0125 200 | 9905

16 | 0354 300 | 13023

18 | 0733 400 | 15840

20 | 1045 1000 | 30126

25 | 1667 2000 | 507192

30 | 2164 4000 | 854

40 | 2968 600 |1176

50 | 3635 1040 |183-4

100 | 6166 1220 |217+4

The march of the function can then be seen to be as represented by the
accompanying graph.

: ¥ V

Fig. 338.
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1181. Method of Computation.
‘We proceed to show how these values were computed.

a 9
It will be seen that, by putting z=e"¥ or z=e?, the integral f '];i;,i'

= log @
can be thrown into the forms — f e"”‘i‘q or f eV & .
—loga Y Y
Now, so long as n is greater than zero, we have by expansion

w o 2
ﬁx""e“'dx=£ x”"1<1~%+;—'-!—';—‘3!+...)dx

PN+l pN+2 M3
PR CYS ) SR T DY R W LT R
where C'is to be found. The series is convergent for all positive values

of » and does not become infinite with ». Also, when v»=0, the value of
the integral is I'(n). Hence C 1’ (n).

N1 n42
Hence _/; a"le*dx=T(n)— Y (ni—l)l' (—_ni2)2!+
This may be arranged as
/ xﬂ-le-”da:=1"(n)—l—

=0-

=1 P+l on+2
7 TaFDI @m+9)2!
T(r+1)-1 om—1, o

o i AR % L

n__ A
Now, if we make n diminish indefinitely, Lt% =logv, and Ltr—(l‘i‘np—!

is the limit, when n=0, of M for the value z=1, 7.e.

[ de‘(t)] or TV(l),

or as I'(1)=1, this is the same as [a— log I‘(x)] , i.e. —v, where vy is
Euler’s Constaut

® = v v? ¥
Hence _’l; 7dx=—y—logv+rl!—ﬁ W—..., ...-...-...(A)
Hence we have, putting v=loga,
/1 G i loga  (loga)® (loga)®
h(&)='Lw7d"‘=7+l°g(l°g“)‘181'+‘L‘ Zoar (">1);
(B

Again, by expa.nsion,

L 36A 2 __ 2
[ T de=tog (PR T O @>)

g W ST, PUL. AN
oy f 007 Al V8 50 15 | BN
and upon addition, diminishing € and 7 indefinitely in a ratio of equality,
the Principal Value of li(a) is given by

li(a)= —[:m ™y d.z'—- —Lt(j_h”+f ) dx, where e=7=0,

2
_7+log(loga)+ll°gla'+(—lggi)+(l:;).g:!) B AL 0
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As there is manifest discontinuity when @=1, and the Principal Value is
taken in integrating over the discontinuity in the second case, formula (C)

will not be derivable from formula (B) by putting i for @ in the former.

It will be observed, however, that the two series then only differ by
log (— 1), which is the effect of the discontinuity.
By means of the expansion of

Pl .3 1
log(l+2) z; =z, a°
1—§+'§ o
=21+ K+ Ko+ Ke2? + K+ ...,

where the coefficients may be calculated either by actual division or by
multiplying up by x(l —g+ ) and equating coefficients, giving
K=}, K=-1 K=d, K=-75 K=iln £i=-ssito etc,

we have, a<1,

: s Teny dy % !
ll(l—a,—‘/; I()TZ=,[ W)=loga—K1(a—l)+§K,(a —1)-ete. ;

=1
and by Art. 944, putting e—B=v,

ym L'H{fl /:logv}

= Lipmy {li b~ log (1 - )} = Léamo{li (1 — @) ~log a} = K-I£2+I§3 0
whence li(l—a)=y+loga—K1a+1—§—2a2— ...................... (D)
14a dg dz
Again li(1+«)=Prin. Val. off —-—P fﬁlm

: =Lt [+ [} )log(1+z>
=Lte=o [(y+1log e — K e+ 3 Ko’ —...)
+{loga—log e+ K,(a—e€)+3Ky(a®>— ¥ +...}];
2
Cli(l+a)=y+loga+ K+ KoGt o e, (B)
Also, by Taylor’s Theorem,
li(a+2)=li(a) +2(log a)“+d (log a)—12,+d z(log a,"3|+
Other results will be found in De Morgan’s Differential and Int. Cale.,
pages 660 to 664. By aid of these series Soldner calculated the numerical
a
values of the table for the function li (¢)= f —l—dl—
o 108 %

‘We may therefore now regard such functions as
1 g e“ coshzr ¢

loga’ loga’ 2’ "« ' z+a

as mtegra.ble in terms of Soldner’s function, and therefore their integrals

calculable by means of his table, for assigned values of the limits.

— , otc.,
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1182. FruLLANT’S THEOREM : ELLIOTT’S AND LEUDESDORF’S
EXTENSIONS.

Suppose F(zy) a function of the product ay of the coordinates
of a point in the plane of z, y lying in the region bounded by
the y-axis, an ordinate at infinity and the two straight lines
y=a and y =0 parallel to the a-axis. Let « and b be supposed
of the same sign.  Let F(z) and F'(z), where z=ay, be finite
and continuous functions for all points in this region and also
along the boundaries.

Suppose also that F(xy) takes definite finite values at
2=0 and at #= o0 from the value y=b to y =a inclusive, and

11,
A
(0] X

Fig. 339,

denote them by F'(0) and F(c ) respectively. Consider the
surface integral of F"(zy) over this region. This is expressed by

j j F'(zy) da dy, or, what is the same thing, j( j F'(xy) dy du.
0

The first form of the integral is

L [F(u/)} _: b j‘: F(ue)—F(ba) ,

@€ @€

The second form of the integral is

o [F(“’]

Lo " e gy o [F(0)— F(O)]j dy

=[F(%)—F(0)] log%.
Hence it appears that

r Faw)— B0 1 . 708y oy iog 2. 1 L 1)
0 i b

Wwww.rcin.org.pl
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Similarly, if we integrate over the region bounded by
g=—cw, =0, y=a, y=b,
we obtain in the same manner

r F(ax);F(bx)dx=[F(o)_F(_oo )] logg, R

provided F(acy) takes a definite value F(—o)at z=—o.
In cases where F (0 )=0 or F(0)=0 the theorem takes the

simpler forms I M—)—:L(bﬂdx=ﬁ’(0) logg or F(ao)log%
2 x

respectively.

1183. We may examine these results from another point
of view.
h
Let usj{‘—wdm. Then, putting ax= y, de d;/,
0

and u= jhm);__ﬁ'@ dy, and is therefore independent of a.
0

A h
Hence J"'wdx=rﬂl>_w>;ﬁ’(_">dx
0 X 0 x

h h h
i f F(a) , Ia Fba) ;. j‘ﬁﬁ_l(l) 7
0ol A X 0.

L r A
1y sl I “Flam)—F(bo) 7.0 j “F(52) 30— F(0) j adw
0 x L X LT

b b

=F(0) logll.
Now, in the second integral, viz. fF(bm)d both limits

become infinite, when % is indefinitely mcreased but they are

separated by an infinite interval - 5 Z b—b h. Hence it

cannot be assumed that this mtegra] vanishes, and it must be
investigated in each case.

If, however, F'(bx) tends to take a definite finite value ¥ (o )
when « is increased indefinitely, let its value between the

limits 7 and " be called F(0)+¢ where ¢ is ultimately an
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infinitesimal, and let ¢; and ¢, be the greatest and least values of e

h
for values of 2 between }ZL and g’ Thus “.:F—(‘fi) dz lies between
b

(F(0)+¢€) logg and (F(0)+e,) log g,

and therefore in the limit becomes F(=) logg, and the theorem
becomes

r Pa2)— X0 goe [P ) F(0)]log} -

@x

But supposing F(bz) not to take up a definite limiting
value such as has been described, it may still happen that

Lt;.=w‘[:ﬁ@dw assumes a definite value — K, or it may vanish.
b
* F(ax)— F(bx) dar

0 &

In the former case “. =K—F(0) logg.

In the latter case I M)—;—F—(E)ﬁ) dax=F(0) logg-
0

The formula j wdw=F(O) logg is known as
0

Frullani’s Theorem. According to Dr. Williamson it was
communicated by Frullani to Plana in 1821, and subsequently
published in Mem. del. Soc. Ital., 1828.

The more general form

* F(ax)— F(b a
j a2 F02) g (70 )~ F(O)] og
is due to Prof. E. B. Elliott (Educational Times, 1875).*
1184. As examples we may take

f tan~lax — tan—tbx
0 x

1 da=(tan"l0 —tan—10) log z-—~log i

R e Gogin S 7) 4
P ] lng+qe‘°‘ —{Iogp 10g(P+q)}logb—log<l+p log ~

These two examples are given by Bertrand, but arrived at in a different
manner.

* Both references are due to Prof. Williamson, pages xi and 156, Int. Calc.
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Now, consider the integral [ac]—[bc]—[ad]+[bd], or, as it may be
written for short, [(a—b)(c—d)].
By two applications of the above theorem this beconies

[ [ 182, )-8z, ¢ °J) 8 (as, dy)+8(bs, dy)
[ B8, @) -50,0% - [ @-BS(e, dn-50, %

_B)[ [8(x, cy)—8(, dy)];—(a_ﬂ)j; [8(0, cy)—8(0, dy)]?
=(@=RB)y-8[8(w, ©)-8(x, 0)] —(a-B)y-[S8(0, ©)-8(0,0)],

and as § is a symmetric function 8(», 0)=8(0, ).

Hence, we obtain

(@=B)(y-9[8(w, ©)-28(», 0)+8(0, 0)],

which, for short, may be written (a —f3)(y —8)8(» —0)%

Hence, the extension to a double integral may be written

[(a—b)(c—d)]=8(x —0)*(a—LB)(y-9).

In the papers cited, the result is extended to multiple integrals of a
higher order. The student should have no difficulty in doing this for
himself.

1189. On the Transition from Real Constants to Complex Con-
stants in Results of Differentiation and Integration.

Let us premise that, in the remarks following, the variable is a real
one, viz, z, that the path of integration is along a portion of the z-axis,
that the limits of any integrals occurring are real quantities, and that
the constants occurring are independent of the limits; also that
the functions dealt with are finite and continuous, and such as to
possess differential coefficients,

1190. Lemma I.

Let %, and u, be two real functions of 2 which continually approach to
and ultimately differ by less than any assignable quantities from definite
limiting values v, and v, respectively as x continually approaches a
definite value a. We may then put u;=v,+¢; and uy=v,+ €, where ¢,
and € are quantities which ultimately vanish when a approaches
indefinitely closely to @, so that €+t also ultimately vanishes, where
¢ stands for ¥/ 1.

Then Uy + LUy =0 + 10+ € + Leg
and Lit (uy + ) = vy + 1wy + Lt (€3 + 1) = vy + 10 =Lt uy +¢ Lt uy.

1191. Lemma IL

If, upon putting x+h for #, u, and u, take the values U, and U, respec-
tively, it follows that u;+.u, takes the value U,+:U,, and therefore

Ltn=o(U1+"U’)h_ (u‘+m’)=Lt U‘;“‘+;Lt Un; Uy

dz dy
2y

: 4

. d _duy | dug
e P (uy + vuy) T + T
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Hence, when a function of # containing a complex constant p +tq, but no
other unreal quantity, can-be separated into its real and imaginary parts as

F(z, p+1g)=Fi(z, p, 9) +Fs(z, p, 9),
d d d
then T @ p )= Fi@, p, @) +o 7= Fa (%, P, 9).

1192. It has been desirable to consider these results in detail, though
they might be thought obvious. For in our idea of a limit we have
had constantly in mind some real quantitative arithmetical or algebraical
result from which the function under consideration could be made to
differ by less than any assignable real quantity by making the variable
approach nearer and nearer to its assigned value ; and it has not hitherto
been necessary to consider the case where the function involves unreal
constants.

1193. It is well known that the separation of a complex function into
its real and imaginary parts can be effected in all the ordinary cases when
the function is of algebraic, exponential, logarithmic, circular or hyper-
bolic or inverse circular or inverse hyperbolic form, such as

(P+19)" (p+1g)*+*, a?*4, log (p+eg), sin(p+1g), tan—'(p+1g), ete,
as well as in any combination of such functions.

Lemma III. If F(z) be any function of z expressible as a power series
with real coefficients, viz. F(z)= 24 ,2", with radius of convergency p, then
F(p+1q)=34,(p+1g)"=A4,r"en8, where r=vp*+¢*<p, §=tang/p

=X +.Y, say,
where X=34,r"cosnf, Y=34,r"sinnf, and both these series are
convergent if £4,r" be convergent, and then X 4¢Y is convergent.

We then have X —tY =34, e "0 =34, (p—1q)*=F(p—1q).

The separation into real and imaginary parts is then effected by addition
and subtraction of the equations

X+ Y=F(p+i), X—-1Y=F(p—1),
giving 2X=F(p+u)+F(p—1q), 2Y=F(p+q)-F(p-1q).

1194. Lemma IV.
When F(z, p+9) can be thus separated into real and unreal parts, as
F(x, p+"!)=Fl(x7 b, q)'f"‘Fl(xr P, q)v
F, and F,, besides containing «, may be regarded as conjugate functions
of pand ¢, and therefore
OF, OF, OF, OF,,
o w o
and differentiating with regard to z,

S(2)-30) 225

. dF, dF, z 4 !
e o and Tz Are also conjugate functions of p and ¢ ;
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Now, consider the integral [ac]—[bc]—-[ad]+[bd], or, as it may be
written for short, [(a—b)(c—d)].
By two applications of the above theorem this becomes

[ [ 180 e~ 800, e) - 8z, dy) + (b, d)] 20

=[-8, ) -80, N - ["@-BS(, )-8, &)Y

-B) f "8, @)~ 8@, @12~ ) [ 180, )50, a1
(- By~ DB (, )-8, 0] - Ply-DIE0, =)-50, 0]

and as § is a symmetric function 8(x, 0)=8(0, ).

Hence, we obtain

(@=B)y-9[8(, »)-28(x, 0)+8(0, 0)],

which, for short, may be written (a— 8)(y —8)8( —0)%

Hence, the extension to a double integral may be written

[(@a—8)(c—d)]=8(x —0)*(a—B)(y - 9).

In the papers cited, the result is extended to multiple integrals of a
higher order. The student should have no difficulty in doing this for
himself.

1189. On the Transition from Real Constants to Complex Con-
stants in Results of Differentiation and Integration.

Let us premise that, in the remarks following, the variable is a real
one, viz. z, that the path of integration is along a portion of the x-axis,
that the limits of any integrals occurring are real quantities, and that
the constants occurring are independent of the limits; also that
the functions dealt with are finite and continuous, and such as to
possess differential coefficients,.

1190. Lemma I

Let u, and u, be two real functions of # which continually approach to
and ultimately differ by less than any assignable quantities from definite
limiting values v, and v, respectively as 2 continually approaches a
definite value a. We may then put u;=v,+¢, and uy=v,+ €, where ¢,
and € are quantities which ultimately vanish when » approaches
indefinitely closely to a, so that €+ € also ultimately vanishes, where
¢ stands for &/ — 1,

Then Uy + LUy =0y + 10+ €+ LEg
and Lit (uy + vtg) =y + 10y + Lt (€ +1€5) =0y + 1wy = Lt wy + o Lt u,.

1191. Lemma II

If, upon putting z+h for #, %, and u, take the values U, and U, respec-
tively, it follows that u,+ wu, takes the value U;+tU,, and therefore

Ltu=o(Ul+"U')_(u‘+W’)=Lt U,;u,_HLt U.’:u,’

: d d
=t e
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1196. As examples of these facts, let us consider

(1) the differentiation of 2Pt where p and g are here, as always, real.
‘We have

d%_xpﬂll L (x"eull"x z)= i— [x”{cos (qlog )+ sin (g log x)}]

= [.z"’{cos (glog x)}]+ Lo [z"’sm (glog #)}], by Lemma IL,
= [p.z"’" cos (g log x) +.'v”( - Z) sin (g log 1:)]

+ [p.r"“ sin (g log #) + x”( ) cos (g log .x)]
=(p+1g)a*~*[cos (¢ log #)+ ¢ sin (g log )] = (p +1g) 22119108 =
=(p+g)aPta-],

as might be expected from the principle of permanence of form stated
above.

Hence the rule % 2™ =n2""1 holds whether n be real or complex.
2Pty
pt+ig’

Conversely, f 2Pte—1ldy—
n
and therefore the rvule for integration, viz. f "1 dx:‘%, also holds
whether the index n be real or complex.

(2) Consider ‘%a(ﬁﬁq)z.

This is g’l‘ P18 @ [cos (qur log @)+ sin (qu log a)]

a %e”” 198 o3 (gw log @)+ ‘%e”” 108 ¢ 5in (g log a)

=(p+1g) log ae??1°8 ¢ [cos (qz log @) +¢ sin (g log a)]
=(p+ug)loga.al?tD,

which is the ordinary rule for differentiating ¢ when = is real.

d
Hence = a™®=nlog a.a™ whether n be real or complex, and conversely

anz
adr=
nlog @

i=]

whether 2 be real or complex.
J d
(3) Consider d—logp.)_.qx,

i.e e : ilo r—l-—-——l
i dv Tog,(p+1q) log, (p+q) d B2=2 log.(p+g)’

s aatd ; : d |
which is again the ordinary rule for a‘—xlogax, viz. - - Ledl

5 d iy il
(4) Consider _tan Faers
=X -1Y, and therefore ta.n'“‘p

Let tan—? =X
et tan P+ +.Y.

NANAT oI ArAa nl
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t.e. i—f, which is equal to —+ L%, besides involving z, involves p and
q as a function of p+q, and = (z, p+1g), say.

It might be said that this also is a self-evident fact arising from the
principle that the process of differentiation with regard to x takes no
cognisance of the particular values of any constants involved. But as our
experience of this fact is based upon the behaviour of functions containing
only real constants, it is desirable at this stage to make this point also
clear and to establish it explicitly.

We have then s F(a,, p+1g) of the form (2, p+g) for all real values

of #, p and g, a.nd we have to identify the form of this function ¢.

Now the form of a function is merely a means of defining the particular
manner in which the several variables and constants are involved in its
construction, and is independent of any particular values assignable to
those variables and constants.

Suppose then that it has been discovered in the case of a real constant

p that dizF (z, p) takes the form f(z, p), a known form say, for all values
of z and p; then since, when ¢=0 we also have E‘%F(x, p)=¢(z, p) for

all values of # and p, we must have ¢ (2, p)=f(z, p); that is, the form
of the function ¢ is identified as being the same functional form as that
obtained in the differentiation of ¥ (2, p) for a real value of p.

1195. It is assumed in what precedes that we are dealing with a function
F(z, p) which is continuous and finite for the whole of some range of
values of # within which x lies, whatever real value p may have, and that
the differentiation of F with regard to 2 is a possible operation ; and
that these suppositions will not be affected if we change » to p+.q.
Further, that F; and F, are continuous and finite functions of # for the
same range, and that differentiation with regard to #, p or q is a possible
operation. Under these circumstances we may infer that if

(%F(x, »)=f(=, p),

where p is a real constant, we shall also have a result of the same form
when p is a complex constant.

If then it be distinctly understood that the definition of inlegration
used is that it is the reversal of the operation of differentiation, i.e. the dis-
covery of a function F(z, p+g), which upon differentiation with regard
to  shall give rise to a stated result f(z, p+1q), it will follow wnder the

limitations stated above, that if f f(x, p)dz=F(z, p), where p is a real

constant, we shall also have ff(x,p+¢q)dx=F(x,p+cq), where p+ig

is a complex constant,and the integrals being indefinite a real arbitrary
constant C' may be supposed added in the first case, and a complex
arbitrary constant C;+.0, in the second.
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In the general theory of Definite Integrals, z.e. of those integrals
between certain specified limits whose values may be sometimes found,
as has been seen in the last three chapters, without any knowledge of the
function which forms the indefinite integral, the indefinite integral is an
unknown function of #, generally not capable of expression in finite terms
by means of any of the known ordinary Algebraic, Exponential or
Logarithmic, Circular, Hyperbolic or Inverse Functions.

1198. If then f(z, ¢) be the known or unknown function of z, whose
differential coefficient with regard to z is F(z, ¢), we have

[ ¥, da=] 1, & | =, 0-1(b, 9= x(a b, & say,

and the two definitions, viz. that of inverse differentiation and that of
summation, agree except in the case where F/(xz, ¢) assumes an infinite
value or becomes discontinuous between the limits #=a and z=5, and
this will hold when ¢ is changed to any other value, say ¢, so long as
such change does not make #(z, ¢’) become infinite or discontinuous for
any value of # lying between #=a and =5, or at either limit.

It will follow that whichever definition may have been used in obtaining
a specific result such as

f“ F(x) c)d$=X(a7 by <),
b

where ¢ is real, that result will still hold under certain conditions when a
complex p+q is substituted for ¢, that is,

[ Fe p+ade=x@ b p+a)

that is, provided that none of the stipulutions with regard to F' and x have
been violated by the transformation.

This entails that F(z, ¢) shall be finite and continuous for all values of
2 from 2="5 to #=a inclusive.

That F(z, p+q) shall be separable into real and imaginary parts as

Fy(, p, 9) +Fy (%, , 9)-

That when this separation has been effected both F\(z, p, ¢) and
Fy(x, p, q) shall be finite and continuous functions of # for all values of
from 2=>5 to x=a inclusive.

That x(a, b, p+1q) is likewise separable into real and imaginary parts
X1(@, b, p, 9) and Xy(a, b, P, 9).

That when any convergent infinite series has been used, or its use in
any way implied in the establishment of the primary result

f: F(z, c)dz‘=x(a, b) e),

or in the separation of #(x, p+tq), x(a, b, p+tq) into their respective real
and imaginary parts, the convergency shall remain unaffected by the
substitution of p+ g for the real constant ¢ for all values of « from x=b
to #=q inclusive ; and further, that when this convergency holds only



346 CHAPTER XXVIIL

1 2px %

ey N s 2 SO RN

Then 2X =tan Pre—av 2Y =tanh Prgtat
dXuvdl P2+g%+a? P*+¢¢ -

R R T s e v s v
But since
(B g7 = 2+ 4P = (P g+ 0~ A = (97 - g+ ) 4P,
z__p(P+g'+2% —1q(p*+¢*—2')
Pty (' - g+ 2% + 4p’¢*
S (praimatglibat], . phsg
(p—19)*+2][(p+g)*+2%] (p+ig)+2*
That is, the ordinary rule for differentiating

we have d%' tan™!

2 o x a
tan~l=, viz. —tan"l-=—4——
g dx a a?+a*

holds whether a be real or complex.

It also follows that f _’Q_ =1t;a.n“'2 holds whether @ be real or
at+z2* a a
complex.
(5) Similarly, we might go on to discuss the other standard cases. The
student may verify these for himself.

1197. Essential Difference in the Two Definitions of Integration.

Now the summation definition of integration loses its meaning when
the integrand becomes infinite or discontinuous between or at the limits
of integration. Let z=c be a value of 2 at which the integrand becomes
infinite or discontinuous. Then, if the integrand be regarded as the
differential coefficient of some function of z, say y, there is a discontinuity
in the value of dy/dx for the value z=c¢. And to interpret the summation
defpition it has been seen in Chapter IX. how Cauchy has given a new

a
summation definition of ] ( )dz, viz. the limit of the summation
b

[T COodes 7 ¢ ym

where ¢ and 7 are to be diminished indefinitely in a ratio of equality,
obtaining what Cauchy calls the Principal Value of the Integral. In
this way the discontinuity itself is avoided. It is approached indefinitely
closely from opposite sides, but the discontinuous element is omitted.

Thus a geometrical meaning is given to the symbol f ‘( )dz, which, from
b

the summation definition, would be otherwise meaningless. But regarding
the integrand as the differential coefficient of the function y, the dis-
continuity itself is an essential characteristic of that function. Hence the
two definitions do not agree if such points as the one under consideration
occur within the range of integration. But it has been seen earlier that
in the absence of such cases occurring between the limits of integration,
there is agreement between the two definitions.
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In the general theory of Definite Integrals, i.e. of those integrals
between certain specified limits whose values may be sometimes found,
as has been seen in the last three chapters, without any knowledge of the
function which forms the indefinite integral, the indefinite integral is an
unknown function of , generally not capable of expression in finite terms
by means of any of the known ordinary Algebraic, Exponential or
Logarithmic, Circular, Hyperbolic or Inverse Functions.

1198. If then f(x, ¢) be the known or unknown function of z, whose
differential coefficient with regard to x is F(x, c), we have

[ ¥, dw=[ 1, & ] =@, 0-1b, )= x(a b, o say,

and the two definitions, viz. that of inverse differentiation and that of
summation, agree except in the case where F(x, ¢) assumes an infinite
value or becomes discontinuous between the limits #=a and x=b, and
this will hold when ¢ is changed to any other value, say ¢, so long as
such change does not make F'(z, ¢’) become infinite or discontinuous for
any value of x lying between #=a and x=>5, or at either limit.

It will follow that whichever definition may have been used in obtaining
a specific result such as

f‘ F(z, c)yde=x(a, b, ¢),

where ¢ is real, that result will still hold under certain conditions when a
complex p+tq is substituted for ¢, that is,

/: F(z, p+ig)de=x(a, b, p+1g),

that is, provided that none of the stipulutions with regard to F and x have
been violated by the transformation.

This entails that F(, ¢) shall be finite and continuous for all values of
z from 2=5 to x=a inclusive.

That F(z, p+.q) shall be separable into real and imaginary parts as

Fy(z, p, )+ Fy(, p, g).

That when this separation has been effected both F\(z, p, ¢) and
Fy (2, p, q) shall be finite and continuous functions of x for all values of «
from #=> to x=a inclusive.

That x(a, b, p+1q) is likewise separable into real and imaginary parts
X1(a, b, p, g) and Xy(a, b, p, q).

That when any convergent infinite series has been used, or its use in
any way implied in the establishment of the primary result

[ # gde=x(a b, ),

or in the separation of F'(z, p+1q), x(a, b, p+1q) into their respective real
and imaginary parts, the convergency shall remain unaffected by the
substitution of p+ g for the real constant ¢ for all values of « from z=b
to #=a inclusive ; and further, that when this convergency holds only
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within definite limits of the values of p and g, the truth of the permanence .
of form of the result can only be inferred between such limits.

That the path of the original integration for values of # from a point
2=>b to a point x=a along the z-axis shall not have been altered in any
way by the proposed change from a real constant ¢ to a complex constant
P+1g.

With such stipulations, we therefore have

/, {Fy (2, p, )+ Fy(z, p, ¢)} de=xa1(a, b, P, 9)+tXs(a, b, D, @),

whence j; Fl('”y b, Q) dz:X\(a: by V2 4) H j; FZ(""’ o, Q)da‘I:X?(a@ b’ b, Q)

1199. If F(x, c) and x(a, b, c) be such that [ i F(z, ¢) de=x(a, b, ¢) for
b

all real values of ¢, and that F(z, c) is developable as a series of positive
integral powers of ¢ uniformly and unconditionally convergent between

specific values of ¢, for all values of # from b to a, so that f 3 F(z, c)dx is
b

capable of term by term integration, and is also developable in a like con-
vergent series, and if x(a, b, c) be also developable in a series of positive
integral powers of ¢ convergent for a specific range of values of ¢, the

coefficients of like powers of ¢ in / “F (2, ¢)dx and x(a, b, ¢) are equal for
b

all values of ¢ for which each series is convergent. And provided that
this convergency remains in both series when we substitute a complex

value p+q for ¢, the equality of qu(:c, p+ig)dr and x(a, b, p+1q) will
13

still hold good for such values of p and g as do not disturb that con-
vergency and do not cause F to assume an infinite or discontinuous value
for a.ly value of 2 between b and a.

If it be proposed to conduct the transition from ¢ to p+tq by a pre-

liminary change to p+gq, we have f“F(x, p+q)dz=X(a, b, p+q); and if
1

expansions of F(z, p+q) and x(a, b, p+¢) be possible in series of integral
powers of g, each uniformly convergent between specific limits of ¢, the

coefficients of like powers of ¢ in the expansions of / “F(x, p+¢q)dx and
b

X(a, b, p+q) will be equal, and therefore, provided the convergency of
these series be maintained when a change from g to tg is made in them,
and provided also that such changes have not caused F to assume an infinite
or discontinuous value for any value of » between x=b and x=a, we
may infer that the transition to the complex p+q is legitimate.

1200. In the use of the method the precautions necessary before the
results obtained can be accepted as rigorously established, are somewhat
irksome, and this has caused mathematicians to look askauce at the
process. In fact it has become usual to regard it as a method of

www.rcin.org.pl



TRANSITION TO COMPLEX CONSTANTS. 349

suggestion of new integrals to be verified by other methods rather than
as a mode of investigation. For instance, De Morgan remarks: “It isa
matter of some difficulty to say how far this practice may be carried, it
being most certain that there is an extensive class of cases in which it is
allowable, and as extensive a class in which either the transformation, or
neglect of some essential modification incident to the manner of doing it,
leads to positive error. It is also certain that the line which separates
the first and second class has not been distinctly drawn.”

De Morgan, after citing several instances of the success of the method,

f A “hdy A N
gives as one of failure, the case of fo TR" [tan .c]_—z.

By putting y ~/—1 in place of z, he obtainsﬁ %:J——T"; liiy?’ and
remarks concerning this that it is “an equation which we cannot either
affirm or deny, since the subject of integration in the second side becomes
infinite between the limits.”

We may, however, note with regard to this, that it apparently escaped
De Morgan that having put #=~/—1y, the range of values of y over
which the integration is assumed to be conducted is not a range of real
values, as was the case in the integmtion for the la.nge of real values of »

from O to . In fact y ranges from \/_ to , corresponding to the

~/ 1
real range of # from O to «, and all the values through which y passes in
this range are imaginaries, so that y never passes through the value 1 at
all, and therefore the subject of integration never becomes infinite as De

: : k
Morgan asserts. As a matter of fact, if we write o for the upper limit,

k
VT dy 5 1 ) g 1+7/ v
fo I—3* 2/ ( 1-y 1+_/ b Z[ %1y o

SLSEN N
=110 \/__1=110g LBy and when £ is ©
i v ML Mo . Bk
N-1 LB Vi
1 1 y
=§10g(—1)=:2»log[cos(2n—l)7r+l.sm @2n-1)m)
1 2n —1)me
=210g eL(2n—-])1r _—_(—2)"
where # is an integer
‘V._
Hence v/ — 1/ —— has one of the values of —(2n—1)2, where » is

an integer. The v(tlue n=0 gwes the particular value 5 B which we have

assigned to the left side, viz. [ T
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But if in the formula / Tran= : tan—l cx, ¢ be replaced by tc, we have

f P —tanh“‘c.t Both the nght hand side and the integrand

become o at z=¢~! during the march of # from 0 to . Therefore, with
those limits, the change proposed is inadmissible. We defer the con-
sideration of the use of a complex variable to the next chapter. And it
is to be understood in all the remarks made in course of this discussion,
that the march of the variable between its limits is not to be interfered
with by the substitution of a complex constant for a real one, ze. that
the change of ¢ to p+tg is not supposed to be one which can be brought
about by a change in the vuriable, as is done in the case cited.

JLLUSTRATIONS.
n
1201. (1) Taking [a2" ldzr= % , write n=a+tb.

Then f 21t dp=2+tP)(a+ib) [Art. 1196 (1)],

e f 2% {cos (b log )+ v sin (b log )} dz

=[2% cos (blog #) +t2x® sin (b log »)](a — ¢b)/(a® + b?) ;
whence, writing z=é’,
feao cos b df — €0 %08 I;&ﬂi Igzsin b0’ ¢ sin bOdl = o 251D 1;01;22008 bo ;
which are the well-known results proved elsewhere without the use of
complex values.

. i b dzx i b_ b+0 TR Y
(2) In the integral I=/ e —I:log (x+c)]a—log BT put c=ge**.

Then L il g ~w+ge”** _z+gcosa-igsina
. r+c z+ge* x2+2qxcosa+q .z‘2+2qxcosa+q"

and
10gb+qeua_.110 b?+ 2bq cos a.+ ¢? (tan" gsina By YL gsina )
atges 2 a3+2aqcosa+q b+qcosa a+qcosa
Therefore
f" z+qcosa ol ll b% + 2bq cos a.+ ¢*
a x2+2qxcos a+g? Uga"+2a,q cosa+g?
wa gsinads  _ _lb+qcosa. ~19+gcosa
. ax”+2qxcosa+q2 e gsina ni. .- gsina '

results which are obviously true otherwise.
The process is valid, for all the conditions laid down in Art. 1198 are
fulfilled.

o
(3) In ]Ej; e—“cosbxd.z'— bz’ write a=ce"

(a, ¢ both +; a, acute),

2, ta 2, La
cosbxdx::b‘c(be ® ds, Y

@
j e—CTCOSa ,—uey sina et ot L SR
o + 2b%* cos 20+ ¢t
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Hquating real and unreal parts,
1 =j; e~ 0% %82 cog b cos (cx sin a)dx=5‘—_f_(—2é;%%%:—1m,

c(c®—b%)sina
¥+ 20%2 cos 2a.+ ¢t

The change from @ to ce** does not affect the path of integration with
regard to 2 from O to o ; the integrands remain finite and continuous
throughout the range, and though the upper limit is infinite both
integrands are zero when  is infinite, and the conditions of the validity
of the process are all satisfied. Hence it will be fair to assume the
results correct. They may be readily verified otherwise.

Iz=jo ¢~ 0% 082 cog by sin (e sin a)dr=

4) In I= f e"‘""dx:%—;_r, write a=ce'*, (¢ and ¢ +™; a, acute).
0

Then ' o—¢*2" (c08 2a+ sin 2a) 7. & Vr e—ta.
0 2¢
A
' 4 ; T
Therefore 0" 008 2a 0 (c2325in 2a) dr = 123 cos a,
0

, : VT
f»e_c,,-cos 2¢4in (c222sin 2a) dx=% sin a.
0

The new integrands satisfy the conditions under which the transition
is permissible.

Putting a——-’—i, we have Fresnel’s integrals of Art. 1163, viz.

N
‘[cosc’xzd‘r=2c—7—:’-§,
) N
P P . o
fsmcx dx—gc&.
(5) In IE/: c‘“""dx=\/71—r, write a=m(l+a), (a, +).
1 A
—m?(1+a)?a S e il
Then /:e dz o)

Both sides are capable of expansion in powers of a, convergent for
values of o which lie between —1 and +1. And both series remain
convergent when we replace a by an unreal quantity with modulus <1.
Hence, writing 8~/ — 1 for o, where 3-< 1, we obtain

7 gmma—-pa 3823 _ 1 sin 2miBat) dp=T L _NT1-48
/_we (cos 2m?[3 2 l.sm2mBz)dx—m {77 by
whence i B<1);

—m'(1- ")z 2 _‘/_"' . v
fwe cos 2m? Ba*dr= T+ 3"
i B (B<1).
—m*(1-p") 2% 2 Br2dy =t
/:e sm2medx—-m1+Bz

[SErRET, Cale. Int., p. 140.]

www.rcin.org.pl



352 CHAPTER XXVIIIL

(6) Taking the integral
310y
I= f e P cosh 2w dx=-i:-r e?

a
we observe that cosh 2gz and e?* can both be developed in ascending
powers of ¢ which are both convergent series, and that if we write ¢q for
g, the convergence will not be affected.
Hence, we may safely infer that
Wi
fw e P cos 2z dx=:/p—; g
and as the integrands in these integrals are not affected by changing the
sign of  in either case, either integral may be taken from 0 to «, and

the results are still true, provided in that case the right-hand sides be
halved.

= z’+ /7
(7) In I = f ( .Z'=~c =20 write c=ke'.

Then /:e—ktr"m(x’+;v:)dr=‘_\_2/g e"‘“e"’zak"‘zm;
- /:e e ) (¢!+ )COSZa. {Ic"( xl) i 2(1} dx
i

=—2% ¢—2ak* €08 2,005 (4 + 2 k2sin 2a),

0 at 9
]; e_k' (”L"i‘) gz ol 4 {k”(z’+:—’2) sin Qa} dz

. w = 7-2/7:5 e~ 2ak?c0s 204y (g 4 2ak?sin 2a).

[Cf. Cauchy, Mém. des Sav. Etrangers, i., p. 638.]

(8) Taking Laplace’s integral f” e~ cos 2b.z'd.1;=\2i;-re @ write

ur ur

— —ri? . D
a= ce‘ then a?=c%? =ic? and e~ = ¢~'¢'%" = cos %2 — ¢ sin c%?.

WE I_b_')
Therefore /: (cos c%? — v sin ¢%2?) cos 2ba;zb;=%7r e VeSO
N T b
2.2 B i
whence /; cos c2a?cos 2ba dar = % 005(4 cz)

L
ot ()
josmc.z: sin 2bz dv % sin i)

results due to Fourier.*

* Traité de la Chaleur, p. 533 ; Gregory, D.C., p. 485.
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PROBLEMS.

% T
ul i
1. Show that L cos™ @ cos nw dx = ' [Covtats, 1892.]

T
on

Show also that ‘rcos" 0 cos (n—2r)0 dO ="C,
0

k | RS
2. Evalua.tej <1 —%) an-ldx, where n is positive and % a
0

positive integer. [Sr. Joun’s, 1892.]

2% 5 . . a
3. Prove that’ ij €¢csZ gin (¢ sin ) sin na de = i
T
] !

[MaTH. TrIPOS., 1872.]
4. If m be a positive integer, prove that
m

i ]
J. (2 cos wymtesin (m + 1)z do = " o)
o 4m
‘ [CoLLEGES €, 1883.]
5. If n be positive and less than unity, show that
iy O oo I
e ot “T'(n) 2 509" [CoLLEcEs B, 1889.]
6. Show that

;cos 2spcosping wiatoh osiap(p 1) (prs—1)
L R i s A 51 ’
where p is any negative quantity or any positive proper fraction.
[CoLLEGES v, 1888.]
7. Establish the result
J cosh\plovz)log(1+x) ‘,p(—lr——l> (p<l).

sinpr P
[CorrEcEs 8, 1883.]

8. Evaluate

2 sin26 46
s 1 —2sinasin@+sin?¢"  [CoLumcEs 8, 1890.]

9. Show that the product of the two integrals

0

3
e—?2n—1dz and e—Pgl-2(dy is ——.
0 0 4 sin nw

[COLLEGES a, 1890.]

™

T

h T
10. 1f u=j e dz, show that u? =j (eh*sectd — 1) d6.
3 : [CoLLEGES a, 1890.]
0
11. Show that L lo%ilgz d0———10t,{%(1 - ¢29)),

[CoLLEGES, 1892, ete.]
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12. Show that

jta aniny ——dz= <a+ b + )if ac],

T+acosz 32" 52
[MaTH. TrIPOS, 1882.]
13. Prove that

o 2w 2w
2 df= — i
L cosnch log (1 + 2m cos cf +m?) df = e or —-m,

according as n is even or odd (1>m>0). [R. P.]
14. Find the value of | sinnf tan-1 Aind
0 1-acost

where —1<a<1 and n is an integer. [OxForp II. P., 1900.]

15. If m, n being each less than unity, and sinz=mn sin (z+y),
show that va

zsiny dy T 1
T-2mcosy+m? 2m €T —mn
[St. Jonn’s, 1891.]

16. Show that

% o ™ 2m +1
L dp—(Qg—2+Dntemi1 T
J‘o (227 + g2n)k+l Qa 3000 ™

where m, n and k are all positive integers and m<n, and @ is the
2m+1-2n
coefficient of ¢* in the expansion of (1-¢) 20 in ascending

powers of c. [CoLLEGES a, 1887.]

-

17. Prove that

J“’ dx _m  e+a
o (1+2%)(1-2acosz+a?) 2(1-a%)e—a

(0<a<l).
[CoLLEGES v, 1888.]

cosnd o _(a —Ja?=1)»
—0030 ((Lz—l)*

m, where a>1.
[ST. Jonn’s, 1881.]

18. Prove that j
o

19. Prove that

j”{ e +cos 0 2(10_ T T 2e2-1
o \T+2%cos0+e2f 3= " F@-1)

according as e<1 or e>1. [R. P.]

o dw 7 sinna
20. Show that ; w i
o T+2zcosa+42? sinnr sina’ here, m i pot

an mteger and 1r>a.>0. [St. Joun’s, 1891.]
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21. Show that .., M =T cosec 1, if n>1, and thence show that
. wib 0 1+2" n n
if » be positive,

j logzlog(1+ )dx @ COsec — (loga——cob——l)

[MaTH. TrIPOS, 1883.]
22. Expand the definite integral
j’ldza;“—l(l - z)B-1
0 (1 — )

in the form of a series of ascending powers of u; and thence or

otherwise find the relations which must subsist between o, 8, y and

the indices o, B, ' of a like integral, in order that the two integrals
may be to each other in a ratio independent of w.

[Smirn’s PrizE, 1875.]

23. Prove that
"" sin?z dz e a<l)
Jo (1 =2acosz +a)(1 —2bcosz+8?) 2(1-ab) \b<lf
[CoLLEGES v, 1893.]

24. Point out the fallacy in the following train of reasoning,
By putting ax =7, we have

© g—ax ® oY ® g—ax _ g—bx
_dx=j  dy; j ———dx:j ) j “ay=o.
L z (i v 0 z o ¥ e .

Show that the value of the latter integral is logg.
[TriNiTY COLLEGE, 1882.]
25. Deduce from the expansion of log (1 +2) that if « 3 1

a2 gt 6 o8

1 o
i F AR R =%L[log(1 + 22 cos 0+ 2) 6.

Deduce Euler’s series

26. Show that if 7, =I" sin 70 cotgdﬂ, then I,=1,_,.
0 -
Hence show that I, =m.

h
27. By differentiating u=ja ?%:2 dx with regard to a, show that
0

du  (*¢'(z) (h)
o LTd TR
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Hence deduce
j 4’(“‘5) ‘l’(b‘r) de=(a- b)j ¢ dz— ¢'(0)[aloga —blog b —a+b]
Saah) Lt,,_,., ‘“h)

on the supposition that ¢ is such that Liz—. ﬁ ¢il;x) dz vanishes.

b
Apply this to show that j M{;;cosmdz=’:(b -a).
0

[BERTRAND, Calc. Int., p. 225.]
28. Prove that if m, n are positive integers ‘whose H.C.F. is 7,
and m=rp, n=rv, and p, ¢ numerically less than unity, then will
dx i T 1+pvg+
_ﬁ(l “Zpcosmz +p%) (1 - 2gcosnz +¢%) (1-p?)(1-¢%) 1—prge’

e

T C0STT T_[Vi-é&-17
29. Show that Jol+ecosxdz=\/1_esl: ]

[CoLLEGES 3, 1884.]
T
30. Evaluate j sin?z log tan z dz.
0
31. Prove that if n be a positive integer,
(i) I cos 2n6 log (sin 6) d0 ™. s i) j cos na (cos z)"dz = W'
32. Prove that, n being a _positive integer,

v . ; 01 g 0 ™
(i) j cos 2n6 logsin d0 = — ;g
(ii) I cos 2n6{log (2 sin 0)}2d0 =74 ,/2n ;

(i) I {log (2 sin 0)}4d6 = 75/288 + i w2 n?,
:

g e ¢ 1 1
where =1+ gtatathrd T [Sr. Joun's, 1891.]
33. Evaluate "—ﬂx—zdx (a<1).
o (L—acosz) [CorLEGES, 1890.]
34. Prove that if n be a positive integer and 7/2>a>0, then
? dy sin®"-1y 7 1.3.5...(2n-3)
s ; : -1
L z (I —sinasin’z)"  2» (n—1)! i

[St. JonN’s, 1887.]
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m

T
35. Show that 2I sec 2 log (1 +sin a cos 2)da =ma — a2,
0
' log {2/(1 +2%)}
Hence deduce “.0 -2 dz. [TrisrTy, 1884.]

36. Prove that if z<1,

J." log I_M _ﬂ =927 sin~1z

o °Cl-zcoscosd " [COLLEGES a, 1891.]

37. If u+v=4, u—v=2sin 6, show that
J‘wlugf-ﬁ=ﬁ—rlog<2cos21.)-
0 )

38. If m and n are positive integers, prove that

J“” cos (2m + 1)x — cos (2n + 1)z

- dz=(n—-m)m.
S zsinz

[Oxrorp II., 1890.]

39. Prove that

T
L {tan—(a tan z) — tan—1(} tan &) } (tan 2 + cot z)dx = 1—; log %,

where a and b are both positive. [OxForp II., 1886.]
P ,=bx o1  — A% gy
40. Show that J. el Rt dz=0 if - £r 0, and
0 » %3
a and b be positive. [CLARE, Catus axD Kina’s, 1885.]

lz+my-+nz
41. Prove that J.”'e e dxdydz extended over the volume of

the ellipsoid «%/a2 + 92/b% + 2%/c? =1 is equal to 4wabc/e, « being equal
to /a2 + b?m? + ¢®n? and [, m, n being direction cosines.
[CorLEGES, 1886.]

42, Show that

0 (o—ax _ bz g—l'x} 2l b
-‘-0 {T+(a—b)—w— da:—b—a—alog(?

where @ and b are positive quantities. [TrINITY, 1892.]
(0~ tan—2(n tan )} sin 2046w 14n .
43. Prove that L T rineos S04 0P e log T+n2 if n

be less than unity.
Determine also the value of the same integral when = is greater
than unity. [St. JonN’s, 1891.]
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44. Prove that, for any value of n, provided a be between 0 and m,

i dz L
o (L+a2")(1+2zcosa+2?) 2sina

g 0 (1 +2%)dz T
(T+2™(1 - 222 cos 2a+2*) 4sina
[St. Jou~’s CoLL., 1881.]

45. Prove that if ¢ be positive and less than unity,
cen
I sin 2n¢j e~ #¢*sin® cog { ¢z sinp(1 — ¢ cos ¢) } dx dp = 21rc (1 a=aF
[MaTh. TrIPOS, 1886.]

46. Prove that
A
T (Vo=y=2  p(g2 492 +22)

@i+ Atdap W iz=

™
120002y/1 +m?
[St. JouN’s, 1885.]
47. Show that

T (2r
I I f(m cos 0 + n sin @ sin ¢ + p sin 0 cos ¢) sin 6 d6 dp
0Jo
+1
i B et
=97 -lf{xs/m + 02+ p?}dx. il
48. Prove that if n be a positive integer,

”
T sinn2g {sin2n+2y — sm”'”'”x} 3k e
0Jo siny — sin%z 8

[St. JonN’s, 1888.]
49. Prove that

'2' ”

i R m

: I J' (1 - sin?w sin? 6) Fsin™ o df do
0Jo

is a symmetric function of m and n. [MaTH. TrIp., 1895.]
50. Prove that
—(24+422%y% cos 2a-+y4) s i ol gt s e kon s |
-[-no.[-uoe dzdy=x 0 &/1 - sin%a sin%0

[Ox. II. Pus., 1902.]
51, Prove that

(T e
I o~ B )dx (—1)"J21ra”e

o —0

52. 1f u=(ab' - a'b)a® + (ac’ - a'c)zy + (bc' - b'c)y?, prove that

SR T
. j_w j_me-"’uda: dy:J_E"
where E = 4(ab’ - a'b)(be' - V'c) - (ca’ - ¢'a)?, provided
4(0? - ac) (V2 - a'c) > (200" — ac’ - a'c)%.  [Sr. Jomn’s, 1886.]
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53. Show that

0 (a0
j J. e—ax*—2cxy—by* d dy i
0Jo

fo, ol 0 Jote £ ¢
2Jab — 2 Jab
ifa >0 and ab-c > 0. [1.C.8., 1897.]

54. Show that

¥ Nra
‘ e P
J-o 0ycosh2cxye ax ydxdy—4( =)

if @, b, ¢ are positive quantities and ab —c® > 0. (L. C. 8., 1897.]

55. Show that

; m
j J“' F(1 - sin 8 cos ) sin 8 d6 dp = ;wjl F(v) du.
0JO 0

[ST. JonN’s, 1891.]
56. Prove that

EI: $(a%a? + 1%2) dz dy = | P@)da.

57. Calculate the value of II ciw7d7/ taken throughout the ellipse
1"2
@ g2
S+h=1,

where 7, and 7, are the distances of the point «, y from the foci.
[CoLLEGES a, 1889.]

58. If ¥ =sinp,0sin p,0 sinp,f.. sinpan+10 where p,, p,, ... Pon+1
- are any positive integers whose sum is odd, prove that

J‘” Vd@ S pae
0 @ " Josind’ [St. Joun’s, 1892.]

59. Show, by means of Landen’s Transformation

tan (6 — ¢) = P, | tan 0,

i a6 de
that o
0 (a2 cos?0 + b? sin0) 0 (al cos? ¢ + 0,2 sin? </>)'k
where @, and b, are respectively the arithmetic and the geometric
means between ¢ and b.
Point out the value of this result in the calculation of the
numerical value of the definite integral. [MarH. TrIpos, 1889.]
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60. If p be the length of the perpendicular from the centre of the
2 42 0
ellipsoidz—2+%+§—2= 1, on an element dS of the surface, prove that

d d d 1Y dx
I to bl {d<a2>+m+m} .[o N(CESNGENCESY)
[CoLLEGES 7, 1901.]

61. Show that j sinrdsinnd, | =
o Osinf 2

provided = is an integer and r any quantity >n - 1.
[MATH. TrIp., 1873.]

4
62. Prove that I loga dz=0.
o4z —2?
[CrARE, Carus, Kina’s, 1886.]

63. Prove that 2j4ﬂlog(l +5in 26)d6 + 7 log 2=0.
=3

Hence, or otherwise, find the value of
1.1.3.1.3.5
22°92.4272.4.62" ' [Ox. L. P., 1900.]

64. If u, u' are essentially positive quadratic functions of z; A, A’
their discriminants and H the invariant intermediate to A and A,

prove that » l R s H+2JAN
By _JA . e .ok
- [Nanson, £.7., 13406.]

(;5. If Daat=¢() and D b=y (),
=0 n=0
show that "
St =5 [ (ao) =)} 9 (09) + 90~} 40~

If also Ecnz"— x (z), show how to express Za,. nCn™ by means

n=0
of a double integral. [SMAASEN. ]

66. Prove that

pr pla? pSed
1+l!2!+2!4!+3'6'

= ?—Jo e#080cosh (s/’—c cosg> cos (p sin 6) cos <J5 sin g) de-1.

[W. H. L. RUSSELL.]
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67. Show that

3
. 2n gl (2'”') l ¢
I_%eﬂxcos “d"'_(a2+22)(a’3+42) {a2+(2")2} $

Hence prove that
Sy 23 i
12T @@+ ) T @)@+ D) (@ 1 69

2
gcosech az_rf L6“%cosh (\/5 cos 6) dé.
3
[W. H. L. RUSSELL. ]

2 sinh‘lz’—’

1+

B E o % s 1
68. Show that j' e 4 (ef—cosx) dw=4\/asmh(;.
o [W. H. L. RussgLL.]

69. Establish the results
@) j”f(wl 1oga,-d_"’ )
0
S 1 dx =
ta; -1 _______
@) [ (e +]) e =3[ 1o+ )%
70. Establish the results
il e L itde 1 1\dz
M f(a+ )1+xn—=2L #(=+3) %

T

[L1oTVILLE.]

@ | s F

: F(sin26) i =% j‘ F(sin 6) do.
0

(i) ol + tan"6
[GLAISHER, Messenger of Math., No. 70.]

71. If J,(z) be Bessel’s function, show that
m— 1
: T
* J ,(az) " ( 2 )
2= —— .(2n+1 -1).
0 x"m Jr2T (n + ) Il “m+1 (30 +1>0>m> 1)
i D) [MaTh. TrIP., 1898.]
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