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On local disconnection of Euclidean spaces 
by 

A. Granas (Warszawa) 

1. Introduction. Let Sn be the w-dimensional sphere defined in 
the (n + l)-dimensional Euclidean space En+1 by the equation 

We consider a closed set FCS„+1. Let Ue
a denote the e-neighbour-

hood of a point aeF in Sn+i, i. e. 

Let us denote by by, for every two positive numbers e and t], e>r7, 
the number of components of Ue

a—F which have a common point with TJl. 
If rj<rj', then Kv^bov ' , and consequently there exists 

Evidently be
Q^bo if e<e'. Consequently there exists a finite or infinite 

limit 

The number b0{a, Sn+1— F) will be called the number of components in 
which F decomposes the n+l dimensional sphere 8n+i at the point a. 

In 1933 E. Ôech1) proved, using the notion of local Betti numbers, 
that the number b0(a,Sn+1— F) is a topological invariant. The purpose 
of this paper is to give an elementary proof of this fact without using 
any notion of algebraic topology. The method of proof is based 
on the notion of Borsuk's cohomotopy groups 2) and Borsuk's theorem s) 
on the structure of the n-th cohomotopy group of closed subset F of 8n+г.' 

») E. Cecil [1]. 
2) K. B o r s u k [2]. 
3) K. B o r s u k [3]. 
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2 On local disconnection of Euclidean spaces 

2. Definit ions and notat ions . Throughout the paper by space 
we understand a metric space and by a mapping a continuous trans-
formation. 

I x l will denote the Cartesian product of two spaces X and Y 
i. e. the set of all ordered pairs {x,y) with xeX, yeY, metrized by the 
formula 

If X0 is a subset of X and / a mapping with the range X, then f\X0 
will denote the partial mapping of / defined in X0 i. e. the mapping /„ 
defined in X0 by the formula f0(x) = f(x). We shall say that / constitutes 
an extension of /„ on X; we then write / 0С/. 

Г* will denote the set of all mappings of X into a compact space Yn. 
In the functional space Y* we define a metric topology setting 

Two mappings /, g eY? are called nomotopic (written f~g) if there 
exists a mapping heY?*1 where I denotes the closed interval 
such that 

The relation of homotopy, established in Y*, is a relation of equi-
valence and thus the set of all mappings / eY% decomposes into disjoint 
classes of homotopic mappings. The class of all mappings homotopic 
with a mapping / e Г* will be denoted by (/) and called the homotopy 
class of /. A mapping / e Г* homotopic tn я, constant is saicl to be un-
essential; we then write 

If X0 is a closed subset of a compact space X, then by XjLT0 we de-
note the space obtained from X by identifying X0 to a point qX(j. I t is 
known4) that for every space X\\X0 there exists a natural mapping 
<p e (JTj|.X0)'Y which maps X—X0 topologicallv onto Z | | X 0 — q u 

3. Cohomotopy groups. In this section we give the definition 
and some properties of Borsuk's cohomotopy groups needed in the sequel. 

By a product of the mappings f , g e S Ï we understand the mapping 
f x g{SnxSnf defined by the formula 

*) See for instance C. K u r a t o w s k i [4], p . 42. 
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A. G r a n a s 3 

I t is known5) that: 

(3) If X is a compactum and d i m X < 2 n , then for exery f xg e (S„xSn)x 

there exists a mapping he(S„xS„)XxI satisfying the conditions 

where b0 is an arbitrary point of 8„. 
In this case we define the sum of the homotopy classes 

m the following manner: Setting 

we have с o e { S „ A S n f , §neSs„n*Sn and ûna) e Sx. We define the sum ( f ) + (g) 
of the homotopy classes (/), (g)CSx by setting 

I t is known6) that: 
(4) If X is a compactum and dim X<2n—1, then the homotopy classes 

(f)CSn constitute an Abelian group with the operation defined as ad-
dition of homotopy classes. 

This group is called the n-th Borsuk group or n-th cohomotopy group 
of X and is denoted in the sequel by Bn(X); the order of this group will 
be denoted by b„(X). 

The zero element of Bn(X) is the homotopy class which contains un-
essential mappings / e Sx. An inverse element to (/) e B„(X) is obtained 
in the following manner: Setting 

for every (x1,x2,...,xn+1) e S„, we define the inverse element —(f) as the 
homotopy class containing g„f e S„ • 

If X0 is a closed subset of a compactum X (with d imZ<2w —1), then 

Let / be a mapping of X into Y. If geSJ; then gfeS*, if gy~g2, then 
gj~g2f. Let us set, for every homotopy class (g)CSn

y, f[(g)]= {gf)CS*. 

5) See K. B o r s u k [2] and E. S p a n i e r [5]. 
e) See K. B o r s u k [2] and E. S p a n i e r [5], p . 211. 
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4 On local disconnection of Euclidean spaces 

I t is known7) that : 

(6) If X and Y are compacta and dimX<2w—1, d i m T < 2 n — 1 , then 
the mapping f (induced by f ) is a homomorphism of Bn(Y) into B„(X). 

Let X0 be a closed subset of X. By E„{X,X0) we denote the set of 
homotopy classes ( f ) C S ? such that / | X 0 ~ 1 . Then: 

If X is a compactum and d imX<2n—1, then the set H„{X,X0) is 
a subgroup of B„(X). 

P r o o f . Let (f),(g)eHn(X,X0) and ( f ) + (g) = (h). By (5) it is (h\X 0 ) 
= (f\X0)+ {g\X0). But / | X 0 ~ 1 and flr|X0—1, hence and 
(h)€Hn(X,X0). If (Ь)еНп(Х,Х0) and ( / 2 ) = - ( / i ) , then, by (5), (/2|X0) 
= - ( / , | Х 0 ) . But A l X o - l , hence / 2 | X 0 ~ 1 and (/2) eHn(X,X0). 

The order of the group Hn(X,X0) will be denoted by hn(X,X0). 

4. S o m e l e m m a s . Let F be a proper closed subset of Sn+Let 
O0,Olf...fOt,... be a finite or infinite sequence of all components of S„+i—F. 
In every component Gt we choose an arbitrary point pt and a spherical 
n+1 dimensional element Qt with centre p, and boundary Snl. 

I t is known8) that : 

(7) There exists a one-one correspondence between the set of all homotopy 
classes (f)CS% and the set of all sequences {(/<)}, where (f,)CSnnl, 
f , = f\Snl, i= 1,2,... and /, is unessential for almost all i. This cor-
respondence is an isomorphism between the cohomotopy group Bn(F) 

and the direct sum9) 

Now let i*p be for every l a mapping of Snl onto 8n, homotopic to a ho-
meomorphism of Sni onto Sn. Let rP()Pl be an extension of the mapping 
rP0Pi € s»ni on Sn+l-(p0)—(p,). Then, for the mapping rPoPt\SnJ is 
unessential (because rPoP. | SnjCrPoPl\Qn) e and for every i =1 ,2 , . . . 
the homotopy class (rP(jPi \ S„i) С Ss„ni is a generator of the free cycUc 
group B„(Sni). From this, applying (7), we obtain the following 

') See E. S p a n i e r [5], p. 214. 
») See K. B o r s u k [3], p. 227 and 240. 
•) By the direct sum ^ А/ of Abelian groups А/, i = 1,2, . . . we understand the 

i 
Abelian group J. constituted by all sequences {a(.} with a. e A(, where a , = 0 for almost 
all indices i and where the group operation is defined by the formula {ai}+{«J}={a(. + a|'}. 
I t is clear tha t if a(. is a generator of the free cyclic group At and <5̂  = 0 for ь ф ] , <5̂  = 1 
for i — j, then the sequence {<5j • «j},{ô* • a2}, ...,{ôf • Oj],... constitutes the basis of the 
group A Ai . 

I 
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A. G г a n a s 5 

LEMMA 1 . The sequence of the homotopy classes 

(8) 

constitutes the basis of the n-th cohomotopy group of F. 
LEMMA 2 . Let F be a closed subset of 8n+1 8n+i) and G an open 

connected subset of Sn+1 (G^8n+1). If G0,G1,...,Gk are all components of 
8n+1—F such that в-в,ф0 for i=0 , l , . . . , fc , then Jc=h„(F,F—G). 

Proof . Let us order all components of 8n+1—F in a finite or infinite 
sequence G0,G1,...,Gk,Gk+i,... a n d choose in every component (7,- a point 
Pi in such a manner that Po,Pi,---,Pk * G. We infer by lemma 1 that 
the homotopy classes 

.re linearly independent. Since F—G does not disconnect Sn+l between 
any pair of points p0,pi, -~jPk, then rp-\F—G~1 for every i=l,2,...,lc. 
Thus we have shown that there exist at least h linearly independent 
elements of the group Hn(F,F—G). 

Now let us have any mapping / e8„ such that f\F — G~l. We shall 
prove that the homotopy class (/) is a linear combination of the clas-
ses (9). By lemma 1 the homotopy class (/) is a linear combination of 
a finite number of elements of the sequence (8): 

Since the set F — G disconnects $„+1 between every pair of the points 
of the sequence p0,pk+1,pk+2,..., we have 

From this and from f\F — G~1 we infer that the linear combination 
(10) cannot contain any class (rPoPj\F) for j>k. Consequently the homo-
topy class (/) is a linear combination of the homotopy classes (9) and 
the proof of lemma 2 is completed. 

LEMMA 3 . If H1, H2 and G are three open neighbourhoods of a point 
aeF(dimF<2n—l) such that H^H^CG, then 

P r o о f. Let us set F*=F\\F—G. For every / e SF„' the relation f\F*—H1 ~ ] 
implies / | .F*—Я2~1. I t follows that Hn[F*,F*-Hl\CHn[F*,F*—H2\ and 
consequently also (12). 
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6 On local disconnection of Euclidean spaces 

LEMMA 4 . If H, Gi and G2 are three open neighbourhoods of a point 
a e F (dim F <2n—*l) such that ЯСб,Сб„ then 

where F* denotes the set F^\F—G2. 
Proof . Let у be a natural mapping of F* onto F** —F*j|F*— and 

ф the induced homomorphism of B„(F**) into B„(F*). If fcS*" and 
f\F**—H~lf then f\F*—Я~1. From this we infer that 

Now let (g)CS? and g\F*—H~l. Without loss of generality we can 
suppose that g{F*-H)=p0e S„. It follows that g(F*-G1)=p0. We de-
fine the mapping li of F** into Sn as follows: 

Evidently h e SF
n", h\F**-H~l and g{x)=h[<p(x)] for every xeF\ 

I t follows that ф{{Ъ)}={д) and q>{Hn[F**\\F**-H]}=Hn(F*,F*-B). From 
this we infer the inequality (13). 

5. The local cohomotopy numbers . Let a be an arbitrary point 
of a compactum F with dim F<2n—1. Let Ue

a(F) denote the e-neigh-
bourhood of a in F, i. e. 

Let us set 

By lemma 3, if »?<??', then b ' ^ ^ b ' / . Consequently there exists 

By lemma 4, if e<e', then b ' n (a ,F )^bUa ,F) . Consequently there exists 
a finite or infinite limit 

The number bn(a,F) will be called the local cohomotopy number of F 
at the point a e F. 
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À. ér г a ti a à у 

Erom the definition of ftp4 and b„n(a,F) and by lemma 2, we infer 
that in the case of F C 8 n + 1 

From (17), (1), (2), (15) and (16) we obtain the following 
THEOREM. If aeF—FC8n+i, then the number of components b0(a,Sn+l—F) 

in which the set F decomposes the (w+1)-dimensional sphere 8n+x at the 
point a is determined by the local cohomotopy number b„(a,F) of F at the 
point a by the formula 

Since the number bn{a,F) is topologically invariant, we obtain the 
following 

COROLLARY. The number of components b0(a,8n+1—F) in which a closed 
set FC8n+1 decomposes the (n + l)-dimensional sphere Sn+1 at the point 
a eF is topologically invariant. 
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F U N D A M E N T A 
M A T H E M A T I C A E 

X L I V (1957) 

К теории когомотопических групп Борсука 

А. Гран ас (Торунь) 

В настоящей заметке рассматриваются некоторые подгруппы «-мерной 
когомотоппческой группы Борсука и устанавливаются соотношения между ран-
гами рассматриваемых групп. В качестве простого следствия одного из дока-
занных соотношений выводится известная теорема Фрагмена-Брауэра о раз-
биении евклидовых пространств. Одномерный случай рассматривался Эйлен-
бергом (см. [2]). 

1. Введём сначала обозначения употребляемые в дальнейшем, а также 
напомним кратко определение когомотопической группы. 

Пространство непрерывных отображений компакта Л' в компакт Г будем 
обозначать через Г*. Метрика в ГА определяется формулой: 

Отображения /, fifeS*1) называем гомотопными, f~g, если существует 
отображение h e SX x l 2) ( / - замкнутый отрезок <0,1>), удовлетворяющее 
условию: 

Совокупность отображений g e гомотопных отображению / е будем 
называть гомотопическим классом отображения / и обозначим через (/). 
Пространство распадается благодаря соотношению гомотопнп на непересе-
кающиеся гомотопические классы. Если отображение / с гомотопно отобра-
жению у = const, то будем называть его несущественным, записывая 

Если Л, А0 два компакта Л0С А, / 0 , д0 e / 0 ~ < / о , / о с / е 3), то, 
в силу известной теоремы Борсука (см. [4], стр. 8G), существует g e S*, такое 
что д0Сд п (J Гомотопический класс ( f )CS„ будем называть продолже-
нием гомотопического класса (f0)CS?,° на А. 

') Здесь SH обозначает н-мерную сферу определяемую в (н + 1)-ном евклидовом 
пространстве уравнением + xï + . . . H- + 1 = 1 . 

-) X х Г обозначает топологическое произведение пространств X и Г . 
3) Запись / „ c i ê S Î , где означает, что / является продолжением 

/0 н а ' . ! , т. е . / ( . / • )= ;„(.'•) для всех л е .10 • 
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А. Г p а н а с 9 

Произведением fxg отображений f,g e S* будем называть отображение 
fxg € (JS„x8„)x, определённое формулой: 

для любого х е А*. 

Известно (см. [5], стр. 209-210), что если размерность компакта X 
меньше 2п, то для любого (fxg)e(8„xS„)x существует h е (8пх8„)XxI, 
удовлетворяющее условию: 

для любого х e X 

(здесь Ь0 произвольно фиксированная точка сферы 8п). 

Сумму ( / )+(#) гомотопических классов (f),(g)CSx определяем форму-
лой: ( / )+ ( д)=(&<р). 

Известно (см. [5], стр. 210-214), что когда размерность компакта X 
меньше 2п — 1, то совокупность гомотопических классов (f)C8x образует 
абелеву группу, если групповая операция определена как сложение гомото-
пических классов. 

Эту группу (w-мерную когомотопическую группу компакта Л') будем обо-
значать символом Вп(Х), а её ранг 4) — символом Ь„(Х). 

Нулём группы Вп(Х) является класс (const). Если определим отобра-
жение •&„ сферы 8п на себя формулой &„{x1,x2,...,x„+i) = {х^х^...,—жя+1), 
тогда элемент — (/), для ( f ) е В„(Х), совпадает с гомотопическим классом 

2. Пусть X компакт и А его замкнутое подмножество. Обозначим сим-
волом Нп(Х,А) множество всех ( f ) C 8 x таких, что а символом 
G„(A,X) множество всех (/) С S*, которые можно продолжить на X. Если 
dim Х<2п—1, то Н„(Х,А) образует подгруппу группы В„(Х) (см. [3], 
стр. 45). Аналогично легко проверяется, что если d imX<2w — 1, то G„(A,X) 
является подгруппой группы Вп(А). 

Пусть h„(X, А) ранг группы Н„(Х,А), а дп(А,Х) ранг группы G„{A,X). 

4) Под рашом абелевой группы мы понимаем максимальное число линейно 
независимых элементов группы. 
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10 /Г теории когом атонических групп Иорсука 

Доказательство. Ввиду неравенств Ь„(Х) > д„(А,Х), Ь„(Х) > h„(X,A) 
можем предположить, что числа h„{X,A), д„(А,Х) конечны. Пусть гомотопи-
ческие классы: 

образуют соответственно максимальную систему линейно независимых элемен-
тов группы 0„{А,Х) и группы Н„(Х,А), т = д„(А.Х), k=h„(X,A). 

Пусть (ûi)CS* продолжение класса (</,) СS* на A* («=3,2,...,»»); пока-
жем, что система 

есть максимальная система линейно независимых элементов группы Вп(Х). 
Пусть имеет место соотношение 

где некоторые целочисленные коэффициенты. Рас-
сматривая соотношение (4) на А, заключаем ввиду свойства системы (2), что 
все qt равны нулю, затем, учитывая свойство системы (1), заключаем, что все 
Pi равны нулю, а это доказывает линейную независимость элементов системы (3). 

Пусть (/) произвольный элемент группы В„{Х). В силу свойства си-
стемы (1) существуют такие целочисленные, не равные одновременно нулю, 

коэффициенты Положим 

имеем В силу свойства 

системы (2) найдутся такие целочисленные не все равные нулю 

, что Отсюда получаем соотношение 

что доказывает максимальность системы (3). Теорема доказана. 

3. Пусть А и В два компакта. Обозначим через Рп(А,В) совокупность 
всех (f)C8*ов таких, что —1. Если dim (А^>В)<2п-1, то из 
очевидного равенства Р„(А,В) = Н„(А^В, A) ^H„(A^B,B) заключаем, что 
Р„(А,В) является подгруппой группы ВП(А^В). Обозначим через р„(А,В) 
ранг группы Р„(А,В) и покажем, что имеет место следующая 
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ТЕОРЕМА 2 . Ранги групп 
связаны соотношением: 

Докажем предварительно следующую лемму: 
ЛЕММЛ. Если А и В два компакта, / E S* и то существует 

продолжение f отображения fC]eS*UB на множество АлиВ, причём 
f\B~ 1. 

Легко видеть, что функция / удовлетворяет условиям леммы. 
Доказательство теоремы 2. Если (g) е Н„(В,А^В), то символом (g) 

будем обозначать существующее в силу леммы такое продолжение гомотопи-
ческого класса (g)CS% на l w £ , что (g) e Нп{А^В, ArsB). Анало-
гично если (/) е Н„{А,Аг^В), то символом (/) будем обозначать существующее 
в силу леммы такое продолжение класса (f)CS^ на 1 и В , что / | В ~ 1 ; 
( f ) e Вп(А^>В, А г> В). В силу неравенств lin{A, А ^ В) < Ъ„(А*иВ, А ^ В), 
hn(B, A!r^B) < hn(A^B, Ar^B), р„(А,В) < hn(A^B, Аг^В) можем предполо-
жить, что числа pn(A,B),hn{A,Ar^B),h„(B,Ar^B) конечны, ибо в противном 
случае теорема была бы доказана. 

Пусть гомотопические классы: 

образуют максимальную систему линейно независимых элементов соответственно 
групп 

Рассмотрим гомотопические классы: 

(8) 

(9) 
и покажем, что система 

образует максимальную систему линейно независимых элементов группы 
Вп{А^>В, ArsB). Рассмотрим произвольную равную нулю линейную комбина-
цию элементов системы (10) 
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где не все целочисленные коэффициенты равны нулю (r0p0q0Ф 0). Отсюда 
следует максимальность системы (10). Теорема 2 тем самым доказана. 

4. Пусть F=FCS„+1 u b0(Sn+i\F) обозначает число компонент, на 
которые множество F' разбивает К. Борстк доказал (см. [1]), что число 
K(Sn+1\F) однозначно определяется рангом b„(F) когомотопической группы 
B„(F) множества F при помощи формулы: 

Отсюда, используя теорему 2, выведем следующее предложение: 
ТЕОРЕМА ФГАГМЕНА-БГЛУЭГА. Пусть если 
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Доказательство. На основании (13) доказательство, как легко видеть, 
сводится к доказательству равенства: 

Ц и т и р о в а н н а я л и т е р а т у р а 

[1] К . B o r s u k , Set theoretical approach to the disconnection theory of the Eucli-
dean space, F u n d . Math. 37 (1950). p . 217-41. 

[2j S. E i l e n b e r g , Transformations continues en circonférence et la topologie du 
plan. Fund . Math . 26 (1936), p . 61-113. 

[3] A. G r a n a s , On local disconnection of Euclidean spaces, Fund . Math. 41 
(1954), p. 42-48. 

[4] W. H u r e w i c z and H. W a l l m a n , Dimension theory, Pr inceton 1941. 
[5] E . S p a n i e r , Borsuk's cohomotopy groups, Annals of Math. 50 (1949), p.203-245 

Reçu par la Rédaction le 15. 1. 1950 
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ЬЮЛЛКТЕНЬ 
ПОЛЬСКОЙ АКАДЕМИИ НАУК 
Сервя мат., астр, и фаз. наук 

Tow VII, .V 7,' Н)5!1 

МЛ ТЕМА ТВ VA 

А. ГРАН АС 

О РАЗБИЕНИИ БАНАХОВЫХ ПРОСТРАНСТВ 

Представлено /Г. БОРСУКОМ Hi лая 1959 

1. Обозначим через Бп — «.-мерное евклидово пространство, Èn — про-
странство Бп без точки 0, а через X замкнутое н ограниченное множество, 
расположенное в В п *) . 

В 1931 году К. Борсук доказал в работе [1] следующую теорему о раз-
биении евклидовых пространств: 

Для того, чтобы множество X не разбивало пространства i?n, необ-
ходимо и достаточно, чтобы любые два отображения f,ge были го-
мотопны **). 

Основным результатом настоящей работы является теорема 2, которая 
представляет собой перенесение сформулированного предложения Борсука на 
случай банаховых пространств. Доказательство теоремы 2 элементарно (оно 
не использует понятий теории гомологий) и основано на применении теоремы 
Шаудера о неподвижной точке [7] и теоремы о продолжении гомотопнп для 
банаховых пространств [4]. 

2. Введем некоторые обозначения, которыми будем пользоваться в даль-
нейшем: Еоо — бесконечномерное банахово пространство, Еп — n-мерное под-
пространство пространства Еоо, Р<х> пространство Eœ без точки О, Р п = Еп\{0}» 

Пусть X какое-либо метрическое пространство. Непрерывное отображение 
F: Х-+Е00 называем вполне непрерывным на X, если множество F(X) 

*) Для произвольных метрических пространств X, Г через Г А обозначаем 
множество всех непрерывных отображений пространства X в Т, через Х х Г топо-
логическое произведение этих пространств. Гомотопия отображений j , g t Y x озна-
чает существование функции h t J X y I (I — замкнутый отрезок [0,1]). Для которой 
при любом xtX имеем Цх,С) = /(ar), h(x, 1) = </(?). В дальнейшем запись / 0 с / с 
где / 0 1 Т х \ X , с J означает, что / является продолжением /0 на X, т. е. /(ж) = 
при любом аг с JST0; будем писать также /0 = /}Х0. 

**) Отметим, что для удобства мы несколько видоизменили оригинальную 
формулировку теоремы Борсука , заменив пространство отображений S x_ 1 множе-
ства X в (те —1)-мерную сферу 8

п
_
г

 пространством È x . 
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компактно в Д»; если, кроме того, значения отображения F принадлежат 
некоторому подпространству ЕпС Е^, т. е. F: Х-+ Еп, то F называем ко-
нечномерным отображением на X. 

Имеет место следующее предложение о продолжении вполне непрерывных 
отображений: 

(2,1). Если Х0 замкнутое подмножество X и отображение F0: Х^^-Е^ 
вполне непрерывно, то существует вполне непрерывное отображение 
F: X->conv(-F0(JT0)) такое, что F0CF*). 

Пусть теперь ХСЕоо• Непрерывное отображение /: Х - + Е будем на-
зывать вполне непрерывным4 векторным полем на X, если оно допускает 
представление вида: 

f(x) = x-F(x), 

где отображение F: Х-^Еоо вполне непрерывно на X; если отображение F 
конечномерно, то / будем называть конечномерным полем на X. 

Совокупность вполне непрерывных векторных полей на X обозначим 
через совокупность же конечномерных полей на X через (£0(Е*)-

Множество (£{Е*) будем рассматривать как метрическое пространство, 
определяя расстояние \f — g\ элементов f,ge£(E%,) по формуле: 

Так как любое вполне непрерывное отображение можно равномерно 
аппроксимировать конечномерными отображениями (см. [5]), то мы получаем: 

(2,2) Множество плотно в 
Далее имеет место следующее предложение: 

Элементы пространства (£(Р^) будем называть неисчезающими вполне 
непрерывными полями на X. Из (2,2) и (2,3) следует: 

(2,4) Множество (S0(P^) плотно в 

3. Введем теперь основное для дальнейшего понятие гомотопии элементов 
пространства СГ(Р^). 

Будем говорить, что неисчезающие векторные поля f,ge(£.(Pгомо-
топны (пишем {fag в (£(Р^)), если существует отображение H: Xxl-+Eœ, 
которое удовлетворяет следующим условиям: 

*) Это предложение является весьма частным случаем общей теоремы о про-
должении непрерывных функций, доказанной Дугунди [2]; символ conv (F0(Xa)) 
обозначает наименьшее замкнутое выпуклое множество содержащее FV(X„). 
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1°. отображение H вполне непрерывно на X x l , 

Пространство распадается благодаря соотношению гомптопии на 
непересекающиеся классы гомотопных полей. 

Имеют местб следующие предложения: 

(3.3). Любое вполне непрерывное поле / е гомотопно некоторому 
конечномерному полю g e (£0(P^). 

Пользуясь (3,3) доказываем следующее предложение: 
(3.4) Если X— какой-либо замкнутый шар пространства то для 

любых / , g е (£(Р^) имеем f ~ g в G(P^). 
Имеет место следующая: 

Доказательство леммы 1 приведено в работе автора [4]. 

4. Пусть Х0 — граница некоторой ограниченной замкнутой области 
X C E œ и на Х0 задано векторное поле /0 е (С(Р^°). 

Будем говорить, что поле /0 е С(Р»°) несущественно, если для некото-
рого 1 e(£(Piо) имеем /0 С /; в противном случае будем говорить, что поле /0 
существенно. 

Из теоремы Шаудера о неподвижной точке [7] легко выводится сле-
дующая: 

ЛЕММА 2 . Если х1 является внутренней точкой области X, то рас-
сматриваемое на Х0 неисчезающее вполне непрерывное поле х — хл является 
существенным. 

Мы говорим, что множество X С Е^ отделяет точки xlf хг с Д»\-Г 
в пространстве Е х , если эти точки принадлежат различным компонентам 
дополнения Eœ\X. 

Пусть X — замкнутое и ограниченное подмножество пространства E œ  
и <ru х 2 с Eœ\X. 

*) е(0> — означает расстояние множества /(X) до точки 0. 
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ТЕОРЕМА 1 (об о т д е л е н и и точек в банаховом пространстве). 
Для того, чтобы множество X не отделяло точек х^, х2 е Eœ\X в про-
странстве Д» необходимо и достаточно, чтобы неисчезающие вполне не-
прерывные векторные поля {х — хг)\Х, (х — х2)\Х были гомотопны в Œ(P^) *). 

Теорема 1 доказывается при помощи леммы 1 и 2. 

5. Мы говорим, что множество X С Е^ разбивает пространство Д», если 
дополнение ДхЛД" несвязно. 

Пусть X — ограниченное и замкнутое подмножество пространства Д». 
Имеет место следующая: 

ЛЕММА 3 . Если множество X не разбивает пространства и X* — какой-
либо замкнутый шар пространства Д» содержащий X, то для любого 
поля / е (£(-Рто) существует поле /* с для которого / С/*. 

Основным результатом настоящей работы является следующая:' 
ТЕОРЕМА 2 (о р а з б и е н и и б а н а х о в ы х пространств) . Для того, 

чтобы замкнутое и ограниченное множество X С Д» не разбивало банахова 
пространства Д», необходимо и достаточно, чтобы любые два неисчезающгм 
вполне непрерывные векторные поля / , g е С(-Рто) были гомотопны в 

Необходимость условия теоремы 2 вытекает из леммы 2 и предложений 
(3,1) и (3,4), достаточность же следует из теоремы 1. 

6. Пусть теперь отображение h<i(i(E*) будет гомеоморфизмом множе-
ства X на множество X* = h(X). Очевидно, что если пространство (£(Р^) 
состоит из одного класса голютопии, то этим же свойствот обладает 
пространство (£(Р^*). Отсюда и из Теор. 2 имеем: 

СЛЕДСТВИЕ. Если множество X разбивает банахово пространство Д » 

и отображение h е является гомеоморфизмом, то образ h{X) мно-
жества X при отображении li также разбивает пространство Д» **). 

Полные доказательства приведенных теорем будут опубликованы в жур-
нале „Fundamenta Mathematicae". 

УНИВЕРСИТЕТ ИМ. НИКОЛАЯ КОПЕРНИКА, ТОРУНЬ 

ЦИТИРОВАННАЯ ЛИТЕРАТУРА 

[1] К . B o r s u k , tïber Schnitte der n-dimensionalen Euklidischen Baume, Math. 
Ann. 106 (1932), 239-248. 

[2] J . D u g u n d j i , An extension of Tietzes theorem, Pacific J . Math. 1 (1951), 
353-367. 

*) Эта теорема в конечномерном случае известна как критерий Борсука 
отделимости точек в евклидовом пространстве (см. [3], стр. 302). 

**) Приведенное следствие представляет собой качественную часть теоремы 
Жордана для банаховых пространств, доказанной Ж.'Лере в работе [6]. Доказатель-
ство Лере основано на применении теории степени отображения [5]. 

http://rcin.org.pl



]_ g О разбиении банаховых пространств 

[3] S. E i l e n b e r g and N. S t e e n r o d , Foundations of algebraic topology, Pr ince-
ton , 1952. 

[4] А. Г p a h а с, Теорема о продолжении гомотопии в банаховых простран-
ствах и ее некоторые применения в теории нелинейных уравнений, Bull, Acad. Polon . 
.Sci., Sér. sci. ma th . , as t r . of phys . 7 (1959), 387-394. 

[5] J . L e r a y , J . S c h a u d e r , Topologie et équations fonctionelles, Annales de 
l 'École Normale Sup., 51 (1934), 45-63. 

[6] J . L e r a y , Topologie des espaces abstraits de M. Banach, С. R . de l 'Acad. des 
Sci. Paris , 200 (1935), 1082. 

[7] J . S c h a u d e r , Der Fixpunktsatz in FunTctionalrâumen, Studia Math. 1 (1929), 
170-179. 

A. G R A N A S. ON T H E DISCONNECTION OF BANACH SPACES 

Let Еж be a Banach. space, P M = E^-^O}. If X, Y С Eœ then we 
denote by (£( Yx) the set of all continuous mappings /: X~>Y which 
can be represented in the form 

f(x)=x-F(x), 

where the mapping F: X-+Eœ is completely continuons on X (i.e. F(X) 
is compact in E«,). 

Two mappings f,ge(£{P%,) are called homotopic (f~g in (£(P^)), 
if there exists a mapping H: Xxl-+Ex (J-denotes the closed interval 
[0,1]) such that: 

1°. the set H ( X x l ) is compact in E 
2°. h(x, t) = x— H(x, t) Ф 0 for every x e X and t e I, 
3«. h(x,0) = f(x)f b(x,l) = g(x). 
if the points xlf x2, e X belong to the same component of the metric 

space X, then we shall write хх~х2 in X. 
Let X be a closed and bounded subset of the Banach space E 
THEOREM 1. (Cr i t e r ion of s e p a r a t i o n b e t w e e n two po in t s ) . 

Let xl, x2 e Eoo\X. Then we have the equivalence 

THEOREM 2. (On d i s c o n n e c t i o n of B a n a c h spaces) . 
The set Д» X is connected, if and only if for every 1, g e we have 

1— 9 in <£(P£). 
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F U N D A M E N T A 
M A T H E M A T I C A E 

X L V I I I (1960) 

Dedicated to 
Professor L. Lusternik 
on his 60-th birthday 

On the disconnection of Banach spaces 
by 

A. G r a n a s (Toruri) 

1. Introduct ion. For arbitrary metric spaces X and Г, we denote 
by Y x the set of all continuous mappings of X into Y, and by X x Y — 
the Cartesian product of X and Y. If a mapping / e Y x , then we shall 
write also f:X-+Y. 

If X0CX and / e Y x then / j X0 will denote the partial mapping 
of /, i. e. the mapping f0, defined in X0 by the formula f0{x) = /(a?); we 
shall say that / is an extension of /0 over X and then we shall write /„ С /. 

Two mappings f , g e Y x are called homotopic (written f=*g) if there 
exists a mapping he YXxI (I denotes the closed interval [0,1]) such 
that for each x e X 

If / e Y x is homotopic to a constant mapping (i. e. a mapping onto 
a single-point set in Y) then we shall write fc^l. 

If the points xx, x2 belong to the same component of the space X, 
then we shall write: xx~x2 in X. 

Let X be a closed and bounded subset of the n - dimensional Euclidean 
space Rn and let 0 denote the origin of Bn. 

In 1931 K. Borsuk proved in the paper [1] the following theorem: 
The set Rn X is connected if and only if the functional space 

(Rn\{0})x is connected or, which is the same, if any two mappings 
f , g e(Rn\{0})x are homotopic. 

The same author also gave a criterion concerning the separation of 
the Euclidean space between two points (see, for instance, [4], p. 302): 

that is to say: 
The set X does not separate the space Rn between two points 

xl,xîeRn X if and only if the mappings {x—xx)\X and (x — xjl X 
are homotopic in (Rn\{0})x. 
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In this paper we shall give an extension of Borsuk's theorems to 
the case of arbitrary Banach spaces (Theorems 2 and 3). (x) 

In this case the space (Rn\{0})x is replaced by the space (E(P^) 
consisting of all non-vanishing compact fields on X, where X is a bounded 
closed subset of the Banach space and the homotopy of two mappings 
f , g e (Bn\{0})x is replaced by a homotopy of two elements of the 
space (Е(Р^). 

The proof of Theorems 2 and 3 is based on Theorem 1, which is 
Borsuk's Extension Homotopy Theorem (2) formulated for Banach spaces. 

The invariance of the disconnection property of Banach spaces under 
a certain class of homeomorphisms is deduced directly from Theorem 3. 
The proof of this does not refer to the Leray-Schauder notion of the 
degree of a mapping [8]; it is, as a matter of fact, a consequence of the 
well-known Schauder Fixed Points Theorem. 

2. Pre l iminar ies . We shall use the following notation: Д » — in-
finite-dimensional Banach space, En— a subspace of Д» of dimension n, 
Poo — the space Eœ without the origin 0, Pn — the space En without 0. 
If Z is a subset of Д», we denote the closure of Z by Z and the convex 
closure (i. e. the smallest convex closed set containing Z) by conv(Z). 
We shall denote by Foo(a?0, q) an open spherical region in the space Eœ  
with centre x0 and radius q and by Soo(x0, q) its boundary; if x0 e En, 
then we shall put 

In the sequel we shall use the following lemma: 
2.1. Let X be a closed bounded separable convex subset of EThen X 

is a retract of E i . e. there exists a mapping г:Еж->Х such that r(x) — x 
for every xeX. 

P r o o f . For xeEoo\X and у е Д » the function 

is continuous on the set Eoo\X and we have 0 < p(x, y) < 2. Hence if 
{yk} is a dense sequence of points in X, then the function 

is the required retraction of E œ onto X. 

(1) These theorems were announced in [5]. 
(2) For Borsuk's Theorem, see [2] and [7], p. 86. 
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Let X be an arbitrary space. A mapping F:X->E00 is said to be 
compact on X if the image F(X) is contained in some compact set. 

Compact mappings will be denoted in the sequel by capital letters 
F, G, H. 

A compact mapping F:X^Eœ is said to be finite-dimensional on X 
if its values lie in some finite-dimensional subspace E n С E œ depending 
on F, i. e. F:X-+En. 

The following theorem is due to J . Schauder and J . Leray [8]: 
2 . 2 . APPROXIMATION THEOREM. Let F:X-+Eœ be a compact mapping 

on X. For every e> 0, there exists a finite-dimensional mapping Fe:X->En 
stich that 

P r o o f . For a given e > 0, we can find a finite subset {yx, y2, yk} 
of Eco such that every point of the compact set F(X) is at a distance 
less than e from at least one of the y{. Let En be a finite-dimensional 
subspace of Eœ which contains all the points yt (i = 1 , 2 , 1c). 

Let us put 

(2) 

where 
(3) 

The mapping Fe defined by (2) is finite-dimensional on X, Fc: X-+En, 
and satisfies inequality (1); thus the proof is complete. 

2.3. Every compact mapping F:X~^Eœ can be represented in the form 

where the mappings Fn are finite-dimensional on X (n = 0,1, ...) and% 

for every 

P r o o f . This is a simple consequence of the Approximation Theo-
rem 2.2. 

In the sequel we shall use the following theorem, which is a very 
special case of the theorem of Dugundji concerning extensions of con-
tinuous transformations [3]: 

2 . 4 . EXTENSION OF COMPACT MAPPINGS THEOREM. Let X0 be a closed 
subset of a metric space X. Then every compact mapping FiXq—>Eao can 
be extended to a compact mapping F:X-^c,ojvf[F{X0)y 
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P r o o f . In the case when the mapping F is finite-dimensional our 
theorem is a simple consequence of lemma 2.1 and the well-known 
Tietze Extension Theorem ([7], p. 80). For the proof of our theorem 
in the general case let us consider the representation of F on X0 given 
by formulas (4) and (5). Let Fn (n = 0 , 1 , 2 , . . . ) be an extension of the 
finite-dimensional mapping Fn from X0 over X such that 

Denote by r a retraction of Д» on the set conv(P(X0)), which is 
obviously bounded and separable. 

The mapping F defined on X by the formula 

is the required extension of F from X0 over X. 
As a simple consequence of the Approximation Theorem 2.2 we 

shall prove the well-known Schauder Fixed Point Theorem [10], which 
will be used in the sequel: 

2.6. If X is a closed convex subset of Д» and F a compact mapping 
of X into itself, then F has a fixed point. 

P r o o f . By 2.1 for each 1c — 1 , 2 , ... there exists a finite-dimensional 
mapping Fnk:X-+X ^ En(k) such that 

By the Brouwer Fixed Point Theorem ([4]) the mapping F1/k has a fixed 
point xk = Fnk(xk) and hence by (6) we have 

Since F is a compact mapping, we can assume, without loss of generality, 

3. The space (Z{E*) of compact f ie lds in Д» . Now let X be 
a subset of the Banach space Д». 

A mapping f:X->E00 is said to be a compact vector field on X if it 
can be represented in the form 

where is a compact mapping on the set X. 
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The set of all compact vector fields on X will be denoted by 
A compact vector field f e is said to be finite-dimensional 

if the mapping F of formula (8) is finite-dimensional. The set of all 
finite-dimensional vector fields on X will be denoted by (£0(EX). 

In the sequel we shall consider the set as a metric space and 
define the distance g(f,g) by setting 

From the Approximation theorem 2.2 we obtain: 

If X and Y are subsets of Ethen we shall put 

In the sequel we shall consider the space of non-vanishing 
compact pelas on X. 

Let X be a closed subset of E x . From 3.1, 3.2 we infer that: 

4. Not ion of homotopy in the space (E(P£). Two non-vanishing 
compact vector fields / , g e Œ(P^) are called homotopic in the space 
(we shall write fc^g in (E(P«)) if there exists a mapping heP^ ,* 1 which 
satisfies the following conditions: 

1° h(x, 0) = f{x), h{x, 1) =g(x) for each жеХ; 
2° a mapping h can be represented in the form 

where the mapping H:X x I E œ is compact on X x l . 
The relation of homotopy established in the space (E(P^) is a relation 

of equivalence and thus the set of all non-vanishing compact vector 
fields / e (£(P^) decomposes into disjoint classes of homotopic fields. 
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P r o o f . By 4.3 we can assume that the compact fields f,ge(£(P*) 
are finite-dimensional. Let f{x) = x—F(x), g(x) = x—G{x)-, we can assume 
that the values of F and G lie in the same finite-dimensional subspace 
En С Eco and that the point x0 belongs to E„. Put Vn = X ^ En, f0 = f\V„, 
F0 = F\Vn, g0 = g\Vn, G0=G\Vn. We have /„, g0:Vn^Pn and thus f0^g0. 
Let h0(x, t) = x—H0(x, t) be a homotopy joining /„ with g0 in the space 
Pnn; we have H0{x, 0) = F0(x), H0(x, 1) = G0{x) for each xeVn. We 
shall extend the mapping H0: V„ x I-> En over Z x l t o a compact mapping 
H:X xI-+Eoo which satisfies the following conditions: 

= F{x), H(x,l) = G( 

For this denote by {elf e2, en}, ekeEn, a basis of En and by 
{hi hi — fin} the dual basis in the conjugate space to En\ thus every 
element z eEn can be written in Lhe form 

(10) 

Let us consider the following closed subset of . 

and define on T0 a real-valued functions as follows: 
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Tietze Extension Theorem yields an extension <pi{x,t) of q>i(x,t) 
over Xxl-, since each function <pt is bounded, we can assume that also 
each fa is bounded and thus the mapping E:XxI e En defined by 

n 
(12) H(x,t) = 

i - 1 

is compact. Erom (10) and (11) it follows that the mapping Я defined 
by (12) is the desired extension of Я 0 over X x l and thus the proof 
is complete. 

5. E x t e n s i o n Homotopy T h e o r e m . We shall consider the 
question of extending a non-vanishing compact field defined on a closed 
subset J 0 of 1 С Ею to a non-vanishing compact field defined over the 
whole X. We shall prove that the existence of such extension depends 
only on the homotopy class of the given compact field. 

THEOREM 1 (ON THE EXTENSION OF HOMOTOPY [ 5 ] ) . Let X0 be a closed 
subset of XCEoo and f0,g0e (£(P*°) two homotopic in (E(P*°) compact 
fields. Then if there is an extension f e of f0 over X, there is also 
an extension g e <£(P*) of g0 over X with f and g homotopic in (£(Poo). 

P roo f . The homotopy of the non-vanishing compact fields 

f0(x) - x-F0(x), F0:X0-+Eœ , 
g0{x) = x—G0(x), (?0:Х0->До , 

means that there exists a compact mapping П 0 : Х х satisfying 
the following conditions: 

x^E0(x,t) for each же.Х0 and tel, 
H0{x, 0) = F0{x), H0{x, 1) = G0(x) for each x e X0. 

There exists, by hypotesis, an extension f e (£{P*), f(x) = x—F(x), 
of /о over X; thus FqCF-.X-^E^. 

Denote by T0 the following subset of the Cartesian product Xxl: 

T0 = (X0 x l ) w ( l x {0}), 

and define the following mapping Ht:T0-+Eœ: 
HS{x,0)=F(x) for xeXsmàt = 0, 
H*(x,t) — HQ(x, t) for xeX0 and 0 < 1 . 

The mapping is compact on T0 and hence by 2.4 it can be 
extended to a compact mapping Я * : Х х 1 - > Д » over X x l . 
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Let us define the set Xx С X by the condition: 

XX and X0 are obviously disjoint closed subsets of X. Hence there 
is a continuous real-valued function A(x) defined over X whose range 
is between 0 and 1 and which is 0 on Xj and 1 on X0. 

Now consider the mapping 

It is clear that Я is a compact mapping on X x I and for each x e X 
and t e I 

If we define g{x) by 

where 

it is clear that g{x) is an extension of g0(x) over X, and likewise that 
H(x, 0) = F(x) for x € X. Since H(x, 1) = G(x) by definition, we conclude 
that the non-vanishing compact fields 

are homotopic in (£{P*). The proof of Theorem 1 is complete. 

6. Separat ion of the space b e t w e e n t w o points . Let X 
be a closed and bounded subset of Д». 

T H E O R E M 2 . The set X does not separates the Banaeh space Д » be• 
tween two points x1, x2 E Д» X if and only if the non-vanishing compact 
fields (x— xx)\X, {x—x2)\X are homotopic in the space (£(P^). 

The proof of theorem 1 is based on the following 
LEMMA 1 . Let U be a bounded open set in Eœ, xx a point in U and Y 

the boundary of U. Then the non-vanishing compact field (x — x^l Y cannot 
be extended to a non-vanishing compact field over U — U w Y. 

Proo f . Suppose it were possible to extend [x—x^Y over U to 
a non-vanishing compact field /, say, f(x) — x—F(x), f(x) — x—xl for 
each x e Y. 

Let p be so large that U and F(U) are contained in the spherical 
region of radius q and xx as centre. 

The formulas 
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would then define P*:F00-^F00 as a compact mapping of F» into itself 
without fixed points. This is a contradiction of the Schauder Fixed-
Points Theorem 2.5. The proof is complete. 

Proof of T h e o r e m 2. Assuming first that xl and x2 are not separated 
by X we shall prove that the compact fields {x—x^X and {х—хг)\Х 
are not homotopic. We are given 

U, V being disjoint sets which are open in Д», and xx e U, x2 e V. One 
of the sets U, V, say U, is bounded. The non-vanishing compact field 
(x— x2)\X can be extended over U ^ X, in fact over Дэо\{ж2} D U ку X. 
On the other hand, according to Lemma 1, it is not possible, in view 
of the boundary of U being contained in X, to extend (x— xx)\X over 
U w X to a non-vanishing compact field. Hence (x—x±)\X and {x — x2)\X 
are not homotopic in the space K(P^) since Theorem 1 would be con-
tradicted if they were. 

Now let us assume that xl~x2 in JEco\X. Then one can join xx 
and x2 by a continuous arc in E^xX, i. e. one can find a continuous 
function r(t) of the real parameter t, 0 < t < 1, with values in E^\X 
such that 

The mapping defined by 

is obviously a homotopy joining and in 
Hence Theorem 2 is proved. 

7. The main t h e o r e m . For the proof of the main theorem we 
shall use the following lemmas. 

LEMMA 2 . Let = Уоо(Ж0, q), x0 E EnC Д», V„ = Vx гл En. Suppose 
that the mapping F:Vn-+En has a finite number of fixed points xl, x2,..., с 
eVn. Then there is a compact mapping F : F,» -> En which has the same 
fixed points as F and which is an extension of F over F<». 

P roo f . By 2.1 it follows that F„ is a retract of F»', i. e. there is 
a mapping r:Voc,-+Vn such that r(x) — x for x e F». 

Putting for each x e 

we obviously obtain the desired compact mapping 
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L E M M A 3 . Let X be a closed bounded subset of En and f0 e Then 
there exists a mapping f e E%n such that : 

1° the set N of all roots of the equation 

is finite; if xx, x2 e N then xlf x2 belong to different components of En\X, 
2° f(x) =f0(x) for each xeX. 
The proof is a slight modification of the proof of a similar Lemma 

given in [4], p, 300. 
LEMMA 4 . Suppose that a bounded and closed subset X of Д» does 

not disconnect Д» and that FTO = Vœ{xQ, q) is a spherical region which 
contains X. Then every non-vanishing compact field f0 e &(P») can be 
extended over F,*, to a compact non-vanishing field f e (Е(Р£,°°). 

P r o o f . By Theorem 1 and 4.3 we can assume, without loss of 
generality, that a compact field f0{x) = x—F0{x) is finite-dimensional, 
i. e. F0:X-+E„. 

Suppose that $«> is the boundary of F» and that a point x* e En 
does not belong to Foo. Define the mapping 

where for 
for 

Putting we have 
By Lemma 3 there exists a mapping /* e Ev

n
n such that the set Ж 

of all roots of the equation ft{x) — 0 is finite, N — {xx, x2,..., xk}, and 
fz(x) = f*(x) for every x e X*. 

By Lemma 2 the mapping fZ\(Vn\N) can be extended to a finite-
dimensional field 

Since the set is connected, the points can be 
joined by a chain of open spherical regions 
such that intersects if and only if 

Let be a finite-dimensional subspace of spanned by the 
centres of and containing 

Let us put 

Since is connected, it follows that the mapping can be 
extended to a mapping over where is a certain 
open spherical region contained in Since for 

we have and consequently where 
is the boundary of This implies that 
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By Lemma 2 we extend the mapping 
to a compact field 3) and thus the proof of Lemma 4 is complete. 

The main result of this paper is the following 
THEOREM 3 (ON THE DISCONNECTION OF BANACH SPACES). Let X 

be a bounded closed subset of the Banach space 'Ex,. The set JE„\X is 
connected if and only if any two non-vanishing compact fields f , g e (£(P») 
are homotopic in the space (£(PX). 

Proo f . Necessity. Suppose that X does not disconnect Д» , and 
f , g e ( £ ( P B y Lemma 4 compact fields / and g can be extended to 
non-vanishing compact fields / , <7 e (E (P£°°) over a closed spherical region 
Voo which contains X. 

By 4.4 we have f =^.g in (£(Р^°°) and hence by 4.1 the compact 
fields / and g are homotopic in (£(P 

Sufficiency. Suppose that X disconnects Д». Then there certainly 
exist two points xr and x2 separated by X. By Theorem 2 the non-
vanishing compact fields (x— xx)\X and (x—x2)\X are not homotopic 
in (E(P*) and thus the proof of Theorem 3 is complete. 

8. Jordan separat ion t h e o r e m in Banach spaces . We shall 
say that two bounded and closed subsets X and Y of До are homeomorphic 
in the narrow sense if there exists a homeomorphism h e (£(EX) such that 
Y = h(X). 

I t is clear that if the closed and bounded subsets X and Y of До are 
homeomorphic in the narrow sense then the space (£(P^) consists of one 
homotopy class if and only if the space (E(P£) consists of one homotopy class. 

From this we obtain the following, due to J . Leray [9]: 
CORROLARY 1 . If a closed and bounded subset X of the Banach space 

•До disconnects До, then so does every subset of До which is homeomorphic 
to X in the narrow sense. 

As an obvioûs application of Corrolary 1 we obtain the following: 
CORROLARY 2 (JORDAN SEPARATION THEOREM). A subset of Д » which 

is homeomorphic in the narrow sense to a sphere Sœ(x0, g) disconnects Д». 
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TOPOLOGIE ALGÉBRIQUE. — Sur la multiplication cohomotopique 
dans les espaces de Banach. Note (*) de M. A X D R Z E J G U A N A S , 

présentée par M. Jean Leray. 

Soit un espace de Banach à dimension infinie. Nous désignons par P0 

l'espace diminué du point 0 . 
Soit X, Y c E „ . On appelle champ vectoriel compact sur X dans Y une 

application / : X Y si elle peut être représentée sous la forme 

où F : X ^ E„ est une application compacte ('). Nous notons С (Yx) 
l'ensemble des champs compacts sur X dans Y. 

Soient f , g : X Y deux champs vectoriels compacts. On dit que f et g 
sont homotopes s'il existe une application h : X x I Y telle que : 

où H : X x I E„ est une application compacte. Nous notons [/] la classe 
d'homotopie du champ f (c'est-à-dire l'ensemble de tous les champs compacts 
homotopes à /). En classant les éléments de С (Yx) en classes d'homo-
topie on définit une décomposition de € (Y4) en classes disjointes. Dans 
le cas où Y = PK nous désignons la famille de ces classes par it" (X). 

Soit X un sous-ensemble fermé et borné de Е я , U une composante 
bornée, de E,, —• X, et / un champ compact sur X dans PX. On nomme U 
composante inessentielle pour / s'il existe un champ compact / sur X u U 
dans P^ tel que f CL f (c'est-à-dire f(x) = / (x) pour tout г € Х ] , Sinon, 
on nomme U composante essentielle pour /. 

L E M M E . — X étant un sous-ensemble fermé et borné de E ^ , soit f un champ 
compact sur X dans P,. Le nombre des composantes bornées de E„ — X 
qui sont essentielles pour f est fini. 

Définition de multiplication cohomotopique dans г." (X). — X é tant un 
sous-ensemble fermé et borné de E^, soient a, (Збт:" (X) et / г е а , /p€(3, 
/a (x) = X — Fa (x), fi (x) = x — F[j (x), x e X. Soit Ut, Uj, . . . , Ufr la 
suite finie de composantes bornées de Ей — X qui sont essentielles pour /a 

ou pour /p; soit ж, S U, pour i = i, 2, . , ., k. 
Sans restreindre la généralité on peut admettre que F* : X E„, 

F«j : X ->- E„, où E„ est un sôus-espace de Е я à n-dimensions tel que xl}  

х-*, ..., X/, € E„. Soient 

On a 
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où тс"-1 (X(„)) désigne le (n—i) l è r a o groupe de cohomotopie de X(„) (2). 
Soit /aj(„) : X(„) E„ —• j о } une application telle que 

L'applicat ion / а зы se laisse étendre à un champ vectoriel compact 
/a^ : X P„ sur X dans P . , de façon que chaque composante bornée U 
de E^ — X différente de U, , U* soit inessentielle pour /я3. Posons 

La classe d 'homotopie [/ep] est déterminée de façon univoque : elle ne 
dépend que des classes d 'homotopie [/a] et [/3]. On appelle composi-
t ion (a, (3) -> a.(3 la multiplication cohomotopique des classes. 

T H É O R È M E 1. — La multiplication cohomotopique des classes ос, ( З Е тс" (X) 
définit sur тс* (X) une loi du groupe abélien. 

T H É O R È M E 2 (3). — X étant un sous-ensemble fermé et borné de Eœ 

soit U t , U2 , Ut, ...la suite (finie ou transfinie) de toutes les compo-
santes bornées de — X ; soit X-Ç.M-. Le groupe тс" (X) est libre et a pour 
base les classes d'homotopie des translations 

Soient X et Y deux sous-ensembles bornés et fermés de E x . On dit 
que X et Y sont homéomorphes au sens étroit s'il existe une application 
bicont inue Л de X sur Y telle que h e € (Yx). 

T H É O R È M E 3. — Si X et Y sont homéomorphes au sens étroit on a Viso-
morphisme 

On en déduit le théorème d ' invariance : 
C O R R O L A I R E ( 4 ) . — Soient X EI Y deux sous-ensembles bornés et fermés 

de EX qui sont homéomorphes au sens étroit. Alors la puissance de la famille 
des composantes de E^ — X est égale à celle des composantes de EX — Y. 

(*) Séance du 18 décembre 1961. 
( ' ) C'est-à-dire F (X) est compact . 
(2) Voir pa r exemple C. KURATOWSKI, Topologie, I I , Appendice I, Warszawa, 196г. 
( ' ) Généralisation d ' un théorème dû à M. K. BORSUK, Fund. Math., 33, ig5o 

p. 217 -241 . 
(*) Théorème dû à M. J . LERAY, Comptes rendus, 200, 19З5, p. 1082. 
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MATHEMATICS 
(TOPOLOGY) 

Algebraic Topology in Linear Normed Spaces. I. Basic Categories 
by 

K. GÇBA and A. GRANAS 

Presented by K. BORSUK on January 19, 1965 

In the following sequence of notes we give some further development (see [4] 
and [2]) of the theory of compact vector fields. In particular we intend to include 
the treatment of cohomology functors, the representation theorem for such functors 
and Alexander—Pontriagin type of duality. One of the further papers will be de-
voted to the concept of a codimension. In this preliminary note we introduce basic 
categories and assemble the main facts and definitions which will enter in our 
discussion. 

1. Categorical preliminaries. Let £ be a concrete category and A, Xe(£. We 
write A cr Zand call (X, A) to be a pair in (£, if A is a subset of X and the inclusion 
map / : A X is in <L I f / : X-+Y and ^ c l w e write / ' =f\A for the restriction 
o f / t o A;/is called an extension o f / ' over Zand we write also/ ' <=/. 

Let £ be a subcategory of (£. We say that a map f : A Y is inessential (rel. £) 
provided each diagram 

where A, X e £, can be completed in <£. Otherwise / ' is called essential. 
An object Ye (£ is called an extension object for Xe £ provided for each A e Q, 

A <= X and / ' : A -> Y the diagram A can be completed. 
Example: If (£ = £ is the category of compact metrizable spaces, then the 

л-sphere Sn is an extension object for X if and only if dim n (Alexandroff Theo-
rem). 

An h-category ((£, is a category (E such that for each pair of objects A,£e(£ 
there is definèd in the set Map (A, B) an equivalence relation "at" (called homotopy) 
satisfying the following (compositive) property: 
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I f / б Map (А, В), then by [/] we denote the equivalence {homotopy) class contain-
ing / and we let iz(A,B) be the set of homotopy classes [f]:A->B. By we 
denote the category having the same objects as ((£, and as maps the homotopy 
classes between objects. 

A map / : A -> В in ((£, is called invertible (h-invertible) provided there is 
f : В A such that / ' / = \A, f f = \ B ( f ' f * lA, f f as lB). We write in the first 
case A ~ В and in the second A ^ B. 

A map / : A -+B is an r—map (rn—map) if there is a map s:B~>A called 
an s—map for r (called sn—map for r) such that rs = \B (rs ~ lB). We write 
AyB(A~hB) if there exist two r—maps (гд— maps) r\\A->B, r2 : В A. 

(1.1) The relations 7, ~ defined in the class of objects of ((£, ~) are 
equivalence relations and we have: 

A functor Я: (£1 ->(£2 between A-categories is called an h-functor if it sends A-com-
mutative diagrams in Ci into A-commutative diagrams in (£2-

Example: Let (£, 7 ) be a subcategory of ((£, 7 ) and JJ be a fixed object in C. 
For / : 1 - > У т fi we let / * : тс (У, U) -> тг (X, U) be the map induced by f and 
defined by [g] -> [gf]. The assignments X -> л (X, U),f -> f * define the contravariant 
A-functor 7z(U) from (£, 7 ) to the category of sets 

(1.2) Let Я: (£1 -> (£2 be an h-functor. If ~ is any one of the equivalence relations 
defined above, then we have 

2. The directed set 2. (E). Compact mappings. In what follows we denote by E 
an infinite dimensional linear normed space. 

By Л — Lv,...} we shall denote the directed set of all finite 
dimensional linear subspaces of E with the natural order relation < defined by the 
condition La < Lfi if and only if La с Lp. For notational convenience we establish 
one-to-one correspondence aoLa between the symbols a, (}, y,... and La, Lp, Ly,... 
and in the formulas to occur we replace frequently one kind of symbols by another. 
Thus, for example, we shall write a < /3 instead of L„ < Lp. For X, Y cz E and 
f: X-> Y we let X, — X n La and fa he the restriction of / : Xa. 

A mapping F:X -+E from a metric space X is compact provided the closure 
F(X) is compact. A compact mapping F: X->E is said to be an a-mapping (finite 
dimensional mapping) provided F(X)<=La(F(X)<=Lp for some 

The following facts concerning compact mappings are of fundamental impor-
tance: 

(2.1) (Schauder 's Approximat ion Theorem) Every compact mapping 
is the uniform limit of a sequence of finite dimensional mappings. 

For the proof see e.g. [4] p. 24. 
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(2.2) (Extension of Compact Mappings Theorem). If A is closed in X 
and F: A -» E is a compact mapping, then there is a compact extension F* : X -> E 
of F over X such that the image F* (X) is contained in the convex hull conv (F(A)). 

This, in view of Mazur's Lemma [5], is a consequence of the Dugundji Extension 
Theorem [1]. 

3. Compact and a-fields. The Leray-Schauder category (£. Given X, Y с E 
and a mapping / : X -*• Y we denote by the same but capital letter the mapping 
F: X ->E defined by F(x) = x - f ( x ) , x e X. 

Let X and Y be in E and a be an element in L. A mapping / : X -*• Y is said to 
be a compact vector field (a-field) provided F: X -> E is a compact mapping (a-map-
ping). 

The set of all compact fields (a-fields) with domain X and range У will be denoted 
by G {X, Y) (Ga (X, Y)). 

(3.1) If f: X Y and g: Y ^ Z are compact fields (a-fields) then so is their 
composition gf: X Z. The identity mapping \x: X -> X is a compact field (a-field) 
for each X a E. 

It follows that the subsets of E and the compact vector fields form a category. 
This category will be denoted by (E (E) (or simply G) and called the Leray—Schauder 
category. 

In addition the subsets of E and a-fiëlds form a subcategory of G denoted by 
<£а(Ю (or simply by <£J. 

The union of all categories (aeL) in (E will be denoted by (£0- The maps 
of the category (£0 will be called finite dimensional fields. 

Remark. Some of the sets G (X, Y) might be empty. For instance, the set 
d(E,E — {0}) is empty because, in view of the Schauder Fixed Point Theorem, 
there is no compact field f:E^>-E such that f(x) # 0 for all x e E. 

Let £ (resp. £ a and £0) be the full subcategory of G (resp. and £0) generated 
by the closed bounded subsets of E. The category £ will be called the main category. 

Let D be any of the categories introduced above. By D* we shall denote the 
category of based objects in D and by Ъ the category of pairs of objects in D. Thus, 
for example, £ has as objects the closed bounded pairs (X, A), (Y, B) cz E and as 
maps the compact fields between such pairs ; we write £ (X, A ; Y, В) for such a set 
of maps. Similarly, £* has as objects the based closed bounded subsets X, Y a E 
and as maps the compact fields preserving base points. 

4. Compact and a-homotopies. (E and as Л-categories. Given X, Y cz E and 
a homotopy ht: X Y (0 < t ^ 1) we denote by the capital H the mapping from 
XXI (I - [0, 1]) to E defined by H (x, t) = x - ht (x), (x, t) e Xxl. 

Let X, Y a E. A family of compact fields (a-fields) hi: X -> Y is called a compact 
homotopy (a-homotopy) provided H: Xxl E is a compact mapping (a-mapping). 

Given a compact homotopy (a-homotopy) ht: X -> Y and a subset Ac X 
we let h't — ht\ A to be the partial compact homotopy (a-homotopy); in this case 
we shall write also h't с ht and say that ht is an extension of h', :.A Y over X. 
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Two compact fields (a-fields) / о , / : X-*• Y are called homotopic, / 0 ^ / 1 , 
(a-homotopic, /0 ~ / i ) provided there is a compact homotopy (a-homotopy) 
ht-.X^Y such that h0 = f0, hx =fx. 

(4.1) The relation of homotopy (a-homotopy) is an equivalence relation in each 
of the sets (E (X, Y) (<Ee (X, У)). If the fields (a-fields) /ь/2: X Y and gugl: 7 - > Z 
•are homotopic (a-homotopic), then so are their eompositions gifi, gifi'- X ->Z. 

It follows that the relations ~ and ~ convert the Leray—Schauder category (E 
and the category (Ea into A-categories ((E, and ((Ea, ~ ) respectively. 

The set Map (X, Y) in <£/=* (CEa/e) will be denoted by тс (X, Y) (тгя (X, Y)) and 
[f] ([/]„) will stand for the homotopy (a-homotopy) class containing the compact 
field (a-field) f:X->Y. 

It is evident that the main category £ admits a structure of an Л-category (£, ~) 
with the relation of homotopy induced by that in (E. Similarly, the relation ~ in (E, 
converts £ a into an A-category (£a, ~) . 

Let Ф be any one of the categories defined in the previous paragraph. By consi-
dering relative compact homotopies (or relative a-homotopies) we convert the cate-
gory of pairs Ï) into an ̂ -category. Similarly, by considering based compact homo-
topies (or based a-homotopies) we convert T>* into an Л-category. 

5. The extension problem in (S and Given a pair (X, A) in £ and a map 
/: A U in (E (in G J we consider the extension problem for the map / , i.e. the problem 
of extending/ over X in (E (in (Ea). It is of importance that this problem, under quite 
general hypotheses, depends only on the homotopy (a-homotopy) class of the 
given map. ^ 

(5.1) (Homotopy Extension Theorem). Let (X, A) be a closed pair in 
E, U an open set in E and let h\ \ A U be a compact homotopy (a-homotopy). If 
Ji'0 a h0 e (E (X, U) (h0 e (Ea (X, U)), then there is a compact homotopy (a-homotopy) 
ht: X -H* U such that h't a ht. 

For the proof see [3]. 

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES 
(INSTYTUT MATEMATYCZNY, PAN) 
DEPARTMENT OF MATHEMATICS, MCGILL UNIVERSITY, MONTREAL (CANADA) 

REFERENCES 

[1] J. Dugund j i , An extension of Tietzes theorem, Pacific J. Math., 1 (1951), 353—367. 
[2] K. Gçba , Algebraic topology, methods in the theory of compact vector fields in Banach spaces, 

Fund. Math., 54 (1964), 177—209. 
[3] K. Gçba and A. Granas , Un théorème sur le prolongement de l'homotopie dans les espaces 

de Fréchet, C.R. Acad. Sci., Paris, 255 (1962), 229—230. 
[4] A. Granas , The theory of compact vector fields and some of its applications to topology 

of functional spaces. /, Rozprawy Matematyczne, 30, Warszawa, 1962. 
[5] S. M azur, Vber die kleinste konvexe Menge, die eine gegebene kompakte Menge enthalt, 

Studia Math., 2 (1930), 7—9. 

http://rcin.org.pl



B U L L E T I N D E L ' A C A D É M I E 
P O L O N A I S E D E S S C I E N C E S 
S é r i e d e s s c i e n c e s m a t h . , a s t r . 
e t p h y s . — Vol. X I I I , No. 5, 1965 

MATHEMATICS 
(TOPOLOGY) 

Algebraic Topology in Linear Normed Spaces. II. 
The Functor л (X, U) 

by 

K. GÇBA and A. GRANAS 
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In this Note*) the main category £ being of primary interest, we are concerned 
with a contravariant A-functor n (U) : £->(£5, which is associated with an object 
U in (£. We show that for some objects U (called admissible), this functor can be 
converted into an /i-functor from £ to the category of based sets. 

If U is admissible, we associate with an object A in £ two directed (homotopy) 
systems of based sets {лл {X, U), i*fi} and {л(Ха, Ua),j*p}. It turns out that these 
systems are naturally equivalent and the based set л (X, U) is a direct limit of the 
first of them. 

1. Fields M'ith admissible range U. Call an object U e(£ admissible, provided U 
is open in E and its complement is contained in some finite dimensional subspace 
of E. In the rest of this Note U will stand for an arbitrary but fixed admissible set 
and W — E— U for its complement. The objects of the main category £ will be 
simply called objects and denoted by X, Y, A. 

For a given object X we denote by £УХ = Лх the cofinal subset of £ defined 
by the condition 

is connected 
is not empty 

The elements of J2,x are said to be admissible with respect to X. We assume that the 
elements of £L which appear in the sequel are admissible with respect to the objects 
under consideration. 

For notational convenience (U being fixed admissible object) we shall use the 
following abbreviations: 

*) F o r t h e d e f i n i t i o n s a n d n o t a t i o n u s e d in t h i s N o t e see [1]. 
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50 К. Gçba and A. Granas 

Now we establish certain lemmas concerning compact fields and compact 
homotopies with admissible range U. 

(1.1) Let ht : A -> U be a compact homotopy. For each e satisfying 0 < e ^ 
< dist (/i (XXl), W7) there is an a-homotopy h't : X—> U, such that \\ht (x) — 
- h't (л-)|| < e, (л- eX,te I). 

Let H' : Xx I -> Lx be an e-approximation of H : Xx I -> E. Assuming (without 
loss of generality) that W <= La and putting h't (Л) = .V — H' (x, t), (.Y e X, tel) 
we obtain the required a-homotopy. 

As a consequence we have 
(1.2) Let f : X -> U be a compact field. There exists an a-field f* : X -> U, such 

that f ~ f * . 
(1.3) Let f : X -> La— W be a mapping. There exists an a-field f : X ->E— W 

such that /'=/». 
Let F : X -> La, be a compact extension of F' : Xa -> La over X and let f(x) = 

== x — F(x), ( .ve l ) . Evidently, f„=f and we claim that f:X-+U. For, 
suppose to the contrary that / (л) E Ж for some .Y e X. Since W С La and F (X) С La 
we conclude that x e La, But then / (л) = / ' (л) e W. This contradiction completes 
the proof. 

As a consequence we obtain 
(1.4) The set (£a (A) and hence the sets ла (A) and л (A) are not empty. 
(1.5) Let f , g : X -> U be two a-fields and h't : A -> La— W a homotopy between 

f„ and gx. There exists an a-homotopy ht : X -> U between j and g such that h't a ht. 
Define on T = (Ax {0}) u (XxX 1) и (Xx {1}) an a-mapping H* by 

Let H : А Х / - > L a be a compact extension of H* over Ax/ . Putting ht(x) = 
= x — H (л% t), (л- e A , t e /), we obtain the required a-homotopy lit : X U . 

2. Inessential fields. Let (A, A) be a pair of objects and g : A -> U an a-field. Con-
sider the diagram (below), its subdiagrams Au A2, and the extension problem for g. 

Diagram 

(2.1) If an a-field g* completes the diagram A\, then the mapping g' defined by 
g' = g* completes the diagram A2. Conversely, if a mapping g' completes Аг, then 
there exists an a-field g*, which completes the whole diagram A, i.e., g*\A = g and 
g* = g'-
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Let T = A (JXx and define G : T L a by 

Evidently, if g (x) = x — G (x), xeT, then g (x) e U. Since T is closed in X, 
in view of the Extension of Compact Mappings Theorem, there is a compact 
extension G* : X->L of G over X. Pitting g* (x) = x — G* (x), x e l w e obtain 
the required a-field g* : X U . 

Using the same argument we obtain the following proposition 
(2.2) Let g , , g'2 : Xa -> Ua be two homotopic mappings. If each of them completes 

the diagram zi2> then there exist two a-homotopic a-fields g* and g* such that each 
of them completes the whole diagram A. 

For an object X there is defined a non-empty set л (Z) of homotopy classes 
of compact fields / : X -> U. We are going to show now that this set contains 
a distinguished element 0 called the zero homotopy class. Similarly, each set лх (A) 
contains a distinguished element 0Я called the zero a-homotopy class. 

(2.3) The set. (I (X) (Ea (AO contains an inessential compact field (a-field). 
In view of the Homotopy Extension Theorem it is sufficient to prove the existence 

of an inessential a-field in (X). Let g' : Xa -> Ua be a constant map. In view 
of (2.1) there is an a-field g : X -> U such that ga — g'. By the Homotopy Extension 
Theorem and (2.2) we conclude that the field g is inessential. 

(2.4) Any two inessential compact fields (a-fields) g', g" : X—> U are homotopic 
(a-homotopic). 

In view of the Homotopy Extension Theorem it is sufficient to prove the second 
part of our proposition. We may assume now without loss of generality that X is 
a closed ball. Theng^ ~ g'a', since Xx is contractible and La— W — Ua is connected. 
Applying (1.5), we conclude that g' ~ g" . 

As a corollary we obtain the following proposition. 
(2.5) The set of all inessential fields (a-fields) from X into U constitutes a homotopy 

class (an a-homotopy class) called the 0-element (0^-element) of л (X) (ла (Л-)). 

3. The functor л. The homotopy system {лх (X), i*p}. Let us denote by л the 
function which assigns to an object X the based set л (X, U) and to each compact 
field / : X -> Y the induced map f* \ л (Y)-> л (X). 

As a consequence of results of the previous section we obtain the following 

THEOREM 1. The function л is a contravariant h-functor from the main category 
2 to the category of based sets (£*. 

Assume now that X is fixed and for each a consider л„ (A") as the set with the 
0a-homotopy class as the based element. For each relation a < /3 let 
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4 0 К. G ç b a and A. G r a n a s 

be the map induced by the inclusion 

The family р ( X ) = {лх ( X ) , i*p} indexed by a will be called the homotopy system 
of X. 

(3.1) The homotopy system oj X is a directed system of based sets over the directed 
set £x. 

This follows immediately from the definitions. 

THEOREM 2 . The homotopy set л (X) is a direct limit of the homotopy system of 
X, i.e., in (£*s we have 

The Theorem follows from the following two lemmas 
(3.2) Let f , g 6 d (Л') be two homotopic fields. There exist two a-fields f*, g* e (X) 

such that (i) f* ~ g*, (ii) / * cz f and g* ~ g. 
This lemma follows from (1.1). 
(3.3) Let f e (X) be an a-field and g E (X) be a p-field. I f f and g are homotopic, 

then there is a y with у, /3 < y and such that f ~ g. 
This again follows from (1.1). 

4. The homotopy system {л The restriction map x*. For an object X 
and a e £ x let us denote by x* (A'), or simply by x*, the map 

defined by the correspondence 

be the map 
are bijective based maps. 

This is a consequence of (1.5). 
Consider now for each relation a < Д the map 

defined to be the composition 

of O O " 1 a n d t h e m a P g ' v e n ЬУ [/]«-»• ГЯ- T h e family 
indexed by a will be called the restricted homotopy system of X and the family 
x* = {**} will be called the restriction map from ц (X) to fi* (A'). 

(4.2) The restricted homotopy system of X is a directed system of based sets over Hx. 
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(4.3) The restriction map к* is a natural transformation, i.e., for each relation 
a < fi the commutativity holds in the diagram : 

As a consequence of (4.1) and (4.3) we obtain the following theorem. 

THEOREM 3 . The restriction map x* is a natural equivalence from the homotopy 
system ц (X) to the restricted homotopy system /л* (X). 
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In this Note we drop the assumption that the space E is complete.*) Let £0 = 
= (£0, ~ ) be the A-category whose objects are closed bounded subsets of E, whose 
maps are finite dimensipnal fields and in which the relation ~ means the finite 
dimensional homotopy of fields. For each integer n = 1,2,... and a coefficient 
group G we define the cohomology Л-functor H°°~n from the category £0 to the 
category Ab of Abelian groups. This construction leads to the Alexander—Pontriagin 
type of isomorphism in a normed space E: the (oo — w)-th cohomology group 
H°°-n{X\ G), where X is a closed bounded subset of E turns out to be isomorphic 
to the (n — l)-th singular homology group #„_ , (£ — X; G) of the complement 
of X in E. 

1. Notation. By we denote the normed space consisting of all sequences 
x = (л-ь x2,...) of real numbers such that xt = 0 for all but finite set of i, with the 
norm !|л'|1 = V2x1 and we let: 

We let sq = (1, 0, 0,...) and by ok : Rk Sk we denote the inverse of the 
stereographic projection from onto We note that 
for and 

*) In [4] this assumption was implicitly made in the proof of the Extension of Compact 
Mapping. Theorem. The results in [4] are proved for the complete space E. 
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2. Preliminaries on Alexander—Fontriagin duality. Let G be an arbitrary but 
fixed Abelian group and n a positive integer. By H* (resp. i/*) we shall denote 
the Cech cohomology (resp. the singular homology) with coefficients in G. By H° 
and #o w e shall denote the reduced zero-dimensional groups. 

A diagram in the category Ab 

will be called commutative up to q, where q is an integer, provided f 2 f \ = qg2 gi-
Let (К, L) be a polyhedral pair in Sk (к ^ n) and (L*. К*) be its &-dual polyhedral 

pair (for definitions see [1] and [5]). 
Denote by 

the Alexander—Pontriagin isomorphism as defined in [5]. For an arbitrary closed 
subset A c= Sk we shall denote by the same letter Dk the isomorphism 

obtained by passing to the limit. 
For an arbitrary subset we let 

Let A be a closed subset of we denote by the Mayer—Vietoris 
homomorphism of the triad (X, A+,A_). Thus 

where 

2.1. Let X be a closed subset of 
be the inclusion. Then the following diagram is commutative up to 

Proof. In view of the definition of Dk it is sufficient to prove this in the case 
(A, A0) = (К, Kq), where (K, K0) is a polyhedral pair in Sk+1. We may assume, 
without loss of generality, that К and K0 are complete subcomplexes of some 
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triangulation T of Sk+1. We may assume also that Г is such that the suspension of 
an arbitrary subcomplex of Sk is a subcomplex of Sk+1. 

Let L and M be the complements of К and K0 in the triangulation T. Then L 
and M are (Ar-fl)-dual to К and K0, respectively. Moreover, L0 — L n Sk = 
— M n Sk is A'-dual to K0 and the inclusion SL0 с. M is a homotopy equivalence. 
It follows from the definition of L and M ihat L\ — L+ u M_ and L^ — L_ и M+ 

are (fc+l)-dual to K+ and respectively. Denote by S : Hn~\ (L0) -> Hn (SL0) 
the suspension isomorphism as defined in [1]. Note that if 

where /1* is the Mayer-Viet oris homomorphism of the triad 
Let us consider now the following diagram, in which all horizontal arrows 

denote homomorphisms from the sequences of corresponding pairs 

In the above diagram the square I is commutative up to (— l)*-«+i by the theorem 
4.5 in [1], the square II is commutative (th. 3.5 in [1]), the square III, in which 
horizontal arrows represent the excision isomorphisms, is commutative by 2.6 
in [1] and the square IV is commutative up to (—1)" by th. 3.5 in [1]. The composition 
of the bottom row homomorphisms is A*Dk\ if we denote by Q the composition 
of the upper row of homomorphisms then 

To prove let us consider the following diagram in which all 
non-labelled homomorphisms are induced by the corresponding inclusions 

In the above diagram all the squares are commutative, the composition of the upper 
row of homomorphisms is /l* and the composition of the first horizontal homo-
morphism with the bottom row of homomorphisms is Q, thus Zl* = Q. Therefore 

and the proof is completed. 
Now, let {ap} be a sequence of numbers defined inductively 

For a closed sec we define the isomorphism 

http://rcin.org.pl



К. G ç Ъ a and A. G г a n a s 4 5 

by p 'tting 

In view of 2.1., we have 

and hence, taking into account the definition of (Die, we obtain the following 
proposition. 

Now let X be a compact subset of and the 
homomorphism 

is an isomorphism. We shall denote by the same letter Die the isomorphism Dk 
"transferred" by а к from Sk to Rk, i.e., the isomorphism which completes the 
diagram 

Note that is defined for 
From 2.2 we have immediately the following proposition: 

2.3. Let X be a compact subset of and let be the Mayer— 
Vietoris homomorphism of the triad Then the following 
diagram commutes 

denotes the inclusion). 

3. An orientation in E. In what follows, given an element a of the directed set 
R, we let d (a) be the dimension of a. 

Call two linear isomorphisms l\, /2 : La~> equivalent, ly ~ /2, provided 
/, e GL+ (d(a)), i.e., the determinant of the corresponding matrix is positive. 
With respect to the relation the set of all linear isomorphisms from La to 
Rd (a) decomposes into exactly two equivalent classes. An arbitrary choice of one 
of these classes will be called an orientation of La. 

Let us choose now an orientation Oa of La and call the family О = {Oa} an 
orientation in E. Given a < /3 with d((3) — d (a) = 1 and la e Oa, there exists lp e Op 
such that lp (a) = la (x) for all xeLa. 
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We let 

Clearly, the definition of Lp and Lp depends only on the orientation e f La 
and Lp. 

Given an object X we let 

3.1. Let X and Y be two objects, f : X Y be an a0-field, and let a, /? be two 
elements of £x with a0 < a < p. Then f(XJ с Ya and fp :Xp->Yp maps the triad 
(Xp, x;, Xp) into the triad (Yp, У+, Y J). 

4. (oo — n)-th cohomology system of X. Let и be a positive integer, X be an 
object of £0 and U = E — X. Let О = {Oa} be an orientation in E and la e Oa. 

For each a e Rx with d(a) ^ n define 

to be the Alexander—Pontriagin isomorphism "transferred" by from RdM to 
La, i.e., the map that completes the diagram: 

4.1. Let X be an object in £0, U = E-X and a, 0 e £x with d(£) - d(a) = 1. 
Let iap : Ua~> Up be the inclusion and 

be the Mayer— Vietoris homomorphism of the triad Then the following 
diagram commutes 

This follows from the definition of Aap and proposition 2.3. 
Let a, p e Rx, with a < p, and let a = a0 < ĉ  < ... < ak = p be a chain of 

elements of Hx such that d(at+{) — d(at) = 1 (/ = 0,1, ...,k — 1). Define the 
homomorphism 

to be the composition of the homomoxphisms It follows 
from 4.1. that the definition of Aap does not depend on the choice of the chain 
«1» a*-i joining a and p. 
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For an object Ae £0 consider the groups # d ( a ) _ w (Aa) together with the homo-
morphisms Aap. The family {HdM~n (Xa), AafS} indexed by ae£x will be called 
the (oo — «)-th cohomology system of X corresponding to the orientation О in E. 

4.2. The (oo — n)-cohomology system of X is a direct system of Abelian groups 
isomorphic to the direct system of homology groups {Hn-\ (Ua), OV)*} aeJ2x. 

This follows immediately from 4.1 and the definition of Aap. 

4.3. Let {Hd(a)~n (Xa), AaP}, {Hd(a)~n (Aa), ДаР) be two (oo - n)-cohomology 
systems of X corresponding to different orientations О — {Oa} and б = {Ôa} in E. 
Then the above systems are isomorphic. 

This follows immediately from 4.2. 

4.4. Let X, Ye £0, a0 e JZX and f : X-*- Y be an a0-field. Then for each a, fi e Лх  

with a0 ^ a < fi the following diagram commutes: 

This follows from the definition of Aap, the proposition 3.1 and the properties 
of the Mayer—Viet oris homomorphism (e.g. [3], p. 41). 

5. The functor н°°~п
 : £0 -> Ab. Let X be an object in £0- We define the 

Abelian group 

to be the direct limit of the (oo — /i)-th cohomology system of A. 
Let A, Г be two objects and let / : A -> Y be an a0-field. It follows from 4.4 

that / induces a map {/*} from the (oo — «)-th cohomology system of Y into the 
(oo — «)-th cohomology system of A, and therefore determines a map 

from 

5.1. The induced homomorphism f* satisfies the following properties: 
(a) if 1 is an identity in £0

 so ' s 1* in ^b; 
(b) for any two composable fields f and g we have 

(c) if the fields f and g are homotopic then f* = g*. 
This follows from the properties of the direct limits (e.g. [3] p. 223) and from 

the properties of the Mayer—Vietoris boundary homomorphism (e.g. [3], th. I. , 
15. 4c). / Q 
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Let us denote now by н°°- п the function which assigns to an object J e £ 0 

the (oo — //)-th cohomology group H°°~n (X) and to a finite-dimensional field 
/ : X Y the induced homomorphism f* : Я00"" (Y) H°°~n (X). 

As л sequence of proposition 5.1 we obtain the following 

THEOREM 1. The function is a contravariant h-functor from the category 
£0 to the category of Abelian groups Ab. 

5. The Alexander—Pontriagin duality in E. In view of 4.2 the (oo — «)-th 
cohomology system of an object X is isomorphic to the direct system of homology 
groups {#„_! (Ua), (/ад)*}, Where U = E — X. We have clearly 

As a consequence, in view of the definition of the group we obtain 
the following theorem: 

THEOREM 2 . For every object X in £0 we have an isomorphism 

between the (oo — n)-th cohomology group of X and the (n — 1 )-th singular homology 
group of the complement of X in E. 
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Algebraic Topology in Linear Normed Spaces. IV. 
The Alexander—Pontriagin Invariance Theorem in E 

by 

K. GÇBA and A. GRANAS 

Presented by K. BORSUK on December 12, 1966 

In this Note*) the cohomology A-functor H°°~n : £o Ab, defined in the 
previous paper [3], is extended onto the main category £. As a consequence we 
obtain the Alexander—Pontriagin Invariance Theorem in infinite dimensional 
normed space E: the equivalence or A-equivalence of objects X and Г in £ implies 
for each n the isomorphism between the n-th homology groups of E — X and E — Y. 

1. Algebraic preliminaries. Given a directed set £. — {a, /3, y,...}, denote by 
the same letter JZ the category having as objects the elements of R and as maps the 
relations a < /3 in For a small category X), denote by {&, £>) the category of 
covariant functors from 2- to Î), i.e., the category of direct systems of objects of 
3) over £ . 

By Lim : (£., Ъ) 3) we shall denote the "direct limit" functor, i.e., the 
a 

left-adjoint to the constant functor from 3) to {£, 3>). 
Let <li — {к, /, m,...} and £ = {a, /3, y,...} be two directed sets. Denote by 

<7lx£ the corresponding product category. 
Given a direct system of Abelian groups 

let us put 

*) For the definitions and the notation used in the sequel see [2]. 
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5 О К. G ç b a and A. G r a n a s 

For any relations к ^ / and a < /3 we have the commutative diagram 

Clearly, each double system of Abelian groups {#*, } indexed by O l x H 
together with the maps {/£,}, {Ak

a^, (satisfying the natural functorial properties), 
may be identified with a functor xe(<7LxJl, Ab). We shall write simply x — {#*, }. 

1.1. Let JZ — (a> P> У> •••} and <71 = {к, I, m,...} be two directed sets, QlxH 
be the product category, and let 

be the natural isomorphisms between the corresponding categories. Then, the following 
diagram commutes 

The word "commutativity " stands for the natural equivalence of functors. 
The commutativity of the diagram ((D) follows from the fact that the left-adjoint 

functor commutes with direct limits [4]. 
We shall restate now a part of the proposition (1.1) in equivalent but slightly 

more convenient terms. 
Let us denote by 

the natural equivalence between the corresponding functors. In order to simplify 
the notation given x e (<7l x Ab), let us denote by the same letter x the direct 
systems A (x) and p (x). 

1.2. For any double direct system of Abelian groups x = {Hk, } indexed by 
Vlx£, we have a natural isomorphism between the limit groups 
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1.3. Let x = {H*, } and x — {#*, } be two double directed systems of Abelian 
groups over <7lxJ2. and let {f*k} : {#*, } -> {#*, } be a map from x to x. Then 
the following diagram commutes: 

2. Approximating sequences. For an object X and a natural number k let 

We shall say that a sequence of objects {Xk} is an approximating sequence or 
an (a.)-sequence for an object X provided 

2.1. Let {A*} be an (a)-sequence for an object X. Let us put for each k, 

Then the enlarged sequences {Xk} is also an (^-sequence for X. 

2.2. Let {Xk} be an (a)-sequence for X and let a be an arbitrary element of Л 
such that -Xa = L„ n X is non empty. Then the sequences {Afca}, {Z*a} are (a)-
sequences for Xa. 

2.3. Let {À*} and {7*} be two (a)-sequence for X and Y, respectively. Then 
{Xk u Yk} is an (a)-sequence for X и Y. 

2.4. Let {Xk} be an (a)-sequence for X and let f : X\-> E be a compact field. 
Then {/(Xk)} is an (a)-sequence for f ( X ) . 

It is sufficient to prove the inclusion 

Let I we have y='f(xk), where xkeXk and thus y = xk — F (xk). л =• 1 
Since F is compact we may assume without loss of generality that lim Xk — x. 

oo fc=oo 

Consequently, y = lim/(**) = / ( x ) . Since thisc ompletes the proof. 
i—oo ' 
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3. The continuity of the functor H°°~n. We shall establish first a property of 
the functor H°°~n, which is analogous to the property of continuity of the Cech 
cohomology theory. 

Let Y be an object, a e JZY and let {F*} be an (a)-sequence for Y. We let Y* = 
= Yk n La. Consider the following inclusions, all of them being finite dimensional 
fields : 

To the commutative diagram in 

corresponds the commutative diagram of homomorphisms 

THEOREM 1. The direct family {j£} represents the group H°° n(Y) as the direct 
limit of the direct system {Hœ~n (УД /£,}, i.e., the map 

is an isomorphism. 
Consider over <71x11 the following double direct systems of Abelian groups 

« = {Hd(a)~n (Yak), } a n d « = {HdM~n(Ya), }. Clearly {j£a} is a map from « 
to x. 

In view of 2.2 and the continuity of the Cech cohomology (e.g., [1] p. 322), 
the map Lim {j£a} is an isomorphism for each a, and therefore so is the map, 

IT* 
Lim Lim {yt*a}. Consequently, in view of 1.3, the map 

„ ' ï-* 

is also an isomorphism and tho' proof of Theorem 1 is completed. 
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4. Approximating systems. Let A, Y be two objects and let / : A Г be a 
compact field. A sequence {Yk,fk} of objects Yk and at-fields fk : A-> Y к is called 
an approximating system or (a)-system for f , provided: 

(i) {Y*} is an (a)-sequence for Y, 
(ii) fk ~ jkf in 2, where jt : Y Y k is the inclusion, 
(iii) fk ~ ikifi in 2o, where iki : Yi-> Yk is the inclusion (к < I). 

4.1. Let f:X-> Y be a compact field, Yk = УС*>, and let fk : X Y k be an 
ak-field such that 

Then {Yk, fk} is an (a)-system for f 
In what follows any syscem {Yk,fk} as in 4.1 will be called a standard (a)-system 

f o r / . 
Let {Yk,fk} be an arbitrary (a)-system for a compact field f : X - > Y and 

consider the triangle Qk,i for к < / 

Since for each к < I, f к ~ ikifi in £0» it follows that Q)k,i commutes in Ab. 
Consequently, {/A*} is a direct family of maps and 

4.2. Let {Yk,fk} be an (a)-system for a field f : A-> Y and {Yk} be an (a)-
sequence for Y such that, for each k, Yk c: Yk with h : Yk Yk standing for the 
inclusion. Then {Yk,fk}> where fk = l k f k is an (a)-system for f . 

4.3. Let { Ykjk} and {YkJk} be as in 4.2 and let jk : Y -> Yk, i f . Y -> Yk denote 
the corresponding inclusions. Then we have 

From the commutative diagram 
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we have 

This implies our assertion. 

4.4. Let {Yk,fk}, {Yk,fk} be two (a )-systems for a field f:X-+Y with the same 
sequence {Ft}. Consider the enlarged sequence {Wk} = {Yk}, denote by ik : Y -> Wk, 
h : Yk W/c the corresponding inclusions and put gk = l k f k , gk = l k f k . Then 
{ Wk,gk} and { Wk,gk} are again (a)-systems tor f and we have: 

In view of the definition, we have fk ~ fk in £. Let hk : Y be the correspond-
ing compact homotopy and let A* : X -> E be a yt-homotopy such that 

Clearly h*(x)eWk for all (x,t)eXxI and consequently Af may be viewed as 
a yft-homotopy hk : X Wk. Assuming, without loss of-generality, that fk,fk are 
Уй-fields, we evidently have gk ~ hk

Q, gk ~ h] and therefore gk ~gk. 
^ + ^ к Vjc 

This implies gk = gk for each k, which completes the proof. 

4.5. Lei {Yk,fk} and {Yk,fk} be two arbitrary (a )-systems for a field f : Х-» Y, 
and denote by jk : Y -> Yk, ik : Y -> Гл the corresponding inclusions. Then 

Let us put = (Yk и Yk)(k)- In view of 2.3 and 2.1, is an (a)-sequence 
for Y. Denote by h \Yk~> Wk, !k : Yk -> Wk the corresponding inclusions and 
define gk,gk :X-+Wk by putting gk = hfk, g к = 4 Л- Clearly, {Wk, gk) and 
{JVk,gk} are (a)-systems fo r / . Now the pairs {Wk,gk}, {Yk,fk} and {Wk,gk}, 
{Yk,fk} satisfy the assumptions of 4.3 and therefore our assertion follows 
from 4.4. 

5. The functor H°°~n. Given a compact field / : X-> Y, let {Yk,fk} be an 
(a)-system for / We define the induced homomorphism 

by the formula 

In view of the results of the previous section, the definition of /* does not depend 
on the choice of {Yk,fk}. 
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Now define the function #°°~n from the main category £ to the category of 
abelian groups Ab by putting Hœ~n (X) = H°°~n (X), H°°~n ( /) = / * . If f:X-+Y 
is an a-field, it is easily seen (by taking { Yk,fk) with Yk = Y,fk = / ) that H°°~n ( f ) = 
= H°°-n(f), i.e., H°°~n extends Я°°~п over £. 

THEOREM 2 . The induced map f* satisfies the following properties: (a) the homotopy 
f ~ g implies f* = g*; (b) (gf)* = f* о g*. In other words, я00-" is an h-functor 
from the main category £ to the category ot Abelian groups Ab. 

Proof of the property (a). Let / , g : X-> Y be two compact fields and 
ht : X Y be a compact homotopy such that / = h0, g = hy. Let h[k) : X 
be an afc-homotopy satisfying 

Let fk = h%\ gk = hf\ Evidently, {Y&\fk} and gk} are (a)-systems for / 
and g respectively. Thus, since fk ~ gk we have Lim { f k } = Lim {g*k} and therefore f = g*. " 

Proof of the property (b) (special case). Let / : X Y be a compact 
field, g : Y—>Z be an a0-field and let h = gf. We shall prove that h* =~f* о g*. 

Take a standard (a)-system {r(fc),/fc} for/and take an arbitrary finite dimensional 
extension g : ->E of g over У(1). The existence of g follows from the Tietze 
Extension Theorem. 

Let us put Wk = g ( Y(ki) и Z for each к and consider the enlarged (a)-sequence 
{Wk} for Z. 

In the diagram 

define gk by putting gk (>') = g (>') for all y e Y ^ and let gk = gk ik, hk = gkfk. 
It is easily seen that {Wk,hk}, {Wk, gk) are (a)-systems for h and g, respectively. 
We have 

and thus 

This implies h* = f* о g*, and the proof is completed. 
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Proof of the property (b) (general case). Let / : X-> Y and g:Y-+Z 
be two compact fields and let h = gf. 

Let {Z(k\ hk} and {Z<*\ gk} be two standard (a)-systems for h and g, respectively. 
From the inequalities 

it follows that the fields gkf, hk'.X^ZW are homotopic in £ for each к =1,2,.... 
This implies, in view of the property (a), that hk = (gkf)** Since each gk is finite 
dimensional we have (gk/)* = f* g*k and thus we obtain 

This implies h* = f* g* and the proof of Theorem 2 is completed. 

6. The Alexander—Pontriagin Invariance Theorem in E. It follows from Theorem 
1 that if the objects Zand У are equivalent or /г-equivalent in £, then the (oo — n)-
-th cohomology groups (X; G) and H°°~n (У; G) with the coefficients in G 
are isomorphic. From this, taking into account Theorem 2 in [3], we obtain the 
following 

THEOREM 2. Let X and Y be two equivalent or h-equivaient objects of the category 
£. Then for each n= 1,2,... and a coefficient group G, the singular homology 
groups Hn-i (E — X; G) and Hn~\ (E — Y; G) of E — X and E — Y are isomorphic. 
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Algebraic Topology in Linear Normed Spaces. V. Cohomology 
Theory on <&{E) 

by 
K. GÇBA and A. GRANAS 

Presented by K. BORSUK on December 3, 1968 

1. Introduction. Let E be an arbitrary but fixed normed space and (E = С (£) 
be the main category, i.e., the A-category whose objects are closed bounded subsets 
of E, whose maps are compact vector fields and in which the relation of homotopy 
means the homotopy of compact fields. Let (E(2> be the A-category of pairs of (E and 
Ab be the category of Abelian groups. Let •& : (Ef2> -> (£C2) be the functor defined by 

By acohomology theory on (Ewe shall understand a sequence of contra va-
riant A-functors 

together with a sequence of natural transformations 

satisfying the following conditions: 

I. (Exactness). For the inclusions 

the cohomology sequence 

is exact. 

II. (Excision). Let (A;A,B) be a triad in (E with and let 
к : (A, A п В) (A, B) be the inclusion. Then, for all n ^ 0, the induced map 

is an isomorphism. 

http://rcin.org.pl



5 8 К. G ç b a and A. G r a n a s 

In this note, using the cohomology functors defined in our previous papers [2] and 
[3], we construct a cohomology theory on (£, which satisfies the following condition : 

III. (Dimension). Let S°°~n be the unit sphere in a subspace £«>-«+1 of 
E of codimension n — 1. Then 

The constructed theory corresponds in finite dimensional case to the ordinary 
Cech cohomology for compact spaces. 

2. Preliminaries. We îecall first the definition and the properties of the 
cohomology functor : Ab (n ^ 1). For details see [2] and [3]. 

Denote by £ = £ (E) = {La, Lfi, Ly,...} = {a, y,...} the directed set of all 
finite dimensional subspaces of E. Given ae£, let d(a) be the dimension of La. 

In the set of all linear isomorphisms from La to Rd{a) introduce an equivalence 
relation ~ by the condition 

Call an orientation of La an arbitrary choice of one of the corresponding two 
equivalence classes. Choosing for each ae£ an orientation Oa in La we define 
an orientation О = {0a} in E. Let us fix now an orientation { O j in E. 

Given a<p with d(p) = d(a)+1 the orientations of La and Lp determine 
the triad (Lp,Lj,Lj) with La = <л Lj. 

Putting for an object X in (£ 

denote by £ x the cofinal subset of £ consisting of elements ae£ for which 
Xa is non empty. 

Denote by H* = {#", ôn) the ordinary Cech cohomology theory over the 
fixed group of coefficients G. 

Given a, fie£x with a </S and d(fi) = d(a)+1 denote by. 

the Mayer—Vietoris ЬототофЬ18т of the triad (Xp, X£, X f ) . Given an arbitrary 
pair a,pe£x with a < /3, take a chain a = a0 < a\ < a2 < ... < aic+\ — P 
of elements of £ x satisfying d{ai+x) = d(ai)+\ (i — 0,1 ,...,*) and define 
to be the composition Af^ о... о A™^ о Al*>a. 

We obtain the direct system of Abelian groups {Hdia)~n (XJ; A<$} over. 
£x and define 

(2.1) (Alexander-Pontriagin Duality). For every X in (£ the group 
H°°~n (X) is isomorphic to the (n — l)-th singular homology group Hn-\ (E— X, G) 
of the complement of X in E. 
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Denote by (Co, the A-subcategory of (£, whose objects are the same as 
in (£, whose maps are finite dimensional fields and in which the relation » means 
the finite dimensional homotopy. We recall that / : А-э- У is in (Eo provided F(x) = 
= JC —f(x) has values in La (for some a); in this case, for each /3 > a , / ( X p ) <=• Yp 
and therefore / determines the map fp : Xp-> Yp. 

Given a finite dimensional field f: X-*- Y, f induces a map {/„*} between the 
direct systems {Hd^~n (Ya); •} and {Hd<a)~n (Xa); •} and therefore determines 
the induced map 

We have the usual properties 
in (Eo implies f* = g*. 

Now we recall the definition of / for an arbitrary / in CE. 
Let Y be in £ and {Yk} be an approximative sequence for Y, i.e., a decreasing 

sequence of objects in (E such that Y— P) У*. Consider the inclusions jk : Yk, 
l 

iki : Yi -> Yk (k < 1) all being in (Eo, the corresponding direct system of Abelian 
groups {H°°~n (У*); ih} and the family {;*} of the induced maps j'l : H œ ~ n (7 t ) -> 

(2.2) (Continuity of H°°-n). The family {/£} is a direct family of homo-
morphisms and the map 

is an isomorphism. 
Now let / : A-> Y be an arbitrary compact field. Take an approximating system 

{Yk,fk} for / . This means that {fk : A-* Yk} is a sequence of maps in (Eo such that 
(i) {Yk} is an approximating sequence for Y, (ii) fk ~ jkf in (E, (iii) fk « ikifi in (Eo-

It follows that the sequence {/£ : H°°~n (У*) -> H°°~n (A)} of the induced 
maps is a direct family of homomorphisms and therefore 

Taking into account (2.2), we define the induced map 

by the formula 

The definition of f* does not depend on the choice of 
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3. The functors Й°°~п :(Ë-> Ab and g : GX2> -> (E. In what follows we denote 
by E the direct product E ® R of E and the real line R ; we shall consider E as a one-
codimensional subspace of E. Further we let 

Evidently, G is a subcategory of (E; similarly (E0 <= 
Let x+ = (0,1), x" = (0, - 1 ) . 
By £ = £ (E) and £ = £ (E) we denote the directed set of finite dimensional 

subspaces of E and E, respectively. We let £0 = {ae£, x+ eLa}; £0 is a cofinal 
subset of £ . For ae£0 we let a' =Lan E. 

Let {00} be an orientation in E. If a e £ 0 then d (a') = d (a) — 1 and the 
orientations of La and La> determine the triad (La,X+,L~). We say that Oa and 
Oa' are compatible if x+ e L^. 

Let us fix now an orientation {<0a} in E such that the orientations Oa and Oa' 
are compatible for every a e £q. 

For this particular orientation {Oa} in Ë and given n > 1 apply the construction 
of the preceding section to the space E. 

Let us denote by : (£-> Ab the corresponding cohomology functor. 
The functors H°°~n : (£«)_> ab of a cohomology theory on (£(£) will be defined 
later on with the aid of this functor. 

We define now the cone functor C+ from (E to G. For A e (E we let 

and for / : A -> В in (E we define 

by the formula 

and for a compact field define 

by the formula 
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4. Some lemmas. In this section, we shall prove some lemmas which will be 
used in defining the coboundary transformation <5°°-«. 

are compatible we have 

From this we obtain 

the Mayer—Yietoris homomorphism of the triad 
Let us put 

Then the following diagram 
commutes 

Consider the following 
commutative diagram: 
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Since Oa, Oa- and Op, Op- are compatible, the horizontal homomorphisms of 
the above diagram are the Mayer—Yietoris homomorphisms of the triads (Xa и 
U CAa, CAa, XJ) and (Xp U CAp, CAp, Xp), respectively. Consider the map 

is a homeomorphism of the triads. Applying to the last diagram 
we obtain a commutttive diagram 

Now our assertion follows easily from (4.1) and the definition of 
The following two lemmas are easy consequences of the definition of 

denote the inclusion 
maps. Then, for every the following sequence is exact : 

Then the 
following diagram commutes: 

5. The definition of and the coboundary transformation 
We define the relative cohomology functor from the category of pairs 
in (£ to the category of Abelian groups by putting 

Thus, for in 
for 

for 

It follows from the definition that is a contravariant Munctor. 
Let (X, A) e (£(2). р г о т (4.2), we conclude that the family is the direct 

family of homomorphisms. 
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Therefore, taking into account the definition of H°°~n and putting 

we obtain the coboundary homomorphism 

(5.1) The family • indexed by the pairs is a natural 
transformation from 

Proof. We have to prove that for a map I in (£(2) the following 
diagram is commutative: 

Assume first that / i s in (££2). In this special case our assertion follows from the 
commutativity of the diagram in proposition (4.4). 

Consider now the general case and take an approximating system {/<*> : (A, A) 
->(Yk, Bk)} for / . The definition and the proof of the existence of such a system is 
similar to that in the absolute case. It follows from (3.2) that the sequence 

forms an approximating system for 
Consider the inclusions 

By the special case of our assertion the following diagram commutes for each 
pair 
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Applying the direct limit functor to the corresponding commutative diagram 
in the category of direct systems of Abelian groups we obtain the following 
commutative diagram: 

By (2.2) the homomorphisms and are invertible. This, in view 

of the definition of the induced map, implies our assertion and thus the proof is 
completed. 

We state now the main result of the paper 

THEOREM. The sequence of functors {H°°-n} together with the sequence of 
coboundary transformations {<5°°-w} satisfies the conditions I, II and III. 

Proof. (Exactness). This follows from the exactness of the sequence in 
proposition (4.3) and the definition of H°°~n. 

(Excision). Let (X.; A, B) be a triad in £ with X = А и В. If к : (A, A n B) 
(X, B) is the inclusion then so is the map к : А и С (A п В) -> X и СВ. Since 

(£a)* in an isomorphism for each a and (£)* = Lim {(L)*} it follows that H00~11 (k) 
is an isomorphism. 

(Dimension). Since S°°~n is the unit sphere in a subspace of Ë of codimension 
n, this follows from the Alexander—Pontriagin duality (2.1) in the space Ë and the 
definition of H°°~n. 
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ON THE COHOMOLOGY THEORY IN 
LINEAR NORMED SPACES * 

KAZIMIERZ GEBA AND ANDRZEJ GRANAS 

Let E be a linear normed space and (£", be the h-category whose 
objects are closed bounded subsets of E, whose morphisms are compact 
vector fields and in which the relation ~ means the compact homotopy of 
fields. This category, introduced in 1933 by Leray and Schauder [4] in 
their study of topological degree plays a basic role in topology of an in-
finite dimensional normed space E. 

The main theorem which we intend to present here is the following: 
for each n > 1 and a coefficient group G, there exists an h-functor H°°~n 

from the category £ " to the category Ab of abelian groups such that the 
group H°° - n(X; G) is isomorphic to the ( n - l)-th singular homology 
Hn _ j(E — X; G) of E - X . 

As an immediate consequence we obtain the Alexander-Pontriagin In-
variance Theorem in E: if the objects X and Y are equivalent or homo-
topically equivalent in then for each n > 0 the singular homology 
groups Hn(E-X; G) and Hn(E — Y; G) are isomorphic. A special case of 
this theorem (when n = 0 and G = Z) was proved for a complete E by J. 
Leray in [4]. 

We also note that the Leray-Schauder theory of topological degree fol-
lows readily from the special case of the main theorem. 

« 

Thi» report presented by К, Geba under the tit Je "The cohomology theory In 
Banach Spaced," outline» the results Announced by the authors in [2], 
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§L PRELIMINARIES 
The directed set St. Let E be an arbitrary but fixed infinite dimen-

eiooal aoraed space. We shall denote by £ = |La , hp, ly,...} the di-

rected set of all finite dimensional subspaces of E with the natural order 

relation < defined by the condition 

For notatianal convenience, we establish 1- 1 correspondence a < —> L a 

between the symbols a,/8,y, . . . and La, L^, ly, -- a n d in the formulas 
to occur we replace frequently one kind of symbols by another. Given 
X С E, we denote by £ x the cofinal subset of £ , consisting of those a 
for which Хд = X П L a is non-empty. 

Compact fields. A mapping F : X -» E from a metric space X is com-
pact provided the closure of F(X) is compact. A compact mapping F: 
X -» E is an а-mapping (resp. finite dimensional mapping) provided F(X) 
С L a (resp. F(X) С L̂ g for some /3). 

The following Schauder Approximation Theorem is of fundamental im-
portance: every compact mapping can be uniformly approximated by finite 
dimensional mappings. 

Given X, Y С E and a mapping f: X -» Y, denote by the same but capi-
tal letter the mapping F: X E defined by F(x) = x - f(x) for x e X. 
Then f: X -» Y is said to be a compact field (resp. а-field) provided the 
corresponding F: X -» E is a compact mapping (resp. a-mapping). 

The subsets of E and the compact fields form a category, denoted by 
С and called the Leray-Schauder category. The subsets of E and the a-
fields form the subcategory £ а С (£. The union of all categories £a is 
the subcategory CQ of C. The morphisms of the category will be 
called the finite dimensional fields. 

Let (resp. and £ q ) be the full subcategory of С (resp. 
and CQ) generated by the closed and bounded subsets of E. The category 
£" will be called the main category. By an object we shall understand in 
what follows an object of £'. 
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Compact homotopies. Given X, Y С E and a homotopy ly. X -» Y, 
(0 < t < 1), denote by the capital H the mapping from X x I to E de-
fined by H(x, t) = x -h t (x ) for (x, t) ( X x I. Then, X - Y is called 
a compact homotopy (resp. a-homotopy) provided H: X x I -» E is a com-
pact mapping (resp. an a-mapping). 

Two compact fields (resp. a-fields) fQ, f1: X -» Y are called Nomotopic, 
£q ~ f , , (resp. a-homotopic, fQ a f, ) provided there is a compact homo* 
topy (resp. a-homotopy) ht: X -» Y such that hQ « fQ> h l » f l . Each 
of the above relations is clearly an equivalence relation. If the fields 
(resp. a-fields) X -» Y and gJ( Y -» Z are homotopic (resp. a-
homotopic), then so are their compositions gj ° f1# g2 о f2: X -» Z. 

It follows that the relations ~ and a convert the Leray-Schauder cate-
gory С and the category Ca into the h-categories (£, ~ ) and (Ca ,a) re-
spectively. Similarly, we define the relation 0 of finite dimensional homo-
topy and convert the category CQ into the h-category (dQ, 0). 

It is evident that the main category £~ admits a structure of an h-cate-
gory (£", with the relation of homotopy induced by that in C. Similarly, 
the relation 0 in CQ converts £ * into an h-category (£Q, 

An orientation in E. Denote by R°° the normed space consisting of all 
sequences x = (Xj, * 2 , . . . ) of real numbers such that Xj = 0 for all but a 
finite set of i, with the norm ||x|| = y/2 Xj2 and put: 

Let a be an element of the directed set £ and let d(a) be the dimension 
of a. Call two linear isomorphisms 12: LQ -» Rd(a> equivalent, l j - 12, 
provided Ц1"1 t GL+(d(a)), i.e., the determinant of the corresponding 
matrix is positive. With respect to the relation - , the set of ail linear 
isomorphisms from LQ to decomposes into exactly two equivalent 
classes. An arbitrary choice of one of these classes will be called an 
orientation of Lfl . 
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Let us choose now an orientation 6 Q of LQ for each a and call the 
family 0 = | 6 a l an orientation in E. Given a < /8 with d(0) - d(a) = 1 
and l e f бд, there exists l̂ g t Op such that l^(x) = la(x) for all x t LQ. 

We lei 

Clearly, the definition of L̂ g and Lp depends only on the orientation 

of L a and Lp. 
Given an object X we let 

If f: X - Y is an a-field, then clearly С YQ and hence f de-
termines the map fa: Xa - Ya given by fQ(x) = f(x) for n X f l . We 
note that if a, /8 are two elements of £ x with a < /3, d(0) - d(a) = 1, 
and f: X Y is an a-field, then f^: X̂ g -» Ŷ g maps the triad (X ĵ, Xjg, 
Xjg ) into the triad (Y ĝ, y £ , Yjg). 

§2. THE COHOMOLOGY FUNCTOR 

Let G be an arbitrary but fixed Abelian group and n a positive integer. 
By H* (resp. H*) we shall denote the Cech cohomology (resp. the singular 
homology) with coefficients in G. By H° and HQ we shall denote the re-
duced zero-dimensional groups. 

A Lemma on the Alexander Pontriagin duality. For a compact subset 
X С Rk we shall denote by Dk the Alexander-Pontriagin isomorphism 

determined by the standard orientation of Rk (see [5], p. 296). Let XQ = 
X П ~ 1 , i: R k ~ 1 - XQ -» Rk - X be the inclusion and denote by A* 
the Mayer-Vietoris homomorphism of the triad (X, X П X П ). It fol-
lows from the definition of Dk that the following diagram is sign-commu-
tative: 
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Thus, , where i be 
defined by induction on k: 

Define the isomorphism 

We have the following: 

LEMMA A. Let X be a compact subset of and 
be the Маует-Vietoris homomorphism of the triad 

Then the following diagram commutes 

denotes the inclusion). 
Let n be a positive integer, X be an object and 

be an orientation in E and 
For each with define 

to be the Alexander-Pontriagin isomorphism "transferred" by from 
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LB IF MA A'. Let X be an object, U = E - X and a, /3 t £ x with 
d(/3) — d(e) » Lef [ф: Ua -» Û g be the inclusion and 

be the MsyerVietoris homomorphism of the triad (X, X+, X ). Then the 
following diagram commutes 

This follows from the definition of Д ^ and Lemma A. 

The group H~-n(X). Let a,/3 « £ x , with a < /3, and let а - < 
Oj < ••• < ак » 0 be à chain of elements of such that d(aJ+1 ) -
d(a^) « 1 (i « 0, 1 , к - 1 ) . Define the homomorphism 

to be the composition of the homomorphisms Л , Aa j QO /3 " 
It follows from Lemma A ' that the definition of A ^ does not depend on 
the choice of the chain O j , o j ^ joining a and /3. 

For an object X consider the groups Hd(a) " n(XQ) together with the 
homomorphisms A ^ given for a < /3. The family |Hd < a )~n(Xa), A ^ l 
indexed by a t £ x is a direct system of Abelian groups called the (oo-n)-th 
cohosoology system of X corresponding to the orientation 0 in E. 

We define the Abelian group 

to be the direct limit of the (oo-n)-th cohomology system of X. 
We note, taking into account Lemma A', that if |Hd(a) ~ n(XH), 1 ф \ , 

n(Xa), are two («-n)-th cohomology syatemn of X corre-
sponding to different orientations 0 = iOj and § - i f t j In E, then the 
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above systems are isomorphic. Consequently, the group H°°~n(X) does 
not depend on the orientation б in E. 

f* for finite dimensional i. Let X, Y < £ q. aQ t £ x and f: X -» Y 
be an aQ-field. Then for each a, /3 t £ x with a^ < a < /3 the following 
diagram commutes: 

Consequently, f induces a map {fQ*} from the («-n)-th cohomology 
system of Y into that of X, and therefore determines a map 

from H°°-N(Y) to H^CX). 
Let us denote now by H 00-11 the functor which assigns to an object 

X ( £ 0 the (oo-n)-th cohomology group H 0 0 - 0 ^) and to a finite-dimen-
sional field f : X -» Y the induced homomorphism f* H°e~n(Y) H°<>~n(X). 

From the properties of the Mayer-Vietoris homomorphism we deduce the 
following: 

THEOREM 1. The functor H°°~n j's a contravariant h-functor from 
the category to the category of Abelian groups Ab. 

The continuity of the functor H00-". In order to extend the functor 
H 00~n: £Q Ab over we shall use the property which is analogous 
to the property of continuity of the Cech cohomology. 

We shall make use of the following algebraic lemma: 

LEMMA B. Let ft - {к, 1, m,...j and £ = {a, /3, y , . . . | he two direct-
ed sets and • I be a double direct system of abelian gtoups indexed 
by Jl x Then we have a natural isomorphism between the limit groups 
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Let X be an object. For a natural number к let 

We shall say that a sequence of objects i X l̂ is an approximating se-
quence or an (a)-sequence for X provided 

We note that 
(a) if |Xkf is an (a)-sequence for X, then the enlarged sequence iXj.}, 

where Xk = = I* < E: P(*» Xfc) < Vkj is also an (a)-sequence 
for X. 

(b) if !Xkl and I YjJ are two (a)-sequences for X and Y, respectively, 
then iX^ U Yjjl is an (a)-sequence for X U Y. 

(c) if {Xjjl is an (a)-sequence for X and f: Xj -» E is a compact field, 
then I^Xjj)} is an (a)-sequence for f(X). . 

Let Y be an object, а ( £y and let {Y^j be an (a)-sequence for Y. 
We let Y^ = Y^ П LQ. Consider the following inclusions, all of them be-
ing finite-dimensional fields: 

and the direct system of Abelian groups over Л. We have 
the commutativity relations and hence 

is a direct family of homomorphisms. 
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THEOREM 2. The map 

is an isomorphism. 

Proof: Consider over Jl x £ the following double direct systems of 
Abelian groups к = | H D ( A ) - N ( Y J ) F A ^ l . and к = I H ^ " " ^ ) . Д^} . 
where Д ^ = (ijj) о Д ^ , for а < /3, k < 1. Clearly |j£aJ is a map 
from к to к. 

In view of the continuity of the Cech cohomology [1], the map 

is an isomorphism for each a, and therefore so is the map 

Consequently, in view of the naturality of the isomorphism in Lemma B, 
the map 

is also an isomorphism and the proof is completed. 

§4. THE FUNCTOR H00-": Ab. 
Let X, Y be two objects and let f: X -» Y be a compact field. A se-

quence |Yk, fjJ of objects Yk and a^-fields fk: X Yk is called an ap-
proximating system or (a) system for f, provided: 

(i) |Ykl is an (a)-sequence for Y, 

" Jkf i n where jk: Y -» Yk is the inclusion, 

(iii) fk " iitjfj in where i^: Yj - Yk is the inclusion (k < 1). 

Every compact field f; X » Y admits an (a)-system. In fact, let 
Yk = Y(k), and let fk: X ~ Yk be an a^field such that 
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Clearly, IY ,̂ fkS is an (a)-ayatem for f. In what follows any such system 
{Yjj, fj.1 will bm called a standard (a)-system for f. 

Let f: X - Y be a compact field and {Yk, ffe! be an arbitrary (a)-sys-
tem for f. In view of (iii) the diagram 

commutes in Ab. Consequently, | fk j is a direct family of maps and 

We define die induced homomorphism 

by the formula 

It is easily shown that the definition of f* does not depend on the choice 

of !Yk. fkl. 
Now define the functor H°°~n from the main category £ to the cate-

gory of Abelian groups Ab by putting Н°°ЛХ) = Н°°ЛХ), H ^ O = 
If f: X -» Y is an a-field, it is easily seen (by taking i Yk, fkl with 
Yk = Y, fk = f) that Н - Л О = Н—Ю. i e-- H00"" extends H00"" 
over £ . 

THEOREM 3. The induced map i * satisfies the following properties: 

(a) the homotopy f—g implies i* = g*; 
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In other words, К00-" ia an h-functor from the main category to the 
category of Abelian groups Ab. 

Proof of the property (a). Let f, g: X -» Y be two compact fields and 
X -» Y be a compact homotopy such that f = hQt g = hj. Let 

X -» Y ^ be an a^- homotopy satisfying 

and therefore f = g*. 

Proof of the property (b). (Special Case). Let f: X -» Y be a compact 
field, g: Y -» Z be an aQ-field and let h = gf. We shall prove that h* = 
e* * f o g . 

Take a standard (a)«system |Y<4 f j for f and take an arbitrary fi-
nite dimensional extension g: Y® -» E of g over Y^. The existence 
of g follows from the Tietze Extension Theorem. 

Let us put Wk = g ( Y ^ ) U Z for each к and consider the enlarged 
(a)-sequence {Wj for Z. 

In the diagram 
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and thus 

This implies h* = f* ° g*, and the proof is completed. 

Proof of the property (b). (General case) Let f: X -» Y and g: Y -» Z 
be two compact fields and let h » gf. 

Let I h j and g î be two standard (a)-systems for h and 
g, respectively. 

From the inequalities 

it follows that the fields g^f, h :̂ X -» are homotopic in £ for each 
к * 1, 2, ... . This implies, in view of the property (a), that h£ = (g^O*-
Since each gk is finite-dimensional, we have (g^Q* = and thus we 
obtain 

This implies h* = f*g* and the proof of Theorem 3 is completed. 

§5. THE ALEXANDER-PONTRIAGIN DUALITY IN E. 

In view of Lemma A'the (oo-n)-th cohomology system of an object X 
is isomorphic to the direct system of homology groups 
where U = E - X . We have clearly 

Consequently, in view of the definition of the group , we obtain 
the following theorem: 

THEOREM 4. For every object X we have an isomorphism 
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between the («>-n) -th cohomology group of X and the (n - 1 )-th singular 
homology group of the complement of X in E. 

Two objects X and Y are called equivalent (resp. h-equivalent) in S" 
provided there exist compact fields f : X -» Y, g: Y -» X such that gf » 
1X' - l y (resp. g f ~ l x . ly)-

It follows from Theorem 3 that if the objects X and Y are equivalent 
or h-equivalent in £". then the («-n)-th cohomology groups H00"41^; G) 
and H"0-0^; G) with the coefficients in G are isomorphic. From this, 
taking into account Theorem 4, we obtain the following. 

THEOREM 5. // X and Y are two equivalent or h-equivalent objecta 
of the category £ , then for each n = 0, 1, 2, ... and a coefficient group 
G, the singular homology groups H^E-X; G) and НД(Е — Y; G) are iso-
morphic. 

§6. THE FUNCTOR AND THE LERAY-SCHAUDER DEGREE 

We will identify groups H°°~1(A(r, R); Z) with Z 
by isomorphisms which are compatible with the isomorphisms induced by 
the inclusions A(r, R) С А(г г Rj), for r> i v R < R r We denote by 1 
the generator of Z. 

Let X be an object, lUjj^ j the family of all bounded components of 
E - X . Let fj(x) = x-uj , Ui t Uj; fj: X - A(r, R) for some R > г > 0. 
Evidently, f. does not depend on u- . 

As a consequence of Theorem 4, we have: 

THEOREM 6. H°°_1(X; Z) is a free Abelian group with generators aj 
= f.*(l)- If g: X - A(r, R) is a compact field, then g*(l) = X? .па-. 

i q = i q » 

The integer n = y(g; IL ) is called the Leray-Schauder index of g q 
with respect (o U: • q 

As an immediate consequence we obtain the main theorem of the Leray>> 
Schauder theory of topological degree: 
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COROLLARY. Let U be a bounded open set with boundary X. To 
every compact Held f: U -» E and every point y r E - f(X) corresponds 
an integer d(y, f, U) with the properties: 

is a compact homotopy, then 

is the union of open disjoint sets U- all having their 
boundary in X, then 

(iv) if А С U is closed and y / f(A), then 

If U is connected, consider the field g: X -» A(r, R) defined by 
g(x) = f(X) - у for x f X and put 

Now, Theorem 6 permits to define d(y, f, U) in an evident manner for an 
arbitrary U. The properties (i)- (iv) follow from Theorems 5 and 6. 

BIBLIOGRAPHY 
[1] S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, 

Princeton, 1952. 
[2] K. Geba and A. Granas, Algebraic topology in linear normed spaces, 

Bull. Acad. Polon. Sci., I, 13 (1965), pp. 287-290; II, 13 (1965) 
pp. 341-345; III, 15 (1967), pp. 137-143; IV, 15 (1967) pp. 145-152. 

[3] J. Leray, Topologie des espaces abstraits de M- Banach, C. R. Acad. 
Sci., Paris 200 (1935), pp. 1083-1093. 

[4] L. Leray and J. Schauder, Topologie et équations fonctionnelles, Ann. 
Ecole Norm. Sup., 51 (1934), pp. 45-78. 

[5] E. Spanier, Algebraic Topology, New York, 1966. 
Normal School, Gdanak 
Institute of Mathamatlca, 
Poliah Academy of Science a 

. ! 
j , . j 

http://rcin.org.pl



INFINITE DIMENSIONAL COHOMOLOGY THEORIES 

K A Z I M I E R Z G E B A AND A N D R Z E J G R A N A S 

(Extrait du Journal de Mathématiques pures et appliquées, 
t. 52, fasc. 2, 1973.) 

http://rcin.org.pl



J. Math, pures et appt., 

INFINITE DIMENSIONAL COHOMOLOGY THEORIES (* ) 

B Y K A Z I M I E R Z G E B A AND A X D R Z E J G R A N A S 

T A B L E O F C O N T E N T S 

Pages 

INTRODUCTION 1 4 7 

CHAPTER I 

Preliminaries 

1. R e m a r k s on t h e n o t a t i o n 152 
2. Л-categories 153 
3. Л-functors 155 
4. H o m o l o g y a n d cohomology theor ies 157 
5. Cont inuous theor ies • 161 
6. Spec t ra 162 
7. Homology t h e o r y ( ; A ) on 6 ! 166 

CHAPTER I I 

Basic categories 

1. T h e d i rec ted set £ (E) 172 
2. C o m p a c t mapp ings 173 
3. Compac t vec to r fields 174 
4. H o m o t o p y of compac t v e c t o r fields 175 
5. T h e extens ion problem fo r c o m p a c t fields 177 
6. T h e generalized suspension a n d t h e cone f u n c t o r s 178 
7. T h e Le ray -Schaude r c a t e g o r y £ 180 

CHAPTER I I I 

Continuous functors 

1. A p p r o x i m a t i n g families a n d t h e carr iers 182 
2. A p p r o x i m a t i n g sys tems 184 
3. T h e Ex tens ion Theorem for c o n t i n u o u s f u n c t o r s 188 

(*) This research was s u p p o r t e d in p a r t b y a g r a n t f rom the Na t iona l R e s e a r c h Counci l 
of Canada . 

http://rcin.org.pl



К. GEBA A N D A. GRANAS 
8 3 

C H A P T E R I V 

The functor X--n 

Pages 

1. Preliminaries on the Mayer-Vietoris homomorphism 191 
2. Orientation in E 194 
3. Definition of the group 3C'~"(X) 195 
4. Definition of f* for finite dimensional field f 197 
5. Two algebraic lemmas 198 
6. Continuity of the func to r 3C'~n 200 
7. Consecutive pairs of t r iads and Proof of Lemma 3 . 1 201 

C H A P T E R V 

Cohomology theories on £ 

1. The relative cohomology functor 3C*~n 205 
2. The homomorphism 32 209 
3. Definition of the coboundary t ransformat ion 8 » - " 210 
4. Natura l i ty 213 
5. Infinite dimensional homology theories 214 

C H A P T E R V I 

Duality theorems 

1. Cap product 217 
2. Dual i ty in S" for polyhedra 219 
3. Dual i ty in S" for compacta 222 
4. Duali ty in R " 224 
5. Dual i ty in E (special case) 226 
6. Dual i ty in E (general case) 230 
7. Proof of the Theorem 1 . 2 235 
8. Invariance Theorems 238 

C H A P T E R V I I 

Group-like objects in <£/,_ 

1. Compact fields with admissible range U 239 
2. Inessential fields 241 
3. Continuity of the func tor - 0 243 
4. я (X) is a direct l imit of the homotopy system j (X); iap } 245 
5. The functors ff and - 0 246 
6. Natura l group s t ruc ture in rc (X) 248 

CHAPTER V I I I 

Representation theorems 

1. The groups я » - " ( Х ) 250 
2. Representabi l i ty of the stable cohomotopy 252 
3. К (G, n, m)-polyhedra 253 
4. Representabi l i ty of the ordinary cohomology H " - * ( ; G) 255 

http://rcin.org.pl



8 8 
INFINITE DIMENSIONAL COHOMOLOGY THEORIES 

CHAPTER I X 

Some applications to non-linear problems 
Pages 

1. Essential fields f rom S into E " - " — ( O j 256 
2. The Leray-Schauder characterist ic 258 
3. The equat ion z = F (x) (The Leray-Schauder case) 259 
4. Invariance of Domain 261 
5. The equat ion x = F (x) (The Hopf case) 263 

CHAPTER X 

Codimension 

1. Extension objects and the funct ion Codim 264 
2. Cohomological codimension CodimG 265 
3. Theorems of Alexandroff and Phragmen-Bromver in E 267 

BIBLIOGRAPHY 2 7 9 

INTRODUCTION 

The subject-matter of this work belongs to the branch of infinite dimen-
sional topology known as the theory of compact vector fields, and its aim 
is to establish foundations of algebraic topology in infinite dimensional 
normed spaces. More specifically, we propose a systematic development 
of the infinite dimensional cohomology theories; these provide a convenient 
algebraic tool for the t reatment of various infinite dimensional problems 
and, at the same time, generalize the classical Leray-Schauder theory. 
The principal topics treated may be listed as follows : 

a. Infinite dimensional cohomology theories; 
b. Alexander type of duality and Representation Theorems; 
c. Applications to some non-linear problems and to the theory of 

codimension. 

Many essential results which we intend to present here were announced 
in [6] and [7]. Some of our basic ideas and techniques go back to Leray-
Schauder [13], A. Granas [8] and K. Geba [5]; on the other hand, an 
important par t of this work depends on the duality theory due to 
G. W. Whitehead [21]. 

In this introduction, we shall not at tempt to describe in detail the 
contents of the present work or state our main results in a precise form. 
Rather, we shall t ry to explain the background and some of the ideas, 
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mainly concentrating on (a) and (b). Before proceeding further, some 
general remarks are in order. To facilitate matters for the reader, we have 
tried to make our exposition as self-contained as possible. Thus, a preli-
minary chapter on g3neral cohomology theories and a summary of basic 
facts on compact vector fields were included (in Chapter II). Among 
the essential references, we mention the article of G. W. Whitehead [21] 
and the Eilenberg-Steenrod book [4], abbreviated here to [GWW] and [ES], 
respectively. Our notation and terminology largely follow tha t of [GWW] 
and [ES] with one notable exception. By a homology (respectively 
cohomology) theory we shall understand here a theory which satisfies 
the Eilenberg-Steenrod axioms, except for the dimension axiom. If, in 
addition, the latter holds, we shall talk about the ordinary homology 
(respectively cohomology) theories. 

We now turn to describing our basic underlying category. Let E be 
an infinite dimensional normed space. A continuous mapping f : X ->- Y 
between two subsets X and Y of E is called a compact vector field provided 
it can be represented in the form f (x) = x — F (x), where F : X -> E 
is a compact mapping [i. е., the closure of F (X) is a compact subset of Е]. 
Two such fields f , g : X Y are compactly homotopic provided there 
exists a homotopy hi : X Y joining f and g which is representable in the 
form ht (x) = x — H (x, t), where H : X X [0,1] -> E is compact. Since 
compact fields compose well, we have the category С with subsets of E as 
objects and compact fields as morphisms. By the Leray-Schauder cate-
gory £ we understand the subcategory of С generated by closed bounded 
subsets of E. This category is of primary interest to us and we shall 
be concerned with such properties of its objects tha t remain invariant 
under equivalences, or homotopy equivalences in 

Next, some historical remarks. The concept of a compact vector field 
arose naturally in connection with the question of solvability of the non-
linear equation x = F (x), where F is a compact operator, and was intro-
duced in the early thirties by J . Schauder and J . Leray ([17], [13]). Further-
more, the above authors made the important discovery tha t many familiar 
geometrical facts of finite dimensional topology can be carried over to 
infinitely many dimensions provided attention is restricted to the above 
category of maps. In particular, for maps of this category, a generaliza-
tion of Brouwer's theory of degree was established (known presently 
under the name of the Leray-Schauder theory) and with its aid various 
applications were obtained. Among these we quote the following theorem, 
proved by J . Leray [12] : If X and Y are two equivalent objects of the 
category £, then the complements E — X and E — Y have the same number 
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of components; in other words, the singular homology groups H0 (E — X ; Z) 
and H0 (E — Y; Z) are isomorphic. 

In connection with this theorem, the following problem is of obvious 
interest in itself : 

Problem 1. — If X and Y are two equivalent (or more generally homo-
topically equivalent) objects of € , are the homology groups H„ (E — X) 
and (E — Y) isomorphic for each n ? 

One of our aims is to give the affirmative answer to the above problem 
for a broad class of homology theories. At the moment we remark only 
tha t the Leray-Schauder theory is evidently not adequate to deal with 
Problem 1 and, therefore, a tool of an essentially alg?braic character 
is needed. Thus we are led to the first and main topic of this work. 

By an " infinite dimensional " or simply a cohomology theory 
d£*~* = { o""°J on f we shall understand a sequence of contravariant 
functors 9C~ n (X, A) from the pairs in £ to the category of abelian groups 
together with a sequence of natural transformations 

satisfying the Homotopy, Exactness and Strong Excision axioms; the 
graded grouy{"âC"~n~i (S) }, where S is the unit sphere in E, is called the 
group of coefficients of the theory. The first basic result of this paper 
(Theorem V.4 .4) states : 

To any cohomology theory dC* on the category of finite polyhedra corres-
ponds a cohomology theory on £ with the same group of coefficients 
and satisfying the continuity axiom; moreover, the assignment dZ* н> 
is natural with respect to maps of the theories. 

Thus, in particular, we have the ordinary cohomology H " - * ( ; G) 
with coefficients in G, the stable cohomotopy X"-* and the Hopf-Hurewicz 
map h* : Hx~* ( ; Z). 

We shall now try, for the benefit of the reader, to give some general 
idea about how the " infinite dimensional " cohomologies are defined. 
In the subsequent more formal t rea tment of this matter, our presentation 
will look slightly different for technical reasons. 

Assume for simplicity tha t we start with the ordinary Cech cohomology 
H* = { H7, o''} for compacta with coefficients in G and want to define 
H* -" (X) for an object X in We take the directed (by inclusion) 
set Cx = { La , Lp, LT, . . . } of all finite dimensional subspaces of E such 
tha t X a = X n L a for each a is not empty and we fix an orientation of 
every La. Let d (a) = dim La and write a ^ (3 instead of L aCLp. We 
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as follows : if d ($) = d (et) -{- 1, we let Aap be the Mayer-Yietoris homo-
morphism of the triad (Xp; Xp, Xp) ; otherwise, we take a chain of conse-
cutive elements of Cx and define Aap to be the composition of the corres-
ponding Mayer-Vietoris homomorphism. 

It turns out tha t if U = E — X, a ^ (3 and iap Ua -> Up is the inclusion, 
then we have the commutative diagram : 

in which Da and Dp stand for the appropriate Alexander-Pontrjagin 
isomorphisms in L a and Lp, respectively. 

It follows tha t the groups { Hd(0t)~n (Xa); Aap } form a direct system of 
Abelian groups and we define 

It remains to define the induced homomorphism H " ~ n { f ) = f * and to 
prove its functorial properties ; this is done in two steps : first, for a finite 
dimensional, and then for an arbi trary compact field f . It should be 
emphasized tha t in the second and more involved step, the crucial role 
is played by the continuity property of the functors under consideration. 

Next we observe t ha t the passage to the limit in the above commutative 
diagram indicates how we are led to our next basic theorem : The 
group H " - " (X) is isomorphic to the (n — 1 )-th singular homology group 
H n— I (U; G). A more general result holds in fact , and our second main 
theorem (Theorem VI .6 .7 ) stated for a broad class of cohomology theories, 
expresses also the natural i ty of the duality isomorphism. 

Consider compact fields from an object X in € to the open set E — E„_i 
(where E„_4 is a linear subspace of E with dim E„_t = n — 1) and denote 
by n" - " (X) the corresponding set of homotopy classes. Our next impor-
tan t result (Representation Theorem for stable cohomotopy) says : There is 
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a natural isomorphism between т." " (X) and the stable cohomotopy 
group (X). 

In connection with the duality in E the following problem arises : 

Problem 2. — Do there exist two equivalent objects X and Y of if such 
that the fundamental groups т., (E — X) and rM (E — Y) are not 
isomorphic ? 

The answer is " yes " and the corresponding example is given in 
Chapter II. In fact, we shall see that , from the geometrical point of view, 
the Leray-Schauder category is in a certain sense as rich as the category 
of compacta in R". 

We remark now tha t from the proved results a number of conse-
quences follow. Some of them (as the Mayer-Vietoris sequence) follow 
evidently from the axioms alone, while others (as the affirmative answer 
to Problem 1) do so from both results together. The duali ty combined 
with the Hurewicz Theorem in S-theory yields the important Hopf 
Theorem, relating the ordinary cohomology over Z and the stable coho-
motopy on if. 

In Chapter IX we consider some applications to the theory of non-
linear equations. Among these we deduce first a number of well-known 
results (basic properties of the Leray-Schauder characteristic, the Leray-
Schauder alternative, Invariance of Domain, etc.) to illustrate the gene-
rality of our theory. Then we pass to the case in which the classical 
Leray-Schauder approach is not applicable. Using the cohomology 
functors we consider some particular extension problems in C. Then 
with the aid of the notion of an essential compact field we translate the 
corresponding results into the new existence criteria for the equation 
x = F (x). 

It remains to say a few words about the notion of codimension treated 
in Chapter X. First of all, we have for objects of the Leray-Schauder 
category the " basic " codimension Codim defined in terms of the exten-
sion problem for compact fields with special ranges E — E", where 
dim E" = n. Our definition coincides in the finite dimensional case 
with a theorem of Alexandroff [1] which characterizes the dimension of 
a compactum by maps into S". Further, using cohomology theories on f , 
we define various cohomological codimensions; we have in particular 
Codimz defined in terms of the ordinary cohomology on if with integer 
coefficients Z. If the space E is complete, then Codim = Codimz. The 
proof of this theorem uses the above theorem of Hopf, the representa-
bility of the stable cohomotopy on f and the Homotopy Extension 
Lemma; the latter is known to be true in needed generalitv onlv under 
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the assumption of completeness. We note tha t the above result corres-
ponds in the finite dimensional case to " the fundamental theorem in the 
homological dimension theory " in [1]. Among other results we mention 
the extension of the well-known Phragmen-Brouwer Theorem to the infinite 
dimensional, case given at the end of Chapter X. 

In conclusion, the authors express thanks to Monique Granas for her 
generous help and assistance during the preparation of this work. 

CHAPTEB I 

PRELIMINARIES 

In this chapter we give an account of those definitions and results of 
the homology and cohomology theories tha t will be relevant for the 
purposes of this work. For obvious reasons, we treat the entire mat ter 
very sketchily. We do, however, indicate some of the proofs and offer 
some additional comments on facts of fur ther importance; this should 
make the general ideas and the logical sequence reasonably clear. For 
the details, the reader is refered to [GWW] and also (when the necessity 
arises) to [ES]. 

1. R E M A R K S ON THE NOTATION. — The notation adopted in this work 
should be clear from the preliminaries and the context. Nevertheless, 
it might be worthwhile to list those symbols which appear frequently 
in our discussion. 

We denote by E" = (E", || j| ) or simply by E an arbitrary but fixed 
infinite dimensional linear normed space over the field R. We fix a 
sequence { E*"* 0 E„ } of direct sum decompositions of E* such tha t : 

We let 

denote the unit sphere in E°0~("~1); n ^ 1; and we reserve the symbol 
for the open set E" — E". 

Next, we let R" be the normed space consisting of all sequences 
x — (xi, x2, . . . ) of real numbers such tha t xi — 0 for almost all i with 
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the norm The following symbols stand for subsets 

of R* : 

There are inclusions and we have clearly 
and The closed intervals [— 1, 1] and [0, 1] of the real 
line are denoted by J and I, respectively. 

Finally, we use the following fixed notation : 

&ns — the category of sets; 
&ns* = the category of based sets; 
tlb = the category of abelian groups; 
cl* = either Cib or &ns* ; 
cl = either &ns or Cl* ; 
С (A, B) = the set of maps ( = morphisms) f : A -> В in a category C. 

All standardly used categories are denoted by script letters; the category 
of compact vector fields and its subcategories will be denoted by German 
letters. 

2. Л-CATEGORIES. — Let С be a concrete category and X and A be two 
objects in C. Then A is called a sub-object of X (written А С X) provided 
A is a subset of X and the inclusion map i : A X is in <2. 

Let f : X Y be a map in С such tha t f (А) С В, where А С X and В С Y. 
Consider the function f : A В defined by f' (a) = f (a) for a € A. If f' 
is in then it is called the contraction of f to the pair (A, B). A contrac-
tion f' of f to the pair (A, Y), being the restriction of f to A, will be denoted 
by /* I A. In this case, we write also f'Cf and call f an extension of f' over X. 

2 . 1 . DEFINITION. — An Л-category (С, ^ ) is a category С such that 
for each pair of objects A and В in С there is defined in the set С (A, B) 
an equivalence relation ~ (called homotopy) satisfying the following 
(compositive) property : 
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If f G С (А, В), then by [ f ] we denote the equivalence (homotopy) class 
containing f and we let ~ (A, B) be the set of such homotopy classes. By 
C/r^j we denote the category having the same objects as (£, and as 
maps the homotopy classes between objects. 

A subcategory £» of will be called dense provided it has the same 
objects as C. We say tha t (t2„, is an /i-subcategory of (C, rv) provided 
Cn С С and the relation f ~ g implies f g for any f and g in <30. 

Remark. — In what follows &ns and Cl* will be considered as Л-categories 
with the relation of homotopy ~ defined by : f r^j g f — g. 

A map f : A В in (cf, rw) is called inversible (respectively h-inversible) 
provided there is a map f : В -> A such that f' ° f — 1A and f ° f' — 1B 

(respectively f'°f 1 ^ and f ° f In). In the first case, we write Ai^-^B 
and call the objects A and В equivalent. In the second case, A and В 
are said to be homotopically equivalent and we write A ^ B. 

A map r : А -и* В is called an r-map (respectively r/,-rnap) if there exists 
a map s : В A such tha t r ° s — 1„ (respectively r ° s r^j 1B). 

Two objects A and В are called r-equivalent (respectively rh-equivaient) 
provided there exists a pair of r-maps (respectively remaps) n : A ->• В 
and r-, : В -> A. We write A ^ В in the first case and A ^ В in the second. 

'k 
2 . 2 . PROPOSITION. — The relations r^^ r^j defined in the class 

il r ri, 
of objects of ((?, r^>) are equivalence relations and we have 

Examples of h-categories : 

1° The category © (respectively ЛС) of all topological (respectively, 
compact Hausdorff) spaces and all continuous maps with the ordinary 
relation of homotopy. 

2° The category lT of finite polyhedra and the category "vv* of all 
CW-complexes. 

3° Let E be a linear normed space and denote by ЛСЕ the full subca-
tegory of ЛС whose objects are compact subsets of E contained in finite 
dimensional subspaces of E. We say that a polyhedron К С E is a geometric 
subpolyhedron of E if К has a triangulation which is a finite union of 
geometric simplexes. We will denote by "?E the full subcategory of ЛСЕ  

whose objects are geometric subpolyhedra of E. We consider JCE and <îE  

as h-categories with the ordinary relation of homotopy. 
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4° For any concrete Л-category СЛ that will appear in this paper, we 
shall denote by <©* the corresponding based category. For example, 
the objects of fé* are based topological spaces (X, x0), the morphisms are 
based maps f : (X, x0) (Y, y0) and the relation ~ in means the based 
homotopy. 

5° The category of pairs in "W is defined as follows. The objects 
of W are pairs (X, A) such tha t A is subcomplex of X. The maps in 4v*2 

are continuous mappings f : (X, A) -> (Y, B). The relation of homotopy 
in Ю induces in an obvious way the structure of an Л-category in Чл?2. 
The category C2 of pairs in Ф is defined in a similar way. 

6° Similarly, for any of Л-categories CD introduced in the examples 1° 
and 3° we will denote by cD2 the category of all pairs in CD. The relation 
of homotopy in CD induces clearly the structure of an Л-category in CD2. 

7° For any of Л-categories CD introduced in the examples 1°, 2° and 3° 
we will denote by CD'l the corresponding Л-category whose objects are 
based pairs ((X, x0), (А, ж0)) such tha t (X, A) € CD2. 

3. Л-FUNCTORS. 

3 . 1 . D E F I N I T I O N . — A functor Л : C t -> C2 between two Л-categories 
is called an h-funcior provided it sends homotopy commutative diagrams 
in into such in C2. 

Example : Let ( 1 ъ ) be an Л-subcategory of (C, r>o) and U be a 
fixed object in в. For f : X -> Y in £ we let f* : * (Y, U) и (X, U) 
be the map induced by f and defined by [g] -> [gf]. The assignments 
X it (X, U), f f* define a contravariant Л-functor n (U) from (С, «г) 
to the category of sets &ns. 

3 . 2 . PROPOSITION. — Let Л : <34 <32 be an h-functor. If m is any one 
of the equivalence relations defined above, then 

Examples of h-functors : 

1° The functor -j- : Let { * ) be a fixed space consisting of exactly 
one point * . For X in let X + be the based space defined by 
X + = (XU{ • }, • ) . И f : X Y is a map in 6, then f : X ^ Y has 
a unique extension : X + Y + with f+ (*) = The correspondences 
X X+ , f f+ define an Л-functor + : 4b -> and we may consider 
S as a subcategory of 
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2° The unreduced suspension S : For a topological space X take the 
product J X X and identify {1} X X to one point and { — 1} X X to another. 
The quotient space SX under this identification is called the (unreduced) 
suspension of X. Denote by p : J X X SX the corresponding identi-
fication map and by i : X J x X an embedding given by i (x) — (0, x). 
Then the composite p ° i : X -> SX defines an embedding of X into SX. 
In what follows we identify X with its image under this embedding. Let 
us put 

then (SX; CL X, C_ X) is an additive triad with C+ Х п С _ X = X. Now, 
if f : X Y is a continuous map, then f : J x X - > J x Y , given by 
f (t, x) — (t, f (x)), defines the map S f : SX SY, called the suspension 
of f . It is easily seen tha t S is a covariant /г-functor from the category 
© into itself ('). 

3° The reduced suspension 2 : For a based topological space (X, x0) 
the quotient (based) space 

is called the reduced suspension of X. A based map f : (X, x0) -> (Y, y0) 
induces the based map 2 f : S X 2 Y. It is easily seen tha t X is a functor; 
since, in addition, 2 preserves based homotopies, it follows that 2 is an 
Л-functor from the category into itself (4). 

We note that , by put t ing S (X, x0) = (SX, x0), we may view the unre-
duced suspension S as an Л-functor from into itself. 

We have then the following relation between S and S. Denote by 
p : SX 2 X the identification map. If f : (X, x0) -> (Y, y0) is a based 
map then the following diagram commutes in : 

4° The reduced join Д : For two based spaces (X, x0) and (Y, г/о) we let 
The reduced join 

0) Note t h a t our nota t ion differs f rom t h a t of [GWW] where the unreduced suspension 
is denoted by X and the reduced one by S. 
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is obtained from X x Y by collapsing X V Y to a point. For two based 
maps f : (X, x0) -> (X', x0), g : (Y, y0) (Y', y'0), the product map 
f x g : X x Y - ^ X ' x Y ' given by f x g (x, y) = (f(x), g(y)) induces a map 
f/\g : Х Д Х ' У Д У . Thus we obtain the reduced join Л-functor Д 
from the category into 

In the n-dimensional sphere S" choose x0 — (1, 0, . . 0) as a base point. 
Thus wè may regard S" as an object of For X€®#, we let 

. X = £ (Z^ 1 X), p > 0 and we note that there is a natural identification 

which will be used later on. 

4 . HOMOLOGY AND COHOMOLOGY THEORIES. — Convention. — In what 
follows, by a " topological category" we shall understand any of the ^-cate-
gories introduced in the examples l°-3° in Section 2. 

Let CD be a topological category and CO2 (resp. CO I) the corresponding 
category of pairs (resp. based pairs). In what follows CO2

0 denotes either CO2 

or CO^. For A eCD we identify A with the pair (A, 0)ElO\ If (A, a0)€CO* 
we identify (A, a0) with the pair ((A, a„), ({ a0 }, a0))€££>2. Using this 
identifications we will regard CO as a subcategory of CO2 and COt as a subca-
tegory of CO*. 

Let p : СОг
0 ^o be the covariant functor defined by : 

p (X, A) = A for any (X, A) in CO] ; 
p (/} = f\k : A -> В for any map f : (X, A) (Y, B) in CD]. 

A homology theory 3Z+ on COJ is a sequence of covariant Л-functors 

together with a sequence of natural transformations 

satisfying the following conditions : 

(A) (Excision) : If (X, A) U is an open subset of X whose closure 
is contained in the interior of A, and the inclusion map 

is in CD*, then the induced homomorphism 

is an isomorphism for every integer n. 
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(B) (Exactness) : If (X, and i : A X, 7 : X -> (X, A) are 
inclusions then the homology sequence 

of (X, A) is exact. 
The graded group { 9Cn (p0) }, where p0 is a point, is called the group 

of coefficients of the theory 
Let Ж* = { ЯСп, dn j be a homology theory on If (A, x0)C(X, x0) 

is a pair in let 

Note, tha t according to our convention 

We let 

be the boundary homomorphism of the triple 

If f : ((X, x0), (A, x0)) ((Y, г/о), (В, г/„)) is a map in we may regard f 
as a map of (X, A) into (Y, B) in CD2 and let 

With the above definitions Ж* = .{ Ж„, дп | is a homology theory on Û?l. 
It turns out tha t the assignment Ж* defines one-to-one correspon-
dence between homology theories on CD* and on cO'l. In what follows 
we call ЯС* the reduced homology theory corresponding to the homology 
theory The converse correspondence may be described as follows : 
given a homology theory Ж* on d?l we let 

finally, if 

Similarly, a cohomology theory Ж* on d?l is a sequence of contra-
variant Л-functors 
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together with a sequence of natural transformations 

satisfying the analogous excision and exactness axioms ; the graded 
group 3C" (p„) is the group of coefficients of the theory dt*. 

As in the case of homology theories there is a one-to-one correspondence 
between cohomology theories on CD- and cohomology theories on cV>l. 
We will use the same terminology : the cohomology theory 3C* on 
corresponding to the cohomology theory ЯС* on CO2 will be called the 
reduced cohomology theory. 

Thus, the homology theory (respectively cohomology theory) satisfies 
the Eilenberg-Steenrod axioms, except for the dimension axiom. If 
the dimension axiom is satisfied, then <3C* (respectively 3C*) is said to be 
an ordinary homology (respectively cohomology theory). Note tha t the above 
te rmino^gy differs from tha t of [GWW] where the terms " generalized 
homology (cohomology) theory " and " homology (cohomology) theory " 
are used. 

Remark. — For notational convenience in all tha t follows the homology 
and cohomology theories are denoted by the script letters ВС* and 0C* 
respectively. The symbols H# and H* are used to denote the ordinary 
theories. 

Consider the following condition, called the strong excision axiom : 

(A') (Strong Excision) : If (X; A, B) is an additive triad in CV> with 
А п В б Й ' , and к : (А, А п В ) (X, В) is the inclusion, then 

is an isomorphism for all n. 

We consider also the analogous axiom for cohomology theory. Note 
that , on Ф2 or any homology and cohomology theory satisfies the 
strong excision axiom. 

The axioms for homology (respectively cohomology) may also be intro-
duced in terms of the reduced homology (respectively cohomology) and 
the suspension isomorphism. 

A (reduced) homology theory on is a sequence of Л-functors 
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together with a sequence of natural transformations 

satisfying the following conditions : 
(A) (Suspension) : For any the map 

is an isomorphism. 
(B) (Exactness) : If (X, A) is a based pair in Û2* with A closed in X, 

i : A -> X the inclusion map and p : X -> X/A the identification map, then 
the sequence 

is exact. 

The graded group { dtn (S°) j is the group of coefficients of the theory di*. 
A (reduced) cohomology theory 3t* — crn j on is defined in a 

similar way. 
Now, let = j 3iny a n \ be a homology theory on If (X, A) 

is a pair in we let 

if f : (X, À) -> (Y, B) is a map in we let 

where f : X/A -> Y/B is a map in induced by f . 
Let (X, A) be a pair in There exists a map g : (X , A) ->(C+A, A) 

in such tha t g (a) = a for all a € A. Since any two such maps are 
homotopic we obtain a well-defined homorphism 

Consider the following diagram : 
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in which p : SA A is the identification шар, j : SA (SA, C_ A) is 
the inclusion and e : (C+ A, A) (SA, C_ A) is the excision map. Since p 
is a homotopy equivalence, p* is an isomorphism and we let « n \IJ * ] J n • 
From the definition of induced homomorphism it follows t ha t e* and /* 
are isomorphisms. We let 

It turns out tha t = j BC„, d„ j defined by (1), (2) and (3) is a 
homology theory on We will call = \ 9C„,dn\ an extension of 

= j X„, C7„ ! over $1. It can be easily shown tha t any reduced 
homology theory on Ф* has a unique extension over Ф*. The exten-
sion determines a one-to-one correspondence between reduced homology 
theories on and on' 

Let k* = j ВС", g„ j be a cohomology theory on If (X, A) € К 
we let 

Again, it can be proved that , with a suitable definition of d„, the 
formulas (1') and (2') give a cohomology theory on It can be also 
proved that there exists a one-to-one correspondence between two kinds 
of theories. 

5. CONTINUOUS THEORIES. — Assume that we are given a cohomology 
theory X* on Ф and hence on Let X be an object in ЛСЕ. Let L 
be the smallest linear subspace of E containing X. Let £ = { L a } be 
the system of all geometric subpolyhedra of L containing and directed 
downward by the inclusion. Let 

where iap : L a Lp denotes the inclusion map. If Y is another object 
in JCE and f : X Y is a continuous map, let M denote the smallest linear 
subspace of E containing Y. Let Л1 = { Ma-} be the directed system 
of all geometric subpolyhedra of M containing Y. Extend f to a continuous 
map f : L M. For Ma- G Ж we can find a = oa', L a G i ? such tha t 

Then define 
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Similarly, by the straightforward passage to the limit, one can define 
the relative groups and the homomorphism o. In this way we obtain 
an extension of Ж* over ЛСЕ. This extended cohomology theory (which 
we still denote by Ж*) satisfies the strong excision axiom. Moreover, 
it is continuous, i. е., the following condition is satisfied : 

(C) (Continuity) : If (X«, Aa) is a system of objects of ЛСЕ directed down-

ward by the inclusion and X = Xa , A = ("*] Aa then the inclusion 

maps ia : (X, A) -> (Xa, Aa) induce an isomorphism 

where denotes the corresponding inclusion. 

Let us consider now various theories on Ф and their extensions over JCE. 
Again by the straightforward passage to the limit, one shows tha t any 
natural transformation between two theories on Ф extends to the natural 
transformation between the corresponding extensions on ЛСЕ. 

Remark. — It should be noted tha t if we replace direct limits by inverse 
limits and proceed similarly with a homology theory on ЛСЕ then the 
resulting homology theory on JCE satisfies the strong excision axiom and 
is continuous [i. е., satisfies the condition analogous to (C)] but, in general, 
fails to satisfy the exactness axiom. 

6. SPECTRA. — Various homology and cohomology theories can be 
treated in a unified manner with the aid of spectra. 

A spectrum A is a sequence { A„ } of objects of together with a sequence 
of maps a„ : 2 А Л - ) - Ая+1 in If A = { A„, a„ }, В = { B,„ p„ } are 
spectra, a map i : A В is a sequence of maps fn : A„ B„ in such 
tha t the diagrams : 

are homotopy commutative. Two such maps f and g are homotopic if 
and only if, for each n, fn is homotopic to gn. Clearly, the spectra form 
an Л-category. 
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The simplest example is provided by the spectrum of spheres 
S = { S", an j in which crn : I S" is the natural identification. Another 
important example is the Eilenberg-Mac Lane spectrum К (П) defined 
for an abelian group П. 

Suppose tha t А, В and С are spectra. A pairing f : (A, B) С is a 
double sequence of maps in 

satisfying suitable commutativity conditions (see [GWW], p. 254). Let A 
be a spectrum. Identifying I7 ' A,y with Sp Д Ay Ave obtain the natural 
pairing (S, A) A, where fPi4 : S'' A Aq A ^ is the composite map 

In what follows we shall consider homology and cohomology theories 
on various categories with coefficients in a spectrum. First, we outline 
the construction of such a theory on the category 

We begin by defining the reduced homology .functor 3Cn on with 
coefficients in a spectrum A. Let X € In the following we identify S1 

with J/{ — 1, + 1}• if (s, x ) € J x X , we let s Д x denote the corresponding 
point in the factor-space 2 X = S1 Д X. 

Let 9 : S"+A -> А/, Д X be a representative of an element у of the homotopy 
group Tt„+A (Aa- Л X). Then the composition 

represents an element The assignment 
defines a homomorphism 

We let 

(1) 

If f : X - > Y is a map in then the maps 
induce 

Next, the definition We let 
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be given by the assignment 

and 

be an isomorphism induced by the map 

given by 

We define 

by Gn,k — (— 1)A ш* ° S* and observe the commutativi ty in the following 
diagramm : 

Since the <r„>A are isomorphisms for all sufficiently large к we obtain, by 
passage to the limit with k, a natural isomorphism 

It turns out tha t St* ( ; A) = j Scn, cr„ j defined by (1), (2)and (3) is a 
homology theory on 

The reduced cohomology with coefficients in A is defined as follows. 
Take 9 : X A„+* representing an element S € n (£* X, A„+*) (2). Then 
the composition 

is an abelian group for 
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represents an element [A* (8) € t, (Z*+1 X, An+*+1). The assignment, 
2 -> (o) defines a homomorphism 

and we let 

0 ' ) 

if /* : X Y is in the homomorphisms 

give rise to 

(2') 

To define a", let 

be the identity. Put t ing 

we obtain the suspension isomorphism 

It can be proved tha t so defined is a cohomology 
theory on 

Now, combining the preceeding remarks with those in Section 4, we 
get for a spectrum A the homology 0Ct ( ; A) and the cohomology 
3C* ( ; A) on the category Ф2 with coefficients in A (3). It is of impor-
tance tha t both 9C* ( ; A) and di* ( ; A) are also functors of the second 
variable ; thus, given a map f : A В of spectra, we have natural trans-
formations 

between corresponding theories. 
We note tha t if A = К (П), then the corresponding homology and coho-

mology theories are naturally isomorphic to the ordinary singular homo-
logy and cohomology theories with coefficient group П. The homology 

(3) I t can be shown [2] t ha t , under a countabil i ty restriction on the coefficients, any 
homology (resp. cohomology) theory on Я is of the form ( ; A) [resp. X* ( ; A)] 
for some spectrum A. 
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and cohomology theory with coefficients in S are isomorphic to the stable 
homotopy and cohomotopy theory, respectively. 

A par t of the preceeding discussion is now summarized in the following. 

6 . 1 . T H E O R E M . — To every spectrum A corresponds a theory 9C* ( ; A) 
on JCE called the cohomology theory with coefficients in A. Every such theory 
is continuous and satisfies the strong excision axiom. Moreover, the assign-
ment A -> 3C* ( ; A) is natural with respect to maps of spectra. 

7. HOMOLOGY THEORY ( ; A) ON © 2 . — In the t reatment of duality 
in the infinite dimensional case we shall need our homology groups to be 
defined for open subsets of a normed space. The homology with coeffi-
cients in a spectrum A on Ф2 described in Section 6 would not be anymore 
sufficient for our purposes. We must turn therefore to the larger cate-
gory ® and define homology theory 8C* ( ; A) on ©2 and the correspon-
ding reduced homology &C* ( ; A) on 

Let A = { A/(, a t ) be a spectrum and let (X, Y) be a pair in Let 
D* = { я € R"; || я || ^ 1}. We will identify (2 Dn, 2 S""1) with (D"-1, S"). 
Then, repeating considerations of the preceding section, we obtain homo-
morphisms 

with the following commutative diagram : 

Let 

We let 

where dn>k is the boundary homomorphism of 
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It is clear from the definition of 0„>k tha t the following diagram commutes : 

We let 

It is clear from the above definitions tha t 5z4 — j d„ } satisfies 
the exactness axiom. It remains to prove tha t УС* satisfies the excision 
axiom. Before doing this we will make several comments and prove some 
lemmas. 

Let Y be an object of and 

denote corresponding inclusions. Then we have a commutative diagram : 

Thus, passing to the direct limit, we obtain a commutative diagram 

If Y € then e#, j* and p* are isomorphisms. This, in view of the defini-
tion of 0n> proves tha t the homology theory defined above coincides on 'I 
with tha t defined in the preceding section. 

Then 
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Since we have a natura l identification 

We let 

Then Д is an Л-functor f rom 

7 . 1 . L E M M A . — Let (A, A 0 ) € ^ * . Then there exist a neighbourhood U 

of a0 and a continuous map d : A X I -> A (a deformation of A) such that : 

Proof. — Since a n y CW-complex is locally contractible ([18], p. 420) 
we can find an open neighbourhood Y of a0 which is contractible in A. 
Thus there exists a continuous m a p h : V X I -> A such t h a t : 

Choose a neighbourhood U of a0 such t h a t U С Y and let 0 : A I be a 
continuous funct ion equal 1 on U and 0 outside V. Then the required 
deformation is defined by 

7 .2 . L E M M A . — Let j : (X, Y) (X l f Y,) be an inclusion in and let 
a€<?e„(X, Y ; A ) . Supp ose j# (a) = 0. Then there exist an inclusion 
i : (K, L) (Ki, LI) in a commutative diagram of maps in : 

and such t h a t 
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Proof. — Let 

represent a. Set m = n + k. Since (a) = 0 there exists а map (a 
homotopy in 

such that for all z € D m , / {x, 0) = <p (*), X (*> = *• A PP ] y i n g L e m -
ma 7 .1 with A = A* we obtain a neighbourhood U of the base-point 
of Aa and a deformation d : А* X I A* satisfying the conditions (i)-(iii) 
of 7.1. Let Y be a neighbourhood of the base-point of A* such tha t V С U. 
There exists a subpolyhedron K I C D ' " X I such that 

We let 

For xeKi we have © (x) = (ф4 f (x)), where 

are continuous mappings. Let f : (K, L) (X, Y) be given f(x) = f (x) 
for i € K and define a map 

by setting 

Let denote the element represented by ф. Define a map 

by setting 
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Finally, consider a homotopy 

defined by 

where d (a /\x,t) = d (a, t) Д x. Since Л„ = 9, hi — (id Д f ) ° ф, Д ((3) = a 
and the proof is completed. 

From Lemma 7 . 2 we obtain a t once 

7 . 3 COROLLARY. — Lei ( X , Y ) € © 2 and let { ( X « , Y « ) } 6e the family 
of all compact pairs ( X A , Y A ) C ( X , Y ) directed inward by inclusion. Then 
the inclusion maps IA : (XA, YA) -> (X, Y) induce an isomorphism 

7.4. T H E O R E M . — ( , ; A) | resp., I Ë * ( , ; A)] is a homology 
theory on (resp., on 

Proof. — In view of our preceding considerations it suffices to prove 
t h a t satisfies the excision axiom. Let (X, Y) be a pair in t52, let U 
be an open subset of Y such t h a t U С V, where Y denotes the interior of Y. 
Let Xo = X - U, Yo = Y - U and let 

be the excision map . 
To prove t h a t e* : 9Zn (X«, Y 0 ; A) ->• 3tn (X, Y ; A) is onto, let a be an 

arb i t ra ry element of X n (X, Y ; A). By 7 . 2 there exist a pair (K, L) € Ф2,  
an element ( 3 ( K , L ; A) and a continuous map f : (K, L) (X, Y) 
such t h a t f* ((3) = a. There exist subpolyhedra M, N c K such t h a t 
f{M)CX - U. 

Let i : (K, L) -> (K, N) denote t h e inclusion. There is a commutat ive 
diagram : 
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Hence (/))* (?4) = x. Now consider a commutative diagram : 

where e0 denotes the inclusion and g (x) = f (x) for i S M . Since e0 induces 
an isomorphism of homology groups there exists P2€3f<!n(M, N f l M ; A) 
such tha t (e0)# (?s) = ?i- Hence e* (g* (?2)) = a. Thus we have proved 
tha t e* is an epimorphism. 

To prove tha t e* is a monomorphism suppose e* (a) = 0 for some 
* e X „ (Xo, Y 0 ; A). By 7 .2 there exists an inclusion in Ф2, 

a commutative diagram of continuous maps : 

and $еЭСп (Ко, L0 ; A) such tha t i* (?) = 0, (/„)«, (?) = a. Using 
barycentric subdivision Ave may assume tha t К has a triangulation such 
tha t any simplex of К is mapped by / into one of open subsets X — U, V. 
Then we may assume, without loss of generality, tha t L consists of all 
simplexes which are mapped by f into V. Let M be a subcomplex of К 
consisting of all simplexes mapped by f into X — U. Thus M U L = К 
and (K o, L0) С (M, M П L). Consider the following commutative diagram 
in which j, к denote corresponding inclusions and g is defined by 
g{x) = f{x), xeM. 

We have (к »;)* (?) = к* (;* (?)) = i* (?) = 0. Since к is an excision 
j* (?) = 0. Thus a = (/„)* (?) = g, (/* (?)) = 0. Therefore e* is a mono-
morphism and the proof of the theorem is completed. 
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CHAPTER II 

BASIC CATEGORIES 

This chapter is devoted to a summary of basic definitions and results 
related to the concept of a compact vector field which will enter in our 
subsequent considerations. We introduce here two categories of primary 
interest (the category of compact vector fields and the Leray-Schauder 
category) and two geometrical constructions of further importance (the 
generalized suspension and the cone functors). 

In the last section, with the aid of the generalized suspension, some 
examples of geometrical interest are given. The cone construction will 
be used later on (Chapter V) in definition of the relative cohomology 
functors. 

1. T H E DIRECTED SET £ (E). — Let E be an infinite dimensional normed 
space.. By 

we shall denote the family of all finite dimensional linear subspaces of E. 

We shall consider £ as a partially ordered set with an order relation 
a ^ (3 defined by the condition : 

Evidently, the relation ^ converts the family £ into a directed set (£, 
which will be denoted simply by £ . 

For notational convenience we establish one-to-one correspondence 
а «и» £ л between the symbols a, (3, y, . . . and La, Lp, LT, . . . and in the 
formulas to occur we replace frequently one sort of symbols by another. 
Thus, for example, we shall write a ^ (3 instead of L a ^ Lp. 

Given an element a of £ we let d (a) denote the dimension of the linear 
space La. A relation a ^ (3 in £ will be called elementary provided 
d (a) = d ([3) — 1. Given an arbitrary relation a ^ [3 in £ , by a chain 
joining a and [3 we shall understand a finite sequence 

of elements in £ such tha t a, < a I+1 is elementary for each i — 0, 1, . . ., 
к - 1. 
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If X is a subset of E and a € £ , we let X a = X n L a . Evidently, the 
subset £ x of £ defined by 

is cofinal in £ . 
If X and Y are two subsets of E and f : X -> Y is a mapping such t h a t 

/ ( X J C Y J then by / а : Xx Y A we denote the contraction of f to the 
pair (Xa, YA). 

2 . COMPACT MAPPINGS. 

2 . 1 . D E F I N I T I O N . — A continuous mapping F : X Y between topo-
logical spaces X and Y is called compact provided it maps X into a compact 
subset of Y. Let a be an element of the directed set £ and F : X E ; 
we say t h a t F is an a-mapping provided F is compact and F ( X ) C L A . 
If F : X E is an a-mapping for some a G £ it is called a finite dimensional 
mapping. Compact mappings will be denoted by the capital letters F, 
G, H. 

The following two facts are of basic importance : 

2 . 2 LEMMA (Approximation Lemma). — Let U be open in E and F : X U 
be a compact mapping. Then for each £ > 0 there exists a finite polyhedron 
P E C U and a mapping F £ : X U such that : 

(i) F£ (X) С P £ ; 
(ii) || F (x) - F£ (x) II < £ for each я<=Х; 

(iii) F and F£ are homotopic, 

Proof. — Given £ > 0 (which we may assume to be sufficiently small) 
there exists a finite number of open balls V (г/,, e) (i = 1, 2, . . . , k) such 

tha t F (X) С { J V ( y i , e ) C U . 

Put t ing for each ж € Х , 

where 

we obtain the mapping F£ satisfying (ii) and (iii) ; clearly the values of F t 

are in a finite polyhydron P £ C U with vertices г/,, i/o, . . y k . 
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2 . 3 . LEMMA (On extension of Compact Mappings). — Let A be closed 
in a metric space X and F : A E be a compact mapping. If either : (i) E is 
complete or (ii) F is an o/.-mapping, then there is a compact mapping F : X ->• E 
being an extension of F over X and such that F (X) Cconv (F (A)). 

Proof. — Since the convex hull of a relatively compact set in a complete 
E is also relatively compact [14], our assertion follows at once from the 
Dugundji Extension Theorem [3]. 

Remark. — If A is a retract of X (for example : X = К the unit ball 
in E and A = S its boundary, cf. J . Dugundji [3]) then, clearly, the assump-
tion of the completeness of E is not needed. In general, however, it is 
not known to the authors whether a compact mapping F : A -> E admits 
a compact extension over X, without assuming E to be complete. 

3. COMPACT VECTOR FIELDS. — Notation. — Given two subsets X and Y 
of E and a continuous mapping f : X Y we denote by the same but 
capital letter the mapping F : X -> E defined by 

F(x) = x - f ( x ) , xeX. 

3.1. DEFINITION. — Let X and Y be arbitrary subsets of E. A mapping 
f ; X Y is said to be a compact vector field (or simply a compact field) 
provided the map F : X ->• E is compact. 

The set of all compact vector fields with domain X and range Y will 
be denoted by € (X, Y) and its elements will be denoted by the small 
letters f , g, h  

3 . 2 . PROPOSITION. — Let f : X -> E be a compact vector field. Then : 
(i) if X is closed (respectively bounded) in E, then so is the set / ( X ) ; (ii) if 
C c E is relatively compact, then so is f~~l (C). 

Proof. — To prove (i), let { yn } be a sequence of points in /"(X), i. e. 
yn — xn — F (xn), xneX and suppose t ha t lim yn = y*. Since F is 

compact we may assume, without loss of generality, t ha t F (xn) converges 
to a point y. Then lim xn = y0 + y and hence, by continuity of f, 

lim f (xn) = f (yo + y). Since X is closed, we have y0 = f(y0 + y ) € f ( X ) 

which completes the proof of (i). The proof of the remaining assertions 
is similar. 

3 .3. PROPOSITION. — If f : X Y is a one-to-one compact vector field 
of a closed set X onto Y, then f is bicontinuous and f~l : Y X is a compact 
field. 
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Proof. — This follows from the preceding proposition. 
Some other simple but important properties are summarized in the 

following : 

3 .5. PROPOSITION. — The class of compact vector fields has the following 
properties : 

(i) If f and g are compact fields (respectively a-fields), then so is their 
composition gf; 

(ii) If f is a compact field (respectively an a-field), then so is every 
contraction, and in particular every restriction, of f-, 

(iii) The inclusions i : A X and in particular the identities l x : X -> X 
are a-fields for every 

(iv) Iff:X-+*Yisa continuous mapping between two subsets of E such 
that X is compact, then f is a compact field; i f , in addition, X and Y are 
contained in LA, then f is an y.-field. 

It follows from Proposition 3 . 5 tha t subsets of E as objects and compact 
vector fields as maps form a category. This category will be denoted 
by С (E) and called the category of compact vector fields in E. For each 
a e - C we have a dense subcategory <£x (E) of € (E) whose maps are x-fields 
between the subsets of E. 

Clearly, if a ^ p is a relation in then 

Now we define a category 

as the union of all categories Ca (E) for a € C. Evidently, <C0 (E) is dense 
in С (E). * In what follows the maps of <Г0 (E) will be called finite dimen-
sional fields. 

4. HOMOTOPY OF COMPACT VECTOR FIELDS. — Notation. — Given two 
subsets X and Y of E and a homotopy h, : X Y (0 ^ t ^ 1) Ave shall 
denote by h : X x I - > Y the mapping defined for (x, t)eXx I by 
h (x, t) = h, (x). By the capital H we shall denote the mapping 
H : X x l E defined by 

4 .1 . DEFINITION. — Let X and Y be two subsets of E. A family 
of compact vector fields ht : X -> Y depending on the parameter t {O^t^. 1) 
is called a compact homotopy provided the mapping H : X x l E is 
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compact. Two compact vector fields f , g : X Y are said to be compactly 
homotopic, provided there exists a compact homotopy ht : X -> Y such 
t h a t ho = ft hi — g. 

We shall write f ~ g to mean t h a t the fields f and g are compactly 
homotopic. 

The relation ~ is an equivalence relation in each of the sets С (X, Y) 
and i t clearly satisfies the compositive proper ty in the definition of an 
Л-category. Consequently, it converts t he category of compact vector 
fields into an Л-category (<C, When there is no risk of misunder-
standing this category will be denoted simply by <£. 

Now an elementary proposition concerning compact homotopies which 
will be f requent ly used later on. 

4 . 3 . P R O P O S I T I O N . — Let ht : X -»- E be a compact homotopy. Then 
(i) if X is closed (respectively bounded) in E then so is the set / I ( X X I ) ; 

(ii) if C c E is relatively compact, then so is the set h~~l (C). 

Proof. — The proof is similar to t h a t of Proposition 3 .2 . 

4 . 3 . P R O P O S I T I O N . — Let X C E , U be an open set in E " ~ N and let 
f , g : X U be two compact fields. If the inequality 

holds for each # € X , then the fields f and g are compactly homotopic. 

Proof. — The above inequal i ty implies t h a t for each a; € X the segment 
[f (x), g (ж)] joining f (x) and g (x) in E"~" is entirely contained in U, hence 
the formula 

defines a required compact homotopy between f and g. 

4 . 4 . DEFINITION. — Le t X a n d Y be t w o subse t s of E a n d a b e a n 
element of the directed set if. A family of a-fields ht : X Y is called 
an a-homotopy, provided H : X x I -> E is an a-mapping. Two a-fields 
f , g : X Y are called a-homotopic if there is an a-homotopy ht : X -> Y 
such t h a t ha — f and /t, = g. 

We shall write f ~ g to mean t h a t a-fields f and g are a-homotopic. 
The relation of a -homotopy is an equivalence relation in (X, Y) 

and therefore decomposes the above set into disjoint a-homotopy classes. 
If f е€л (X, Y), we let [f]x denote the a-homotopy class which contains f 
The set of these classes will be denoted by ixa(X, Y). We note fur ther 
t h a t the relation ~ satisfies the compositive proper ty in the definition 
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of an Л-category and consequently converts into an Л-subcategory (€ a s) 
of (С, 

4 . 5 . PROPOSITION. — Let ht : X E be a compact homotopy. Then 
for every t 0 there exists an у.-homotopy lil : X E such that 

Proof. — This clearly follows from Lemma 2 .2 . 

5 . T H E EXTENSION PROBLEM FOR COMPACT FIELDS. — L e t ht : X -V Y  

be a compact homotopy (respectively an a-homotopy) and A be a subset 
of X. We let ht | A = h\ denote the partial compact homotopy (respec-
tively a-homotopy) ; in this case, we shall write also h', С ht and say t h a t 
ht is an extension (respectively an a-extension) of h't over X. 

Given a pair (X, A ) c E with A closed in X and a field (respectively 
an a-field) f : A -> U we may consider the extension problem for f , i. е., 
the problem of extending f over X in С (respectively in € a) . 

The following important lemma asserts t h a t under some hypotheses 
this problem depends only on the homotopy (respectively a-homotopy) 
class of a given field f . 

5.1. LEMMA (Homotopy Extension Lemma). — Let (X, A ) be a pair in E , 

A be closed in X and U an open set in Е*~". Let h[ : A U (0 ^ t ^ 1) 
be a compact homotopy such that h'0ChuG£(X, U). If either : (i) E is 
complete or (ii) h, is an z-homotopy, then there exists a compact homotopy 
(^-homotopy) ht : X -> U such that h[ Cht. 

Proof. — Assume first t h a t n = 0, i. е., t h a t U is open in E. Let us pu t 
T = ( X x { 0 )) U ( A x I). By assumption, there is a compact mapping 
(a-mapping) H* : T -»- E such tha t 

and 

Since T is closed in X x l , there is, in view of Lemma 2.2 , a compact 
extension H0 : X x l E of H* over X x L Put t ing 

we may suppose tha t the closed set В is not empty. We note fur ther 
t ha t A and В are evidently disjoint. Now take a real-valued function 

http://rcin.org.pl



1 1 
К . G E B A A N D A. G R A N A S 

X : X -> I such t h a t X (В) = 0 and X (A) = 1 and pu t 

It is easily seen t h a t ht : X U is a required compact homotopy. Next 
assume t h a t n > 0. This case reduces to the proved special case with 
the aid of the linear projection onto 

5 . 2 . COROLLARY. — Let ( X , A ) be a pair in E with A closed in X and 
f0, go : A -> U two a-homotopic a-fields. If there exists an a-extension 
f : X -> U of f0 over X, then there exists also an a-extension g of g0 over X 
and such that f and g are a-homotopic. If the space E is complete, the above 
is true for arbitrary compact fields f0 and g0. 

Remark. — If X = К is the uni t ball in E and A = S stands for its 
boundary then the Homotopy Extension Lemma and its corollary hold 
without assuming E to be complete (because in this case T = A x I U X x j O j 
is a re t rac t of X x I). It is not , however, known to the authors whether 
the above lemma is t rue for arbitrary-closed pairs wi thout the above 
additional hypothesis. 

6 . T H E GENERALIZED SUSPENSION AND THE CONE FUNCTORS. — Notation. 
— Given a linear (closed) subspace M of E we let S„ denote the unit 
sph re in M. We assume t h a t we are given a direct sum decomposition 
E = M ф N where M and N are complementary linear subspaces of E. 

6 .1 . D E F I N I T I O N . — Given a subset X of N we let 

be the union of all segments in E joining points ж in X with points у in the 
unit sphere SM. Given two subsets X and Y of N and a mapping f : X Y 
we let S„ ( f ) : SM (X) S„ (Y) be the mapping defined for xeX, yÇ. SM 

and O ^ i ^ l by 

We say t h a t SM (X) and S„ ( f ) are the M-suspensions of X and f respectively. 

For a linear subspace N of E denote by € (N) the category whose objects 
are subsets of N and whose maps are continuous t ransformat ions between 
the objects. 

Note t h a t for any two composable mappings f and g in € (N) we have 
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It follows t ha t the assignments X S„ (X), f ь» S4 ( f ) define a covariant 
functor SM from € (N) to € (E) and called the generalized M-suspension 
functor. 

6 .2 . PROPOSITION. — The M-suspension functor S„ has the following 
properties : 

(i) If X is closed (respectively bounded) in N, then so is S„ (X) in E ; 
(ii) If f is a compact field (respectively an a-field), then so is S„ ( f ) ; 

(iii) If the fields (respectively a-fields) f and g are compactly homotopic 
(respectively a-homotopic), then so are their M-suspensions SM ( f ) and S„ (g). 

Proof. — (i) is evident. To prove (ii), write F (x) = x — f (x) and take 
a compact set C c N such tha t F (X)CC. Note tha t the set C4 given by 

is also a compact subset of N. Since for an arbitrary point 

of SM (X) we have 

it follows t ha t SM (f) is a compact field. The proof of (ii) is completed. 
The proof of other assertions is similar. 

6 .3 . PROPOSITION. — Let N be of finite dimension and X be a compact 
subset of N. Let us put U0 = N — X and U = E — SM (X). Then the 
inclusion map i : U0 U induces an isomorphism 

of the homotopy groups for all n < dim N — 1. 

Proof. — By assumption, N = Lao for some a0 € C. Let us put 
A = { a a ^ a0 }. Clearly, £ 0 is a cofinal subset of £ . Now, for 
any relation a ^ (3 in £ 0 , let 

denote the inclusions. Consider the corresponding direct system over 
£ 0 of homotopy groups { т.„ (Ua); (iep)* } and the direct family (ia), of 
homomorphisms 

It follows from Lemma 2 . 2 tha t 
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is an isomorphism. On the other hand, if n < dim N — 1, then, by 
finite dimensional argument, it is clear tha t 

is an isomorphism and our assertion follows. 

6 . 4 . D E F I N I T I O N . — Let у be A fixed point SJ|. We define the cone 
functor С : € (N) <£ (E) by put t ing for X c N 

and 

for any mapp'ng f : X -> Y with X, Y c N . 

6 . 5 . PROPOSITION. — Thz cone functor С has the following properties : 
(i) If X is closed (respectively bounded) in N, then so is С (X) in E ; 

(ii) If f is a compact field (respectively a-field), then so is С f; 
(iii) If the fields (respectively a-fields) f and g are compactly homotopic 

(respectively a-homotopic), then so are С f and С g. 

7 . T H E L E R A Y SCHAUDER CATEGORY £. — Denote by £ ( E ) or simply 
by £ the Л-subcategory of С (E) generated by closed bounded subsets of E, 
£ (E) will be called the Leray-Schauder category corresponding to the linear 
space E. 

In what follows, the category £ being of primary interest, we shall be 
concerned with such geometrical properties of its objects tha t remain 
invariant under the equivalences or homotopy equivalences in £ . 

Remark. — In all t ha t follows the objects of the Leray-Schauder category 
£ (E) will be simply called the objects. 

7 . 1 . PROPOSITION. — There exist two equivalent objects X I and X 2 

such that Hi (E — X4) ^ 0 and 14 (E — X2) rp 0. 
Proof. — Let E = M 0 ' N be the direct sum decomposition of E such 

tha t dim N = 3. Let Y t be the unit interval in N and Y2 С N be the 
Artin-Fox example (4), i. е., the set homeomorphic to Yi with 
it4 (N — Y2) fp 0; let f : Yi Y2 denote the corresponding homeo-
morphism. 

Now we let 

Clearly, by 6.2, 

(4) Cf. E . ARTIN and R . F o x , Some wild cells and spheres in three-dimensional space, 
Annals of Math., 1948, p. 979-990. 
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is an invertible compact field and thus the objects X, and X2 are equivalent 
in С (E). On the other hand, by 6.3, 

The proof is completed. 

Remark. — It can be shown that all the homology groups Hy (E — X t ) 
and H,y (E — X2) vanish. By taking, instead of Y2, the Alexander horned 
sphere in N and by repeating the above construction, one obtains two 
equivalent objects X j and X2 in С (E) such tha t 

We conclude this section by introducing some subcategories of C. 
Given a G i? we let 

and denote by CI a subcategory of Ca generated by the objects X for 
which the intersection X a = X n L a is non-empty; clearly the relation 
of a-homotopy in Ca converts Сл and £*a into Л-subcategories (Cx, 2) 
and (C:, 5) of (€ . , 5). 

7 .2 . DEFINITION. — Let £ 0 = П £ . We introduce in £ 0 the relation 
of finite dimensional homotopy % as follows : Given two finite dimensional 
fields f G £a (X, Y), gG (X> Y ) w e w r i t e f* 8 provided there is a y-homo-
topy ht : X Y joining f and g such tha t a ^ y and [i ^ y. Clearly 
(1*0, is an Л-subcategory of (£, 

CHAPTER III 

CONTINUOUS FUNCTORS 

The basic constructions and results of this paper depend largely on the 
continuity property of the functors under consideration. This chapter 
is devoted to the above property and its main result can be briefly stated 
as follows : every continuous functor defined on the subcategory £ 0 

of £ admits the unique extension over £ . To avoid undesirable repeti-
tions, we shall consider in detail the contravariant case only. The dual 
results of interest in the covariant case will be merely stated and the proofs 
will be left to the reader. 

Throughout this chapter Л0 stands for a contravariant and [J.„ for a cova-
riant functor from £ 0 to the category el*. 
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1. APPROXIMATING FAMILIES AND THE CARRIERS. — Notation, — iT0 being 
dense in XT, we let for X in 

for a field f : X Y in C0 we denote by 

the maps in <X* induced by f . 

1.1. DEFINITION. — Let Y be an object. A family { Y*} of objects 
indexed by a directed set dX is said to be an approximating family for Y 
provided 

(i) Y„ С Y* for any relation к < n in d t \ 

In case St — { 1, 2, . . . } such a family will be refered to as an 
approximating sequence for Y. 

We note the following evident proposition : 

1 . 2 . P R O P O S I T I O N . — Let Y be an object and A be an arbitrary element 
of If {Y к }*e<rt is an approximating family for Y, then so is the 
family { Y / ( N L A for Y A . 

Let Y be an object and an approximat ing family for Y. 
Denote by 

the corresponding inclusions, all of them being finite dimensional fields. 

We have the following commutat ive relations in € 0 : 

Given an object Y and an approximat ing family we let 

In the contravar iant case, f rom the commuta t iv i ty relations (1) we infer 
t ha t the objects X (YA) together with the maps i*kn given for every rela-
tion к < n in ЭХ, form a direct system { X (YA) ; i*kn ) in cl* over dl and the 
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family ' j*. j of maps 

is a direct family of maps in cl*. 
Consequently, we have the direct limit map in Cl* 

In the covariant case we have an inverse system j of objects 
in cl* over 01, an inverse family {_/* J of maps 

and the inverse limit map in < 

1.3. DEFINITION. — We shall say tha t a functor X0 : £ 0 cl* (respec-
tively a functor |A0 : £*0 Cl*) is continuous provided for every object Y 
and an approximating family { YA }*e for Y, the map Lim {j* } ^respec-
tively the map Lim {jl }\ is invertible in the category cl*. 

Given a pair of objects (X, A) we denote by jAX : A X the corres-
ponding inclusion and by j l x the map 

In the following definition we assume that Cl* is either the category &ns* 
or cl ; the zero element С in (X, • ) G &ns* is the distinguished element * G X. 

1.4. DEFINITION. — Let A be an object, x be a point in A and £ a non-
trivial element of X (A). An object Sx (£) = Y contained in A and 
containing x is called a carrier of £ (with respect to x) provided j*A (ç) И 
A carrier S.r (;) of the element £ is said to be essential (with respect to x) 
provided for any object X c S . r ( ç ) containing x we have A (£) = 0. 

The following lemma expresses an important property of continuous 
functors : 

1.5. LEMMA. — Let A be an object andxG A. If the functor X0 : £*0 -*• cl* 
is continuous, then for any non-trivial element £ of X (A) there exists at least 
one essential carrier Sx (ç) of £ with respect to the point x. 

Proof. — For an element \ 0 consider the set <0X of all carriers Sx (£) С A 
of ç partially ordered downward by inclusion. If { Ya is a totally 
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ordered subset of then the intersection Y = YA is a non-empty 
kesn 

object and { Y* is an approximating family for Y. From the conti-
nuity of the functor X0 we infer tha t Y is a carrier and thus { Y a }*e<n. has 
a lower bound in By the Zorn Lemma, the set contains a minimal 
element which is a required essential carrier for 

2. APPROXIMATING SYSTEMS. — Notation. — For an object Y and 
a natural number к we let 

To a sequence { Y A} we assign the enlarged sequence j YA ! by putt ing 

We begin with a proposition concerning approximating sequences. 

2 . 1 . PROPOSITION. — Let { X / ( } and { Y A } be two approximating sequences 
for X and Y respectively and let f : X4 н» E be a compact field. Then : 

(i) { XA U YA } is an approximating sequence for X U Y ; 

(ii) j XA- I is an approximating sequence for X ; 
(iii) { f (XA) } is an approximating sequence for f (X). 

Proof. — Properties (i) and (ii) are evident. In order to establish (iii) 
it is sufficient to prove the inclusion 

Let yG (XA) ; we have y — f(xk), where xk G X/F and thus y = xk — F (xk). 
к-1 

Since F is compact we may assume without, loss of generality tha t lim xk = x. 

Consequently, y — lim f (xk) — f(x). Since xG Xk, this completes 
*=0° *=i 

the proof. 

2 . 2 . DEFINITION. — L e t X a n d Y be t w o ob jec t s a n d le t f : X Y 
be a compact field. A sequence { YA, fk} of objects Yk and aA-fields 
fk : X -> YA is said to be an approximating system for f , provided : 

(i) { YA j is an approximating sequence for Y; 
(ii) fk ~ j A f in £ where jk : Y -> Yk is the inclusion ; 

(iii) fk ъ ikn fn in £ 0 , where ikn : Y„ Y/( is the inclusion (k < n). 
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2.3. Proposition. — Let f : X -> Y be a compact field. Then, for each к, 
there is an A,,- field fk : X YA, where Y A = Y(A) , such that 

moreover { YA, Д i is an approximating system for f . 

Proof. — This follows clearly from Propositions 11.4.5 and 11.4.3. 
In what follows any system { YA, /A } as in Proposition 2 . 3 will be called 

a standard approximating system for f . 
We note the following evident proposition : 

2 .4. PROPOSITION. — Let { YA, Д J be an approximating system for 
a field f : X Y and { Y A ! be an approximating sequence for Y such that 
for each к we have Y A С Y A . Denote by U :; Y * Y A the corresponding 
inclusion and put fk = lk «> fk. Then } YA, fk ! is again an approximating 
system for f . 

In the rest of this chapter, we assume tha t 

are continuous /i-functors from to cl*. 
Let X and Y be two objects and f : X Y be a compact vector field. 

Let { YA, fk } be an arbitrary approximating system for f . 
In view of the definition of an approximating system, to an Л-commu-

tative diagram in €0 : 

corresponds the commutative diagram in 

Consequently j f* ! is a direct sequence of maps in cl* and therefore 

Similarly, { f l ) is an inverse sequence of maps in cl* and 
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2 . 5 . P R O P O S I T I O N . — Let { Y/(, Д } and ) Y*-, Д | &E TWO approximating 
systems for f as in Proposition 2 .4 and let : Y Y/„ i* : Y ->• YA denote 
the corresponding inclusions. Then we have 

Proof. — Since for each к the diagram : 

is commutative in C0, it follows tha t its image under in Cl* is also 
commutative 

By considering the corresponding commutative diagram in the category 
of direct systems of objects in cl* and applying to it the direct limit functor 
we obtain the following commutative diagram : 

This, in view of the continuity of X0, implies our assertion. 
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2 . 6 . PROPOSITION. — Let { Y*, Д J, \ Y A , Д ! be two approximating 
systems for a field f : X -> Y with the same sequence | YA j. Consider the 
enlarged sequence WA = ! Y A », denote by ik : Y -> WA, h : YA \VA the 
corresponding inclusions and put gk = J* ° Д, G* = /А ° fk. Then { WA, GK} 
and ! WA, GA j are again approximating systems for f and we have 

Proof. — In view of the definition of an approximat ing system, the 
fields А, Д : X YA are compactly homotopic for every /с. - Let 
HT

K : X YA be a corresponding compact homotopy joining Д and Д. 
In view of Proposition 1 1 . 4 . 5 there exists a aA-homotopy Л)*1 : X E 

such t h a t 

Clearly for each point (x, t) G X X I we have h\k) (x) G WA and conse-
quently h\k] may be viewed as a aA-homotopy h\k) : X -> WA. Assuming 
without loss of generality tha t Д and Д are aA-fields, we evidently have 
gk * h'f , gk m h\k) and therefore gk ъ g*. 

This implies g* = g* for each k, and the proof is completed. • 

2 . 7 . PROPOSITION. — Assume that { Y A , Д J and J Y A , Д I are two arbi-
trarily given approximating systems for a field f : X Y. Denote by 
jk : Y YA, ik : Y YA the corresponding inclusions. Then we have 

Proof. — Let us p u t for every positive integer к 

In view of Proposition 2 .1 , j WA- ! is an approximating sequence for Y. 
Denote by 

the corresponding inclusions and define the fields 

by put t ing 
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Note t h a t { WA, gk} and { WA, gk j are both approximating systems for f . 
It is clear t h a t the pairs { WA-, gk ), I Y f k } and { WA-, gk}, { YA, fk} satisfy 
the assumptions of Proposition 2 .5 . Now, our assertion follows from 
Proposition 2 .6 . 

3 . T H E E X T E N S I O N THEOREM FOR CONTINUOUS FUNCTORS. 

3 . 1 . D E F I N I T I O N . — Given A compact field f : X Y , let { Y k, fk) 
be an approximating system for f and let jk : Y YA be the inclusion. 
We define the induced maps 

and 

by the following formulas : 

3 .2 . PROPOSITION. — The definition of f* and f* does not depend on the 
choice of an approximating system { YA, fk I for f . 

Proof. — In the contravariant case this clearly is a reformulation of 
Proposition 2 .7 . The proof in the covariant case is similar and is omitted. 

3; 3. DEFINITION. — Define the functions X : £ Cl* and [A : £ el* 
by put t ing for X in £ 

and for a compact field f in £ 

3 . 4 . PROPOSITION. — If f s £ 0 , then we have X0 ( f ) = X ( f ) and [X0 ( f ) = \J-{f). 
In other words, X and [J- are extensions from £a over £ of the functors X„ 
and (J-0 respectively. 

Proof. — This follows from the definition 3 . 1 by taking for f an approxi-
mating system J YA, /A } with YA = Y and Д = f for all к = 1, 2, . . . . 

3 . 5 . PROPOSITION. — X and are h-functors from the Leray-Schauder 
category £ to the category cl*. In other words, the induced maps f* and 
satisfy the following two properties : 

(a) if the fields f and g are compactly homotopic, then f* — g* and = g* ; 
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(b) for any two composable compact fields f and g we have 

Proof of the property (a). — Assume that the fields f , g : X Y are 
compactly homotopic and denote by Л, : X Y { O ^ t ^ - 1 ) a compact 
homotopy such that 

By Proposition I I . 4 . 5 there exists an aA.-homotopy 
satisfying 

Let us put fk = and gk = h'f for every к. It follows from Propo-
sition 2 . 3 tha t { VA), fk) and { Y1*', gk } are approximating systems for f 
and g respectively. Since for every к the aA-fields f>,, gA. : X Y(A) are 
homotopic in £„, it follows that 

Consequently, Ave have f* = g* and the proof is completed. 

Proof of property (b) (Special case : for finite dimensional g). — Given 
two compact fields f : X Y and g : Y Z, assume that g is an a0-field 
and let h — gf. We shall prove that h* = f*°g*. 

Take a standard approximating system { Y(A), Д } for f\ Lemma I I . 2 . 3 
implies t ha t there exists an a0-field g : Y(1) E such that g is the contrac-
tion of g to the pair (Y, Z). 

Let us put for every к = 1, 2, . . . 

By Proposition 2 . 1 both {W*} and j WA j are approximating sequences 
for Z. Now consider the following diagram : 

in which ik and are the inclusions, gk is defined by 
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and 

Since for every к both Д and gk are finite dimensional we may apply 
to the fields 

the functor X0 and therefore we have 

Consequently, 

and thus 

Further, it is clear tha t j W/;, hk ! and | W/„ gk | are approximating 
systems for h and g respectively. Therefore, it follows from the last 
formula and Definition 3 . 1 tha t h* = f* ° g*, and the proof is completed. 

Proof of the property (b) (General case). — Let f : X Y and g : Y Z 
be two compact fields and let h — gf. 

Let { Z(A), hk j and { Z( ' ', gk} be two standard approximating systems 
for h and g, respectively. From the inequalities 

it follows by Proposition 11.4.3 that for every integer к the fields 
gk f , hk : X-y Z(A> are homotopic in i \ This implies, in view of property (a), 
tha t h*k = -(gk f)*. Since each gk is finite dimensional we have, by the 
proved special case of property (b), 

and thus we obtain 

This implies h* = f* ° g* and the proof is completed. 
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We may ПОЛУ summarize our discussion in the following theorem : 

3 .6 . T H E O R E M . — Let Л0 : Г„ c l * be a continuous (contravariant 
or covariant) h-functor. Then /.« can be uniquely extended over £ to an 
h-functor >. : £ -> cl*. 

proof. _ In view of Propositions 3 .4 and 3 .5 it is sufficient to prove 
only the uniqueness of an extension. But this, in view of the definition 
of an approximating system, follows clearly from one of the formulas (2) 
or (3). The proof is completed. 

C H A P T E R I V 

T H E FUNCTOR 

In this chapter, given a cohomology theory X* on the category KE, 
we construct for every n a contravariant /i-functor X"~" f rom the Leray-
Schauder category £ to the category of abelian groups. First, we define 
a functor X"0~" on Го. Then, using the continuity of X* on KE and an 
algebraic lemma on " interchanging double limits ", we show tha t the 
functor X'0~" is continuous. Finally, we apply the main theorem of the 
previous chapter, and find a unique extension X"~" of X*~n over £ . 

1. PRELIMINARIES ON THE M A Y E R - V I E T O R I S HOMOMORPHISM. — Nota-
tion, — We denote by cD any of the following /i-categories : 

£ , the Leray-Schauder category on E ; 

X E , the full subcategory of £ generated by the compact subsets of finite 
dimensional subspaces erf E. 

In what folio AYS, by a triad in CO we shall understand an ordered triple 
Т = (X; X, , Xa) of objects in iV such that X = X , U X 2 and, by a map 
f : (X; X „ X,,) (Y; Y, , Ya) between the triads, a map f : X Y in CD 
which carries X, into Y, for i — 1, 2. 

Let tO- be the h-category of pairs in tO and let p : 0?n- cï>- be the cova-
riant functor defined by 

о (X, A) = A for any (X, А ) е й 2 ; 
о ( f ) = f\A : A В for any map f : (X, A) (Y, B) in cV\ 

1 . 1 . D E F I N I T I O N . — A cohomology theory <?(!* — { O" ) on 0? is a 
sequence of contravariant h-functors 
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together with a sequence of natural transformations 

satisfying the following conditions : 

(b) (Exactness). — If (X, A) is a pair in CD and i : A X, j : X (X, A) 
are the inclusion maps, then the cjohomology sequence 

of (X, A) is exact. 

(c) (Continuity). — Given an approximating family of objects 

we have an isomorphism for each n : 

where stands for the inclusion. 

Convention. — Cohomology theories on £ are denoted by 

where and S"~n play the role of and S~n in Definition 1.1. 

If = { S°°~n } is a cohomology theory on £ , then the graded 
group { cfC°~n (S) }, where S is the unit sphere in E, is called the group of 
coefficients of the theory 

The aim of this and the next chapter is to show that any cohomology 
theory on Л€е gives rise to a geometrically meaningful cohomology theory 
on £ . The rest of this section is devoted to general remarks on the Mayer-
Vietoris homomorphism which are applicable both for cohomology theories 
on JCE and on £ . 

Let eft* be a cohomology theory on CD. Given a triad (X; X t , X2) 
in CD with A = Х{ П X3 , denote by 

the corresponding inclusions. 
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1 . 2 . D E F I N I T I O N . — The Mayer-Vietoris cohomology sequence of a 
triad (X; X l 5 X2) with A = X , n X 2 is the sequence of abelian groups 

in which <p and ф are given by 

and the Mayer-Vietoris homomorphism A" 1 is defined by 

where k* is the isomorphism induced by the excision к 
We shall often drop the superscript n on A", when there is no danger 

of confusion. 

1 . 3 . D E F I N I T I O N . — The cohomology sequence of a triple BcAcX 
with inclusions 

is the sequence of abelian groups 

in which the coboundary homomorphism о is defined as the composite 

As in ordinary cohomology theory, we deduce from the axioms by 
purely formal argument the following propositions : 

1 . 4 . P R O P O S I T I O N . — The Mayer-Vietoris sequence of a triad(X-, X l 5 X2) 
is exact. I f f : (X; Xj , X2) (Y; Y,, Ys) is a map of one triad into another, 
then f induces a homomorphism of the Mayer-Vietoris sequence of the second 
triad into that of the first. 

1 . 5 . P R O P O S I T I O N . — The cohomology sequence of a triple is exact. If 
f : (X, А, В) (X', A', B') is a map between two triples in CD, then f induces 
a homomorphism of the cohomology sequence of the second triple into that 
of the first. 

Let To = (A; A„ Aa) and T, = (X; X,, X2) be two triads. Then, 
To is a subtriad of T, written T„CT, provided A c X and A,CX, for 
i = l , 2; To is said to be a proper subtriad of T, written T 0 C T , provided 
A, = A П Х , for i = l , 2. 
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If T o C T , then clearly T „ C T and A 0 = A , N A 2 = A N X 0 , where 
X0 = X 1 n X 2 ; moreover, the inclusions 

are excisions. 

1 . 6 . D E F I N I T I O N . — Given we define the 
relative Mayer-Vietoris homomorphism 

by 

where 

is the coboundary homomorphism of the triple and 

is the inclusion. 

The following proposition is an immediate consequence of the definitions 
involved : 

1 . 7 . PROPOSITION. — To a commutative diagram of triads : 

corresponds the following commutative diagram of abelian groups : 

2. ORIENTATION IN E. — We begin by defining an orientation in La. 
To this end, consider the set of all linear isomorphisms from La to the 
euclidean space Rrf'a> of dimension d (a) (we recall tha t d (a) = dim La). 

Call two linear isomorphisms h, h : L a R''<a> equivalent, lx r^j Z2) 

provided h ° € GL+ (d (a)), i .e . , the determinant of the corresponding 
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matrix is positive. With respect to this equivalence relation, the set 
of linear isomorphisms from La to R'/(al decomposes into exactly two 
equivalence classes. An arbitrary choice C\ of one of these classes will 
be called an orientation in La. 

Let us chose now for each an orientation <9a in La and call the 
familly О = {(?a ) to be an orientation in E. 

Given an elementary relation a < ? in С and Za€<?a, there exists 
Zp€<?p such tha t Ц (x) = 1Л {x) for all i € L a . 

We let 

Clearly, the definition of Lp and Lp depends only on the orientations 
of Lp and La. 

As a consequence, given an object X and an elementary relation a < ? 
in A , the orientations of La and Lp determine the triad 
where 

and such tha t 

2 . 1 PROPOSITION. — Let X and Y BE objects, f : X Y be an y.0-field 
and let a < ? be an elementary relation in Cx such that у.0^1у.< Т/гем 
/•(Xp)C Yp and /"p : Xp -> Yp induces a map, also denoted by /p, of the triad 
(Xp; Xp, Xp), into the triad (Yp; Yp, Yp). 

3 . DEFINITION OF THE GROUP дС'-1 ( X ) . — L e t X* = { ! b e а 
cohomology theory on c'CE and X be an arbitrarily-given object of the 
Leray-Schauder category £ . In this section, starting with X*, we shall 
define for an integer n the group (X). 

First, we fix an orientation О = { Оа j in the space E. Next, for 
for any relation a ^ ? in C'x we define a homomorphism 

as follows : If a = [3 we let Дар be the identity. If a < ? is elementary, 
we let Aa"p be the Mayer-Vietoris homomorphism of the triad (Xp; Xp, Xp) 
with Xp П Xp = Xa . 

In order to extend this definition to an arbitrary relation a < ? in 
we shall need the following lemma : 

3 . 1 . LEMMA. — Let X be an object and a < $ be a relation in A such 
that d (?) = d (a) -f- 2. Assume that a < 7 < ? and a < у < ? are hvo 
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different chains in joining a and (3. Then 

The proof of Lemma 3 . 1 is given in section 7. 

3 .2. DEFINITION. — Let a < [3 be an arbitrary relation in XD
X and let 

a = a„ < a t < . . . < = (3 be a chain of elementary relations in i?x 

joining a and (3. We define 

as the composition of the corresponding Mayer-Vietoris homomorphisms. 
It follows from Lemma 3 . 1 tha t the definition of Aap does not depend 

on the choice of the chain a1} . . . , a A joining a and [3. 
Consider now the abelian groups № d w ~ n (Xa) together with the homo-

morphisms Aa"p' given for each relation a < (3 in X3
x. The family 

{ (X a); indexed by will be called the (oo - n)-th 
cohomology system of X corresponding to the theory dZ* and the orienta-
tion (9 in E. 

3 . 3 . PROPOSITION. is a direct system of abelian 
groups over Cx. 

Proof. — This follows clearly from Lemma 3.1. 

3.4. D E F I N I T I O N . — For an object X we define an abelian group 

to be the direct limit over J?x of the (oo — n)-th cohomology system 
of X. 

Remark. — We note tha t the group Ж"~" (X) depends only up to an 
iscmorphisin, on the orientation in E used for its definition. In fact, 
suppose tha t {Oa} and ! <?„ ! are two orientations in E. These deter-
mine two direct systems of abelian groups and 

respectively. For each a€ i . n
x define 

by 

Since { Фа j is clearly an isomorphism of the above direct systems, it 
follows tha t the corresponding limit groups are isomorphic. 
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4 . DEFINITION OF f* FOR A FINITE DIMENSIONAL FIELD f . — We begin 
with the following : 

4 . 1 . PROPOSITION. — Let X and Y be two objects and let f : X - > Y 

be an a0-field, where «„ € A- Then, for every relation a < (3 in X"x suc/i 
£/tai a0 ^ a < the following diagram commutes : 

Proof. — If a < 3 is elementary, this follows from Proposition 1.3. 
Our assertion for an arbitrary relation a < (3 follows then from the 
definition of the homomorphism Д^. 

Proposition 4 .1 implies that f : X Y induces a map 

from the (oo — n)-th cohomology system of Y into that of the object X. 

4 . 2 . D E F I N I T I O N . — Given a finite dimensional field f : X. - > Y we 
define the induced homomorphism 

to be the direct limit over of the family J f* }. 

4 . 3 . PROPOSITION. — The induced homomorphism f* satisfies the follo-
wing properties : 

(a) if 1 is the identity on X, then I* is the identity on (X); 

(b) for any two composable finite dimensional fields f and g we have 

(:9f)* 9*; 

(c) if the finite dimensional fields f and g are homotopic in then f* — g*. 

Proof. — This clearly follows from Proposition 1.4 and the definition 
of Л^. 
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We summarize the preceeding discussion in the following ; 

4 . 4 . T H E O R E M . — The assignments X 9t"~n (X) for XG£<> and 
f f* for f € £ 0 define a contravariant h-functor dt*~n from the h-category 
(,€„, ъ) to the category of abelian groups. 

5. Two ALGEBRAIC LEMMAS. — Given a directed set £ — ( A, (3, Y, . . . j, 
denote b y the same let ter £ the category having as objects the elements 
of and as maps the relations a ^ (3 in £ . For a small category £ , denote 
by ( C, CD) the category of covariant functors f rom £ to CD, i. е., the category 
of direct systems of objects of CD over £ . 

By Lim : (£, CD) ̂  CD we shall denote the " direct limit " functor, i. е., 
a 

the lef t-adjoint to the constant functor f rom CD to (£, CD). 

Let Dt = { к, I, m, . . . ) and £ = { a, (3, y, . . . } be two directed sets. 
Denote by 01 x £ the corresponding product category. 

Given a direct system of Abelian groups 

let us pu t 

For any relations к ^ - l and a ^ (3 we have the commuta t ive diagram : 

Clearly, each double system of Abelian groups { } indexed by 
x С together with the maps { ikt }, { Дар j, (satisfying the natural func-

torial properties), may be identified with a functor x€($lX£, Сlb). We 
shall write simply x = { }. 

5 . 1 . LEMMA. — Let £ = { A, [3, Y, . . . } and 01 = { к, I, m, . . . } be two 
directed sets, Dt X £ be the product category, and let 
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be the natural isomorphisms between the corresponding categories. Then, 
the following diagram commutes : 

The word " commutativity " stands for the natural equivalence of functors. 

The commutat ivi ty of the diagram (CO) follows from the fact that the 
left-adjoint functor commutes with direct limits [11]. 

We shall restate ,now a part of Lemma 5 . 1 in equivalent but more 
convenient form. 

Let us denote by 

the natural equivalence between the corresponding functors. In order 
to simplify the notation, given x G (01X Clb), let us denote by the 
same letter / the direct systems X (x) and (x). 

5.2. LEMMA. — For any double direct system of Abelian groups 
•/.-= { } indexed by Olx£, we have a natural isomorphism 

between the limit groups; more precisely, if 

is a map between two double direct systems of Abelian groups, then the follo-
wing diagram commutes : 
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In the contravariant case we have the following lemma on double 
inverse limits : 

5 . 3 . — LEMMA. Let X* = { A, (3, Y, . . . } and 9t = { к, I, m, . . . } be two 
directed sets and x = { Щ; } be a double inverse system of Abelian groups 
indexed by (a, Then we have a natural isomorphism 

between the limit; the meaning of naturality is similar to that in Lemma 5.2. 

6. CONTINUITY OF THE FUNCTOR — In this section, we show 
that the functor is continuous. 

Let Y be an object and { YA }k e g i be an approximating family for Y, 
Denote by 

the corresponding inclusions and consider the direct system of abelian 
groups { X'~n (YA), i*kl} over Dl, together with the direct family {j*k } 
of homomorphisms 

6 . 1 . T H E O R E M . — The map 

is an isomorphism. In other words, the functor eft™ " : jC0 elb is continuous. 

Proof. — For an arbitrary element a in <?Y and к GDI, let us put 

and denote by 

the corresponding inclusions. 

Now, for any relations к ^ I and a ^ (3 in t)l and CY respectively, 
consider the following diagram : 

It follows from Definition 3 .2 and Proposition 1 .3 that the above diagram is 
commutative. Consequently, the groups { Х'1[Л)~п (Ya) }, together with the 
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homomorphisms (i*,)* and determine a double direct system of abelian 
groups over 01X A which we denote simply x = j Х'1{л)~п (Y*) ; }. 

Let x = I (Y,) ; Да? ; be the (oo - n)-cohomology system of Y. 
We shall t reat x as a double direct system over OX x A-

Now let us consider the double family of homomorphisms {j*x }. Taking 
into account the various commutativity relations between the inclusions, 
it follows from Definition 3 .2 and Proposition 1 .3 that { j*x \ is a map 
from x to x. 

In view of the continuity of the cohomology theory { X'1, o9 }, the map 
Lim ! ' is an isomorphism for each a € A , and therefore so is the map 

T~* 
Lim Lim j y*a }. Consequently, in view of Lemma 5.2 the map 

л 

is also an isomorphism and the proof of the theorem is completed. 
Now, Theorem 6.1, in view of Theorem I I I . 3 . 6 , gives us the final 

result of this chapter : 

6 . 2 . T H E O R E M . — The functor X'~" extends uniquely from JF„ over £ 
to an h-functor X'~" : € -> clb. 

7. CONSECUTIVE PAIRS OF TRIADS AND P R O O F OF LEMMA 3 . 1 . — Nota-
tion. — The following symbols denote the subsets of R / + 2 : 

The proof of Lemma 3 . 1 will be preceded by a preliminary discussion 
about the triads. We assume in this section tha t X* = { X 4 , Z4 j is a 
cohomology theory on the category «Х'к. By a triad we understand an 
additive triad in XR . 

For a triad T = (X; X „ Xa) we let - T = (X; X9, X.) and denote 
by Д" (T), or simply by A (T), the Mayer-Viet oris homomorphism : 

of the triad T. We note that 
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Let T„ = (Y; Y t , Ya) and T = (X; X4, X2) be two triads. A 
pair (To, T) is a consecutive pair of triads, written T0 => T, provided 
Yj U Y2 = Y = X, П X2 ; we say in this case tha t (T0, T) starts at Y t П Ya 

and ends at Xi U X2 . 
We observe, tha t if (T0, T) is a consecutive pair of triads, then we may 

form the composite 

A (T) о A (To) = Д"+1 (T) о Д" (T0) : 3t" (Y, n Y2) (X) 

of the corresponding Mayer-Yietoris homomorphisms. 

7 . 1 . LEMMA. — Let us assume that in the following diagram of triads : 

the consecutive pairs 

both start at Y4 П Y2 = Y , П Y's and both end at X = X' . Then, for the 
composites of the corresponding Mayer-Vietoris homomorphisms we have 

Proof. — This is an immediate consequence of Proposition 1.4. 

7 . 2 LEMMA. — Let us assume that 

and 

are two consecutive pairs of triads both starting at 

and both ending at X. Assume further that 

Then, we have 
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Proof. — Let us consider the following triads : 

We claim that every pair (T,,-_,, T2,) for i — 1, 2, 3, 4, 5 is a consecutive 
pair of triad starting at Y n Z and ending at X. 

For i — 1 and i = 5, this is true by assumption. 
Assume now that i — 2. Taking into account the inclusions 

we have respectively 

and thus the statement holds for i = 2. 
Next, we suppose tha t i = 4. In this case, the proof is strictly ana-

logous to tha t for i = 2. 
Assuming finally tha t i — 3, we have 

and 

Thus, the proof of our statement is completed. 
Further, we note the following inclusions between the triads 

The various established interrelations between the triads may be dis-
played as follows : 
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Now, we let 

and apply Lemma (7.1) and property (1) to our situation. We obtain 

and the proof of the Lemma is completed. 

Proof of Lemma 3 .1 . — We shall use the notation given at the beginning 
of this section. Letting к — d (a) we have d (y) = d (у) = к + 1 and 
d ([В) = к + 2. Define a linear isomorphism W : R*+3 R*+a by putt ing 

Now take linear isomorphisms 

such tha t 

and 

There is a unique isomorphism I such tha t 

Consider the following triads : 

By straightforward computation, one easily verifies that (T t , T2) 
and (T3, T4) are consecutive pairs of triads satisfying the assumption 
of Lemma 7.2. 

We have therefore 

There are two possibilities : either I € or I € — Now, we shall 
show that , in any of the above cases, we obtain the desired conclusion 
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and we have 

Thus, in view of (2), we obtain (•) . 
and we have 

Consequently, again by (2), we get the desired formula (*). The proof 
of Lemma 3 . 1 is completed. 

C H A P T E R V 

COHOMOLOGY THEORIES ON £ 

Having defined the absolute cohomology functors we turn in this 
chapter to the relative case and show tha t to any cohomology theory 9C* 
on ÔCE corresponds certain " infinite dimensional " cohomology theory 
on the Leray-Schauder category £ . More specifically, for every n, we 
construct the relative cohomology functor (X, A) (X, A), the 
coboundary transformation : 9C"~n ( A ) - V Z C ' ~ N + L ( X , A ) , and then we 
prove that = j c'~" j is a cohomology theory on £ in the 
sense of Definition IV. 1.1. 

1. T H E RELATIVE COHOMOLOGV FUNCTOR 3Z" — Notations. — 
Throughout this chapter, F = E ф R stands for the direct product of E 
and the real line R; we consider E as a 1-codimensional linear subspace 
of F. We fix a point in F not lying in E by putting y+ = (0, 1), where 
0 € E , l e R . 

We begin by fixing an orientation { C\ | in the space E. For technical 
reasons, we shall consider also an orientation in the space F ; this will 
be defined in a specified way as follows. Let ХЭ

Е and CF be the directed 
sets of finite dimensional linear subspaces of E and F, respectively, and 
J?0 be a subset of £ r consisting of those linear subspaces a € JL"r which 
contain the point y\ clearly, £ 0 is cofinal in X'F. For denote by a ' 
the element of 1'0 given by L x = L» + R у 

To the orientation j C\ } in E we assign an orientation { 0 a { in F by 
the following rule : If a € i ? E , we let Oa — Оя. If and a ^ A , we 
define C\ arbitrarily. Assuming tha t a €i?o, there is а such tha t 
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(3' == a. We take a representative I : Lp ->- R* in (9p, where к = d ((3) 
and put 

Now let I : L a R*+1 be a linear map such tha t 

and let 0 a be the orientation of La determined by I. Thus, we have 
defined an orientation j 0 a } in F ; we call { Oa j an extension of { Oa} from E 
over F. 

From now on, we assume tha t such an orientation j 0 a | in F is fixed. 

Next, consider the categories 

and observe tha t iTE and £ 0 (E) are Л-subcategories of iTF and £ 0 (F), 
respectively. We will denote by £ \ and the corresponding Л-categories 
of pairs. 

In what follows, it will be convenient, for technical reasons, to reduce 
certains facts in the relative case to those in the absolute case. This will 
be done with the aid of a functor p from £ \ to iTF which will now be 
defined in terms of the cone functor as follows. Let С : iTE -> £ ¥ be the 
cone functor corresponding to the point y+. We recall tha t for A c E 

and for f : A -> В in £K the field С ( f ) is given by 

Now, given a pair (X, A) in £K, let us put 

and for a map f : (X, A) (Y, B) in define 

by 
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As a consequence of Proposition I I . 6 . 5 we obtain the following : 

1 . 1 . PROPOSITION. — The assignments (X, A ) - > ( X u C A ) and f-+f 
define a covariant h-functor p from the category j f | to the category CF. 
Moreover, we have p (£] ( E ) ) C f „ (F) and p (ÔQ) С ДСГ. 

Now let cK* be a fixed cohomology theory on ЛСЕ and (X, A) be a pair 
in C t . We tu rn to defining the relative groups BC'~n (X, A). To this 
end, for an a € J f E such tha t X a 0 , let 

denote the corresponding inclusions. Since ea in an excision the induced 
map 

is an isomorphism. We have the exact sequence of the pair (Xa U CAa, CAa) 

Since CAa is homotopy equivalent to a point, Ker ia = Im jt is a direct 
summand of 9Cn ( X a u C A a ) and ia is an epimorphism. Hence j* is a 
monomorphism. Define a monomorphism 

by 

Note t h a t we have an exact sequence 

Let oc < ? be an elementary relation in and suppose that Xa is 
non-empty. Then (A3; A3, A3) is a proper subtriad of (X3; Xp, Xp) and 
we denote the corresponding relative Mayer-Vietoris homomorphism by 

Note t h a t ( X u C A ) a = X a u C A a . Let Дар. denote the Mayer-Vietoris 
homomorphism of the triad ( (XuCA)p , (XuCA)p. , (XuCA)p.) and 
((CA)p., (CA)p,, (СА)з-). Clearly we have the following : 

1 . 2 . LEMMA. — The following diagram commutes : 

J O U R N A L D E MATHÉMATIQUES P U R E 6 ET A P P L I Q U É E S 
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Now let a < (3 be an arbitrary relation in and 

We define 

as the composition of the corresponding Mayer-Vietoris homomorphisms. 
In view of Lemmas IV .3 .1 , 1 .2 and since r]x are monomorphisms, the 
above definition does not depend on the choice of a chain. Furthermore, 
the groups Ж'1^-" (Xa , А я) together with the homomorphisms Д^ 
form a direct system of abelian groups over C*x which we will call the 
(oo — n)-th cohomology system of the pair (X, A) (corresponding to the 
theory Ж* and the orientation { £>a j in E). 

1 . 3 . DEFINITION. — For an integer n we define the relative cohomology 
group 

as the direct limit of the (oo — n)-th cohomology system of the pair (X, A). 
Evidently, this definition extends tha t of the absolute group (X) 
given in Chapter IV. 

Now, for the orientation J l?a \ in F, apply the construction of the 
previous chapter to the space F and denote by Ж*~п : С -> (fib the 
functor corresponding to Ж* and the orientation | Oa } in F. 

Observe that , by Lemma 1.2, the family j ria } is a direct family of 
maps between { (Xa, Aa) ; Д$ } and { ( (XuCA)„) ; ДГр'1}. 
Using Lemma 1.2, we conclude tha t the direct limit map 

is a monomorphism. Moreover, the sequence 

in which i : CA -> X u C A denotes the inclusion, is exact. 

1.4. DEFINITION. — For f : (X, A) -> (Y, B) in we define the induced 
map f* = ( f ) by imposing commutativity on the following diagram : 
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Since Y] are monomorphisms and the rows are exact this definition makes 
sense. 

1 . 5 . PROPOSITION. — The assignments (X, A) -V (X, A) and 
f f * define a contravariant h-functor from the category to the 
category of abelian groups. Moreover, rt is a natural transformation from 
the functor dC~n to 

Proof. — Proposition 1 .5 follows clearly from the definitions involved 
and Theorem IV.6 .2 . 

2. T H E HOMOMORPHISM oa. — In this section, we give some definitions 
and prove lemmas which will be used in defining the coboundary transfor-
mation o ' ~ \ For an object A in f E we let 

2 .1. DEFINITION. — For a pair (X, A) in £1 and a E f A define the homo-
morphism 

by putting 

where is the coboundary homomorphism of the pair (Xa , Aa). 

2 . 2 . LEMMA. — Let (X, A) be a pair in Then, for every relation 
a < in l \ the following diagram commutes : 

Proof. — Assume first tha t a < [3 is elementary. Let 

denote the Mayer-Vietoris homomorphism of the triad 
Evidently, we have 

Next, we observe t ha t the consecutive pairs of triads 
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satisfy the assumptions of Lemma IV.7 .2 . Consequently, 

Now we consider the diagram 

The composition of the top row homomorphisms equals (— l)rf<ai and 
the composition of the botton row homomorphisms equals (— l)rfiP> Op. 
Since the right-hand square is, by Lemma 1.2, commutative we have 

Since Y]p is a monomorphism = and the proof is completed. 

The following two propositions are immediate consequences of the 
definition of oa. 

2 . 3 . PROPOSITION. — Let (X, A) be a pair in I*E and let i : A X, 
j : X -»• (X, A) denote the inclusion maps. Then, for every a in iTA, the 
following sequence is exact : 

2 . 4 . PROPOSITION. — Let (X, A) and ( Y , B ) be two pairs in I*E and let 
f : (X, A) ->• (Y, B) be an a0- f ield. Then, for any a in such that a„ ^ a, 
the following diagram commutes : 

3 . D E F I N I T I O N OF THE COBOUNDARY TRANSFORMATION S * - " . — N o w 

we are prepared to define the coboundary transformation Let 
(X, A) be a pair in It follows from Lemma 2 .2 that the family { } 
is a direct family of homomorphisms. Taking into account definitions 1 .3 
and 2 . 1 and Lemma 2.2, the coboundary homomorphism 
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is defined by 

Similarly, we let 

3 . 1 . P R O P O S I T I O N . — The following diagram commutes : 

Proof. — This clearly follows from the definitions involved. 

3 . 2 . P R O P O S I T I O N . — The family o"~" = { o"^} indexed by the pairs (X, A) 
in is a natural transformation from » p to 3C'~n. 

Proof. — Consider the diagram 

Assume we have proved 

Since the right-hand square is commutative, we have 

Since Y) is a monomorphism this implies 

Therefore it suffices to prove tha t , for in the 
following diagram commutes : 

Assume first tha t the field f is finite dimensional. In this special case, 
we apply a straightforward passage to the limit in the commutative diagram 
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of Proposition 2 .2 and 2 .4 and the desired conclusion follows by Propo-
sition 3 .1 . 

Consider now the general case and take an approximating system 

for f. The definition and the proof of the existence of such a system is 
similar to tha t in the absolute case. It follows from (1.1) tha t the 
sequence 

forms an approximating system for 

Consider the inclusions 

By the special case of our assertion, the following diagram commutes for 
each pair к : 

Applying the direct limit functor to the corresponding commutative 
diagram in the category of direct systems of abelian groups, we obtain 
the following commutative diagram : 
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By Theorem IV.6 .1 . the homomorphisms Lim { (j\)* } and Limjjr*} are 
* ^ 7* 

invertible. This, in view of Proposition 3 . 1 and the definition of the 
induced map, implies our assertion and thus the proof is completed. 

3 . 3 . THEOREM. is a cohomology theory on £. 
Moreover for each n, we have 

i. е., the coefficients of the theory 3C * coincide with those of the theory 3C*. 

Proof. — The Exactness Axiom follows from 2 .3 and the definition 
of 3Z'~n by passing to the limit with a. 

To show tha t the Excision Axiom is fullfilled, let (X; A, B) be a triad 
in £ with A u B = X; if к : (A, A n B ) (X, В) is the inclusion then so 
is к : A U С (А П В) X u C B . Since (кя)* is an isomorphism for each 
a and (k)* = Lim \ kl j, it follows tha t (к) is an isomorphism. 

к 
To show tha t the last assertion of Theorem 3 . 3 is satisfied, take the 

(oo — n — l)-cohomology system 

of the unit sphere S in E ; note that , if a < [1 is elementary, then Aap 
coincides with the suspension isomorphism. Consequently, for sufficiently 
large a, we have 

and our assertion follows. 

3 . 4 . COROLLARY. — If ( X , A ) and ( Y , B ) are two equivalent (or more 
generally h-equivalent) pairs in £, then for every n we have an isomorphism 

4 . NATURALITY. — Taking into account the results of Chapter I 
(Theorem 1 . 6 . 4 ) , Theorem 3 .3 implies that to every spectrum A corres-
ponds an infinite dimensional cohomology theory on £ ; this theory will be 
denoted by 3C'~* ( ; A). 

4.1. DEFINITION. — Let S be the spectrum of spheres and К (П) the 
Eilenberg-Mac Lane spectrum. We put 
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ST-* is called the stable cohomology and H"-* ( ; II) the ordinary cohomology 
with coefficients in П on the category 

Let Аг (i = 1, 2) be two spectra 3Ct~* = ( ; Аг) (i = 1, 2) the 
corresponding cohomology theories on € and let h : A4 A3 be an arbi-
trarily given map between spectra. 

4 . 2 . T H E O R E M . — The map h induces a natural transformation h* from 
to 3C~*. More precisely, for any compact field f : (X, A) (Y, B) 

in XT2 the following diagrams : 

are commutative. 

The proof of Theorem 4 . 1 being strictly analogous to tha t of Theorem 3 . 3 
is omitted. 

4 .3. DEFINITION. — The natural transformation h* induced by the 
Hopf-Hurewicz map h : S К (Z) is called the Hopf map from the stable 
cohomotopy S""* to the ordinary cohomology K"~* ( ; Z) with integer 
coefficients on € . 

We summarize now an essential part of the preceding discussion in 
the following : 

4 . 4 . T H E O R E M . — To every spectrum A there corresponds a cohomology 
theory St"~* ( i A) on the Leray-Schauder category XT with the same group 
of coefficients as 3C* ( ; A) on The theory is continuous and 
satisfies the strong excision axiom. Moreover, the assignment A-v 3C~* ( ; A) 
is natural with respect to maps of spectra. 

5. I N F I N I T E DIMENSIONAL HOMOLOGY THEORIES (5). — In this section 
we indicate the construction of intinite dimensional homology theories. 

(5) The resul ts of th i s section will no t be used in f u r t h e r discussion. 
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12 0 INFINITE DIMENSIONAL COHOMOLOGY THEORIES 

The proofs, being analogous to those in the contravariant case, are omitted 
and, to simplify the exposition, Ave treat only the " ordinary " theories. 
The symbol t\b stands either : (i) for the category of abelian groups or (ii) 
for the category of compact topological abelian groups. Whenever several 
functors into Clb occur these are to be interpreted in a fixed manne r ; 
in particular, in case (ii) the " homomorphism " will mean always continuous 
homomorphism. 

Let H* = { H„, â„ } be the ordinary Cech homology for compacta 
over a group of coefficients G. First , Ave sketch the construction of the 
func to r H«_„ ( ; G) f rom £ to the category of abelian groups <Xb. 

We begin by fixing an orientation { (9a ) in E. 
Let X be an object in £ . Given an elementary relation я < (3 in £ x 

denote by 

the Mayer-Vietoris homomorphism of the triad (Xp; Xp, Xp). Given an 
a rb i t ra ry relation я < ? in Cx t ake a chain я = a0 < x, <.. .< xK = ? 
of elementary relations in J?x joining a and ? and define to be the 
composition of the corresponding Mayer-Vietoris homomorphisms. 

The definition of A*̂  does not depend on the choice of chain of elementary 
relations joining я and [i. Consequently, the groups Hrf a_„ (Xa) together 
Avith the homomorphisms A^ given for each relation я < ? in form 
an inverse system of abelian groups OA'er J?x. 

5 . 1 . DEFINITION. — For an object X in С ( E ) Ave define an abelian group 

as the immerse limit over i?x of the system { Hrf(a)_„ (X a) ; A*̂  }. 
Let f : X -> Y be in £ 0 . Then x — f (x) has A-alues in La( for some я0  

and for each я > я0 Ave have f ( X , ) c Y a . Consequently, f determines 
the map fx : X a Ya. Moreover, for eA^ery elementary relation я < 3, 
f ' ' maps the triad (Xp; Xp, Xp) into (Yp; Yp, Yp). It folloAvs tha t / i nduces 
a map {f l} from the inverse system { H r f ( a i _ n (Xa) ; Aa,f, } to \ H(/;a«_n (Ya) ; A^ }. 

5 .2 . DEFINITION. — We define the induced map 

as the in\rerse limit of the system of homomorphisms ! 
Le t us p u t noAv 
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5 . 3 . PROPOSITION. — The function H L _ „ : £n @tb is a covariant 
h-functor from the category iT0 to the category of abelian groups (fib. 

Let Y be an object in £ and { Y A } be an approximative sequence for Y. 
Consider the inclusions jk : Y YA-, ikl : Yi -> YA (к ^ I) (all being in IT0), 
the corresponding inverse system of abelian groups { H „ _ „ ( Y A ) ; ikJ } and 
the family {jl } of the induced maps 

5 . 4 . LEMMA. — The family {jl } is an inverse family of homomorphisms 
and the map 

is invertible; in other words, the functor is continuous. 

The proof uses the continuity of the Cech homology and the lemma on 
interchanging the double inverse limits. 

Now from Lemma 5 .4 , in view of Theorem I I I . 3.6, we get thé following : 

5 . 5 . T H E O R E M . — H ° _ „ extends uniquely from £0 over £ to a covariant 
h-functor H„_„ : £ -»- (fib. 

By proceeding as in the case of cohomology one gets a sequence of 
covariant functors (X, А) (X, A) from the pairs in £ to (fib together 
with a sequence of natural transformations <?„_„ : (X, A) -> (A). 

5 . 6 . D E F I N I T I O N . — Call an object X in £ a polyhedron provided it 
is equivalent in £ to an object Y such tha t for every a the intersection 
Y a = Y n L a is a polyhedron. 

Now we may state the main result of this section : 

5 . 7 . T H E O R E M . — The sequence of homology functors { H „ _ „ j together 
with the sequence of boundary transformations { } satisfies the following 
properties : 

(Semi-exactness) : For the inclusions 

the homology sequence 

is semi-exact. The above sequence is exact, if either G is compact, or (X, A) 
is a polyhedral pair and S is a vector space over a field. 
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(Excision) : Let (X; A, B) be a triad in £ with X = A U B . Then the 
inclusion 

induces for every n an isomorphism 

(Coefficients) : For the unit sphere S in E we have H ^ (S) = G, 
H . _ „ ( S ) = 0 for n> 1. 

CHAPTER VI 

DUALITY THEOREMS 

We know from the previous chapters that , given a spectrum A, we have 
corresponding " infinite dimensional " cohomology theory { cfC"~" ( ; A) }, 
on the Leray-Schauder category £ and the homology theory { 9Cn ( ; A) } 
on the category e&. In this chapter we are concerned with the Alexander 
type of duality in the infinite dimensional normed space E. We show 
tha t for an arbi trary spectrum A we have an isomorphism 

and establish some of its properties of fur ther importance. For the conve-
nience of the reader, we first t reat the case when A is either К (П) or S 
and then pass to the case of an arbi t rary spectrum. 

1. CAP PRODUCT. — In this section we assume tha t we are given spectra A, 
В, G together with a pairing (A, B) -> C. The pairing gives rise to a 
pairing 

called the slant product ([GWW], p. 258). 

Let (X,x0)€%*. Assume tha t (X, Af), (X, B i ) € « i , i= 1 , 2 , are 
such tha t : 

Denote by яг : At Аг/Вг, i = 1, 2, the projection map. Define the 
reduced diagonal map [л : X -> At/Bi Д A2/B2 by 
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The conditions (a) and (b) imply tha t [J- is well defined and continuous. 
Define a pairing 

called the cap product, by 

Let X ' be another object in °Г* and assume (X', А)), (X' , В;) € ^ 
satisfy conditions (a) and (b). Then the diagonal map 

gives rise to the cap product pairing 

Assume fur ther t h a t f : X X ' is a map in such t h a t f (А,-) С A,, 
f(B;)cB; for i = 1, 2. Then f induces maps 

The following proposition describes the behavior of the cap product under 
the induced homomorphisms. 

1 . 1 . PROPOSITION. 

Proof. — Clearly (9 Д ф) ° u. = [л/ ° f . Therefore, using the definition 
of the cap product and 6 .10 of [GWW] we have 

Let X, Ae, Вг be as before and assume tha t (Y; Y1} Y2) is a t r iad in 
such t h a t X = Yi П Y2 . Assume fu r the r t h a t (Y, Ci). (Y, D,-) € 
i = 1, 2, satisfy conditions (a) and (b) and the following condition : 

Hence there is the reduced diagonal map 

and corresponding cap product pairing 

The inclusions A 2 C C 2 , B 2 C D 2 induce an inclusion i : A2/B2 -> C2/D2 . 
From (c) we obtain 
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Let A* : Л"' (Ai/Bj ; В) Л"/-1 (C f /D, ;B) denote the Mayer-Vietoris homo-
morphism of the triad 

and 

denote the Mayer-Vietoris homomorphism of the triad (Y; Y l 5 Y2). 

Now we are in a position to formulate the theorem which will be needed 
in the next section. 

1 . 2 . T H E O R E M . — Let v.G3Cn+l ( Y ; A), fié ВС9 ( A J / B J ; В ) . I f A ^ n d B , 
are strong deformation retracts of Ci and DL5 respectively, then 

The proof of this theorem will be given separately in the last section 
of this chapter. 

2. DUALITY IN S" FOR POLYHEDRA. — In this section, with the aid of 
the cap product, we define (following G. W. Whitehead) the Alexander 
duality map D„ for polyhedra. By selecting for each n an appropriate 
orientation of S" we specify D„ and then exhibit an important relation 
between D„_j and D„ in terms of the Mayer-Vietoris homomorphisi-i 
(Theorem 2.4) . First a few preliminary definitions. 

We assume tha t Ave are given a spectrum A and let (S, A) -> A be the 
natural pairing. We regard S" as an object of tf* and identify SSn_1 

with S". 
Choose a generator z4 (S1 ; S) = Hj (S1 ; Z), where Z denotes the 

group of integers and define inductively 

Assume tha t we are given a triangulation of S" and let К denote the 
corresponding simplicial complex. Let К', K" denote the first and second 
barycentric subdivisions, respectively. If M is a subcomplex of K' we 
let N (M) denote the smallest subcomplex of K" containing all simplexes 
which have non-empty intersections with M; N (M) is called the normal 
neighbourhood of M. 

Note tha t N (M) is a closed subset of K. If L is a subcomplex of К 
we denote by L* the subcomplex of K' consisting of all simplexes none 
of whose vertices are in L ' ; L* is called the supplement of L. 
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Now let L, M, L c M , be subcomplexes of K. Let N (L) = N (L'), 
N (M) = N (M'). Then the inclusions 

are homotopy equivalences. Therefore we have isomorphisms 

In what follows we identify the above groups. Define the Alexander 
duality 

by putt ing for 

This definition makes sense since A t = N (L), B t = N (M), A2 = N (M), 
B2 = N (L) satisfy the conditions (a) and (b) of the preceding section. 

The following basic fact is an immediate consequence of the Theorem 7 .4 
of [GWW]. 

2 . 1 . PROPOSITION. — The duality map D „ is an isomorphism. 

From the Theorem 6 .31 of [GWW] we deduce the following important 
property : 

2 . 2 . PROPOSITION. — Let N C M C L be subcomplexes of K . Then the 
diagram : 

in which the upper row is the cohomology sequence of the triple (L, M, N) 
and the lower row is the homology sequence of the triple (N*, M*, L*) has two 
left-hand squares commutative and the third square commutative up to the 
sign (— l)n+i 

Let f : A В be a map of spectra. Then f induces homomorphisms 

We leave to the reader the proof of the next property. 
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2 . 3 . PROPOSITION. — The following diagram is commutative : 

Now assume tha t К is a triangulation of S" such tha t S"-1 is a subcomplex 
of K. Let M c L be subcomplexes of К and let (M*, L*) denote the 
corresponding dual pair in Sn. Let M0 = M n S " - 1 , L0 = L n S n _ 1 and 
let (M:, LJ) denote the dual pair in S""1. Let i : (M;, L^) (M*, L*) 
denote the inclusion map. Denote by A the relative Mayer-Vietoris 
homomorphism corresponding to the proper inclusion of triads 

Now we state a theorem which will be the main tool in extending the 
Alexander type of duality to the infinite dimensional case. 

2 . 4 . THEOREM. — The following diagram commutes : 

Proof. — If Ко is a subcomplex of Sn_1 we let N0 (K0) denote the normal 
neighbourhood of K0 in S" -1. In what follows we identify the following 
groups : 

Using these identifications we let 

denote the inclusion map. Let Lj (resp. Md) denote the subcomplex 
of K' consisting of all simplexes none of whose vertices are in L* (resp. M*). 
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Consider the following diagram of inclusions : 

Let j : (N (L), N (M)) (N (L t), N (M4)) denote the inclusion map and let 

Д' : зе-?"1 (N„ (Lo), N„ (Mo); A) X" (N (L,), N (M,); A) 

denote the Mayer-Yietoris homomorphism corresponding to the proper 
inclusion of triads 

Clearly 
(1) 

Now take an arbi trary The inclusion 

implies, by the Proposition 1.1, 

(2) 

The inclusion 

implies (again by 1.1) 

(3) 

Applying Theorem 

(4) 

Therefore, by (1), (2), (3) and (4), 

The proof is completed. 

3. DUALITY IN S" FOR COMPACTA. — In this section 3C* = { Stn ( ; A ) , } 

stands for the continuous cohomology theory with coefficients in a spec-
t rum A on the category JC R „ and 3C* = { 3Cn ( ; A ) , } for the homology 
theory with coefficients in A on the category 

Now let Y C X be a pair of compact subsets of S". Let {MA}, { LA}, 
MA С LA be approximative sequences of Y and X, respectively, consisting 
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of subcomplexes of triangulations of S". Let iA : (LA-И, M* + 1 ) (LA, M A ) 

denote the corresponding inclusions. Then, by continuity of ВС*, we have 

Without loss of generality, we may assume that 

It is evident that , by straightforward passage to the limit, D„ extends 
uniquely to an isomorphism (which we continue to denote by D„) 

defined for all compact subsets of Y c X of S". 
Now, as an immediate consequence of Propositions 2 .2 and 2.3, we 

obtain, by passing to the limit : 

3 . 1 . PROPOSITION. — For a triple (X, Y, Z) of compact subsets of S" 
let U = S" - X, V = S" — Y, W = S" — Z. Then the diagram : 

in which the upper row is the cohomology sequence of the triple (X, Y, Z) 
and the lower row is the homology sequence of the triple (W, Y, U), has 
two left-hand squares commutative and the third square commutative up to 
the sign (— l)n+1. 

3 . 2 . PROPOSITION. — For a map f : A В of spectra we have the following 
commutative diagram : 
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Let (X, A) be a pair of compacta in S"+1 and let 

Denote by Д the relative Mayer-Vietoris homomorphism corresponding 
to the proper inclusion of triads 

and by i the inclusion. Then 
from 2.4, we obtain 

3 . 3 . PROPOSITION. — The following diagram commutes : 

4. D U A L I T Y IN R". — Notation. — We choose a sequence { w„ } of conti-
nuous maps : Rn S" with the following properties : 

(ii) (on maps Rn homeomorphically onto S" — { q }, where 

If X is a subset of denote the map defined by 

In this section we assume tha t A is either the Eilenberg-Mac Lane 
spectrum К (П) or the spectrum S of spheres. Note that , in either case, 
the homomorphism 

is an isomorphism for all 

4 .1 . D E F I N I T I O N . — Assume tha t (X, Y) is a pair of compacta in R" 
and q ^ n — 2. Define the duality map 
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by imposing commutat ivi ty on the following diagram : 

Thus, 

From the definition of D„ and Propositions 3.1, 3 .2 and 3.3, we obtain 
the following properties : 

4 . 2 . PROPOSITION. — For any compact pair ( X , Y ) in R " , the duality 
map 

is an isomorphism. 

4 . 3 . PROPOSITION. — Let ( X , Y , Z) be a compact triple in R " 
and g ^ n — 2. Then the diagram : 

in which the upper row is the cohomology sequence of the triple (X, Y, Z) and 
the lower row is the homology sequence of the triple (R" — Z, R" — Y, R" — X) 
has two left-hand squares commutative and the third square commutative up 
to the sign (— 1)"+1. 

Let (X, Y) be a compact pair in R " + 1 and (X„, Y«) = ( X N R " , Y n R " ) . 
Denote by A the relative Mayer-Yietoris homomorphism corresponding 
to the proper inclusion of triads 

and by 

the inclusion map. 
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4 . 4 . PROPOSITION. — If q ^ n — 2, then the following diagram commules : 

Proof. — Follows at once from the Proposition 3.3. 

Let Z denote the group of integers. Let us put 

The Hopf-Hurewicz map h : S К (Z) induces the following transfor-
mations of homology and cohomology theories : the Hurewicz homomorphism 

the Hopf homomorphism 

4.5. PROPOSITION. — If (X, Y ) is a compact pair in R " and q^n — 2, 
then the following diagram commutes : 

Proof. — Follows at once from the Proposition 3.2. 

5. D U A L I T Y IN E (SPECIAL CASE). — In this section we assume tha t A is 
either the Eilenberg-Mac Lane spectrum К (11) or the spectrum S of 
spheres. Let { C\ }• be an orientation of E. For a € С let lx : La -> R''(a) 

be a representative of (?a. If X is a subset of E let X',. = lx (X)CR' , ( a ) . 
We will denote by the same letter lx the homeomorphism of X a onto X* 
defined by the assignment x - > lx (x). Thus lx : X a — X'a. 

Throughout the rest of this section (X, Y, Z) will denote a triple in 1'. 
We let U = E - X, V = E - Y, W = E - Z. If a, [i € ',% a ^ (3, 
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then we let 

denote the corresponding inclusion maps. 

5 . 1 . DEFINITION. — Assume tha t Define 
the duality isomorphism 

by imposing commutativity on the diagram : 

Clearly Da depends only on the orientation of 

5 . 2 . PROPOSITION. Then the diagram : 

in which the upper row is the cohomology sequence of the triple (XA, YA, ZA) 
and the lower row is the homology sequence of the triple (Wa, Va, Ua) has two 
left-hand squares commutative and the third square commutative up to the 
sign (— 1)<А*>ч-<. 

Proof. — Follows at once from the definition of Da and Proposition 4 .3 . 

5 . 3 . PROPOSITION. • then the following 
diagram commutes : 

Proof. — If the relation я < -i is elementary this follows from Propo-
sition 4.4. Then the assertion in the general case follows from the 
definition of Aap. 
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5 . 4 . PROPOSITION. — If X G С and d (A) ^ n - F 2 , £/TE following 
diagram commutes : 

Proof. — Follows at once from the Proposition 4.5. 
Now let (K, L) be a compact pair contained in (Y, U) and let к : 

(К, L) — (V, U) denote the inclusion map. It follows from I I . 2 . 2 tha t к 
is homotopic to a map JW : (K, L) -> (V, U) such tha t ^ ( K J c V . for 
some x € Hence we obtained 

5 . 5 . PROPOSITION. — The map 

is an isomorphism. 

Note tha t the above proposition is valid for an arbitrary spectrum A. 
Recall tha t 

5 . 6 . D E F I N I T I O N . — We define the duality isomorphism 

by the formula 

л 
5 . 7 . T H E O R E M . — The diagram 

in which the upper row is the X* *-cohomology sequence of the triple (X, Y, Z) 
and the lower row is the <X%: ( ; A)-homology sequence of the triple (W, V, U) 
is commutative. 

Proof. — We recall tha t the coboundary homomorphism 
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is, by definition, the composition of the following homomorphisms : 

where j : (Y, 0 ) -> (Y, Z) denotes the inclusion map and the second homo-
morphism is the coboundary homomorphism of the pair (X, Y). Accor-
ding to Definition V . 2 . 1 

where is the coboundary 
homomorphism of the pair 

Hence, in view of Proposition 5.2, the diagram 

is commutative for each * G С. This proves t h a t the third square is 
commutative. Since the commutat ivi ty of the first two squares is an 
immediate consequence of 5 .2 the theorem is proved. 

5.8. THEOREM ( H o p f Theorem). — If (X, Y) is a pair in Г " , then 

if and only if 

, then the Hopf homomorphism 
is an isomorphism. 

Proof. — By 5 .4 , we have a commutative diagram : 

and the theorem follows from the Hurewicz Isomorphism Theorem in 
S-theory ([10], p. 57). 
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6. D U A L I T Y IN E (GENERAL CASE). — Let X be A closed and bounded 
subset of E and let U = E — X. For a € С denote by Û a the space U a 

augumented with " the point at infinity " . More precisely, we let 
U a = U a u ( e | . a, with the sets { x € Ua , x > r } U { e } forming а 
fundamental system of neighbourhoods of e. 

Let { 0 a } be an orientation of E. For each v . E £ choose 1Л : L a -> Rd(ot) 

which represents Ол. Let 

and let be the homeomorphism defined by 

Let xa : Ua -> S' l a ) — X'a be the homeomorphism which is the unique 
extension of the map of U a into Sc,(a> — X a defined by the assignment 
x ->- ((od(x) о lx) (ж). 

Let Y be a closed bounded subset of X and let V = E — Y. Then 
for each « E С we have homeomorphisms 

Put t ing 

we obtain an isomorphism 

clearly D a depends only on the orientation of 

Thus we have a commutat ive diagram : 

From the definition of D a and Proposition 3 .1 , 3 .2 we obtain the following 
two propositions : 

PROPOSITION 6 . 1 . - Assume that ZcYcX are closed and bounded 
subsets of E and let U = E — X, V = E — Y, W = E — Z. Then for 
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each a€-C the diagram : 

in which the upper row is the cohomology sequence of the triple (X„ Ya , Za) 
and the lower row is the homology sequence of the triple ( W „ Va, Ûa) has 
two left hand squares commutative and the third square commutative up to 
the sign ( -

PROPOSITION 6 . 2 . — Let f : A В be a map of spectra. Then the fol-
lowing diagram commutes for each a € С : 

If a < [3, we let 

denote the corresponding inclusions. 

PROPOSITION 6 . 3 . — If л < {3, then the following diagram commutes : 

proof. _ If d (p) — d (a) = i , then we may assume, without a loss of 
generality, tha t h{x) = Ц {x) for all xeU. In this case the conclusion 
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follows from the definition of Дар and Proposition 3.3. Now the conclusion 
in the general case follows at once from the definition of Дар. 

From the above proposition we obtain tha t { Da } is an isomorphism 
between directed sets 

In view of the definition of we have 

COROLLARY 6 . 4 . — The map 

is an isomorphism. 

For У- < (3 consider the following commutative diagram of inclusions : 

PROPOSITION 6 . 5 . — The map 

is an isomorphism. 

Proof. — For any a e £ we have a commutative diagram : 

Since by applying the direct limit functor we obtain the corresponding 
commutative diagram, then by the Five Isomorphism Lemma, it suffices 
to prove tha t 

is an isomorphism. 
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For any relations /с ̂  I in 01 — the set of positive integers and a [i 
in i* wo have the commutative diagrams : 

where id/, denotes the identity map of А/, into itself and 

Thus we have two double directed systems of abelian groups 

together with a map 

Since 

we have, according to IV.5 .2 , the following commutative diagram in which 
the horizontal maps are isomorphisms : 

Thus it suffices to prove that , for each k, 
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is an isomorphism. We will prove tha t if d (a) ^ q -J- к -f- 2, then 
(id/; Д тг]а) # is an isomorphism. 

To prove t h a t (id/, Д YJA)* is an epimorphism, let y be any element of 
TV/; (А/; Л ÛA). By 1 . 7 . 2 there exists a polyhedron К with dim К ^ q -F к 
and a continuous map f : К U a such t h a t y e l m ( id / o A/) , . Since 
dim К < dim U a = d (a), f is homotopic to а map g : К Û a such tha t 
g ( K ) c U a . Hence y € Im (idA-Д Y)a), and (id* Дг)а)# is an epimorphism. 

To prove t h a t (id/,- Л is a monomorphism, let у be an element of 
TI7+/F (АЛ- Д Ua) with (id/;Л Y]e)„ (у) = 0. Again by 1 . 7 . 2 , there exists 
a polyhedral pair (К , , K) with dim K i ^ q + k + i , commutat ive 
diagram of continuous maps 

and such t h a t 

Since dim Ki < d (a), fi is homotopic to а map g, : K t -> Û a wi th 
g 1 ( K 1 ) C U a . Define g : U a by g (x) = g, (x) for a>€K t . Then 
У = g* (i* (yO) = 0. Hence у = 0 and (id/. Д ria)# is a monomorphism. 

Recall t ha t , by 1 . 7 . 4 , t h e map 

is an isomorphism. 

6 . 6 D E F I N I T I O N . — We define the duality isomorphism 

by the formula 

Note, t h a t if A = S or К (И) the above definition coincides with tha t 
given in Section 5. 
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6 . 7 . T H E O R E M . — Assume that Z C Y C X are closed and bounded subsets 
of E and let U = E - X, V = E - Y, W = E - Z. Then the diagram : 

in which the upper row is the ( ; A)-cohomology sequence of the triple 
(X, Y, Z) and the lower row is the X* ( ; A)-homology sequence of the triple 
(W, V, U) is commutative. Moreover, if f : A — В is a map of spectra 
then the following diagram commutes : 

pr00f. _ The theorem follows from Propositions 6.1, 6 .2 , 6 . 3 and the 
definitions involved. 

7. P R O O F OF THE T H E O R E M 1 . 3 . — Before proving Theorem 1 . 2 in full 
generality we shall consider first a special case. 

Assume tha t B , c A , c X , i = 1 ,2, are the same as in Section 1 and 
let Y' = 2 X, 

If Y, Z are objects in we let 

denote the map defined by the assignment 
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Define 

7 . 1 . LEMMA. — The following diagram commutes : 

(v'l is induced by the reduced diagonal map). 

Proof — The regions I and II are commutative by definition. To 
prove the commutativi ty of I I I consider the diagram : 

Define a homotopy by 

Since the inclusion V : A2/B, -> C/D'2 is defined by i' (x)) = ?.. (ОДж) 
the last diagram is homotopy commutative and the lemma follows. 
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Therefore, by (1), (2), (3) and (4), we have 

and the special case is proved. 

Proof of Theorem 1 .2 (general case). — Let f : Y - X be an extension 
of the inclusion X C I X such that f{Y<)cT+X, f(Y2)cT_X, 

Since Г_Х and Г1X are contractible, such f always exists. Let 

denote the corresponding boundary and coboundary homomorphism. Let 
i' : A,/B, C'./D', denote the inclusion map. Denote by о : Сj/Di -> C'./D',, 
у : C-../Dj -> C'tjD, the maps induced by f . Note, tha t the assumptions 
of Theorem 1.2 imply t ha t ф is a homotopy equivalence. 

Let Hence 

(5) 

Therefore 

By Lemma 1.1, 
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By the special case of our theorem, 

Hence, by (5), 

Because i' = Ф 0 i, we have shown tha t 

Since ф* is an isomorphism 

and the proof is completed. 

8. INVARIANCE T H E O R E M S . — Next we draw some immediate corrol-
laries of Theorems 6 .7 and V . 3 . 4 . 

8 . 1 . COROLLARY (The Alexander Invariance Theorem in E ) . — Let A 
be an arbitrary spectrum. Then the relation (X, A) (Y, B) [or more 
generally the relation (X, A) T (Y, B)] in £' implies the isomorphism 

8 . 2 . COROLLARY (The Alexander-Pontrjagin Invariance in E). — The 
relation X ~ Y (or more generally the relation X ry Y) in £ implies an 
isomorphism of the ordinary singular homology groups 

for any n ^ 1 and any group of coefficients G. 

8 . 3 . COROLLARY (The Leray Invariance Theorem in E). — Any of the 
relations 

in £ implies that the complements E — X and E — Y have the same number 
of components. 

8 . 4 . COROLLARY (The Spanier-Whitehead Invariance in E). - The 
relation X ^ Y (or more generally the relation X ,7 Y) implies that for 
any n / - 1 we have the isomorphism of the stable homotopy groups 
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C H A P T E R VII 

G R O U P - L I K E OHJECTS IN 

In this chapter we establish some results needed for the proof of the 
representabi l i ty of the stable cohomotopy and the ordinary cohomology 
and which will be given in the next chapter. More specifically, we are 
concerned with a contravar iant Л-functor X -> г. (X, U) from the cate-
gory £ to the category of sets and which is associated with an object U 
in We show tha t for some objects U (called algebraically admissible) 
this func to r can be converted into an Л-functor from i* to the category of 
abelian groups. 

1. COMPACT FIELDS WITH ADMISSIBLE RANGE U . — Call an object U € < C 

admissible, provided U is open in E and its complement is contained in 
some finite dimensional subspace of E. In the rest of this chapter U 
will s tand for an arb i t rary bu t fixed admissible set and W = E — U for 
its complement . 

For nota t ional convenience, we shall use the following abbreviations : 

The objects of the Leray-Schauder category i* are denoted by X, У, A. 
By C\ we denote the cofinal subset of С defined by the condition : 

is connected 

and we let C^ = L\ П Cx. The elements of С* are said to be admissible 
with respect to X. We assume t h a t the elements of С which appear 
in the sequel are admissible with respect to the objects under consideration. 

1 . 1 . PROPOSITION. — Let f' : X a U a , where U a = L , — W, be a 
continuous mapping. There exists an y.-field f : X -> U such that fy = f . 

Proof. — Let F : X L a be an a-extension of F ; : X s — L a over X . 
We claim t h a t f defined on X by f (x) — x — F (x) has values in U. 
For, suppose to the contrary t h a t f (x) € W for some . r e X . Since 
W c L , and F (X) С La, wc conclude tha t . т € Ь а Г | Х = Х ) . But then, 
f (x) = f (x) € W. This contradiction shows that f . X - U. We have 
cleaily fx = f , and therefore f is ц required z-field. 
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1 . 2 . P R O P O S I T I O N . — For each А Б ^ , the sets £ а (X) and consequently 
7ta (X) and Tv (X) are non-empty. 

1 . 3 . P R O P O S I T I O N . — Let f , g : X ->• U be two a-fields and h, : Xx -> U a  

èe a homotopy joining fx and gx. Then there exists an y.-homotopy ht : X U 
joining f and g and such that h, (x) = h, (x) for all points a; € X and t G I. 

Proof. - Define on T = (X X ! 0}) U (XAX I) U (X X ! 1}) a mapping H* by 

Evidently, H* : T -> L a is an «-mapping. Let H : X x l -> L a be 
an arbitrary compact extension of H from T over X x I and let 
h, (x) = ce — H (x, t) for ж б Х , £€ I. We claim tha t the values of h, 
are in U. For, suppose the contrary tha t li, (x) € W for some t e l and 
x€X. Since W C L a and H ( X x I ) C L a we conclude tha t r r€La. But 
then h, (x) = h, (x) € W. This contradiction shows tha t hi : X U. 
It follows from the construction tha t h, is a required a-homotopy. 

1.4. D E F I N I T I O N . — For a given object X and a € C^ let 

be a map defined by the correspondance 

1 . 5 . P R O P O S I T I O N . — The map ~л is bijective. 

Proof. — This clearly is a consequence of Propositions 1 . 1 and 1.3. 

1 . 6 . P R O P O S I T I O N . — Let X be an object and let h, : X -> U be a compact 
homotopy. Then the number dist (h (X X I), W) is positive and for each 
г > 0 satisfying 

there exists an '/.-homotopy ht : X U such that 

Proof. — The first assertion being obvious, let H ' : X X I - L a be 
an а-approximation of the compact mapping H : X X I -> E (сотр . 
Lemma I I .2 .2 ) . Assuming without loss of generality tha t W c L a and 
put t ing 

we obtain clearly a required a-homotopy. 
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As a consequence, we obtain the following two propositions : 

1 . 7 . P R O P O S I T I O N . — Let f , g € ( C ( X ) be two homotopic compact fields. 
Then there exist two a-fields f*, g* G C a (X) such that : 

(i) f* т g*; 
(ii) f*nuf and g* ~ g. 

1 . 8 . P R O P O S I T I O N . — Let f G. С А (X) be an a.-field and g€<Cp(X) be 
a (3- field. If the fields f and g are homotopic, then there exists у with « ^ y, 
(3 ^ у and sucA f y g. 

2. I N E S S E N T I A L F I E L D S . — First we shall establish two elementary 
facts concerning the extension problem for finite dimensional fields. 

Let (X, A) be a closed bounded pair in E and g : A U be an a-field. 
Consider the following diagram : 

and its sub-diagrams DJ / DS, D3. 

The following proposition states t h a t the extension problem for g reduces 
to the extension problem for the part ial mapping ga. 

2 . 1 . P R O P O S I T I O N . — If an a.-field g* completes the diagram D 1 } then 
the mapping g' defined by g' = g* completes the diagram D2. Conversely, 
if a mapping g' completes D2 then there exists an ol- field g*, which completes 
the whole diagram D, i. е., g* \ A = g and gl = g'. 

Proof. — Let T = A u U a and define on T a mapping G by 

Evident ly , G : T L a and if g (x) = x — G (x) for * e T , then g (x)€U. 
Since T is closed in X, in view of the Extension of Compact Mappings 
Lemma, there exists a compact extension G* : X L a of G over X. 
Pu t t i ng g* (x) = x — G* (x) for x € X , we obtain the required a-field 
g* : X U. The proof is completed. 

Using the same argument as in the proof of the previous theorem we 
obtain the following result : 
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2 .2 . P R O P O S I T I O N . — Let g',, g', : X U a be two homotopic mappings. 
If each of them completes the diagram D2, then there exist two a-homotopic 
a-fields gi and g2 such that each of them completes the whole diagram D. 

Now we introduce the following : 

2 . 3 . D E F I N I T I O N . — A compact vector field (respectively an a-field) 
f : A U is called inessential provided each diagram : 

can be completed by a compact field (respectively an a-field) f* : X -> U. 

2 .4 . P R O P O S I T I O N . — The set (С (X, U) [respectively the set <Ca (X, U)] 
contains an inessential compact field (respectively an a-field). 

Proof. — Clearly, it is sufficient to prove the existence of an inessential 
a-field in € a (X, U). Let g' : X a U a be a constant map. In view of 
Proposition 1.1, there is an a-field g : X -> U such t h a t ga = g'. By the 
Homotopy Extension Lemma and Proposition 2 .2 , we conclude t h a t the 
field g is inessential. 

2 .5 . P R O P O S I T I O N . — Any two inessential compact fields (respectively 
a-fields) f ' , f" : X -> U are homo'opic (respectively a-homo'opic). 

Proof. — It is clearly sufficient to prove the second par t of our proposition. 
We may assume wi thout loss of generality t h a t X is a closed ball. Then 
fx nu fl since X a is contractible and L a — VV = U a is connected. Applying 
Proposition 1 .3 , we conclude t h a t f f". The proof is completed. 

2 .6 . P R O P O S I T I O N . — Let A and В be two objects, f : A -> В be a compact 
field. Assume that either : (a) f is finite dimensional or (b) E is complete. 
Then, if a field 9 : В -> U is inessential, so is the composite 9 f : A -> U. 

Proof. — Take a closed ball X containing A and consider the following 
diagram : 
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By the Extension of Compact Mappings Lemma, in either of these cases (a) 
and (b), there exist a closed ball Y containing В and a field f' : X Y 
such that f (a) = f' (a) for all a G A. On the other hand, by assumption, 
there is an extension 9 : Y U of 9 over Y. Put t ing f = 9 f \ we obtain 
a field f : X U which extends 9 f : A U over X. Thus 9 f is ines-
sential and the proof is completed. 

3. CONTINUITY OF THE FUNCTOR T.0. — We know that , given A fixed 
admissible object U we have an /i-functor from the category £ to the 
category of sets, which assigns to an object X the set of homotopy classes 
т. (X) = ~ (X, U) and to each field f : X Y assigns the induced map 

The purpose of this section is to show that the above functor may be 
converted into an /i-functor from £ to the category of based sets. 

First we note tha t by the results of the previous section, each homotopy 
set к (X) contains a distinguished element, namely, the class which contains 
all inessential fields and called the zero homotopy class. Moreover, if f is 
a finite dimensional field, then as a consequence of Proposition 2.6, we 
observe that f* is the based map, i. е., f* (0) = 0. 

Let us denote by т0 the function defined on the dense subcategory 
£ 0 С £ by the assignments X -> г. (X) and f f*. Then the above remarks 
may be expressed equivalently as follows : 

3.1. PROPOSITION. — The function К0 £ns is a contravariant 
h-functor from the category f0 into the category of sets with distinguished 
elements. 

In order to prove tha t f* is the based map for an arbitrary compact 
field f , we shall establish the continuity of the functor This fact will 
also be of importance in our further discussion. 

We begin with two lemmas : 

Let Y be an object and j YA } be an approximating sequence for Y. 

3.2. LEMMA. — Let f : Y - > U be an z-field. There exists an integer 
k ^ i and an ol-field f : YA- U such that f = {' | Y. 

Proof. — Let F : Y, E be an a-mapping such tha t F | Y = F. Taking 
into account the definition of an admissible object and Proposition 11.3.2 
we infer that the set 
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is compact ; therefore, for some к ^ 1, YA does not intersect C. Now 
put t ing f' — f I YA, we obtain a required a-field f'. 

3 .3 . LEMMA. — Let f , g : Y* U be two a-fields such that f\ Y g | Y. 
There exists an integer m ^ к such that f | Y " L A G I Y M . 

Proof. — Let : Y U be an a-homotopy such tha t h0 — f and hi — g. 
On the set 

define an a-mapping H ' : T L a b y 

Clearly, we have 

By extending H ' f rom T over Y*Xl , we obtain an a-mapping 
H : YA X I -> LA. Clearly, the set 

is compact ; therefore, for some m ^ к the intersection C n ( Y , „ X l ) is 
empty. Now, put t ing ht — ht \ Ym , we obtain an a-homotopy ht : Ym U 
such t h a t К = f I Ym and hi — g \ Ym . The proof is completed. 

3 .4 . D E F I N I T I O N . — For each relation к ^ I denote by 

the based maps induced by the corresponding inclusions. Clearly, 
{ it (YA) ; i\i} is a direct system of based sets and the family { i* } is a 
direct family of based maps. 

Now we may state the main result of this section : 

3 . 5 . T H E O R E M . — The map 

is a bijective based map. In other words, the functor 
continuous. 

Proof. — i* is surjective : Let [ f ] € tt (Y) ; we may assume without loss 
of generality tha t f is an a-field. Applying Lemma 3 .2 , there exist к 
and. [ f ] e r. ( YA) such tha t i*k [f'] = [ f ] . 
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i* is injective : Suppose t h a t for two elements we have 

Assuming, without loss of generality, t ha t both f and g are a0-fields, 
this implies Я Y т g I Y f o r s o m e consequently by 3 . 3 we have 

for some I ^ к and the proof is completed. 

i* is a based map : Evident . 

3 . 6 . COROLLARY. — For an arbitrary compact field f , we have 

4 . Ti ( X ) IS A DIRECT LIMIT OF THE HOMOTOPY SYSTEM { 1TA ( X ) ; IAP }. — 

In this section, X denotes an arbi t rary b u t fixed object and the indices a, 
(3, . . . s tand for the elements of the directed set i?x. 

D E F I N I T I O N . — For each a consider the set ( X ) as A set with the 
0-homotopy class as the distinguished element. For each relation a ^ (3, 
let 

be the map defined by the assignment 

The family 

indexed by J?x will be called the homotopy system of X. 

4 . 2 . PROPOSITION. — The homotopy system P. ( X ) of X is a directed 
system of based sets over the directed set 

Proof. — This follows immediately from the definitions. 

Now we tu rn to the result indicated in the title of this section. 

For each a let 

be defined by the assigment 

Since for every relation с we have 

the family { i a } is a direct family of maps in £ns*. 
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4 . 5 . T H E O R E M . — The direct limit map 

is invertible in the category of based sets. 

Proof. — i* is surjective : Let [ / ' ] € , к ( Х ) ; by Proposition 1.7, there 
exists an a and an a -homotopy class [g ]a€ r i a (X) such t h a t ia([g]«) == [/"]• 

i* is injective : Assume t h a t ia([g]a) = Ц ([/]?)» where [ g ] a € ^ a ( X ) and 
[/Препр (X). Then, b y Proposit ion 1 .8 , there exists an у such t h a t 

*«T ([g]a) = ( \ fh) . 

i* is a based map : Evident . 

5. T H E FUNCTOR TC AND H0. — For every relation consider 
the based m a p 

defined by the correspondence 

and the based map 

given by the assignment 

It follows f rom Proposit ion 1 . 5 t h a t т^ is bijective. 

5 . 1 . D E F I N I T I O N . — For each relation a ^ {3 define 

by pu t t ing 

The family 

will be called the restricted homotopy system of X . 

The following two propositions follow clearly f rom the definitions 
involved 

5 .2 . P R O P O S I T I O N . — The restricted homotopy system of X is a directed 
system of based sets over the directed set C1^. 
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5 . 3 . PROPOSITION. — Let X and Y be two objects and f : X Y an 
«о-field. Then, for any a, pGA'S with a0 ^ a ^ ? we have the following 
commutative diagram of based maps : 

Now let us put for an object X 

If f:X~+ Y is a finite dimensional field, then, by Proposition 5.3, 
{ f * } is a direct family of based maps and therefore the formula 

defines the based map f : £ (Y) г. (X). 

5 .4 . PROPOSITION. — The formulas (i) and (ii) define an h-functor 
from to the category of based sets. 

Our aim now is to prove tha t r. is naturally equivalent with the functor r.„. 

For an object X and a 6 i ' x , denote by 

the restriction map given by the correspondence 

5 . 5 . PROPOSITION. — For every relation A ^ (3 we have the following 
commutative diagram of based maps : 

5 . 6 . PROPOSITION. — Let X and Y be two objects and f : X Y be an 
ao-field. Then, for any a with a0 ^ a we have the following commutative 
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diagram of based maps : 

By passing to the limit in the diagram of Proposition 5 . 5 and put t ing 
for every object X 

we obtain a family т = { тх } of based maps 

Now we are prepared to state the main result of this section : 

5 . 7 . T H E O R E M . — Т is a natural equivalence between the functors n0 

and тс. More precisely (a) xx is a bijective based map for each X; (b) given 
a finite dimensional field /* : X ->• Y we have the following commutative 
diagram of based maps : 

Proof. — This follows clearly from Propositions 1 .5 and 5.6. 

6. NATURAL GROUP STRUCURE IN it (X). — In this section, for an admis-
sible object U, we denote by й : € &ns* the functor which assigns 
to an object X the based set it (X) and to a compact field f:X-+ Y the 
based map f* : it (Y) it (X). We shall establish tha t for some U (called 
algebraically admissible) the functor i may be converted to a functor 
into the category of abelian groups. 

Let us denote by i 0 the restriction of û to the subcategory iT0 and denote 
by i : ab &ns* 

the forgetful functor from the category of abelian groups to the category 
of based sets. 
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Now consider the problems (Ф) and (£<,) of completing (by functors) 
the diagrams 

respectively. 

6 . 1 . LEMMA. — The problems (Ф) and (#0) are equivalent. 

Proof. — The implication in one direction is evident. To prove the 
implication in the opposite direction, let us assume tha t it0 : £0 (SLb 
completes D0. Since £ 0 is dense in £ , every based set тс (X) carries a 
structure of abelian group. It will be, therefore, sufficient to show tha t 
every based map 

induced by a compact field f : X ->• Y is a homomorphism. To prove 
this, take an approximating sequence { YA, fk J for f . Since by Theorem 3.5 
the functor it0 is continuous we have the following formula in the 
category &ns* : 

By assumption, all the maps it0 (fk) = f* and r>o (/*) = j* are homo-
morphisms. Consequently, in view of the formula (*), f* is also a homo-
morphism and the proof, of the lemma is completed. 

6 . 2 . DEFINITION. — An admissible object U is said to be algebraically 
admissible provided there exists a cofinal subset £'v of £ v such tha t : 

(i) for each a € £'v the assignment X it (Xa) is an Л-functor from 
{£*,$) to the category of abelian groups (*); 

(ii) for every relation a ^ [3 in £'v and every X such tha t Xp is non-
empty, the map jap : it (Xa) -> it (Xp) is a homomorphism. 

Now we may state the final result of this chapter : 

6 . 3 . THEOREM. — If U is algebraically admissible, then the diagram CO 
can be completed by an h-functor it : £ -»• 61 b. 

(6) We recall t h a t (£* ~) is an Л-subcategory of ( f * ~) whose objects have non-empty 
intersection with L a . 
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Proof. — By the definition of an algebraically admissible object and 
taking into account Theorem 5.7, we infer t ha t the diagram LD0 can be 
completed by тт0. This, in view of Lemma 6.1 , implies our assertion and 
the proof is completed. 

Remark. — One could prove tha t every admissible object U is algebrai-
cally admissible. Since this fact will not be used, we do not give any 
details. 

C H A P T E R V I I I 

R E P R E S E N T A T I O N THEOREMS 

The main purpose of this chapter is to show tha t the infinite dimensional 
stable cohomotopy theory is representable. In the second part of the 
chapter, we shall prove tha t (under some restrictions on the group of 
coefficients) the ordinary cohomology theory is also representable. 

1. T H E GROUPS 7t"~n(X) (')• — Let { E"~n Ф E„ ) be A fixed sequence of 
direct sum decompositions of E as in the section 1.1. For n we let 

Clearly, U00-'1 is admissible and we denote by n" " the corresponding 
functor from С to &ns*. 

Next, we let 

Clearly, is со final in £ n and £ n is со final in £ . 
For к > n > 0, the map from to RA — R"+1 given by the assignment 

is a homotopy equivalence and we denote by 

a homotopy inverse of this map. 
Let О = { 0 a , j be a fixed orientation in E. For each n ^ l choose 

ln : E„ R" which represents the orientation of E„ and ln (x) In-hi (pp) 
for x€. E„. 

For oc€ £„,x choose such tha t la (x) = ln~i (x) for all ж еЕ „_ , 
and define a map 

(7) These groups were in t roduced in K . Geba [5]. 
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by 

is a homotopy equivalence and therefore : 

is bijective. Moreover, since 

the set of homotopy classes r. (Xa, may be identified with the 
(eZ(x) — n)-th cohomotopy group of X a [and also with the (d(y.)-n)-th 
stable cohomotopy of X], i. е., 

Consequently, r. (Xa, Ua - " ) admits a unique abelian group structure such 
that (va,n)* is an isomorphism; this structure is determined only by the 
orientation Ол in La. 

1 . 1 . PROPOSITION. — Every U" " is algebraically admissible (n^ 1) . 
Moreover, for each X G £ the family (ya,n)* where K6i\x defines an isomor-
phism from { T. (Xa, U ; r a ) ; j # j to { (Xa); Да,3 К 

Proof. — If X, Y e i T and f : X Y is an а-field, a € A \ x , then we have 
a commutative diagram : 

Therefore, the assignment X ri (Xa, U'a') is an Л-functor from JS* 
to the category of abelian groups. If а ^ (3 is a relation in then 
the following diagram commutes : 

Hence jxp is a homomorphism and the proof is completed. 

1 . 2 . COROLLARY. — r.*~n is an h-functor from £ to the category of abelian 
groups. 
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2. R E P R E S E N T A B I L I T Y OF THE STABLE COHOMOTOPY. — We shall prove 
now tha t the functors it—" and 2—" are naturally equivalent. To this end, 
recall that , in view of the results of Chapter VII, we may identify it—" (X) 
with Lim { it (X«, U(

a">) ; ;«p }. Using this identification we let 
a 

yx = Lim j (у«,п)+ } : тг—» (X) 2—« (X). 
a 

2 . 1 . T H E O R E M . — The family У = { YX } is a natural equivalence between 
the functors it—" and 2—". 

Proof. — By definition yx is an isomorphism of abelian groups for 
each object X in £ . It remains to prove tha t if f : X Y is a map in £ 
then the following diagram commutes : 

In view of the continuity of it" " and 2—" it suffices to prove it iorfç£0. 
Suppose tha t f is an a0-field. If a, (3 € C„,x, a0 ^ a ^ (3, then the following 
diagram commutes : 

Since we have identified with and under 

this identification the desired conclusion follows. 
a 

This completes the proof. 

Remark. — The entire argument can be repeated in the relative case. 
Namely, letting we obtain a pair 
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of open subsets of E. One can prove that for a pair (X, A) in £ there 
exists a natural isomorphism 

Thus Theorem 2 . 1 remains valid in the relative case. 

An immediate consequence of 2 .1 is the following : 

2 . 2 . COROLLARY. — For an object X in £, E — X is connected if and 
only if any two compact fields f , g : X E — { 0 } are compactly homotopic. 

3. К (G, n, m)-POLYHEDRA. — In this section (8) we prove some lemmas 
which will be used in the proof of the representability of the ordinary 
cohomology. 

3.1. DEFINITION. — Let G be a finitely generated abelian group. 
A polyhedron К is a К (G, n, m)-polyhedron if 

It is a standard fact from the homotopy theory that , given a finitely 
generated G and integers n and m, there exists a К (G, n, m)-polyhedron 
of dimension not greater than n -f m + 1. From the suspension isomor-
phism theorem, we have : 

3 .2. PROPOSITION. — If К is а К (G, n, m)-polyhedron and m^-n — 2, 
then SK is а К (G, n -f- 1, m)-polyhedron. 

Let К be a К (G, n, m)-polyhedron with m ^ n — 2. Let S° К = К 
and Sp К = S (S""1 К) for p ^ 1. Thus Sp К is a К (G, n + p, m)-poly-
hedron. Let X be a compact space with dim X ^ n -f- m -f- P- Then 
by the standard methods of the obstruction theory (see [10], p. 194) the 
homotopy classes of continuous maps of X into Sp К are in a natural 
one-to-one correspondence with the elements of the Cech cohomology 
group Нл+Р (X; G). We will denote the corresponding map by 

(8) In connection with the results of this section the authors thank P. Hil ton for critical 
remarks and several helpful comments. 
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It turns out tha t is a transformation of functors : if Y is another compact 
space with dim Y ^ n + p -j- m and 9 : X -> Y is a continuous map 
then the following diagram commutes : 

n (Y,5PK) ?-p > H"+P(Y;G) 
«« 9 " 

Now let (X; X1} X2) be a triad of compact spaces and let 
Assume 

Let 9 : X0 S^ К be a continuous map. Since and 
are contractible 9 can be extended to a continuous map 

Clearly, the homotopy class of 9 depends only on the homotopy class of 9. 

Thus, the assignment 9 9 induces a map 

Again, by the standard methods of the obstruction theory we obtain 
the following : 

3 .3. PROPOSITION. — Let К be а К (G, n, m)-polyhedron with ^ . „, ! j у „ . „ ,, „W „ 
Let Д be the Mayer-Vietoris homomorphism of a compact triad 
such that 

Then the following diagram commutes : 

3 . 4 . LEMMA. — Let G be a finitely generated abelian group. Let n > 0 
be a fixed integer and let p = 4 N + 7. Then there exists a closed 
subset W c R p such that R'' — W has the homotopy type of a К (G, n + 2, n)-
polyhedron. 
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Proof. — There exists а К (G, n + 2, n)-polyhédron К with 

Since p = 2 (2 n + 3) + 1, К can be realized as a subcomplex of a trian-
gulation of Sp. Let K* be the dual subcomplex. Then S'' — K* has the 
homotopy type of K. Choose a„ G К* and let rt : R'' S'' be a continuous 
map which maps R p homeomorphically onto S'' — ; x„ }. Let W = r f 1 (K). 
Then r, maps R'' — W homeomorphically onto S„ — K* and hence W has 
the required property. 

4 . REPRESENTABILITY OF THE ORDINARY COHOMOLOGY H ' ~ * ( ; G ) . 

— Throughout this section we assume that we are given a finitely generated 
abelian group G. Let n ^ 0 be a fixed integer. Let F = E ф R : " + s . 
Choose ос о G £ (F) such tha t R2"^' С La,, d (at0) = 4 n -f 7. Let L0 = La„. 
Let £0 — j a G £ (F); a(, ^ a }. Clearly, £ 0 is a cofmal subset of £ (F). 
For я G £0 we let La = L a n E . The assignment a a' defines a bijective 
correspondence betAveen £„ and a cofmal subset of £ (E). Let { CPa } 
be an orientation in E. Extend j (?a } to an orientation in F which satisfies 
the following condition : if la G О*, h. G О* then the following 
diagram, in which i denotes inclusion and q (.г) = (0, . . . , 0, xt, . . 
is commutative : 

Fix lu G lu : L0 -> R4 , ,+7. According to 3 .4 there exists a К (G, тг-f 2, n)-
polyhedron К С R4 n + ' and a closed subset W С R ",+7 such that К С R4 n + Ï — W 
and the inclusion map i„ : К R4"4 7 — W is a homotopy equivalence. 
Let U = F — (/о)-1 (W). We will define inductively inclusions 

Assuming i/,_) : S/,_1 К -> — W is already defined, we let ik be 
the map of S'1 К = S (S*-1 К) which maps the north pole onto (0, . . ., 0, 1), 
the south pole onto (0, . . ., 0, — 1) and is linearly extended onto C+ (SA_1 K) 
and C_ (S'"1 K). ^Evidently, each i/, is a homotopy equivalence. Let 
•/.A : RA+4+"-t-1 — W SA К be a homotopy inverse to i*. 

Now lei X be an object of Г (E) and let a G £0 be such that X a 0. 
Choose a 1 epresentative 1Л : La R'/(2) such tha t /a (x) = ln (x) for all xE L0. 
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Let xa : U S*|x) K, where к (a) = d (a) — 4 n — 7, be the map defined 
by xa (x) = (xMa, о la) (x). Then xa induces a bijective map 

4 . 1 . LEMMA. then the following diagram 
commutes : 

Proof. — The lemma follows from 3 . 3 and the definitions involved. 

In view of the Theorem Y11.4.5 we may identify n (X, U) with the 
limit of the direct system Thus 

Hence, we obtain the following : 

4 . 2 . T H E O R E M. — Let n ^^ 0 be a given integer and let G be a finitely 
generated abelian group. Then there exists an open subset U of E Ф R 2 " + 5 

such that for any Хб£ (E) there is a natural bijection 

CHAPTER IX 

SOME APPLICATIONS TO NON.-LINEAR PROBLEMS 

In this chapter, using cohomology functors, we consider some particular 
extension problems in Then, with the aid of the notion of the essential 
vector field, we treat some aspects of the theory of the equation x = F (x) 
in cases when the Leray-Schauder degree theory is not applicable. 

1. ESSENTIAL FIELDS FROM S INTO E " " — j 0 j. — Notation. — By an 
annular ring T in E we understand a set of the form 

where 0 < rx ^ r2. By К we denote a closed ball in E with the center 0 
and by S its boundary. 
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We let 

and we reserve the symbol U" " for the open set E — En_i 

1 . 1 . DEFINITION (СОТР. [8]) . — Let U be open in and f: S U 
be a compact field; f is called essential provided the diagram 

cannot be completed in the category £ , i. e,, there is no compact field 
К U such that f (x) — f (x) for a ;€S ; otherwise, f is said to be 

inessential. 
From the Homotopy Extension Lemma (cf remark after corollary I I . 5 . 2 ) 

it follows tha t the property of a field f to be essential depends only on the 
homotopy class of f . More precisely, we have the following : 

1 . 2 . PROPOSITION. — Let f , g : S ->- U be two fields which are compactly 
homotopic. If f is essential then so is g. 

Remarks. — Let f : S-+ E x - n — ( 0} be an arbitrary compact field and 

stand for the inclusions. Then : 

(i) f is essential if and only if so is the composite; ° /*; 
(ii) the composite i ° f is inessential ; 

(iii) the restriction 

is inessential. 

Let / : S -> E*~n — {0} be a compact field. We may treat f as a field 
into T* - n for some annular ring T* _ n , i. е., we may write 
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Take the stable cohomotopy functor a n d consider the induced 
homomorphism 

f* . 2—«- ' (T"-») ->2—"- ' (S) . 

1 . 3 . T H E O R E M . — If the induced homomorphism f* is non-trivial, then 
the field f is essential. 

Proof. — Assume to the contrary that f is inessential. Then for some 
annular ring T*"" Э there is a field f : К -*• T"°~" such tha t the diagram 
in £ 

in which f a n d / s t a n d for the obvious contractions of f is commutative. 
Since 2 ' - " - 1 (K) = 0 it follows tha t 

This in turn (because i* is clearly an isomorphism) implies tha t f* — 0. 
The obtained contradiction completes the proof. 

Remarks. — 1. It can be shown tha t the groups 

are isomorphic to the stable homotopy groups of spheres (cf. [5]). In the 
case considered above 

2. In view of remark 1, the algebraic criterion given by Theorem 1 .3 
can only be of interest in cases when the group (Sm) is non-trivial. 
(This is known, for example, to be the case for n = 1, 2, 3, 6, 7, 8 but not 
for n = 4, 5.) 

2 . T H E L E R A Y - S C H A U D E R CHARACTERISTIC. — We consider now the 
case n = 0 and deduce some known facts about the Leray-Schauder 
characteristic. We use the notation of the previous section. 

2.1. D E F I N I T I O N . — Let / : S E — { 0 } be a compact field. Then 
we have 
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and hence f* (1) = y ( f ) ° 1; the integer y ( f ) is called the Leray-Schauder 
characteristic of f\ clearly, f* is non trivial if and only if y ( f ) 0. 

Remark. — It follows from the Hopf theorem that , in the definition 
of y ( f ) one could use the cohomology functor H"~1 ( ; Z) instead of 
For n > 0, the ordinary cohomology could not provide any information 
because always f* = 0. 

Now, by taking into account the Representation Theorem for the stable 
cohomotopy, we draw the following consequences of Theorem 1 .3 : 

2 . 2 . T H E LERAY-SCHAUDER THEOREM. — A compact vector field 
f . S E — { 0 I is essential if and only if the Leray-Schauder characte-
ristic y ( f ) of f is different from zero. 

2 . 3 . T H E R O T H E - H O P F CLASSIFICATION T H E O R E M . — Two vector fields 
f , g : S -> E — { 0 } are compactly homotopic if and only if y ( f ) = y (g). 

The only known general criterion for a field to be essential (in both 
cases n = 0 and n > 0) is given by the following result : 

2 . 4 . B O R S U K ' S ANTIPODAL THEOREM. — I f . f : S E - | 0 ! is odd 

[i.e., f(x)= — f(—x) for every z € S ] , then f is essential; in particular, 
the inclusion j : S E — j 0 } is essential. More precisely, y ( f ) is odd 
and y (j) = 1. 

Proof. — It can be easily shown (сотр. [8]) tha t fis compactly homotopic 
to an odd finite dimensional field g : S E — { 0 } and thus y ( f ) = y (g). 
Then the fact tha t y (g) is odd, follows readily from the finite dimensional 
statement of Borsuk's Theorem. 

3. T H E EQUATION x = F (x) (The Leray-Schauder case). — Each result 
concerning the essentiality of a compact field f : S E*-~n — { 0 ! can be 
" translated " into the existence criterion for the equation x = F (x). 
In this and the next section we consider (for the sake of completeness) 
the known case n = 0. Our exposition follows essentially that of [8] 
(except we do not assume the space E to be complete). 

Suppose tha t 
F : K - > E 

is a compact map and we are interested in solving the equation 

(1) F (x) = x, 

or, equivalently, the equation 

(2) f(x) — x — F (x) — 0. 
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To treat (2) we may make an assumption tha t 

The assumption (3) permits to consider f on S as a compact field 

with the range equal to E — { 0 }. 

3 .1 . THEOREM. — If f is essential [or equivalently Y ( / ) 0], then the 
equation ( 2 ) has a solution. 

As a simple consequence of Theorems 1.2, 2 . 4 and 3 . 1 one gets the 
following non-linear alternative : 

3 . 2 . THEOREM ( 9 ) . — Let F : К E be a compact mapping. Then either : 
(a) the equation x = F (#) has a solution for some ж б К or (b) x — X F (x) 
for some 0 < X < 1 and 

Proof. — For suppose to the contrary tha t 

and at the same time, 

Then put t ing 

we have, in view of (i) and (ii), 

and hence the formula (iii) defines a compact homotopy ht : S -> E — { 0 ) 
joining the inclusion h0 =j: S E — { 0 } and the field Л, S E — {0}. 
Since j is essential, so is f . Consequently, by Theorem 3 1, there exists 
a fixed point for F, which contradicts (i). The proof is completed. 

3 . 3 . COROLLARY (The Leray-Schauder Alternative [13]) . — Let F : E E 
be a completely continuous operator and let the set SKcE be given by the 

(") In the finite dimensional case Theorem 3 . 2 goes back to Bohl (cf. J. fur Reine 
Апдеш. Math., vol. 127, 1904, p. 179-276); see also A. G R A N A S , Introduction à la topologie 
des espaces de Banach, Ins t i tu t Henri Poincaré, 1966. 
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condition 

Then either : (a) &r is not bounded or (b) the equation x = F (x) has at least 
one solution. 

3.4. COROLLARY. — Let F : К -»• E be a compact mapping and assume 
that any of the following conditions is satisfied : 

Then the equation x = F (x) has at least one solution in K. 

Proof. — Let us prove, for example, that (ii) implies the existence of 
a fixed point for F. For suppose to the contrary tha t x ^ F (x) for 
all i € K . Then, by Theorem 3.2, there is a point ^ 0 G S and 0 < X < 1 
such that zo = À F (x0). Then, in view of the inequality (ii), 

and since || F (x0) || И 0, we get 1 ^ 1 — X. The obtained contradiction 
completes the proof. 

4. INVARIANCE OF DOMAIN. — Let f : X -> Y be a continuous mapping 
between two metric spaces and £ > 0. Call f an i-mapping provided 

f is said to be an i-mapping in the narrow sense provided for some о > 0 

Denote by К (x0, e) a ball in E with center x0 and radius e. 

4 . 1 . LEMMA (on i-mappings). — Let f : К (x0, e) E be a compact 
field. If in addition f is an i-mapping, then f (xu) is an interior point of 
f{K(*., e)). 

Proof. — We may assume without loss of generality that £ = 1 and x0 — 0 
is the origin in E. Let us put for (x, t ) € S x I 
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Since fis an £-mapping with £ = 1 and || x || = 1, it follows t h a t ht (x) ^ 0 
for all [x, t ) G S x I ; thus ht : S -»- E — { 0 } is a compact homotopy 
joining h0 and hi, where 

Since hi is odd on S and h0 nu hi it follows, by Borsuk's Antipodal Theorem, 
tha t h0 is essential. This implies easily t ha t f (0) G Int (f (K)). 

A number of consequences of Lemma 4 . 1 follow : 

4 . 2 . COROLLARY (Schauder s Theorem on Invariance of Domain [17]).* 
— Let U be open in E and f : U ->- E be an injective completely continuous 
field (10). Then f (U) is open in E. 

Proof. — Since an infective map is clearly an e-mapping for all £, it 
follows t h a t every point yEf (U) is an interior point in f (U) and hence f (U) 
is open. 

4 . 3 . COROLLARY (Theorem on e-mappings [8]) : — Let f : E ->• E be a 
completely continuous field. I f , in addition, f is an i-mapping, then f (E) is 
open in E. I f , moreover, f is an i-mapping in the narrow sense then f is 
surjective. 

4 . 4 . COROLLARY. — Let f : E E be a completely continuous field 
satisfying for some С > 0 the condition 

Then f is invertible. 

Proof. — Condition ( • ) implies t h a t f is an £-mapping in the n a r r o w 
sense and hence, by 4 .3 , f is surjective. Clearly f is also injective. Hence, 
by the Invariance of Domain Theorem, f maps open sets onto open sets 
and therefore f is bicontinuous. 

4 . 5 . COROLLARY (The Fredholm Alternative). — Let F : E E be 
a completely continuous linear operator. Then either : (a) the equation 
x = F (x) has a non-trivial solution or (b) the equation y = x — F (x) has 
for each y exactly one solution. 

(10) f : X E is called a completely continuous field provided F : X -> E is a completely 
continuous operator. 
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proof\ _ Let us put f(x) = x—F[x) for a G E ; clearly either : 
(i) f is not injective or (ii) f \ s injective. In the first case the condition (a) 
holds. In the" second case, by the Invariance of Domain Theorem, f is 
surjective and bicontinuous and hence the condition (b) is satisfied. The 
proof is completed. 

5. THE EQUATION x = F (x) (THE H O P F CASE). — If the Leray-Schauder 
characteristic у ( / ) of / is zero, then, in general, there is no solution of the 
equation (1). Nevertheless, one could still assert the existence of solutions 
for (1) provided some additional information about f is available. 

To explain this consider first the finite dimensional case. Let us make 
an additional assumption that 

where we have the obvious contraction of f of f 

Putt ing 

we get a map 

Clearly, the following conditions are equivalent : 

is essential; 
is not homotopic to a constant map; 

(c) the homotopy class [?] is a non-trivial element of the homotopy 
group n„ (Sm). 
If any of the above conditions is satisfied, then the equation (2) has at least 
one solution. Thus, in brief, in finite dimensional case the types of the 
equation (1) can be classified according to the homotopy classification 
of spheres. 

Passing to the infinite dimensional case let us keep the notation of 
section 3 and assume tha t for some n > 0, 

The assumptions (3) and (4) permit to consider / on S as a compact 
field 

with the range equal to 
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The following statement contains Theorem 3 . 1 and links the notion 
of the essential field and the theory of the equation (1). 

4 . 1 . T H E O R E M . — If the condition (4) is satisfied andf : S — E X ~ " — { 0 } 
is essential then the equation ( 2 ) and hence (1) has at least one solution. 

Remark. — We know (cf. Remark following 1.2) that f : S -> E*~" — { 0 } 
is essential if and only if so is the composite j f : S where 
j : E*~" — { 0 } stands for the inclusion. But jf is essential if 
and only if the homotopy class [ j f ] is a non-trivial element of the group 

It follows tha t in infinite dimensional case the various types of the 
equation (1) can be classified according to the stable homotopy classification 
of spheres. 

C H A P T E R X 

CODIMENSION 

In this chapter we are concerned with the problem of finding a satis-
factory notion of codimension for objects of the Leray-Schauder category. 
First for the objects in we define the " basic " codimension Codim in 
terms of the extension problem for compact fields with special ranges E — E„. 
Further, we have various cohomological codimensions ; in particular, 
Codimz defined in terms of the ordinary cohomology over Z. The main 
result of the chapter says tha t if E is a Banach space', then Codim = Codimz. 

1. E X T E N S I O N OBJECTS AND THE FUNCTION Codim. — We recall t ha t 
for a fixed increasing sequence of linear subspaces of E : 

we let 

To each ! corresponds a functor which is naturally 
equivalent to the stable cohomotopy functor 

We recall tha t on objects 

1 . 1 . DEFINITION. — Le t X be an ob j ec t in I" a n d U E C . W e s a y 
tha t U is an extension object for X provided that , given an object A C X 
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and a compact field fa : А н> U, there exists a field f : X -> U being an 
extension of f„ over X. In other words, every diagram 

with A in f can be completed in 

We denote by (U) the set of objects defined by the condition : 

U is an extension objec t for X 

and we let 

Example. — G i v e n a n o b j e c t X i n i* i t is n a t u r a l t o a s s u m e t h a t 

Codim X = 0 <=> t h e inter ior I n t (X) is non-empty . 

If E is a Banach space one could prove then tha t 

Codim X = О «=Ф U * - 1 = E — { 0 j is no t an extension object for X. 

The above example suggests the following : 

1 . 2 . DEFINITION. — For an object X e i * Ave define the codimension 
Codim X of X Avith respect to E to be the smallest integer n for Avhich 
•y*—;n-r-i) n Q t a n extension object for X. 

Thus, 

The folloAving is an immediate consequence of the definitions : 

1 . 3 . PROPOSITION. — For any two equivalent objects X andY in £, we have 
Codim X = Codim Y. 

2. COHOMOLOGICAL CODIMENSION Codim,;. — Let G be an abelian group 
and H"~*( ; G) the corresponding cohomology theory on i \ 

2.1. DEFINITION. — We define the cohomological codimension 
Codimr, (X) of an object X Avith respect to E as the smallest number n, 
such that Н*~" (X, A) ^ 0 for some object A c X . 
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Now our aim is to prove tha t Codim = Codimz (X). This result will 
be established with the aid of the Hopf Theorem, and the Representation 
Theorem after some preliminary lemmas. 

First, as a consequence of the Homotopy Extension Lemma, we have 
the following : 

2 . 2 . L E M M A . — If the space E is complete, then for an object X E I T the 
following two conditions are equivalent : 

(i) Xe€—( n + 1 > ; 

(ii) For any pair of objects A c B c X the restriction map 

is an epimorphism. 

Next, two lemmas based on the continuity of the functors under consi-
deration : 

2 . 3 . L E M M A . — Let X be a given object. Assume that for any pair of 
objects A c B c X the map 

is an epimorphism. Then for any object А С X the group is trivial. 

Proof. — Assuming t ha t our assertion is not true, take a nontrivial 
element \ of the group H* -" (A). 

For a point x in A, let Y = S (£) be an essential carrier of £ with respect 
to x. Now, take an additive triad (Y; Y f , Y2) in which both Y t , Y2 are 
proper subsets of Y such tha t x € Y0 = Yi П Ya and consider the corres-
ponding Mayer-Yietoris exact sequence : 

In view of the definition of the triad ( we have : 

and therefore by exactness 

Further, by the assumption (i), the map 4 ' is an epimorphism. From 
here, in view of (iii), we infer tha t for some £' 

Consequently, again by exactness, contrary to (ii). 
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2 . 4 . LEMMA. — For an object X the following.two conditions are equivalent : 

1° H - " (X,.A) = 0 for all objects A c X ; 

2 ° For any pair of objects A C B C X the map 

induced by the inclusion _/л„ : A -<- В is an epimorphism. 

Proof. — 1° 2° : Assuming 1° we infer, in view of the exactness of the 
cohomology sequence of a pair, t ha t bo th j*KX and j*iX are epimorphisms. 
Since / t u 0 jux — jl\, it follows tha t j*„ is also an epimorphism. 

2° 1° : Consider the cohomology sequence of the pair (X, A). Assu-
ming 2°, we infer by Lemma 2 . 3 tha t H*~" (X) = 0 and, consequently, 
by exactness H*~" (X, A) = 0. The proof is completed. 

Remark. — In the proof of Lemma 2 . 3 we used only the continui ty 
of the ordinary cohomology theory H'"~*( ; G); the same proof is valid 
therefore for any cohomology theory 

Thus, in particular, Lemma 2 . 3 and hence Lemma 2 .4 is valid for the 
stable cohomotopy theory 

3 . T H E O R E M S OF ALEXANDROFF AND PHRAGMEN-BROUWER IN E . — W e 

tu rn now to the main result of this chapter, which is analogous to the 
" Fundamen ta l Theorem in Dimension Theory " due to P. Alexandroff [1]. 
In this section we denote by H*~* the ordinary cohomology with integer 
coefficients Z. 

3 . 1 . THEOREM (The Alexandroff Theorem in E ) . — If the space E is 
complete, then for every object X in £ we have Codim (X) = Codimz (X). 

Proof. — Assume tha t Codimz X = n. Thus we have : 

(1) Hx_* (X, A) = 0 for all A c X and ft = 0, 1, 2, . . л - 1 ; 
(2) H ' - " (X, В) ^ 0 for some В с X. 

Consequently, by the Hopf Theorem, we get from (1), 

for all A c X and ft = 0, 1, 2 л - 1. 

From here, by Lemma 2 .2 , the Hopf Theorem and the Representation 
Theorem, we infer t h a t 

The restriction map is an epimorphism for any 
and ft = 0, 1,2, . . . . л - 1. 
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Let A be an object contained in X, к be an integer satisfying 
0 ^ / c ^ n — 1 and g : A U " _ ( A 4 _ 1 ) be an arbitrarily given compact 
field. In view of (4), [g] = j*xx [ f ] =[f\ A] for some field U*-(/f+1>; 
thus, g is compactly homotopic to the restriction f\ A of f to A. 

It follows now from the Homotopy Extension Lemma (which we can 
use in full generality because E is complete) tha t g can be extended over X ; 
hence (because of the arbitrariness of A) we have 

We now claim tha t 

For, suppose to the contrary tha t Let A c B be a pair 
of objects contained in X. Then, by Lemma 2 .2 and the Representation 
Theorem, the restriction map 

is an epimorphism. This implies, by Lemma 2.4, for stable homotopy 
[cf. Remark after proof of Lemma 2.4) t ha t 

for all A c X . 

From (7), in view of (3) and the Hopf Theorem, we infer tha t 

which is in contradiction with (2). 

By comparing (6) and (5) we get Codim X = n and the proof is completed. 

Now, with the aid of the Mayer-Vietoris sequence, we shall deduce 
the following : 

3.2. T H EOREM (The Phragmen-Brouwer Theorem in E). — For an 
object X, denote by b0 (E — X) the number of bounded components of E — X. 
Let (Y; Yt, Yj) be an additive triad in £ such that Codimz (Y, f iY a ) > 2. 
Then 

Proof. — Take the ordinary cohomology H* * ( ; Z) and consider the 
following part of the Mayer-Vietoris sequence of the triad 
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It follows from the assumption tha t 

and therefore, by the exactness, Ô is an isomorphism. Consequently, 
because 

the conclusion of the theorem follows. 

Among other facts which follow easily from the proved theorems, we 
mention also : 

3 . 3 . P R O P O S I T I O N . — Let X be an object such that Codimz ( X ) ^ 2 . 

Then X does not disconnect the space E. 

Proof. — It follows from the assumption tha t H " - 1 (X) = 0 and hence 
E — X is connected. 

B I B L I O G R A P H Y 

[ 1 ] P . A L E X A N D R O F F , Dimensions theorie. Ein Beitrag zur Geometrie der abgeschlossenen 
Mengen {Math. Ann., vol. 106, 1932, p. 161-238). 

[2] E. H. BROWN, Cohomology theories (Ann. Math., vol. 75, 1962, p. 467-484). 
[ 3 ] J . D U G U N D J I , А Л extension of Tietze's theorem (Pacific J. Math., vol. 1, 1951, 

p. 353-367). 
[ 4 ] S . E I L E N B E R G and N . S T E E N R O D , Foundations of algebraic topology, Princeton 

University Press, 1952. 
[ 5 ] K . G E B A , Algebraic topology methods in the theory of compact fields in Banach spaces 

(Fund. Math., vol. 54, 1964, p. 177-209). 
[6] K . G E B A and A . G R A N A S , Algebraic topology in linear normed spaces. I - Y (Bull. Acad. 

Polon. Sc ., I, vol. 13, 1965, p. 287-290; II , vol. 13, 1965, p. 341-346; I I I , vol. 15, 
1967, p. 137-143; IV, vol. 15, 1967, p. 145-152; Y, vol . 17, 1969, p. 123-130). 

[7] K. G E B A and A. G R A N A S , On cohomology theory in linear normed spaces (Proc. Infinite 
Dimensional Topology, Baton Rouge, 1967). 

[ 8 ] A . G R A N A S , The theory of compact vector fields and some of its applications to topology 
of functional spaces (I, Rozprawy Matematyczne, 30, Warszawa, 1962). 

[9] W. H U R E W I C Z and H . W A L L M A N , Dimension Theory, Princeton University Press, 
1941. 

[10] S. Т. Н и , Homotopy Theory, Academic Press, New York, 1959. 
[11] D . M . K A N , Adjoint functors (Trans. Amer. Math. Soc., vol. 9 4 , 1 9 5 8 ) . 

[12] J . L E R A Y , Topologie des espaces de Banach (С. R. Acad. Sc., t . 200,1935, p. 1082-1084). 
[13] J . L E R A Y and J . S C H A U D E B , Topologie et équations fonctionnelles (Ann. scient. Éc. 

Norm. Sup., (30), t. 51, 1934, p. 45-78). 
114] S . M A Z U R , Ueber die kleinste konvexe Menge, die eine gegebene kompakte Menge 

enthalt (Sludia Math., vol. 2, 1930, p. 7-9). 

http://rcin.org.pl



К. GEBA AND A. GRANAS 2 0 5 

[15] L . N I R E N B E R G , An application of generalized degree to a class of non-linear problems 
(to appear). 

1 1 6 ] L . P O N T R J A G I N , The general topological theorem of duality for closed set$ (Ann. Math., 
vol. 35, 1934, p. 904-914). 

[17] J . S C H A U D E R , Invarianz des Gebietes in Funktionalraumen (Studia Math., vol. 1, 
1929, p. 123-139). 

[18] E. S P A N I E R , A lgebraic Topology, M C Graw Hill, New York, 1966. 
[19] E . S P A N I E R , Duality and S-theory (Bull. Amer. Math. Soc., t . 62, 1956, p. 194-203). 
[20] E . S P A N I E R and J . H . C . W H I T E H E A D , Duality in homotopy theory (Mathematika, 

vol. 2, 1955, p. 56-80). 
[21] G. W. W H I T E H E A D , Generalized homology theories (Trans. Amer. Math. Soc., vol. 102, 

1962, p. 227-283). 

K . G E B A , 

Insti tute de Mathématiques, 
Université de Gdansk, 

Gdansk, Pologne. 

A . G R A N A S , 

Département de Mathématiques, 
Université de Montréal, 

Case postale 6128, 
Montréal, 101, 

Province de Québec, Canada. 

(Manuscrit reçu le 17 novembre 1971.) 

http://rcin.org.pl



P R O C E E D I N G S O F T H F I N T E R N A T I O N A L 
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W A R S Z A W A 1980 

On some generalizations of the Leray-Schauder theory 

by 

Andrzej G r a n a s 

Let £ be an infinite dimensional normed space. A continuous mapping 
/ : A -» У between two subsets X and У of £ is called a compact vector 
field provided it is of the form f(x) = x — F (л), where F : X -* £ is a compact 
operator. This notion arose naturally in connection with the question of 
solvability of the non-linear equation x = F{x) and was introduced in the 
early thirties by J. Schauder and J. Leray. Furthermore, the above authors 
made the important discovery that many familiar geometrical facts of finite 
dimensional topology can be carried over to infinitely many dimensions 
provided attention is restricted to the class of compact vector fields. In 
particular, a generalization of Brouwer's degree (or of the equivalent notion 
of a fixed point index) was established, known presently under the name 
of the Leray-Schauder theory, and with its aid various applications were 
obtained. 

In this report we present a survey of the work of K. Gçba and the 
author on infinite dimensional cohomology theories(*). These theories gener-
alize the Leray-Schauder degree theory and provide a convenient algebraic 
tool for the treatment of various infinite dimensional problems. Among these, 
we shall discuss briefly the questions of duality in E and also some aspects 
of the theory of the non-linear equation x = F(x) in cases when the 
Leray-Schauder theory is not applicable. Some applications of infinite 
dimensional cohomology to bifurcation theory are presented in the report 
of K. Gçba. 

I. The Leray-Schauder category. 
N O T A T I O N . We denote by £" or simply by £ an infinite dimensional 

(*) The extension to the infinite dimensional case of topological invariants other than 
the Brouwer degree (as Betti numbers etc.) was initiated by J. Leray (cf. the report of 
J. Schauder 117] at the Topological Conference in Moscow in 1935); the corresponding 
results however never appeard in print. 
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normed space. We fix a sequence E00 "©£„ of direct sum decompositions 
of E such that 

By an annular ring T in E we shall understand a set of the form 
where 0 < r t ^ r2 . By К we shall denote a 

closed ball in E with the center 0 and by S its boundary. 
We let 

and we reserve the symbol for the open 

Compact mappings. By we shall de-
note the directed set of all finite dimensional linear subspaces of E with 
the natural order relation given by 

A mapping F: X -> Y between two topological spaces X and Y is compact 
provided F(X) is contained in a compact subset of У; a continuous F: X -» E 
is said to be an a-mapping provided (i) F is compact and (ii) F(X) <= L,. 
The following theorem due to J. Schauder is of importance. 

A P P R O X I M A T I O N T H E O R E M . If F: X -+E is compact, then for each E > 0 
there is an a-mapping Ft\ X -* E such that 

Compact vector fields. Giyen a map / : X -* Y between two subsets X 
and Y of E we shall denote by the same but capital letter the map 
F: X -* E defined by F{x) - -x-f(x) for x e X. 

A continuous map f : X -*• Y is said to be a compact vector field (resp. 
an ot-fiehl) provided F is compact (resp. an a-mapping). 

The set of all compact fields (resp. a-fields) with the domain X and the 
range Y will be denoted by Ж (.Y, Y) (resp. by Ж\(Х, У)). Since compact 
fields compose well we have the category Ж of compact vector fields with 
subsets of E as objects and the compact fields as morphisms. Similarly, for 
each a e L, we have the subcategory Ж\ of Ж. The union of all subcat-
egories Ж'а, aeL, will be denoted by J f 0 . The morphisms of Ж0 are 
called finite dimensional fields. 

Homotopy of compact vector fields. Given X and У in £ and a homo-
topy /i, : X -* Y (0 ^ t ^ 1) we shall denote by H the mapping from Xxl 
to E given by H(x,t) = x — h,{x) for (x, t)e X x I. 

A continuous family of compact fields (resp. a-fields) h,: X -> Y is called 
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a compact homotopy (resp. a-homotopy) provided H: X x I -> £ is a compact 
mapping (resp. a-mapping). 

Two compact fields (resp. a-fields) f,g: X -* Y are said to be compactly 
homotopic, f ~ g (resp. a-homotopic, f provided there is a compact 
homotopy (resp. a-homotopy) h,: X У such that h0 = f , h1 = g. 

The sets of the corresponding homotopy (resp. a-homotopy) classes will 
be denoted by n(X, У) and n%(X, У) respectively. 

EXAMPLE 1. Let f : S-*E-{0} be a compact field and denote by 
j: S->E—-{0} the inclusion. Let us put 

It follows from (*) that either (i) x = tF(x) for some 0 < t < 1 and xeS 
or (ii) the fields f and j are compactly homotopic. 

E X A M P L E 2. Let U be open in E00'" and f,g: S U be two compact 
fields such that 

for all 

Then for all we have 

and hence is a compact homotopy joining / and g. 
E X A M P L E 3 . L e t be two compact fields such that for 

all Then / and g are compactly homotopic. 

The extension problem for compact fields. Given a pair (X, A), E with A 
closed in X, and a field / : A U, we may consider the extension problem 
for / , i.e., the problem of extending / over X in The following theorem 
asserts that under some hypotheses this problem depends only on the homo-
topy class of a given field / . 

H O M O T O P Y E X T E N S I O N T H E O R E M . Let U be an open subset of Ex~" and 
ht: S -» U (0 ^ t sg 1) a compact homotopy. If h0 can be extended over К 
to a compact field h0: К -> U, then there is a compact homotopy h,: К U 
which is an extension of 1ц over K, i.e., h, = h,\S. 

Remark. The above theorem is valid for an arbitrary pair (X, A) with A 
closed in X. 

The Leray-Schauder category. By У (£) or simply ¥ we denote the 
subcategory of X generated by closed bounded subsets of £; <f will be 
called the Leray-Schauder category corresponding to the linear space £. 

A compact field f : X -* Y in У is invertible (resp. homotopically inver-
tible) provided there is a field / ' : У - > 1 such that / of = 1,- and f of = 1A 

(resp. f o f ~ l y and f of ~ 1A). In the first case, we write A' ~ У and 
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call X and Y equivalent; in the second case X and У are said to be 
homotopically equivalent, and we write X ~ h Y. 

Remark . One could show that there exist two equivalent objects X 
and Y in if such that nl(E-X) = 0 and n^E-Y) ф 0. 

2. Infinite dimensional cohomology theories. W e begin by recalling the 
following theorem proved by J. Leray [13] (with the aid of the degree): 
If X and Y are two equivalent objects of the Leray-Schauder category i f , 
then the complements E-X and E—Y have the same number of components. 
In connection with this theorem, the following problem arises: If X and Y 
are two equivalent (or more generally homotopically equivalent) objects of i f , 
are the homology groups Hn(E-X) and Hn(E-Y) isomorphic for each n? 

The Leray-Shauder degree theory,is not adequate to treat this problem 
and therefore a tool of an essentially algebraic character is needed. Thus 
we are led to infinite dimensional cohomology theories. 

D E F I N I T I O N . An infinite dimensional or simply A cohomology theory Я 0 0 - " 
on i f is a sequence of contravariant functors {H^'^X, A)} from the pairs 
in if to the category of abelian groups together with a sequence of natural 
transformations Ô00"": Я00_П(Л) -+ H'x~n+1(X, A) satisfying the Homotopy, 
Exactness, and Strong Excision axioms; the graded group {Я°°~п~1 (5)}, 
where S in the unit sphere in E, is the group of coefficients of the theory. 

The question arises whether such theories exists. The answer is "yes" and 
more precisely we have the following: 

T H E O R E M . To any (generalized) cohomology theory on the category of finite 
polyhedra corresponds a cohomology theory on i f with the same group of 
coefficients; moreover, the assignment H*->Hco~* is natural with respect to 
maps of the theories. 

Thus, in particular, for any spectrum A in the sense of G. Whitehead 
corresponds {HCC~*(,A)} called the cohomology theory on i f with coef-
ficients in A. If A - К (II) is the Eilenberg-MacLane spectrum corresponding 
to an abelian group Я then we get the "ordinary" cohomology theory on ¥ 
with coefficients in II. If A = S is the sphere spectrum, then the correspond-
ing theory denoted by Z0 0 -* is called the stable cohomotopy on i f . The 
Hopf-Hurewicz map h: S-*K(Z) induces a natural transformation h* from 
Гос-* tQ z). 

The construction of Я00-". We shall now try to give some general idea 
about how the infinite dimensional cohomologies are defined. Assume for 
simplicity that we start with the ordinary Cech cohomology Я* = {Hq, Ô"} 
for compacta with coefficients in G and want to define HX~"(X) for an 
object X in i f . We take the directed (by inclusion) set Lx — {Lx, Lp, Ly,...} 
of all finite dimensional subspaces of E such that X* = X n L* for each a is 
not empty and we fix an orientation of every Lx. Let d((x) = dim L, and 
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write a ^ /? instead of Lx с Lp. We observe that, given a < /? with d(ji) 
= d ( a ) + l , the orientations of Lx and Lp determine the triad (Lp, Lp, Lp) 
with Lx = Lp nLp and, therefore, the triad (Xp, Xp, Xp) with Хг = Xp nXp 
(where Xp = X csLp and-A^ = XnLp). Now, given a ^ /?, we define 
Axp: й" ( , | '"(А'а)-» Hd(p)~n(Xp) as follows: if d(P) = d(a)+l, we let A%p be 
the Mayer-Vietoris homomorphism of the triad (Xp, Xp, X f ) ; otherwise, 
we take a chain of consecutive elements of Lx and define Ajp to be the 
composition of the corresponding Mayer-Vietoris homomorphisms. 

It turns out that iiU = E —X,.tx^/j and Ux Up is the inclusion, 
then we have the commutative diagram 

in which and Qp stand for the appropriate Alexander-Pontriagin iso-
morphisms in Lj and Lp respectively. 

It follows that the groups {Я<,(1)~п(Аг
а); Алр} form a direct system of 

abelian groups and we define 

It remains to define the induced homomorphism Hco~"(f) = f* and to 
prove ils functorial properties; this is done in two steps: first, for a finite 
dimensional, and then for an arbitrary compact field / . We remark that 
in the second and more involved step, the crucial role is played by the 
continuity property of the functors under consideration. 

Duality theorems. We note that the passage to the limit in the com-
mutative diagram of the previous section indicates how,we are led to the 
next main result: The group H(Xl~"(X) is isomorphic to the (n-l)-th singular 
homology group H„_l(U;G). A more general theorem holds in fact and may 
be viewed as an extension to the infinite dimensional case of the duality 
theory due to G. Whitehead [18]. 

Denote by (X, Y, Z) a triple in У and let U = E-X, V = E-Y, 
W = E-Z. 

T H E O R E M (The Alexander duality in E). Let A be either the spectrum of 
spheres S or the Eilenberg-MacLane spectrum К(П). Then 

(i) for each pair (X, Y) there exists the duality map 

(ii) D maps the cohomology sequence of a triple (X, У, Z) into the homology 
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sequence of the complementary triple (W, V, U), i.e., the following diagram 
commutes: 

(iii) D is natural with respect to the Hopf-Hurewicz map of spectra 
h: S-*K(Z), i.e., the following diagram commutes: 

COROLLARIES (The Alexander-Pontrjagin Invariance in £). The relation 
X in i f implies that 

for any n ^ 1 and any group of coefficients П. 
(The Spanier-Whitehead Invariance in E). The relation 

implies that for any b ^ 1, 

The duality combined with the Hurewicz Theorem in 5-theory yields 
the following: 

(The Hopf Theorem). For any pair in <£ the first non-vanishing stable 
cohomotopy group is isomorphic to the first non-vanishing cohomology group 
over Z. More precisely, we have 

(i) Е^'ЦХ, Y) = 0 о Г Г - ' ( Х , Y; Z) = 0 for any 0 ^ q < n. 
(ii) if Zc°~n(X,Y) = 0 for 0 ^ q < n; then the Hopf map h*: 

Zc°-n(X,Y)->Hc°-"(X, Y;Z) is an isomorphism. 

Representability of the stable cohomotopy and codimension. Consider com-
pact fields from an object X in i f to the open set E-En_l and denote 
by na}~"(X) the corresponding set of homotopy classes. 

REPRESENTATION T H E O R E M . There exists a natural isomorphism between 
n™~"(X) and the stable cohomotopy group Zco~n(X). 

For the objects in 5£ one defines the "basic" codimension Codim in 
terms of the extension problem for compact fields with special ranges £ - £ „ . 
This definition coincides in the finite dimensional case with a theorem of P. 
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AlexandrofT which characterizes the dimension of compacta by maps into S". 
Further, one defines various cohomological codimensions; we have, in parti-
cular, Codimz defined in terms of the ordinary cohomology on Sf over Z. 

T H E O R E M . Codim = Codimz. 
The proof of this result uses, among others, the representability of the 

stable cohomotopy and the Homotopy Extension Theorem. 

3. Applications to non-linear problems. Using the cohomology functors 
we may treat various extension problems in JT. Then, with the aid of the 
notion of the essential vector field (stated here in a more general form 
than in [18]) we translate the corresponding results into the new existence 
criteria for the equation x = £(x). 

Essential and inessential compact fields. Let U be open in £ x ~ " and 
/ : S^U be a compact field; / is called inessential provided the diagram 

can be completed in the category J f , i.e., there is a compact field / : К ~*U 
with / = f\S; otherwise, / is said to be essential. 

From the Homotopy Extension Theorem it follows that the property 
of a field / of being essential depends only on the homotopy class of / . 
More precisely we have: 

H O M O T O P Y INVARIANCE, Let f,g: S U be two fields which are compactly 
homotopic. If f is essential then so is g. 

Remarks . Let be an arbitrary compact field and 

stand for the inclusions. Then 
(i) / is essential if and only if so is the composite j of ; 

(ii) the composite iof is inessential; 
(iii) the restriction 

is inessential. 
The only known general criterion for a field to be essential is given by 
BORSUK-S A N T I P O D A L T H E O R E M . If f : S - > £ - { ( ) } is odd (i.e., f(x) 

= - f ( - x ) for every x s S), then f is essential; in particular the inclusion 
j: S—* E— {0} is essential. 
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An algebraic criterion. Let f : S - * E c o ~ n - 0 be a compact field. We may 
treat / as field into Г 0 0 - " for some annular ring T00-", i.e., we may write 

Consider the induced homomorphism 

THEOREM. If f*-the induced homomorphism is non-trivial, then the field f 
is essential. 

Assume that n = 0. Then 

and /*(1) = y ( / ) - l ; clearly f* ф 0 if and only if the integer y ( f ) (called 
the Leray-Schauder characteristic of / ) is different from zero). Consequently, 
we obtain as a special case the following: 

THE LERAY-SCHAUDER THEOREM. A field f : S-*E-{0} is essential if 
and only if y ( f ) is different from zero. 

Moreover, using the Representation Theorem, we get: 
THE ROTHE-HOPF CLASSIFICATION THEOREM. Two fields f,g: S-*E-{0} 

are compactly homotopic if and only if y ( f ) = y(g). 
Remarks . 1° In case n = 0 one could use the cohomology functor 

H™~l(,Z) instead of Г0 0"1 . For n > 0 the ordinary cohomology cannot 
provide any information because always / * = 0. 

2° The groups ^ « - « ( r ® - - ) % a r e isomorphic to the stable 
homotopy groups of spheres (cf. [5]). In the case considered above 

3° In view of remark 2°, the above algebraic criterion can only be of 
interest in cases when the group Г т + П (5 т ) is non-trivial. (This is known 
to be the case for .и = 1,2, 3, 6, 7, 8 but not for n = 4, 5.) 

The equation x = F(x) (The Leray-Schauder case). S u p p o s e t h a t F: К -* E 
is a compact map and we are interested in solving the equation 

(1) F(X) = x 

or, equivalently, the equation 

(2) f(x) = x-F(x) = 0. 

To treat (2) we may make an assumpton that 
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The assumption (3) permits to consider f on S as a compact field 

with the range equal to £ — {0}. 
If J is essential, then the quation (2) has a solution. 

The equation x = F(x) (The Hopf case). If the Leray-Schauder character-
istic y ( f ) o f / i s zero, then, in general, there is no solution of the equation (1). 
Nevertheless, one could still assert the existence of solutions for (1) provided 
some additional information about f is available. 

To explain this consider first the finite dimensional case. Let us make 
an additional assumption that 

letting be defined by / and putting 

we get a map 
Clearly, the following conditions are equivalent: 
(a) / : S" Rm + 1 — {0} is essential; 
(b) cp: S" -» Sm is not homotopic to a constant map; 
(c) the homotopy class [<p] is a non-trivial element of the homotopy 

group 7r„(Sm). 
If any of the above conditions is satisfied, then the equation (2) has at 

least one solution. Thus, in brief, in finite dimensional case the types of the 
equation (1) can be classified according tb the homotopy classification of 
spheres. 

Passing to the infinite dimensional case, assume that for some n > 0. 

The assumptions (3) and (4) permit to consider / on S as a compact 
field / : S -» £ œ - " - { 0 } . 

T H E O R E M . If the condition (4) is satisfied and J: S-E°°-n-{0} is essential 
then the equation (2) and hence (1) has at least one solution. 

Remark. From the remarks above we know that / : S £ * { 0 } 
is essential if and only if so is the composite jf : S-+ U* where 
j: £x _ n—{0} -» (У00-" stands for the inclusion. But jf is essential if and 
only if the homotopy class [J/] is a non-trivial element of the group 

It follows that in infinite dimensional case the various types of the 
equation (1) can be classified according to the stable homotopy classification 
of spheres. 
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Bibliographical comments 

This work was in progress over a number of years and we give here s o m e addit ional 
c o m m e n t s concerning its background. In the 1930's K. Borsuk discovered that a number 
of important facts concerning the topo logy of R" can be deve loped with the aid of not ions 
of h o m o t o p y theory. T o this circle of results belonged an observation that the Brouwer 
fixed point theorem can be equivalently expressed in terms of retraction, the h o m o t o p y 
extension theorem with various applicat ions and the set-theoretical approach to the discon-
nect ion theory in R" based on describing the structure of the c o h o m o t o p y group n"(X) 
of a c o m p a c t u m X с Rn+i (cf. Borsuk [ l ] - [ 3 ] ) . In 1959, the author had shown that the 
above ideas of Borsuk can be convenient ly extended to the framework of the theory of 
compact fields in Banach spaces (cf. Granas [ 9 ] - [ l l ] ) . S o m e of the techniques developed 
in those papers (based on the h o m o t o p y extens ion theorem for compact fields) provided 
the starting point for the work on infinite d imensional c o h o m o l o g y theories. In 1962 K. G ç b a 
in his thesis (cf. Gçba [ 4 ] , [ 5 ] ) constructed (in the spirit of the Ei lenberg-Steenrod) the 
first ful l-f ledged inf ini te-dimensional c o h o m o l o g y theory; he extended to Banach spaces the 
theory of c o h o m o t o p y groups of Borsuk and also the Spanier -Whi tehead duality. Extensions 
to infinite d imensional case of the ordinary c o h o m o l o g y theory were further studied in Gçba 
and Granas [ 6 ] and [7 ] . A systematic and unified treatment of general infinite c o h o m o l o g y 
theories (taking into account the work of G. Whitehead [ 1 8 ] appeared in G ç b a and 
Granas [8 ] . S o m e appl icat ions of inf ini te-dimensional c o h o m o l o g y to non- l inear problems 
will be found in Ize [ 1 2 ] and Nirenberg [ 1 5 ] , [ 16 ] . 
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Notations. Désignons respectivement par Ea un espace quelconque 
fixé de Banach pour a — oo et son sous-espace n - dimensionnel pour 
a = n < -j- со. Soient x0 с Ea, A С Ea et g un nombre positif; posons 

Si En est un sous-espace de En+l contenant le centre de la sphère 
8nCEn+l, En+i, E~+1 désignent les demi-espaces fermés de En+Ï tels 
que En = Et+i о E~+1. Posons S£ = Sn ^ tf» = £„ ^ E~+l. 

Par minuscules latines f,g,...,r,s,t nous désignons les transforma-
tions continues univalentes et par majuscules F, О — les transformations 
univalentes complètement continues. 

Transformations multivalentes. Une transformation définie sur A С E a 
qui à chaque point x e A attache un ensemble non vide ç> (x) С Ea est 
dite supérieurement semi-continue si les conditions Xn-+X, (xn, xe A), yn-+y, 
Уп*<р(хп) impliquent yeq>(x). Nous ne considérons dans cette note que 
les fonctions supérieurement semi-continues dont les valeurs sont des 
ensembles convexes dans Ea. Nous écrivons q>: A->Ea pour dire que cp est 
une transformation supérieurement semi-continue de A dans Ea; <p: (A, B) 
->(Ea,G) (où ВС A, G С Ea) signifie de plus que <p(B) С G où <p(B) 
= E 3 {y*q>(x)}. V*Ea xtB 
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Noue dirons qu'une fonction multivalente Ф:А->Еа est une trans-
formation multivalente complètement continue *) (t. m. с. c.) lorsque l'image 
Ф(А') de chaque ensemble A' С A borné dans Ea est relativement com-
pact dans Ea. 

LEMME 1 . Soit AC Eoo un ensemble borné et Ф: А-+Е00 une t. т. с. c. 
de A. Pour chaque e > 0 il existe un sous-espace Ея С Eoo et une trans-
formation Ф,:А-+Еп tels que les inclusions: 
(1) Ф.(х)С7оо(Ф(х),е), Ф(х)СУоо(Ф,(х),е). 
ont lieu pour tous x e A. 

Champs vectoriels multivalents complètement continus dans Ea. Nous 
dirons qu'une transformation q>: A-> С С Ea est un champ vectoriel multi-
valent complètement continu (c. v. m. c. c.) sur A dans Ea, (ou déplacement 
multivalent complètement continu (d. m. c. c.) de l'ensemble A dans Ea) si 
olle peut être représentée sous la forme **) 
(2) <р(х) = х-Ф(х), 
où Ф: A-+Ea est une t. m. c. c. 

Doux c. v. m. c. c. <plf (p2: A-+C (J. — borné, С С Ea, <p^x) =х-Ф1(х), 
<pt(x) — x — Ф2(ж)) sont dits homotopes, (p1~<p2, lorsqu'il existe une famille 
des c, v. m. c. c. xp: AxI->C xp(x, t) = x — Yix, t) (I — intervalle [0,1]) 
telle, que pour chaque x e A on a Ф^{х) = W(x, 0), Ф2(х) = W(x, 1) et 
l'ensemble est relativement compact dans Ea. 

LEMME 2. Soit cp:A->Ea un d. m. c. c.; si A est un ensemble fermé 
et borné, <p{A) est fermé. 

Notion de la caractéristique. Soit £a_i = Sa-г{х0, q), Va= Та(ж0, g) et 
f,(p: P a champs complètement continus (respectivement unis et 
multivalents) sur 8а-г. Par y(f,Sanous 'désignons la caractéristique 
[2] du champ f sur Sa-i. Un champ univalent / : #„_!->Pa est dit sélecteur 
du champ multivalent <p :$„_!-> Р а , (en symboles: /«<?), si f(x) e <p(x) 
pour chaque x с S a - X . 

THÉORÈME l a . A chaque c. v. m. c. c. cp : Sa-X-+Pa on peut associer un 
nombre entier y (ср, Sa-1) d'une telle façon, que les conditions suivantes 
soient satisfaites 

le si fc<p, alors y(<p} Sa-О = y(f, Sa-i); 
IIA si les c.v. m. o.c. <ply <p2: Sa-i-+Pa sont homotopes <p^(p2, alors 

y{<ply Sa. 0 = y(ç>2» On appelle le nombre y(cp, S.-J la caractéristique 
du c. v. т. о. o. <p sur 

*) En désignant par miuueculoe grecques <p, y. »? les transformations multivalentes, 
nous réservons les majuscules Ф, ÎP pour ltw transformations multivalentes complète-
ment continues. 

•*) <p(x), y>(x) étant deux fonctions multivalentes, on désigne par т](х) = t1<p(x) 
+ <iV(z) («,,«» —nombres réels) la fonction multivalent» qui à chaque point x fait 
correspondre l'ensemble dos points do la furme t#x où гхчр(х), z1«v(x); <p(x), 
xp(x) étant convexes, r) (x) l'ost aussi. 
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D é m o n s t r a t i o n . Les cas a = n. Dans ce cas nous allons utiliser la 
théorie d'homologie de Vietoris pour les espaces métriques compacts avec 
les coefficients entiers. Si X, Y sont les espaces compacts et / : Х - * Г , 
nous désignons par / « : H{(X)->H{( Y) l'homomorphisme des groupes d'ho-
mologie, induit par /. 

Soit <p : Sn-!->Pn une c. v. m. с. c. Désignons par Г = Г9 le graphique 
de la fonction <p et par r: 8:Г-*Рп ses projections sur 8п.г et 
9KSn-i) respectivement (Г„ = £ {z = (x , y), y €?(*)}, r(x, y)=a?, s(x, y) 

et8n-i*pn 
= У> (x,y) L'ensemble Г est compact dans 8n-txPn et la projection 
r vérifié les conditions du Théorème de Vietoris [3] (toutes les images 
réciproques étant convexes) donc l'homomorphisme induit des groupes 
d'homologie Я<(Г)->Я<(/8,„_1) est un isomorphisme sûr. Nous avons 
en particulier 

Posons pour nous avons 

Soient и et u° respectivement les générateurs des groupes 
et Nous avons ou y est un nombre entier. 

Nous définissons la caractéristique du c. v. m. c. c. q>: P n en 
posant y(<p, Sn-x) = y. La démonstration des propriétés 1и et II* ne 
diffère pas essentiellement de celle de Jaworowski [4]. 

Les cas a = 00. L'ensemble 9>($oo) est fermé (voir lemme 2); dé-
signons par e un nombre plus petit que la demidistance d'ensemble 9>(£«>) 
du point 0. Selon le lemme 1 nous pouvons associer à e un tel sous-espace 
E n CE 0 о et une telle transformation Фе : £ n que les inclusions (1) 
aient heu pour chaque x e 8^-, nous pouvons supposer que a?0cl?n, donc 
E n о 8oo= 8п-г. Il en resuite qu'en posant <pt(x) = x — Ф,{х) pour x с 8n.i 
nous avons : ^n_!->Pn . 

Nous définissons la caractéristique du champ <p : 8*,->P<„ en posant 
y (<P, 800) = y(<pt, Le nombre y (9?, S*,) pour un En fixé ne dépend 
pas de la manière d'approximation de la fonction Ф par Ф,. En effet, 
soit Ф', une autre fonction pour laquelle les inclusions (1) ont li -u et 
(p',(x) = х-Ф'е(х). L'ensemble Уоа(Ф(х))е) est convexe, donc x t t) 
= + en posant y{x,t) = x-44x,t)y x с on ob-
tient V: Sn^xl -> P n , y(x, 0) = <p.(x), tp(xf 1) = = y(<p„ 
- Y(<p'„ -Sn-i). 

Le nombre y (99, £<») ne dépond pas du choix de En. Ceci résulte 
du lemme suivant: 

LEMME 3. 8oit En un sous-cxpmw de En+i contenant le centre d'une 
Hphère 8nC En+Supposons que le К i>, m. e. c. <p: Sn-+Pn+l satisfait à la 
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condition suivante <p{Si)C EÎ+X, <p(Sn) En+1 (donc ç>(Sn-i) Pn), 
— S* r\ 8щ et çj0= <p\8n-i. Alors yty, 8n) — y{q>0, S«-i). 

Lee propriétés Zoo et ZZoo résultent de In et IIn respectivement. 
T H É O R È M E 2 E . Si le e. v. т. c.c.<p: (F0 , 8а-г) -> (Еа, Р „ ) çp(ar) = а ? - Ф ( ж ) 

vérifie la condition y{tp0, S„_i) Ф 0, où <p0 = (p\S„-i, M existe un point xeVa 

tel, que 0e(p{x), c'est à dire хеФ{х). 
Notion dn degré topologique. Soit y>: Va-+Ea un d. m. с. c. et 

y , ï y(/8„_i). Nous définissons alors le degré topologique d(y>,Va,y0) en posant 
d(v, Va, Уо) = y{<p, ̂ а-i) où y{(p, Sa-t) est la caractéristique du c. v. m. с. c. 
<p: 8a-i->Pa défini par <p(x) = ip(x)-y0 pour x e £„_г. 

T H É O B È M E 2 â. Si y: Va-+Ea est un d. m. c. c., y0 ? Y ( £ A - I ) et d(y,Va, y0) 
Ф0, il en résulte que y 0 eInt(y(F a ) ) . 

UNIVERSITÉ NICOLAS COPERNIC, TORUÏÏ 
{UNIWEKSYTET MIKOtAJA KOPERNIKA, TOKUN) 
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1. Introduction. Denote by Ea an arbitrary Banach space, if the 
index a — oo, and an n - dimensional snbspaoe of space E*,, if the index a 
is equal to a natural number л. Denote by Pm the space Ea without the 
point 0. If x0 is a point of space Ea and g a positive number, then we 
denote by Va(x0, q) an open full-sphere with centre x0 and radius g and 
by Sa-i(xj,, q) — the boundary of Fe(a?,, p). 

The mapping <p defined on the set A and assigning to a point x e A 
a non-empty set <p(x)CEa is called upper semicontinuous, if the condi-
tions lim xn — x, lim yn — y, yn e <p(xn) imply yc<p(x). In what follows 

«—so n—ОС 
we consider only upper semicontinuous mappings and assume their values 
to be convex set» in Ea. The notation q>: A-+Ea denotes that <p is an upper 
semicontinuous mapping defined on A, whose every value <p{x) is a con-
vex set in Ea. 

A multi-valued mapping Ф: A-*Ea is called completely continuous 
on A *), if its image Ф(А) = fi 3 {y e <p(x)} is relatively compact in Ea **). yeE x*A 

A mapping <p: A-*-Ea is called a completely continuous multi-valued 
vector field on the set A, if it can be represented in the form: 

(1) qj(x) = x — Ф(х), x f A, where Ф is completely continuous on A ***). 

*) In the sequel we denote multi-valued completely continuous mappings 
by capital letters Ф, У... 

*•) The set X с Ea is termed relatively compact in Ea if its closure is compact. 
• • • ) For any multi-valued (mictions q>lt q>rA -*Ea and real numbers t,, t, we under-

stand by (,ç>,(x)-f <,?,(*) = <p(t) A function which assigns to the point x < A the set 
<p(x) of points of the form » = *Ь в г е Jh *9>»(*). У» 
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We say that a completely continuous field q>(x) = х—Ф(х), x e A 
does not vanish and we write <p : A-+Pa, if the point 0 does not belong 
to the set <p(x) for any x с A, i. е. х*Ф(х). 

We say that two non-vanishing completely continuous multi-valued 
fields <Pt,q>t'- A-fPaj <fi(x) = х—Фх{х), <p%{x) é= х—Ф2{х) are homotopic and 
we write у», if there exists a function W(x, t) defined on the product 
AxJ (J denoting the closed interval [01]) with values lying in Ea, which 
satisfies the conditions: 

1* point 0 does not belong to any set y>(x, t) — x—Y{x, t),xcA,tc J, 
2® !P(a?, 0) = Фх(х), W(x, 1) = Ф,(x) for any x*A, 
3* the set W(A, J) is relatively compact in Ea. 
Let Sa-1= Sv-iixo, q) be a sphere in the space Ea. We shall refer 

to the following [4]: 
THEOREM. To every completely continuous field q>: 8a—1 -> Ea we can 

assign a positive number y(<p, Sa-i) — the characteristic of the field <p on 
the sphere 8a-i in such a way that the following conditions are satisfied: 

a) if the completely continuous fields (рг,<рл: 8a-1-+Pa are homotopic, 
<pt ~ q>t, then their characteristics are equal, i.e. y(g>!, 8a—1) ;= y(yt, Sa-i); 

/9) if a non-vanishing completely continuous field q>0: 8a-i~>Pa can be 
extended to a completely continuous field <p: Va-+Ea defined on a full sphere 
У a — Fe(a?0, q) and the characteristic y(<p0, 8a-1) of the field <p0 is different 
from zero, then there exists a point x0 e Va whose image <p(x0) contains 
point 0, ». e. 0 e<p(x0). 

The theorem quoted constitutes the general criterion regarding the 
existence of fixed points for completely continuous multi-valued map-
pings. In this note we give a few particular criteria, which are an ex-
tension to the case of multi-valued mappings of the basic theorems of 
the Leray-Schauder theory concerning the existence of fixed points for 
completely continuous single-valued mappings [7], [8]. 

2. Theorems on fixed points. The following theorem is an extension 
to the case of multi-valued functions of the well known theorem of Eothe 
(cf. [8], p. 186). 

THEOREM 1 . Let a multi-valued completely continuous mapping Ф: 
Foo-Яоо carry a full sphere Voo(x0,<p) into a space Д». 

If for an arbitrary point x t 800 = Fr(Foo) the condition Ф(х)С?œ  
is satisfied (». е. Ф{800) С Г«»), then there exists at least one fixed point of 
the mapping Ф i. е. х0еФ(х0) for a certain x0eVoo. 

Proof. Without reducing the generality of our considerations we 
can assume that the full sphere in question is the unit full ephero in the 
space Eco, i. e. F„ = F«,(0,1) - F». Denote by the boundary of F». 
Consider a completely continuous field <p: VL^E^ defined by the formula 
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<p(x) — x—Ф(х) and let <p0 = *). We can assume that ç>0: Sio-^P^ 
and by />) it suffices to prove that the characteristic y(<p0, S°0o) of the 
field <p0 is different from zero. For this purpose let 

for an arbitrary x e 0 < t < 1. 
It follows from our assumption that for an arbitrary у* с \p(x, t), 

where x e Sl>, 0 < t < 1 we have 

and thus y>: S°ooXJ-*-Pco- Further, y(a?, 0) = x, y{x, 1) = q>0(x) for any 
x e /8?o, i. e. the fields y (x, 0) = ye(x) and q>j(x) are homotopic, whence, 
by а), у(щ, 8°oo) — y(<Po, S°oo). But the characteristic y(ip0, SL) of the field 
Vo is different from zero and Theorem 1 is thus proved. 

Theorem 1 immediately implies the well known 

THEOREM OF BOHNENBLUST AND K A K U N (cf . [ 2 ] p . 155) . If Ф: A->A 
is a multi-valued mapping into itself of a compact convex set A lying in Eoor 
then there exists a point x0e A for which x0 с Ф(х0). 

P r o o f . Denote by F » a closed full sphere in space Е х with centre 0 
and radius q > 0 so large tha t ^4oFr(F o o ) = 0. Further denote by r : 
F» -+A a retraction of the sphere onto A (the existence of such a re-
traction can be proved in an elementary way) and let Ф'(х) = Ф[г(х)~\ 
for any x e Voo. The function Ф': Va-*-A satisfies of course the conditions 
of Theorem 1, and thus there exists a point x0 e Ф'(х0), x0 e A. We have 
Ф'(#о) = Ф(г(®о)) = » x0 and the proof is thus complete. 

We shall now give a theorem, which in the finite-dimensional case 
of single-valued functions is known as the Kronecker-Hopf theorem **). 

Let Ф: Va~+Ea be a completely continuous mapping of a sphere Va 
in Ea. Suppose tha t the mapping Ф has a finite number of fixed points 
a?x, хг, ...,xkeVa, ® ( с Ф ( 4 (i = 1, 2 , . . . , 1c). 

Denote by V(
a

0 a full sphere in the space Ea with centre xt and ra-
dius e t >0 so small tha t (i Ф j, », j = 1, 2 , . . . к), С Va. 
Now, for an arbitrary x eVa let q>(x) = х—Ф(х), <p(i) = ç»^*!, (i = 1 , 2 , . . . k)r 

Where S l h = Fr(P*°). We have m - * P a , q>: S a ^ P a i where 8a.t 
= Fr(F0). The number y{= y(<p{, Sj?) equal to the characteristic of the 
completely continuous field <pt on the sphere S^lx will be termed the 
index of the fixed point x( of the mapping Ф. 

*) It <p: A -*Ea, At С Л, then the notation <p, = <p\ A denotes that <pt is a partial 
mapping on At. 

**) Cf. [8] p. IBRi («f ft single valued case in Banach epacee. 
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Тнвоккм 2.. The characteristic y = y(<p, Sa-1) of a non-vanishing 
completely continuous multi-valued field <p: <p(x) = х-Ф(х) is 
equal to the algebraic sum of the indices of the fixed points of the mapping Ф, 
i. e. we have the formula 

The proof in the finite-dimensional case a = n is carried out on 
the basin of the Vietoris Mappings Theorem ([1], theorem 1) and the 
caee a — oo reduces to the finite-dimensional case. 

3. Theorem on antipodes. The following theorem is an extension to 
multi-valued functions of the well-known theorem on antipodes [3], [6]. 

THEOREM 3 E . If a non-vanishing completely continuous multi-valued 
field <p: / S J _ 1 - > P A , defined on a unit sphere С Ea, is odd 

then its characteristic y(<p, jS^—i) is odd. 
The proof in the case a — n is based on the corollary 1 of paper [6]. 

The case a = oo reduces to the finite-dimensional case in the same way 
as in the case of single-valued mappings [6]. 

The theorem quoted can be formulated in a more general form on 
the grounds of property a): 

THEOREM 4a . If a non-vanishing completely continuous multi-valued 
field q>: <8£_!-»-Pa satisfies the condition 

then its characteristic on the sphere 
Proof. For an arbitrary let 

It follows from condition (4) that the function y>(x,t) satisfies all 
conditions of the definition of homotopy, and thus the field <p(x) = y>(x, 0) 
is homotopic with the odd field y>0(®) = 1) = х-\[Ф(х)-Ф(-х)] 
whose characteristic is odd by Theorem 3„. Hence, by a), we have у (cp, 8°a-i) 
— y(v> and Theorem 4„ is proved. 

THEOREM 5a . If a completely continuous multi valued field <p: Ea, 
<р{х)=х-ф(х) defined on a unit full uphere Vl satisfies for any x с S°a-i 

•) In the finite-dimeneional caee, i. e. fur u = » Theorems and 6a can be pro-
ved in a more general form, cf. paper [5] corollary 1 and 2. 
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condition (3) or (4), then there exists a fixed point x%*V\ of the completely 
continuous mapping Ф: -*Д,» »• е. x0 « Ф(хщ). 
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1. The aim of this note is to give other examples of generalization 
of some classical theorems concerning single-valued mappings to the case 
of multi-valued асусЦс mappings. Many such examples are known as, 
for instance, a generalization of the Lefschetz fixed-point formula due 
to 8. Eilenberg and D. Montgomery [3]; others are given in [6] and [7]. 

2. Let X and Г be topological spaces and F: X-*-Y — a multi-
valued function from X to Г; i. e. for every x « X, a non-empty subset 
F(x) of Г is given. If ACX, then the set F (A) — U F (a) is called the 
image of A. The graph of F is the set 

The single-valued function f:X->Y is said to be a selector of F if 
TF(/)CW(JP), i. e. f(x) tF{x), for every xtX. 

The multi-valued function F: X - » Y is said to be continuous if 
1° the image of every compact subset of X is compact, 
2° the graph of F is closed in X x Г. 
For compact Г, condition 1° may be dropped; in this case condi-

tion 2° is equivalent to the upper semi-continuity of F, when F is re-
garded as a single-valued mapping of X into the hyperspace of non-
empty compact subsets of Y. If F is single-valued, i. e. for every x с X, 
F(x) is a single point f(x), the continuity of F means the usual continuity 
of the single-valued mapping /. 

3. We shall use the Yietoris-Cech homology groups with coefficients 
mod 2 and with compact carriers ([4], p. 255) of metric spaces, and we 
shall denote simply by Hk(X) the fc-th homology group of X. The space X 
is called n- acyclic if it is non-empty and if Hk{X) = 0 for 1 < к < n; 
it is called acyclic, if it is n - acyclic for every n > 1. We shall often refer 
to the famous 
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VIETOBIS MAPPING THEOREM [1] . Let /: X-*-Y be a continuous 
mapping satisfying the following conditions: 

(i) the counter-image f~x(C) of every compact subset of Y is compact, 
(ii) / -1(y) is acyclic, for every у с Y. 
Then / induces an isomorphism Hk(X) f*t H^Y) for every 1c. 
The condition (i) provides that the Vietoris Theorem remains true 

for homology with compact carriers even for non-compact spaces. In this 
note we confine ourselves to the case of homology mod 2; we do so 
for the sake of simplicity though some of the results are valid for homo-
logy with other coefficient groups for which the Vietoris Theorem holds. 
It is known, however, that this theorem does not hold when the integers 
are taken as coefficients. 

4. The multi-valued mapping F: X-*Y is said to be acyclic if the 
sets F(x) are acyclic for every x с X. 

Let F: X - * Y be a multi-valued continuous acyclic mapping and 
let W be the graph of F. Let p: W-+X, q: W-*Y be the natural pro-
jections, i. e. 
(1) p(x,y) = x, q(x,y) = y. 

Then the sets p~\x) are acyclic and, by the Vietoris Theorem, p in-
duces an isomorphism p,: Hk(W) я» Hk(X). The homomorphism 

is said to be induced by the multi-valued mapping F. In particular, if 
F is single-valued, it coincides with the usual induced homomorphism 
of homology. More generally, if /: X-+Y is a continuous selector of F, 
then f , = Fm ([7], p. 263). 

5. The Vietoris Theorem enables us to define for multi-valued acyclic 
mappings many homology notions analogous to those concerning single-
valued mappings with similar properties. 

Let ST denote the unit sphere in the Euclidean n-space E*+1. Let 0 
be the origin and let P"+1 = JT+1\(0). Let F: 8n-yEn+1 be a multi-valued 
continuous acyclic mapping. 

If F does not vanish on i. e. if F(S") does not contain the origin, 
then F may be regarded as a mapping &n-»Pn+1. Such a mapping may 
also be looked upon as a multi-valued non-vanishing vector field on 8n• 
The notion of the Kroneoker index of F may be defined as follows: Since 
the groups Hn(Sn) and # n (P n + 1 ) are both isomorphic with the coefficient 
group, the induced homomorphism Fm: Hn(Sn)-*Hn{Pn+1) may be iden-
tified with an integer mod 2; it is called the index of F and is denoted 
by 1(F) •),. 

*) The notion of index may be likewise defiued for mappings of more general 
subsets of K**1, tor instance, for mappings of n-dimensional manifold; it may also 
be defined for other coefficient groups, as has already been mentioned in [4]. 
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In the case, when y0 is an arbitrary point of E*+1 and F(£T) does 
not contain ye , the index_I(F, y0) of F relative to y, is defined by putting 
I(F,y0) = I(F), where F: is defined by F(x) = F(x)-y,. 

The notion of homotopy of multi-valued continuous acyclic mappings 
was introduced in [7]. Although in [7] only the multi-valued mappings 
of compact spaces into compact ones were considered, condition 1* of 
par. 2 provides that all the results of [7] remain true in the general case, 
if homology with compact carriers is used. In particular, if F, O: X-+Y 
are two multi-valued continuous acyclic mappings which are acyclically 
homotopic, then P . = G.. It follows that, if F,G: £*->P*+l are two non-
vanishing multi-valued continuous acyclic mappings which are acyclicatly 
homotopic (in P"+1), then 1(F) = 1(G). If the single-valued mapping 
/ : £n-vPn + 1 is a continuous selector of F: then 1(F) = 1(f) 
and 1(f) is the usual Kronecker index of /. 

Let Q*+1 be the closed spherical region in bounded by . 
PROPOSITION. Let G: Qn+1-+ be a multi-valued continuous acyclic 

mapping which does not vanish on If I(G\8n) = 0, then G vanishes in 
some interior point of Qn+1, i. e. there exists a point x, с such that 
0 tG(x0). 

Proof. Let P— G\S*. If G does not vanish on Q"+1, then it may 
be regarded as a mapping Qn+l^Pn+1. Let W be the graph of G and V — 
the graph of F. Consider the following commutative diagram: 

where i, j are injections, and p1} and p2, qt are the natural projections 
of the graphs W and V, respectively. By the Vietoris Theorem, р1щ, and 
are isomorphisms. Since i, is zero, it follows that P , = qi.Ptï z e r o -
Consequently, 1(F) = 0. 

6. The multi-valued mapping Ф : X-+X is called a multi-valued in-
volution, if the graph of it is symmetric relative to the diagonal of I x l , 
i .e . if уеФ(х) implies хеФ(у), for every (x,y) e XxX. The following 
theorem is a slight modification of Theorem 1 of [6]; it will be needed 
for proving Theorem 2 of par. 7 which is the main theorem of this note: 

THEOREM 1 . Let X be an n- acyclic space and let Ф : X -> X be a multi-
valued continuous acyclic involution. Let F : X->Fn+l be a multi-valued 
continuous acyclic mapping satisfying the following condition: no radius 
in KH+l beginning at the origin intersects both the sets F(x) and F(y), for 
any x, y such that усФ(х). Then F induces a non-zero homomorphism 
Fiilm(X)-+HH(P»+l). 
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Proof. First, the homomorphism F is defined, since F(Z) cannot 
contain the origin. Let W be the graph of F and let 

Consider the following commutative diagram: 

where p and q are the natural projections defined by (1) in par. 4, and 
the mappings f and r are defined by formulae: 

Let us observe that / is well defined, for f(x, у, u, v) = 0 implies 
that the points и e F (x) and v e F (y) lie on the same radius beginning 
at the origin, which contradicts the assumption of the Theorem 1. Evi-
dently, rm is an isomorphism and, by the Vietoris Theorem, p, is an iso-
morphism. The mapping s can be factored into three mappings: (x, у, u, v) 
-*(a?, у, u)-+(x, у e a c h of which has as counter-images, the sets 

Jiomeomorphic to F(y), F(x), and Ф(х), respectively. By the Vietoris 
Theorem, each of these three mappings induces a homology isomorphism; 
hence, s is an isomorphism. It follows that Z is n-acyclic. 

Let <p: Z-+Z be the involution defined by 

Then the mapping satisfies the condition 

for every z с Z. By theorem 6 of [5] it follows that the homomorphism 
gm: Hn(Z)-> H„(S*) is non-zero. It follows that Ф 0, and then 

0. 

COROLLARY 1 . Let F : 8n-+En+x be a multi valued continuous acyclio 
mapping such that 
(2) no radius beginning at the origin intersects both the sets F(x) and 

F(—x), for any x e S*. 
Then I{F) Ф0. 
COROLLARY 2 . Let О : Qn+1ET+1 be a muUi-valued continuous acyclio 

mapping such that the mapping F = G\S* satisfies condition (2). Then Q 
vanishes in some interior point of Qn+l. 
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7. Let i be a subset of The point a « A ia an interior point 
of A if and only if the kernel of the homomorphism Нл(А\(л))-+Нл(А) 
induced by injection is non-zero. The following lemma characterizes the 
interior points by means of the notion of Index: 

LEMMA 1 . The point a € A is an interior point of A if and only if 
there exists a multi valued continuous acyclic mapping О : Q**l->A tuck 
that 0(8")CA\(a) and / ( ^ Я " , a) ^ 0. 

Proof. The necessity is obvious. To prove that the condition is 
sufficient, let us put F = G\S" and observe that the kernel of Hm(A\(a)) 
-*-Hn(A) contains F^{Hn(8n)) which is non-zero by the assumption of 
Lemma. 

The multi-valued mapping F:X-+Y is said to be an с - mapping 
(e > 0) if яг,) Ф 0 implies xt) < e, for every The 
following theorem is a generalization of Borsuk's classical theorem on 
e-mappings of the Euclidean space [2]: 

THEOREM 2 . Let e be a positive number and let в : JE* + 1 be 
a multi valued continuous acyclic e- mapping. Then 0(Ё*+1) is an open 
subset of En+1. 

The proof is based on the following 
LEMMA 2. Let О : Qn+Ï -* be a multi-valued continuous acyclic 

1 - mapping. Let F = в\8" and let у0ев( 0). Then I(Ffy0)^ 0. 
Proof. Let Q(x) = Q(x)-y0-f then 0 с 0(0). Let W be the graph 

of F=G\8i. e. 

Let 

Let us observe that if (x, и) e W, then (x, 0, u, 0) с Г. Therefore, 
(x, u)-*(x, 0, « , 0)-defines a mapping i:W->Y. Consider the following 
commutative diagram: 
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In this diagram, p and q are the natural projections, defined as in 
par. 4 , ' j is the injection and в, t, h and / are defined by: 

Notice that t is well defined, for (x , 0, u, v) «Г implies q{x, 0) = 1; 
and во is /, for f(x, y, и, v) = 0 implies и — v e &(x) r\6(y) which means 
that в(я)г\в(у) Ф 0 and g(a>, у) = 1. 

Since F,= q,p~l, it should be proved that q,: En(W)-*Hn(Pn+l) 
is non-zero, for p0 is an isomorphism. The mapping в can be factored 
into two mappings (x, y, u, v)-+(x, y, u)-+(x,y) and each of them has 
acyclic counter-images. It follows from the Vietoris Theorem that »m is 
an isomorphism. In the same way we prove that t, and A, are isomor-
phisms. It follows from the commutativity that », and j9 are isomor-
phisms. Since /8* is я-acyclic, therefore, X is n-acyclic. 

Let <p: Х - к Г be the (single-valued) involution defined by 

The mapping / satisfies the condition 

Therefore, the assumptions of Theorem 1 of par. 6 are fulfilled, 
when q> is taken for Ф and / for F. It follows that /„ Ф 0 and then qt Ф 0. 

Proof of Theorem 2. Let y0cG(Fl"+l) and let x e c £ " + 1 be such 
that y0 e 0(x0). Let be the closed spherical region with the centre x0 

and the radius t and Let G.= G\Q*+\ F, = G.\S*. Applying 
Lemma 2 to Q?+1, S?, G., Ft and e, instead of to Qn+\ S", G, F and 1 and 
then applying Lemma 1 we infer that y0 is an interior point of G(En+1). 

T H E O R E M 3 ( O N T H E I N V A R I A N C E O F D O M A I N ) . Let U be an open 
subset of and let G : U-*-En+1 be a multi-valued continuous acyclic 
mapping such that the sets F(Xx) and F(x2) are disjoint, for every xx фх%. 
Then G(U) is open in 

Proof. It follows that G is an e-mapping, for every e > 0; let 
y0 e G(x0), where x0 e U. Let be a closed spherical region, with the 
centre a:0 and the radius s > 0, contained in U. Since is an 
s- mapping, it follows by Lemma 2 and Lemma 1 that y0 is an interior 
point of G(U). 
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GENERALIZING THE HOPF-LEFSCHETZ 

FIXED POINT THEOREM FOR NON-COMPACT ANR-S 

ANDRZEJ GRANAS 

A continuous mapping F : X -» Y between topological spaces X and 

Y is called compact, provided F maps X into a compact subset of Y. In 

this paper, we shall be concerned with the problem of the existence of 

fixed points for a compact map of an ANR for metric spaces into itself.* 

Let X be an ANR for metric spaces. With a compact map F : X -» X 

we shall associate an integer A(F), defined in terms of the induced endo-

morphisms F^ of the homology of X and called the Lefschetz number of 

F. 

In order to define the Lefschetz number A(F), we shall invoke the theo-

ry of the trace, extended by J. Leray [9] for a c lass of endomorphisms of 

infinite-dimensional vector spaces. We shall not, however, state the defi-

nitions or properties needed in any more generality than will be necessary 

for our purposes. 

The main result which we intend to present here is the following theo-

rem: if A(F) 0, then the compact map F has a fixed point. 

This fact clearly implies several well-known fixed point theorems, 

both in functional analysis and topology, in particular, the Lefschetz Fixed 

Point Theorem for compact ANR-s and various forms of the Schauder Fixed 

Point Theorem. 

ï — 
For a specia l kind of ANR-s (namely those which are r-dominated by subsets of 

Banach spaces) this problem was treated, in an Implicit form, by F . Browder [3], 

in his paper concerned with fixed point theorem» for Banach manifolds. The meth-

od used in that paper (based on the Mazur-Lemma) could not be appUed for arbitrary 

ANR-e. 
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The proof is based юп the Hopf Fixed Point Theorem for polyhedra [6] 

and the theorems of Kuratowski [7] and Wojdysfawski [11] concerning the 

embedding of a metric space into a normed space. 

§1. The trace, fa what follows, we shall consider vector spaces only 
over the field Q of rational numbers. 

Given an endomorphism ф : E -» E of a finite-dimensional vector space 
E, we denote by ti(<£) the trace of the endomorphism ф . 

We recall the following well-known property of the trace : 

(A) assume that we are given finite-dimensional vector spaces E E " 
and a commutative diagram 

of linear maps. Then tr(ф) = tх{ф). 

A graded vector space E = l E q l ~ = Q i s said to be of a finite type, 

provided all E q are of finite dimension and Eq = 0 for almost all q. Let 

E be of a finite type and ф = |<£q|: E -» E be an endomorphism of degree 

0 . We let 

and call Л (ф) the Lefschetz number of ф. 

Let E be an arbitrary vector space. Call an endomorphism ф : E -» E 

finite-dimensional, provided dim(Im<£) < For a finite-dimensional ф, 

let E ' be a finite-dimensional subspace of E containing Im0 and ф': E 

-» E be the contraction of ф to the pair (E E '). 

Let С be the concrete category and let f : X -» Y be a map in С such that 
f(A) С В. where А С X and В С Y. By the contraction of I to the pair (A, B) 
we shall understand a map f \ A » В in С defined by t* (a) = f(a), for a f A. 
A contraction of f to the pair (A. Y) Is limply the restriction f | A of f to A. 

http://rcin.org.pl



THE HOPF-LEFSCHETZ FIXED POINT THEOREM 24 3 

We then define the (generalized) trace Тг (ф) of ф by putting 

It follows clearly from (A) that Тт(ф) does not depend on the choice of 
the space E' 

Let E = iE I be a graded vector space and 

be an endomorphism of degree 0. We shall say that ф is a Lefschetz en-
domorphism or L-endomorphism, provided the graded vector space Imф = 
ilm^qi is of a finite type. 

In this case we define the (generalized) Lefschetz number Л {ф) of ф 
by putting 

For notational convenience we let Clearly, if E is of 
a finite type and then and 

LEMMA 1. Let E ' = LE Î be a graded vector space of a finite type 
and assume that we are given a commutative diagram of graded vector 
spaces and linear maps 

Then, ф is a Lefschetz endomorphism, and we have in this case Л(ф) = 
Л ОД). 

Proof: From the commutativity of the above diagram, we have Im^ С 
Imf. Since E' ii of a finite type, this implies that ф is a Lefschetz 
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endomorphism. Consequently, we have the commutative diagram 

in which V, g, ф' stand for the obvious contractions. In view of the pro-
perty (A), we have tr{ф) = trty') = Tr(ф). Consequently, \(ф) = \(ф) 
and the proof is completed. 

§2. The Lefachetz maps. In what follows, we shall denote by H the 
singular homology functor with rational coefficients from the category of 
topological spaces and continuous maps to the category of graded vector 
spaces and linear maps of degree 0. Thus, H(X) = |Hq(X)| is a graded 
vector space, H^(X) being the q-dimensioftal singular homology group of 
a space X. For a map f:X -» Y, H(f) is the induced linear map f* = 
{fq|:H(X)-H(Y), where fq: Hq(X) - Hq(Y). 

A map f : X X will be called a Lefschetz map or L-map provided 
f*:H(X) -» H(X) is a Lefschetz endomorphism. In this case, we define the 
Lefschetz number A(f) of f by putting 

A topological space X will be called of a finite type provided the 
graded vector space H(X) is of a finite type. 

LEMMA 2. Let P be a space of a finite type and assume that we are 
given a commutative diagram of spaces and maps 
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in which i:P -* Y stands for the inclusion. Then f is a Leischetz map 
and we have in this case A(f) = A(fQ). 

Proof. Applying the homology functor to the diagram 3), we obtain 
the commutative diagram 

which satisfies the assumption of Lemma 1. 
Thus, A(f0#) = A(f*) and, consequently, A(fQ) = A(f). The proof is 

completed. 

§3. r-maps and s-maps. Let С be a category and denote by C(X) 
the set of maps X X in C. Assume that we are given a pair of maps 
s:X -» Y and r.Y -» X in C. Following Borsuk [1], we say that r is an 
r-map for s, and s an s-map lor r provided rs = ljç- A map r:Y -» X 
(resp. s:X -» Y) for which there exists an s-map (resp. an r-map) is called 
simply an r-map (resp. an s-map). 

Let s:X Y be an s-map and r:Y -» X an r-map for s. We define the 
maps between the sets 

by the following formulas 

LEMMA 3. Putting f = O(FQ) for each f Q f C(X), we establish 1-1 

correspondence f Q < — > f between the sets t(X) and o<6(X)) С C(Y). 
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// С is the category of graded vector spaces, then 
1° f 0 is an L-endomorphism < = > f is an L-endomorphism 
2° if f 0 is an L-endomorphism, then A(f0) = Л(£). 

If С is the category of topological spaces, then 
3° fQ is compact < = > f is compact 
4° fQ has a fixed point < = > f has a fixed point 
5° fQ is an L-map <==> f is an L-map 
6° if fQ is an L-map, then A(fQ) = A(f). 

Proof. The first assertion follows from the fact that p is an r-map for 
a in the category of sets. 1° and 3° are evident. The proof of 2° is 
similar to that of Lemma 1. 

To prove 4°, note that if x is a fixed point for iQ, then so is s(x) 
for f; if у is a fixed point for f, then so is r(y) for fQ. 

5° and 6° follow from 1° and 2°, the same way as Lemma 2 follows 
from Lemma 1. 

§4. Compact maps into the special ANR-s. In this and in the next two 
sections by a space we shall understand a metrizable space. 

A space X is called an ANR (respectively AR) provided that for each 
embedding h:X Y such that h(X) is closed in Y, there exists a re-
traction r:U h(X), of an open set U С Y onto h(X) (respectively a re-
traction r:Y - h(X)). 

A space Y will be called a special ANR provided Y is an open sub-
set of a convex set Z contained in a normed space. ** 

A mapping F:X -» Y into a special ANR will be called finite dimen-
sional provided the image F(X) is contained in a finite polyhedron P С Y. 
It turns out that every compact mapping into a special ANR can be uni-
formly approximated by finite dimensional mappings. More precisely, we 
have the following 

The fact that every special ANR i s an ANR will not be used in our discussion. 
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THEOREM 1 (Approximation Theorem). Let Y be a special ANR and 
F:X -» Y be a compact mapping of a space X into Y. Then, for each 
e > 0, there exists a finite dimensional mapping G:X Y such that 

(i) for all x £ X we have 

(ii) G is homotopic to F. 

Proof. Let e > 0 be given. Let us put now Y0 = F(X) С Y. Since 
Y0 is compact (by the assumption of the theorem) and Y is open in a 
convex set Z, there exists a constant 8 satisfying 

and such that each ball 

with center y0 t Y0 and radius 25 is entirely contained in Y. g 
Now take an arbitrary ^ — n e t 1 of the compact set 

and put for each i = 1, 2, к 

Evidently, all the balls and are convex subsets of Y and 

covers 

Define the partition of unity on V by putting 

Let us put for each 
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It follows from (1) and the definition of G that 

and that the values of G are in a simplicial complex P with the vertices 

It follows from (5) that the points y ,̂ which appear in a convex com-
bination (5) for some x, belong to one of the balls V-. Since all Vj are 
convex, we conclude that P С Y. 

To prove the assertion (ii), note that for each x r X , the points G(x) 
and F(x) belong to one of the balls say to Vj. Since Vj is con-
vex subset of Y, the family of maps ĝ  defined by the formula 

has values in Y. Thus gt:X -> Y is a homotopy joining G with F and 
the proof is completed. 

§5. The main theorem. In what follows we shall make use of the fol-
lowing elementary fact: 

LEMMA 4. Let F:Y -*Y be a compact map oi a metric space Y into 
itself and assume that F is a uniform limit of a sequence (Fn! of maps 
Fn:Y -* Y. If each Fn has a fixed point, then so does the map F. 

Proof. Let lyn i be a sequence of points such that Fn(yn) = yn> 

From the assumption it follows that for almost all n we have 

Since F is compact, we may assume, without loss of generality, that 

It follows from (1) and (2) that lim yn = У and hence, by continuity of F, 
П=оо 

we have 

Comparing (2) and (3) we obtain F(y) = у and the proof is completed. 
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THEOREM 2. Let Y be a special ANR and F:Y - Y be a compact 
map. Then (i) F is a Lefschetz map, (ii) A(F) ^ 0 implies that F has 
a fixed point. 

Proof. Theorem 1 implies that F is a uniform limit of a sequence 
{Fnl of mappings Fn:Y -> Y such that 

where P n is a finite polyhedron. 
Denote by Fn:Pn -» PR the obvious contraction of Fn. Lemma 2 im-

plies that each Fn is a Lefschetz map, and hence, in view of (4), so is 
the map F. This completes the proof of (i). 

To prove (ii), assume that A(F) / 0. In view of (4), we have MFn) £ 0. 
Lemma 2 implies that A(Fn) = ^ 0. This implies, in view of the 
Hopf Fixed Point Theorem [6], that for every n there exists a point 
y_ ( P_ such that 1 n n 

It follows now from Lemma 4 that F has a fixed point and the proof of the 
theorem is completed. 

Now we state the main result of the paper: 

THEOREM 3. Let X be an arbitrary ANR and F Q : X - X be a com-

pact map. Then (i) FQ is a Lefschetz map, (ii) A(FQ) ^ 0 implies that 
FQ has a fixed point. 

Proof. In view of the theorems of Kuratowski [7] and Wojdysfawski 
[11], X is r-dominated by a special ANR Y. Using the notation of the 
Section 3, let us put F = o(F0). By Lemma 3, F:Y -» Y is compact and, 
hence, by Theorem 2, is a Lefschetz map. Applying Lemma 3 again, we 
conclude that FQ is a Lefschetz map. Thus (i) is proved. 

To prove (ii), assume that A(FQ) ^ 0. B y Lemma 3, A(F0) = A(F) ^ 0. 
This, in view of Theorem 2, implies that F has a fixed point. Applying 
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Lemma 3 for the last time, we conclude that FQ has a fixed point, and 
the proof of the theorem is completed. 

§6. Corollaries. We list now a few immediate consequences of the 
main theorem: 

COROLLARY 1 (The Lefschetz Fixed Point Theorem [8]). Let X 
be a compact ANR and f:X -* X be a map. H A.(f) ̂  0, then f has a 
fixed point. 

A space X is said to have the fixed point property in the narrow 
sense (cf. [5]), provided every compact map F : X X has a fixed point. 

COROLLARY 2. Acyclic ANR-s and in particular AR-s have the 
fixed point property in the narrow sense. 

COROLLARY 3 (The Schauder Fixed Point Theorem [10]). Let X be 
a convex (not necessarily closed) subset of a normed space (or of a metri-
zable locally convex space). Then X has the fixed point property in the 
narrow sense. 

Proof. By the Theorem of Dugundji [4], X is an AR. Our assertion 
follows therefore from the Corollary 2. 

COROLLARY 4 (The Вirkhoff-Kellogg Theorem [2]). Let S be the 
unit sphere in an infinite dimensional normed space E and F:S -» E be 
a compact map such that 

Then there is a positive A, such that F(x) = Ax for some x e S. 

Proof. Define F:S -» S by 

Because of (1), F is compact. Since the unit sphere S is an AR, by a 
theorem of Dugundji [4], there is a point x t S such that 
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and the proof is completed. 

§7. Further remarks. The main theorem given in the previous section 
can be generalized to non-metrizable case. 

Call a topological space Y a special Borsuk space provided Y is an 
open set in a convex set Z lying in a locally convex linear topological 
space Б. A topological space X is said to be a Borsuk space provided 
X is r-dominated by a special Borsuk space Y. 

We have the following theorem: 

THEOREM 4. Let F:X -» X be a compact map of a Borsuk space X 
into itself. Then F is a Lefschetz map and A(F) / 0 implies that F 
has a fixed point. 

A compact topological space X is called an ANR for normal spaces 
provided for each embedding h:X -• Y into a normal space Y the set h(Y) 
is a neighbourhood retract of Y. Every compact ANR for normal spaces 
(being homeomorphic with a neighbourhood retract of a Tychonoff cube) is 
evidently a Borsuk space. This implies, in view of Theorem 4, the follow-
ing generalization of the Lefschetz fixed point theorem for non-metrizable 
compact ANR-s: 

COROLLARY 1. Let X be a compact ANR for normal spaces and 
f:X -» X be a map. Then f is a Lefschetz map and A(f) ^ 0 implies 
that f has a fixed point. 

As a consequence of Theorem 4, we note also the following generali-
zation of the Tychonoff fixed point theorem: 

COROLLARY 2. Let X be a convex (not necessarily closed) subset 
of a locally convex linear topological space. Then X has the fixed point 
property in the narrow sense. 
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It was shown by K. Borsuk [1] and S. Kinoshita [6] that there exist in Еъ locally 
connected and acyclic continua without fixed point property. It follows that the 
central fact in the fixed point theory known as the Hopf—Lefschetz Theorem (proved 
for manifolds, polyhedra and compact ANR-s in [7], [4] and [8], respectively) 
cannot be extended to orbitrary compacta. 

Recently, K. Borsuk raised the question, whether the above theorem holds 
for a class of compacta introduced in 1953 by H. Noguchi [10] and called here the 
class of approximative ANR-s. It is the purpose of this paper to give an affirmative 
answer to the above question. 

1. Algebraic preliminaries. In this paper we consider vector spaces only over 
the field of rational numbers. For an endomorphism q>:E-^E of a finite dimensional 
vector space E we denote by tr (cp) the ordinary trace of cp. 

A graded vector space E = {Eg}q>0 is said to be of a finite type provided (i) 
dim .E^ < +oo for all q ^ 0, (ii) Eg = 0 for almost all q. If <p = {9oq} :E->E 
is an endomorphism of degree zero of such a space we let 

and call A (99) the Lefschetz number of cp. 
Let cp : E -> E be an endomorphism of an arbitrary vector space. Call cp finite 

dimensional provided dim Im <p < +00. For such cp, we define the generalized trace 
Tr (cp) by putting 

where y : Im 95 -> Im cp is defined by cp. 
Let E = {Eq} be an arbitrary graded vector space. An endomorphism cp — 

= {cpq} \ E -> E of degree zero is said to be a Lefschetz endomorphism provided 
(i) rpq is finite dimensional for all q ^ 0, 
(ii) cf q — 0 for almost all q. For such cp we define the (generalized) Lefschetz 

number Л Up) by putting 
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We have the following lemma: 
(1.1) Let E' =• {E'q} be a graded vector space of a finite type and assume that 

we are given a commutative diagram of graded vector spaces and linear maps 

Then y> is a Lefschetz endomorphism, and we have in this case 
For the proof see [2]. 

2. Lefschetz maps. In what follows we shall denote by H the Vietoris homology 
functor with rational coefficients from the category of metric spaces and continuous 
maps to the category of graded vector spaces and linear maps of degree 0. Thus 
H(X) = {Hq(X)} is a graded vector space, Hq(X) being the ^-dimensional 
Vietoris homology group of X. For a map f : X -> Y, H ( f ) is the induced linear 
map /* = {fq} : H (X) -> H (Y), where fq : Hq (X) -> Hq (7). 

A map f :X->X is called a Lefschetz map provided : H (X) V H (X) is 
a Lefschetz endomorphism. For such / we define the Lefschetz number A (/) by 
putting 

A space X is said to be of a finite type, provided the graded vector space H (X) 
is of a finite type. A map / : X-> X of such a space is always a Lefschetz map and 
Л ( / ) coincides with the ordinary Lefschetz number A (/) of / . 

Call a map F : X -> Y compact provided F (X) is contained in a compact subset 
of Y. 

We shall make use of the following theorem: 
(2.1) Let X be an ANR for metric spaces and F : X -> X be a compact map. 

Then F is a Lefschetz map and Л (F) ф 0 implies that F has a fixed point. 
For the singular homology, this theorem was proved in [2]. The case under 

consideration follows from the fact that for ANR-s the singular and the Vietoris 
homology theories are isomorphic [9]. 

3. Approximative ANR-s. Let (X, A) be a pair of metric spaces and г be a 
positive number. A continuous map re : X -> A is called an s-retraction provided 
q (re (о), й) < г for all a e A. 

A subspace A <= X is called an approximative retract of X (or simply an («)-
retract of X) provided for every г > 0 there exists an e-ret faction re : X -> A. 

(3.1) Assume that a compactum A is an approximative retract of a space X and 
у is an infinite cycle in A. Then the relation у ~ 0 in X implies у ~ 0 in A. 
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For the proof see [3]. 
A compactum X is said to be an approximative ANR (resp. approximative AR) 

provided for each embedding h:X-*Y into a metric space Y, the set h (X) is an 
(a)-retract of some open set U in Y (resp. an (a)-retract of У). 

(3.2) Every compact approximative ANR is of a finite type. 
This implies that for every map / : X -> X of a compact approximative ANR the 

Lefschetz number X ( /) is defined. 
Now we shall establish a lemma which will be used in the proof of the Main 

Theorem. 
(3.3) Let f : X -> Y be a map into a compact approximative ANR. There exists 

an f. > 0 such that for each g : X -*• Y the condition 

implies that 
Proof. In view of a theorem of Kuratowski [5], we may assume without loss 

of generality that Y is contained in a Banach space E and hence there exists an open 
set U in E, such that Y a U is an approximative retract of U. Let e > 0 be a number 
smaller than the distance dist (7, Ù) of the compact set Y to the boundary Ù of U 
in E. Let g : X -> Y be a map such that 

and к be an orbitrary infinite cycle in X. In order to prove the lemma it will be 
sufficient to prove that f(x) is homologous to g (x) in Y. 

Now we denote by j : Y U the inclusion and put / = j f , g = jg. It follows 
from (1) and the definition of e that for each x e X the interval ?/(jc)+(1 — t) g (x) 
where 0 ^ t ^ 1 is entirely contained in U. This implies that the maps / g : X -> U 
are homotopic and hence the cycle y = / (x) — g (x) is homologous to zero in U. 
Since / (* ) = / ( * ) , g (x) = f(x) and Y is an approximative retract of U, we 
conclude by (3.1) that y ~ 0 in Y and hence f(x)~g (x) in Y. 

The proof is thus completed. 

4. The Main Theorem. We shall state now the main result of this paper: 
T H E O R E M . Let X be an approximative compact ANR and f : X X be a map. 

Then k ( / ) ф 0 implies that f has a fixed point. 
Proof. We may assume, without loss of generality, that X is an approximative 

retract of an open set U contained in a Banach space E. For each n = 1, 2,... let 

rn : U -> X be a —-retraction from U to X. We have n 

for all 

Let j : X-> U be the inclusion and define for each n = 1, 2,... a map Gn : £/-> 
-> U by putting 
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Consider now for each n the diagram 

and its image under the functor H in the category of graded vector spaces 

In view of (2) we have 

In view of (1) the identity map 1 : X X is a uniform limit of the sequence 
{rnj} of maps rnj:X->X. Applying Lemma (3.3) to the map 1 : X-> X we 
conclude that there exists an integer n0 such that 1* = (rnj)# for all n ^ щ. This 
implies /* = ( frn)* о j* for n > n0, and hence in view of (3), the diagram H (fDn) 
commutes for n щ. 

Since X is of a finite type we may apply now Lemma (1.1) to H (fD„) for n ^ щ. 
By this Lemma Gn is a Lefschetz map and 

Now let us assume that X ( / ) Ф 0. We shall prove that / has a fixed point. 
In view of (2) and (4) each Gn : U -> U is a compact map with Л (G») ф 0 

for n ^ щ. 
Applying Theorem (2.1) we find a sequence {xn} of points in X such that 

Let {xkn} be a subsequence of {xn} such that 

In view of (1) we have 

and hence, in view of (6), 

(8) 
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By continuity of f , w e have f r o m (8) 

In view of (5) and (2), and, therefore, in view 
of (6), we have 

(10) 

Comparing (9) and (10), we conclude that x = /(л). 
The proof of the Theorem is completed. 
As an immediate consequence, we obtain the following: 

COROLLARY. Acyclic compact approximative ANR-s, and in particular approxi-
mative AR-S, have the fixed point property. 

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES 
(INSTYTUT MATEMATYCZNY, PAN) 
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1. Introduction. In the first part of this note, an extension to the infinite 
dimensional case of the recent fixed point theoiy of A. Dold [6] is given. This leads 
to a version of the classical Leray-Schauder theory [10], which is suitable for 
establishing a relation between the Lefschetz number and the fixed point index 
of a compact map. 

Let U be an open subset of a normed (or more generally locally convex) linear 
space E and let / : U -> E be a compact map with a compact set of fixed points. 
To every such map/, we assign an integer Ind (/) , called the Leray-Schauder index 
o f / ; which satisfies (as in [6]) all the naturally expected properties (Theorem 1); 
in particular, when / : U-> U, it is equal to the Lefschetz number A ( f ) o f / . 

In the second part of this note we give some applications to the fixed point 
theory of the ANR spaces. 

Let X be a space which is r-dominated by an open set U in E. Let r : U -*• X 
and s : X~> U be the corresponding pair of maps with rs = lx- Let g : X -> X be 
a compact map; then sgr : U -> U is also compact and A (g) = A (sgr) = Ind (sgr). 
Consequently, the Lefschetz Fixed Point Theorem holds for such a space X : if 
A (g) Ф 0, then g has a fixed point. Since every ANR for metric spaces is up to 
homeomorphism a neighbourhood retract of a normed space, this includes a fixed 
point theorem for ANR-s proved in [7]. 

Finally we mention that the theory of the Leray-Schauder index extends simply 
to the fixed point index theory for compact ANR-s. Such a theory was established 
previously by combinatorial means (and in a different form) by several autho/s 
[8], [5], [3], [4} 

2. The Lefachetz number. In what follows we shall use in full generality the 
generalized theory of the trace as given by J. Leray in [9]. We shall consider vector 
spaces only over the field of rational numbers. 
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Let <p :Е-+ЕЪс an endomorphism of an arbitrary vector space E. Let us put 

and denote by <p : £ -*•£ the endomorphism induced by <p. 
Assume that dim £ < -f oo. Following J. Leray, we define the generalized trace 

Tr (<p) of у by putting Tr (<p) = tr (<p), where tr (<p) is the ordinary trace of <p. 
Let <p — {ç>e} : E -*• E be an endomorphism of degree zero of a graded vector 

space E — {Et}- Call <p a Leray endomorphism provided (i) dim Et <00 for all q 
(ii) £ t — 0 for almost all q. 

For such <p we define the (generalized) Lefschetz number А (<p) by putting 

3. Lefscbetx шаре. Let H be the singular homology functor (with the rational 
coefficients) from the category of topological spaces and continuous mappings to 
the category of graded vector spaces and linear maps of degree 0. Thus H(X) — 
— {Ht (.X)} is a graded vector space, H9 (X) being the 9-dimensional singular 
homology group of X. For a continuous mapping f:X-*-Y,H(f) is the induced 
linear map / , = {/,}, where /« : H9 (X) -> Hq (У). 

A continuous map/ : X-+ Miscalled a Lefschetz map provided f0 :H(X)-+H(X) 
is a Leray endomorphism. For such / we define the Lefschetz number Л ( / ) of / 
by putting 

Clearly, if g, then A ( / ) = Л (g). 
We shall make use of the following lemma: 

(3.1). Assume that in the category of topological spaces the following diagram 
commutes 

Then (a) if one of the maps <p and y> is a Lefschetz map, then so is the other and 
in that case A(<p) — A (y), (b) <p has a fixed point if and only if у does. 

Proof. The firit part follows (by applying the homology functor to the above 
diagram) from the corresponding property of the Leray endomorphisms [9]. The 
second part is obvious. 

The following are the two instances in which the above lemma is used: 
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Example 1. Let / : X~> Xbe a map such that / (X) с АГ«= X. Then we have 
the commutative diagram 

with the obvious contractions.*) 
Example 2. Let г : Y-> X, s : X-> У be a pair of continuous mappings 

such that rs — 1 x. In this case X is said to be r-dominated by Y and r is said to be 
an r-map. In this situation, given a map <p : X -*• X, we*have the commutative diagram 

with y> = s<pr. 

4. Compact maps. A continuous map f : X-> Y between topological spaces 
is called compact provided it maps X into a compact subset of Y. Let ht: X-> Y 
be a homotopy and h : Xx I Y be defined by A (x, t) — A* (x) for (x, t) e Xxl; 
then ht is said to be a compact homotopy provided the map A is compact. 

We shall make use of the following Approximation Theorem: 
(4.1) Let U be an open subset of a normed space E and let f : X-+ U be a compact 

mapping. Then for every в > 0 there exists a finite polyhedron К, с U and a mapping 
ft : X-+ U, called an e-approximation of f , such that 

(i) ll/W - / . ( * ) « < * M all xeX; 
( i i ) / . (*)<=*, 
(iii) ft is homotopic to / . 
Proof. Given e > 0 (which we may assume to be sufficiently small), / ( X ) is 

contained in the union of a finite number of open balls V(yu e) с U(i — 1,2,..., k). 
Putting for xeX, 

where 

we obtain the required map ft. 
From (4.1) and Lemma (3.1) (see Example 1) we obtain the following proposition: • 
(4.2) Let f : U U be a compact mapping of an open subset U of a normed 

space. Then f is a Lefschetz map. 

•) Let / : * -*- У be a map such that f(A) <= B, where A <= A" and B e y. By the contraction 
Of / to the pair (A, B), we understand a map / ' : А-*- В with the same values as / A contraction 
©f / to the pair (А, У) is simply the restriction f\A of / to A. 
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Remark. (4.1) and consequently (4Л) remain valid for ж locally convex space E. 

6. Fixed Poàtf Index in /?•. Let / : U-+X be a continuous map between 
topological spaces. Call / admissible provided U is an open subset of X and the 
fixed point set of / 

is compact. A homotopy ht : U-+X will be called admissible provided the set 
is compact. 

Let S be a category of topological spaces in which a class % of admissible maps 
and homotopies is distinguished. By a fixed-point index ся С we shall understand 
an integer-valued function /-*- Ind i f ) defined for all admissible maps fe which 
satisfies the following conditions: 

I (Excision). If V с U and KfC.IT, then for the restriction f =f\lT: V->X 
we have 

Ind ( / ) = Ind ( Л -

II (Normalization). If / is a constant map, f(x)=p for all xeU, then 

III (Fixed-points). If Ind f Ф 0, then */ Ф 0, i.e., the map/has a fixed point. 
t 

IV (Additivity). Assume that U = {J {/,, /< = f\ Ut and the fixed point sets 
i - i 

xi — x/n Ut are mutually disjoint, r\ x} = 0 for i Ф j. Then 

V (Homotopy). Let ht : U->X, 0 < t < 1, be an admissible homotopy. 
Then Ind (Ao) = Ind (hi). 

VI (Multiplicativity). Iffx :Ui~*Xi and f 2 :U 2 -*X 2 then for the product 
mapf x Xfi iUxXUi-*Х х хХ г we have 

VII (Commutativity). Let U с X, U' с X' be open and assume/: U -*X', 
g : U' -> X are maps. If one of the composites 

is admissible, then so is the other and we have in that case 

VIII (Relation with the Lefschetz number). If ( / = X a n d / : X X 
is compact, then / is a Lefschetz map and Ind ( / ) «= A (J). 
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We have the following theorem proved by A. Dold in [6]: 

(6.1) (Fixed Point Index in Rn). Let £ be the category of open subsets of 
Euclidean spaces and be the class of all continuous admissible maps in (L Then there 
is он Ha fixed point index function f -*> Ind (/)> which satisfies the properties I—VIII. 

We note that the excision and the commutativity implies the following property 
of the index: 

IX (Contraction). Let U be open in and f:U-+ be an admissible 
map such that f(U) с R*. Denote by / : V -*• R* the contraction of / , where 0 = 
— Un R*. Then Ind ( / ) = Ind(Д 

7. The Leray-Schauder Index. Let U be an open subset of a normed space E 
and let f:U-*-E be an admissible compact map. Take an open set Ус U such 
that */<= V. Then the number в = inf {||x — /(*)ll for xeFr(F)} is positive. 

Let g —f\ V : V-+E. From the definition of e, it follows that: 
(i) every e-approximation g, : V-+E of g is admissible; 
(ii) given two e-approximation s g't,g" : У-*-Е of g, there exists an admissible 

finite dimensional compact homotopy ht : У-+Е, 0 < t < 1, such thatAo = g^ A, — g't\ 

DEFINITION. Let / : £ / - > £ be an admissible compact map and g, : V-*-E 
be an e-approximation of g —f \ V as above. Denote by E* a finite dimensional 
subspace of E such that g,(V) с £» and let g't : V» -+Е», where V» = V r\E*, 
be the contraction of g,. Using (6.1), we define the Leray-Schauder index of / b y 
putting Ind ( / ) = Ind Gti-

lt follows from (i), (ii), and the properties I, V and IX of the index in R*, that 
Ind ( / ) is well defined. 

THEOREM 1. Let (£ be the category of open subsets in linear normed spaces and 
let % be the class of all admissible compact maps in (£. Assume that all admissible 
homotopies are compact. Then, defined on the Leray-Schauder index f Ind ( / ) 
satisfies the properties I—VIII. In VII it is assumed that both f and g are compact. 

Proof. Properties I—VI follow from the corresponding properties of the index 
in R* and (4.1). These once proved, property VII follows (similarly as in [6J) from I, 
V and VI. 

Proof of property VIII. Given a compact map let f , : U-*- U 
be an e-approximation of / such that its values are in some finite dimensional 
subspace JE» of E and Un = U n E*. 

Consider the following commutative diagram in which all the arrows represent, 
either the obvious inclusions or the contractions of the map / . 
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By definition Ind ( / ) — Ind ( f t ) . From Lemma (3.1) (Example 1), we have 
Л (/,') = Л (Л) and, consequently, in view of (6.1), (property VIII), Ind ( f ) = 
« A (Q. Since / is homotopic to /„ this implies that Ind (J) — A (f). 

8, Compact maps of ANR-s. Denote by ANR (respectively AR) the class of 
metriz&ble absolute neighbourhood retracts (resp. absolute retracts). 

The following simple characterization of the ANR-s permits to establish a link 
between the fixed point theory for such spaces and the Leray—Schauder index: 

(8.1) In order that Xe ANR (respectively XeAK) it is necessary and sufficient 
that X be r-dominated by an open subset of a normed space (resp. by a normed space). 

Proof. Let .Jfe ANR. By the theorem of Arens—Eells [1] there exists an 
embedding <p : X -*• E of X into a normed space E such that (X) is closed in E. 
Take a retraction r :U-*-<p(X) of an open set U => <p (X). Then <p~i r : U ->X 
is an r-map. The converse follows from the general properties of the ANR-s [2]. 
The proof of the second part is similar. 

THEOREM 2 . Let X be an A N R andf:X-+X be a compact mapping. Assume 
further that U is open in a normed space E and s :X-+U, r : U-f X is an arbitrary 
pair of maps such that rs = lx. Then we have (i) / « о Lefschetz map, (ii) the Lefschetz 
number off is equal to the Leray—Schauder index of the map sfr, A ( / ) = Ind (sfr), 
(iii) if A ( / ) ф 0, then the map f has a fixed point. 

Proof, (i) follows from Lemma (3.1) (Example 2) and (4.2); (ii) follows from 
the same Lemma and Theorem 1 (Property VIII); (iii) is a consequence of (ii), 
Theorem 1 (Property III) and again of the same Lemma (3.1). 

Remark 1. The theory of the Leray—Schauder index (Theorem 1) extends to 
locally convex spaces. It follows that Theorem 2 remains valid, when Л'is an arbitrary 
space, which is r-dominated by a set U open in a locally convex space. 

9. Fixed Point Index for compact ANR-s. The Leray—Schauder index permits 
to define a fixed point index in the category of compact ANR-s. Let X be a compact 
metric ANR and / : U -> X be an admissible map. In order to define a fixed point 
index Ind ( / ) we take an open set К in a normed space E which r-dominates X. 
Let s : X-* V, r : V-+ X be a pair of maps such that rs — 1 . Since the composite 
map 

is compact, its index is defined by Theorem 1, and we put 

The excision and commutfttivity of the Leray—Schauder index imply that thil 
definition is independent of the choices involved. 
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256 Some Theorems in Fixed Point Theory... 

THBOREM 3. Let (£ be the category of compact metric A N R - J and % Ы the class 
of all continuous admissible maps in Œ, Then the fixed-point index function / - * Ind (/) 
defined by (•) satisfies the properties 1-УШ. 

Remarks. 1. The definition of the index and Theorem 3 remain valid for 
non-metrizable compact ANR-s (see the previous remarks). 

2. Since in the definition of the fixed point index of / , only of importance is 
the behaviour o f / i n the neighbourhood of */. Theorem 3 remains valid when 
Of is the category of locally compact ANR-s. 
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F I X E D P O I N T T H E O R E M S 

F O R M U L T I - V A L U E D M A P P I N G S O F T H E A B S O L U T E 

N E I G H B O U R H O O D R E T R A C T S 

В т LECH G Ô R N I E W I C Z AND ANDEZEJ G U A N A S . 

1. I N T R O D U C T I O N . — In 1946, S. Eilenberg and D . Mont-
gomery [4] made the important observation that, using an old 
theorem of L. Vietoris [21] as a tool, several results of the fixed-
point theory for single-valued mappings could be carried over 
to the case of multi-valued acyclic maps, i. е., maps for which 
the image of every point is an acyclic compact set. Thus, the 
Lefschetz Fixed Point Theorem for compact ANR-s was extended 
by the above-named authors to arbitrary acyclic maps; some 
years later, similar generalizations of other topological theorems 
were given in [13], [14] and [10]. The important type of acyclic 
maps consists of those which .are convex-valued. To this special 
type of maps various fixed-point theorems for compact operators 
were extended ([1], [6], [7]), as well as the basic facts of the Leray-
Schauder theory in Banach spaces ([8], [11]). As in the single-
valued case, fixed-point theorems for multi-valued mappings 
prove themselves useful in many branches of mathematics; they 
found, for instance, applications in the theory of games ([1], [6]) 
and more recently also in ordinary differential equations [16] 
and optimal control theory [17]. 

In the present note, we are concerned with the fixed-point theo-
rems for multi-valued maps of non-compact spaces and our main 
result may be viewed as a generalization and application of the 
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2 5 8 L. GÔRNIEWICZ AND A. GRANAS. 

above Eilenberg-Montgomery theorem. Let X be a topologically 
complete absolute neighbourhood retract and let о : X X be a 
point-to-set transformation which is continuous, acyclic and 
compact. With the aid of the Vietoris Mapping Theorem (for 
homology with compact carriers) we define the induced homo-
morphism and then, in terms of the Leray trace [18], the 
generalized Lefschetz number A (ç) of Now, our principal 
theorem states : If A (9) ^ o, then f has a fixed point, i. е., 
xG®(x) for some point x in X. 

The main line of our reasoning and several details have points 
in common with ([4], [3], [9], [10], [14]). The results presented 
in this note include several known fixed-point theorems both for 
single-valued and multi-valued maps ([4], [1], [3], [12], [14]). 
We remark that, for a single-valued map, the main theorem is 
valid without assuming X to be topologically complete [9]; the 
question whether the same can be proved for multi-valued maps 
remains open. 

2. T H E TRACE . — In what follows we shall use the generalized 
notion of the trace and the Lefschetz number as given by J. Leray 
in [18]. We shall consider vector spaces only over the field of 
rational numbers Q. 

A graded vector space E = { E7 j is of a finite type provided : 
(i) d imE 7 <- | -oo for all q, and (ii) E v = о for almost all q. 
If f = { f 4 j is an endomorphism of such a space, then the 
Lefschetz number \ ( f ) of f is given by 

where tr stands for the ordinary trace function. 
Let f : E -> E be an endomorphism of an arbitrary vector 

space E. Let us put 

where f "] is the n-th iterate of f. Since f(N (/")) С N [ f ) , we have 
the induced endomorphism f : E-> E. 
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FIXED POINT THEOREMS. 2 5 9 

Assume that dim E < - f 0 0 ; in this case, we define the gene-
ralized trace Tr ( f ) of f by putting Tr(f) = t r ( / r ) , where t r ^ ) is 
the ordinary trace of f . 

Now let f = [ f4) : E E be an endomorphism of degree 
zero of a graded vector space E = '{ E, }. Call f the Leray endo-
morphism provided the graded space Ë = { Ë,,j is of a finite 
type. For such an f we define the (generalized) Lefschetz 
number Л ( f ) by putting 

А ( / ) = 2 ( - ' ) ' Т г ( Л ) . 
T 

The following important property of the Leray endomor-
phisms [18] is a consequence of the well-known formula 
tr(ue) = tr (vu) for the ordinary trace : 

(2 . i ) Assume that in the category of graded vector spaces the 
following diagram commutes 

Then, if one of the linear maps f' or f" is a Leray endomorphism, 
then so is the other and in that case Л (f') — \(f"). 

3. V I E T O R I S M A P P I N G S . — In what follows only metrizable 
spaces will be considered. The category of such spaces and 
continuous mappings will be denoted by C. 

By H we denote the Cech homology functor with compact 
carriers [5] and coefficients in Q from the category С to the cate-
gory wV of graded vector spaces and linear maps of degree zero. 
Thus, for a space X 

is a graded vector space and, for a continuous mapping f : X Y, 
H(/ ) is the induced linear map 

where 
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2 6 0 L. GÔRNIEWICZ AND A. GRANAS. 

A space X is acyclic provided : (i) X is non-empty ; (ii) H, ( X) = о 
for all and (iii) H,(X)%Q. 

( 3 . 1 ) D E F I N I T I O N . — A continuous mapping f:X->- Y is 
said to be a Vietoris map provided the following two conditions 
are satisfied : 

(i) f is proper, i. е., for any compact C, the counter image f~l (C) 
is also compact; 

(ii) the set f~l{y) is acyclic for every t / € Y . 

In our subsequent considerations an essential use will be made 
of the following : 

(3.2) Vietoris Mapping Theorem. — If f: X - > Y is a Vietoris 
map, then the induced map : H ( X ) - > H ( Y ) is invertible. 

Theorem (З.2) clearly follows from the original statement of 
the Vietoris Mapping Theorem for compacta (e. g. [21] and 
also [20]). 

4. M U L T I - V A L U E D M A P P I N G S . — Let X and Y be two spaces 
and assume that for every point x € X a non-empty subset 9(ж) 
of Y is given; in this case, we say that 9 is a multi-valued mapping 
from X to Y and we write 9 : X Y. In what follows, the 
symbols 9, will be reserved for multi-valued mappings; the 
single-valued maps will bo denoted by f , g, h, .... 

Let 9 : X -> Y be a multi-valued map. We associate with 9 
the following diagram of continuous mappings 

in which 

is the graph of 9 and the natural projections p and q are given by 

The point-to-set mapping 9 extends to a set-to-set mapping 

by putting is said to be 

http://rcin.org.pl



FIXED POINT THEOREMS. 2 6 1 

the image of A under 9. If < p ( A ) c B c Y , then the contraction 
of 9 to the pair (A, B) is the multi-valued map 9 ' : A -> В defined 
by 9 '(a) = 9 (a) for each a G A. A contraction of 9 to the 
pair (A, Y) is simply the restriction 9 | A of 9 to A. 

(4.1) D E F I N I T I O N . — A multi-valued mapping 9 : X - > Y is 
said to be continuous provided the graph Гф of 9 is closed in the 
product X x Y ; in other words, the conditions xn-*-xt уп-*-у, 

€ 9 [x„) imply у € 9 (x). 
We note that if 9 = f (i. е., 9 is single-valued), then the above 

definition gives the ordinary continuity of f . In what follows 
only continuous multi-valued mappings will be considered. 

(4.2) D E F I N I T I O N . — A multi-valued mapping 9 * . X - > - Y is 
called compact provided the image 9 (X) of X under 9 is contained 
in a compact subset of Y. 

The following evident remark is of importance : 

(4.3) If 9 : X-»- Y is compact, then the projection p : Г?->- X 
is proper as a single-valued mapping. 

( 4 . 4 ) D E F I N I T I O N . — Let 9 : X X be A multi-valued mapping. 
A point x is called a fixed point for 9 provided a:€9 (я). 

5 . A C Y C L I C MAPS . — In this section, we recall the statement 
of the Eilenberg-Montgomery Theorem. 

( 5 . I ) D E F I N I T I O N . — Let X and Y be two spaces. A multi-
valued mapping 9 : X Y is said to be acyclic provided the 
set 9(3) is acyclic for every point # € X . 

Assume that X and Y are compacta and 9 : X -*• Y is an 
acyclic multi-valued mapping. We observe, that, since for 
every я € Х , p~l(x) is homeomorphic to 9(3), the projection 
P : Г 9-> X is a Vietoris map. 

Using the Vietoris Mapping Theorem we define the linear map 

by putting 
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2 6 2 L. GÔRNIEWICZ AND A. GRANAS. 

9 , is said to be induced by the multi-valued mapping 9. It is 
easily seen that if 9 = f (i. е., 9 is single-valued), then 9 , = /",. 

A compact space X is said to be of a finite type provided the 
graded space H(X) is of a finite type. We note that every 
compact ANR is of a finite type. 

Let X be of a compact space of a finite type and .9 : X - > X 
be an acyclic multi-valued mapping of X into itself. We define 
the Lefschetz number X(9) of 9 by putting 

(5.2) (Eilenberg-Montgomery Theorem). — Let X be a com-
pact ANR and 9 : X -»• X an acyclic multi-valued mapping. 
Then X(9)^o implies that 9 has a fixed point. 

6 . T H E Q U A S I - C A T E G O R Y <L — In the rest of this note, the 
symbol f : X = » Y will mean that either : (i) f is a Vietoris map 
or (ii) f is a homeomorphism ; we remark that in either case, the 
induced map is invertible. 

( 6 . 1 ) D E F I N I T I O N . — A multi-valued mapping 9 : X - > Y is 
said to be admissible provided either : (i) 9 is single-valued 
or (ii) 9 is acyclic and compact. The class of all admissible maps 
will be denoted by C. 

(6.2) If a multi-valued mapping 9:X->Y is admissible, 
then the diagram of natural projections for 9 has the form 

Proof. — If 9 = f , the assertion is evident; if 9 is acyclic and 
compact, our assertion is a consequence of (4.3) and the fact 
that p~l(x) is homeomorphic to 9(3?) for every x e X . 

( 6 . 3 ) D E F I N I T I O N . — . T w o admissible mappings 9 : X - > - Y 
and ф : Y -> Z are called composable provided either : (i) 9 is 
single-valued or (ii) ф is the inclusion; in either case, the compo-
site Ф09 : X-*-Z given by the assignment x-+<p(f(x)) is an 
admissible mapping from X to Z. 
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We note that, if one of the composites (?3<Pa)9i or fj(<p2®1) 
is defined, then so is the other and, in that case <p3 (©, <pt) = (<p, 9,) <p4. 
It is not, however, true that the existence of both <p3 <pa and <pa 

implies that of «PïÇa^i. 
Thus, € is equipped with a partially defined operation of 

composition of maps. Next we show that the homology functor 
H : € 51 can be extended over € to a function H : € 51 
satisfying certain quasi-functorial properties; these turn out to 
be sufficient for the proofs of our main results. 

( 6 . 4 ) D E F I N I T I O N . — Let ? : X - > Y be an admissible map. 
Using (6.2) we define the linear map 

as the composite 

<p¥ is said to be induced by <p; clearly, if f — f , then <p»= /*». 

( 6 . 5 ) T H E O R E M . — Let 9 : X - > Y and ф : Y - > Z . be two 

composable maps in €. Then we have = in 
other words, H sends commutaive triangles in <£ into commutative 
triangles in 51. 

Proof. — (i) The case <p = f : Assume first that 9 is 
single-valued and let <p = f . Then the product mapping 
fxid : XX Z -> YX Z maps r ^ c X x Z into Г.{,С YX Z and there-
fore determines the map f : IV 

Consider the following diagram : 

in which all unlabelled arrows represent the natural projections. 
From the definition of f it is clear that this diagram commutes; 
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consequently, the diagram 

also commutes and this shows that 
(ii) The case ф = i : Now we assume that ф = i is the inclu-

sion. In this case, we observe that the product map 

maps into and therefore determines the map 
Consider now the diagram 

in which anlabelled arrows stand for the natural projections. 
Clearly, this diagram commutes and, consequently, the diagram 

also commutes. This shows that The proof 
is completed. 

7 . H O M Ô T O P Y AND S E L E C T O R S . — Now we introduce for maps 
in <£ an appropriate notion of homotopy. 

( 7 . I ) D E F I N I T I O N . — Two admissible mappings Ç, ф : X -> Y  

are called homotopic (written <рп^ф) provided there exists an 
admissible mapping y : X x I ^ Y , where I = [o, i], such that 
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( 7 . 2 ) T H E O R E M . — Let 9, ф : X Y be two admissible 
mappings. Then 9~ф implies 9,= 4v 

Proof. — Let i0, : X X x I be two embedding» given by 
x-+(x, o) and x-±(x, 1) respectively, and y : X x I - * Y be 
an admissible homotopy joining 9 and ф. Then 

9 = an(* ф == X 0 ® 1 • 

From this, taking into account that (i0),— {i 1)», wc infer by 
theorem (6.5) that 9 , = ф, and thus the proof is completed. 

( 7 . 3 ) D E F I N I T I O N . — Let 9, Ф Г Х - ^ Y be two multi-valued 
mappings such that Г^сГ..,, i .e . , 9(ж)сф(я) for each s € X ; 
in this case, we say that 9 is a selector of ф and indicate this by 
writing 9Сф. 

( 7 . 4 ) T H E O R E M . — Let 9, Ф Г Х - ^ Y be two admissible 
mappings. Then 9СФ implies 

Proof. — Assume that 9 С ф and denote by i : ГФ Г,̂  the 
inclusion. Then it is easily seen that the diagram 

with natural projections is commutative; consequently, its image 
under H 

also commutes and this shows that 9 , = ф,. The proof is 
completed. 

8. L E F S C H E T Z M A P S . — An admissible mapping 9 : X - > X is 
said to be a Lefschetz map provided 9 , : H ( X ) H ( X ) is a 
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Leray endomorphism. Fur such 9 we define the Lefschetz 
number A (9) of 9 by putting A(9) = A(9,). 

Note that if X is a compactum of a finite type, then any admis-
sible 9 : X -> X is a Lefschetz map and Л (9) coincides with the 
ordinary Lefschetz number X (<p) of 9. 

The following two theorems are immediate consequences 
o f ( 7 . 2 ) a n d ( 7 . 4 ) . 

( 8 . 1 ) T H E O R E M . — Let 9, ф : X - > X be two homotopic admis-
sible maps. If 9 is a Lefschetz map, then so is ф and in this case 
Л ( 9 ) = Л(ф). 

(8.2) T H E O R E M . — Let 9, ф : X -> X be two admissible maps 
such that 9 С ф. If one of them is a Lefschetz map, then so is the 
other and, in that case, A (9) = А(ф). 

We turn now to the property of the Lefschetz maps which 
will be of importance in the proof of the main theorem. 

( 8 . 3 ) L E M M A . — Assume that we are given the following commu-
tative diagram of spaces and admissible multi-valued maps 

in which i : X' X" stands for the inclusion. Then 

(i) if one of the maps 9 or <\> is a Lefschetz map, then so is the 
other and, in that case, A (9) = А(ф); 

(ii) 9 has a fixed point if and only if ф does. 

Proof. — First we write the following diagram in the cate-
gory of graded vector spaces 
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Then, taking into account the assumptions, definition (6.3) and 
theorem (6.5), we conclude that this diagram commutes. Conse-
quently, by applying Lemma (2 . i ) , our first assertion follows. 
The second assertion is evident. 

9 . T H E M A I N T H E O R E M . — The proof of the main result of 
this note relies essentially on the following simple geometrical 
fact (cf. [3]) : 

( 9 . I ) L E M M A . — If U is open in a Banach space E and X C U 

is compact, then there exists a compact absolute neighbourhood 
retract К such that X c K c U . 

Proof. — Cover X by a finite number of closed balls W4, 
Wo, . . . , W , C U , and denote by Kt the convex closure of the 
compact set Xf lW; . By the Mazur Lemma [19], every K, is 
compact. From the inclusions K I C W I C U we conclude that X 

i 
is contained in the compact set K = ^ j K , c U . Now, taking 

i=i 
into account the general properties of the ANR spaces [2], we 
infer that К as the union of a finite number of compact convex 
sets is an absolute neighbourhood retract and thus our assertion 
follows. 

Before stating our main result in full generality, we shall consider 
first the following special case : 

T H E O R E M 1 . — Let U be open in a Banach space E and 9 : U U 

be an acyclic compact map. Then : (i) 9 is a Lefschetz map, 
and (ii) Л (9) о implies that 9 has a fixed point. 

Proof. — By assumption, the closure 9(U) = X is compact 
and contained in U. By applying to X the preceeding lemma, 
we find a compact absolute neighbourhood retract К such that 
9 ( U ) C K C U . Consequently, we have the commutative diagram 
as in Lemma (8.3), 
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in which i is the inclusion, and 9*, 9 stand for the obvious contrac-
tions of the шар 9. Since К is a compact ANR, Л(<рж) is defined; 
consequently, by Lemma (8.3), 9 is a Lefschetz map and 
Л Ы = л0р)- __ 

To prove (ii) assume that A (9) ^ o. Then we have also 
A (<pK) о and, hence, by the Eilenberg-Montgomcry theorem, 
there exists a point ж € К such that = <p(#). The 
proof is completed. 

Now we are able to state the principal result of this note : 

T H E O R E M 2 . — Let X be a topologically complete A N R and 
9 : X X be a compact acyclic multi-valued map. Then : (i) 9 is 
a Lefschetz map and (ii) A (<p) ^ о implies that 9 has a fixed point. 

Proof. — S?nce, by a theorem of Kuratowski [15], a metrizable 
space is embeddable into a Banach space, we may assume, by 
changing a metric if necessary, that X is a closed subset of a 
Banach space E. By assumption, there is a retraction r : U X 
of an open set U c E onto X. Denoting by i : X -> U the inclu-
sion we have the commutative diagram 

as in Lemma (8.3). By assumption, the multi-valued map 9 is 
compact; consequently, so is the map ф = 1090г. Theorem 1 
implies now that ф is a Lefschetz map. Applying Lemma (8.3), 
we conclude that 9 is also a Lefschetz map. Thus, the asser-
tion (i) is proved. 

To prove (ii), assume that A (9) 7^0. Applying Lemma (8.3) 
again, we have A(9) = Л(ф) yé. о. This, in view of Theorem 1, 
implies that ф has a fixed point. Applying now Lemma (8.3) 
for the last time, we conclude that 9 has a fixed point and the 
proof of the theorem is completed. 

1 0 . C O R O L L A R I E S . — We draw now a few immediate conse-
quences of the main theorem. 
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C O R O L L A R Y 1 . — Let X be a topologically complete ANR and 
assume that 9, ф : X -v X are two compact admissible maps which 
satisfy one of the following conditions : 

(i) 9 is a selector of ф; 
(ii) 9 and ф are homotopic. 

Then both 9 and ф are Lefschetz maps, Л (9) = Л(ф) and Л ( ф ) ^ о 
implies that 9 has a fixed point. 

C O R O L L A R Y 2 . — Let X be a topologically complete ANR and 
9 : X X be a compact admissible map. Assume further that 
one of the following conditions holds : 

(i) 9(X) is contained in an acyclic subset A of X; 

(ii) 9 is homotopic to an admissible constant map. 

Then A (9) = i and 9 has a fixed point. 

Proof. — To prove (i) write the diagram 

in which i : A -> X stands for the inclusion and 9*, 9 denote 
the contractions of 9. By Lemma (8.3) and Theorem 2, 
Л(9а) = Л(9). By assumption, H0(A) = Q and Hj(A) = о for 
<7^1; it follows that Л(9А) = i and thus our assertion follows 
from Theorem 2. 

To prove (ii) denote by ф an admissible constant map such 
that 9 ~ ф , and observe that ф admits a single-valued constant 
selector ф\ Since Л(ф') = i , we have, by Corollary 1, 

and, consequently, 9 has a fixed point. 

C O R O L L A R Y 3 . — Let X be a topologically complete and acy-
clic ANR or, in particular, any one of the following : 

(i) an acyclic Banach manifold; 
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(ii) a contractible open set in a Banach space; 
(iii) a topologically complete AR; 
(iv) a closed convex set in a Banach space. 

Then any compact admissible map <p : X X has a fixed point. 
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THE LERAY-SCHAUDER INDEX 
AND THE FIXED POINT THEORY FOR ARBITRARY AMU О 

H Y 

ANDRZEJ GRANAS 

1. Introduction 

The Leray-Schauder theory of the degree or the equivalent notion 
of the fixed point index ([18], [19)) has played a basic role in non-linear 
functional analysis. In this note, we intend to show that the suitably 
modified and supplemented theory of the Leray-Schauder index belongs 
to topology and occupies in fact the central place in topological fixed 
point theory. 

Let U be an open subset of a normed space E, and f : U * E be a 
compact map with a compact set of fixed points. To every such f , 
we assign an integer Ind (/"), I he Leray-Schauder index of f , which satisfies 
a number naturally expected properties; among those that supplement 
the classical ones the following two are of especial importance : (i) the 
Leray-Schauder index Ind (f) is topologically invariant, and (ii) when 
f : U -f U, it is equal to the (generalized) Lefschetz number \ (/") of f 
[and hence \ ( f ) -/-. 0 implies that f has a fixed point]. 

Now let X be a space which is r-dominated by an open set V in E 
[ = a metric ANR (-)], r : V v X, s : X V a pair of maps with rs = 1 
Let LT be open in X and f : U v X be a compact map with a compact 
set of fixed points. Then the map sfr : r 1 (U) —r V is also compact, 
and we define Ind ( f ) to be the Lcray-Schauder index of sfr. Properties 
of the Leray Schauder index imply that Ind (J) is the extension of the 

(') This research was supported by a grant from the National Research Council 
of Canada. 

(-) A N H = Absolute Neighbourhood Retract . 
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former over the larger category of spaces and thus we obtain the topolo-
gical fixed point index theory for compact maps of arbitrary ANR-s. 
This theory contains several basic known results in topology (for example, 
the well-known theory of the fixed-point index for compact ANR-s) and 
non-linear functional analysis (e. g. the Schauder lixed point theorem, 
the Birkholï-Kellogg theorem). It contains also the authors genera-
lization [11] of the Lefschetz fixed point theorem to compact maps of 
arbitrary ANR-s. 

The treatment of the fixed point index theory presented in this note 
has as its starting point the fixed point Index in R " due to A . DOLD [8] 
and depends also on the notion of the generalized trace as given by 
J . LERAY in [16]. A part of results presented here was announced 
earlier in some detail in [12]. 

The author whishes to thank R . KNILL for several helpful discussions. 

2. The Leray trace 

In what follows an essential use will be made of the notion of the 
generalized trace and the Lefschetz number as given by J. LERAY in [16]. 
We shall consider vector spaces only over the field of rational numbers Q. 

A graded vector space E = j Eq ; is of a finite type provided : (i) 
dim E., < oo for all q, and (ii) E,, = 0 for almost all q. If f = j f4 } is 
an endomorphism of such a space, then the Lefschetz number 1 ( f ) ol f 
is given by 

where tr stands for the ordinary trace function. 
Let /":£-> JE be an endomorphism of an arbitrary vector space E. 

Let us put 

where />' is the n-th iterate of f . Since f (N (/")) с N ( f ) , we have the 
induced endomorphism f : Ё -> Ё. Assume that dim Ё < со; in this 
case, we define the generalized trace Tr (/) of fhy putting Tr ( f ) — t r ( f ) . 

Now let f — j f,,\: E-> E be an endomorphism of degree zero of a 
graded vector space E = J E(/ ;. Call f the Leray endomorphism provided 
the graded space Ê = { È,, | if of a Unite type. For such an f , we define 
the (generalized) Lefschetz number V (f) by putting 
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2 7 4 A ' 4 LERAV-SCHAUDER INDEX 

The following important property of the Leray endomorphisms [18] 
is a consequence of the well-known formula tr (uv) = tr (vu) for the 
ordinary trace : 

( 2 . 1 ) L E M M A . — Assume that in the category of graded vector spaces 
the following diagram commutes 

Then, if f or f" is a Leray endomorphism, then so is the other and in that 
case V (f) = V (f). 

3. Lefschetz maps 

Let H be the singular homology functor (with the rational coefficients) 
from the category of topological spaces and continuous mappings to the 
category of graded vector spaces and linear maps of degree 0. Thus 
H (X) = : H, (X) I is a graded vector space, H,, (X) being the qr-dimen-
sional singular homology group of X. For a continuous mapping 
/": X -> У, H ( f ) is the induced linear map f+ = j fq j, where 
f , : H, (X) - H, (У). 

A continuous map f:X->X is called a Lefschetz map provided 
: H (X) H (X) is a Leray endomorphism. For such f , we defme 

the Lefschetz number V ( f ) of f by putting A (J) = A (/"„). 
Clearly, if f and g are homotopic, f ~ g, then A ( f ) = A (g). 

( 3 . 1 ) L E M M A . — Assume that in the category of topological spaces 
the following diagram commutes 

Then : 
(a) if one of the maps cp or ф IS a Lefschetz map, then so is the other and 

in that case Л (cp) = A (']/) ; 
(b) cp has a fixed point if and only if ф does. 

Proof. — The first part follows (by applying the homology functor 
to the above diagram) from lemma 2.1. The second part is obvious. 
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The following are the two instances in which the above lemma is used : 

(3.2) Example. — Let f : X -> X be a map such that f (X) с К с X. 
Then we have the commutative diagram 

with the obvious contractions ('). 

(3.3) Example. — Let r : Y-vX, s : X У be a pair of continuous 
mappings such that rs = \x. In this case, X is said to be r-dominated 
by У and r is said to be an r-map. In this situation, given a map 
cp : X X, we have the commutative diagram 

with ф = s <p r. 

4. Compact тара 

A continuous map f:X-> Y between topological spaces is called 
compact provided it maps X into a compact subset of Y. Let Л, : X -> У 
be a homotopy and Л : X x / ->• У be defined by h (x, /) = h, (x) for 
(x, 0 € X x / ; then Л, is said to be a compact homotopy provided the шар h 
is compact. Two compact maps f , g : X > У are compactly homotopic 
provided there is a compact homotopy h, : X У with h0 — f and 
Л, = g. If У is a linear space then f (resp. Л,) is said to be finite dimen-
sional provided it is compact and the image f (X) [resp. h (X)] is contained 
in a finite dimensional subspace of У. 

In what follows, we shall combine the Schauder approximation theo-
rem [20] and a result of P . ALEKSANDROV concerning the maps of compacta 
into the polyhedra. 

(4.1) THEOREM (cf. [11], [18]). — Let U be an open subset of a normed 
space E and let f: X-* U be a compact mapping. Then for every suffi-

(J) Let f : Х - V be a map sucb that f(A)cB, where AcX and Be Y. By 
ше contraction of f to the pair (Л , B), we understand a map f' : A -> В with the same 
v *!ues as f . A contracUon of f to the pair (Л, Y) is simply the restriction f\ A of f 
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cienlly small г > 0 there exists a finite polyhedron K.cU and a mapping 
ft:X-+ U, called an i-approximation of f , such that : 

(i) || f(x) - U (x) [| < г for all x € X ; 
(ii) A (X) с Kz ; 

(iii) the formula h, (x) = t f . (x) + (I—t)f (x) defines a compact 
homotopy h,:X-+U joining ft with f . 

Proof. — Given г > 0 (which we m a y assume to be sufficiently small) 
f ( X ) is contained in t he union of a finite number of open balls 
V (y„ s ) c U (i = 1, 2, . . k ) . Pu t t i ng for x € X , 

where 

we obtain the m a p f= sat isfying (i). Clearly, the values of ft are in 
a finite polyhedron KEcU wi th vertices y „ yt yk. P roper ty (iii) 
is evident . 

The proof of the following elementary fac t is left as an easy exercise 
for the reader (cf. [10]). 

(4.2) LEMMA. — Let V be open in a normed space E and assume that 
f : V > E is a compact map with no fixed points on the boundary dV 
of V. Then : 

(i) the number r> — i n f x 6 r t , || x — f (x) || is positive; 
(ii) if г < ri, then any e-approximation f-c of f is fixed point free on dV; 

(iii) given any two s-approximations fi and f" of f with t < (1/2) r), 
the formula 

defines a finite dimensional rrhomotopy (4) joining f and f" which has no 
fixed points on àV. 

5. The axioms for the fixed point index 

Let f : U -> X be a cont inuous m a p between topological spaces. Call 
f admissible provided U is an open subset of X and the fixed point set 
of f-

( ' ) A h o m o t o p y Л, : X - г У i n t o a m e t r i c s p a c e ( У, ç ) is sa id t o be a n e - h o m o t o p y 
p r o v i d e d f> (Л, (x ) , hr, (x)) < E f o r a l l xeX a n d t, / ' € ( 0 , 1). If f , g : X У c a n b e 
j o i n e d b y a n £ - h o m o t o p y , t h e n w e s a y t h a t f is E - h o m o t o p i c t o g a n d w r i t e f i g ; 
c l e a r l y f i g i m p l i e s , in p a r t i c u l a r , t h a t p (f (ж), g (x)) < £ fo r all x e X . 
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is compact. A homotopy Л, : U -» X will be called admissible provided 
the set x ( j ht J) = * ( h , ) is compact. 

DEFINITION (A. DOLD [8]). — Let (E be a category of topological 
spaces in which a class 4L = 51 (£) of admissible maps and homotopies 
is distinguished. By a fixed-point index on we shall understand a 
function Ind : 51 ->• Z which satisfies the following conditions : 

(I) Excision. — If L" с U and x, с U', then the restriction 

is in and Ind (f ) = Ind (/"). 

(II) Additivity. — Assume that U=v,Uh 1 ^ i k, f , = f\ U 
and the fixed point set x, — x7n 17,- are mutually disjoint, х, пх, = 0 
for i ẑf ;'. Then 

(III) Fixed points. — If Ind f ^ 0, then x/?zf 0, i.e., the map f has 
a fixed point. 

(TV) Homotopy. — Let h:U-±X, O ^ / ^ l , be an admissible 
homotopy in 51. Then Ind (Л,.) = Ind (Л,). 

(V) Multiplicativity. — If ft:Ut-+ X, and f t \ U t X , are in 51 
then so is the product map f , x f . : L', x -> X, x X, and 

Ind (f.xA) = Ind (/",). Ind (Д). 

(VI) Commutativity. — Let t / c X , U' с X ' be open and assume 
f : U ^ > - X ' , g : U ' - + X are maps in G. If one of the composites 

is in 51, then so is the other and, in that case, 

(VII) Normalization. — If U = X and f\X->X is in 51, then f is 
a Lefschetz map, and Ind (J) — \ (/). 

6. The fixed point index in Rn 

In the following definition H is the singular homology over the 
integers Z. Let us fix for each n an orientation 1 €# n(S") of the 
H-th sphere S" = | z e R ^ ' ; J|x|| = l ) and accordingly identify 
/ , (Sn) « Z with the integers Z. 
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DEFINITION (cf. A . DOLD [8]). — Let f : U -> Rn be an admissible map. 
Denote by К — х,- the fixed point set for f and by 

the map given by (i — f)(x) = x — f (x). The fixed point index Ind f 
of the map f is defined to be the image of 1 under the composite map 

The following theorem established by A . DOLD [8] represents a moder-
nized version of the classical result due essentially to H . HOPF. 

(6.1) (The fixed point index in R"). Lei d be the category of open 
subsets of euclidean spaces and 91 ((£) the class of all continuous admissible 
maps in (£. Then the integer valued function f-> Ind f defined above 
satisfies the properties (I)-(VII). In (VII), it is assumed that f is compact. 

We note that the excision and the commutativity implies the following 
property of the index : 

(VIII) Contraction. — Let U be open in and f : U R"+< be an 
admissible map such that f(U)cR". Denote by f' : U' -> R" the 
contraction of f , where U' = Ur\Rn. Then Ind ( f ) =.Ind (/")• 

7. The Leray-Schauder index 

Let U be an open subset of a normed space E and 'et f : U E be 
an admissible compact map. Take an open set Vc U such that àVcU 
and x, с V. Then the number n = (1/2) inf [| x— f (x) [| for xe^V is 
positive. 

Let g = f\ V : V ->E. From the definition of r, and lemma (4.2) 
it follows that : 

(i) if s < rt, then every s-approximation gz : V -> £' of g is admissible; 
(ii) given two ^-approximations g'lt g\ : V -> E of g with £ < v there 

exists an admissible finite dimensional compact homotopy Л, : V -»• E 
such that Л« = g', h, = g". 

Let f: U E be an admissible compact map and gz : V -> E be an 
^approximation of g = f \ V as above. Denote by E" a finite dimensional 
subspace of E which contains g, (V) and by g1, : En n V £» the 
evident contraction of дг. 

Let us put Ind ( f , V) = Ind (g':). It follows from (i) and (ii) and the 
homotopy and contraction properties of the index in R", that Ind (f, V) 
does not depend on the choice gE. Moreover, given V„ V, with the 
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same properties as V, we have 

(7.1.1) Ind ( f , V.) = Ind ( f , V,). 

For the proof of (7.1.1) we distinguish two cases : 
(i) Vi с V2 ; 

(ii) V, and Уг are arbitrary. 

In the first case, our assertion follows by the excision of the index in R" 
and the second case reduces, évidently, to the first. 

D E F I N I T I O N . — For an admissible compact map f: U - > X, we define 
the Leray-Schauder index Ind (/) of f by putting 

Ind (J) = Ind (/, V) = Ind (g\). 

It follows from (7.1.1) that Ind (/) is well defined. 
We may state now the first main result of this note : 

(7.1) THEOKEM. — Lei (E be the category of open subsets in linear 
normed spaces and lei 31 be the class of all admissible compact maps in (£. 
Assume thai all admissible homotopies are compact. Then, defined on 31, 
the Leray-Schauder index f Ind ( f ) satisfies the properties (I)-(VII). 
In (VI), it is assumed that one of the maps f or g is compact. 

Proof. — Using the approximation theorem (4.1), lemma (4.2), 
properties (I)-(V) follow in a straightforward manner from the corres-
ponding properties of the index in R". The proof of property (VI), 
which is somewhat more involved, will be given separately in section 8. 
It remains to establish the normalization property. 

Proof of property (VII). — Given a compact map f : U -> U let г > 0 
be smaller than dist (x,, OU), f,:U-*U be an e-approximation of f 
such that its values are in a finite dimensional subspace E" of E and let 
Un = U Г\Е". Clearly every such f , is admissible and f ^ f}. 

Consider the following commutative diagram in which all the arrows 
represent either the obvious inclusions or the contractions of the map Д : 

B\ the definition Ind (f) = Ind (/V). By lemma (3.1) [Example (3.2)], 
ve have V (/"') — V ( f : ) and, consequently, in view of theorem (7.1) 
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(property VII), Ind (J) = V (Д). Since f is homotopic to fit this implies 
that Ind (/") = A ( f ) and the proof is completed. 

We remark that theorem (7.1) (the commutativity) contains the 
following important property of the Leray-Schauder index : 

( I X ) Topological Invariance. — L e t f : U ^ r E be an admissible 
compact map, and h : E -> E' be a homeomorphism. Then 
Л о f о Л-1 : Л (U) -> Е' is also an admissible compact map and 

8. Proof of the commutat iv i ty 

In the proof of c o m m u t a t i v i t y , we shall use the fac t t ha t the Leray-
Schauder index satisfies properties (I), (IV) (V) and (VII). 

Let U с E, U'с E' be open in normed spaces E and E', respectively, 
f :U'->E, g : U ^ E' be continuous and consider the composites 

We note that the maps f : * ( g f ) x (fg) and g : x (Jg) x (gf) are 
inverse to each other and hence the fixed point sets / {gf) and x (fg) 
are homeomorphic; thus, if one of them is compact, then so is the other. 
In the proof of commutativity, we shall distinguish two cases : 

Special case (both f and g are compact) : In this case, we proceed 
essentially as in DOLD [8]. 

We let cp : U' x U E' x E be given by 

(8.1.1) 

And we define the homotopies : 

by the following formulas : 
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We have 

By assumption, f and g are compact; this implies that <p and all the 
above homotopies are compact; since the fixed point sets x9 and xA.y 
are homeomorphic under x t-> (x, f (x)), (x, g) и> x, cp is admissible. 

Moreover, simple computation shows that the fixed point sets 

coincide and, therefore, the homotopies h, and h', are admissible. By 
straightforward argument, one shows that H, and H, are also admissible. 

Therefore, by homotopy, we have, in view of (8.1.3), 

On the other hand, since 

we get by excision and homotopy, 

Both Я, and H\ are product maps 

By multiplicativity, in view of (8.1.5) and (8.1.6), 

and hence by normalization [since V (Cte) = 1] we get Ind (gf ) = Ind (fg). 

General case : We assume now that f : V E is compact and g : U E' 
continuous. To show that 

we assume that gf (and hence fg) is admissible. 
Take a smaller open set О с U such that : 

(i) О isbounded; 
(ii) à O c U ; 

(ш) * / , С О, 
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and put 0' = f~1 (0). Clearly x (gf) с О', and we may assume that 
00'с U' ( ). 

Now both gf : f~l (О) r E' and fg : g(0') -> £ are tompact. By 
excision, it is sufficient to show that 

(8.1.7) 

Let us put 

(8.1.8) 

By lemma 4.2, the number YJ is positive. 
Let К be a compact set containing f(U')cE. Consider the map 

g : U E' at points of a compact set K n û c U. Continuity of g implies 
that for each yeKnO there is a 8,- > 0 such that : 

(i) the open ball V (y, <5V) with center у and radius S} is contained 
in U ; 

From the compactness of К n 0 it follows that a finite number of balls 
covers 

We let 

(8.1.9) 

Clearly, from (8.1.9), it follows that 

(8.1.10) 

Now let ft : U' -> E be an г-approximation of f: U' -> E and h,:U'-+E 
be given by h, (±) = t f (x) + (1 — t) fz (x) clearly; h, is an s - h o m o t o p y 
joining compactly f anf fr. Since on the values of 
are in a compact subset of V e t / , we may consider on the compo-

(') In view of the excision we may suppose (by taking slightly smaller open sets) 
that f and g are deiined In fact on i)U and OU' respectively. 
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sition ght. It follows clearly from (8.1.10) that gf, is an rrhomotopy 
and therefore by lemma 4.2 (in view of the definition of r,) it has no fixed 
points on 0f~' (0); thus 

is an admissible homotopy joining gfi and gf on f 1 (0). 
Consequently, by homotopy, we have 

Next, since ft is finite dimensional, we may write the 
following contractions 

(8.1.12) 

of Д and g respectively. we have and, therefore 

(8.1.13) 

Further, since and 0 is bounded, we conclude that 
is compact. Thus, both and being compact, we may apply the special 
case of commutativity. We have 

(8.1.14) 

and finally, since we obtain from (8.1.11), (8.1.13) 
and (8.1.14), 

(8.1.15) 

On the other hand, consider the composition on 
Clearly is a compact i-homotopy joining fg and since 
it is an r,-homotopy and, hence, by lemma 4.2, it is fixed point, free 
on à(f 1 (0'). In other words, h, g : g~* (0') -> E is an admissible 
compact homotopy joining f-. ° g and fg on <r' (0'), and consequently 
(by homotopy) we have 

(8.1.16) 

Since the values of fL о g are in E"r\0, we have, by the definition 
of the Leray-Schauder index, 
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and hence, because we get 

(8.1.18) 

By comparing formulas ( 8 . 1 . 1 8 ) and ( 8 . 1 . 1 5 ) , we obtain the desired 
conclusion (8.1.7), and thus, the proof of commutativity is completed. 

9. Compact maps o! the ANR-spaces 

We propose now as the first consequence of the Leray-Schauder index 
a general fixed point theorem which on the one hand contains the classical 
Lefschetz theorem for compact ANR-s, and on the other hand contains 
various fixed point theorems of the non-linear functional analysis. 

We denote by ANR (resp. AR) the class of metrizable absolute neigh-
bourhood retracts (resp. absolute retracts). We recall (cf. [3]) that a 
metrizable space Y is an ANR (resp. AR) provided for any metrizable 
pair (X, A), with A closed in X and any continuous f0 : A -> У, there 
exists an extension f : U Y of f„ over a neighbourhood U of A in X 
(resp. an extension f : X Y of fu over X). 

(9.1) Example. — The following are some typical and important 
properties of the ANR spaces : 

(i) If X is r-dominated by Y, then Y e ANR implies X € ANR; 
(ii) If U is open in X, and X e ANR, then 17€ ANR; 
(iii) If X is convex subset of a normed (or locally convex metrizable) 

linear space, then X E A R ( J . D U G U N D J I [9]). 
(iv) A metrizable space which is locally ANR is an ANR; in particular 

manifolds, Banach manifolds are ANR-s. 
In what follows, we shall use essentially the following fact from general 

topology : 

( 9 . 2 ) ( A R E N S - E E L L S [1]) : Every metrizable space can be embedded 
as a closed subset of a linear normed space. 

The above Arens-Eells embedding theorem permits to give the following 
simple characterization of the ANR-s : 

(9.3) In order that Y e ANR (resp. YeAR, it is necessary and suffi-
cient that Y be r-dominated by an open set of a normed space (resp. by 
a normed space). 

Proof. — Let Ye ANR. By theorem (9.2), there exists an embedding 
b : Y->- E of Y into a normed space E such that b (Y) is closed in E. 
Take a retraction r : U Ъ (Y) of an open set Uob(Y). Then 
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ЕМ г : U >Y is clearly an r-map. The converse follows from the general 
properties of the ANR-s [cf. Example (9.1 )]. The proof of the second 
part is similar. 

( 9 . 4 ) THEOREM (cf. [12]). — Let X be an A N R and f : X ^ X be a 
compact map. Assume further that U ii open in a normed space E and 
s :X-+U,r : U X be an arbitrary pair of maps with rs = 1A. Then 
f is a Lefschetz map and the Lefschetz number of f is equal to the Leray-
Schauder index of the map sfr, V ( f ) = Ind (sfr) = Л (sfr). 

Proof. — Theorem (9.4) clearly follows from theorem (7.1) and 
lemma ( 3 . 1 ) [Example (3 .3 ) ] . 

As a consequence of theorems (9.4), (7.1), we get the following gene-
ralization of the Lefschetz fixed point theorem, established by the 
author in [11]. 

( 9 . 5 ) THEOREM. — Let X be an A N R and f : X X be a compact 
map. Then : 

(i) f is a Lefschetz map; 
(ii) Л ( f ) 0 implies that f has a fixed point. 

As an illustration, we list a number of well-known consequences of 
theorem (9.5) : 

COROLLARY 1 (Lefschetz fixed point theorem for compact ANR-s). — Let 
X be a compact ANR and f : X — X be continuous. Then X (/) 0 
implies that f has a fixed point. 

COROLLARY 2. — Let X be an acyclic A N R or, in particular, an A R . 
Then any compact map f : X -* X has a fixed point. 

COROLLARY 3 (Schauder fixed point theorem [20]). — Let X be a convex 
(not necessarily closed) subset of a normed (or locally convex metrizable) 
linear space. Then any compact f : X -.* X has a fixed point. 

Proof. — X is an AR [cf. Example (9.1)] and hence the assertion 
follows from corollary 3. 

COROLLARY 4 (Birkhoff-Kellog theorem |2]). — Let S = j xeE; || x || = 1 ) 
be the unit sphere in an infinite dimensional normed space E and f : S -> E 
be a compact map satisfying 

( 9 . 5 . 1 ) 

Then there exists an invariant direction for f , i. е., for some and 
we have 
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Proof. — Let us put for each xeS, 

Then (9.5.1) implies that the map cp : SH>- S is compact. Since S is 
clearly an acyclic ANR (and even an AR, cf. [9]), y has a fixed point, i. е., 

for some i„ and the proof of our assertion is competed. 

COROLLARY 5 (BROWDER-EELLS [6]). — Lei X be a Banach (or more 
generally a Fréchel) manifold and f : X X a compact map. Then A ( [ ) 
is defined, and \ ( f ) ^ 0 implies that f has a fixed point. 

10. Fixed point index theory for arbitrary ANR-s 

Now we turn to the main application of the Leray-Schauder index 
by establishing the existence of the fixed point index theory for compact 
maps of arbitrary ANR-s. 

DEFINITION (cf. [7] and [8]). — Let X be an A N R , and f : U X 
an admissible compact map. To define Ind (f), take an open set V 
in a normed space E which r-dominates X. Let s : X -> V, r : V X 
be a pair of maps with rs = 1. Since the composite map 

is compact and admissible [because x ( f ) = x (sfr)] its Leray-Schauder 
index is defined by theorem (7.1), and we define 

(10.1.1) 

Let V с E' be another open set in a normed space E', which r-dominates 
X, with s' : X - * V', r' : V X, r's' = 1. Then, since the second of 
the maps sr' : V V, s' fr : r^1 (U) V is compact we may apply 
the commutativity property for the Leray-Schauder index and hence 

we get 

which proves that our definition is independent of the choices involved. 
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N o w we may state our second main result : 

(10 .1 ) THEOREM. — Let & be a category of metric ANR-s arid ÎI be 
a class of all admissible compact maps in (£. Assume further that all 
admissible homotopies are compact. Then the fixed point index function 
f — Ind (J) defined by formula ( 1 0 . 1 . 1 ) satisfies all the properties (I)-(VII). 
In (VI), it is assumed that one of the maps f or g is compact, which implies 
that the fixed point index is a topological invariant. 

Proof. — The normalization property was already established in the 
previous section. All the remaining properties follow easily from the 
corresponding properties of the Leray-Schauder index. Let us prove for 
instance property (VI). The proofs of other properties, being similar, 
are omitted. 

Proof of property (VI). — Let X, X' e ANR, f : U' X, g : U -r X' be 
admissible maps and assume that f is compact. Let V (resp. V') be 
an open set in a normed space E (resp. E') which /--dominates X (resp. X'); 
denote by X -> V '-> X, X' V '•'->• X' two pairs of maps satisfying 
rs = 1 v, r's' = 1 v . 

Consider the following maps : 

and note that the first of them is compact. It follows by commutativity 
of the Leray-Schauder index (applied to thé above maps) that 

and hence, in view of 

we get 

From this (in view of the definition of the fixed point index), we get 

and the proof is completed. 
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11. Remarks on the non-metrizable case 

First, we note that the approximation theorem (4.1) extends (with 
appropriate modifications) to the case when U is open in locally convex 
topological space E. 

This fact permits to extend the Leray-Schauder index to the case of 
locally convex spaces and to state theorem (7.1) in the following more 
general form : 

( 1 1 . 1 ) THEOREM. — Let (E be the category of open subsets of locally 
convcx topological spaces. Let 91 = 91 ((E) be the class of all admissible 
compact maps and assume that all admissible homotopies are compact. 
Then, there exists a functions Ind : 9 1 ( t h e Leray-Schauder index) 
which satisfies the properties (I)-(VII). In (VI), it is assumed that one 
of the maps f or g is compact. 

Now, by proceeding as in the metrizable case, one gets from 
theorem (11.1) the following generalization of theorem (10.1) : 

( 1 1 . 2 ) THEOREM. — Let (E be the category of spaces which are r-domi-
nated by open sets in linear locally convex topological spaces. Let 91 = 91 ((E) 
be the class of all admissible compact maps and assume that all admissible 
homotopies are compact. Then, there is on 91 an integer valued function 
f -> Ind (Z), which satisfies all the properties (I)-(VII). In (VI), it is 
assumed that one of the maps f or g is compact; in particular, Ind (J) is 
topologically invariant. 

Let X be a compact ANR for normal spaces and Л : X E' be an 
embedding of X into a locally convex space E'. It can be shown that 
the linear span E of the compact set h (X) in E' is normal. It follows 
that X is r-dominated by a set open in a locally convex space. We obtain, 
therefore, as a special case of theorem (11.2) the following : 

COROLLARY (Fixed point index for compact non-metrizable ANR-s). — 
Let (E be the category of compact ANR-s for normal spaces and 91 be the 
class of all continuous admissible maps in (E. Then there is on 91 the fixed 
point index which satisfies all the properties (I)-(VII). 

We remark that the fixed point index for compact (non metrizable) 
ANR-s was established previously by combinatorial means (and in a 
different form) by several authors (cf. J . LERAY [15], A. DELEANU [7], 
D . BOURGIN [4], F . BROWDER [5]). 
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12. Other generalizations 

In the definition of the fixed point index of f , only of importance is 
the behaviour of f in the neighbourhood of the fixed point set / /-. This 
general remark indicates how to enlarge the class of maps for which 
the fixed point index is defined. 

DEFINITION. — Let X be an A N R and f : U -> X an admissible map 
satisfying the following condition : 

(12.1.1) for some neighbourhood V of the fixed point set zr, the 
restriction f | V is compact. 

For such f we define the fixed point index of f by putting 

(12.1.2) Ind (/•) = Ind (f\ V). 

[Example : every admissible map which is locally compact satisfies 
condition (12.1.1).] 

With the above definition, we have the following generalization of 
theorem (10.1) : 

(12.1) THEOREM. — Let (£ be the category of metric A N R - s and 31 
a class of all admissible maps satisfying condition (12.1.1). Assume 
further that, given an admissible homotopy h, there is a neighbourhood 
W of a (: h,,;) such that h, is compact on W. Then the function f Ind ( f ) 
defined by (12.1.2) satisfies properties (I)-(VII). In (VI), it is assumed 
that f is compact in some neighbourhood of / (gf ) and in (VII) it is assumed 
that f is compact. 

13. The uniqueness of the fixed point index 

Let (E„ be the category of open sets in finite dimensional normed space 
and 3I„ the class of admissible maps. It can be proved that the Dold 
index Ind : 3I„ ->- Z, defined in section 6, is determined uniquely by 
properties (I)-(VII). We indicate now how the uniqueness of Dold's 
index implies that of the other fixed point indices discussed in this 
paper. 

Let (E, (resp. (£j) be the category of open subsets of normed (resp. ANR) 
spaces, 31, (resp. 3I4) the class of admissible compact maps and assume 
that all admissible homotopies are compact. Let ind : % Z be an 
integer valued function satisfying properties (I)-(VII). The excision and 
commutativity imply that ind satisfies also the contraction property 
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( s im i l a r t o t h a t in s e c t i o n 6) . Since e v e r y c o m p a c t m a p is c o m p a c t l y 
h o m o t o p i c t o a f in i t e d i m e n s i o n a l m a p , i t fo l lows b y h o m o t o p y , exc i s ion 
a n d c o n t r a c t i o n , t h a t t h e f u n c t i o n ind is c o m p l e t e l y d e t e r m i n e d b y i t s 
v a l u e s on m a p s in 9I„. C o n s e q u e n t l y , in v i e w of t h e u n i q u e n e s s of 
D o l d ' s i n d e x on ind m u s t co inc ide w i t h t h e L e r a y - S c h a u d e r i n d e x I n d , 

N e x t , l e t ind : Я , Z be d e f i n e d on a n d a s s u m e t h a t i t s a t i s f i e s 
p r o p e r t i e s ( I ) - ( V I I ) . L e t f : U X b e a m a p in 21г, V be a n o p e n s e t 
in a s n o r m e d s p a c e w h i c h / - -domina te s X w i t h s : X - > V, r : V X , 
rs = 1. B y c o m m u t a t i v i t y a p p l i e d t o m a p s 

w e g e t 

T h u s if t h e f u n c t i o n ind s a t i s f i e s c o m m u t a t i v i t y , t h e n i t is c o m p l e t e l y 
d e t e r m i n e d b y i t s v a l u e s on m a p s in 31 L C o n s e q u e n t l y , if i t s a t i s f i e s 
a l so p r o p e r t i e s ( I ) - ( V I ) , i t m u s t neces sa r i l y b e t h e u n i q u e e x t e n s i o n 
of t h e L e r a y S c h a u d e r i n d e x f r o m o v e r T h u s w e g e t t h e u n i q u e -
nes s of t h e i n d e x c o n s t r u c t e d in s ec t ion 7 . 
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THE LEFSCHETZ FIXED POINT THEOREM 
FOR SOME CLASSES OF NON-METRIZARLE SPACES ( ' ) 

BY GILLES F O U R N I E R AXI» ANDRZEJ G R A N A S 

Let X be a topological HausdorfT space. Call X a Lefschetz space 
provided for any continuous compact map f : X X the generalized 
Lefschetz number Л ( f ) is defined and Л ( f ) ^ 0 implies that f has a fixed 
point. It is known [5] that any ANR (metric) is a Lefschetz space. In 
this note, being concerned with the extension of the above result to the 
non-metrizable case, we show that the following types of spaces are Lefs-
chetz spaces : 

(i) open subsets in admissible linear topological spaces (in the sense 
of Klee [10]); 

(ii) all NES (compact) spaces (in the sense of Hanner [7]) and, in 
particular, all ANR (normal) spaces; 

(iii) approchable NES (metric) spaces. 

We remark tha t the problem of whether an arbitrary NES (metric) is 
a Lefschetz space remains open. The authors thank J . Dugundji for 
several helpful discussions. 

1. P R E L I M I N A R I E S . — In all that follows, by space we shall understand 
a Hausdorff topological space and by map a continuous transformation. 
For a space Y c X we let Covx (Y) denote the directed set of all open 
coverings of Y in X. 

Let Y be a space and a€iCov (Y). Two maps f , g : X ->• Y of a space X 
into Y are said to be a-close provided f (x) and g (x) belong to a 
common U x € a for each x € X ; a homotopy Л, : X Y (0 ^ t ^ 1) 
is said to be an a-homotopy if for each x € X the values of ht (x) belong to 
a common U x G a for all tE[0, 1]. Two maps f , g : X -»• Y are a-homotopic 

( ') This research was suppor ted by a g ran t f rom t h e Nat iona l Research Council 
of Canada. 
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(written f ^ g ) if there is an a-homotopy ht : X Y joining f and g. 
Clearly f g implies tha t f and g are a-close. 

Let f : X -> X be а map and aGCov (X). A point 1 6 X is a fixed 
point for f if f (x) = x ; x is said to be an a.-fixed point for f provided x and 
f (x) belong to a common U^Ga. Clearly, if a, pGCov (X) and a refines (3, 
then every a-fixed point for f is also a (3-fixed point for f . 

(1.1) Let f : X X be a map. The following statements are equivalent : 
(i) f has a. fixed point; 

(ii) there is а со final family of coverings Û? = { a } С Covx (Y) of Y = f (X) 
in X such that f has an v.-fixed point for every a е й ) . 

Proof. — (i) => (ii) is evident. To show (ii) => (i), assume that f has 
no fixed points. Then for each i/G Y there are neighbourhoods V r and 
U/(Г) in X of у and f(y) respectively such tha t /^Vj ) С U/ ( r ) and V r n U / ( r ) = 0. 
Put t ing p = { V У } we get a covering of Y in X such tha t f has no (3-fixed 
point. If a is a member of d? tha t refines (3 then f has no a-fixed point 
and thus we obtain a contradiction with (ii). 

(1.2) Let f:X X be a map, Y = f (X) and let (П = { a } С Covx (Y) 
be а со final family of coverings of Y in X. Assume that for each 
there is a map fa : X ->• X satisfying the following properties : 

(i) f and fa are ac-close', 

(ii) f a has a fixed point. 

Then f has a fixed point. 
Proof. — Clearly, because of (i), a fixed point for f a is an a-fixed point 

for f . Hence (1.2) follows from (1.1). 

2. T H E LERAY TRACE. — In our considerations an essential use will 
be made of the notion of the generalized trace and the Lefschetz number 
as given by J . Leray in [11]. We shall consider vector spaces over a fixed 
field K. 

Let f : E -> E be an endomorphism of an arbitrary vector space E. 
Let us put N ( f ) = { x G E : f™ (x) = 0 for some n j (fin) is the n-th iterate 

E 
of f ) and E = щ ^ у Since f (N (/)) c N ( f ) , we have the induced endo-
morphism E E. Call f admissible provided dim E < oo ; for such f 
we define the generalized trace Tr ( f ) of f by putt ing Tr ( f ) — t r ( f ) , where t r 
stands for the ordinary trace. 

( 2 . 1 ) DEFINITION. — Let f=={fq\ : E E be an endomorphism of 
degree zero of a graded vector space E = { E(/ }. Call f the Leray endo-
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morphism if (i) all f,t are admissible; (ii) almost all Ey are trivial. For 
such f we define the (generalized) Lefschetz number. A ( f ) by put t ing 

The following important property of the Leray endomorphisms is 
a consequence of the well-known formula tr (uv) = tr (vu) for the ordi-
nary trace : 

(2.2) Assume that in the category of graded vector spaces the following 
diagram commutes 

Then, if f' or f" is a Leray endomorphism, then so is the other and in that 
case A ( f ) = A (f"). 

3. LEFSCHETZ MAPS. — Let H be the singular homology functor (with 
coefficients in the field K) from the category of topological spaces and 
continuous maps to the category of graded vector spaces and linear maps 
of degree 0. Thus H (X) = { H,, (X) j is a graded vector space, H? (X) 
being the g-dimensional singular homology group of X. For a continuous 
map f : X -* Y, H ( f ) is the induced linear map f* — j f,, !, where 
f , : Я , (X) H„ (Y). 

( 3 . 1 ) D E F I N I T I O N . — A continuous f : X X is called A Lefschetz 
map provided /"* : H (X) -»- H (X) is a Leray endomorphism. For such 
f we define the Lefschetz number A ( f ) of f by putting A ( f ) = A (f*). 
Clearly, if f and g are homotopic, g, then A ( f ) = A (g). 

(3.2) LEMMA. — Assume that in the category of topological spaces the 
following diagram commutes : 

Then (i) if one of the maps f or g is a Lefschetz map, then so is the other and 
in that case A (f ) = A (g), (ii) f has a fixed point if and only if g does. 

http://rcin.org.pl



G. FOURNIER A N D A. GRANAS 2 99 

Proof. — The first part follows (by applying the homology functor 
to the above diagram) from (2.2). The second part is obvious. 

The following are typical instances in which the above lemma is used. 

(3.3) EXAMPLE. — Let f : X ->• X be a map such tha t f (X)C К С X. 
Then we have the commutative diagram : 

with the obvious contractions (3). 

(3.4) EXAMPLE. — Let r : Y X, s : X Y be a pair of maps such 
tha t rs = lx ; X is said to be r-dominated by Y and r is said to be an r-map. 
In this situation, given a map f : X -> X, we have the commutative 
diagram 

with g = sfr. 

(3.5) EXAMPLE. — Let X and Y be two spaces and a € C o v ( X ) . 
We say tha t X is a-dominated by Y provided there are maps sa : X Y, 
r a : Y X such tha t гя sa r^j l x . In this case, given an arbitrary f : X X, 
we have the commutative diagram 

with 

(г) Let /" : X Y be a map such t h a t f ( A ) c B , where A c X and B c Y . By the 
contraction of f to the pair (A, B), we unders tand a map f : A -> A with the same values 
as f. A contraction of f to the pair (A, Y) is simply the. restriction f | A of f to A. 
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4 . LEFSCHETZ SPACES. 

NOTATION. — Given a class of spaces 'Î we denote by (R (%) and CO (#) 
two classes of spaces defined as follows : 

X € <R (-?) <=* there is a space Y e ï T which r-dominates X ; 
X € c ? ('"?) for each a e C o v (X) there is a space Y a € # which a-domi-

nates X. 

A map f : X Y between tWo spaces is said to be compact provided f (X) 
is contained in a compact subset of Y. 

( 4 . 1 ) DEFINITION. — A space X is said to be a Lefschetz space provided 
any compact map f : X -> X is a Lefschetz map and A ( f ) yé 0 implies 
tha t f has a fixed point. We denote by i" the class of all Lefschetz spaces. 

Some general properties of Lefschetz spaces are summarized in the 
following two theorems (''). 

(4.2) Let be a class of Lefschetz spaces. Then (i) and 
(ii) ( 'J)C C. 

Proçf. — Clearly (ii) => (i). To prove (ii) consider the commutative 
diagram in Example (3.5) with X ç û ? (Я) and Y e 1 ? . The compactness 
of f : X -> X implies tha t of s a / i r a ; since Y e A" and 

it follows, by Lemma (3.2), tha t f is a Lefschetz map and 

Assume Л (/") ^ 0; then (2) and Y e . С imply that sa fra has a fixed 
point ; hence [by the second part of Lemma (3.2)] /ira sa also has a fixed 
point. Now because [in view of (1)] f is a-close to /r a sa, it follows tha t f 
has an a-fixed point. This being true for each x e C o v ( X ) , we conclude 
by (1.1) that f (x) = x for some я € Х . The proof is completed. 

(4.3) Let X be a Lefschetz space and f : X X be a compact map such 
that for some m the iterate f'" sends X into an acyclic subset of X. Then 
A ( f ) = 1 and hence f has a fixed point. 

For a proof see [6]. 

(:i) The second pa r t of (4 .2) is due to J . D u g u n d j i (unpublished) a n d (in sl ightly less 
general form) to Jaworowski-Powers [8J; the p ro to type of theorem (4 .3) was first 
established by Bourgin [1]. 
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5. F I X E D POINTS IN ADMISSIBLE LINEAR SPACES. — Let U be a neigh-
bourhood of the origin in a linear topological space E. Then U is shrin-
kable provided for any ж€с1 (U) and 0 < Л < 1 the point 1 x lies in U. 
It is known (cf. Klee [9]) that the shrinkable neighbourhoods form a base 
of E at 0. It follows that given an arbitrary neighbourhood W of 0 there 
is a shrinkable neighbourhood Y of 0 such that V - f V c W and such 
that any interval tx + (1 — t) y (0 ^ t ^ 1) with x and y in V is entirely 
contained in W. From this, because the topological structure of E is 
determined by a base of the neighbourhoods of the origin, we deduce 
the following : 

(5.1) LE MM A. — Let U be an open subset of a linear topological space E. 
Then for each a e C o v ( U ) there exists a refinement (3€Cov(U) such that 
any two $-close maps of any space X into U are stationarily a-homotopic ("). 

Remark. — Proposition (5.1) implies that U is locally equiconnected, 
i. e. the diagonal A c U x U is a strong neighbourhood deformation retract 
in U x U (cf. Dugundji [4]). 

(5.2) DE FINITION. — Let E be a linear topological space. We say 
(following Klee [9]) tha t E is admissible provided for any compact K c E 
and any agCov E (K) there is a map ita : К ->• E such that (i) na (K) is 
contained in a finite dimensional subspace of E and (ii) the inclusion 
i : К ->- E and na : К E are a-close. 

(5.3) EXAMPLES. — (i) Every locally convex space is admissible [14]; 
(ii) the linear metric space S of measurable functions on [0, 1] is admissible 
[15]; (iii) the linear metric spaces h p (0, 1) (0 < p < 1) are admissible [15]. 

We may state now the first result of this note : 

( 5 . 4 ) T H E OREM. — Let E be an admissible linear topological space. 
Then every open subset of E is a Lefschetz space. 

Proof. — Let V c E be open and f : Y -> Y be a compact map. Denote 
by К a compact subset of V which contains f (V). Let a? = { a } be а 
cofinal family of coverings in Covv (K) such that each member of aetî> 
is of the form y -f U, where yÇ. К and U is a shrinkable neighbourhood 
of the origin in E. Let a € t O ; take тса : К -> E satisfying na ( K ) c E " c E 
for some n and such that i : К ->• E and na : К -> E are a-close. Define 

(4) A h o m o t o p y hi : X ->•' Y joining f and д is stationary provided h, (x) is cons t an t 
(O^t^î) whenever f (x) = д (x). 
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a compact map fa : V -*• V by put t ing Clearly, we have 
the commutat ive diagram 

with the obvious compact contractions. Since V n E " is a Lefschetz 
space (cf. [5]) it followrs by Lemma (3.2) t ha t f* is a Lefschetz map and 
Л (J^ — A ( f a ) . In view of Lemma (5.1) we may assume without loss 
of generality t h a t f is homotopic to fa for each a ; consequently f is a Lefs-
chetz map and Л ( f ) = A (fa). Now, assuming A ( f ) ^ 0, we have for 
each a, A ( f a ) ^ 0, and hence, because V n E " is a Lefschetz space, we 
get for each a GcD a fixed point for fa. Applying (1.2) we get a fixed 
point foi; f and the proof is completed. 

(5.5) COROLLARY. — The following types of spaces have the fixed point 
property within the class of all compact maps : 

(i) acyclic open sets in admissible spaces; 
(ii) all admissible linear topological spaces; 

(iii) closed shrinkable neighbourhoods in admissible spaces. 

Proof. — (i) and (ii) are evident, (iii) follows from (ii) because a closed 
shrinkable neighbourhood is a retract of the containing space (cf. Klee[9]). 

6. NEIGHBOURHOOD EXTENSION SPACES. — In this section we recall 
the definition and some basic properties of the NES (Q) spaces. In all 
t h a t follows Q (or Q') will denote any of the classes of spaces appearing 
in the following diagram : 

( 6 . 1 ) D E F I N I T I O N . — A space Y is an extension (resp. neighbourhood 
extension) space for Q provided for any pair (X, A) in Q with A C X closed 
and any map f0 : A -> Y there is an extension f : X Y (resp. neighbour-
hood extension f : U -> Y) of f0 over X (resp. over a neighbourhood U 
of A in X). The classes of the extension spaces and the neighbourhood 
extension spaces for Q will be denoted by ES (Q) and NES (Q), respectively. 
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Clearly ES (Q) С NES (Q) and 
Q с Q' implies N E S (Q') с N E S (Q). 

Thus, various inter-relations between different classes of NES-spaces may 
be displayed in the following diagram : 

( 6 . 2 ) EXAMPLES. 

(i) the unit interval [0, 1] is an extension space for normal spaces 
(Tietze-Uryhson) ; 

(ii) any convex subset of a locally convex linear space (or of a linear 
space with finite topology) is an extension space for metric spaces (Dugun-
dji [2]); 

(iii) any polytope with CW-topology is a neighbourhood extension 
space for metric spaces. 

Other examples may be derived by means of the following theorem 
(cf. Hanner [7]) : 

(6.3) These are some basic properties of the NES-spaces : 
(i) A retract of ES (Q) is an ES (Q) ; 

(ii) A neighbourhood retract of NES (Q) is an NES (Q) ; 
(iii) An open subset of NES (Q) is an NES (Q) ; 
(iv) The product of any collection (resp. any finite collection) of ES (Q) 

[resp. NES(Q)] is ES (Q) [resp. NES (Q)j ; 
(v) If Q consists only of paracompact spaces, then any local NES (Q) 

is NES(Q) . 

( 6 . 4 ) DEFINITION. — A space Y is an absolute retract (resp. absolute 
neighbourhood retract) for a class of spaces Q provided (i) Y is in Q and (ii) 
whenever it is embedded in another space of Q as a closed subset it is a 
retract (resp. neighbourhood retract) of the containing space. The 
corresponding classes of spaces are denoted by AR (Q) and ANR (Q), 
respectively. 

The following theorem describes the relation between the NES and 
the ANR spaces (cf. Hanner [7]). 

(6.5) Any AR (Q) is ES (Q) ; similarly, any ANR (Q) is NES (Q). 
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7 . F I X E D P O I N T THEOREM FOR THE N E S (COMPACT) SPACES 

Notation. — Given a linear space E and K c E we denote by L (K) 
the linear span of K, i. e. the smallest linear subspace of E which contains K. 

We begin with the following lemma (cf. [13]) : 

( 7 . 1 ) LEMMA. — Let E be a linear topological space and К a compact 
subset of E. Then L (K) is Lindelof. 

Proof. — For each m — 1, 2, . . . consider the compact set 

the function given by the assignment 

and put Since is continuous, each is compact. 

It is clear tha t any element of L (K) belongs 

to for some m; thus is ocompact . 

Since L (K) is regular the assertion readily follows. 

( 7 . 2 ) LEMMA. — Let E be a linear topological space and T be a Tycho-
noff cube contained in E. Then T is a retract of L (T). 

Proof. — T e ES (normal). Hence the diagram : 

can be completed because, in view of Lemma (7.1), L (T) is normal. 

We state now our next result. 

(7.3) T H E O R E M . — Every NES (compact) is a Lefschetz space (s). 

( s) In connect ion with th is result see a lso R . Knill [11]. 
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Proof. — Let X be a NES (compact) and f : X X be a compact map : 
denote by К a compact set containing Д Х ) . We embed К into a Tycho-
noff cube T lying in a locally convex space E. Denote by s : К н» К 
the homeomorphism of К onto К С T. We may write now the following 
commutative diagram : 

in which f and fk stand for the obvious compact contractions of f . 

Next, consider the map is - 1 : К -> X. Since X G NES (compact), 
there is an open set U in T containing К and an extension h : U X 
of is~l over U; thus, if j : К -»• U is the inclusion we have hj = is~l. 

We note that the following diagram commutes : 

Now take L (T) in a locally convex space E which contains T, the 
retraction г : L (T) -> T [which exists in view of (6.2)] and write the commu-
tative diagram : 

Put t ing the above diagrams together, we have the following commuta-
tive diagram : 
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in which f* is a compact self-map of an open set r"1 (U) in a locally convex 
space L (T). Since r"1 (U) is a Lefschetz space, Л (f*) is defined. I t 
follows now from Lemma (3.2) that all the vertical arrows in the above 
diagram represent Lefschetz maps and 

If Л ( f ) 0 then Л (f*) ^ 0 and hence f* has a fixed point. If follows 
by the second part of Lemma (3.2) tha t any map represented by a vertical 
arrow has a fixed point. Thus, in particular, f (x) = x for some z € X 
and the proof is completed. 

The following are two immediate consequences of Theorem (7.3) : 

( 7 . 4 ) C O R O L L A R Y . — Let Q be any of the following : (i) Lindelôf-, (ii) 
paracompact; (iii) normal. Then any NES (Q) and in particular any 
ANR (Q) is a Lefschetz space. 

( 7 . 5 ) C O R O L L A R Y . — Let Q be as in ( 7 . 4 ) . The following types of 
spaces have the fixed point property within the class of all compact maps : 

(i) acyclic NES (Q) and, in particular, acyclic ANR (Q)-spaces; 
(ii) ES (Q) and, in particular, AR (Q)-spaces. 

8 . F I X E D P O I N T S IN APPROACHABLE N E S (METRIC) SPACES. — L e t 

f : X ->• Y be a map. Call f compact metrizable provided f (X) is contained 
in a compact metrizable subset of Y. 

( 8 . 1 ) T H E O R E M . — Let X € N E S (compact metric) and f : X X 
be a compact metrizable map. Then (i) A ( f ) is defined and (ii) Л ( f ) 0 
implies that f has a fixed point. 

Proof. — The proof is strictly analogous to tha t of Theorem (6.1) 
except we replace the map s : К ->- T by the embedding of К into the 
Hilbert cube Г and r by a retraction of the Hilbert space onto Г . 

( 8 . 2 ) D E F I N I T I O N . — Let X be A space. Call X approachable provided 
for any compact subset К of X and any a e C o v x (K) there exists a map 
n a : К X such tha t (i) т.я (К) is metrizable; (ii) the maps r.a : К X 
and i : К X are a-close ; (iii) TvB and i are homotopic. 

( 8 . 3 ) E X A M P L E S . — The following types of spaces are approachable : 

(i) metrizable spaces ; 
(ii) locally metrizable spaces; 

(iii) second countable spaces; 
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(iv) admissible linear topological spaces (in the sense of Definition 
( 5 . 3 ) ; _ 

(v) linear spaces with finite topology and polytopes with CW-topology, 
[ 3 ] ; 

(vi) open subsets of convex sets in linear locally convex topological 
spaces. 

( 8 . 4 ) T H E O R E M . — The class of approachable NES (compact metric)-
spaces is contained in the class of Lefschetz spaces. In particular, any 
approachable NES (metric) is a Lefschetz space. 

Proof. — Let X be an approachable NES (compact metric), 
j-. x X be a compact map and К be a compact set containing f (X). For 
a € Covx (X) define fa : X X by fa = u a f . Clearly, by approachabil i ty, 
we have (i) f a ^ f ' , (ii) fa and f are a-close; (iii) fa is compact metrizable. 
Now our assertion follows, in view of ( 1 . 2 ) , from Theorem ( 8 . 1 ) . 

( 8 . 5 ) C O R O L L A R Y . — The following types of spaces have the fixed point 
property within the class of all compact maps : 

(i) acyclic approachable NES (compact metric) spaces-, 
(ii) approachable ES (compact metric) spaces-, 

(iii) convex sets in locally convex topological spaces; 

( 8 . 6 ) C O R O L L A R Y . ( T y c h o n o f f Theorem.) — Any compact convex set 
in a locally convex topological space has the fixed point property. 

R E F E R E N C E S 
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SOME GENERAL THEOREMS 
IN COINCIDENCE THEORY. I 

By Lech GÓRNIEWICZ and Andrzej GRANAS 

1. Introduction 

Given two continuous maps p, q : Г X of Hausdorff topological spaces the coincidence 
problem for ( p, q) is concerned with conditions which guarantee that the pair ( p, q) admits 
one or more coincidence points, that is points ye Г such that p(y) = q(y). The study of this 
problem (first treated in a topological setting in 1946 by Eilenberg-Montgomery [3]) was 
recently taken up by the first author in [6], where an extension of the Eilenberg-Montgomery 
coincidence Theorem to non-compact ANR-s was established. In this paper our aim is to 
initiate the systematic study of the coincidence problem in a framework of theory of retracts 
and under possibly general assumptions concerning p and q. Our approach has as its 
starting point the Vietoris Mapping Theorem and is based on some simple notions of the 
category theory in the sense of Eilenberg-MacLane; this approach was presented by the 
second author at the Conference on Fixed Point Theory in Halifax in 1975. 

To formulate our main result we need some terminology. We recall that a topological 
space X is called a NES (compact) provided for each compact pair (Y, A) any map/0 : A X 
admits an extension / : U X over some neighbourhood U of A. The class of NES 
(compact) spaces contains arbitrary metric ANR-s and also non-metrizable compact ANR-s. 

By homology we shall understand the Cech homology with compact supports and rational 
coefficients. A continuous map p : Г -> X is said to be a Vietoris map provided p is proper 
and p"1 (x) is acyclic for each x e X. The Vietoris-Begle Mapping Theorem implies that if 
p : Г X is Vietoris, then the induced map : Н(Г) -> H(X) is an isomorphism. 

Let X be a NES (compact) space p, q : Г -» X be a pair of maps such that p is Vietoris and q 
is a compact map [i. e. q (Г) is relatively compact in X]. Using the generalized trace theory 
ofJ. Leray [11] and properties of Vietoris maps we shall assign to the pair (p, q) a number: 
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defined in terms of the induced homomorphism p„ and qm [and called the Lefschetz number 
of (p, q)]. The main result which we intend to present here is the following Theorem: If 
Л(р, 0 then the maps p, q:T ->X have a coincidence. 

This result implies several well-known coincidence and fixed point Theorems (for single 
valued as well as for multivalued maps) both in functional analysis and topology. Other 
coincidence results will be treated in the second part of this paper. 

2. Algebraic preliminaries 

We begin by recalling the notion of the generalized Lefschetz number as given by J. Leray 
in [11]. We consider vector spaces only over the field of rational numbers Q. 

Let / : E -• E be an endomorphism of an arbitrary vector space E. Put 
N ( / ) = {x e E |/<"> (x)=0 for some n} (/<"> is the n-th iterate o f / ) and Ê = E/N (/) . Since 
/ ( N ( / ) ) C N ( / ) , we have the induced endomorphism f : Ё ->• Ё. Call/admissible provided 
dim Ё<оо; for such/we define the generalized trace T r ( / ) o f / b y putting Tr ( / ) = tr( /) , 
where tr stands for the ordinary trace. 

( 2 . 1 ) DEFINITION. - Let/= {/,} : E E be an endomorphism of degree zero of A graded 
vector space E = {E,}. Call/the Leray-endomorphism if: (i) all/, are admissible; (ii) almost 
all E, are trivial. For such/we define the (generalized) Lefschetz number A ( / ) by putting 
Л ( / ) = £ ( - 1 ) « Т г ( / , ) . 

4 
The following property of the Leray endomorphisms [11] is a consequence of the well-

known formula tr(ui;) = tr(t;M) for the ordinary trace: 

(2.2) Assume that in the category of graded vector spaces the following diagram commutes: 

If one of the vertical arrows is a Leray endomorphism, then so is the other and in that case 
A(/ ' ) = A(/") . 

3. Vietoris maps 
In what follows by space we understand a Hausdorff topological space and by map a 

continuous transformation. By H we denote the Cech homology functor with compact 
carriers and coefficients in Q from the category Fop of topological spaces to the category S 
of graded vector spaces over Q and linear maps of degree zero. 

A map p : Г -<• X between two spaces Г and X is called Vietoris (written p : Г=>Х) if: (i) p is 
proper (*) and (ii) for each xeX the set p~1 (x) is acyclic. 

(*) In this paper p is understood to be proper provided for each net/>(>>„) - * there is a subnet { v. . } and a ve Г 
such that ya,-*y and x=p(y). " 
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Some important properties of Vietoris maps are summarized in the following. 

(3 .1) THEOREM*. - (i) (Vietoris-Begle). If p: Г=>Х, then the induced linear map 
Pt : Н(Г) -» H(X) is an isomorphism; 

(ii) if p : Г=>Х and p' : X=>Y are Vietoris, then so also is the composite p' op : Г=>У, 
(iii) the pull-back of a Vietoris map is also a Vietoris map. 

4. Category of morphisms 

Given two spaces X and Y let 9(X, Y) be the set of all diagrams of the form 

Х^Г^ Y. Every such a diagram we denote briefly by (p, q). Given two diagrams 
(P. q)>(p', q')e9(X, Y), we write (p, q)~{p', q') if there are maps/: Г Г' and g: Г - Г 
for which the following two diagrams commute: 

Clearly ~ is an equivalence relation in ^(X, Y). 

( 4 . 1 ) DEFINITION. - The equivalence class of a diagram (p, q)e®(X, Y ) with respect 
to ~ is denoted by: 

and is called a morphismform X to Y; we let Mx Y be the set of all such morphisms. 
In what follows we denote morphisms by Greek letters and the ordinary maps by Latin 

letters; we identify / : X -»• Y with the morphism: 

(4.2) DEFINITION. - To compose two morphisms: 

we write a commutative diagram: 
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in which Г S Г' is the fibre product of q and p' and p, q is the pull-back of p', q\ we define the 
composite v|/ о ф of <p and \|/ by: 

(4.3) The composition law given above converts the collection M of morphisms into a 
category. 

In what follows the category of topological spaces 9"op is regarded in a natural way as a 
subcategory of M. 

(4.4) Homology functor H : op -* S extends over M to a functor ft : M -» ê. 
Proof. — For a morphism: 

we let H (ф) = фф = о рф
 1 ; it is easily seen that the definition of фф does not depend on the 

choice of a representative t)f ф and also that if ф = / then ft (ф) = Д. Given two morphisms: 

consider the commutative diagram: 

We have by the definition: 

This completes the proof. 
5. Lefschetz morphisms 

Using the functor ft we may define for some self-morphisms a generalized Lefschetz 
number. 

( 5 . 1 ) DEFINITION. - We say that Ф : Х - » Х is A Lefschetz morphism provided 
Ф* : H (X) -» H (X) is a Leray endomorphism; for such ф we define the generalized Lefschetz 
number by putting Л(ф) = Л(фф). 

http://rcin.org.pl



3 06 SOME GENERAL THEOREMS IN COINCIDENCE THEORY. I 

The following property of Lefschetz morphisms will be of importance: 

(5.2) LEMMA. — Assume that in the category of morphisms the following diagram commutes: 

Then: if one of the vertical arrows is a Lefschetz morphism, then so is the other and in that case 
Л(Ф) = Л т -

Proof. - By applying the functor H to the above diagram, our assertion follows at once 
from (2.2). 

6. Coincidences 

Let p, q : Г X be t wo maps and Co v (X ) be the directed set of all open coverings of X. A 
point у б Г is called a coincidence point for ( p, q) if p (y) = q (y); given a e Cov (X) we say that у 
is an a-coincidence point for (p, q) provided p(y) and q(y) belong to the same U eat. 

(6.1) LEMMA. — Let p, q:T Xbe two maps such that p is proper and assume that for each 
a 6 Cov (X) there is an a-coincidence point for (p, q). Then there is a coincidence point 
for (p, q). 

Proof. - It is sufficient to show that if ( p, q) has no coincidence point, then for each x e X 
there exists an open neighbourhood Ux of x in X such that: p~l{Us)nq~l(\Jx)=<&. 

Assume the contrary, i. е., that (p, q) has no coincidences and that there is a point x 0 e X 
such that: p _ , ( U ) n < ï _ , ( U ) * 0 » for each open neighbourhood U of x0 in X. 

Let Я(х0) be the directed set of all open neighbourhood of x0 in X with the partial order 
given by the inclusion. For each U e f ( . v 0 ) we find a point у и е Г such that p(y ti)e U and 
«/CVuJeU. Since lim /?(.Уи) = lim ?(Уи) = л:о» a °d , because p is proper, there is a subnet of 

и и 
{yv }u.*(*0) converging to a point у 0 бГ; by continuity of p and q we get p(y0)=q{y0)=x0 

and, with this contradiction, the proof is complete. 
Let <p : X -* X be a self-morphism and ( p, q), ( p', q') be two representatives of <p. We let: 

and observe that: 
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(6.2) DEFINITION. - We say that <P:X-»X has a coincidence provided the set 
Х(ф)=Р(Х<р,,)) is not empty. Clearly cp has a coincidence if and only if for any 
representative (p , q) of <p the set x(p. ,> is non-empty. 

(6.3) LEMMA. — Let <p :X —»• Y, :Y -*Xbe two morphisms. Then \Jf о ф has a coincidence 
if and only if so does <po\|/. 

Proof. - Consider the following two commutative diagrams, which appear in the 
definition of vj/ о ф and ф о vj/. 

It is enough to show that the set x (pp, q'q)*0 if and only if x(p'/>'. qq')*<Z>- Let 
(у, / ) е Г 0 Г and assume (y, y') e x ( pp, q' q). Then we have p' (y')=q(y) and 
p(y) = q'(y')- Now, we see i h a t ( / , y ) e r ' [ E ] r a n d ( / , y)ex(p'p', qq')- This completes 
the proof. 

7. Coincidence spaces 

Let ф : X Y be a morphism and ( p, q), be a representative of ф. We define ф (X) с Y by 
Ф (X) = q [ p~1 (X)]. Observe that ф (X) does not depend on the choice of the representative 
of ф. 

(7.1) DEFINITION. - A morphism ф : X -+ Y ig called compact provided the set ф(Х) is 
relatively compact in Y. 

The following property of compact morphisms follows at once from the definitions: 

(7.2) Let <p:X-*Y and V|/ : Y -* Z be two morphisms. If <p or ty is compact, then so is ths 
composite V|/ О Ф : X -* Z. 

(7.3) DEFINITION. — A space X is said to be a coincidence space for compact morphisms, 
provided: (i) any compact morphism ф :X -» X is a Lefschetz morphism and (ii) Л ( ф ) ^ 0 
implies that ф has a coincidence. 

(7.4) LEMMA. - A retract of a coincidence space is a coincidence space. 
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Proof. - Let r : X A be a retraction and cp : A A be an arbitrary compact morphism. 

Clearly, in the commutative diagram: 

i<pr is also compact and our assertion follows from (6.3). 
We establish now two important special cases of the main result: 

( 7 . 5 ) THEOREM. - Every open U«=R" is a coincidence space. 
Proof. - For the convenience of the reader we reproduce the main steps of the proof 

{cf. [7]). Let U с R" be open and <p : U U be a compact morphism. It is evident that the 
set х(ф) is compact. Consider two representatives ( p, q),(p', q')o[ <pandlet/:r-> T'and 
G : Г' Г be two maps which establish the equivalence ( p, q)~(p', <*')• Then we have the 
following two commutative diagrams: 

in which are mappings given by the same formulas as p, p',/, g respectively and: 

Let be a fundamental class of the set (see Dold [2] and 
Gôrniewicz [71) and let I 

From the commutativity of the above diagram it follows that I(p, q) = l(p', q'), i.e. 
Up, q) does not depend of a representative of ф. It is also evident that I(p, q)i*0 implies 
Х (Ф )*0 and therefore for the proof it is sufficient to show that I(p, q) = А(ф). 

Let К be a finite polyhedron such that Let us consider the following maps: 
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and the following homomorphisms : 

where (H(K))* = Hom(H(K), Q) is the dual of H(K) : 

Let where denotes the fundamental 
class of the compact set 

From the commutativity of the diagram: 

we get: 

(1) I ( p , q) = e(a). 

Using the Dolds Lemma for Cech homology (cf. [7]) and the commutativity of the diagram: 

we obtain: 

(2) 

By comparing (1) and (2) we get and the assertion of the theorem follows. 

(7.6) THEOREM. — Every open set U in a locally convex space E is a coincidence space. 

Proof. be a compact morphism and let 

By the well-known approximation theorem (cf. [10]) there is a compact map 
satisfying: 

(i) for each у 6 Г there is such that: 

and 
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(ii) the maps q and q„ are homotopic; 
(iii) there exists an open subset W of a finite dimensional subspace of E such that 

Consider now the following diagram: 

in which qa, q'a and p, are respectively contractions of q and p and i : W U is the inclusion 
map. 

From (ii) it follows that the above diagram is commutative. So by (2.2) and (7.5) 
Л((<?.)«(P:t)« 1)шМя»°Рт ' ) and thus ф is a Lefschetz morphism. If Л(ф)*0, then in 
view of (7.5), we obtain a coincidence point for (p l t qj. By (i) this point is an a-coinci-
dence point for (p, q) and hence our assertion follows from (6.1). 

8. Neighbourhood extension spaces 

We recall the definition and some basic properties of the NES-spaces. In what follows Q 
will denote either the class of compact spaces or the class of metric spaces. 

(8.1) DEFINITION. — A space Y is an extension (resp. neighbourhood extension) space for Q 
provided for any pair (X, A) in Q with A c X closed and any map f0 : A Y there is an 
extension / : X Y (resp. neighbourhood extension / : U Y) of /„ over X (resp. over a 
neighbourhood U of A in X). The classes of the extension spaces for Q will be denoted by 
ES (Q) and NES(Q), respectively. 

Some basic properties of the NES-spaces are summarized in the following theorem 
(cf. Hanner [10]) : 

(8 .2 ) THEOREM. - (i) A retract O /ES(Q) is an ES(Q); (ii) a neighbourhood retract of 
NES (Q) is an NES (Q); (iii ) an open subset O/NES (Q) is an NES (Q); (iv) the product of any 
collection (resp. any finite collection) of ES(Q) [resp. N E S ( Q ) ] is ES(Q) [resp. NES(Q)]; 
(v) any local N E S ( Q ) is NES(Q) . 

(8 .3 ) DEFINITION. — A space Y is an absolute retract (resp. absolute neighbourhood 
retract) for a class of spaces Q provided: (i) Y is in Q and (ii) whenever it is embedded in 
another space of Q as a closed subset it is a retract (resp. neighbourhood retract) of the 
containing space. The corresponding classes of spaces are denoted by AR(Q) and 
A N R ( Q ) , respectively. 

Some relations between the NES and ANR spaces are described in the following: 
(8 .4 ) THEOREM. - (i) (Hanner). Any A N R ( Q ) is NES(Q); (ii) any A N R (metric) is a 

NES (compact). 
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9. The main Theorem 

We now state the main result of this paper: 

(9 .1 ) THEOREM. — Any X e N E S (compact) is a coincidence space. 

Proof. - Let X be NES (compact) and <p : X X be a compact morphism. We are going 
to show that: (i) A (<p) is defined and (ii) Л (cp) Ф 0 implies that ф has a coincidence. Let ( p, q) 
be a representative of ф and let К be a compact set containing q(X). We embed К into a 
Tychonoff cube T and denote by s : К R the homeomorphism of К onto K c T . We may 
write now the following commutative diagram in 

Next, consider the map is"1 : R X. Since XeNES (compact) it follows that, there is 
an open set U in T containing R and an extension h : U X of is"1 over U; thus, if/ : R U 
is the inclusion we have hj = i s - 1 . 

We note that the following diagram commutes: 

Now take the locally convex space E which contains T and such that T is a retract of E 
(с/. Fournier-Granas [5]); let r : E -» T be a retraction and write the following commutative 
diagram in M\ 

where is the inclusion and 
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Putting the above diagrams together, we have the following commutative diagram: 

in which (p* is a compact morphism of an open set r~1 (U) in E; by Theorem (7.6), A (<p*) is 
defined. It follows now from Lemma (2.2) that all the vertical arrows in the above diagram 
represent Lefschetz morphisms and: 

If A (<p ) Ф 0 then Л(ф*)#Ь and hence <p* has a coincidence by Theorem (7.6). It follows by 
Lemma (6.3) that any morphism represented by a vertical arrow has a coincidence and the 
proof is completed. 

10. Fixed point theorems for multivalued maps 

In this section we give applications of the main Theorem to obtain a number of general 
fixed point results for multivalued maps. We recall first some terminology. 

Let X and Y be two spaces and assume that for every point x e X a non-empty subset <p (x) 
of Y is given; in this case we say that ф is a multi-valued map from X to Y and we write 

We associate with ф the diagram in which 

is the graph of ф and the natural projections and are given by and 

If and are two multi-valued maps, then their composition is the map 
defined by be a multi-valued map; a 

point is called a fixed point for provided A multi-valued map 
said to be upper semi continuous (u. s. c.) provided: (i) ф (x) is a compact set for each x e X and 
(ii) for each open set the set is open. A multi-valued map 

is called compact provided the image in a relatively compact 

subset of Y. An u. s. c. map is called acyclic, if for each the set is acyclic. 
The following fact is an easy consequence of the definitions: 

is an acyclic, compact map, then the projection is a Vie tor is 
map. 
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A multi-valued map ф : X -» Y is called admissible (see Gôrniewicz [6] and [7]) if there 
P q 

exists a diagram X <= Г Y such that q ( p~1 (x)) с ф (x), for each x e X; in this case the pair 
(p, q) is called a selected pair for ф and we write (p, q)c <p. 

It is easy to verify that any acyclic map and moreover any composition of acyclic maps is an 
admissible map (сотр. [7]). 

An admissible, compact map ф : X -» X is called a Lefschetz map provided for each 
selected pair (p,q)<=.ф the endomorphism q^op"1 : H ( X ) - + H ( X ) is a Leray 
endomorphism. For a Lefschetz map ф : X -» X we define a Lefschetz set А (ф) by putting: 

The Lefschetz fixed point theorems for multi-valued maps were given by several 
authors. We recall the two most general results: 

(10.2) THEOREM (Gôrniewicz [6]). - Let y :X-+X be an admissible, compact map, where 
XEANR (metric). Then ф is a Lefschetz map and А ( ф ) # { 0 } implies that ф has a fixed 
point. 

(10.3) THEOREM (Fournier-Gôrniewicz [4]). - Let ф : X -» X be an admissible, compact 
and u. s. c. map, where X e NES (compact). Then ф is a Lefschetz map and А ( ф ) / { 0 } implies 
that ф has a fixed point. 

We shall discuss now the relationship between the multi-valued maps and the morphisms. 

A multi-valued map ф : X -» Y is said to be determined by a morphism 
provided ф (x ) = q [ p "1 (x )] for each x e X; the morphism which determines ф is also denoted 
by ф. Clearly every morphism determines a multi-valued map, but not conversely. 

(10.4) / / ф : X -» Y is a morphism then the multi-valued map determined by ф is u.s.c. 

This follows redily from the definitions involved. 
If we take a morphism given as an equivalence class of the diagram X <= Г , Y, then we 

obtain that any acyclic map is a map determined by some morphism. Moreover, because 
the composition of morphisms is a morphism, we have: 

(10.5) Any composition of acyclic maps is determined by some morphism. 
The definition of admissible maps can be reinterpreted in the terms of maps determined by 

morphisms as follows: 
A map ф : X Y is admissible if and only if there exists a morphism : X -+ Y such that 

the map determined by \|/ is a selector of ф, i.e., *|/(х)с:ф(х) for each x e X . Therefore, to 
find a fixed point for an admissible map ф it is sufficient to find a fixed point for some selector 
of ф. By a Lefschetz number of the map determined by a morphism ф we will understand 
the Lefschetz number of ф. 

As an immediate consequence of Theorem (9.1 ) we obtain the following. 

(10.6) THEOREM. - Let X be an NES (compact) space and let ф : X-*Xbea multi-valued 
map determined by some compact morphism. Then <pisa Lefschetz map and А (ф) Ф 0 implies 
that ф has a fixed point. 
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We observe, that Theorems (10.2) and (10.3) are special cases of (10.6). Finally we 
remark that the earlier Lefschetz-type fixed point results of Eilenberg-Montgomery [3], 
Granas [9], Gdrniewicz-Granas [8], Powers [12], Fournier-Granas [5], Gôrniewicz ([6], [7]), 
Fournier-Gôrniewicz [4], all are special cases of the Theorem (10.6). 
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LE THÉORÈME DE LEFSCHETZ 
POUR LES ANR APPROXIMATIFS 

PAR 

GILLES G A U T H I E R (CHICOUTIMI) ET A N D R Z E J G R A N A S (MONTRÉAL) 

Dans [4] Clapp introduit la notion de А2Ш approximatifs ( ААУВ) 
et démontre que tout AXR approximatif de type fini est un espace de 
Lefschetz (i.e. si X est un ANR approximatif de type fini, alors toute 
fonction continue / : X -*• X telle que X(f) Ф 0 admet un point fixe). Nous 
présentons dans cet article une caractérisation des AAîTB, une nouvelle 
preuve du théorème de point fixe de Clapp ainsi qu'une généralisation 
de ce théorème à des AANR non nécessairement de type fini. Les espaces 
topologiques considérés sont tous métrisables et on utilise l'homologie 
de Cech à support compact et coefficients dans Q. IJn espace X est dit 
de type fini si H{X) = {Hn(X)} est de type fini. 

1. Caractérisation des ANR approximatif». 

1.1. D é f i n i t i o n (Clapp [4]). Un espace métrisable compact X 
est un ANR approximatif si pour tout plongement h: X -> Y, où Y est 
un espace métrique, on a : Pour tout в > 0, il existe un voisinage ouvert 
U, de h(X) dans Г et une fonction r: Ut -*• h(X) tels que e(rj(y), y) < в 
pour tout y dans h(X), où j: h(X) -*• U, est l'inclusion canonique. 

La définition suivante est souvent utilisée par la suite: 

1.2. D é f i n i t i o n . Soient Y un espace métrique et e > 0. Deux 
fonctions f et g d'un espace X dans Y sont dites e-prèe si q (f(x), g (x)) 
< e pour tout x dans X. 

1 . 3 . THÉOBÈME. Soit X un espace métrisable compact et qx une métri-
que compatible. X est un ANR approximatif si et seulement si la condition 
suivante est satisfaite: 

Pour tout e > 0 il existe un A, e ANR ( = ANR (métrisable) compact 
[1]) et des fonctions continues a: X -*• A, et (i: A, X tels que fia et l x 
sont e-prèe. 
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D é m o n s t r a t i o n . Soit X un ANR approximatif. X étant un espace 
métrisable compact il existe un plongement ft de X dans le cube de Hil-
bert Soit ft la contraction de ft à la paire (X, ft(X)). Pour e > 0 soit 
â(e) > 0 tel que si x, y e ft(X) et q(x, y) < <5(e), alors Qx(h~l(x), h~l(y)) 
< e. Soit U, un voisinage ouvert de ft(X) dans Ie0 et soit r : U, -*• ft(X) 
tels que rj et 1Л(Х) sont «5(e)-près, où j : A(X) -> U„ est l'inclusion canonique. 
Soit A. un ANR tel que ft(X) с A. cz U,.JJn tel A, existe par [1], p. 105, 
lemma 4.3. 

Soit г: ft(X) Ae l'inclusion canonique et r': A, ft(X) la restriction 
de r à i , . On a que r'i et 1A(X) sont <5(e)-près. 

Posant a = tk: X -*- A, et = Â~V: A, ->X , on a que /Sa et l x 
sont e-près. Ce qui termine la démonstration de la première partie du 
théorème. 

X étant un espace métrisable compact, on peut sans perte de géné-
ralité supposer que X est un sous-espace du cube de Hilbert. Soit с > 0. 
Б existe un ANR A, et des fonctions continues a: X A, et /?: A, -*• X 
tels que /3a et l x sont e-près. Puisque A, est un ANR la fonction a: X -*• A, 
admet une extension continue â à un voisinage ouvert U, de X dans Z°° 
([1], p. 103, (2.19)). Posant r = /35, on a que ri et l x sont e-près, où 
i: X-»- U, est l'inclusion canonique. On a donc ([4], p. 118, theorem 2.1) 
que X est un ANR approximatif. 

2. Le théorème de M. H. Clapp. Nous utilisons dans cette section 
le théorème suivant, dont on peut trouver une démonstration dans [5]. 

2.1. THÉORÈME. Soit Z un espace métrique compact de type fini. 
Il existe e = e(Z) > 0 tel que pour tout espace compact X et pour toutes 
fonctions continues f , g: X -> Z, si f et g sont e-près, alors 

Si X est un espace de type fini et f: X -*• X est une fonction continue, 
le nombre de Lefschetz de f est défini par 

où est Vhomomorphisme induit par f et tr est la trace 
ordinaire. 

2 . 2 . THÉORÈME. Soit X un ANR approximatif de type fini et soit 
f: X -*• X une fonction continue telle que A(/) ф 0. Alors f admet un point fixe. 

D é m o n s t r a t i o n . Soit q une métrique compatible pour X et soit 
e' > 0 tel que /» = g» dès que / et g sont «'-près (théorème 2.1), où f et g 
sont d'un domaine compact commun et à valeurs dans X. Soit e tel 
que 0 < e < e'. Soit <5(e) > 0 tel que si x, y e X et q[x, y) < ô(e). Alors 
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e(f(*)J(y)) < e• P a r l e théorème 1.3 il existe un ANE A. et des fonctions 
continues a: X -> A, et P': A, X tels que p'a et 1 Y sont <5(e)-près. 

Soit p =fp'. Puisque e < e' on a que (pa)m = / „ et Д(/) = A(/3a). 
Considérons a/3: A, A,. On a А(а/3) = Л(/?а) Ф 0. Comme A, est un 
ANR, on a que ap admet un point fixe et il s'ensuit que /?а admet aussi 
un point fixe. Pour tout e < e', f admet un e-point fixe (i.e. un x dans X 
tel que o[x,f(x)) < e). L'espace X étant compact il en résulte que / admet 
un point fixe. 

2.3. D é f i n i t i o n . Soient X et Г des espaces métrisables compacta 
et soit g une métrique compatible pour Y. Une fonction / : X ->• Y est 
dite presque-factorisable si pour tout e > 0 il existe un ANR A, et des 
fonctions continues a: X A, et P: A, X tels que pa et / sont «-près 
par rapport à g. 

La propriété d'une fonction / d'être presque-factorisable ne 
dépend pas de la métrique compatible utilisée. On a la reformulation 
suivante du théorème 1.3: 

2.4. Soit X un espace mêtrisable compact. X est un ANR approximatif 
si et seulement si X X est presque-factorisable. 

2.5. Soient X et Y des espaces métrisables compacts. Si LX: X -> X 
est presque-factorisable, alors toutes les fonctions continues f: Y -*• X et 
g: X -> Y sont presque-factorisables. 

Une démonstration en tout point semblable à celle du théorème 2.2 
nous donne: 

2 . 6 . THÉORÈME. Soit X un espace mêtrisable compact de type fini 
et soit f : X -> X une fonction presque-factorisable. Si A(/) # 0 , alors f 
admet un point fixe. 

Dans [2] Borsuk introduit la notion de ,,NE-map". On peut montrer 
que les fonctions presque-factorisables sont des „NE-maps". Le théorèmo 
précédent est donc un cas particulier du théorème de point fixe de Borsuk 
concernant les „NE-maps" [3]. 

Soit Г * l'ospaco métrique des fonctions continues do X dans Г 
avec la métrique q définie par 

où X et Г sont des espaces métrisables compacts 
2.7. D é f i n i t i o n (Borsuk [2]). Soient X et Г des espaces métrisables 

compacts. Une fonction continue / : X -»• Y est factorisable si il existe 
un ANR A et des fonctions continues a: X A et P: A Y tels quo 
Pa = / . 
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La situation des applications presque-factorisablee parmis lee „NE-
maps" est la suivante: 

2.8. La fermeture dans Yx de l'ensemble dee fonctions factorisablee 
est l'ensemble des fonctions presque-factorisables. Il existe toutefois 
des „NE-maps" qui ne sont pas presque-factorisablee [8]. 

3. ANR approximatifs non nécessairement de type fini. Nous présentons 
maintenant une généralisation du théorème 2.2 au cas où le ANR approxi-
matif n'est pas nécessairement de type fini. Nous utilisons les notions 
de trace de Leray et de nombre de Lefschetz généralisé [7]. 

Soit / : E -*• E un endomorphisme d'espace vectoriel. Considérons 

Puisque f(N(f)} с N(f), on a que / induit un endomorphisme 
/: È -*• É. La fonction / est dit admissible si È est de dimension finie. 
Si / est admissible, la trace généralisée Tr(/) de / est définie par Tr(/) 
- tr (/). 

Soit / = {/„}n,lV: E E un endomorphisme de degré zéro d'un 
espace vectoriel gradué E = {En}neX. On dit que / вet un endomorphisme 
de Leray si tous les fn sont admissibles et tous les Èn sauf un nombre fini 
sont triviaux. Si / : E E est un endomorphisme de Leray, on définit 
le nombre de Lefschetz généralisé de / par 

Une fonction continue / d'un espace X dans lui-même est dite une 
fonction de Lefschetz si/»: H(X) ->• H(X) est un endomorphisme de Leray. 
Le nombre de Lefschetz généralisé de / est alors défini par A(f) = .1(/,). 

Nous utilisons les résultats suivants: 
3 . 1 . T H É O R È M E (voir [ 6 ] ) . Soient X et Y des espaces topologiques, 

и: X Y etv: Y X des fonctions continues. Alors : 
(a) si uv ou vu est une fonction de Lefschetz, alors les deux le sont et 

A(uv) = A(vu); 
(b) uv admet un point fixe si et seulement si vu admet un point fixe. 
Le théorème suivant est uno généralisation du théorème 2.2 au cas 

où le ANR approximatif n'est pas nécessairement de type fini. 
3 . 2 . T H É O R È M E . Soit X un ANR approximatif et soit f: X X 

une fonction continue. S41 existe une partie compacte de type fini Y de X 
telle que f(X) с Г, alors f est une fonction de Lefschetz et A(f) Ф 0 entraîne 
qu4l existe un point fixe pour f . 
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Démonstra t ion . Soit q une métrique compatible pour X. Puisque Y 
est un espace métrique compact de type fini, soit e' — s'(Y) > 0 tel que 
pour tout espace compact W et pour toutes fonctions continues g, Л: 
W -*• Y, si g et h sont e'-près, alors g0 = Л, (théorème 2.1). Soit б > 0 tel 
que 0 < e < e' et soit ô(e) > 0 tel que si x, y e X et q(x, y) < d(e), alors 
q (/(•), m) <«• 

X étant un ANE approximatif, il existe un A, e ANE et des fonctions 
•continues a: X A, et fi: A, -> X tels que fia et l x sont <5(e)-près. Soient/' 
la contraction de / à la paire (X, Y), fr la contraction de / à la paire 
(Y, Y) et i l'inclusion canonique de Г dans X. Considérons 

Puisque At est un ANE, par le théorème de Lefschetz classique 
on a que <py> admet un point fixe si A(<pip) Ф 0. 

Montrons que A(<py>) ф 0. Utilisant le théorème 3.1 on a que A(<py) 
= Л(щ>) = A(f,). Les fonctions / , et fY étant e-près on en déduit que 

</,)„ = (/r)«. L'espace Y étant de type f in i , / r est une fonction de Lefschetz. 
Utilisant de nouveau le théorème 3.1 on a que / est une fonction de Lef-
schetz et que A(f) = A ( i f ) = A(f'i) = A(fr). On obtient A(<py) 
- A(ft) - A(fr) = A(f) Ф 0. 

Б s'ensuit que U — YP admet aussi un point fixe. La fonction fr 
admet donc un e-point fixe. 

Puisque fr admet un e-point fixe pour tout e < e' elle admet un 
point fixe, lequel est aussi un point fixe pour / . 
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By applying simple properties of the Brouwer degree, a new and self-contained 
proof of the Antipodal Theorem of Borsuk is presented. The proof uses elementary 
notions of the simplicial topology but has points in common with analytical 
arguments based on the application of Sard's Lemma. 

1. PRELIMINARIES ON AFFINE MAPS 

We begin by recalling some terminology and facts concerning the affine 
maps. By L(Rn) we denote the normed linear space of linear operators 
A: R" -> Rn with \\A || = Sup{||/fx||; | |х|| < 1}. By GL(n, R) we denote the 
subset of L(R") consisting of invertible operators. In what follows, we shall 
repeatedly use a fact that GL(n,R) is open and dense in L(Rn). 

We recall that a map <j>: R" -* R" is affine provided 

for all x, y E Rn and 1ER. Given A E L(Rn) and aER", the formula 
ф(х) — A(x) + a defines an affine map. Furthermore, the assignment 
(A,a)y-+<j> defines a bijective correspondence between L(R")xR" and the 
set of all affine maps from R" into R". An affine map <f>: R" -> R" is regular 
provided <t>(Rn) = Rn. Note that if </>(x) = A(x) + a, where A E L{Rn), 
aER", then ф is regular if and only if A E GL(n,R). From this remark we 
have: 
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(1.1) Let ф: R" -> R" be an affine map. Then the set 

is open and dense in 

Let о = o(p0,..., pk) be a /^-simplex spanned by к + 1 affinely independent 
points p0,..., pkE R". A map ф:о -> R" is affine provided 

for all x, y E о and / E [0, 1 ]. Note that in the case к — n, there is one-to-one 
correspondence between affine maps of о into R" and affine maps at R" 
into R". 

Let ф be an «-simplex of R". An affine map ф:о~* R" is regular provided 
ф{р) is an «-dimensional simplex of R". Clearly ф-.o-yR" is regular if and 
only if ф(х) = А(х) + а, where A E GL(R, n), aER". This implies 

(1.2) Let о cz R" be an n-simplex and ф: о -* R" be an affine map. Then 
the set 

is open and dense in L(R"). 

(1.3) Let o"'1 be an (n - 1У simplex of R", with 
be an affine map and assume that 0 E ф(о" '). Then the set 

is open and dense subset of L(R"). 

Proof Clearly, s / is open. To prove that J / is dense, it will suffice to 
show that for any e > 0 there exists an / 1 6 / such that || A || < e and 
0 £ (ф +A)(o"~1). To prove this let L denote an (n — l)-dimensional linear 
subspace of Л" such that ф{оп~1) c i and choose v E Rn\L. Next because 
O é c r " - 1 there is a linear functional rj: R" R such that ^(л:) > 0 for all 
x Eon~l. Choose a number C > 0 such that С < (||//|| • | |У||)~'. It is now 
clear that the linear map A given by x t—» eCtj(x) v has the desired properties. 

2. SIMPLICIAL M A P S 

We recall that a subspace XcR" is a polyhedron if there is a finite 
collection T = \o\ of geometric simplexes such that (i) X = (J {a |a E T), 
(ii) each face of а о E T is also in T, (iii) if a , , o2 E T, then a , П o2 is a face 
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of both a , and o2. The collection T is called a triangulation of X. If к is an 
integer, then Xk czX which is the union of all simplexes of dimension < к is 
said to be the k-skeleton of X. A triangulation T' of Jf is a subdivision of T 
provided each simplex T is the union of simplexes in T'. In particular, 
subdividing barycentrically each a G Г we get a triangulation T' called the 
barycentric subdivision of T. In what follows by T{m) we denote the iterated 
barycentric subdivision of T of order m. We use the fact that the diameter oi 
the simplexes of Tim) can be made arbitrarily small by taking m sufficiently 
large. 

Let A' be a polyhedron and Г be a triangulation of X. A m a p / : X R " is 
said to be T-simplicial provided for any о E T the restriction/]о: о -> Rm is 
an affine map. Clearly such a map is determined by its behavior on vertices: 
if / is defined on the 0-skeleton X° of X, then it can be extended uniquely to 
a Г-simplicial map from X to R". 

Using this and the uniform continuity o f / we obtain easily the following 
approximation result: 

(2.1 ) Let X be a polyhedron and f:X-*R" be continuous. Then for each 
e > 0 there exists a triangulation T on X and a T-simplicial map fe: X R " 
such that \\f{x) - /£(x)|| < efor all x EX. 

We introduce now an important notion of a regular value for a given 
simplicial map. 

( 2 . 2 ) D E F I N I T I O N . Let (X,T) be a polyhedron and f:X^R" be a 
simplicial map. We say that y G R" is a regular value of / provided 
y G f(X" ~1 ), where X"~1 is the (n - 1 )-skeleton of X. A simplicial map 
f : X R" is said to be normal provided (i) the restriction f\a is regular for 
each «-simplex о E T and (ii) 0 is a regular value o f / . 

The following basic lemma is of importance: 

( 2 . 3 ) L E M M A . Let X be a polyhedron with 0 G * and let f : X -» R" be a 
T-simplicial map. Then the set 

is open and dense in 

Proof. Since where 

is regular for each «-simplex 

is a regular value for 
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it is enough to show that (i = 1, 2) is open and dense in L(R"). If / = 1, 
this follows from (1.2). If /'= 2, since for each (n — l)-simplex a""1 G Г we 
have 0 SÉ f(on~l), this is a consequence of (1.3). 

3. T H E T O P O L O G I C A L D E G R E E 

We recall briefly the definition and some basic properties of the 
topological degree which will be used in the proof of the Antipodal Theorem. 
In the following definition we use the singular homology over the integers. 

Let U be a bounded domain in R" and / : {U, 8U) ->(/?", R 0 ) be 
continuous. Letting К — f ~ l ( 0 ) we have a diagram 

where all arrows but / denote inclusions and We have the 
corresponding diagram of homology groups 

The topological degree d ( f , U) is defined by 

where v is a generator of H„(Sn) = Z. 
Using a singular homology, the following basic properties of the degree 

can be easily verified: 

(I) Normalization. Let be the inclusion. 
Then 

(II) Excision. The degree depends only on the behaviour of / in the 
neighbourhood of where V is open, then 
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(III) Additivity. Given / and K=f~\0) let {Vj\ denote a finite open 
covering of К such that Vj с: and V, nVj = 0 when i Ф j. Then d ( f , U) = 
Ljd(f, Vj). 

(IV) Homotopy. Let ht: (U, 8U) -* (Rn, R" - {0}) be a homotopy. Then 
d(h0,U) = d(hl,U). 

Remark 1. It follows from the homotopy _property that the degree 
depends only on boundary values: if f o r / , g: (U, 8U) -* (Rn, Rn - {0}) we 
have / I 8U= g | 8U, then d ( f , U) = d(g, U), because the homotopy A,(x) = 
t f ( x ) — (1 - t)g(x) joins / and g and does not vanish on 8U. 

Remark 2. Let U = o(p0, px,..., pn) be an и-simplex a n d / : (U,8U)^> 
(Rn,Rn- 0) an affine map. From the properties of the degree it follows 
easily that if / is regular (i.e., f ( x ) = a + Ax, where A E GL(n, R)) and 
0 6 f(U), then d ( f , U) = sign det A. 

4 . T H E A N T I P O D A L T H E O R E M 

Throughout this section we assume that U is a bounded domain in R" 
which is centrally symmetric (i.e., -U = U), and that U is a polyhedron. We 
say that a map f\U-*Rn is odd if f(-x) = - f ( x ) for x e U. 

First we establish 

(4.1) L E M M A . Let/: (0,8U)-+ (R",Rn — {0}) be a continuous odd map. 
IfOG.0, then d ( f , U) is even. 

Proof. Let X=U. Since 0<Éf(8U), e = sup{||/(x)||; xE8U}> 0. By 
(2.1) there exist a triangulation T on X and a Г-simplicial m a p / , : X^R" 
such that | | / (x) - / , ( x ) | | < e/2 for all x EX. Without a loss of generality we 
may assume that Г is symmetric (i.e., о E T implies —a E Г). Define 
f2:X~* R" by f2(x) = 4( / , (x) - / , ( - * ) ) • Evidently f2 is odd and Г-simplicial. 
Moreover, | | / ( x ) - / 2 ( x ) | | = | | | / ( x ) - Ш * ) - i / ( " * ) + Î / . H 0 H < 
i l l / W - / , ( x ) | | + \ Ц Л - х ) - / , ( - x ) | | < £/2 and thus f2 : (U,8U)-> 
( / ? " , / ? " - { 0 } ) is homotopic t o / . Using (2.3), we find A E L(R^) with 
\\A || < e/2 and such that g = f2+A is normal; clearly, g: (U,8U)~* 
(R",Rn - {0}), f2 ~ g and hence d ( f , U) = d(g, U). Because g is normal 
g - 1 ( 0 ) = {x,, — x , , . . . ,x k , — xk], where each x, is an inner point of an n-. 
simplex o, E T. By the additivity of the ' degree we have d{g) = 
L / = i I n t 0<) ~~ I n t ( - a / ) ) - 0 n t h e o t h e r h a n d ' ЬУ Remark 2 we have 
d(g, Int о j) — d(g, Int(—O/), hence d(g,U) = 2^ld(g,lntoi) and the 
proof is complete. 
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(4.2) THEOREM (Antipodal Theorem). Let f : (U, dU)-* [Rn, R" - {0}) 
be a continuous map such that f{—x) = —f{x) for xEdU. If OEU, then 
d ( f , U) is odd. 

Proof. Choose an r > 0 such that for U0={xER", ||x|| < r), U0czU 
and let/0 = / \ g u : dU-*_Rn — {0\. By Tietze's Extension Theorem there exists 
a continuous map/, : (U, 8U) -* (R\ R" — {0}), such that/,(jc) = /„(*) = f(x) 
for xEdU and/,(*) = * for U0. Let g(x) = $(/,(*) - / , ( - * ) ) . Then g is 
odd and g(x)=f2(x) _for xE dUUU0; consequently g:(U,dU)-+ 
{R",R"\{0}). Let V= U\U0. By the additivity, the normalization and (4.1) 
we have d{g, U) = d(g, U0) + d(g, V) = 1 + d(g, V) and hence d(g, U) is 
odd. Since g\du = f\au we get d ( f , U) = d(g, U) and the proof is completed. 

Note. The paper was suggested by [ 11, the difference between the proof given by Alex-
ander and Yorke and our is that we replace differentiable maps by affine maps. The advantage 
is that this permits us to replace transversality arguments by a simpler fact that GL(n, IR) is 
an open and dense subset of L(IR"). The definition and the basic properties of the topological 
degree may be found in [2]. 

After this paper was submitted the authors were informed by H. O. Peitgen of his joint 
work with H. M. Siegberg |3 | in which another type of proof of the Antipodal Theorem is 
given using PL-approach to the degree theory. 
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