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The title of this volume is an abbreviation for the more properly descriptive one: “Topics in the theory of approxi­mation”. It is a brief essay in a field on which an encyclopedia might be written. On the personal side, it is an account of certain aspects and ramifications of a problem to which 1 was introduced at an early stage, and which has given direction to my reading and study ever since.One day about twenty years ago I was admitted to the study of Professor Landau, seeking advice as to a subject for a thesis. After some preliminary inquiries as to my experience and preferences, he handed me a long sheet of paper, and directed me to take notes as he enumerated some dozen or fifteen topics in various fields of analysis and number theory, with a few words of explanation of each. He told me to think about them for a few days, and to select one of them, or any other problem of my own choosing, with the single reservation that I should not prove Fermat’s theorem, an injunction which I have observed faithfully. Guided partly by natural inclination, perhaps, and partly by recollection of a course on methods of approximation which I had taken with Professor Bδcher a few years earlier, I committed myself to one of the topics which Landau had proposed, an investi­gation of the degree of approximation with which a given continuous function can be represented by a polynomial of given degree. When I reported my choice, he said meditative­ly, in words which I remember vividly in substance, if not perfectly as to idiom: “Das ist ein schdnes Thema, ich beneide Sie urn das Thema . .. Nein, ich beneide Sie nicht, aber es ist ein wunderschones Thema!” It is in fact a problem which admits a surprising variety of interesting developments on iii

PREFACE
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iv PREFACEits own account, and offers a natural avenue of approach to a number of fields of still broader importance.Although delayed in its completion by the conflict of other duties, the following exposition is substantially in the form in which it λvas projected at the time of the Colloquium lectures in 1925, and presented in abstract in the lectures themselves. One section, on the vector analysis of function space, originally designed for inclusion in the Colloquium, has meanwhile been published separately instead. The sections which had been written at full length in September, 1925 — practically the whole of the first chapter, parts of the second, and most of the third — have been left unchanged, except in minor details. The elementary account of Legendre series in Chapter I, for example, was written before the appear­ance of the admirable article on the subject by M. H. Stone in vol. 27 of the Annals of Mathematics. A few other articles published since 1925 are mentioned in the text.For the most part, however, citations of the literature have been omitted. The preparation of a really adequate bibliog­raphy would have been a task of such magnitude as to delay the publication indefinitely. References to some of the most important papers of not too recent date are con­tained in my thesis (Gottingen, 1911) and in my report on The general theory of approximation by polynomials and 
trigonometric sums in vol. 27 of the Bulletin of the American Mathematical Society. Among publications in book form supplementing the material given here, mention should be made of Borel’s Lecons sur les fonctions de variables reelles 
et les deυeloppements en series de polynomes, de la Vallee Poussin’s Leςons sur Γapproximation des fonctions d,une 
variable reelle, and S. Bernstein’s Leςons sur les proprieties 
extremales et la meilleure approximation des fonctions analytiques 
d,une variable reelle, all appearing in the Borel series. As to the content of these lectures themselves, there are many points where it would be difficult now to recall the original sources either of specific results and proofs or of suggestions as to method. To the extent that the work is my own, some 
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PREFACE Vparts have been published previously, in my thesis, in various articles in the Transactions of the American Mathematical Society, and elsewhere; other parts are now offered in print for the first time. Numerous detailed acknowledgments, not repeated here, have been made in the pages of the earlier publications. In connection with Chapter IV, reference should still be made to the work of Faber on trigonometric inter­polation in his memoir Uber stetige Funktionen (zweite Ab- 
handlung) in vol. 69 of the Mathematische Annalen. My acquaintance with the statistical formulas discussed in Chapter V, which might have come from any of a variety of sources, was in fact mostly obtained from Yule’s Introduction to the The­
ory of Statistics. The lemma on which the method of Chapter III depends is derived from the most important single memoir in the literature on degree of approximation, S. Bernstein’s epoch- making prize essay of 1912, with which the present work also has other points of contact. And in conclusion it should be said that my study of the problem has been dominated from the beginning not only by the influence of my own teachers, but also by the writings of Lebesgue and de la Vallee Poussin.October 1, 1929 Dunham Jackson
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CHAPTER ICONTINUOUS FUNCTIONSIntroductionWeierstrass first enunciated the theorem that an arbitrary continuous function can be approximately represented by a polynomial with any assigned degree of accuracy. The theorem may be stated with precision in the follθλving form:
If f (x) is a given function, continuous for « ≤ a; ≤ 6, and 

if ε is a given positive quantity, it is always possible to define 
a, polynomial P(x) such that

To λVeierstrass is due also the corresponding theorem on approximation by means of trigonometric sums:
If f (pc) is a given function of period 2ττ, continuous for 

all real values of x, and if ε is a given positive quantity, it 
is always possible to define a trigonometric sum T (pc) such that 
for all real values of x.By a polynomial is meant an expression of the form
This expression will be said to represent a polynomial of 
the nth degree, not only when an is different from zero, but, in distinction from the usage which prevails in some parts of algebra, also when an = 0. That is to say, the words ‘•'polynomial of the nth degree” will be used in place of the longer expression “polynomial of the nth degree at most”. Even the case of identical vanishing is not excluded. A trig-

1 ι
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2 THE THEORY OF APPROXIMATION

The definition is inclusive once more; the simultaneous vanish­ing of an and bn is not ruled out.These two types of approximating function show a persistent and fundamental similarity in their behavior, on which differences of more or less significance are from time to time superimposed. Simplicity of statement and proof will favor sometimes one and sometimes the other.It is readily seen that the number of terms required to yield a specified degree of approximation, or, under the converse aspect, the degree of approximation attainable with a specified number of terms, will be related to the properties of continuity of fix). It is the purpose of the next pages to trace out this relationship in some detail.ι. Approximation by trigonometric sumsFor a considerable body of results, the following theorem may be regarded as fundamental:Theorem I. If fix) is a function of period 2 π, such that 

 

for all real values of xl and x<i, λ being a constant, there will 
exist for every positive integral value of n a trigonometric 
sum Tn(f), of the nth order, such that, for all real values of x, 

 

where K is an absolute constant, depending neither on x, nor 
on n, nor on λ, nor on any further specification with regard 
to the function fix).In the proof of the theorem, use will be made of the following

onometric sum, or more specifically a trigonometric sum of 
the nth order, is an expression of the form
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I. CONTINUOUS FUNCTIONSLemma. If m is a positive integer, the expression

1* 

and the others of similar type, it is seen at once that the product of two trigonometric sums, of orders n↑ and n-> respectively, is a trigonometric sum of order nl ⅛ w2 ∙ It is sufficient for the purpose in hand, therefore, to recall any one of the numerous proofs of the well-known fact that
is a trigonometric sum of order m — 1; its square will then be a sum of order 2m— 2. The fact that 1 — cos ma? is equal to the product of 1 — cos a? by a trigonometric sum of order m — 1 appears, for example, from the identities

To proceed with the proof of the theorem, let

is a trigonometric sum in x, of order 2m— 2. Because of the identity
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4 THE THEORY OF APPROXIMATIONwhere m is any positive integer, and hm is defined by the equation
By means of the substitution x-∖-2u = υ, the expression for Im(x) is transformed into

Both factors in the last integrand have the period 2π with regard to v, so that the value of the integral is unchanged if the interval of integration is replaced by any other interval of length 2π. In particular,
The expression J1w[⅜(r — a?)L by the Lemma above, is a trigonometric sum of order 2m— 2 in (v—x), and may be regarded as a trigonometric sum of the same order in x, with coefficients which are trigonometric functions of v. The whole integrand is a trigonometric sum in x with coefficients which are continuous functions of v, and Im(x) therefore is a trigonometric sum of order 2m — 2 in x, with constant co­efficients. The proof that this sum is an approximate rep­resentation of fix), when m is large, will be based on the original representation of 7w,(rc).Let the equation defining lιm be multiplied by lιmfix). Since fix) is a constant as far as u is concerned, it may be placed under the sign of integration, so that
Consequently
By the hypothesis imposed on fix),
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I. CONTINUOUS FUNCTIONS OHence
or, since Fm(u) and ∖u∖ Fm, (ιι) are even functions of u,

To anticipate the conclusion of the proof, let
These quantities are merely numerical constants. Is is clear that each integrand approaches a limit for t = 0, and that the improper integral defining c2 is convergent.By the use of the fact that 0 <C sin u <Γ u for 0 < u < τr∕2, and the substitution mu = f, it is recognized that

On the other hand, (sinu)∕t< decreases monotonically as u goes from 0 to τr∕2, so that

From these relations it follows that

throughout the interior of this interval. Hence
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c> THE THEORY OF APPROXIMATIONNow let n be an arbitrary integer, and let m be taken equal to ⅜nψl or ⅜(nψl), according as n is even or odd. In either case, 2m— 2≤n<L2m. Let the corresponding expression Im (x) be denoted by Ttl (a?). Then Tn (x) is a trigonometric sum of the nth order (it will be remembered that this is understood to mean of the nth order at most. according to the more usual terminology), and. since l∕m<2∕n,
lm (»)---∕(.τ) < τr4 c2 λ4 c1 n Kλ

nif K is taken equal to τr4c2∕(4c1). Thus the proof of the theorem is completed.So much has been conceded to simplicity of outline, in building up the above inequalities, that the final upper limits are quite unnecessarily large, giving little indication of the actual magnitude of the quantities that precede. It will add a little to the definiteness of the conclusion to point out that c1>(2∕τr)s, since (sin/)//>2∕τr throughout the interior of the interval of integration, while

∖∖ ith more attention to detail, however, the estimate can be cut very much closer. The theorem is actually true with 
K = 3, instead of the value adopted above, or even with a somewhat smaller value of K. On the other hand, it can be shown that the statement is not generally true with a value of K smaller than π∕2.To pass on to a more general theorem, let f(χ) be an arbitrary continuous function of period 2τr, and let ω(d) be the maximum of ∣∕(a⅞)-∕(a¾) for ∣a⅛— ¾ ≤ <?• The function ω(∂') has been called by de la Vallee Poussin the 
modulus of continuity of f(x). With the word maximum replaced by least upper bound, it can be defined for any 

www.rcin.org.pl



I. CONTINUOUS FUNCTIONSbounded function, whether continuous or not. The character­istic property of a uniformly continuous function is that limj>-0ω(d) = 0.Let g>ix) be the continuous function of period 2π which takes on the same values as ∕Cr) at the points 
and is linear from each point of this set to the next. The graph of φ{x) is a broken line, no segment of which has a slope greater than ωi2π∕ri)∕ i2π∕ri) in absolute value. In analytical language, y (χ∙) satisfies the hypothesis of Theorem I, with . _ ω(2τ∕n)

2π∕nFor every positive integral value of n, therefore, there is a trigonometric sum Tn(rr), of the nth order, such that∣ y ix) — Tn (⅛)On the other hand, any specified value of x differs by less than 2 π∕n from one of those for which f and y are by de­finition equal to each other; neither/(re) nor y (a?) can differ by more than ω(2π∕n) from the corresponding common value; and hence
fix) — y(<r)∣ < 2w(~~)

for all values of x. If the quantity Λ7(2π) + 2 is denoted by K', the last two inequalities may be combined to yield the following statement:Theorem II. If fix) is a continuous function of period 2 -τ, with modulus of continuity ω(d), there exists for every 
positive integral value of n a trigonometric sum Tnix), of 
the nth order, such that, for all real values of x,∖fix)~ Tn if) ∣ < K' ω ,

where K' is an absolute constant.
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8 THE THEORY OF APPROXIMATIONWhile this theorem is applicable to any continuous function, it involves the modulus of continuity in the inequality which forms the essence of its conclusion. It can be shown that the assignment of an outer limit of error for an arbitrary continuous function, without some dependence on properties of the function beyond the mere fact of its continuity, is impossible.Since lim>i,=∞ ω(2π∕n) = 0, it is to be noted that Theorem II includes one of the theorems of Weierstrass to which reference was made in the opening lines of the chapter.In preparation for the next developments, there is occasion to examine more closely the proof that was given above for Theorem I. It will be recalled that to an arbitrary positive integer n a second positive integer m was assigned, in terms of which a function Fm (u) was constructed; and a trigono­metric sum Tn(x), yielding an approximate representation of the given function fix), was defined as equal to an ex­pression which could be reduced to the form 
hm being independent of x. A lemma stated essentially that 
Fm (⅜w) is a trigonometric sum in u, of order 2m — 2 <=n. It is possible therefore to write Fwι[⅜(r — a?)] in the form1 ”— An0 ÷ 2 cos k (υ ~ ∙τ) ÷ ‰ siπ k (υ - F)].

δ k=lWhen the above expression for Tn(x) is expanded as a trig­onometric sum in x, the constant term is1 C71
-hm An0 J_nf(v) dv,

and is zero if the last integral vanishes, an observation which will presently be important, for the reason that the indefinite integral of a trigonometric sum without constant term is itself a trigonometric sum, while this is not the case if the sum to be integrated has a constant term different from zero.
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I. CONTINUOUS FUNCTIONS 9It may be pointed out in this connection, though it is not essential to the main argument, that the coefficients Bnk are all zero. This can be inferred from an elementary theorem on trigonometric sums, since Fm(⅛u) is an even function of u, and is also directly apparent on inspection of the proof of the lemma. If a∣c, bk are the Fourier coefficients of /(a?): 

for all values of x. Let tn(x) be the trigonometric sum, without constant term, which has t'n(%) for its derivative:
and let εn be a constant such that

As the d,s are independent of the function to be represented, the calculation of the successive expressions Tn(x) amounts to a method of summation of the Fourier series for ∕(rr).To return from the digression of the last paragraph, let /(a?) be a function of period 2τr, which has everywhere a continuous derivative f(x). For a particular value ofn, let t,n(x) be a trigonometric sum of the nth order, without constant term:
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10 THE THEORY OF APPROXIMATIONexists a trigonometric sum of the nth order, which may be denoted by Fn(,r), such thatI rn (.r) — 7 ll (.∕∙) < K~~ .If Tn (x) = 6t (rr) ⅛ τn(x), then /(a?) — Tll (⅛) = rn(a?) — τ,l (x), and ∣∕(<r)-Ta⅛)∣ ≤
nFrom the existence of an approximation for/'(x) it has been possible to draw an important inference with regard to the approximation of fix). If fix) is itself the derivative of a function of period 2∕r, so that the integral of fix) over an interval of length 2π is zero, it follows that

whence, according to the second paragraph preceding, the sum τn iχ) given by the proof of Theorem I as an approximation for rnix) will have no constant term. So the constant term in the present Tn(re), defined in terms of this τnix), will be zero likewise.The way has now been prepared for a demonstration of Theorem IΠ. If fix) is a function of period 2π, having 
a ρth derivative ff-p∖x) such that

f{p) ixi) —f(p) ixi) ∖ ≤ λ ∣ χ2 — χl

for all real values of xi and x∙i, λ being a constant, there will 
exist for every positive integral value of n a trigonometric sum 
Tn(x), of the nth order, such that, for all real values of x,∣∕ω-τ,,w∣ ≤ a_
where K is the absolute constant found in the proof of 
Theorem I.It is to be noticed that the argument is based on the ex­plicit construction of the approximating sum in Theorem I, 
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I. CONTINUOUS FUNCTIONS 11and it is not clear that a smaller value of K in that theorem, justified by some different method, would necessarily be applicable here. The value K — 3, previously mentioned in connection with Theorem I, results from the same explicit construction, and is available in Theorem III.By Theorem I itself, there exists a sum Tnι(x) such that i∕⅛>(,τ)-Tnl⅛)∣ ≤ κ^∙.On the basis of the more recent discussion, asf t∕^(as)cZas = f<p-v (7r)—y(p-υ (—7r) = 0, ¢7—71it may be understood that rΓnl (as) has no constant term. Since is the derivative of the periodic function
f(p-∖) (x), furthermore, an approximating sum Tn2(^) may be constructed for /(2,-1)(as), as indicated above, with 
εn — Kλ∕n, and∣∕<∏∙w-‰w∣ <If p > 1, ∕<p-1> (as) is itself the derivative of the periodic function /(^_2)(as), and the constant term in Tn2 (as) is zero. By a sufficient number of repetitions of the process, the theorem is established.In Theorem II, even if the integral of f (as) over an inter­val of length 2π is zero, the same thing is not necessarily true of the auxiliary function φ(as), and it is not clear that the approximating sum in the conclusion of the theorem will lack the constant term. The difficulty is not a serious one, however. If
let y-1 (as) = φ (as) — c∕(2π). Then
and there is a trigonometric sum 27m(as), without constant term, such that

www.rcin.org.pl



12 THE THEORY OF APPROXIMATION

I (f>ι (x)- τnl (x)But on the hypothesis that the integral of f dx over a period is zero,
r*n pπk I = ∣ J-7l <p(x)dx∖ = J „ [φ (x) -f(x)] dx 'ι< 2τr∙2ωand

So the conclusion of Theorem II applies to the approximate representation of f(x) by a trigonometric sum without constant term, when f(x) is the derivative of a periodic function, on the condition merely that JΓ'= A7(2π)4-2 be replaced by 
K" = K∕(2ττ) + 4.The same process of induction which was used to prove Theorem III then serves to establishTheorem IV. If f(x) is a function of period 2π which 
has everywhere a continuous pth derivative, with modulus of 
continuity ω(<J), there exists for every positive integral value 
of n a trigonometric sum Tn(x), of the nth order, such that, 
for all real values of x,∣∕(∙r)-T√^)∣ < K''Kp ∣2π∖

np ∖ n I ’

where K is the absolute constant given by the proof of Theorem 1, 
and K" = 7Γ∕(2ττ) + 4.A part of the content of this theorem may be restated in the followingCorollary. If f(x) is a function of period 2π which has 
everywhere a continuous pth derivative, there exists for every 
positive integral value of n a trigonometric sum Tn(x), of the 
nth order, such that lim np en = 0,n=∞
if ε∏ is the maximum of ∖f(x)— Tn(x)∖.
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I. CONTINUOUS FUNCTIONS 132. Approximation by polynomialsThe development of the theory of approximation by trigono­metric sums will be interrupted at this stage, to make way for a presentation of the corresponding results with regard to polynomial approximation. The transition will be aided, however, by one more lemma on the trigonometric side.Lemma. If f(x) is an even function of period 2π, and 
if there is a trigonometric sum Tn(x), of the nth order, such 
that ∖f (x) — Tn(x)∖<ε for all values of x, there exists a cosine 
sum Cn(x) of the same order (that is, a trigonometric sum without sine terms), such that, for all values of x,∖f(x}-Cn{x)∖ ≤ e.When /(a?) is even, the approximating sum given by the proof of Theorem I will automatically lack the sine terms, as an immediate consequence of the fact, already pointed out, that its definition is equivalent to a method of summation of the Fourier series; and this observation would be sufficient for the main argument; but it is of interest to note that the lemma subsists independently of any particular mode of con­struction of the original approximating function.For the proof, letG,(*) = y[7,n⅛) + r,,(-∞)].Then Cn(x) consists merely of the cosine terms of Tn(x), without the sine terms. On the other hand, since f(x) is even, /(a?) = y [/(£•)+/(—z)],and therefore|/(®)-C„(®)| = ∣y[∕(.r)-π⅛)] + y[∕(-^-‰(-≈)]= c∙Nθλv let ∕(∙τ) be a function defined for — 1 < x ≤ 1, and subject to the condition∣∕(a⅛) —√¼)∣ < λ∖χs-χl∖

www.rcin.org.pl



14 THE THEORY OF APPROXIMATIONthroughout this interval. Let
X = cos 0, f(x) — /(cos 0) = φ (0) .Then <p(θ) is an even function, defined for all real values of θ, and∣φ(0∙>) — φ(0i)∣ = ∣∕(cos02)-∕(cos01)∣

≤ λ cos 02 — cos θ1∖ ≤ λ 02 — 0l .By Theorem I, together with the lemma just proved, there exists a cosine sum Cn(fi), of the nth order, such that∣9>(β)-β1(0)∣ < —.— nBut a cosine sum of the nth order in 0 is a polynomial of the nth degree in cos0, which may be denoted by Pn(x), and the conclusion is that a polynomial Pn (x) exists such that ∣∕Cr) -Pft(aO∣ < 7y-for —1 ≤ x < 1.If the interval (—1, 1) in the hypothesis is replaced by an arbitrary interval («, 6), a preliminary transformation of variable may be made according to the formulas /0) = /1 (/,whereby f1 (y) is defined for — 1 ≤ y < 1, and
fι (*∕2) — fl (g∕l)= ∣∕(a⅛)-∕(λ⅛)∣ ≤ λ∣a⅛-a⅞∣ = J A(& —«) ∣y8-y1∣.The result just obtained may then be applied to the approx­imation of f (/ by a polynomial in y, which is at the same time a polynomial in x. The general conclusion may be formulated asTheorem V. If f(x) satisfies the condition 
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I. CONTINUOUS FUNCTIONS 15
throughout the closed interval (a, b), of length I, there exists 
for every positive integral value of n a polynomial Pn(x), of 
the nth degree, such that∖f(x)-Prfx}∖ <
for a < x < b, with L = ⅛K, ιvhere K is the constant of 
Theorem I.If the smallest possible value of K were found in Theorem I, it is not clear that ⅜ K would then be the smallest admissible value of L, but it can be shown that the validity of Theorem V is not general for any L smaller than ⅜.More generally still, suppose that f{x) is an arbitrary con­tinuous function for α≤<r≤6, and let ω(∂) be its modulus of continuity in this interval. With b— a = l, let y(x) be the continuous function which takes on the same values as 
f(x) at the points

a' a+'n' 'l+ n ’ n' b,and is linear from each point of this set to the next. The function φ(x), having a broken line for its graph, satisfies the hypothesis of Theorem V, withω (l∕ri) 
l/nwhile

∕(x) — φ (x,) i ≤ 2 ω (Z/n)throughout («, δ). There is a polynomial Pn (x,) such that φ (x,) — Ph (x) ! ≤ L ω (l∕n);setting L-∖-2 = L', one may stateTheorem VI. If f(x) is a continuous function with mod­
ulus of continuity ω(d) in the closed interval {a, b), of length 
I, there exists for every positive integral value of n a poly­
nomial Pn(x), of the nth degree, such that, for a < x <b,∖f(x)-Pn(x)∖ < If ω(l∕n),

where If is an absolute constant.
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16 THE THEORY OF APPROXIMATIONThis incidentally includes the theorem of Weierstrass on polynomial approximation, which was quoted at the beginning of the chapter.The proof of a theorem corresponding to Theorem III is simplified by the fact that the indefinite integral of a poly­nomial is always a polynomial, so that special considerations analogous to those relating to the constant term in the trig­onometric case are not needed. A new complication is introduced, on the other hand, by the circumstance that the degree of a polynomial is raised by integration, while the order of a trigonometric sum remains unchanged.Suppose that f{x) has a continuous derivative f' (x) for α < a? ≤ ⅛, and that there is a polynomial pfn(x), of degree 
n— 1, such that ∖f' {x)-p'n{x)∖ ≤ fnthroughout the interval. Let

f(x)- pn(f) = rn(x).Since ■ r,n (z) ∣ < εn, rn (a?) satisfies the hypothesis of Theorem V, with λ = en. There is consequently a polynomial πn(x), of the 7zth degree, such that∣ rn (x) — πn (P) ∣ ≤ L^n-.

If pn (x) + πn (z) = Pn (z), this Pn (z) is a polynomial of the nth degree, and∣∕(ir)-Pn(αι)∣ = ∣ rn (a?) — τrw (a?) ∣ ≤ ' ∙Let f(x) have a ^th derivative satisfying thecondition that∣∕w(a⅞)-∕^(a¾)∣ ≤ λ∣a⅞-a¾∣throughout (a, 6). If n—jpZ>O, there is a polynomial of degree n—p which differs from /(p)(a;) by not4 more than 
Llλ∕(n—p) throughout the interval. There is then, by the preceding paragraph, a polynomial of degree n-pfΛ,
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I. CONTINUOUS FUNCTIONS 17differing by not more than Z2Z22∕[(n—p)(n— ρ + l)] from 
f(p~1}ix), and so on. Finally a polynomial P∏ix) is obtained, of the Mth degree, for which

For the applications, the existence of a constant in the right-hand member of the last relation is far more important than any close estimate of its numerical value. It is most convenient, even at considerable unnecessary expense nume­rically, to be satisfied with the observation that1 __ n n(n—p) in—p-∖-l)∙∙∙n n—p n— p+1
n 1 < (p + l)∖ 1

n — 1 rip+x = p! np÷1for n ≥ p + 1, and to state the result in the form ofTheorem VII. If fix) lias a pth derivative fp,ix) satisfying 
the condition that∣∕^(x∙2)-∕^(.τ1) ≤ λ∣a⅞-α¾∣
throughout the closed interval (a, b), of length I, there exists 
for every integral value of n Z>p a polynomial Pn ix), of the 
nth degree, such that for a < x l>,l∕ω-p√≈)l
where Lp — ip + 1)^, Lp+1Ip!, and L is the constant of 
Theorem X.It is clear that even with 2 = 0 the hypothesis implies nothing whatever as to the possibility of approximating fix) by a polynomial of degree lower than p, since fix) itself may then be any polynomial of the pth degree. By suitable changes in formulation it would be possible, though of secondary interest, to admit the value n = 0 in Theorem V (or Theorem I), and the value n = p here.From Theorem VI, by reasoning similar to the above, one may deduce
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18 THE THEORY OF APPROXIMATIONTheorem V11L If f(x) has a continuous pth derivative with 
modulus of continuity ω(∂) throughout the dosed interval (a, b), 
of length I, there exists for every integral value of n > ρ 
a polynomial P∣l (x), of the nth degree, such that for a≤r^l>.

f(x) — Pn (x) ∣ < p- ω----------,— rip ∖ n —p /•s.
where L'p= (j> + l)7,~1 Lp (.If- 2)/pl, and L is the constant 
of Theorem X.Corollary. If ∕(.τ) has a continuous pth derivative for α < a? ≤ there exists for everg positive integral value of n 
a polynomial Pn (x), of the nth degree, such thatlim npεn — 0, n = ∞
where εn is the maximum of f(x)—Pn(x) in the interval 
(a, &).The exceptional status of the values of n ≤ p has no significance for the corollary, which is concerned only with a limit for n = ∞.3. Degree of convergence of Fourier seriesThe preceding theorems can be made to serve as basis for a discussion of the convergence and rapidity of convergence of Fourier and Legendre series, as well as of other processes of approximation. This idea will be developed more fully in succeeding chapters; its first consequences will be presented here.With regard to the Fourier series for a given function f(x), it will be premised merely that it is a series of the form~ + Σ (at cos kx + sin kx),

2 k ιin which the coefficients have the values
ttk — — f f(f) cos kt dt, bk = —- f f(t) sinkt dt, 

π J→d π J-πthe formula for a,k being applicable when k = 0, as well as when k is positive. The expression
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I. CONTINUOUS FUNCTIONS 19
Sn (x) = + ∑ (ctk cos lex + bk sin kx)

- k—1will be called the “partial sum of the series to terms of the nth order.”If the quantity-i-⅛cosz< + cos2u + ∙∙∙ ⅛cosnwis multiplied by 2sin⅜n, the product may be rewritten as

which immediately reduces to sin (n + ⅜) u, so that——1- cos u -4~ cos 2 u -1~ ∙ ∙ ∙ -j- cos n u sin (n + ⅜) u2 sin ⅜ uLet each coefficient in Sn (x) be replaced by the integral expression which defines it. Since cos/rx and sin⅛aj are independent of t, they may be written under the sign of integration, and the various integrals may be combined into a single one:
Sn(x) =

n^4^ cos Zc(∕ —⅛=ι1
π

sin (n + ⅜) (/ — x)2 sin ⅜ (/ — x) dt.From the last expression may be deduced the following:Lemma. If f(x), of period 2π, is bounded and integrable (in the sense of Riemann or in the sense of Lebesgue), if∖f{x)∖ < M

for all values of x, and if Stl (a?) is the partial sum of the 
Fourier series for fix), to terms of the nth order, then2*
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20 THE THEORY OF APPROXIMATION! S,w (x) < CM log n,

for all values of x and for all values of n > 1, where C is 
an absolute constant, depending neither on x, nor on n, nor 
on the function fix).By the hypothesis on /(.«),
If one-half the integral on the right is denoted by jn, its form may be modified by the substitution u = ⅛(∕— x), and by recognition of the fact that the resulting integrand is an even function of u, of period π, to yield the conclusion that

From the fact thatsin (2n + l)zt sinuit follows that sin (2 7? + l)?z sin u ≤ 2nf 1for all values of u. On the other hand, sin (2n⅛ l)z<j ≤ 1, while sin u > sin (ττ∕2) 2 1 <_ π 1
u — π∕2 7r ’ sinw = 2 uthroughout the interval of integration. So 
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I. CONTINUOUS FUNCTIONS 21The last expression does not exceed a constant multiple of log n, for n ≥ 2, and the conclusion of the lemma is justified.The method of application of the lemma, which is due to Lebesgue (though he did not make so extensive use of it as is done here), may be summarized inTheorem IX. If f(x) is a continuous function of period 2τr, 
and Sn(x) the partial sum of its Fourier series to terms of 
the nth order, n>l, and, if there exists a trigonometric sum 
Tn(x), of the nth order, such that

for all values of x, then, for all values of x,

where B is an absolute constant.The statement is equally true, though of less interest, if ∕(je) is merely assumed to be integrable; of course εn can not approach zero, when the relations are considered for successive values of n, unless f(x) is continuous.Let the sum Tn(x) in the hypothesis have the expression
It is found by direct integration that
for A- ≤ 7i, so that the partial sum of the Fourier series for 
Tn(x), to terms of order n, is identical with Tn(x) itself. If the Fourier coefficients of fix) are cα-, bk, those of the function
are ak— ak, bk— βk, for k <fn, and the partial sum sn(x) of the Fourier series for Rnlx), to terms of order n, is
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22 THE THEORY OF APPROXIMATIONSince Rn(x)∖ ≤ εn, it follows from the Lemma that
Consequently
for n ≥ 2, and the last expression has the form Bεnfogn, with B = (log 2)~1 + C.The theorem may immediately be specialized and made more definite by combination with Theorems I—IV, as follows: Corollary I. If

for all values of xx and x2, λ being a constant, then

Corollary II. If f∖x) is continuous with modulus of con­
tinuity ω (d).

Corollary Ila. The Fourier series converges uniformly to 
the value f(x), if f(x) has a modulus of continuity ω(∂') 
such that linij>=0 ω(∂) log 6 = 0 (Lipschitz-Dini condition).Corollary III. If f(x^) has a nth derivative f(p} (χy) such
that

for all values of xi and x2, 2 being a constant, then

Corollary IV. If f(x) has everywhere a continuous pth 
derivative with modulus of continuity ω(d),
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I. CONTINUOUS FUNCTIONS 23
In each of these statements, the conclusion holds for all 

values of x, and for all values of n'≥z2∖ the coefficient A is 
an absolute constant, while √ip depends only on p.The corollaries are stated separately for emphasis; it is clear that all are included in Corollary IV, if it is under­stood that ρ may in particular have the value 0. The use of the same A in I and II, and of the same Ap in III and IV, signifies merely that when two constants are concerned, one symbol may be used to represent the larger of them.It is worthy of note that even the dependence of Ap on 
p can be eliminated, with a resulting simplification in Cor­ollaries III and IV which does not have a counterpart, as far as the present evidence goes, in the case of the corre­sponding third and fourth Theorems.If f(x') is a function of period 2π having a continuous derivative, the Fourier series for f∖x) is that obtained by formal differentiation of the Fourier series for f(x). This is recognized without any further assumption as to the con­vergence of the series, from the relations

J ιf,(f) cos ∕.-tdt— k J ,f∕(0 sinhtdt,

(i7l (Cl∣ ιf,(f)sinktdt — —∕>J f(t)cΛsktdt,which are obtained by integration by parts, the terms which would appear outside the integral sign reducing to zero, because of the periodicity of the functions involved. If the coefficients in the series for f(x) once more are α*, 6⅛, and if f(x) has a continuous derivative of order 2q, where q is any positive integer, the Fourier coefficients for f(2q) (x) are «fc = (— 1)* Hlq a∣c, Λ = (— 1)q k2q bk, which means that the series for f(x) can be written in the form-~ ⅛ (— 1)« ∑ -y∣- (αfc cos kx ⅛ Λ∙ sin kx).
2 k≈ι k~'1The partial sums of the series for f(x) and for fc2qfx), to terms of the nth order, may be represented by Sn (a?) and 

(x) respectively.
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24 THE THEORY OF APPROXIMATIONLet
and suppose now that where for allvalues of n that are considered, and limn=∞fn = 0. Then
By any of the preceding corollaries, IIa, for example, the series for fCrt converges to the value of the function, while the series are convergent, becauseρ⅛ (F)∣ is uniformly bounded. Hence the remaindeι can be written and rearranged as follows:

As the parentheses in the last summation are all positive,

Under the hypotheses of Corollary III, let p = 2q if p is even, is odd. Then Corollary I or Corollary Hi may be applied directly to f(2q)(x), which is found to satisfy the requirements of the preceding paragraph, with ⅝ = (√4λlogn)∕w in one case and in the other. Thecorresponding values of 2εn∕n2q are (2 Aλ log n)∕np+l and (2 J-ι 2 log n)∕np+1 respectively. For literal accuracy, it must be admitted that (log n)⅛ diminishes only from n = 3 on, and that the conclusion has been established, when ρ is even,

www.rcin.org.pl



I. CONTINUOUS FUNCTIONS 25only for n ≥ 3. The value n = 2 may be included if the previous ⅛ is replaced by a somewhat larger quantity, with a suitable adjustment of the constant in the conclusion, if necessary.Similar reasoning may be employed under the conditions of Corollary IV, except that it is no longer satisfactory to take 2q=p when p is even, as ω(2π∕n)logn might not decrease with increasing n. It is sufficient, however, to let 
p = 2g, + 2 when p is even, ρ — 2g + l when p is odd, and to obtain fn by the application of Corollary IV to (a?) as thus defined. From the definition of ω(d) it is certain that ω(2τι∕n) itself diminishes, or at any rate does not increase, as n increases.All the cases in question are covered, with some redundancy, if the following are considered successively: for ω(<5)≤2∂, p = 0, 1, 2g (q ≥ 1), 2// + 1 (// ≥ 1); for general ω(<J), p = 0, 1, 2, 2//+1 (q> 1), 2⅛ + 2 (q> 1). If a single letter is used to represent the largest of the finite number of con­stants entering into the corresponding conclusions, the result may be formulated thus:Theorem X. The preceding Corollaries III and IV may be 
restated, for all values ofρf(), with the multiplier Ap replaced 
by an absolute constant D. depending neither on p nor on 
anything else.4. Degree of convergence of Legendre seriesA considerable part of the above reasoning can be carried over to the case of Legendre series, though the relations are less simple than for Fourier series, and the results as presented here will be less complete.By the Legendre series for a given continuous function f(x) is meant a series of the formα0 Ao (a?) + a1 Xi (x) + a2 X2 (#) H-----where X∕c(f) is the Legendre polynomial of the ∕rth degree, and 

⅛ = ++J+(∕)x√<m∕∙
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26 THE THEORY OF APPROXIMATIONNot to work out the theory- of these polynomials from the beginning, it will be assumed as known that one of them is defined for each integral value of A'≥0. the first two being Xo = 1, X1 = x; that they satisfy the relations

This function can be rewritten in the form

that any successive three of them are connected by the recursion formula
and that the polynomial of the Ath degree can be expressed in the form
In the last expression, the presence of imaginaries is only superficially apparent; if the integrand is expanded by the binomial theorem for a positive integral exponent, the co­efficient of each odd power of 1 after integration is an integral which is seen at once to be equal to zero.Let stand for the sum of the first %-∣-l terms ofthe series:
By the definition of the coefficients,
where
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I. CONTINUOUS FUNCTIONS 27the identity is immediately verified for n = 0, and may then be proved in general by a straightforward process of induction, based on the recursion formula.In the integral expression for Xk(x), when x ≤ 1,
and hence Xk(x) j ≤ 1. There will be occasion to use a closer inequality for Xjc∖ in the interior of the interval (—1, 1). To return to the integral representation,

the last equality resulting from the fact that cos2 φ = cos2 (zr—φ). Since
and since sin φ ≥ 2φ∕τr throughout the interval of integration, while 1—x2 is positive for the values of x under considera­tion. it follows that

By an application of the extendedmean value theorem to the function e y,

present connectionSo
so that for all real values of y, and in the
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28 THE THEORY OF APPROXIMATIONand, by the substitution u — (⅜ ∕⅛∙)w 'ξ φ.
where c1 is independent of It and a?; the numerical value Ci = (π∕2)ιz2 is not essential for present purposes.From the relation just obtained it follows, first, that if xis restricted to an interval then
where g is independent of lc and x, but depends on jy; and secondly, that
where c2 is independent of k.It is possible now to proceed to the proof of the following lemma, which assigns an upper bound for ∣ Sn(x) ∣, not through­out the entire interval — 1 ≤ x ≤ 1, to be sure, but through­out an interval interior to it:Lemma. If f(x) is bounded and integrable (in the senseof Riemann or in the sense of Lebesgue)
throughout the interval, and if 8n(x) is the partial sum of 
the Legendre series for f(x), then

where G does not depend
on x, n, or the function f(x), but does depend on η. The proof starts from the fact that
Let the interval of integration be divided into five sub-intervals, terminated by the points
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I. CONTINUOUS FUNCTIONS 29Under the hypothesis that — 1 ⅛ η <x < 1 —η, these points will succeed each other in the order named, as soon as n>2∕ιy. It will be assumed for the present that this con­dition is satisfied; then, in particular, nφθ, and as there will be occasion to observe incidentally, [(?? + l)/n]1/2 < 2. Let the values of the integral of Kn ∖ over the sub-intervals be denoted by Z1, ∙ ∙ ∙, 75 respectively. The relation ∣Xfc(∕)∣ < gl^k112, can be used in the second, third and fourth integrals, and the relation ∣ Xιi(x) ∣ ≤ ,√∕∕^1''2, which is independent of t, in any of the five. In the middle interval,

and hence
The representation of Kn(x, t) as a fraction is to be used in the remaining integrals. In the first interval, ∖x— d≥⅜z∕, and
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30 THE THEORY OF APPROXIMATIONIn the same way, I*><A(⅛glη. In the second interval,
so that
or, by the substitution x—t — u,

Similarly, Zt < 2 r∕2 (log 2 ⅛ log n). As n is an integer satis­fying the condition n>2∕η>2, it is certain that n > 3. logn>l, and the inequalities that have been obtained for Z1, ∙ ∙ ∙, Z5 will merely be strengthened if the factor log v is inserted in the right-hand members wherever it does not occur. By combination of these inequalities, 
for n↑>2∕q, the number Gt1 depending only on z∕. For each value of n belonging to the range 2 < n < 2∕η, the integral, considered as a function of x for —1 + ⅞ < a? < 1—η, has a maximum value. Let Gi be the largest of the finite number of maxima thus determined. Then Cr2 depends only on η, and the statement of the lemma is true for all values of n ≥ 2, if G is taken as the larger of the numbers Gl. (¾∕log 2.For the application of the lemma, it is to be noticed that an arbitrary polynomial of the nth degree can be expressed identically as a linear combination of Ao (rr), *'∙, XιC*0.∙ with constant coefficients. Then a process of reasoning which is entirely analogous to that used in the proof of Theorem IX, and which need not be repeated at length, serves to demonstrate
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I. CONTINUOUS FUNCTIONS 31Theorem XL If f(x) is a continuous function for — 1 = x ≤ 1, and Sn (f) the sum of the first n + 1 terms 
of its Legendre series, n↑>∖, and if there exists a polynomial 
Pn {x), of the nth degree, such that 

where H depends only on η.The more specific results obtained by combining this prop­osition with Theorems V—VIII will not be formulated sepa­rately, but will be summarized in a singleCorollary, lff(f) has a continuous pth derivative (p ≥ 0) 
for —1 < x ≤ 1, with modulus of continuity and if
Sn (x) is the sum of the first n ⅛1 terms of the Legendre 
series for fix), then

V - uSince ⅛ may be arbitrarily small, the last conclusion implies that the series is convergent, not necessarily uniformly, throughout the open interval —∖<,x<Λ.Gronwall (Mathem atische Ann alen, vol. 74 (1913), pp. 213-270; Transactions of the American Mathematical Society, vol. 15 (1914), pp. 1-30) has shown essentially that
for — 1 ≤ ≤ 1, where 6t0 is an absolute constant. It followsthat conclusions analogous to those of the preceding theorem and its corollary hold for the entire closed interval (—1, 1),
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32 THE THEORY OF APPROXIMATIONif the factor logw is replaced by ??1/2, the corresponding sufficient condition for uniform convergence being that li∏V=o ω(d)∕∂'1∕2 = 0. But the proof of the relation of in­equality for the integral appears to be rather long, and will not be set forth here. From the definition of Kll, together with the facts that ∣A⅛(F)j ≤ 1 for —1 ≤ x ≤ 1 and that J* ∣Xfc(f) dt < (⅛llill2, it is obvious that
where c3 is an absolute constant; and it can be inferred at once that the series converges uniformly to the value f(x) for —1 ≤se< 1, if f{x) has a first derivative with a modulus of continuity o. (<5) such that lim^=0 ω(d)∕d1∕2 = 0. while there are corresponding theorems on degree of convergence. In a later chapter, conditions will be obtained which are closer than those thus indicated, though not so close as the ones corresponding to the factor n1,2.From the discussion of approximation in terms of polynomials and trigonometric suras it is natural to pass to similar questions with regard to developments in series of more general functions, particularly the characteristic functions defined by linear differ­ential equations with boundary conditions. The beginnings of such a theory have been presented by the author (Trans­actions of the American Mathematical Society, vol. 15 (1914), pp. 439-466) and W. E. Milne (the same Transactions, vol. 19 (1918), pp. 143-156). The present account, however, will be continued along other lines.
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CHAPTER IIDISCONTINUOUS FUNCTIONS; FUNCTIONS OF LIMITED VARIATION; ARITHMETIC MEANSIntroductionThe discussion hitherto has been concerned almost entirely with uniform convergence, and with functions that are con­tinuous throughout the interval under consideration. Corres­ponding theorems with regard to the approximate represen­tation of discontinuous functions are naturally less simple, and perhaps of less immediate interest. It will be well, nevertheless, not to disregard entirely the question how fai­th e theory that has been outlined can be brought to bear on the representation of such functions. This question will occupy the present chapter. (For a somewhat different set of theorems on the approximate representation of discontinuous functions, reference may be made to a paper by C. E. Wilder, in the Rendiconti del Circolo Matematico di Palermo, vol. 39 (1915), pp. 345-361.) There will be occasion also for the further development of the theory as applied to continuous functions, by reference to the concept of limited variation, and by study of the summation of Fourier series according to the method of the first arithmetic mean. A beginning will be made by a review of some well-known general theorems about Fourier series.ι. Convergence of Fourier series under hypothesis of continuity over part of a periodLet f(x) be a function of period 2τr, which is summable over a period, together with its square. (Without change in the form of the argument, the discussion can be kept elementary for the present, with results which still have a high degree '' 33 3
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34 THE THEORY OF APPROXIMATIONof generality, if it is assumed instead that f(x) is bounded and integrable in the sense of Riemann.) Let

Then, as may be verified by multiplying out the square and integrating term bv term.

As the first member can not be negative, it must be that
for all values of n, and hence that the series
is convergent. It follows that for any function f(x) of the character specified, the coefficients cik, bk approach zero as k becomes infinite. The identification of the sum of theseries with the value is not needed forpresent purposes.The assumption that [∕(rr)]2 is summable is not essential to the truth of the conclusion. On the hypothesis that∕(.r) itself is summable, let fy{χy) be the function which is equal
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II. LIMITED VARIATION; ARITHMETIC MEANS 35when ∣ and equal to 0 whenLet α⅛, bk be the Fourier coefficients of fix), and aιtN, bkN the corresponding Fourier coefficients of ,. It is knownfrom the earlier work that limfc=30 aw = υ, nπ⅛=∞ bkχ = 0, for fixed Λ7, since is bounded. Let ε be an arbitrarypositive quantity, and let N be taken so large that
The hypothesis of summability implies that such a choice of N is possible. Then

for all values of ∕√, and hence
But for the particular value of N in question there is a 7⅛ such that and forι, c,iK4ω∕.+ +o ÷¼λ ιas^ condition it follows that 

is a summable function of period 
2π, and if ajc, bjc are its Fourier coefficients,

Now let f(x), still summable and of period 2τr, be supposed to vanish identically for x0 — η ≤ a? ≤ a⅞-j-17, O<17<π. As was shown in the first chapter,
Let t — x0 = u∖ inasmuch as the integral of a periodic function over a period is the same, wherever the initial point is taken, the limits —π,π may be retained after the substitution:

3*
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36 THE THEORY OF APPROXIMATION

or, after expansion of sin (nu⅛⅜u) by the addition theorem,
f (a⅛ + w) cos n u d u.The factor cot ⅜ u is bounded and continuous over the range of integration, outside the interval where ∕(rr0 + w) vanishes identically. Hence ∕(a⅞ + w) cot⅜w, like ∕(a¾÷w) itself, is a summable function (or a bounded function integrable in the sense of Riemann, if this hypothesis was originally im­posed on ∕(,τ)), and the reasoning of the preceding para­graph is directly applicable to show that both integrals in the last expression approach zero as n becomes infinite; that is, lim Sn C⅞) = 0.More generally, if/(/) and <f>(x^) are two summable functions (or two functions satisfying the alternative hypothesis), if 

Sn (/) and sn (x) are their respective Fourier sums of the 9?th order, and if f (x) and φ (x) are identically equal for 
x0— η ≤ x < a⅞-t-*b thenlim [Sw (a,0) — sn (a¾)] = 0;
if the Fourier series for φ (α∙) converges for x — x0 to the 
value <p (a⅞) = ∕0⅞), the Fourier series for f{x) does the 
same. This is commonly expressed by saying that the con­
vergence of the Fourier series for a given function at a speci­
fied point depends only on the behavior of the function in the 
neighborhood of the point; it is tacitly understood that only functions of some specified class are considered, as, in the present connection, summable functions, or functions which are bounded and integrable.
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II. LIMITED VARIATION; ARITHMETIC MEANS 37It is possible then to pass immediately from Corollary Ila of Theorem IX in the first chapter to the following statement:Theorem I. If fix) is a summable function of period 2π (or, less generally, a function of period 2π which is bounded and integrable in the sense of Riemann), and if there is an inter­
val (a⅛— q, a⅞ + ^), O<^<τr, throughout which fix) is 
continuous, with a modulus of continuity ω (d) such that lim^-0 ω(d) log d = 0, then the Fourier series for fix) con­
verges for x = x0 to the value fix<j).For a periodic function φ (a?) can be defined as equal to 
fix) in (a⅞— η, a⅞-j-f∕), and linear, say, from x0fi-η to 
x0— η-∖-2ττ, and this φ(rr) will have a modulus of continuity satisfying the requirements of the Corollary cited.Attention will next be directed to the simplest case of convergence at a point of discontinuity. Let fix) now be a function which has a “finite jump”, or discontinuity of the first kind, at the point x = x0, approaching limits which may be denoted by fix0—) and fix0-∖-) as x approaches x0 from the left and from the right respectively. Let it be supposed that the values of fix) in the interval x0—η^x<,x0, to­gether with the value fixa—), form a continuous function with modulus of continuity ω1(d), and that fix) is likewise continuous, with the other limiting value at x0, in the interval from xq to x0-}-η, the modulus of continuity this time being ω3(d). For each value of d, let ω(d) represent the larger of the numbers ω1, ω2. It will be said briefly that fix) is 
continuous for x0 — η < x < Xo~∖^ y, with modulus of. c<m- 
tinuity ω(d), except for a finite jump at the point x0. It is understood always that fix) is summable over a period. If lim^0ω(d) log d = 0, Theorem I establishes the convergence of the Fourier series for fix) at all interior points of the interval (α,0—//, x0-∖-f), other than x0, and it remains to consider the question of convergence at the point x0 itself.For this purpose, it may be assumed without loss of gene­rality that x0 = 0. For the terms of the series which involve cosw and sinn#, taken together, are identical with the corresponding terms in the development of fix) as a function 
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38 THE THEORY OF APPROXIMATIONof x— x0. In formulas, let x — x0 — y, f(x) = φ(y), 
t — x0 = u. Then u — y — t — x, and

The assumption that x0 = 0 is therefore equivalent to a change of variable which does not affect the conditions of the problem.With this understanding, let the symbols ∕(a⅛+) and f{χiy—) be replaced by /(0 +) and /(0—), let 
and let ∕2 (a?) similarly be an even function identical with f(x) for —π <x<ZO, and taking on the value /(0—) for x = 0. Let ‰ (rr) and ‰ (a:) be the partial Fourier sums for ∕1 (a?) and ∕2(∕) respectively. The function ∕1(∕) is continuous throughout the interval —>∕ < x < η. If x1 and x2 are two numbers belonging to this interval, and if ia⅛ — rr1! ≤ ∂', 

if x1 and x2 have opposite signs. Similarly, ∕2(re) has a modulus of continuity supposed that 
by Theorem I. But

if x1 and x3 have the same sign, or if one of them is zero, and
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II. limited variation; arithmetic means 39

and therefore
The conclusion may be appended to the theorem as

So far. nothing has been said about uniformity of con­vergence. To lead up to a discussion of this topic, the following lemma will be established:Lemma I. If f(x) is an arbitrary summable function, the 
'i'n.tp.fir∩ls

approach zero, ask becomes ιnjιmte, uniformly jor —π ≤≥y≤π∙ If /(.%■) is bounded and integrable in the sense of Riemann, the proof holds without change of form when the integrals are thought of as Riemann integrals.In the first place, it is clear that
for any fixed value of y in the interval. For Ajc, (yfiπ and β⅛(y)∕ττ are the Fourier coefficients of a function fi(x) which is equal to f(x) for — n ≤ x j≥ y, and equal to θ for 
y<,x ≤ π. Let ε be any positive quantity. Let
This function is continuous for — π ≤ ?/ < π, and so uniformly continuous. Let ∂ be a positive number such that

Corollary I. If f{x) satisfies the conditions of Theorem I, 
except for a finite jump at the point x^, the series converges 
at xq to the value ⅜ [f(x0 +) -ff(χo—)]∙
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40 THE THEORY OF APPROXIMATION

if yland yi are any two points in for whichLet N be an integer, for definiteness the smallest integer, such that 2π∕Λr<∂, and let Zj = —τr+(2∕π∕Λτ), 
j == 0, 1, ∙ ∙., N. By the remark made above as to the behavior of =My) and L>k(y) for fixed y, there is for each value of j a number such thatfor , Let k' be the largest of the numbers kQ, ∙ ∙ ∙, A∖v.If y has any value in the interval there is a zjsuch tha Then, for any value of k,

This is equivalent to the conclusion of the lemma.The existence of the period 2τr for f(x) being understood throughout, let the definition of Ak(y) and Bk(y) be extended to all real values of y. For any y1 and y2,

Here and subsequently, each relation written down for Ju­lias a counterpart involving Bk. Let εk be defined for each k as the larger of the maximum values attained by ∠L(∕)∣, ∣ Bk (y) ∣ in (— π, τr). In particular, ∣ Λfc (π) <εk, ∣ Bk (ττ) ∖<εk. The lemma just proved is equivalent to the statement that, lim⅛=00 εk = 0. Because of the periodicity of /(/) cos ∕.∙∕ and /(/) sin kt, the integrals defining Ak(y) and Bk(y) are not altered in value if both limits of integration are increased 
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II. LIMITED VARIATION; ARITHMETIC MEANS 41or diminished by the same integral multiple of 2π. For example, if y is in the interval (π, 3π), 
whence it follows that ∣A⅛(z∕)∣ ≤ 2⅛ in this interval. If y↑ and y<i are anywhere in (—π, 3π), the corresponding values of Ak will differ by not more than 4⅛. Finally, if y1 and y<i are any two numbers subject to the condition that ∣z∕2— yι∣ ≤ 2τr, there will be an integer j (positive, negative, or zero) such that f∕ι+2Jπ and z∕2+2Jτr belong to the interval (—ττ, 3ττ), andA similar relation holds for Bιi.The purpose of these details is to bring out a fact which will be used presently. For any <r, and for any y in (—π, ττ),

f(f) sin (/ — x)dt= ∣ cos nx [∕L(λ,⅛ y) — Bn(x-π)] — sin nx [∠ln(Λ,+.y)~All(x — π)] ≤ 8sn,or, by the substitution t— x = u, 
for arbitrary x and y, subject to the condition that —7r ≤ y 
< π. (It is clear that the interval from —ττ to y may be replaced by any other interval of length <2π.)The next stage of the discussion may be summarized in another lemma:Lemma II. If f{x) is a summable function which vanishes 
identically for c< — η<≥x<β-∖-η, with its Fourier
series converges uniformly to the value 0 for a <χ ≤ β.The proof will be expressed in terms of the Lebesgue theory of integration, and, unlike those that have gone before, would have to be appreciably modified in form if reference to that theory were to be eliminated. A more elementary method of proof appropriate to the case of functions bounded and integrable in the sense of Riemann will be indicated later.
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42 THE THEORY OF APPROXIMATIONLet x have a value belonging to the interval By the usual formula,

rΓhe second of the two terms making up the last expression is equal to ⅛(an cos nx-∖- bn sinnrz∙), and approaches zero uniformly for all values of a?, as an immediate consequence of the fact that an and bn approach zero.In the first term, let t — x = u. Then the integral is equal to
Let C(u) be a function of period 2π which is equal to cot ⅜ u for — π ≤ « < — η and for // ≤ u < π, equal to 0 for — ⅜ ? ≤ w < ⅜ , and so defined for — ¾, ≤ m ≤ — ⅜and for ⅛q ≤ u ≤ η as to have a continuous derivative every­where; it is scarcely necessary to write down an explicit formula for the construction. As f(x-∖-u) is identically zero for —y < u < η, when x is in (a, ∕S), the integral Jn{x) is the same as
Let
the values of n and x are for the moment to be regarded as fixed. The function J7(τ∕) has almost everywhere a derivative equal to f(x-∖- y) sin ny. Consequently, as C(z<) is differ­entiable everywhere, the function J1(u) C(w) has almost everywhere a derivative equal to F'(u) C(ιi) + F(u) C (u). Furthermore, F(u) is absolutely continuous, and Cγ(u), having
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II. LIMITED VARIATION; ARITHMETIC MEANS 43a bounded derivative, is absolutely continuous also. Hence F(u) (7(u) is absolutely continuous, and its increment over an interval is equal to the integral of its derivative over the interval. That is, in particular,F(ττ) C(τr) — F(—τr) C(—τr)= Γ Γ'(u) C(tt) du÷ Γ F(u) C'(zt) du,

Jn(x) = Γf'(u) C(u) du

= F(π) C(τr) — F(-π) C(-π) — f* F(u) C'(u) du.But C(π) — C(—τr) = cot(÷⅜ττ) = 0. By an earlier paragraph, -F(u)∣ ≤ 8en for —π ≤ u < π, where εn is in­dependent of a;; if μ is the maximum of the continuous func­tion ∣ C' (u) ∣, which is independent of x and n,

Jn(x) — Γ F(u) C'(u) duJ < 16πμεn.I e7—7ΓSo ∙7n(x) approaches zero uniformly for the values of x in question, Sn(x) does likewise, and the lemma is proved.It follows at once that if f(x) and φ (x) are two summable functions, identically equal for « — q < x ≤ + q, and ifthe Fourier series for y (x) converges uniformly to the value y(a?) = /(a?) for a < χ < β, the series for f(x) does the same. In particular, Theorem 1 may be further supplemented byCorollary II. If f(x) is a summable function of period 2π, 
and if there is an interval a — q <x ≤ β 4^ η, η7>0, through­
out which f(x) is continuous, with a modulus of continuity ω(∂) 
such that lim^0ω(d) log <5 = 0, then the Fourier series for 
f{x) converges uniformly to the value f(x) for a <χ ≤ β.2. Convergence of Fourier series under hypothesis of limited variationAs the next pages will be concerned largely with functions of limited variation, the insertion of a proof of the theorem about the convergence of the Fourier series for such a function is not out of place.
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44 THE THEORY OF APPROXIMATIONLet /(a?) be a function of period 2π, having limited variation over any finite interval. Since a shift of the origin from which x is measured does not change either the character of the function or the terms of its Fourier series, when sine and cosine terms of like order are taken together, it is sufficient to consider convergence for x = 0.Since f(x) is of limited variation, its discontinuities, if any, are finite jumps. Let ψ(x) be a function of period 2π which is linear for 0<aj<2ττ, and further defined by the con­ditions φ(0÷) = /(0+), <∕>(0-) = φ(2τr-) = /(0-),(0) = ⅜ [∕(0 +)+ /(0 —)]. If ∕(χ∙) is continuous for a? = 0, 
ψ (a?) is merely a constant. If f(x) is discontinuous for x — 0, 
ψ(χy) is equal to the constant ⅜[∕(0+)+∕(0—)] plus an odd function, and its Fourier series consists of this constant plus a series of sine terms, all of which vanish at the origin. So the partial sum of this Fourier series not merely approaches ψ(0) (in accordance with Corollary I above) but is always exactly equal to ^(0). As /(a?) = ψ(x) + [/(«)—ψ(%)], the problem of convergence for /(#) reduces immediately to the corresponding problem for the difference /(a;)—ψ(x). which is continuous at the origin, if /(a?) is defined for x = 0 as equal to the mean of its limiting values. There is no loss of generality therefore in assuming at the outset that ∕(a,) is continuous at the origin and- vanishes there. This assumption will be made henceforth.By the hypothesis of limited variation, /(a;) can be ex­pressed for —7r ≤ a; ≤ π in the form f(x) = y1 (χ) — φ2 (χ) , where φi and φ2 are bounded and monotone increasing throughout the interval, are continuous wherever /(a;) is continuous, for x = 0 in particular, and vanish for a? = 0. For the study of the expression

(0) = 1 Γ' sin⅛+⅜)^ τrJ-∕ 2sinU dt,let 
sm(n + ⅜)t 72

------O ~∙ 17 » t2 sin ⅜ t
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II. LIMITED VARIATION; ARITHMETIC MEANS 45let j12 be the integral similarly formed with φ2 in place of φi, and let j21 and y22 be the corresponding integrals from —τr to 0. Then Sn (0) == (l∕π)(Λι-jl2÷J21 ~>22)∙If and 'ξ2 are any two numbers belonging to the interval (0, 7r), and if n is any positive integer,I p si°t"+∣μ dt
Jξι 2 sin ⅜ t ≤ 3ττ.For the integrand is alternately positive and negative over intervals of length ττ∕(n + ⅜), the arches of its graph dimin­ishing steadily in height from left to right. The integral over an interval corresponding to any number of whole arches is therefore a sum of diminishing terms of alternate signs, and its magnitude does not exceed that of the largest term, namely the area of the first arch involved. The integral from any ⅛'1 to any J2 is made up at worst of such a sum, plus the integrals corresponding to parts of two other arches. But the integrand, being equal to ⅜+ cos^⅛ ∙∙∙ + cos n t, never exceeds n⅛⅜ in absolute value, and the area of any one arch, with base ττ∕(n + ⅜), can not exceed π. So the magnitude of the integral from S1 to S2 can not exceed 3τr. (It is almost as easy to see that the value is actually less than 2 7r, and a still lower bound could be obtained, but the inequality as written is sufficient for the purpose in hand; the essential thing is that the right-hand member is independent of S1, S2, and n.)If 0 < ∂ < i'ι < 2⅛ < π, the number d being regarded as fixed,p- sin (n + ⅛)f 3JγQ __1_Jξι 2 sin ⅛ f = n + ⅜ ' (>) 2 sin ⅜ d *For the absolute value of the integrand never exceeds cj>, and the magnitude of the integral can not exceed the sum of the areas of three arches, each of base ττ∕(n + ⅜) and of height not greater than q.Let 6 be any positive quantity, and let d be chosen (by virtue of the continuity and vanishing of φi at the origin)
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46 THE THEORY OF APPROXIMATIONso that (pl (∂) < √(6ττ). The integral defining j11 may be taken as the sum of the integrals from 0 to d and from ∂' to π. The second law of the mean may be applied in each of these integrals. For that from 0 to d it givessin 0z 4- ⅜) ∕2 sin ⅜ t cl twhere £ has some value in the interval (0, d); by the second paragraph preceding, the absolute value of the integral on the right does not exceed 3.τ, and consequently that of the integral on the left does not exceed ∣e, for any value of n. For the rest of∕l,sin (n ÷ ⅜) t 7 j
—, ,"∙, .—Γ7—2 sin ⅛√ sin (n ⅛ ⅜) t2 sin ⅜ ft÷ 9Pι (ττ sin (ι¾ -∣- ⅜) t2 sin ⅜ t dt,the new 'ξ being in the interval (d, π)∙, here y1(d) < <f>1(π), and the absolute value of each integral on the right, by the preceding paragraph, is less than or equal to 3 π cty∕ (n + ⅜). So sin (n + ⅜) t 6 π <√y1 (π)2 sin ⅜ t ∣ = n ⅛ ⅜ ,which is less than ⅜f as soon as n is sufficiently large. This means that J11 approaches zero as n becomes infinite. By similar treatment of ∕2, J21, and J22, it is recognized that *S'n(0) approaches the value 0 = /(0).For functions having the original degree of generality, the result may be stated in the following form:Theorem II. Tff(x) is a function of period 2τr having 

limited variation over a period, its Fourier series converges 
to the value f (a?) at every point where f (x) is continuous, and 
to the mean of the values approached from the right and from 
the left at every point cohere f(x) is discontinuous.If f (x) is discontinuous at the origin, the details of the above calculation apply properly not to f{x) itself, but to 
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II. LIMITED VARIATION; ARITHMETIC MEANS 47the difference f{x)— ψ(x), the retention of the symbol ∕(z∙) having been equivalent to a change of notation. Let it be supposed now that ∕(rr) is continuous throughout. Then the complication just mentioned does not arise (except for the subtraction of a constant to make /(0) = 0, which is of no consequence). The functions y1 (x) and y2 (#) may be taken as the positive and negative variations of f(x') itself (in the sense that φ1(x) is the positive variation from 0 to 
x when x is positive and minus the positive variation from a? to 0 when x is negative, y2 being similarly defined). The use of the origin as representative of an arbitrary point a⅜ in the convergence proof amounts to another change of notation, in connection with which y1(d), in the course of the reasoning, takes the place of φι(a⅞ + ^) — f∕,ι G⅞)∙ Under the present hypotheses, φ1 and y2 are everywhere continuous, and so uniformly continuous. Hence the choice of J, if the proof is written out in terms of the general no­tation, can be made independently of x⅛. For any <z,0, further­more, φι(a⅞-∣-7τ) — y1(a⅛) and φ2(a⅞H-π) — φ2(rz⅛) can not exceed the total variation of f{x) over a period, a quantity likewise independent of a⅞. These are the essential points needed to justify the supplementary assertion:Corollary I. If f (x) satisfies the hypotheses of Theorem II, 
and is furthermore continuous everywhere, the Fourier series 
converges to f(x) uniformly for all values of x.If it is assumed merely that f (x) is of limited variation for 
x0 — η ≤ x < x0-∖-η, and summable over a period, the function φ(x) which is equal to ∕(^) for x0 — η fx <x0-∖-y, and identically zero over the rest of a period, is of limited variation over the entire period, and its Fourier series converges at a⅞ to the value ⅜ [y (,r0+) + yC⅞-)] = ⅜ [∕(⅝+)+∕(a¾-)], from which it follows that the Fourier series for f(x) does the same. If f (x) is continuous and of limited variation for 
«— y ≤ x ≤ β-∖-rl, and summable over a period, the function γ(x) of period 2n which is equal to f(x) for 
« — η <x ≤ ∕S4- η, and linear for βfηf≥x<a — η-∖-2π, is of limited variation and continuous over the entire period, 
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48 THE THEORY OF APPROXIMATIONand its Fourier series converges uniformly with φ(x) for its sum; the Fourier series for ∕(x) — <p(x) converges uniformly to zero for a < χ ≤ β, by Lemma II; and consequently the series for ∕(rr) converges uniformly to f (a?) for a < χ < β. These conclusions may be expressed asCorollary II. If fix') is a function of period 2π, summable 
over a period, and of limited variation for x0—// ≤ x < a⅞-∣-∕∕, 
its Fourier series converges for x — x0 to the value ⅜ [/(a⅞ +)+1∕G⅞—)]; if f(x) is of period 2π, summable 
over a period, and continuous and of limited variation for 
a — η ≤ χ ≤ its Fourier series converges uniformly to
the value fix) for a f x ≤ β.It may be noted in passing that the second law of the mean leads to a proof of Lemma II for functions that are bounded and integrable in the sense of Riemann, without the use of Lebesgue integration. In the expression which was denoted by Jn(x), in the proof as given previously, let the integrals from —n to —// and from // to π be considered separately; the integrand is identically zero for —// < u < //. Since cot ⅜ it is monotone from // to π, and cot⅜π = O, 1/(a?+u)cot — usinnudu = (cot —⅞H f(x+u)smnudu, where ⅛^ is a number of the interval (//, ∏). The magnitude of the last integral does not exceed the quantity 8fre, which is independent of x and approaches zero as n becomes infinite. Similarly it may be shown that the integral from —π to —∕z approaches zero uniformly, and the conclusion of the lemma follows at once.3. Degree of convergence of Fourier series under hypotheses involving limited variationAttention will now be directed once more to questions of degree of convergence. The next theorem is a rather simple one:Theorem III. If f(x) is a function of period 2n with 
limited variation, the total variation over a period being V, 
then, for n~>0,
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II. LIMITED VARIATION; ARITHMETIC MEANS 49

Let y1 (/) and y2 (^) be the positive and negative variations of f(x), starting from the point —π, so that∕(,τ) = /(—ττ)

Similarly,
while
So the first inequality of the theorem is obtained. A mechan­ical repetition of the reasoning for the integral with sin nx would lead to the expression cos??? — cos??rc in place of sinnττ — sinnS, and the new expression has the maximum value 2 instead of 1, since cos nπ / 0. But by virtue of the periodicity the integral from — π to π is the same as that from — π + [π∕(2 ??)] to π ⅛ [ττ∕(2 7?)], and if the variations are measured from the left-hand end of the latter interval the upper bound V/n is obtained once more, as stated in the theorem.Suppose now that /(/) has a first derivative with limited variation, and let V be the total variation of f'(x) over a period. By integration by parts,
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50 THE THEORY OF APPROXIMATIONwhence it follows further, since Theorem III is applicable to the last integral, thatI I fix') cos nx dx — — ∣ f' (x) sin nx dx ∣ ≤ —9 .I d-ττ n J-π I — n^1Similar reasoning applies to the integral with sin nx in place of cos nx. Repetition of the process of integration by parts leads to the following:Corollary I. If f(x) is a function of period 2∏ which 
has a pth derivative with limited variation, p ≥ 0, and ifV 
is the total variation of fw(x) over a period, then, for n~>Q,

fi~ r ρ . V
J πf(χ)cosnχdx∣⅛~p+Γ> J _f(x) sin nxdx ≤-The conclusion is really somewhat more general than the statement would indicate. Suppose for simplicity once more that p = 1. As will be seen on re-examination of the proof in the light of well known theorems on Lebesgue inte­grals, the essential thing is not that f'(x) be uniquely de­fined at every point, but that f(x) be expressible as the in­tegral of a function y(x) of limited variation:

f O) = f («) ÷ 95 O) dx,for any value of a. This observation is of some interest, since the simplest functions represented by graphs with cor­ners satisfy the modified hypothesis, but not the original one. The generalization carries over to the applications of the Corollary in Theorems IV and Vb below.For the sake of another corollary, let f(x) be identically zero for x0-η ≤ x ≤ x0 ⅛ η, and of limited variation over a period. If Sn (x0) is represented once more by the formula
►71

Sn Oo) = -5— I f(x0 ÷ «)-j 7Γ <√—7j cot 1 u sin nu du
71
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II. LIMITED VARIATION; ARITHMETIC MEANS 51both f(x0f-u) and f(x0-∖-u) cot ⅛z< are of limited variation, regarded as functions of u, and consequently ∣ S,l (a⅞) does not exceed a constant multiple of l∕n. With regard to uniformity of convergence, let f(x) be identically zero for «— ⅞,< a? ≤/? + >/, the hypothesis of limited variation over a period being kept unchanged. When α ≤ rt⅛ ≤ /$, the function ∕(a¾ + n) cot ¼ is identical with f(x0 ⅛ u) C1 (u), if 
Cι (u) is defined as equal to 0 for 0 ≤ ∣ u) < //, and equal to cot⅜zι for η < ! u∖ ≤ π. In general, if y1 (w) and y2 (w) are any two functions of limited variation, the total variation of (f>ι (it) being T71 and that of y2 (u) being V2, and if Jf1 and JZ2 are upper bounds for ∣ y1 (w) and ∣y2 (u) respectively, the function φ1 (w) φ2 (u) is of limited variation, and its total variation does not exceed J∕1 V2 ⅛ JT2 Γ1. In the present instance, φ1 (w) and φ2 (?<) being replaced by ∕(a⅛ + u) and C1 (it) respectively, ∕(rt⅛ + √) has the same total variation over a period and the same bounds as f(x), for any value of .τ0, and C1 (u) is independent of x0, so that the total varia­tion of t∕(a⅞ + w) cot ⅜u, while presumably different for dif­ferent values of x0, has an upper bound independent of x0, as long as x„ belongs to the interval («, β). Such an upper bound can be calculated more specifically as the product of V, the total variation of f(x), by a quantity depending only on η. (The absolute value of f(x) can not exceed V anywhere, since every period contains points where f(x) vanishes.) It is possible therefore to stateCorollary II. If f(x) is a function of period 2∏ with 
limited variation, the total variation over a period being V, 
and if f(x) vanishes identically for a — η<xfLβfη, then∣⅛(∞)l < -⅞∑-

— n

for a <χ < β. where Sn (x) is the partial sum of the Fourier 
series for f(x), and Cη depends only on η.Each of these corollaries, taken in conjunction with results obtained earlier, leads at once to a theorem on degree of convergence. If p ≥ 1 in the hypothesis of Corollary I, it4* 
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52 THE THEORY OF APPROXIMATIONis known that the Fourier series for f(x) converges uniformly to the value /(xj; this follows from Theorem IX of Chapter 1, and more directly from Corollary I or Corollary Ila of that theorem, since the hypothesis provides ∕(.τ) with a bounded first derivative, and
if λ is an upper bound for ∖f(x) ∣. On the other hand, Corol­lary I, interpreted in terms of the Fourier coefficients, states thatHence

The conclusion may be formulated asTheorem IV. If ∕(x) is a function of period 2 π which 
has a pth derivative with limited variation, j? ≥ 1, and 
if V is the total variation of f'p', (.x) over a period, then, for 
n>O,

where Sn(x) is the partial sum of the Fourier series for f(x), 
Qp is a constant depending only on p, and Q is an absolute
constant-, more snecificallu.This result is to be compared with Theorem X and the corollaries of Theorem IX in Chapter I.Corollary II will be combined with Corollary II of Theorem IX in Chapter I, and with the theorem just obtained. In connection with the result from Chapter I, it is to be noted that if ∕(x) is a continuous function which is not identically constant, and if ω(d) is its modulus of continuity,
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II. LIMITED VARIATION; ARITHMETIC MEANS 53For if this were not the case, it would be possible for every f>Oto find arbitrarily small positive values of <5 such that ω(d)≤cd∙, for any such d, ∣∕(a⅛)—∕(.τ1)[ < f∣rr2 — a¾∣, if 
x2—Xι is an integral multiple of d, since ∣∕(rr14-√Vd)—f(xl) ∣< Λτω(d) < e . Λτd, if N is integral; but for any choice of 
xl and x2, it would be possible to find values of d satis­fying the condition that ω(d) < c d, and so small that 2 differs arbitrarily little from an integral multiple of d; and then it must still be true by continuity that j∕(a⅞)—∕(λj1)∣ ≤*∣λ⅛—a⅛∣, which in view of the arbitrariness of ε means that ∕(a⅞)—∕(a⅛) = 0 for all xi and a⅞, contrary to the hypothesis that f(x) is not constant. The conclusion may be stated by saying that ω(d)∕d has a positive lower bound for values of d that are sufficiently small; as ω(d) itself has a positive lower bound over any interval not reaching to the origin, it appears further that ω(d)∕d has a positive lower bound over any finite range for d.Suppose now that fix), having the period 2τr, is con­tinuous with modulus of continuity ω(d) for a — η ≤ χ ≤ β-∖-η, but not constant over the interval, and of limited variation (but not necessarily continuous) over the rest of a period. Let φ(rr) be periodic with period 2π, equal to f{x) for α —η ≤≥x ≤ β + η, and linear for β -⅛ η ≤ x ≤ « — η + 2 π. In the latter interval, the modulus of continuity of <jp(re) is a constant multiple of d, which by the preceding remarks does not exceed a constant multiple of ω(d), say Zcω(d), over the range within which ω(d) is defined, namely for 0<d
< β— a-∖-2η. If d satisfies the latter condition, any inter­val of length d is made up at worst of an interval congruent (modulo 2 π) to (/?-)- η, « — η-∖-2π), together with parts of two intervals congruent to (« — η, β + ⅞), and so φ(ir) has everywhere a modulus of continuity ω1(d) which for 0<d
< β— a-∖-2η does not exceed (k + 2) ω(d). By the corollary cited from Chapter I, y (x) differs from the partial sum of its Fourier series by not more than Aω1 (2π∕n) log n, and so by not more than A(k⅛ 2) ω(2∙∕r⅛) logn, if n is large enough so that 2π!n comes within the specified range of values for d. 
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54 THE THEORY OF APPROXIMATIONOn the other hand, fix)— φ(x) is of limited variation, and identically zero for « — η fx ≤ β-∖-η, so that the recent Corollary II is applicable; and the quantity 1/n which enters into the conclusion of that corollary does not exceed a constant multiple of ω(2π∕n). So it is possible to stateTheorem Va. If the function fix), of period 2π, is con­
tinuous with modulus of continuity ω(d) for a — η ≤ χ ≤ β-∖-η, 
where ω(∂)>0 for d>0, and of limited variation (but not 
necessarily continuous) over the rest of a period, then

fix) — Sn ix) j ≤ c ω (2 7r∕n) log n
for a < χ < β, if n is large enough so that ω(2π∕n) has 
a meaning, Snix) being the partial sum of the Fourier series 
for fix), and c a constant depending neither on x nor on n.The combination of Corollary II with Theorem IV (or rather with a part of that theorem) proceeds with a little more facility. Let fix) be a function of period 2 π having a first derivative with limited variation for a— η ≤ x ≤ β + η, while fix) itself is of limited variation over a period. Let y ix) this time be of period 2π, equal to fix) for 
a — q f x < β ψ η, and defined for β -∖- η <x < α — q ψ 2 π as a polynomial of the third degree so that y ix) and its derivative have determinate values at both ends of the interval. Then y (x) has a first derivative everywhere, which is of limited variation over a period, and fix) — >∕fx) is of limited variation over a period and identically zero for a — q ^x < β-∖-q. It remains to apply Theorem IV to y(χ∙), and Corollary II to fix) — φ(x), and the following theorem is obtained:Theorem Vb. If the function fix), of period 2π, is of 
limited variation over a period, and has a first derivative of 
limited variation for a — q < χ < β -f q, then∖fix)-Snix)∖ < — 

n

for a f x II β, where Snix) is the partial sum of the Fourier 
series for fix), and c is a constant depending neither on x 
nor on n.

www.rcin.org.pl



II. LIMITED VARIATION; ARITHMETIC MEANS 55Space will not be taken here for the working out of more elaborate combinations of similar character. A theorem re­lated to Theorem III, however, will be obtained for the sake of a subsequent application.It was shown early in the chapter that the Fourier co­efficients of an arbitrary summable function of period 2π approach zero as a limit. Let f(x) now be a function of period 2π which is absolutely continuous, and let α⅛, ‰ be its Fourier coefficients. Its derivative exists almost every­where, and is summable. The product ∕(.τ) sin kx is like­wise absolutely continuous, and so has a derivative almost everywhere, and its change of value over an interval is equal to the integral of its derivative. Specifically, it has a derivative equal to f' (χ∙) sin kx-∖-kf(x) cos k x at every point where f,(x) exists. Consequently0=/ (π) sin k π —f (— π) sin (— k π)
~*π pπ

f'(x} sin kxdx-∖-k I f(x) cos kx dx,1 ( ’7c cik =------- I f' (⅛) sin kx dx.
π J-πBut by the theorem cited at the beginning of the paragraph, the last integral approaches zero as k becomes infinite, since 

f'(x) is summable. Similarly, ∕⅛ approaches zero.It was seen at the beginning of the chapter that

But under the hypothesis of the moment f(x), being abso­lutely continuous, is a fortiori of limited variation, and hence 
Sn(x) converges uniformly to f{x). So the left-hand member approaches zero, and the right-hand member must do thesame:
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56 THE THEORY OF APPROXIMATION(It is still not necessary for the purpose in hand to establish the well-known fact that the last relation holds under much more general hypotheses. Use of the theorem on the con­vergence of the Fourier series for a function of limited variation can be avoided by reference to the least-square property of the sums χS*n (^), discussed in the next chapter, together with the fact that by λVeierstrass,s theorem trigonometric sums 
Tn(x) can be found so as to make f(x')— Tn(x) approach zero uniformly.) From the last two equations, taken together, it appears that

— f [f(%)— Sn(x)}idx = ∑ (al-fbl).
71 π k=njrlLet ε be an arbitrary positive quantity. It is possible to choose n0 so that ∖kak∖ ≤ (⅜f)1z2, 'kb∣c∖ ≤ (⅜f)1z2, for 7r ≥ n0∙ Then, if w ≥ >⅛,

00Σ (dk + bk) ≤
Jc =≡ 71-∣-1which means that

00lim n ∑ (al + δ⅛) = 0. 
n=x k=n+lThe results of the last two paragraphs may be summarized in Theorem VI. If f(x') is an absolutely continuous function 

of period 2π, and if an, bn are its Fourier coefficients,lim nan = 0, lim n bn = 0.
n — oo n = oo

If Sn(x) is the partial sum of the Fourier series for f(x}, 
and if γn is defined by the equation

r>ι = f _ [f(%) — Sn(aj)]2 dx, 
then lim n γn = 0.

n — xThe first part of this theorem supplements Theorem III: the products nan, nbn are bounded for any function of limited 
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II. LIMITED VARIATION; ARITHMETIC MEANS 57variation, and approach zero if the hypothesis of limited variation is replaced by the more stringent requirement of absolute continuity. The last part of the theorem will be used in the next chapter.4∙ Convergence of the first arithmetic meanThe next undertaking will be to outline a theory of the convergence and degree of convergence of the approximating functions with which the name of Fejer is associated, the first arithmetic means of the Fourier series for a given function. The mean in question is defined by the identity

Application of this identity, with r replaced by t — x, gives
or in terms of a new variable n = ⅜ (7 — x):

If (sin2n w)∕(sin2u) is denoted for brevity by Φn(u), the ex­pression becomes

where Sιc(x), as usual, denotes the partial sum of the Fourier series through terms of the 7√th order.It will be recalled that the fundamental integral expression for Sk(%) involves a factor sin (∕r 4~ ⅜) (7— x), and otherwise does not change with k. The product of the expression
by 2 sin ⅜ v can be rearranged in the form
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58 THE THEORY OF APPROXIMATIONThe fact that the trigonometric factor Φn (u) in the inte­grand, unlike the corresponding factor in the expression for 
Sn(x), is never negative, has important consequences, and materially simplifies the reasoning. If /(a?) in particular is identically 1, each ∕S⅛(aj) reduces to the single term 1, and 
an (a?) also is identically 1, for all values of n:

More generally, then, if ∕(x) has M as an upper bound for its absolute value.
if ∖f{f)∖ ≤ M for all values of x, then <rn(α,∙)∣ ≤ M for all 
values of x likewise, and for all values of n.For any specified value of x, the identity in the preceding paragraph, multiplied by the quantity fix), which is constant as far as the variable of integration is concerned, states that

Suppose now that fix) is summable over a period, and continuous for x = x0. Let ε be an arbitrary positive quantity, and let 3' < ∏∙∕2 be chosen so that ∣∕(a⅛+2w)-∕(a⅞)∣ ≤ ⅜e for ∖u∖ < d. Then

for all values of n. On the other hand, since Φn(u)∙f l∕(sin2d) for d < !?<| < π∕2,
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II. LIMITED VARIATION; ARITHMETIC MEANS 59
l-(fl+J1 nπ ∖-J-π∣2 √l

the last integral exists, by the hypothesis of summability, and is independent of n, so that the whole expression is less than ⅜e as soon as n is sufficiently large. Therefore <Li,(a⅛)—∕(iro)∣<t, when n is sufficiently large; σn (a⅞) converges toward ,f∖xf). If f(x} is continuous everywhere, 
<jn (x) converges toward t∕'(χ∙) for all values of x, and the convergence is uniform. For ∂ in the proof can be chosen independently of a¾, since f(x) is uniformly continuous, and if Jf is the maximum of f(xf,

J
~i7I∣2 ∖ f(x0 ⅛ 2u) —∕(a⅞) du <2 Mπ,
-7l∣2which is likewise independent of x0.For convergence at a point of discontinuity, let f(x) be summable over a period, and have a finite jump for x = xq. Let ∕(a¾) be defined as the mean of the limits approached from the right and from the left. Let a function ψ(ie) be defined by the requirements that it shall be of period 2τr, and linear for x0 < x < x0 + 2n, and that ιp (x0 +) = f(x0-∖-), 

ψ(x0-) = f(xo-), Ψ(x0) = ∕W∙ For x = x0, each partial sum of the Fourier series for ψ(x) is exactly equal to ψ(x0), as was pointed out in substance at the beginning of the proof of Theorem II. The same is true therefore of the arithmetic means of these partial sums. But /(a?) is the sum of ψ(x) and a function continuous for x = x0-, and the arithmetic mean formed for the sum of tλvo functions is the sum of the corresponding arithmetic means. So the arith­metic mean a„ (x) formed for /(a;) converges for x = x0 to the value f(x0).The results on convergence obtained thus far may be restated inTheorem VII. If f(x) is a summable function of period 2π. 
and, an(χ) the arithmetic mean of the first n partial sums of 
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60 THE THEORY OF APPROXIMATION

its Fourier series, as defined above, an (χ) converges toιvard 
f(x) at every point where f(x) is continuous, and converges 
toward the average of the limits approached from the right and 
from the left at every point where f(x) has a finite jump. 
If f(f) is continuous everywhere, the convergence is uniform 
throughout.It should be mentioned as an immediate consequence of the definition of the arithmetic mean that if Sn(x) converges at any 
point, an(x) converges to the same value. In fact, if *%,⅛'1,⅜, ∙∙∙ is any convergent sequence of numbers whatever, with limit £,
thatand ifto the limit δ. Let then σn also convergesand let √V be chosen so

the last fraction is less than ⅜e in absolute value for all values of n > N, and the preceding fraction, in which the numerator is independent of n, is less than ⅜e for n suffici­ently large.5. Degree of convergence of the first arithmetic meanAs a first hypothesis for the study of degree of convergence, let f(x) satisfy everywhere the condition
In the integral expression for
so that
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II. LIMITED VARIATION; ARITHMETIC MEANS 61In dealing with the last expression, it is to be remembered that u/sinw ≤ π∕2 for 0<u ≤ π∕2. Let the integrals from 0 to 1/n and from 1/n to π∕2 be considered separately. In the former, let the integrand be expressed by the formula
of the three factors indicated, all of which are positive for O<u≤ }.∕n, the first does not exceed π∕2, the second does not exceed 1, and the third does not exceed n. Hence
In the integral from
and
It follows that the whole integral from 0 to π∕2 does not exceed a constant multiple of logn, and ∣σ,n(rc)—∕(⅛)j does not, exceed a constant multiple of (logw)∕n. A slightly more specific statement of the result isTheorem VIII. If f(x) is a function of period 2π satis­
fying everywhere the condition

and σn(g∙) the corresponding arithmetic mean, then, for

where Cq is an absolute constant.Let f(x) have a derivative satisfying everywhere the condition
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62 THE THEORY OF APPROXIMATIONwith a positive value of α. The error then can be somewhat more narrowly restricted. The factor Φn(u) being an ever, function of u, the substitution of — u for w gives the integral expression for the error the alternative form

and a third expression is obtained by taking the average oi this and the original one:
By the mean value theorem, together with the hypothesis now in force,

the numbers ⅛1 and S2 being in the intervals (x, x + 2 u) and (a? — 2 u, x) respectively, so that ξ1 — ⅞21 < 4 ∣ u 1. Hence

But
in the interval of integration, so that
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II. LIMITED VARIATION; ARITHMETIC MEANS ββwhich does not exceed a constant multiple of ∖∕n, the last integral being convergent. In more formal statement:Theorem IX. Iff(x) is a function of period 2π having 
a first derivative which satisfies everywhere the condition∖f' (a⅞) —,f'ix↑) ∣ ≤ λ ∣ x2 — xi ∣κ
with «>(), and if an(x) is the corresponding arithmetic mean, 
then

f(x)-an (a,) ∣ ≤ ~ ,
where Ca is a constant depending only on a.No higher order of approximation would be obtained by supposing f(x) provided with additional derivatives. In fact, the arithmetic mean corresponding to the analytic function ∕ (χ∙) ≡ cos a: is o,n (⅛) [(n — 1)∕w]cosλj, and the erroris actually of the order of l∕n.Let f{x) be an arbitrary continuous function of period 2 π, with modulus of continuity ω (d). The theorem to be obtained in this connection is perhaps of secondary interest, because a closer result is given for an important class of cases by the theorem following it; but it also covers cases not admitted by the hypothesis of the later theorem, and so is not entirely superfluous. The proof is an adaptation of that of Theorem II in Chapter 1. Let y (a?) be a continuous function of period 2 π which is equal to f(x) for a set of values of x dividing a period into n equal parts, and is linear between successive points of this set. This y (a?) satisfies the hypothesis of Theo­rem VIII, with λ = [ω (2 τr∕n)]∕(2 ττ∕n), and is represented by the corresponding arithmetic mean with an error not exceeding a constant multiple of ω(2 π√n) log n. The absolute value of the mean corresponding to the difference ∕(a,) — y {x) does not exceed the maximum of the absolute value of the difference itself, which is not greater than 2ω(2π∕n), and the error of this mean can not be greater than 4 ω (2 π∕n). Hence:Theorem X. If f(x) is a continuous function of period 2 π, 
with modulus of continuity ω(S), and σn(x) the corresponding 
arithmetic mean, then, for n>l,
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64 THE THEORY OF APPROXIMATION

where Co is an absolute constant.Let /(.r) be subjected to the hypothesis that
with 0 < a < 1. From the original integral expression for the error,
Let the interval of integration again be considered in two parts, from 0 to ∖∕n and from 1/w to π∕2. In the former interval,
so that
From

Substitution of these inequalities in the formula for the error givesTheorem XI. If f(f) is a function of period 2zr satisfying 
everywhere the condition

with 0 < « < 1, and if an (x) is the corresponding arithmetic 
mean, then

ιυhere Ca is a constant depending only on a.
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II. LIMITED VARIATION; ARITHMETIC MEANS 65Two outstanding facts with regard to the arithmetic mean, as compared with the simple partial sum of the Fourier series, are that the former converges for every continuous function, but does not reproduce identically a function which is itself a finite trigonometric sum. Consideration of Theorems XI, VIII, and IX, in the order named, throws some further light on the ability of the arithmetic mean to adapt itself to irre­gularities in the function represented, and its inability to avail itself of an exceptional degree of regularity. The hypotheses of the three theorems imply that∖f{x ⅛ v) — 2∕(,τ) +f(x — v) ∣ < 211 v ∣αwith a constant z1 in each case, and values of « successively less than 1, equal to 1, and greater than 1 (the present «, in the case of Theorem IX, taking the place of the number previously denoted by « + l). The upper bounds obtained for the error of the arithmetic mean have the orders respect­ively of l∕nce, (log w)⅛κ, and na~1∕na. The corresponding upper bound for the error of the simple partial sum of the Fourier series is of the order of (logn)∕nα in each case.For a concluding theorem with regard to the arithmetic mean, let f(x) be of period 2π, summable over a period, and identically zero for « — η <x < β + η. If x has any value in («, /$), f(x + 2 u) is identically zero for — ⅜ ≤ u ≤ ⅜. Henceo,w(aj) = * (J + f" jf(x + 2u) Φn(u) du.
n ττ W—π∕2 ^/2 'Since Φn(w) ≤ l∕(sin2⅜1y) for ⅜τ∕ < ∖u∖ < ⅜ττ, it follows that

, . „ i ∕f-≠ , rM,., , „ x, ,

in2 1 U.In terms of the variable t == x ⅛ 2 u,

0
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66 THE THEORY OF APPROXIMATIONthe limits of integration on the right having been adjusted by use of the frequently applied observation that the integral of a periodic function over a period is independent of the position of the initial point of the period. If the last integral, which is independent of x, is denoted by J,∣σ,nCr)∣ <The conclusion is ______ J_____2 n π sin2 ⅜ ηTheorem XII. If fix) is a function of period 2π which 
is identically zero for a — η ^fx ≤ β + η, and summable over 
a period, the integral of its absolute value over a period being J. 
and if <rnif) is the corresponding arithmetic mean, then, for 
a fx f β, ∣⅜(^)∣ ≤ -⊂-J
where Cη is a constant depending only on η.Taken with the last assertion in Theorem VII, this shows that if fix) is continuous for «— η < x ≤ βf-η, and summable over a period, the arithmetic mean associated with it con­verges uniformly for a < χ ≤ β. The results obtained by combining Theorem XII with Theorems VIII-XI need not be enumerated at length.6. Convergence of Legendre series under hypothesis• of continuity over a part of the intervalThe theory set forth in the early part of the chapter can be carried over in some measure to the case of Legendre series, the discussion being kept on the same elementary level which was maintained in the treatment of these series in Chapter I, to the extent that no use is made of an asymptotic formula for the Legendre polynomials. The next paragraphs will be devoted to a presentation of the analogies that work out most readily, though it will be seen that the treatment is left incomplete in several particulars.Let fix) be summable together with its square for — 1 ≤ x ≤ 1> and let ak be the coefficient of Xιfx) in its Legendre series,
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II. LIMITED VARIATION; ARITHMETIC MEANS θ7

Let
as before. By reference to the property of orthogonality of the polynomials Xk(x), together with the definition of ak and the fact that the integral of [Aλ(x)]2 over the interval (—1, 1) is 2/(2&+l), it is seen that
As the quantity on the left-hand side can not be negative, the sum on the right is bounded for all values of n, the infinite series obtained by letting n become infinite is con­vergent, and 
or, as equivalent statements,
The parallelism with the case of Fourier series becomes clearer if the polynomials Xk(f) are replaced by the normalized sequence {[(27r + 1)/2]1/2 Xk(x)}, or, more superficially, if it is considered that the magnitude of the coefficient is less significant than the magnitude of the general term of the series: it was seen in Chapter I that ∣ X∣fx) ∣ does not exceed a constant divided by kll2, when x stays away from the ends of the interval, and consequently 
uniformly throughout any closed interval interior to (—1, 1).Let f(x') again be summable together with its square, and suppose now that it vanishes identically for x0—// < x ≤α∙0⅛∕∕, the interval (a⅞—η, a⅞+7∕) being contained in (—1, 1). The value of Sn(x0) can be expressed in the form

5*
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G8 THE THEORY OF APPROXIMATION

Each of the quantities ∑n+ι(⅜), Xn(gf) is less than a con­stant divided by nll2, and the factor in front of each integral is therefore less than a constant multiple of n1/2; the quan­tity l∕(rr0 —1') is bounded over the range where /(/) is different from zero, and ∕(∕)∕(a⅞—therefore is summable together with its square; consequently, by the preceding paragraph, the product of either integral by a quantity of the order n1'2 approaches zero. In other words, Sn(x0) con­
verges to the value 0. If two functions/(a?), φ(x) are identical for a⅞—rl ⅛⅛tl> the Legendre series for their differ­ence converges toward zero at the point x0, and the series for /(/) and gfx) themselves converge or diverge together at that point: the convergence of the Legendre series for a given 
function at an interior point of the interval (—1, 1) depends 
only on the behavior of the function in the neighborhood of 
the point.As a preliminary to a discussion of uniform convergence, let /(/) be any summable function with summable square over the interval (—1, 1), and let
It is to be shown that AA'2 A⅛ (/) approaches zero uniformly 
for —1 < y < 1. The proof is largely a repetition of the corresponding argument for the case of Fourier series, but there are differences of detail which are not altogether trivial. For any fixed value of y, Ajfy} is the same as
if flff) is a function equal to /(/) for —1 ≤ t ≤ y, and vanishing for y<, t < 1, and consequently Z∕2 Aιf y) approaches
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II. LIMITED VARIATION; ARITHMETIC MEANS β9zero for the particular value of y in question. Let ε be any positive quantity. Let
This function is continuous, and therefore uniformly continuous, for — 1 < y < 1. Let d be chosen so that
whenever and y2 being points of the inter­val (— 1. 1). Let Λτbe the smallest integer such that 2∕JV<d. and let The points ¾∙being finite in number, there is a k' such that A-1/21 A⅛(¾) <⅛ε for all the values of j in question, λvhenever k ≥ k'. For any value of y in (—1, 1), let j be that one of the numbers 0, ∙ ∙ ∙, N for whichConsider the difference
By Schwarz’s inequality,

Consequently
rΓhis is true for any positive value of k. On the other hand, if 7⅛ ≥//, ⅛ιz21 Afc (Z) I < ⅜ f. For such values of Ze, therefore, 
k1∣2∖Ak(y)∖ <ε∙, and k' is independent of y. Let ⅛ be the maximum of Ak(y) for — 1 < y < 1. The conclusion is that limfc=oo A;1'2 ⅛ = 0.
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70 THE THEORY OF APPROXIMATIONNow let f(x) be summable together with its square over theinterval (—1, 1), and identically zero forConsider the expression
on the assumption that x has a value belonging to the inter­val a ≤ χ < /?; the function An(t) has almost everywhere a derivative equal to /(/) Xn{t'). Let Λ(z<) be a function equal to 1/u for ∣w∣≥^, and so defined for ∖u∖<η as to have a continuous derivative everywhere. Then, for any x in (a, /), R(x—t) is the same as l∕(x—/) at all points of the interval — 1 ≤ t < 1 where /(/) is different from zero, and the integral above is equal to
The product An(t) R(x— /) has almost everywhere a derivative with regard to /, equal to X(∕) R(x— /)—An(∕) R, (x— /), and its increment over an interval is equal to the integral of this derivative, so that

Both R (u) and R' (u) are continuous for all real values of u and approach zero as w becomes infinite in either directior Let J∕o be the maximum of ∣jR(z<∙)∣, and Ml the maximum c ∣-K'(w)∣5 these numbers are of course independent of x. I the right-hand member of the last equality, An (—1) = 0 ∣ An (1) ∣ ≤ en, ∣ R(χ — 1) ∣ ≤ Mo, while ∣ An (/)) ≤ 
ilR'(x— ∕)∣ ≤ Jf1, over the whole interval of integratior Consequently
Since
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II. LIMITED VARIATION; ARITHMETIC MEANS 71
jjiz2 p ∕(0∙¾>(⅜eπJ-l X--- tapproaches zero uniformly for a ≤ x ≤ ft. The same con­clusion holds if Xn(f) is replaced by Xn⅛ι(7)∙ On the other hand, n1'2 X∏+ι (x) and nr,2 Xn («) are uniformly bounded over («, ft). Hence, on assembling the constituent parts of the integral expression for Sn (x), it is seen that Sn (x) approaches zero uniformly over the interval in question:Theorem XIII. If f(x) is summable together with its square 

over the interval {— 1,1), and identically zero over an interval 
a— rl ≤ x ≤ + rl contained in (—1, 1), and if Sn(x) is
the partial sum of the Legendre series for f(x), then Sn(x) 
converges uniformly toιvard 0 for a < χ ≤ ft.λVith the corollary of Theorem XI in Chapter I, this yields at once the furtherCorollary. 7∕' f(x) is summable together with its square over 
the interval (—1, 1), and continuous over the interval ct — η 
≤ x ≤ ft + q, with a modulus of continuity ω (∂) such that limf∫=0 ω(d) log ∂ = 0, the Legendre series for f(x) converges 
uniformly to the value f(x) for a ≤ x ≤ ft.7. Degree of convergence of Legendre series under hypotheses involving limited variationIt remains to consider questions of degree of convergence. The discussion will be based on the properties of the Legendre polynomials already used, together with the identity

Xn (x) = 2n∖1 K+1 - x'l~1 *
Let f(x) be a function of limited variation for — 1 < x ≤ 1, its total variation being V. Let <pι(x) and φ2(x) denote its positive and negative variations, measured from the left-hand end of the interval, so that f(x)-f{—l) + φ1(⅛) — φ2(f), <jp1(-1) = y2(—1) = 0. By the second law of the mean, φ1 (x) Xn (x) dx = (pl (1) J Xn (^) dx 
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72 THE THEORY OF APPROXIMATIONfor some value of ⅛' in (—1, 1). But as a consequence of the identity in the preceding paragraph, with the observation that ∑n+ι(l) = Xn-ι(l) = 1,

For a sufficiently close estimate of the magnitude of the difference in the last bracket, there is occasion to go back to the identitv
If this formula isused to express the difference In-ι(z)—An+ι(.τ) by means of a single integral, the integrand is
For x in (—1, 1), the absolute value of the last bracket can not exceed 4, and hence
On repeating, with slight changes of notation, the reasoning which led to inequalities for the Legendre polynomials in Chapter I, it is found that
for the values of the variables that come into consideration, if — (2∕π) (1 — ie2)1'2, and
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II. LIMITED VARIATION; ARITHMETIC MEANS 73ΛVitlι the observation that n — 1 >⅜n for n > 2, the pre­ceding inequalities may be summarized by saying that there is an absolute constant c such that
for n ≥ 1 and for — 1 ≤ x < 1; it is clear that the case n = 1 can be included in the final statement. (Strictly speaking, of course, the result is obtained directly for |a?| < 1, and extended to the ends of the interval by continuity.) The essential point is that there is no factor (1 — λ∙2)1^2 in the denominator on the right, as there was in the corres­ponding inequality for a single Legendre polynomial; its absence is due to the factor (1—x2)lz2 which comes out before the integral sign in the expression for the difference.Applied to the problem in hand, the inequality just obtained shows that
Similarly, the magnitude of the integral formed with φ2(a) in place of φ1(x) does not exceed cy2 (l)∕(2n3z2), while for n>l the integral corresnondinsr to the constant /(— 1) iszero. Consequently,
The analogue of Theorem 111 isTheorem XIV. If fix) is of limited variation for —1 < x < 1, its total variation being V, and if an is the coefficient 
of Xh(x) in its Legendre series, then, for ?z>0.
where L∖> is an absolute constant, so that
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74 THE THEORY OF APPROXIMATIONNow let it be assumed that f(x) has a first derivative with limited variation, and let the total variation of ∕' (x) for 
— 1 ≤ ≤ 1 be denoted by V. (In more general terms, itwould be sufficient that /(a?) be the integral of a function of limited variation, and not necessarily provided with a unique derivative at every point.) For the moment, letJ~1 -∑n(0 dt.ln(ic)By integration by parts, 
f~1f(z) ⅛n(z) dz =f_

In the last member, Γn(—1) = 0, and for n ≥ 1, Γn(l) = 0 also. Furthermore, by the identity already employed,l7n(re) = ~2n∣ 1"⅛+ι(^) — An-i(ir)];the terms coming from the lower limit of integration cancel each other, since Xn+ι(— 1) =An-ι(—1) = (—l)n÷1. Hence, with the assumption that n ≥ 1,12∖n + 1 (x)— Xn+ι(ic)] dx.If the integral on the right is taken as the difference of two integrals, Theorem XIV, or, more directly, the inequality immediately preceding the statement of that theorem, can be applied to each. It is to be noted once more that 1/(//— 1) 
≤ 2/n for n > 1. The resulting general formulation, however, does not hold for n = 1, as may be seen by taking∕(rr) ≡ Gx, in which case V= 0, while G may be arbitrarily large; the conclusion is essentially restricted to values of n ≥ 2. In­duction based on repetition of the process of integration by parts leads to a conclusion which may be stated asCorollary I. If'f(x) has apth derivative of limited variation, 
p ≥ 0. and if Γ is the total variation of f(p)(x) for — 1 ≤re≤ 1, 
then, for n>p,

www.rcin.org.pl



II. LIMITED VARIATION; ARITHMETIC MEANS 75
. RpV

= np±(l∣2) >

where Rp depends only on p, and∣rtnλznθ)∣ <
for — 1 4^ *7 ≤ a? < 1 — η, ιvhere Rpij depends on p and on η, 
but not on x or on n.Suppose f(x) is of limited variation for — 1 < x ≤ 1, with total variation V, and identically zero for « — ≤ a? ≤ /5 + η.Let R(u), as before, be equal to Hu for ∖u∖ '≥η, and defined in some way for ∣ u ∣ < r∕ so as to have a continuous derivative everywhere. If J∕1 is the maximum of |.K'(u)|, the total variation of R(u) over any interval of length 2 does not exceed 22l∕1. The quotient f(f)∣(x— t) is identical with 
f(f)R(x-t), if x has any value belonging to the interval « ≤ a? ≤ It is of limited variation,, regarded as a function of L and its total variation has an upper bound which may be expressed as the product of V by a quantity depending only on //, and, in particular, independent of a?. So Theorem XIV may be applied to the function f(f)R(x—1), and the result substituted in the integral expression for Sn(x), to proveCorollary II. Iff(x) is of limited variation for — 1 ≤ a? ≤ 1, 
with total variation V, and identically zero throughout an 
interval a—ι∣^x<β-∖-η contained in (—1, 1), and if 
Sn (a?) is the partial sum of its Legendre series, then, for n ≥ 1 and a <x ≤ β,

Cr v
Sn (f)∖<-^-,

— n
where Crj depends only on q.Further consequences can be deduced substantially as in the case of Fourier series. If f(x) has a bounded derivative for — 1 ≤ a; ≤ 1, it comes under the hypothesis of the Corollary of Theorem XI in Chapter I. and its Legendre series converges to the value f(x) for — 1 < x < 1. If the series converges uniformly for — 1 < x < 1, its sum agrees in value with f(x) at the ends of the interval also, by continuity. 
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76 THE THEORY OF APPROXIMATIONSo Corollary I above yields information as to the order of magnitude of the error, under the hypotheses indicated. A result may be stated for the entire interval (—1, 1), as well as for an interior interval, since an Xn (a?) ∣ < an ∣ for — 1 < x < 1:Theorem XV. If fix) lias a pth derivative with limited 
variation, 71 > 1, if F is the total variation of f^ (x) for — 1 ≤ a? < 1, and if Sn (a,) is the partial sum of the Legendre 
series for fix), then, for n>p, 

where Q'p depends only on p, and 
for —1 -J-¾, ≤a, ≤ 1—q, where Qpijdepends only on p and on η. In conclusion, the following consequences of Corollary II, taken first with the corollary of Theorem XI in Chapter I and then with the Theorem XV just formulated, may be stated without further comment:Theorem XVIa. If fix) is continuous with modulus of 
continuity ω(d) throughout an interval a—q<χ<d~∖-η 
contained in (—1, 1), where ω(<J)>0 for d>0, and of 
limited variation over the rest of the interval (—1, 1), then 
for a < χ < d, if n is large enough so that ω(2∕n) has a meaning, 
Sn (a;) being the partial sum of the Legendre series for fix), 
and c a constant depending neither on x nor on n.Theorem XVIb. If fix) is of limited variation for —1 ≤a*≤l, and has a first derivative of limited variation 
throughout an interval a — η<x'<d-fq contained in (— 1. 1). f⅛βn 
for ct < χ < d, where Sn (x) is the partial sum of the Legendre 
series for fix), and e is a constant depending neither on x nor 
on n.
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CHAPTER IIITHE PRINCIPLE OF LEAST SQUARESAND ITS GENERALIZATIONSι. Convergence of trigonometric approximation as related to integral of square of errorIn the discussion of Fourier series hitherto, scarcely any mention has been made of one of their most remarkable and important properties, namely their relation to a problem of least squares. The property in question is not peculiar to Fourier series, but is of much rvider significance.Let j90 (rr), j91 (re), p2 (a?), ∙ ∙ ∙, be a sequence of normalized orthogonal functions over an interval (a, 6), that is, a sequence of functions satisfying the conditions
Let f(x) be another function defined over the same interval. The functions (re) and /(re) may be continuous, or, more generally, bounded and integrable in the sense of Riemann, or merely summable together with their squares. The problem of least squares in question is that of determining a set of coefficients c0, ∙∙∙, cn, for a given value of n, so that when y (re) == c0p0 (F) 4- c1p1 (z) + ∙ ∙. ⅛ cnpn (x)the integral

f6 [fW~ VWrdx, tJaregarded as a function of its coefficients, shall be a minimum. The following theorem is w7ell known:Theorem I. The integral has a minimum value, for the 
attainment of which it is necessary and sufficient that
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78 THE THEORY OF APPROXIMATIONIt is to be noticed at the outset that no function of the form y>(x) can vanish identically over the interval unless all the coefficients c⅛ are zero; in other words, the conditions on the p’s insure that they are linearly independent. For
and the identical vanishing of φ would require the vanishing of the sum of the squares. More definitely, it is recognized that the value of the integral on the left must be positive, if the c’s are not all zero. If the jp’s are continuous, this means that there must be one or more intervals throughout which y remains different from zero; if they are not so restricted, it means in any case that y must be different from zero over a set of positive measure.To prove the necessity of the condition, suppose that y (α,) is a function of the form ∑CkPk(%), in which, for a particular ndex k — m,

Let
where h is a constant, the value of which will be specified presently. Then ∕(rc) — ιp(x) = ∕(rr) — y (x) — hpm (a?), and

The last integral in this equation is equal to 1; if the others are denoted by J, R, S respectively,
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III. PRINCIPLE OF LEAST SQUARES 79by hypothesis. Let lι be taken equal to Z?; then
and the value R corresponding to the function y is not the smallest value of the integral, since the function ip gives a smaller value.To show that the condition is sufficient, suppose now that
where at least one c∣c is different from the corresponding <⅛. Then y(⅛) — ιp(oc) is a linear combination of jp0, ∙∙∙,ρn, with coefficients which are not all zero, and
On the other hand,

so that if χ(x) = '∑tc'k pk(x) is any linear combination of
Pq > , ,, Pn >

In particular,
Hence, by the resolution
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80 THE THEORY OF APPROXIMATIONwhich means that y actually gives the integral a smaller value than any other linear combination of pQ, ∙∙∙,pn∙As the most important of specific cases, p0, pi, p->, ■ ■ ∙ may be the sequence of functions1 cos re sin a? cos^a? sin 2 a?(2π)χ∕2 ’ Tl1∕2 ’ 7rι∕2 ∙ ∙ ∙∙If n above is replaced by n = 2n-∖-1, y(a?) is a trigonometric sum Tn(x) of the azth order. A periodic function f(x) being given, the condition that the integralΓ [∕(^) -Tn{x)]idx 
eJ-πshall be a minimum, is that the coefficient of cos 7va√τr1'2 beJi7r √> j,∖ cos A; 7 ,,

for ∕f>0, with a corresponding determination of the constant term and the sine terms, and this is equivalent to saying that Tn(x) shall be the partial sum of the Fourier series for ∕(a,).This property of least squares may be taken as a point of departure for a discussion of the convergence of the series, under suitable hypotheses with regard to f(x). While the hypotheses are more restrictive than those used in the con­vergence proofs already given, the method is of interest for its own sake, and furthermore lends itself to a remarkable variety of generalizations in other directions. It depends on theorems of approximation from Chapters I and II, and also on a proposition, due in the first instance to S. Bernstein, the simplicity and importance of which, are noteworthy in the highest degree:Bernstein’s Theorem, If Tn(x) is a trigonometric sum of 
the nth order, and if L is the maximum of its absolute value, 
the absolute value of the derivative Tn(x) can not exceed nL.The proof to be given here was devised independently by Marcel BIesz and by de la Vallee Poussin. For the purposes 
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III. PRINCIPLE OF LEAST SQUARES 81of the demonstration, the theorem may be restated in the following equivalent form:
If Tn(x) is a trigonometric sum of the nth order, and if 

the maximum ofj T,'l(x)∖ is 1, the maximum of' Tn(x)∖ itself 
can not be less than l∕n.Suppose the maximum of ∖Tn(x)∖ were less than l∕n. Then, for any value of the constant C, the function

R∏fc) = ~∙cos(nrc — Cγ)— Tn(x)would have the same sign as cos fix— C) at each of the points C∕n, (C-∣-π)∕n, (C⅛2π)∕n, ∙∙∙, (fJ∕ ri)-∖-2π, where cos fix— C) takes on the values ⅛1 and —1 alternately. Hence Rn{x) would vanish at least once in each of the 2n intervals between successive points of this set, say at the points a¾, a⅞. ∙∙∙, a⅞n, all contained in an interval of length 2π. By Rolle’s theorem. Rnfc) would vanish between 
Xι and .τ2, between a⅞ andx8, etc., and also, as jKra(.τ1-j-2τr) 

Rnfcf = 0, between x2n and ¾⅛2τη and the 2n distinct roots of R!l thus specified all lie within the interval from 
Xι to a¾ + 2τι. Explicitly,

R>fx) = —sin(nx— C) — Tl'fx).If C is chosen so as to make sin(nx-C,) equal to the negative of Tl'l(x) at a point where Tn(x) = ±1, Rnfc) will have a double root at this point; for each of the functions sin(w;r — C), T∏(x) separately attains a maximum or a minimum there. Having 2n distinct roots in a period, and at least one double root, R!l has roots of aggregate multiplicity at least 2n-¼l. But this would require that Rh, as a trigonometric sum of orders, vanish identically, which is impossible, since Jtιnis sometimes positive and sometimes negative, by hypothesis, and so can not be constant. Consequently the assumption that Tnfc) ∖ remains less than 1/n is inadmissible.(The fact that a trigonometric sum of order n can not have roots of multiplicities aggregating more than 2n without vanishing identically is assumed here as known. A special
c> 
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82 THE THEORY OF APPROXIMATIONcase of it, sufficient for the present application, is proved incidentally in another connection in Chapter IV below.)To proceed with the proof of convergence, let /(a?) be a continuous function of period 2π, and χS,n(x) the partial sum of its Fourier series to terms of order n, and let
Let tn(x) be a trigonometric sum of the nth order, sub­sequently to be chosen so as to furnish an approximation to ∕(x), but arbitrary for the present, and let
Then τ — τn is identical with f—Sn, and
Let εn be an upper bound for the absolute value of r(ar∙)r
for all values of x. Finally, let μn be the maximum of rw(F)], and xq a point where lrn(a⅞)∣ = ∕⅜.By Bernstein’s theorem.
for all values of x. For
If ⅝ ≤ 1z*m (the contrary case being reserved for separate mention),
throughout the interval specified. As the length of the interval is l∕n,

consequently,
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III. PRINCIPLE OF LEAST SQUARES gβ

whence μn < ±(nγnf<2. To suppose, on the other hand, that ⅛n>i∕¼, is to assume outright that ∕⅛<4⅜ So in either case μn does not exceed the larger of the quantities 4fn, 4(n∕w)1'2, or, in a single formula,
But ∖τn∖<μn, and r— τn is the same as f—Sn.Conseαuentlv for all values of x.The function j∖x) being continuous, it is always possible to choose tn∖x) for successive values of n in such a way that limn=oθ*n =≡ 0. So the relation just obtained amounts to a proof ofTheorem II. If f(x) is a continuous function of period 2π. 
its Fourier series will converge uniformly to the value f(x), 
provided that

In particular, Theorem VI of Chapter II yields at onceCorollary I. A sufficient condition for uniform convergence 
is that f(x) be absolutely continuous.By Theorem II of Chapter I, on the other hand, if ω (∂) is the modulus of continuity of f(x), there will exist sums 
tn(x) such that 
where K' is an absolute constant. Then
But as the integral takes on its minimum value when Sn (a∙) is put in place of tn(x), the right-hand member of the last relation is an upper bound for ∕n. So nγn will approach zero if nll2ω(2π∕ri) approaches zero, and it is possible to state

6*
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84 THE THEORY OF APPROXIMATIONCorollary II. A sufficient condition for uniform convergence 
is that linij-0ω ((Γ)∕∂1∕2 = 0, where ω(<5) is the modulus of 
continuity of fix').The conditions of Corollaries I and II of course overlap to a considerable extent, but they are not coextensive, and neither includes the other. As previously mentioned, they are less general than others which have already been obtained; absolute continuity is more stringent than limited variation, and the requirement involving d1/2 is more restrictive than the Lipschitz-Dini condition.The novel possibilities of the present method will be more apparent, if it is remarked that in the proof of Theorem II, down through the final relation of inequality preceding the statement of the theorem, no use whatever was made of the assumption that Snix) was the Fourier sum for ∕(.τ), and the value of the integral γn a minimum; the argument can be repeated step by step with Sn(x) replaced by Tnix), an arbitrary trigonometric sum of the nth order, and γn replaced by gn, the integral of ∣√'(x,)—Tn ix)]2 over a period. The conclusion isTheorem Ila. If fix) is a continuous function of period 2ττ, Tn (x) an arbitrary trigonometric sum of the nth order, 
and

and if there exists a trigonometric sum tnix), of the nth order, 
such that ∖fix) — tn (a?) I ≤ εn

for all values of x, then, for all values of x,∖f(x) — Tnix)∖ < 4(w,9,t)1H5⅛.To this may be added immediatelyTheorem II b. If sums Tn (ar) are defined for infinitely 
many values of n in such a way that gn^AAγn, ιvhere A is 
independent of n. the sums Tnix) will converge uniformly to 
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III. PRINCIPLE OF LEAST SQUARES <85∕∕ze value f(x), as n becomes infinite, under the conditions of 
Theorem II or either of its corollaries.The next application depends for its simplest expression on an existence theorem, the proof of which will be postponed for a few pages, to avoid interruption of the current order of ideas. The statement of the theorem is as follows:Theorem III. If q(x) is a summable function of period 2∏ 
which is nowhere negative, and is different from zero over 
a point set of positive measure in a period, if f(x) is a sum­
mable function of period 2π such that o(χ) [∕(^)]' is also 
summable, and if Tn (x) is a trigonometric sum of specified 
order n, the integral?C*0 [∕O) — Ttl f]idx

has a minimum, which is attained for one and just one deter­
mination of the coefficients in Tll(x).The truth of this assertion being assumed for the moment, attention will be directed to the question of the convergence of Tn (x) toward f(x) as n becomes infinite, the function f(x) being supposed continuous. The problem is connected with an extensive theory developed from a different point of view by Stekloff, Szegb, and others. The minimizing sum may be called the approximating sum of order n corresponding to the 
weight function ρ(a), and it will be understood now that Tn(ir) denotes this particular sum. The corresponding minimum value of the integral will be denoted by Gn. For the con­vergence proof, let ρ(sr) be further restricted by the hypo­thesis that its values are comprised between two positive bounds: 0<r ≤ ρ(,τ) < 7,where v and V are independent of x.By the minimizing property of Tll (α∙),

G,l = f e(a?) [∕(aθ —
•7—π

≤ X π ? y (^)- ^d χ ≤ > 
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86 THE THEORY OF APPROXIMATIONwhere Sn (rr) and yn have their previous meanings. On the other hand, with the notation of Theorem Ila.
So gn < (T7r)∕zι, and the conclusions of Theorem IIb are applicable:Theorem IV. If the weight function ρ (x) has a finite upper 
bound and a positive lower bound, the approximating sum Tn(x) 
will converge uniformly toward f(x) as n becomes infinite, if limra=oc nj,n = 0, and hence, in particular, iff(x) is absolutely 
continuous, or has a modulus of continuity ω(d) such that limtf=0 w(d)/d1/2 = 0.In modification of this result, let the restriction o(λj) ≤ Γ be removed, the hypothesis with regard to ρ being merely that it is summable, and that ρ > v > 0 everywhere. Since Gn is a minimum,
if tn (x) is any trigonometric sum of the nth order. Let en be an upper bound of ∖f—tn∖, as before. Then
with the notation J ρ = 7. As it is still true that Gn ≥ vgn, it follows that gn < (7⅛)f2. Under the hypothesis that li∏V=o ω(d)∕d1∕2 = 0, tn∖x) can be chosen so that limM=00 n1,2εn = 0, which means that limn=00ngn ~ 0, and Theorem Ila shows that Tn {x) converges uniformly to f(x) once more.2. Convergence of trigonometric approximation as related to integral of mth power of errorTo generalize in another direction, consider the integτal
in which m is an arbitrary positive number, taking the place of the particular exponent m = 2 that has been used hitherto.
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III. PRINCIPLE OF LEAST SQUARES 87When m, n, ρ(ar), and ∕(ar) are given, f(x) being bounded and measurable, it can be shown that there exists a deter­mination of the coefficients in Tn (x) for which the value of the integral is a minimum, provided that ρ(ar) is summable, everywhere positive or zero, and different from zero over a point set of positive measure in a period. When m>l, the determination is unique. The existing presentations do not give the theorem with quite this degree of generality, but it is not difficult to supply the necessary extensions. For somewhat less general functions ρ (in particular, for the case that ρ = 1 identically) it has been shown that the deter­mination is unique for m — 1 also, if ∕(ar) is continuous. It is not generally unique when m < 1. The proofs will be omitted here, the facts with regard to convergence being formulated in such a way as not to presuppose a knoλvledge of the theorems of existence and uniqueness.For the discussion of convergence, let ∕(ar) be a continuous function of period 2 τr, and let it be supposed that there is a number v such that ρ (a-) > v > 0for all values of a∙, while ρ (ar), as always, is summable over a period. Let
9n =

J _(? (ar) j∕(ar) — Tn (x) m dx,

Tn(x) being for the present an arbitrary trigonometric sum of the nth order. (The notation is changed someλvhat from that previously used in treating the case m = 2.) Let it be assumed that there is a sum tn (ar), likewise of the nth order, such that ∕(ar) — tn (ar) ∣ < enfor all values of ar, and let∕(ar) — tn (ar) = r (ar), Tn (ar) — tn (ar) = τn (ar), whence P ρ (ar) ! r (ar) — τn (ar) iwι dx = gn.
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88 THE THEORY OF APPROXIMATIONIf = ∣ τn (,z⅛) j is the maximum of j τn (⅛) ∣, it follows that i ⅛(a,) l ≤ nμn, by Bernstein’s theorem once more, and there is an interval of length at least ∖∕n throughout which
provided that
Whetherand

For each value of n, let γn be the greatest lower bound of the integral gn, when all possible values are given to the coefficients in Tn (x), while the functions ρ and f and the exponent m are held fast. It is clear that γn > 0. Nothing is assumed as to the possibility of making gn actually equal to ∕zι, by one or more determinations of the coefficients. As gn can not be less than γn for any sum of the wth order, it follows in particular, since fn (x) is such a sum, that
the value of J ρ being denoted by I. If sums Tn (a∙) are chosen for the successive values of n so that gn ≤ A∕n, where A is independent of n, then g%m ≤ (AΓ)lmεn, and
where B is likewise independent of n. The sums Tn (x) will converge uniformly toward fix), if n^mεn can be made to approach zero, and this will be possible under conditions indicated by Theorem II of Chapter I, if m>l; by the Corollary of Theorem IV of that chapter, if m = 1, and by
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III. PRINCIPLE OF LEAST SQUARES 89Theorem IV itself, if 0<wι<l. The principal results may be summarized in the following formal statement:Theorem V. If the weight function ρ(x,) is summable and 
has a positive lower bound, and if a sum Tn (x) of the nth 
order is chosen for each of an infinite set of values of n so 
that gn < Aγn, where A is independent of n, these sums will 
converge uniformly toward f(x), when m is held fast and n is 
allowed to become infinite, if mi> 1 and f(x) has a modulus 
of continuity ω(d) such that limtj'-0 ω (∂')∕∂1'wι = 0, or if 
m = 1 and f(x) has a continuous derivative.The explicit statement for m < 1 is more complicated and less interesting. In the cases covered by the theorem as stated, for m > 1, there is in fact a determinate approximating sum for each value of n, making gll — γn, and the conclusions of course apply in particular to the convergence of these approximating sums. On the other hand, it is clear that A can be replaced by a factor An which becomes infinite with n, if more restrictive hypotheses are placed on ∕(∙τ), so that en can be made to approach zero with sufficiently increased rapidity. 3. Proof of an existence theoremTo carry out an intention expressed above, it remains to supply a proof of Theorem ΠI, with regard to the existence of an approximating sum corresponding to a given λveight function q(λ,) when m = 2.It will be worth while to begin with more general con­siderations. Let q0(x), qι(x), q2(fi), ∙ ∙ ∙, be a sequence of functions, each summable together with its square over an interval («, 6). Let these functions be linearly independent, in the sense that any linear combination of a finite number of them, with coefficients not all zero, is different from zero 
over a point set of positive measure in (a, &), which is equivalent to saying that the integral of the square of such a linear combination, extended from a to b, is positive. The requirement may be indicated briefly by saying that the 7’s are properly 
independen t. Let
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90 THE THEORY OF APPROXIMATION

and generally
Q∙> — Q'> Qo

it is understood that each integration is to be performed with regard to re, from a to &. Each denominator is different from zero, because of the hypothesis of proper independence. It is seen from the definition of Q↑ that J*Qo Q∖ = θ∙ Since this is the case, the definition of Q2 makes J* Qo Qi = J Qi Qi — 0. Generally, each Q is orthogonal to all the preceding Q,s, or, in other words, any two of the Q’s are orthogonal to each other. If 
pk (x) = Qk∣(J ⅛) ,the functions j⅛ form a normalized orthogonal sequence, to which Theorem I is applicable. Each pji is a linear combina­tion of ¢0., ∙∙∙, <lk, and conversely each g⅛ can be linearly expressed in terms of p]i and the p’s of lower order, since the coefficient of ¢/, in the expression for pjc is not zero.Now let ρ(rε) be a non-negative summable function of period 2π, such that 

and let [ρ (re)]1/2 = w(re). The functions
ιv (re), w (re) cos re, w (re) sin re, tv (re) cos 2 re, w (re) sin 2 re, ∙ ∙ ∙ are summable, with their squares, and properly independent; a linear combination of a finite number of them, with co­
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III. PRINCIPLE OF LEAST SQUARES 91efficients not all zero, is a trigonometric sum multiplied by 
tv(x), and is different from zero wherever ρ ⅛ 0, with the exception of a finite number of points at most in a period. If they are taken as the functions qo, qι, q%, - ∙ ∙, of the preceding paragraph, over the interval (—π, π), the corre­sponding functions P0,P1,P2, ∙∙∙. have the form
where Uk and T∖- are trigonometric sums of the 7√th order, and

If Tn(x) is any trigonometric sum of the 7zth order, w(re) Zrt(,r) is a linear combination of the functions now taken as the r/’s, and so is a linear combination of the functions w(x) Uk(x), 
w(x) Vk(x), ⅛ = 0, l,∙∙∙,n, and Tn itself is expressible in terms of Uk, I∖∙, with the same coefficients.Let ∕(a,) be a summable function of period 2zr, such that ρ(aj) [∕(a,)]2 is also summable. Then
and Theorem I can be applied, λvith w(x) fix') as the function for which an approximation is sought. The integral has a minimum value, and if
it is necessary and sufficient for the attainment of the minimum that
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92 THE THEORY OF APPROXIMATION

4. Polynomial approximationAttention will next be directed to problems of polynomial approximation. An essential instrument here is the form of Bernstein’s theorem in which Bernstein himself was primarily interested:Bernstein’s Theorem for Polynomials. If Pn O) is 
a polynomial of the nth degree, and L the maximum of 
Pn (x) ∣ for — 1 < x < 1, then

It can be deduced immediately from the theorem for the trigonometric case. Let x = cos θ. Then Pn(x) = P,i(cos θ) is a trigonometric sum of the nth order in θ, having L for the maximum of its absolute value, and consequently
whenceIf L is the maximum ∣
Then Pll(x) = Qn(y) is a polynomial of the 7zth degree in y. having L for the maximum of its absolute value in the interval — 1 < y < 1. Therefore
by substitution of the value of y in terms of x in the factors (1 — y), (l+2∕) under the radical sign, one is led toCorollary 1. If Pn(x) is a polynomial of the nth degree, 
and L the maximum of Pn(x)∖ for a<x<b, then
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III. PRINCIPLE OF LEAST SQUARES θβ

for a <,x<,b.This implies directlyCorollary II. If Pl∣(x) is a polynomial of the nth degree, 
and L the maximum of ∖Pn(x)∖ for a < x < b, and if 
a <Γ a, b, <' b. then

for a1<x<bl, where h depends only on a, at, bl, and b.A further corollary is to be obtained by the following considerations. Let Pn(x) once more be a polynomial of the nth degree, and L the maximum of its absolute value for — 1 < a? < 1. Let a? be a number of the interval— 1 <C a? < 1, and d' a positive number < 1 such that— 1 <x — d < 1. Then
It is readily seen that
(For an analytical proof, let so that
Since
which is equal to 0 if y = 0, positive if y^>^, negative if 
y<0, the value of the integral is a minimum when y = 0. that is, when the interval of integration is symmetric about the origin, and increases steadily as the interval is displaced toward either side.) As d< 1, 0 < t < 1 in the integral from 1 — d to 1, 1 — C > 1 — ∕>0, and
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94 THE THEORY OF APPROXIMATION

So
An equivalent statement is that if xγ and .τ2 are two numbers in (—1, 1), differing by not more than unity,

Now suppose that L is the maximum of Pn(x) for « ≤ a? < b, and let x1 and x2 be two numbers of this interval, dif­fering by not more than ⅜ (6 — a). Let y = (2rr—a — &)/(&— a), the values of y corresponding to ,z1 and x2 being y1 and y2, and let Pn(⅛) = Qn(y)- Then L is the maximum of ∣QnG∕) for — 1 < 2/ < 1, yl and y2 are two numbers of this interval, differing by not more than unity, and
The conclusion isCorollary III. If Pn (x) is a polynomial of the nth degree, 
and L the maximum of Pn(x) J for a < x <b, and if xl 
and x2 are two numbers in the interval, differing by not more 
than ⅜(δ— «), then

whereBy the introduction of an intermediate value x-i = ⅜(rr1 ⅛x2), it may be seen that
without the restriction that ∣xs — x1 ∣ < ⅜ (δ — a).The way has now been prepared for a discussion of problems of approximation associated with the integral
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III. PRINCIPLE OF LEAST SQUARES 95where ρ(x) and ∕(rr) are given functions in the interval (a, 6), Pn(x) is a polynomial of the nth degree, and m is a given exponent >0.When m = 2, a theorem of existence and uniqueness may be stated as follows:Theorem VI. If ρ(x,) is a summable function which is 
nowhere negative, and is different from zero over a point set 
of positive measure in the interval (a, b), if fix) is a summable 
function such that ρ(rr) [∕(rr)]^ is also summable from a to b, 
and if Pn(x) is a polynomial of specified degree n, the integral

— Pnlxj∖2 dx

has a minimum, which is attained for one and just one de­
termination of the coefficients in Pn(xfThe proof is entirely analogous to that of Theorem 111. The functions

w(x), xw(x), x2w(x), ∙∙∙,where w(x) = [ρ (a?)]1/2, are summable together with their squares and properly independent over the interval (a, b). Γf they are taken as the functions qk(x) previously considered, the corresponding functions pk(x) have the form w(x) Yk(x), where Yk(x) is a polynomial of the fcth degree, and
0 ≠ 1<Y

The polynomials Yk(x) are called the Tchebycheff polynomials 
corresponding to the characteristic function ρ(rc) in the inter­
val (a, b). Any polynomial Pn(x), of the nth degree, can be expressed as a linear combination of I70, F1,∙∙∙, Yn, and for the minimizing of the integral in the statement of the theorem it is necessary and sufficient that the coefficient of IF in this expression beρ(x) f(x) Yk(x) dx.
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96 THE THEORY OF APPROXIMATIONIn the case that ρ is identically equal to 1 and the interval is that from —1 to ⅛1, F⅛(aj) is equal to (∕√ + ⅜)1'2 Xk{x), where X⅛ is the Legendre polynomial of the ∕√th degree; and the approximating polynomial Pw(.r) then is the partial sum of the Legendre series for f(x).For an arbitrary value of m>0, theorems of existence and uniqueness can again be established in analogy with those of the trigonometric case. An approximating polynomial, reducing the integral to a minimum, exists if f(x) is bounded and measurable, and if ρ(α,) is summable, nowhere negative, and positive over a point set of positive measure in (a, 6). The approximating polynomial is unique when m > 1, and, with suitably restricted hypotheses, when m = 1 also. The proofs will not be given here, the further discussion being put in such a form that a knowledge of them is not essential.Let f(x) be a continuous function for α ≤ a? ≤ δ, and Pn(x) an arbitrary polynomial of the nth degree. Let ρ(af) be summable over (a, δ), and nowhere negative in the interval, and let ρ (z) > υ > 0 for α0 < a? < Ab where a ≤ «0 < Λ ≤ δ. (It will be noticed, as a departure from the conditions of the earlier convergence proofs, that the hypothesis ρ≥ r>0 does not necessarily hold over the entire range of variation of a;.) Let
fin — f Q (#) l∕(^) — Pn(x) ∖mdx.

eJaFurthermore, let pn(P) be a polynomial of the nth degree, in genera] distinct from Pn(x),

Suppose that μn is the maximum of ∣ πn(x), for α0 ≤ a? ≤ A∏ and that x0 is a point in (α0, β0) at which this maximum is attained. By Corollary III above,
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III. PRINCIPLE OF LEAST SQUARES 97

as Ions as x is in (α0, ∕J0) and distant from <r0 by not more than the factor H being equal to Theseconditions will be satisfied for n > 1 throughout one or the other (or both) of the intervals if
Over such an interval, then, since

over the same range; and, as the length of the interval is l∕(47f¼2),

throughout (α0, Λ>)∙Let/,i be the greatest lower bound of gn, when ρ (x), f(x"), and m are given. As an immediate consequence of the definition,
If polynomials Pn (x) arechosen for an infinite succession of values of n sothat where A is independent of n,then and
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98 THE THEORY OF APPROXIMATIONfor «o ≤ X < ∕‰, λvith a factor B which is likewise inde­pendent of n.The conditions to be imposed on f(x), in order that it may be possible to make n2'z" εn approach zero, are to be obtained from Theorems VI and VIII of Chapter I, and the Corollary of the latter. It will be sufficient to state the results form­ally for m > 2, though corresponding statements could readily be added for 0<m<2:Theorem VII. If ρ(x) is summable over (a, δ), and has 
a positive lower bound for α0 < χ < do, where a ≤ «0< do 
≤ b, and if a polynomial Pn(χ) is chosen for each of an 
infinite set of values of n so that gn < Ayn, where A is inde­
pendent of n, these polynomials will converge uniformly toward 
f(x) for ao ≤≥x ≤ do, when m is held fast and n is allowed 
to become infinite, if m>2 and f(x) has a modulus of con­
tinuity ω(d) such that limfp^0 ω (∂)∕δ2lm = 0, or if m — 2 
and f(x) has a continuous derivative.Under the conditions formulated, there will in fact be one and just one polynomial of each degree n for which gn = γn, not merely for m = 2, in accordance with Theorem VI, but also for an arbitrary m>2, under a theorem cited above without proof. Theorem VII naturally applies to the con­vergence of these approximating polynomials. More particular­ly still, for ρ(rr) = 1, « = —1, & = 1, one may stateCorollary I. If f(x) has a continuous derivative for — 1 ≤≡ x ≤ 1 , Hs Legendre series converges uniformly toward 
f{x) throughout the closed interval.Another part of the content of the theorem, aside from the question of uniformity of convergence, is expressed inCorollary II. If ρ(x) is continuous and nowhere negative 
for a ≤ x ≤ b, the hypotheses of Theorem VII remaining 
otherwise unchanged, the polynomials Pn (x) will converge toward 
f(x) at all points where ρ(x) φ 0.Additional information can be gained by further elaboration of the proof of the theorem. Let the previous notation be continued in force, with the understanding now that poly­nomials Pn(^) and pn(x) are defined for all positive integral 
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III. PRINCIPLE OF LEAST SQUARES 99values of n, and that these sequences of polynomials are kept unchanged throughout the course of the reasoning. Let 
a and β be two numbers such that Let«1, c(∙2, ∙ ∙ ∙ and βi, β2, ∙∙ - bθ two infinite successions of numbers such that
Let vn be the maximum ofand μnkthe maximum of the same function for isthe same as the previous μn∙ It follows immediately from the definitions that
Until the contrarycase is explicitly mentioned, it will be assumedthat Then, a fortiori, εn < ∣ μnQ, andby the earlier work. , as willbe assumed from now on, ffn does not exceed a constant multiple of εn, and
where √l0 is independent of n.Suppose it is known, for a specified value of 7√, that
A/c being independent of n. The exponent σ will be denoted by σ⅛ when there is occasion to emphasize its dependence on k. By Corollary II of Bernstein’s theorem,
fo) the factor h depending on α⅛, βk, ak±ι, andΛ÷ι, but not on anything else. Let x1 be a point in(αfc+1, Λ-+ι) such that ∣πn(x1); = μn,fc-∣.1, and letBecause of the fact that and itis certain that at least one of the intervals (a⅛—∂'1,a⅛), 
(x1, ≈ι+<51) consists entirely of points belonging to (α⅛+ι, A∙÷ι), as soon as n is sufficiently large. This condition being satisfied,

7*
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100 THE THEORY OF APPROXIMATION

throughout the interval designated, and as it has been supposedthat
where is independent of n. Taken with the relations1, this means that

Because of a qualification introduced at one stage in the work, the result has been obtained in the first instance only for values of n from a certain point on; but it can be extended to the finite number of values of n previously neglected, from 
n = 1 on, by a suitable adjustment of the value of A⅛+ι. It is recognized therefore that the successive numbers μnk have upper bounds involving a sequence of exponents σ⅛, beginningwith o,0 — 2∕m, and so related thatIt mav readily be verified by induction that
If ι∣ is any positive number, it will be possible to choose a value of k for which σ⅛< (1/w?) ⅛- q. With such a valueof k,

All this, it may now be recalled, is on the assumption thatυ ιιιcιj ιιuvv uυ ιvvιuι 
But in anv case

The last relation, by the definitions of vn and εn, implies that
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III. PRINCIPLE OF LEAST SQUARES 101
fif) — Pn (x) i = r (x) — πn iχ) I < 5 en÷ Λ n(1 'wW ⅛nfor a ≤ χ ≤ β. More concisely, since 1 ≤ n^m^+rι f0r n ≥ 1,∣∕Cr)-Pn(*)∣ ≤if C= Ak-∖-o, the factor C, like those which have preceded it in similar situations, being independent of n. The previous results with regard to convergence may be supplemented by stating:Theorem VIII. 7/ ρ ix) and Pn (x) satisfy the hypotheses 

of Theorem VII, and if afi<a < ∕C< , the polynomials Pn (x)
will converge uniformly toward f (x) for a <,χ ≤ β. if m~>∖, 
and if a positive number η exists such thatlim ω (d)/d(1/w)+^ = 0,J=o
where m (∂) is the modulus of continuity of fix).Corollary. If ρ ix) is continuous and nowhere negative for 
a<^x<,b, hypotheses with regard to Pn (x) and f if) 
remaining unchanged, the polynomials Pn ix) will converge 
toward fix) at all points where ρix) ⅛ 0.For points in the interior of (a, &), this corollary super­sedes the second corollary of Theorem VII, being a direct generalization of it.There are analogous but less simple conclusions for 0 <1 m ≤ 1.Generalizations of Bernstein's theorem (in appropriately modified form), leading to the extension of parts of the pre­ceding analysis to certain cases of development in terms of characteristic functions of differential systems, have been given by Miss Carlson (Transactions of the American Mathe­matical Society, vol.26 (1924), pp. 230-240, and vol. 28 (1926), pp. 435-447).5. Polynomial approximation over an infinite intervalAnother extension of the scope of the method lies in its application to problems of polynomial approximation over an
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102 THE THEORY OF APPROXIMATIONinfinite interval. To be specific, let f(x} be a function defined and continuous for all real values of x, and not greater in absolute value than a constant multiple of a power of x, as 
x becomes infinite in either direction. Among all polynomials of specified degree n, let Pn(rr) be the one which minimizes the integral
The proof of the existence of the minimum and the uniqueness of the corresponding polynomial offers no new difficulties in comparison with cases already treated, and will be omitted. (It can be based either on the construction of a sequence of orthog­onal polynomials over the infinite interval with the weight­function e~x^, essentially the polynomials of Tchebychef-Hermite, or on the fundamental theorems of real analysis. From the latter point of view, the essential point in the passage to the infinite interval is merely that if any coefficient in Pn(rτ) were large, the integral over a finite interval would be large, and the integral over the infinite interval would be larger still, so that the coefficients to be considered in the search for a minimum belong to a bounded domain.) It is to be shown that under suitable restrictions on f(x) the polynomial Pfix} will converge everywhere to fi (x) as n becomes infinite, and will converge uniformly over any interval of finite extent. The aim will be to arrive at a result of this character in as straight­forward a manner as possible, without regard for the greatest attainable generality.Let γn be the minimum value of the integral, and let a be an arbitrary preassigned positive number. Let pn(x) be an arbitrary polynomial of the nth degree, letr»(^) = f⅛c)~ pn(fi), πn(fi) = Pn(x)-ρn(x), 
so that

fi(x) -Pn(x) = rn(x) — πn{x),and let εn be the maximum of ∣rw(ir)∣ for—(α⅛l) <rr≤ « + 1. Let pn be the maximum of ∣ πn (x) ∖ in the same interval, attained for x = x0 ∙
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III. PRINCIPLE OF LEAST SQUARES 103By the third corollary attached to Bernstein’s theorem on the derivative of a polynomial, there is a positive number H. independent of n, such that
as long as x is in that one of the intervals (—a—1,0), (0, « + l), to which Xq belongs. This condition will be satisfied, on one side of α∙0 at least, for all values of n from a certain point on, if ∖x—α⅛ ! ≤ 1 ∕(4Zf2 n2). So there will be an interval of length l∕(4∕f2n2) throughout which
If it is supposed that εn < ⅛∕<7t, then
throughout the same interval, whence it follows that
where c1 is independent of n. The alternative possibility that f n>iμn may be left out of account until a later stage.Now let μ'n be the maximum of τrn(x) ∣ for —a < χ < a. It is certain that μ'n≤μn∙ Let xi be a point in (—α, c<) such that ∣πn(^ι) ∣ = ∣∣'n∙ By the second corollary of Bern­stein’s theorem for polynomials, there is an It independent of n such that
for —a < x < a. (It is clear that lι must be positive.) The quantity ⅞ = μ,u,∣{21ιnμr∂ is less than a for values of n from a certain point on, since μ'n < μn. One or the other of the intervals (x1— ∂∏, Xi), (a⅛, a⅛ + <5rt) is then contained in 
(—a, a), and there is an interval of length at least dw through­out which
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104 THE THEORY OF APPROXIMATION

in this interval, and
with C2 independent of n. The assumption that εn ≤ ⅛ ∕⅜ carries with it the condition εn<½μ. under which so that
If the hypothesis that fn≤⅜∕4 is not fulfilled, μ'n<Aεn immediately. In either case
with the reservation merely that a finite number of values of n may have had to be ruled out in the course of the proof.As μ,n and εn are upper bounds for πw(<r)! and ∣rn(sc) respectively,
for —α≤rr≤α. For fixed «, the polynomials pn (⅛) can surely be determined so that limn κ⅛ = 0. since fix) is continuous. In order that Pnix) shall converge toward fix), 
uniformly throughout the interval (—«, «), whatever value 
may be assigned to «, it is sufficient that limn ∞n4z3χw = 0. It remains to discuss the order of magnitude of γn, under appropriate hypotheses on fix).There will be occasion to use a lemma regarding the behavior of a polynomial as its argument becomes infinite. Let pnix) be an arbitrary polynomial of the nth degree, n≥l, and let M be an upper bound for its absolute value in the interval — 1 ≤ x ≤ 1. Let X⅛ix), as in Chapter I, be the Legendre polynomial of degree h. Then pnfx) may be written identically in the form
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III. PRINCIPLE OF LEAST SQUARES 105where
From the last equation, together with the definition of M and the fact that A7fcCr)∣ ≤ 1 in (—1, 1), it follows that
For i x ≥ 1, on the other hand, the identity
gives
since (xt — 1 )1/21 cos φ, < ∣ x I. Consequently, under the assump­tion still that |a?| > 1,

If pn (x) is a polynomial of the nth degree, as before, and if M is an upper bound for ∣j⅛(x) in an interval —β<Lx ≤ ∕S, where β is an arbitrary positive number, then pn (x) is at the same time a polynomial of the nth degree in x∕β, and for ∣λjI ≥ β. ∖x∕β ≥ 1,
This relation, under the hypotheses stated, constitutes the lemma in question.

Let it be assumed now that f∖x} has everywhere a first 
derivative satisfying the condition

Let β be an arbitrary positive number, and let Theorem VII of Chapter I be applied to the approximate representation of f(χ) in the interval (— β, β). The conclusion is that there
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106 THE THEORY OF APPROXIMATIONexists for each n>l a polynomial pn (x), of the ?zth degree, such that
for — β ≤ x ≤ β, where K is the absolute constant that figures in Theorem I of the first chapter.As an immediate consequence,

or, as the value of the last integral is
Furthermoreif J∕1 is the maximum of l∕(jr) in the interval. Let ∣∕(0)∣ 
= a0, ∣∕'(0)l = «15 then ∣∕'(^)∣ ≤ αl÷⅛∣, ∕(,r)∣≤ α0 + N + ⅜λiτ2, and
(Incidentally it is seen that the present hypothesis carries with it the fulfillment of the earlier requirement that f(x) shall not become infinite faster than a power of x.) If β ≥ 1, as will be assumed henceforth, M1 ≤ (⅜ + + ⅜ λ) ∕S2, and
for —∕f ≤ # ≤ /?, where ci is independent of β and of n, though it is different for different functions fix).For ∖x∖ ≥ β, by the reasoning of an earlier paragraph,
At the same time (that is, for
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III. PRINCIPLE OF LEAST SQUARES 107and by further enlargement of the right-hand member, with α2 = ⅜+αι+⅜λ for abbreviation,
it has already been assumed that n ≥ 2. So, with a new multiplier cδ, independent of /? and of n,

This means that
the quantity on the right is an upper bound also for the integral from —∞ to —β. Since ≥ 1,

Without reference to more elaborate approximations to the value of the factorial, it is seen at once that

Consequently
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108 THE THEORY OF APPROXIMATIONand
e ∙τ'2 [f(x) — ρn Gr)]2 dx⅛ c⅛ e β, n5≤The number β has been arbitrary hitherto, except for the requirement that it be positive and not less than 1; the last relation is valid with the insertion of any such value of β. 

Now let β — 2 n112. This makesT28A4λ2 , ιp
gn ≤-------- 2-------- f- 16 c5 en‘ β n.As nQ e~n approaches zero when n becomes infinite, n7 e~n does not exceed a constant multiple of l∕n2for n ≥ 2, while, on the other hand, gn is not less than the minimum value ∕n. Therefore

/»≡≥ g∏≥≥ ~2,with ce independent of n.The condition limn=00 n4/3/n = 0 being satisfied, Pn(x} con­
verges uniformly toward f(x) throughout any finite interval, under the hypotheses stated.As in the case of the Fourier and Legendre series, the method under discussion, when applied merely to the classical problem, yields little if anything that is new, and misses much that is well known. Clearly, however, the treatment admits a variety of generalizations, which remain open for further investigation. To mention just one, which calls for no additional labor, the reasoning applies without material change if the weight func­tion e~~x is replaced by any positive continuous function which is never greater than a constant multiple of e~x . The theory thus suggested has been developed at some length in a thesis, as yet unpublished, by J. M. Earl. Theorems on degree of approximation over an infinite interval, without reference to the particular method of this chapter, have been published by W. E. Milne in vol. 31 of the Transactions of the American Mathematical Society.
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CHAPTER IVTRIGONOMETRIC INTERPOLATIONι. Fundamental formulas of trigonometric interpolationThis chapter is concerned with certain striking analogies, both formal and analytical, between the theory of interpolation by means of trigonometric sums and that of Fourier series. The case of polynomial interpolation will be left out of con­sideration for the most part, since the analogies there, when the points used for interpolating are equally spaced, are rather with Taylor's series than with those of Fourier and Legendre. Certain extensions to the case of interpolation by means of Sturm-Liouville sums have been carried through by C. M. Jensen (Transactions of the American Mathematical Society, vol. 29 (1927), pp. 54-79).Let t0, tl, ∙ - -, t2n^ 2n + l distinct numbers contained in an interval of length 2π, for definiteness that from 0 to 2π, inclusive of the left-hand and exclusive of the right-hand end point. Let yn, yl, -- ∙, y∙'n be any 2n ⅛- 1 real numbers, distinct or not. Let the problem be proposed of determining a trigonometric sum Tn(x), of the nth order, to satisfy the conditions

109

The sum Tn (x) has 2 n +1 coefficients, on which 2 n + 1 conditions are imposed. With the notation
the conditions to be satisfied are given explicitly by the 2 n ÷ 1 equations
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110 THE THEORY OF APPROXIMATION

which are linear in the α,s and 6’s. One is confronted by the problem of showing, directly or indirectly, that the deter­minant of these equations, the determinant

is different from zero.If a and β are any two numbers, the product
is a trigonometric sum of the first order in #, being identically equal to

the 2 n factors of the numerator can be combined in pairs to give n expressions, each of which is a trigonometric sum of the first order, and the product of these is a trigonometric sum of the nth order; the denominator is a constant which is not zero, since the difference of any two of the numbers /,- is by hypothesis different from zero and numerically less than 2π. It is apparent on inspection that φk (tr) — 0 for r φ λ∙, while (pk (tk) = 1. Consequently the function Tn(x) defined by 
the formula
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IV. TRIGONOMETRIC INTERPOLATION 111
2n

τn & = ∑ yk fPk w 
k=O

is a trigonometric sum of the nth order such that Tn(tr) = yr, r = 0, 1, ∙∙∙, 2 n. The linear equations above accordingly have at least one solution, for any assigned values of the y1s. But if the determinant of the equations were zero, there would be values of the right-hand members for which there would be no solution. It is certain therefore that the determinant 
is different from zero. Whatever values are given to the z/’s, the proposed problem has one and just one solution. In par­ticular, if all the ?/’s are zero, the obvious solution in which all the α,s and 6’s are zero is the only one. A trigonometric 
sum of the nth order which vanishes at 2n + 1 distinct points 
in a period is identically zero; two trigonometric sums of the 
nth order which coincide in value at2n-∖-∖ distinct points of 
a period are identically equal.It is easy now to supply a proof of a fact which was pre­viously assumed as known, in connection with the proof of Bernstein’s theorem, namely that a trigonometric sum of the nth order vanishes identically if it has 2 n distinct roots in a. period, one of which is a double root. Let Tn (a?) be a sum of the nth order which takes on the value 0 for 2 n distinct points of a period, say for x —- tγ, t2, ∙ ∙ ∙, t2n, but which does not vanish identically. Let t0 be a point of the same period interval, distinct from t1, ∙∙, t2n, and let y0 = Tn(t0f it is certain that y0 ⅛ θ, since Tn(x) can not have 2raψl distinct roots in the interval. The expressionsin ⅜ (a: — tl) sin ⅜ (x — ∕8) ∙ ∙ ∙ sin ⅜ (a? — t2n) >Jo sin ⅜ (t0 — t1) sin ⅜ (f0— ts) ∙ ∙ ∙ sin ⅜ (∕0 — t2n)s a trigonometric sum of the nth order which takes on the value y0 for x — t0, and vanishes for x=ti,∙∙∙, t2n, and so must be identical with Tn(x). The derivative of this expression is easily calculated explicitly; it is∖z=zJL V sin ⅜ fι) ∙ ∙ ∙COS⅜ (a? — ⅜⅛) ∙ ∙ ∙sill⅜ (a? — t2n)2 '7°fe=ι sin ⅜(t0- ∕1) ∙ ∙∙ sin ⅜ (t0- tιf-- sin ⅜ (t0- t2n) ' 
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112 THE THEORY OF APPROXIMATIONFor x — tr, if r has any of the values 1, ∙∙∙, 2n, all the terms of the summation vanish, except the one for which λ∙ = r, and that becomesd sin ⅜ {tr- ∕ι) ∙ ∙j________£_______ ∙ .∙ sin⅜(^-⅛n)sin⅜(70—iι) ∙∙∙ sin⅜(70-tr) ∙∙∙ sin⅜(⅛~⅛n)which is certainly different from zero, so that Tn (tr) = ⅜ yo A∙ £ 0; the sum Tn(x). assumed not to vanish identically, can not have a double root at any of the points tι, ∙∙∙, t2n-To return to the problem of interpolation, let the points tr 
from now on be supposed equally spaced over a period. As a matter of general notation, if m is any positive integer and r any real integer, positive, negative, or zero, let

tr = 2rπ∕m.The discussion hitherto (apart from the digression of the last paragraph) is applicable on the assumption that m is odd. 
m = 2nfl; there will be occasion subsequently to consider even values of m as well. Throughout the remainder of this 
chapter, in the absence of express indication to the contrary, 
the sign ∑ will be understood to refer to summation with 
respect to the index r, from r = 0 to r = m — 1, or what comes to the same thing, as all the functions considered will be of period 2π, over any m successive values of r.It is a fundamental fact, whether m is odd or even, thatsin k tr = 0if k is any integer, and thatCOS k tr = 0if k is an integer not divisible by m, while if k is a multiple of m (and in particular if k = 0) it is evident that

∑ cos ktr — m,since in this case each term of the summation is equal to 1. The truth of the statement with regard to sin H1∙ is 
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IV. TRIGONOMETRIC INTERPOLATION H3apparent from considerations of symmetry. The term sin A: to is equal to 0. Since 
each term corresponding to an index r between 0 and ⅜m is paired with a numerically equal term of opposite sign. If m is odd, all the terms are thus accounted for; if m is even, the term which remains by itself is sin ktm∣2 = sin kττ — 0.In connection with the cosine sum it is to be recalled that
(The right-hand member is understood to be defined by con­tinuity at points where the denominator vanishes.) If u = H1. then ru = ktr. and
But b5τ the symmetry pointed out in the preceding paragraph, the terms on the left are respectively the same as those of the sum
If m — 2nψl, and if k is not divisible by m, addition of the two sums gives 
and in the last expression the numerator is zero, since 
ti = 2π∕m and n + ⅜ = ⅜m, so that (n + ⅜)A√1 = kπ, while the denominator is different from zero. If m = 2n, the term cos A:fn = cos nA√1 occurs in each sum; combination of the two, with subtraction of the redundant term, gives 

the assumption being still that k is not divisible by vn.
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114 THE THEORY OF APPROXIMATIONThe proposition of which the preceding lines give an analytical proof is almost evident geometrically, though a precise formulation of the geometrical argument requires a little attention to detail. The pairs of numbers (cos 6, sin6-), 
τ = 0, 1, ∙ ■ -, m — 1, are the coordinates of the vertices of a regular polygon of m sides having its center at the origin, and the quantities (l∕m)^cos6∙, (l∕m) sinfr, being the coordinates of the center of gravity of these points, must evidently be zero. The more general fact of the vanishing of ∑cosktr and sin is then obtained by consideration of the various possibilities as to the existence of common factors of k and m.In the following statements, let p and q be integers subject to the restrictions 0 ≤ p ≤ ⅜m, 0 ≤ q ≤ km. Then, in the identitiescosjia? cos qx — — [cos (p— q)x + cos (p + ⅛)a],

sinj>rr sin qx = ~≈ [cos (p — <?)# — cos (p + q) x]. 
cospx sin qx = — [sin (p jr q^)x — sin (jp — g)a,].

p — q and p-∖-q are integers numerically less than m, except that p-∖-q = m if m is even and p = q = km, so thatcosptr cos qtr = 0∑ sin /9 tr sin q tr = 0cosptr sinqtr — 0 
∑ cos2ptr = ∑ sin2ptr — ~m ∑ cos2 ptr = m, ∑ sin2 ρ tr — 0

if p 4 q,if p ≠ q.for all p and q,if 0 < ∕> < — wι,if p = 0 or 1 m.Until the contrary is stated, let it be supposed now that 
m is odd, m = 2n~i~l. The equations for the interpolating coefficients given in the second paragraph of the chapter can be solved explicitly, under the present hypothesis of equal spacing of the points tr. It is known in advance that
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IV. TRIGONOMETRIC INTERPOLATION 115they have one and just one solution. If the 2n⅛l equations are added as they stand, the left-hand member in the result reduces to (2n-j-l)α0, so that
(As to the convention with regard to the meaning of the sign it is to be understood here that the summation is performed specifically over the range r = 0, 1, ∙ ∙ -, 2n, or else that yr is defined outside this range as a periodic function of the index by the prescription that yr+2n+ι = yr∙} To determine α∕l-, 7r>0. let the (r⅛l)th equation be mul­tiplied by cosHr, r = 0, 1, ∙∙∙, 2n. On addition of the equations thus obtained, the left-hand member in the sum becomes au'∑ cosaktr = ⅜mα⅛= ⅜ (2 n + 1) cir, whence
Similarly, 2

ak = 2n÷l yr C0S ktr'

If the notation is modified to the extent of representing the constant term in the interpolating sum by a0∣2, instead of α0, the general formula for α⅛ gives the correct value of a0 also. It will be understood henceforth that the notation is adjusted in this way, and the interpolating sum for equally spaced points tr will be denoted by Sn(x), so that>S7n (x) = — α0 + aι cos x + ∙ ∙ ∙ -j- an cos nx

⅛ ^bι sin x-∖- ∙ ∙ ∙ 4- bn sin nxthe a,s and b,s being given by the two preceding equations for k = 0, 1, ∙ ∙ ∙, n. The resemblance to the Fourier coeffici­ents is apparent.Even if it had not been known a priori that the equations have a unique solution, that fact would be an immediate consequence of the work of the last paragraph. For the 
8*
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116 THE THEORY OF APPROXIMATIONwork shows that if the equations have a solution, it must be the one indicated; that is, they can not have more than one solution for any given set of τ∕,s. But if the determinant of the equations λvere zero, there would be values of the y's for which there would be infinitely many solutions. This new proof of the non-vanishing of the determinant, however, depends essentially on the assumption that the fs are equi­distant, and so is less general than the one previously given.The formal resemblance to the case of Fourier series is further borne out by substitution of the values of the a’s and b,s in the expression defining Sn(x), and rearrangement of the result by means of the identity for a sum of cosines:
∕S∖(a,) = 22n⅛l n+ 2 (cosA,√rcosAraι-∣- sin∕√6∙sin∕cz) fc = l_2___2 n 4^ 11____v s iιι( + j) (tr — x)

2n-∖-l^'lf' sin ⅜ (/,∙— x)Incidentally, the correctness of the last expression as a solution of the problem of interpolation can be verified directly, by substituting x = tq, for any particular value of q. For 
tr— tq = 2(r ⅛)τr∕(2n + l), sin(n + ⅜)(∕r ∕g) = sin(r q)π = O, and all the terms of the summation vanish except the single one with a vanishing denominator, while the limiting value of the quotient of sines in that term is 2fi⅛l, so that 
8n(tq) =z yq∙Now let the problem be changed by supposing that m is even, m = 2n. Corresponding to the 2n abscissas ∕o, ∙∙∙, ∕2n-1, let 2n numbers yo, ∙ ∙ ∙, y2n-1 be given, and let yr be defined for other values of r so that yr+2n = yr- Consider the question of the existence of a trigonometric sum Tn(x), of the nth order, represented for the moment by the notation of the second paragraph of the chapter, to satisfy the con­ditions 77n(∕,∙) — yr, r = 0, l,∙∙∙,2n— 1. It is not to be expected that the problem will have a definite solution, since 
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IV. TRIGONOMETRIC INTERPOLATION 1∏only 2n conditions are imposed on the 2n-⅛-l coefficients. The precise nature of the indeterminacy is brought out by going through the formal manipulation of the equations. Written out at length, these are as follows:

Direct addition of them gives
Multiplied respectively by cosA‰ cos‰∕l, ∙∙∙, cos⅛~ι, for any value of k from 1 to n— 1 inclusive, and then added, they yieldand similarly
So far there is no ambiguity, and no formal difference from the case previously treated, except the replacement of 2n⅛l by 2n. When the (r⅛l)th equation is multiplied by cosn∕r, there is a difference because in the present case n = ⅜m, and >>s¾ is equal to m — 2n, instead of ⅜m. The determination is still perfectly definite, however:
But as tr = rπ∕n, the numbers sinntr are all zero, and the use of these quantities as multipliers does not lead to any determination of bn at all.It is now apparent how the problem of interpolation with an even number of equidistant abscissas can be formulated so as to have a determinate solution. If Sn(x) denotes an expression of the form
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118 THE THEORY OF APPROXIMATION

the conditions ‰(⅛∙) == yr are expressed by 2n linear equations for the 2n coefficients. The solution of these equations, if they have a solution, is given uniquely by the formulas 
for k — 0, 1, ∙ ∙ ∙, n. But if the determinant of the system were zero, there would be values of the ?/’s for which more than one solution would exist. So the value of the determinant is certainly different from zero, and the problem has the unique solution indicated. As sin = 0 for all values of r, the expression with any value of bn, likewise takes on the value yr when 
x = tr∙, the indeterminacy of the problem as first proposed consists merely in the complete indeterminacy of the coef­ficient bn. The subsequent discussion will relate to the sum 
Sn(x) as defined at the beginning of this paragraph, with­out the term in sin nx.For deriving a concise expression for Sn{x), to be sure, it is convenient as a matter of form to include a term ⅜6nsinnrr, the coefficient bn being defined by the general formula for b}i, with k = n∖ as each term of the summation vanishes, this gives bn = 0 automatically. Then it appears that

by subtraction of ⅜ cos nit from the identity previously used,
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IV. TRIGONOMETRIC INTERPOLATION 119As in the case of an odd number of points, substitution of 
x = tq gives a direct verification of the validity of the formula for purposes of interpolation. The analogy with the partial sum of a Fourier series, however, is not superficially so much in evidence as before.2. Convergence and degree of convergence under hypotheses of continuity over entire periodFor the discussion of the analytical properties of the interpolating sums Sn(x), particularly questions of convergence as n becomes infinite, let the given numbers yr be values of a function having specified properties: let ∕(a∙) be a given function of period 2n, and let yr≈f(tr}. Then Sn (α,) coincides in value with /(a?) at the points tr, and the question is to what extent Sn (x) furnishes an approximation to /(a?) at intermediate points.In the first place, let f(x) be a bounded function having J∕ as an upper bound for its absolute value. Then a corre­sponding upper bound can be assigned for ∣6'n(a^) . Let 
m = 2n —1- 1. If a? has one of the values tr, Sn (a?) ∣ = ∖f(tr) 
< M. If x is not one of the numbers Z,-, let ⅛ be that one of these numbers which is nearest to x, or one of the two nearest, if two are equally near. Then

≤ a? ≤ £r+ - 7T2n⅛ 1Because of the periodicity of the functions concerned, as has been noted already, the summation with regard to r in the formula representing Sn(x) can be extended over any 2n-f-l successive values of r, and in particular from I? — n to R-∖-n inclusive. Accordingly0/M _ 1 7*v 2∙n∖ sin(% + ⅜)(∕r—x)∣ bn(x) - ^s----∣M i J vr)----- ∙—Γ7√------- ∖—2n + l r^R-n SVh.%(tr—X) !< m I si∏(w÷⅜)(<r-a?) I= 2n+lr=⅛-n∣ sin ⅜(∕r-aj)
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120 THE THEORY OF APPROXIMATIONThe absolute value of the last expression in bars never exceeds 2n + 1, as may be seen from its interpretation as a sum of cosines. This observation will be sufficient as far as the three terms corresponding to the indices are concerned. The numbers are resnectivelv greater than• ∙ ∙, the same thing may be said of thesequence of numbersand for all thevalues of r in question. so thatHence

The last parenthesis does not exceed a constant multiple of log n, for n ≥ 2, and Sn{x')∖ does not exceed a constant multiple of M log n.Similar reasoning, with minor differences of detail, applies when m = 2w, the sum Sn(x) then being given by the formula of the third paragraph preceding. The conclusion may be stated comprehensively for both cases asLemma I. If fix) is a function of period 2 π satisfying the 
condition that
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IV. TRIGONOMETRIC INTERPOLATION 121
for all values of x, and if Sn (x) is the interpolating sum of 
the nth order for f(x) corresponding to the subdivision of 
a period either into 2 —|— 1 or into 2 n equal parts, then

Sn («) i ≤ CM log n
for n^>l, where C is an absolute constant.The representation of the constant by the notation used in the lemma preceding Theorem IX of Chapter I does not imply that the constants are the same, though of course both lemmas could be stated together, with a single symbol to represent the larger of the two constants.For the application of the lemma, it is to be noted that ∣∕(rr)-*‰U0 . ≤ M-∖-CM logn, which is likewise not greater than a constant multiple of JZlogn, say B 21/log n∖ that the interpolating expression corresponding to the sum of two given functions is the sum of the interpolating expressions con­structed for the two functions separately, and the error of the sum is the sum of the errors; and that if m — 2 n + 1 the interpolating sum Sn(x) formed for a function fix) which is itself a trigonometric sum Tn (x) of the nth order is iden­tical λvith Tn (x), since by reason of the interpolating property 
Sh (x) and Tn (x) are trigonometric sums of the nth order coinciding in value at 2 n + 1 distinct points of a period. Taken together with the lemma, these observations yieldTheorem 1. If f(x) is a function of period 2π, if Sn(x) 
is the interpolating sum of the nth order for f{x) corresponding 
to the subdivision of a period into 2 n⅛ 1 equal parts, n>l, 
and if there exists a trigonometric sum Tn(x), of the nth order, 
such that

,f(x) — Tn(x) ∖ ≤ εn

for all values of x, then, for all values of x,∖f(x} — Sn(x) ∣ ≤ Bfn,log n,

where B is an absolute constant.When m = 2n, the interpolating sum of the nth order, as defined above, for a trigonometric sum Tn(x) of the nth order 
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122 THE THEORY OF APPROXIMATIONis not in general the same as Tn(x), since the interpolating sum does not contain any term in sin nx. But the inter­polating sum xS'nψι (x) of order n-f 1, obtained by taking 
m = 2n-∖-2, is identical with Tu(x}. For the coefficient 
an-↑-ι in ∕S,n÷ι(⅛), given by the expression[1 /(n 4^ 1)] Σ Tn(tr) cos (n -⅛- 1) tr,reduces to zero, since each of the sines and cosines in Tn(x), through sin nx and cosnx, is orthogonal to cos(n⅛l)x for summation over the finite range in question; and it follows that ∕Srn+ι(^) and Tn(x} are trigonometric sums of the nth order agreeing in value at 2n-∖-2 distinct points of a period. The above statement may therefore be supplemented as follows:Theorem 1 (continued}. If Sn+ι(x} is the interpolating sum 
of order n -}- 1 corresponding to the subdivision of a period 
into 2n-∖-2 equal parts, the hypotheses remaining otherwise 
unchanged, then

f (x} — Sn+ι (x} ≤ B sn log (n ⅛ 1),
where B lias the same value as before.As log (n + 1) < 2 log n for n > 1, the right-hand member may be replaced by 2 Bεn log n. As an alternative, n may be replaced by n — 1, to give∣ f(x} — Sn (x} ≤ B frt-i log n for m = 2n.Like Theorem IX of Chapter I, the present Theorem 1 can be combined with Theorems I-IV of Chapter I to give a suc­cession of more specific results. The cases of an odd number and of an even number of subdivisions can be covered by a single formulation each time, by virtue of the observation that l∕(n — 1) ≤ 2/n and ω[2ττ∕(n —1)] ≤ ω(4τr∕n) ≤ 2ω(2τr∕n), for n > 1. The symbol A is merely a notation for the largest of what would be obtained in the first instance as a finite number of different constants, and Ap similarly:Corollary I. If∕(a⅛) — ∕(a¾) ≤ ⅛ - ¾∣
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IV. TRIGONOMETRIC INTERPOLATION 123
for all values of xt and xi, λ being a constant, then

for m = 2n-j- 1 and for m = 2n.Corollary II. If f(x) is continuous with modulus of con­
tinuity ω(δ'),
for m = 2n-∣- 1 and for m = 2n.Corollary Ila. The interpolating sum Sn{x) converges 
uniformly to the value f(x), as m becomes infinite through 
odd or even values (or both), if f(x) has a modulus of con­
tinuity ω(d') such that limj>-0 ω(d) log ∂ = 0.Corollary III. If f(x) has a pth derivative f(p)(x) such 
that

for all values of xi and xi, λ being a constant, then

for m = 2n⅛ 1 and for m = 2n.Corollary IV. If f(x) has everywhere a continuous 
pth derivative with modulus of continuity ω(∂),
for m = 2n-f 1 and for m = 2n.

In each of these statements, the conclusion holds for all 
values of x, and for all values of n~≥z2∖ the coefficient A is 
an absolute constant, while Ap depends only on p.3. Convergence under hypothesis of continuity over part of a periodThe next proposition is analogous to a result obtained in the second and third paragraphs of Chapter II:
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124 THE THEORY OF APPROXIMATIONLemma 11. If f(x) is a function of period 2n, bounded 
and integrable in the sense of Riemann,

as m becomes infinite through odd values (m = 2nψl) or 
even values (m = 2ri) or both.There is a noteworthy difference in the hypothesis imposed on /(a?); it is in the nature of the case no longer sufficient to assume merely that the function is summable, or summable with its square, since an enumerable set of very large values of fix), while not affecting the definite integrals of the earlier chapter, might throw the present sums entirely out of proportion.Suppose first that m = 2n + l. Let the summation be extended for definiteness from r = 0 to r — 2n. Since 
tr = 2rπ7(2n-J-l),

When n becomes infinite, the first sum in the last member approaches
by the definition of integrability, and the second sum has the same limit, so that the whole expression approaches zero. (Neither sum as it stands is exactly of the form that would ordinarily be written down in defining the definite integral.
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IV. TRIGONOMETRIC INTERPOLATION 125but the discrepancy in each case amounts to half of a single term, and approaches zero in the limit.) As
similar reasoning applies to the expression

If m = 2n, the summation going from r = 0 to r == 2n—1,

Each sum in the last member approaches
and the whole expression approaches zero. As for the other expression in the statement of the lemma, sin n tr = 0 throughout.Suppose /(a?) is a function of period 2π, bounded and integrable in the sense of Riemann, which vanishes for .r0 — ≤ « ≤ <⅞ + <'∙ If will be seen that Sn(x0) converges
to the value 0, whether the values of m entering into the definition of the sums ‰(⅛) are even or odd. In both cases, 
Sn (⅛) can be represented, artificially but with readily verifiable accuracy, by the single formula

As cos n(tr — x) = cos nx cos n tr + sin nx sin n tr, the last sum, taken with the factor l∕(2m), approaches zero uniformly for all values of x. And as /(7) cot ⅜ (7— a,0) is bounded
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126 THE THEORY OF APPROXIMATIONand integrable in the sense of Riemann as a function of t, the first factor vanishing where the second factor is large, application of Lemma II to this function shθλvs that the first part of the expression for Sn(x) approaches zero for x = x0. If two functions, each bounded and integrable in the sense of Riemann, are identical from x0 — ∕z to a¾4^ iJ, the difference of their interpolating expressions converges toward zero at x0; 
if fix) is any function of period 2 π, bounded and integrable 
in the sense of Riemann, the convergence of the corresponding 
interpolating sums 8n (a?) at any specified point, as m becomes 
infinite through odd or even values, depends only on the 
behavior of fix) in the neighborhood of the point in question.Now let fix) be of period 2τr, bounded and integrable in the sense of Riemann, and identically zero for a — q fxf and let attention be directed to the problem of shoλving that 
Sn(x) converges toward zero uniformly for a ≤ x ≤ β. It was noted in the last paragraph that S∏ix) either is given identically by the expression

- ∑fitr) sin n (tr — x) cot ∣- (tr — x),or differs from it by an amount which approaches zero uniformly for all values of x as n becomes infinite. Furthermore, the terms resulting from the expansion of sinn(fr — x) may be considered separately, and as the factors sin na; and coswa? are bounded, it is sufficient to demonstrate the uniform con­vergence of the expressions1 χι ι
— ∑fitr) cos n tr cot — (tr — x),m 2

∑f(tr) sin n tr cot ~ (tr — x),argument of the cotangent ranges over the inter-as x in the val («,/?).Suppose in the first place that m = 2n⅛l. Let x be restricted to the interval a ≤ χ ≤ β. Let (fix, t) be a function which vanishes when 11 — x∖ differs from an integral multiple of 2τr by less than q, and is equal to cot ⅜(7—x) elsewhere. 
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IV. TRIGONOMETRIC INTERPOLATION 127Then f(t) C(x, t) is identical λvith /(/) cot ⅜(∕— a?), under the restriction imposed on x, while C(x, /) is bounded for all values of x and /, never exceeding cot⅜ιy in absolute value, and is 2?-integrable as a function of /. By adaptation of the formulas of an earlier paragraph,
is equal to
minus another expression of similar form. Let uj = 2j π / (2 n +1). 
j = 0, 1, ∙ ∙ ∙, n, and let hj = 2π7(2n⅛1) for J = 0, 1, ∙∙∙, 
n— 1, while ∆un = π∕(2n + l). Then the sum just written down differs merely by the quantity
which approaches zero uniformly for all values of x, from
a sum corresponding to a subdivision of the interval (0, τr) into n +1 parts, not all of equal length, and defining the definite integral
in the limit.The essential point for the present argument is that the sum differs from the integral by an amount which approaches zero uniformly with respect to x. Let Mj and mj be the least upper bound and the greatest lower bound of the integrand over the Jth sub-interval, Pj and pj the corresponding bounds for the factor /(2it) cos u, and Q,∙ and qj those for the factor C(x,2u). The difference between the sum and the integral does not exceed
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128 THE THEORY OF APPROXIMATIONLet M be the least upper bound of ∕(2w)1, as w varies λvithout restriction, anupperbound consequently for /(2 u) cos u ∖, and Q{— cot⅜f∕) the least upper bound of ! C(x, 2?/) . Then
since for any u1 and u2 of the sub-interval in question

As ∕(w) is by hypothesis integrable in the sense of Riemann, 
f(2u) cos u is J?-integrable also. Let e be an arbitrary positive quantity. By the property of integrability (more specifically, by Darboux’s theorem) it is possible to choose w so large, and the intervals ∆uj in consequence uniformly so small, that

can not exceed the total variation of C(x, 2u) as u ranges over the interval (0. τr), a total variation which is finite and 
independent of x, being equal to 4Q. Hence if n is taken so large that 2τr∕(2n ⅛ 1) < ¢/(8 QJ∕), it follows that
So there exists an N, independent of x, such that for n > N

The other sum analogous to the one just treated is

On the other hand,
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IV. TRIGONOMETRIC INTERPOLATION 129By addition of the term
rt ∕2(2¾-l)π⅛ (2)1 —l),τ / 2(2))-l)π∖2n + iz∖ 2w + l / 2)i + l ∖ ’ 2ιι + l /’which approaches zero uniformly, this becomes a sum ap­proximating the same definite integral as before, and corre­sponding to a subdivision of the interval of integration into 

n — 1 parts each of length 2π∕(2n + l) and one part of length 3τr∕(2n + l). The difference between the sum and the integral approaches zero uniformly, and the difference between the two sums does the same, which means that12n +1 ∑ f(tr) cos n tr cot — (tr — .r)

converges uniformly toward zero. The corresponding ex­pression with sin n tr in place of cos n tr can be treated in the same way. This completes the proof of uniform con­vergence of Sn(x) for odd values of n.For m = 2n, the discussion of the sum containing cosn∕r is slightly simplified in form by the fact that cos ntr reduces to (—l)r, and by the fact that 2πfm is an exact submultiple of 7r, but otherwise follows essentially the same lines as before. The sum with sin n tr vanishes identically for all values of n, since sin ntr = 0.The conclusion is embodied inLemma III. If f(x) is a function of period 2ττ which is 
bounded and integrable in the sense of Riemann, and which 
vanishes identically for a — ≤ rr ≤ /$+ «/, the corresponding
interpolating sums Sn (x,) converge uniformly toward zero for 
af≥xff, as m becomes infinite through odd or even values, 
or both.On the formal side it may be pointed out in passing, and might have been noted before, that for m even Sn (x) has the alternative representation— y— sin nx∑ f(tr) cos n tr cot — (fr — x), 

9

www.rcin.org.pl



130 THE THEORY OF APPROXIMATIONthough the appearance of sin nx as a factor of the whole expression is illusory to the extent that corresponding to each value of x for which sinw<r = 0 there is a factor cot⅜(∕r— a?) which becomes infinite.Lemma III may be combined at once with Corollary Ila of Theorem I to giveTheorem II. If f{x) is a function of period 2 π, bounded 
and integrable in the sense of Riemann over a period, and 
continuous for a — η ≤ χ d ~∖~ ,∣ with a modulus of con­
tinuity ω(∂) such that, limj=0 ω(d) log d = 0, the corresponding 
interpolating sums Sn(x) converge uniformly toward f(x) for 
a fχ as m becomes infinite through odd or even values,
or both.4. Convergence under hypothesis of limited variationThere are theorems of convergence for functions of limited variation, analogous to those obtained in the case of Fourier series. Let /(/) be a function of period 2π, with limited variation over a period, and let x have a value, to be regarded for the time being as fixed, such that /(/) is continuous for 
t = x. It will be shown that Sn(x) converges toward/(/ for the value of x specified.Let y1(∕) and y2(∕) be the positive and negative variations of /(/), measured from the point t = —2τr, say, so that/(/) = /(— 2 /) ÷ f∕ι (/) — <f>2 (0.,while φi and φ2 are monotone increasing, and continuous for 
t = x. (The point x may of course be thought of without loss of generality as belonging to the interval (0, 2/), and then there will be no occasion to take account of values of
t less than —2π.) Consider the case m = 2n∕l. If x is one of the numbers tr, for a specified value of n, Sn(x) = f(x) exactly. Otherwise, let tR be the number tr which is nearest to x (or one of the two such numbers, if two are equallynear), so that

tn
7t2 n ⅛ 1 7Γ

2n + 1≤ χ ≤ ⅛∕
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IV. TRIGONOMETRIC INTERPOLATION 13]Let the summation over r in the formula representing Sn(x. be extended from R — n to R-∖-n. The corresponding formulι with j∖tr) replaced by 1 represents 1 identically, since 1 is a trigonometric sum of order zero. If this identity is multi plied by the quantity f{x)1 independent of r, and the result sub tracted from the formula for Sn (a;), the difference Sn(x)—f(x is obtained in the form

and the similar expression with φ2(∕r) — in place of,∕'1 (tr) — 9,1 (a).The quotient of sines never exceeds 2n⅛l in absolute value. In the term corresponding to the index r = R, tn approaches x as n becomes infinite, and φ1(∕β) approaches 
ψι(x), by the continuity of φ1, and the whole term, multi­plied by 1/(2n-∖- 1), approaches zero and need not be further taken into account; it is sufficient to consider the sum from /?+! to R-∖-n and the corresponding sum from R — n to R — 1 .

and is independent of j, except as to algebraic sign. If 
⅜(⅛+√—x) is denoted by uj-, and if c stands for 0 or 1 according as sin (n + ⅜)(⅛—x) is positive or negative,
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132 THE THEORY OF APPROXIMATIONwhere
Aj = y1 0 ⅛ 2 ιtj) — y1 te), sin (w ⅛ ⅜) ( t∣{— χ}(2 n + 1) sin UjThe numbers 4/. Bj are all positive or zero. As j increases. Az∙ increases or remains unchanged; uj is always between 0 and 7γ∕2, sin uj increases, and Bj decreases. Let V be the total variation of f (x) over an interval of length 2 π. Then the A’s have the upper bound ⅜ V, since the positive and negative variations of a periodic function over a period are each equal to half the total variation; while Bj, which is equal to the absolute value ofsin (n ⅛ ⅜) (tβ+j- x) (2 n + 1 j sin ⅜(⅛⅛j — a?)can not exceed unity.After the analogy of the proof in the case of Fourier series, where the second law of the mean was employed, it would be natural here to use the method of summation by parts. The formulation can be slightly simplified, however, by reason of the fact that the sequences Λj, Bt are both monotone, though varying in opposite senses. In general, let ai,∙ - ∙, ap, 
bi, bp be two sets of p numbers each, satisfying the conditions

ai ≥ ∏2 ≥ ∙ ∙ ∙ ≥ cip ≥ 0, bl ≥ b2 > ∙ ∙ ∙ ≥ bp ≥ 0.

Since both the α,s and the c’s are 11011-negative and decrease monotonically, the value of each parenthesis in the last expression is positive or zero, and not greater than its leading term, in one case α1, and in the other case alcp, which in turn is not greater than al bl. So the whole expression is the
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IV. TRIGONOMETRIC INTERPOLATION 133difference of two non-negative quantities, neither of which can exceed α1 bl, and is itself not greater than a1 bl in ab­solute value. To emphasize by words rather than by subscripts what is essential in the conclusion, the absolute value of

√ ι

does not exceed the product of the largest of the a,s by the 
largest of the b’s.Let e be an arbitrary positive quantity. Corresponding to the continuity of 9>1, let d>O be chosen so that ; y1(0— φι(re)∣ 
≤ ⅜ ε for | t — x ≤ Let the sum —If Aj If of the second paragraph preceding be broken up into two, ∑' and ∑", in the first of which j ranges over the values for which 2 Uj ≤ d, while the remaining terms make up the second. In ∑', the largest value of Aj∙ is not greater than ⅜e, while 
∕f never exceeds 1, so that by the conclusion of the last para­graph, with suitable adaptation of the subscripts, I ≤ ⅜ f ∙ In ∑", Aj ≤ ⅜ V throughout, while If < 1 ∕[(2 n + 1) sin ⅞ d]; consequently

Σ"∖ < r∕[2(2n⅛ l)sin-∣rdj,
which is less than liε as soon as n is sufficiently large. Hence or, in the earlier notation, the sum fromA,-¼l to 7?-Hi, multiplied by l∕(2n-¼l), approaches zero as n becomes infinite. The sum from II — n to 11 — 1 and the corresponding sums with y3 in place of y1 can be treated in the same way, to show that Sn (⅛) — ∕(rr) converges toward zero.If fff) is continuous everywhere, the uniform continuity of φ1 and φ2, bearing on the choice of d in the preceding paragraph, and, as a detail, on the convergence toward zero of the single term in each sum for which r = H, yields at once uniform convergence of ‰ Cz,) toward f{x).Finally, a precisely similar argument can be carried through for the case of an even number of interpolating points, 
m — 2n.
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134 THE THEORY OF APPROXIMATIONThe conclusion isTheorem III. If fix) is a function of period 2π having 
limited variation over a period, Sn (x,) converges toward /(a) 
at every point where fix) is continuous, when m becomes in­
finite through odd or even values, or both∖ if fix), still sup­
posed to be of limited variation, is continuous everywhere, the 
convergence is uniform for all values of x.This result can be generalized immediately by reference to Lemma III, and the more elementary fact that convergence at any point depends only on the behavior of the function in the neighborhood of the point:Corollary. If fix) is a function of period 2π, bounded 
and integrable in the sense of Riemann over a period, of 
limited variation for x0— q ≤ x ≤ xit-∖-η, and continuous 
for x = x{>, Sn (x0) converges toward fixf); if fix) is con­
tinuous and of limited variation for a — q < χ ≤ β ~∖^ q, 
the hypothesis remaining otherwise unchanged, Sn (x) converges 
toward fix) uniformly for « < x ≤ β.5. Degree of convergence under hypotheses involving limited variationLet fix) once more be of limited variation over a period, with total variation Γ. Let 9>1 ix) be the positive variation of fix) from 0 to z when x>0, and minus the positive variation from x to 0 when z∙<0, and let φ2(st) be the correspondingly defined negative variation function, so that

fix) = ∕(θ) ÷ 9,ι (^) — 9,s 0*0, <fι (0) = φ2 (θ) = 0.Let m = 2w⅛l, n>0. Consider the sum ∑fitr) cos ntr, extended specifically from r — —n to r = n. The sum 
∑f iθ) cos ntr vanishes. In cos τUr, the term corre­sponding to r = 0 vanishes with φ1 (0). It has already been observed that cosnL = (—l)r cos ∖rπ∕i2n -∣- 1)]. In the sum

n∑ <jpl if) cos ntr,
r=l 

www.rcin.org.pl



IV. TRIGONOMETRIC INTERPOLATION 135the factor φι(f,∙) increases monotonically, having the upper bound , while, as remains within the limits∖cosntr∖ decreases monotonically, having the upper bound 1. Consequently, by the reasoning of an earlier p <l∙ΓclffΓ31 )h∙
Similarly, the absolutevalue of the sum from — n to — 1 does not exceed So the whole sum from —n
to -4--n doos not exceed

After analogous reasoning with φ2 in place of φ1, it is con­cluded that
There is a corresponding inequality
the proof being simplified in this case by the fact that the monotone sequences ∣sinnf,∙ vary in thesame sense.For m = 2 n a still simpler calculation, based on the fact that cos n tr = (— l)r, shows that while

Disregarding tlιe special simplicity of the last observation, it is possible to state comprehensivelyLemma IV. lff(x) is a function of period 2π, with limited 
variation over a period, its total variation being V, then

whether m is odd (m = 2m4^1) or even (m = 2n).Let f(x) be of limited variation over a period, with total variation Γ, and identically zero for « — rl ≤ x ≤ ti + q.
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136 THE THEORY OF APPROXIMATIONIt has already been pointed out in substance that if em is a symbol denoting 1 or 0 according as m is odd or even. Λ>n (x) satisfies the identity

For any value of x in (a, yd), the product ∕(f)cot⅜(f — x) is of limited variation, regarded as a function of /, and its total variation does not exceed the product of Fby a quantity depending only on ι↑. So the application of Lemma IV to each of the four sums in turn leads to theCorollary. is a function of period 2π with limited,
variation, the total variation over a period being V, and if 
f(x) vanishes identically then 
for a ≤ χ ≤ d, where Crj depends only on η.This Corollary in turn may be associated with Corollary 11 of Theorem I, in the light of the discussion leading up to Theorem Va in Chapter II. to yieldTheorem IV. If the function fix), of period 2π, is con­
tinuous with modulus of continuity 
where and of limited variation over the
rest of a period, then

, if n is large enough so that ω(2n∕n) has 
a meaning, c being a constant which depends neither on x 
nor on n.Lemma IV is analogous to Theorem 111 of Chapter II. the sums in the present lemma, multiplied by a quantity of the order of ∖∕n to represent the length of the interval between successive points tr, corresponding to the integrals in the
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IV. TRIGONOMETRIC INTERPOLATION 137earlier formulation, though as the length of the interval is either exactly or approximately π!n, according as m is even or odd, the agreement does not extend to the numerical values obtained for the constants in the right-hand members of the inequalities. It is sufficiently noteworthy, however, that the agreement should be as close at it is, since for any particular value of n the number of points used is not large enough to make it all evident a priori that the sums give close approximations to the values of the integrals, in view of the presence of the factors cos n.τ, sin nx under the sign of integration.The analogy can be extended to the conclusions of Cor­ollary 1 of the theorem referred to. The proof is perhaps most readily given by means of the Corollary itself. Suppose 
f(x) lias a pth derivative with limited variation. Then f {x) is represented by a convergent Fourier series; if the Fourier coefficients are denoted by αfc, /?fc,
The series may be used to represent ,/’(C) in evaluating the sums '∑f(tr) cos ntr, ∑ f (tr) sm. ntr. Letm = 2n-f-l. The expression V cos ktr cos vanishes unless k— n or k-∖-n is an integral multiple of 2 n + 1, that is, unless k has one of the values n, n-∖-1 , 3n-f-l, 3n-∣-2, 5n-∣-2, 5n-j-3, ∙∙∙. The value of the sum in each of these cases is (2 n-∖- 1)/2. The sum V sinktr cos ntr is zero in all cases. Consequently

But by the Corollary cited, 
if Γ is the total variation of f(p)(x). So
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138 THE THEORY OF APPROXIMATION

the series in the last pair of brackets being convergent for 
p ≥ 1, and having incidentally, for p > 1, the upper bound 1 + 1∕32+1∕52+ ∙ ∙ ∙, independent of ρ. A similar inequality holds for the series of ∕s. If m = 2n.
and sin ntr = 0. Whether m is odd or even, there­fore.
where C is an absolute constant.This result, supplemented by a type of argument which has been used a number of times already, gives at once certain information with regard to the degree of convergence of interpolating sums <S∖(∕). For example, if f(x) has a first derivative which is of limited variation over a period, and if ∕(,τ) vanishes identically for a — η ≤ a? ≤ β~∖^ti, then 
Sn(x)! can not exceed a constant multiple of ↑,∕n~ for « ≤ x < ∕3∙, if ∕(,τ) has a first derivative which is of limited variation over a period, and if ff(x) is continuous with modulus of continuity ω(∂) for α — but not identicallyconstant over the interval, then f(x)— Sn(x) can not exceed a constant multiple of (1⅛) ω(2τr∕n)logn for α ≤ a? ≤ /3. But such observations are of secondary interest; and it is not possible to pass over immediately to a proposition analogous to Theorem IV of Chapter II, for the transition from a specified interpolating sum ∕S'n(rr) to one of higher order does not con­sist merely in the inclusion of additional terms directly subject
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IV. TRIGONOMETRIC INTERPOLATION 139to the inequalities that have been under discussion. For the problem thus suggested a different procedure is required. The detailed treatment will be limited to the next case in order, that of a function having a first derivative of limited variation over a period (or expressible as the integral of a function of limited variation), and not otherwise restricted.The key to the discussion of this case is the fact that if 
f(x) is the integral of a function of limited variation over an interval a ≤ x ≤ b, the quotient [∕(F)—/(«)]/(#— α) (defined in any way, by the value ,∕7(α⅛) or otherwise, for 
x — cι) is likewise of limited variation over the interval. Let

,f(x) — ∕(α)÷L <f (x)dx,where φ(x) == y>ι(x)— φ2(F), and yl and y2 are bounded non-decreasing functions from a to b. Let
for a <x ≤ b, while Φ1(α) = <∕ι (a), and let a function Φ2(λ∙) be similarly defined in terms of φ2(rr). Then, for x^>a.

m→M = φιω^α>sfe).
x — aThe assertion with regard to the quotient on the left will be proved if it is shown that dq (χ) and dq(χ) are non­decreasing; the fact is rather obvious, and in formulating a proof it is clearly sufficient to consider one of the two functions. For any value of x~>a,

(x — a) φl (a) < I φ1 ∖x) dx ≤ (x — a) φl (x),by reason of the monotone character of y1, so that
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140 THE THEORY OF APPROXIMATEwhereSo
whence Φl (a⅞) ≥ ‰ as Ar1 = Φ1 (λ∙1), the desired conclusion is established. Similarly, [/(a?)—,/’(/>)] ∕(7>— x) is of limited variation.Now let f(x) be of period 2τ, and (for simplicity of statement) provided with a first derivative of limited variation over a period. The function (a?— α) cot ⅞ (a?—«), defined so as to be continuous fora? = a, has a continuous derivative for a ≤aj≤α + τr, and so is of limited variation over this interval. Hence the product

is of limited variation over (a,« ⅛ τr), since this is true of each of the expressions in braces. Similarly, is of limited variation f∩rthe expression is the same as, which is of limited variation over (α-∣-π, α-J-2π∙)j and so ι is oflimited variation over this interval also. In summary, and in slightly differentnotation, the expression [∕(f) ι∕¼)] cot⅜(f a?), regarded as a function of t, is of limited variation over any interval of length 2π.Let the interpolating sum for f(x) be expressed once more in the form used in connection with the Corollary of Lemma Iλ'. The interpolating sum for a constant reproduces the constant identically; since ∕(rt) is a constant with respect to the index of summation r, the quantity given by the formula reduces identically to mf(x), if ∕(6∙) is replaced by/(a?) under the sign of summation, and
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IV. TRIGONOMETRIC INTERPOLATION 141zn[δ',l (a?)—∕(rε)]= cos n x V [t∕'(∕r) —t∕¼∙)] cot — (∕,∙ — x) sin n tr— sin n x V [∕(∕,∙) —∕(∙χ∙)] cot {tr— x) cos n tr+ ew cos n x ∑ [f(tr) —∕(^)] cos n tr+ ewj, sin nx∑ [∕(tr) — ∕(a,)] sin n tr.But /(/)—/(/), as well as [∕(∕)—∕(∕)] cot ⅜(/— x), is of limited variation with respect to t, and consequently Lemma IV is applicable to each of the sums on the right. Closer inspection shows that the total variation in each case is not greater than a constant multiple of the total variation of ∕'(x∙) over a period. If this fact is incorporated in the statement of the result, the conclusion may be formulated asTheorem V. Iff(x) is a fundion of period 2 π having a first 
derivative with limited variation, the total variation of f' (x) 
over a period being V, then

f(x)-8n(x) ≤CV∕n,

where C is an absolute constant.The corresponding analysis for the case of functions having higher derivatives will not be carried through here. It may be pointed out, however, as a first stage in the extension, that if f(x) has a continuous non-decreasing second derivative for a ≤ x < b, then [∕(rc)—∕(α)]∕(a>— «■), considered to have the value/'(a) for x = α, has a non-decreasing first derivative over the same interval. For x — a, 
d

dx I. x—aas may be seen by calculating the derivative from first principles and applying the extended mean value theorem in the process. For x^> a,

■ ≥ ~f"(a),

d Γ∕H—/(«)! (χ-- «)/' (a,) — [/(a?) —/(«)]
dx L x — a J (x — α)8

www.rcin.org.pl



142 THE THEORY OF APPROXIMATIONthe number ? lying between a and x. For x>a, furthermore. 
d2 ∣ ,f∖x) —fla) ] _ (x-d)if'∖x}-2(x-a∖f"(x)÷ 2[,∕⅜>)-/(α)] 

dx2 L x — a J {x — α)3
= Γ(^)-ΓQ) > 0

x — aThe monotone character of the first derivative thus becomes apparent. It follows that if f(x) has a continuous second derivative of limited variation, [.∕'(x)—f(a)}∕(x — d) has a first derivative of limited variation, and connection can be made with the facts previously ascertained as to functions satisfying the latter condition.6. Formula of interpolation analogous to the Fej£r meanA considerable part of Chapter II was devoted to a dis­cussion of the arithmetic mean of the partial suras of the Fourier series. There is a corresponding formula in the case of interpolation, possessing many analogous properties, with the outstanding exception that it is not an arithmetic mean of a sequence of the interpolating sums previously studied. It is to be defined and examined on its own merits, with only incidental reference to the content of the earlier part of the present chapter.Let n be an arbitrary positive integer, and let tr = 2rπ∕n. for any integral value of r. In comparison with the earlier notation, m is now to be taken equal to w, instead of 2n⅛l or 2n∙, the sign 2 will be understood to refer to summation over n successive values of the index r, when there is no indication to the contrary; a separate symbol m is no longer needed; and there is no occasion to distinguish between odd and even values of n.Let f(x) be an arbitrary function of period 2τr. The inter­polating formula in question is
dι (x) x∙* ∕Y∕ t sin ^')z'jw n2sin2⅜(fr-.τ) ’ 
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IV. TRIGONOMETRIC INTERPOLATION 143with the understanding that each term is defined so as to be continuous wherever its denominator vanishes. For x — tg, one term of the sum reduces to f(tη), namely that in which 
r = q, or in which r differs from q by an integral multiple of n, while each of the other terms becomes zero, and consequently

So the interpolating property is apparent at the outset.It is an almost immediate consequence of identities previously employed that
Hence, as a result of the substitution v — tr — x,

with the coefficients
The expression is a trigonometric sum, but of order about twice as high as would be required merely for the purpose of obtaining coincidence at n points.If f(x) ≡ 1, all the coefficients reduce to zero except ⅜, while ⅜α0 = 1, so that in this case ⅜(<r) ≡ 1, or, if (sin¼w)∕(sin2u) is denoted by Φn(u),
Hence it follows further, inasmuch as Φn(w,) is never negative, that if f(x) is any function having M as an upper bound for its absolute value,
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144 THE THEORY OF APPROXIMATION

Like the arithmetic mean associated with the Fourier series, the present σn(a-) converges uniformly toward fix), as 
n becomes infinite, if f{x) is everywhere continuous, and converges at points of continuity under more general hypotheses as to the behavior of the function elsewhere. Inasmuch as the sums depend on the values of the function at isolated points, however, it is necessary to impose some restriction on the values which it may take on point by point, not merely to require that it be summable, or in other words that it have a finite mean value.Let ∕(f) be continuous for f = a?, and let ∕(f) ≤ M everywhere. By a device already used on a number of occasions, the error of <>n(χ) can be expressed in the form
Let ε be an arbitrary positive quantity, and let d be a positive number such that ∕(f)—∕(⅛)∣<⅜f for t — x <d. Let the sum in the right-hand member of the identity for σn(.z∙)—f(x) be written in the form -∖-∑", where V, denotes summation over those values of τ for which L—x differs from an integral multiple of 2π bv less than d, and Y" stands for a summation

111 Σ", <Mitt∙-®)1 ≤ l∕(sin2⅛<>), and ∕(⅛)-∕⅛)∣ ≤ 2J∕. while the number of terms can not exceed n, and consequently 

covering the remaining values of r. In so that
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which is less than ⅜f as soon as n is sufficiently large. This establishes the fact of convergence. It is sufficient that n surpass a bound depending only on M and d; if ∕(,τ) is con­tinuous everywhere, d can be chosen independently of x, and the convergence is uniform. If /(#) is continuous forwithout being necessarily continuouseverywnere, it is possιυιe ro cn∩ose a o < η wιιιcιι snail oevalid for all values of x in the interval andthe convergence is uniform over the latter interval. Finally, if f(x), instead of being merely continuous for « — η ≤ x 
<i∂∖-v. is identicallv zero there, and if x is o∙iven a, value
belonθ∙i112∙ to the intervalin all terms in which
The results may be summarized inTheorem VI. If f(x) is a bounded function of period 2 τι, 
on {x) converges toward f(x) at every point at which f(x) is 
continuous. If f(x) is continuous everywhere, the convergence 
is uniform everywhere. If f(x) is continuous for a — η ≤ χ 
≤ fi-∖-η, the convergence is uniform for a <L χ ≤ β. If
f(χ} is idcnt,i callo zero

where M is an upper bound jor∖j∖w)∖, ana is a consτanτ aepenaιng onιy on //.Further discussion of the degree of convergence of βn (x) will be limited to the case in which ∕(a∙) satisfies the condition
Suppose first that this condition is satisfied everywhere. Then
For any particular value of x, let tji be that one of the numbers tr which is nearest to x, or one of the two nearest, if x is equally distant from two of them, so that ⅛ — (τr∕n) 
≤ x ≤ ⅛+(π⅛). Let the summation be thought of as

10
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146 THE THEORY OF APPROXIMATION——^"''fically over the n values of r for which re — τrThe precise expressions for the extreme valuesof r in terms of 7? and n will vary according to circumstances; they will be approximately J⅛⅛ and it is sufficient for the purposes of the present argument to note that they will certainly be between Ji — n and ll-∖-n, for any n>l.For anv value of v,

and hence
Furthermore. Throughoutthis interval, consequently
and at the same time

These relations are to be used in connection with the inequality for tfnU,)—∕(∙τ) in the second paragraph preceding. If j∙ is one of the numbers tr, ¾(^)-/(#), a∏d there is no further question as to the magnitude of the error. If re­does not coincide with a Λ∙. there are just two values of rin the summation for which In the termsof the sum corresponding to these values of r it is sufficientFor the other points ∕r, in the order of increasingdistance troιn z on eacιι sιαe. me values or ιr— x aresuccessively greater than the numbersand by the relation are respectively less thanthe correspondingHence, as the sum involves notmore than Qi points tr on each side of tr,
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IV. TRIGONOMETRIC INTERPOLATION 147

which for n ≥ 2 does not exceed a constant multiple of //log u. This makes it possible to stateTheorem VΠ. If f(x) is a function of period 2π satisfying 
everywhere the condition

then, for all values of n ≥ 2,

where C is an absolute constant.The conclusion may be generalized at once by combination with the last assertion of Theorem VI. to yield theCorollary. If f(x) is a bounded function of period 2π 
satisfying the condition

throughout the interval «—then

for a <L β, where c is a constant depending neither on x 
nor on n.In conclusion, it may be pointed out as a peculiarity of the interpolating sum σn(<r) that its derivative vanishes at each 
of the points tq (See L. Fejer, Gδttinger Nachrichten (1916). pp. 66-91, especially pp. 87-91). For in the identity
it is evident from the expression of Φn in fractional form, or can be verified by differentiating this expression, that

10*
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148 THE THEORY OF APPROXIMATIONΦn[⅜(^∙— £')] has a double root for x = tq if tr is not con­gruent to tq modulo 2π, while the representation of Φn[⅛(tq— αj] as a sum of cosines shows that it also has a vanishing derivative for x = tq.7. Polynomial interpolationAs was indicated in the opening paragraph of the chapter, the methods that have been set forth are not adapted to the study of the problem of polynomial interpolation with equally spaced points. That problem is analogous rather to the theory of Taylor’s series, whether treated by means of Taylor's theorem with the remainder for real variables, or by Cauchy's theorem in the complex plane. A simple change of variable, however, serves to carry over the formulas of trigonometric interpolation to a case of polynomial interpolation with 
unequally spaced points distributed in a certain way. Suppose namely that a function j∖x) is defined for — 1 ≤ a? ≤ 1. Then /(cos fl) is a function defined for all values of fl. It is an even function of fl. and inspection of the formulas defining the coefficients in the interpolating sums ∕S,,t(fl) and o,n(fl) shows at once that these sums involve only cosines, and so may be regarded as polynomials in cos fl. If x — cos fl. Λ∖(fl) and σ,t(fl) may be denoted by Pn (/) and πn(x) respectively. They are polynomials agreeing in value with f(x) for a set of values of x corresponding to equally spaced values of fl. The polynomial πn te), unlike the interpolating polynomial of minimum degree for equally spaced values of x, converges in the case of every continuous function f{x)∖ its degree how­ever is approximately twice as great as the number of points for which coincidence is obtained. The expression Pw (/), θ∏ the other hand, is an interpolating polynomial of minimum degree, and while it is not convergent for every continuous function, it converges far more generally than the correspond­ing polynomial with equally spaced points. It is unnecessary to enumerate the further theorems on convergence and degree of convergence which would be obtained by following out the transformation of variable in detail.
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CHAPTER VINTRODUCTION TO THE GEOMETRY OF FUNCTION SPACEι. The notions of distance and orthogonalityIn Chapter III, attention was directed to the problem of the approximate representation of a given function by means of linear combinations of other given functions, according to the criterion of least squares. If f(x) is a given function over an interval (a, δ), and if pi(x), p2(x), ∙∙∙, pm (#) arθ 
m linearly independent functions over the same interval, the coefficients c1, ∙ ∙ ∙, cm in an expression 
are to be determined so that 
shall be a minimum. The value of the integral is taken as a measure of the discrepancy between the functions /(#) and φ (x).The problem is the same in principle as that of the method of least squares for the approximate solution of a set of linear equations. Suppose there are n equations in m unknowns, 
n^>mι

The set of numbers (61, b2, ∙∙ ∙, bn) may be regarded as con­stituting a function b (⅛) = bjc, in which the independent variable k takes on only a finite number of values, the integers from 1 to n. In the same way, each of the sets 149
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150 THE THEORY OF APPROXIMATION(α,ι, Oi2, ∙ ∙ ∙, (tin) may be regarded as a function cti(k). The a’s then are the coefficients in a linear combination of these functions,
Wk = w (k) = xl a1 (k) ⅛ xi a2 (k) + ∙ ∙ ∙ -⅛- xm am (7c), and are to be determined so that

∑ (bk — Wk)2
fc=lshall be as small as possible. The sum of squares this time measures the discrepancy between the approximation and the function approximated.The form of the sum suggests a geometric interpretation, in which the functions b(k),w(k) are represented by points in ^-dimensional space, with coordinates (bl, bi, ∙∙∙, bn) and (w1, w2, ∙ ∙ ∙, wn) respectively, and V(Λ∕.∙ — ∕t⅛)2 is the square of the distance between these points. By an extension of the same idea, the functions /(#), φ(x) of the first paragraph are thought of as corresponding to points in a space of infinitely many dimensions, with ([/(#) — φ(x)]2 (Zj? as the square of the distance between them. This definition of distance is the beginning of a systematic geometry of func­tion space.Another hint of geometric analogy which is present from the beginning consists in the recurring use of the term orthog­

onal, two functions being called orthogonal to each other over an interval when the integral of their product over the interval is zero. While it is worthy of some emphasis that orthogonality of the functions which form the basis of the approximation is a convenience rather than a necessity, the notion of orthogonality is inseparably associated with the least-square condition in another way.Let the functions f(x), pl (x), ∙ ∙ ∙, pm (x) be supposed con­tinuous. for simplicity of illustration. (It would be sufficient that they be integrable together with their squares, provided it is assumed that the jp’s are properly independent, in the sense that every linear combination of them containing a non­
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V. GEOMETRY OF FUNCTION SPACE 151vanishing coefficient is different from zero over a set of positive 
measure-, this condition is of course satisfied automatically if they are linearly independent and continuous.) In order that c1, ∙ ∙ ∙, cm be the coefficients giving the least-square approxima­
tion, it is necessary and sufficient that f(x) — ff,(fi) be orthog­
onal to each of the functions pfix), or in other words it is 
necessary and sufficient that fix) — φ(xi) be orthogonal to 
every linear combination of ρvfx), ∙ ∙ ∙, This can beverified algebraically, without a detailed examination of the necessary and sufficient conditions for a minimum in the calculus.Let t∕>(.τ) be an arbitrary linear combination of the j>,s with at least one non-vanishing coefficient. Then
is a linear combination of the 7∕s, for any value of h, and every linear combination different from y can be written in this form by a suitable choice of Let

lib to ιιιaκe *∕ ‰ ± ∖ιuι t*Λ<unμιυ mj' υακιιιg u — _n/ aj j ? iuilliciij to the supposition that y is the minimizing function, while if 
R = 0, J = I-∖-h*SZ>I for every h φ 0.
are equivalent to the m linear equations
for determining the m c's. It has been shown that these equations must be satisfied if the least-square problem is to

The conditions
can be chosen so
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152 THE THEORY OF APPROXIMATIONbe solved, and that the problem will be solved if the equations are satisfied. For the moment there is still a question whether the equations have a solution. The answer is immediate, however; the left-hand members are independent of the func­tion ∕(⅛), the least-square problem obviously has the unique solution Cι = c2 = ∙ ∙ ∙ = cm = 0 in the particular case 
f(x) 0, and consequently the determinant of the coefficients must be different from zero. If the p’s were not linearly independent, the problem of approximation could still be solved in terms of a linearly independent subset of them, and this would be at the same time a solution in terms of the original set of p’s, but the solution in terms of the latter set as a whole would not be unique.Similar reasoning is applicable to the problem of the second paragraph of the chapter. Integrals are to be replaced by sums throughout, and in particular the property of orthogonality of two sets of numbers is expressed by the vanishing of the sum of the products of corresponding numbers of the two sets. The hypothesis of linear independence of the p’s corre­sponds to the condition that the matrix of the coefficients α⅛ be of rank m. The condition of orthogonality characterizing the least-square solution takes the form that the set of 
residuals bk— w∕c is orthogonal to each of the m sets of numbers an.-:

n
Σ (bk — Wk) Uik — 0.fc=lThe /th equation of this set may be constructed by multi­plying each of the given equations by the corresponding co­efficient of a⅞, and adding the equations thus obtained. Written out at length, the new equations have the form

[f∑ auc aik^ %ι ÷ ( aik a∙2j^ x2 -j- ∙ ■ ∙ 4^ ( ¾ amkj a,m

n
= ∑ atk bk, / = 1, 2, ∙ ∙ ∙, m.

k=l

They are the well-known linormal equations'1' for the solution 
of the problem of least-square adjustment.
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V. GEOMETRY OF FUNCTION SPACE 153In certain cases the necessary condition of orthogonality can readily be translated into another familiar form. Consider once more the case of functions of a continuous variable x. Let f(x) and ρ(⅛) be given functions for a ≤ x ≤ 1), for simplicity continuous, and let ρ(χ∙) be non-negative and not identically zero over the interval, and let Pn(x} be the poly­nomial of the nth degree which minimizes the integral
Then the remainder f (x) —P∏(x), if not identically zero where- 
eveτ ρ (⅛)φθ, must change sign at least n ⅛ 1 times in the inter­
val (.«, 6). If [ρ (aθ]ιz2 is denoted by q(x), the integral to bethe problem is that of approximating ρ(^,)∕(α,) by a linear combination of the functions q (a?), xq (α∙), ∙ ∙ ∙, xn q (x). By the general proposition obtained above, it is necessary that 7(α∙)∕(⅛) — q(x)Pn(x) be orthogonal to every linear com­bination of the functions xi q (x), or, in other words, orthog­onal to q (x) Qll (x), if Qn (x) is an arbitrary polynomial of the nth degree; in symbols, since [√(a,)]^=(α∙) [./'(a;) — Pn (∙τ)] Qn(f) dx = 0.If f(x)—Pn(x) had not more than n changes of sign, it would be possible to construct a Qn (x) having the same sign as ∕(.τ) — Pn(x) at all points where ∕(.τ)— P>t(√)φO, and this would make the integτal positive, unless ρ (#) = 0 wherever f(x) — Pn (a?) Φ 0. The condition that Pn (x) be such as to give the remainder the requisite number of changes of sign is of course not sufficient for the solution of the least-square problem, since it is satisfied by any polynomial differing sufficiently little from the minimizing polynomial. A corresponding formulation is possible in the case of ap­proximation by trigonometric sums, with or without a weight function.The least-square problem, in general as well as in the special cases discussed in the preceding paragraph, is that 
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154 THE THEORY OF APPROXIMATIONof choosing from a given linear family of functions the partic­ular one which is closest to another given function, according to the measure of discrepancy specified. The geometric inter­pretation that has been suggested gains in clearness if each function, instead of being represented merely by a point in a space of an appropriate number of dimensions, is also represented alternatively by the vector from the origin to the point in question. The linear family of functions then corresponds to a linear spread in the geometric picture, and the function of closest approximation corresponds to the point of this spread whose distance from the point representing the function to be approximated is as small as possible; the residual function f(x) — φ (χ∙) (or b(A,)— ∕r(A∙)) can be regarded as the vector from y (χ∙) to /(.z) (or from w (A) to 6 (A-)); and the property of “orthogonality” characterizing it is associated with the fact that the shortest distance from a plane spread to a point outside it is perpendicular to the spread. The geo­metric terminology thus acquires additional plausibility.2. The general notion of angle; geometric interpretation of coefficients of correlationAn obvious further step is to proceed from the notion of orthogonality to a general notion of angle in function space. As will be seen presently, the definition of angle is already implicit in that of distance, if the frame of Euclidean geo­metry is to be fitted consistently to functional relations, though the question as to the possibility of carrying the idea through systematically and without danger of internal contra­diction still calls for some elucidation.It will be well first to adopt a common notation for dealing simultaneously with functions of a continuous variable and functions of a discrete subscript. If x(f), y (f) are continuous functions of t for a ≤ t < b, letz Cb(x∙y) = J x{t)y(t) dt.If x1, a⅛, ---, xn'∙> yιf ‰ ∙ ∙ ∙> y∏ are two functions of an index A∙ which ranges from 1 to n, let
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V. GEOMETRY OF FUNCTION SPACE 155

The quantity (x ∙ ?/) is the inner or scalar product of the twofunctional vectors. In particular,etc. 1 he condition tor orthogonality ot x ana y is rnar (x ∙ t∕) = 0. A third case worthy of explicit mention is that
of infinite sentiences such th ntand are convergent. rΓhe interpretation then is that
All three are of course isolated particular cases from the point of view of general analysis.be two functions representedby the points P, Q respectively, and let 0 be the origin, corresponding to a function which vanishes identically. By the convention already adopted, the sides of the triangle OPQ are
If the angle POQ is denoted by θ, application of the law of cosines to the triangle gives
whence and

When the independent variable is k = 1, 2, ∙∙∙, n, the formula becomes
This is recognized immediately as a fundamental formula in the theory of statistics. It is the coefficient of correlation
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156 THE THEORY OF APPROXIMATION

between the variables x and y, if these have been reduced to the form of deviations from their respective arithmetic means, or, in other words, if ∑xk ~ ∑yk = 0. Subsequent pages will show that the geometry of function space throws much light on the structure of more complicated formulas of correlation.It becomes important to inquire more closely as to the logical basis for the identification of analysis and geometry. The essentials of such a basis are implicit in the considerations leading up to the proof of Theorem III in Chapter III. To repeat in the present notation what is needed for the purpose in hand, restricting attention at first to a two-dimensional spread, let x, y be any two functions which are linearly in­dependent over one of the ranges specified in the third para­graph preceding (or over some other appropriate range); if the range is an interval, let it be supposed for convenience that the functions are continuous. Let
sι - x, ^-y fι⅛1.j1)∙It follows immediately from this definition that (S1∙∕∕1) = 0. By the hypothesis of linear independence, furthermore, it is certain that ηl is not identically zero. If

'ξ = Si∕(^ι∙ ⅛'i)ia2, η = %∕(¾∙^ι)ιz2,the functions 'ξ,q are orthogonal to each other: (ξ∙∕y) = 0; and they also satisfy the condition that (J∙⅛) = ( //∙//) = 1. They are linear combinations of x and y, and it is seen at once that the determinant of the coefficients is different from zero, so that x and y conversely can be expressed as linear combinations of 'ξ and η.The functions x and y being given, let 'ξ and η now be any pair of functions such that x and y are linearly expressible in terms of 'ξ and //, and such that(S∙∕∕) = 0, (£ ∙ S) = (//∙-?) = 1.
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V. GEOMETRY OF FUNCTION SPACE 157It has been shown that such functions £, // can be constructed. There are infinitely many pairs satisfying the requirements; the original 'ξ, // can be replaced by aif-∖-βlη, a2'ξf-β2r∕, if α1, βl, ai, β2 are any constants such that
Furthermore, the requirements can be satisfied even if x and y are not linearly independent; it suffices then to express x, y in terms of two linearly independent functions a¾, yi, and to construct functions ⅛', η as above with xλ and y1 in place of x and y.In terms of a chosen pair of normalized orthogonal functions £,//, letThen

If the functions x, y are thought of as corresponding to the 
points P, Q, with the coordinates (α1, 6x) and (α2, δ2) respectively 
in a rectangular coordinate system, while 0 is the origin, the

angle POQ is
The cosine of the

are the squaresquantities (. and
of the distances OP, OQ, and PQ.

More generally, if

are ana linear combinations of x and y, and it A, b are
the corresponding points
and are the squares of the distances
and Kb, and the quantity (u∙v) is the scalar product of the
vectors OK, OS. Every linear combination λχ-↑-μy corre­sponds to a definite point with coOrdinatesif x and y are linearly independent, a one-to-one correspondence
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1 58 THE THEORY OF APPROXIMATIONis established between functions linearly dependent on them and the points of a plane, in such a way that there is an actual identity between the measures of distance and angle and the quantities which were associated with them originally by analogy. So far, moreover, there is no need of any space of more than two dimensions.The correspondence being once established, the analytical relations expressing geometric facts are implied with logical conclusiveness by the geometric facts themselves. Consider for example the problem of determining a constant z to mini­mize ((?/— λ<r)∙(y— ^')), when x and y are given. If x and y are interpreted as statistical variables, representing­deviations from the respective arithmetic means, z is the coefficient of regression of y on x. The points corresponding to z, and y being P and Q, as before, the function λχ is represented by a point Jf on the line OP, and y— λx corre­sponds to the vector MQ, in the definite sense that when 
y— λχ is expressed as a linear combination of £ and ∕z. the coefficients of ⅛" and // are the components of the vector. It is clear from the geometric figure not only that J/Q must be perpendicular to OP, or in other words that?/ — λχ must be orthogonal to x, but also that the value of λ which accomplishes the purpose is given byZ . OP = OM = OQ cos θ,λ = 2≤, pns „ = (// ∙ y)1/2______ (^∙y) ⅛yy)

OP (χ ∙ a?)1/2 (x ∙ a?)1/2 {y ∙ y)1 2 {x ∙ x) 'where θ is the angle POQ, and furthermore that the minimum value of ((∕∕ — λx) ∙ (y — λχ^)) isW = (G>Qsin 0)2 = (y∙2∕)(l-cos≡θ) = (?/∙ ?/) (1 - r2) .if cos θ, interpreted as a coefficient of correlation, is denoted by r.For the geometry of three (linearly independent) functions 
x, y, z, let S1, yl, 'ξ, η be defined as before, and let(⅞ι ’(*5∙ j7ι) ’Ci = ς = ς√(Cι √ι)ιz2.
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V. GEOMETRY OF FUNCTION SPACE 159Then 'ξ, >i, ζ satisfy the conditions(⅛' . 0 = ⅛. 0 = (∙>∕ ∙ C) = o. (⅛* ∙ ⅛) = 0/ ∙ ∕z) = (ς ∙;) = 1. and a?, y, z are linearly expressible in terms of them. There are infinitely many sets of functions satisfying these same conditions, and serving equally well for the representation of x, y, z, any such set being expressible in terms of the particular set £, η, ζ by means of the coefficients of an orthog­onal linear transformation in three variables. Any linear combination it = λx-∖- μ y ⅛ vz can be expressed in the form 
Λ'ξ-3r Bη-}-Cζ7 and can thus be put in correspondence with a point (A, B, O'), the square of whose distance from the origin is the quantity (u ∙ ?/) = A2-∖- B2-∖- C^. If ιι and υ are two such linear combinations, corresponding to the points P and Q, the cosine of the angle POQ is (u ∙ y)∕[(u ∙ ?<) (υ ∙ r)]1 -.The representation of functions by points or vectors is particularly convenient for the visualization of coefficients of partial and double correlation. Let x, y, z be three given functions, corresponding to points P. Q, B in three-dimensional space. If x, y, z are sets of deviations from arithmetic means, so that the statistical terminology is appropriate, the co­efficient of partial correlation between x and y, when z is held fast, is the coefficient of correlation between x — λz and 
y — μz, where λ and μ are the regression coefficients of x on z and of y on z respectively. The function x — λz is a linear combination of x and z, orthogonal to r, its geo­metric counterpart is a vector in the plane POP, perpendicular to OP. Similarly, y — μz is represented by a vector per­pendicular to OB, and lying in the plane QOB. The angle between these vectors measures the dihedral angle formed by the two planes. So the coefficient of partial correlation in question is the cosine of the dihedral angle. Let P1, Ql, P1 be the points in which the rays OP, OQ, 01? pierce the unit sphere about, the origin as center. In the spherical triangle Pi Qi Bi, let «,/?,/ be the measures of the angles P1, Ql, P1 respectively, and let a, b, c be the sides opposite these angles. Let r12, r13, r23 respectively be the ordinary cor­
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160 THE THEORY OF APPROXIMATIONrelation coefficients of x and y, x and z, and y and z∖ let λT2.3 be the partial correlation coefficient which has just been discussed, and let ∏3.2 and r23.ι be the other coefficients of partial correlation. It has been seen that Γ12.3 = cos;'. In the same way, Γι3.2 = cos /?, r2s.ι = cos «, while rj2 = cos c, r13 = cos &, r28 = cos a. By the law of cosines.cos c — cos a cos I cos γ = -------- —------7—-1--------------.sin a sm bwhich means that ^12--  >13 >23>∙>≈ ≡- [(1-⅛)(1-⅛)]V2 ∙
This is the standard formula expressing a coefficient of partial 
correlation in terms of ordinary correlation coefficients. The co­efficients ∏3.2, r2s.ι of course have corresponding expressions. The inverse formulas >12.3 + >’13.2 >*28.1 rι2~ i(i-⅛)(i-⅛.ι)i1'2 ’etc., are similarly obtained from the polar triangle.For the definition of one of the coefficients of double cor­relation, parameters λ, y are to be determined so as to mini­mize the quantity (fix — λy — μz) ∙ (x — λy — yz)), or in other words to give the least-square approximation of x by means of a linear combination of y and 2 . This requires that 
x — λy — μz be orthogonal to both y and z∖ geometrically, the point M representing the combination λy-fiμz is the foot of the perpendicular from P on the plane QOB. Then n.23. the coefficient of double, correlation between x and the pair of variables y and z, is the coefficient of simple correlation between x and λy-fiyz, the cosine of the angle MOP between 
OP and the plane Q1OR. Let this angle be denoted by h. It is measured by the arc P1 ⅛γ1, if 6*1 is the foot of the altitude from P1 to the side Q1 Pl in the spherical triangle. Hence h may be calculated as a side of the right triangle Ri Sl P1, by the formula sin h = sin b sin .
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V. GEOMETRY OF FUNCTION SPACE 161By substitution from the relations
it is found that
There are corresponding formulas for the other double cor­relation cofficients r2.ia and r3.i2∙The same figure may be used to obtain formulas for the coefficients λ and μ, the partial regression coefficients of 
x on y and z. Let lines be drawn through M parallel to 
OB and OQ, meeting ()Q and OB at K and L respectively, to form a parallelogram OKML. The vectors OK and O7√, constituting a resolution of O3f into components collinear with OQ and Oi7, represent separately the terms λy and μz. On the surface of the sphere, let the arcs B↑ S↑ and *S'1 Q1 be denoted by d and e, so that d measures the angle LOM, while e measures the angle MOK and its equal OML. (The formulation is adapted throughout to the case in which the point M falls within the angle QOB, so that tf1 is interior to the arc QxBx,) In the plane triangle LOM, having two of its angles equal to d and e respectively, the third angle, at L, is the supplement of d-∖-e. But the arcs d and e on the sphere make up the side a of the original spherical triangle. So the law of sines in the plane triangle gives
In the right spherical triangle PiSxQx, on the other hand,
so that

11
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162 THE THEORY OF APPROXIMATIONwhile OL = μ OR, and OM — OP cos lι. Hence
0 L __ 0 P sin c
0R OR sin aor with the use of a conventional notation, presently to beexplained at greater length, for regression coefficients and standard errors of estimate, as λvell as that already used for coefficients of correlation,
^13.2Similarly,

&12.8
0 P sin b
0 Q sin a cos γ = 01.3

-- ----  ∏2.3∙
σ2.3The results of the preceding paragraph can be obtained by a possibly less straightforward but more exclusively geometrical method, making no use of the spherical triangle or of spherical trigonometry as such. Let the letters 0, P, Q, R, M, K, L have the same signification as before. The letters a. b, c, 

a, β, γ retain their previous meanings as measures of the face angles and dihedral angles of the trihedral angle OPQ1R. Let H be the foot of the perpendicular from 3/ on OQ, and 
J the foot of the perpendicular from R on OQ. The triangles 
KMH and OR J in the plane QOR are similar, since KM is parallel to OR (having been so constructed), MH is parallel to RJ (both being perpendicular to OQ), and KH and OJ are collinear. Furthermore, KMandOL are opposite sides of a parallelogram. SoOL _ KM MH 

OR ~ OR ~ RJ 'But the length of RJ, the perpendicular from R on OQ, is OJSsinα. Also, PH is perpendicular to OQ, since MP, being perpendicular to the plane QOR, is perpendicular to the line OQ, and OQ, being perpendicular to MP and MH. is perpendicular to their plane and to the line PH in that plane; hence MHP is the measure of the dihedral angle β, so that 
MH = HP cos β (as PMH is a right angle), while HP 
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V. GEOMETRY OF FUNCTION SPACE 163
= OP sine, making MH = OP sine cos β. The resulting expression for μ is the same as before.The preceding calculations are not restricted in substance to the case of statistical variables, but can be formulated without the terminology of correlation, and are then applicable to any functions x, y, z coming under the original hypotheses. It is to be emphasized also that for the time being no use has been made of space of more than three dimensions; the geometry is the actual geometry of experience.3. Coefficients of correlation in an arbitrary number of variablesFor dealing with relations of higher complexity it will be convenient to modify the notation somewhat. λVhen there are m functions to be considered, let them be denoted by a,ι, a⅞, ∙ ∙ ∙, xm. The case of primary interest will be that of statistical variables, measured from an arithmetic mean in each case; i. e., aιt∙ will stand for a set of numbers xil, Xi2, ∙ ∙ ∙, X{n, subject to the condition that a⅞ι-{- a⅞2 + ∙ ∙ ∙ + ‰ = 0. Apart from technical notation and terminology, however, the work will be valid for functions of any of the types previously considered. As an additional item of notation, {x ■ x) will be abbreviated to ((a?))2.The reduction of general coefficients of correlation and coefficients of regression to expressions in terms of coefficients of lower order depends on the following fundamental prop­osition :

Let λ2, .. ∙, 2m be determined so as to minimize((a⅛ λ2 X3 ∙ ∙ ∙ λm Xwl))2,
and with these values of the Ps, let

W --- X∖ ^,2 " ' " t-m Xm ∙

Let μ3, ∙ ∙ ∙, μm and v3, ∙ ∙ ∙, vmbe determined so as to minimize 
((xl — μ3x3 — ... — μm xm))2 and ((a⅛ — v3x3--------vm xmj)2,
and let
φ — χl μ∙i χ<i ∙ ∙ ∙ μ m χmf ψ τ=r χ2 — P3 χs — ... — pm χm ,

11’ 
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164 THE THEORY OF APPROXIMATION

Let A be determined so as to minimize ((φ — A ψ))2. Then ω ≡≡ (/ — A ψ.The proof depends on the still more fundamental fact, imme­diately deducible from the definition of orthogonality, that 
if one function is orthogonal to each of two other functions, 
it is orthogonal to every linear combination of them.It is at once apparent from the definitions of <p and ψ that 
<∕ — A ψ is a linear combination of the a?’s, of the same form as ω, the coefficient of xi being unity in each case; the question at issue is that of the identity of the remaining coefficients.By a theorem discussed early in the chapter, a (necessary and) sufficient condition characterizing the coefficients in ω is that o be orthogonal to each of the functions a⅛, ♦ ∙ ∙, a¾n.By the same theorem, φ is orthogonal to each of the functions a⅞, ∙∙∙, xm, and ιp is likewise orthogonal to each of these functions. Since x3 is orthogonal to y and to ψq it is orthogonal to the combination φ—Aιp. The same is true of xi,∙∙∙,xm. In other words, y—Aι[∣ is orthogonal 
to each of the functions X3,∙∙∙,xm.By one more application of the theorem, φ—A ψ is orthogonal to ψ. But x3 can be expressed in the form 
x3 ≡≡ ψ-f-r3a⅞ +---- ∖-vmxm. Consequently, being orthogonalto ψ, x∙a, ∙ ∙ ∙, xm, <f>—Arψ is orthogonal also to a⅞∙The identity of y—Aιp with ω is thus established.For m = 3, the proposition is equivalent to a relation of perpendiculars which is important in deriving the formulas of spherical trigonometry: if OP, OQ, OR are three rays issuing from 0, if Λτ is the foot of the perpendicular from P on the line OR, if a line is drawn through N in the plane QOR perpendicular to OR, and if M is the foot of the perpendicular from P on this line, then MP is perpendicular to the plane QOR. This figure yields the equation sin/i = sinδ sin/, which was used in obtaining the formula for a coefficient of double correlation. Essentially the same configuration appeared also in the discussion of partial regression coefficients.

www.rcin.org.pl



V. GEOMETRY OF FUNCTION SPACE 165For the statistical application with an arbitrary value of m a somewhat elaborate notation is appropriate. Let the func­tion ω, as originally defined by the formula ;according to the least-square criterion, be denoted by a⅛,28∙.∙m. It may be spoken of as the residual of ,τ∣ with respect to(The order of the subscripts 2, 3, ∙∙∙,mamong themselves is clearly immaterial.) Similarly, y and if, the residuals of xi and of a⅞ with respect to a⅞, ∙∙∙,‰, are to be denoted by rcι.3...w and a⅞.3...m∙ The standard 
deviation o∣- of any one of the original variables xk is definedby the equation (The presence of thedenominator n is a mere matter of definition, as far as the present discussion is concerned, since the equations will in­volve only ratios of standard deviations; except for the statistical interpretation, the (positive) square root of (Cr))2 itself may be used in place of σ⅛.) The correspondingly defined standard deviation of such a residual as a¾.23∙..m, the
standard error of estimate of x↑ in terms ofdenoted bv The partial regression coefficientsare represented by 6ι2.84...m, O13.24...m, ∙∙∙, The first subscript of each of the h's is that01 tne variable approximated, tne second is mat 01 tne particular variable to which the coefficient in question is attached in the regression formula, and the other subscripts, the order of which among themselves is without significance are those of the remaining variables. In the same way.are to be replaced byand v-i, ∙.., vm by The coefficientof correlation between y and ψ, or, in the present notation, between X1.3...m and X2.3...m, is the coefficient of partial
correlation between x∖ and a⅞ ιvhen are held fast,and is represented bvIn the new notation, the general proposition about the identity of the functions previously called ω and y — Λιp asserts that □⅛.23∙∙.∞ is the same as the residual of x1.3-.-mwιtn respect to It is important to bear 111 mindhowever that its essential content is independent of the
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166 THE THEORY OF APPROXIMATIONnumber of variables and their individual designations, and this essential content is more adequately though less concisely expressed by saying:
The residual of a given function with respect to a set of func­

tions may he obtained by calculating successively the residuals 
of the given function and of any chosen function of the set 
with respect to the remaining functions of the set, and then 
taking the residual of the former of these residuals with respect 
to the latter.An ealier paragraph contained a derivation of the value of the simple regression coefficient minimizing the expression ((y — 2 f). (y — λχ)). The formula of that paragraph which reads 
becomes in the present notation δ21 = (σ,2∕o∙1) r12. Interchange of the variables gives δ12 = (σ∙1∕σ-2) r12; the simple coefficient of correlation is symmetrical in its two variables, so that r21 = r12, while δ21 and bl2 are different. Incidentally itCorresponding formulas for partial regression coefficients can be obtained immediately. It is apparent on inspection that while the coefficients of a⅞, ∙∙∙, xm in the function ≈ι.23∙∙ m = as expressed in the form y— Λψ, are com­binations of the fs and the r’s, the coefficient λ2 = b12.3 ∙m is 
merely d. But this ./ is the simple coefficient of regression of y with respect to √', and as such is expressible in terms of the standard deviations of y and ι∕' and the correlation between them. The standard deviations of y and ψ> are ffι.3∙∙∙wι and σ,2.3∙ ∙m respectively, and their coefficient of cor­relation is Γi2.3∙.∙wι∙ Consequently
By interchange of subscripts—in other words, by consideration of the coefficient of regression of a⅞.3...w with respect to □⅛.3...m—it is found that

www.rcin.org.pl



V. GEOMETRY OF FUNCTION SPACE 167
the definition of the correlation coefficient is symmetrical with respect to the first two subscripts. Combination of the equations for the b,s gives

In the earlier paragraph to which reference was made above the minimum of (Q∕— λχ)∙(,y — λx)) was evaluated in the form (y ∙ ?/) (1 — r2). In the new notation this result is ex­pressed by the equation σ-1 = o,- (1 — r%2). The corresponding equation with subscripts reversed is σ2 2 = crf (1 —r≡2). Applied to the standard deviation of ω = y— A ψ, regarded as the residual of φ with respect to ιp, it becomes
Here again it is important to recognize the essential content of the formula, as distinguished from the notation in which it is expressed. Written down successively for cases of in­creasing complexity, with a particular choice as to the dis­position of subscripts each time, it yields

Reverting to an abbreviated notation for certain residuals, but with a modification of that previously employed, let
ω1 ---- ΛT.34∙∙∙m, ω2---- a?2.34. ∙ ∙wι,

9'1 — %lA∙.∙m∙ ψ,2 zzz= a⅛.4∙∙∙τn, tf13 — a⅛.4. -m∙ 

and by combination of all these equations
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168 THE THEORY OF APPROXIMATIONBy the fundamental theorem about residuals, ω1 may be re­garded as the residual of φ1 with respect to y3, and ω2 is the residual of y2 with respect to φ3. Hence the coefficient 
of correlation between ω1 and ω2 is the coefficient of partial 
correlation between φl and φ2 when φ3 is held fast, and is expressed in terms of the simple correlations between y1, φ2 and y3 by the formula previously obtained in the discussion of correlations among three variables. If the correlation between ω1 and ω2 is denoted for the moment simply by √, and if the correlations between y1 and φ2, φ1 and φ3. and y2 and φ3 are called respectively 2τ2, ∏3 and 2⅛, then
But from the point of view of the dependence of these quantities on a⅛, a⅞, ∙∙∙, ‰,

By the last equation any partial correlation coefficient can be calculated in terms of correlation coefficients of lower order, that is to say, correlation coefficients involving a smaller number of variables, and so ultimately in terms of ordinary correlation coefficients.Let the partial regression coefficients of a1 with respect

and consequently

be denoted once more by The coefficientof correlation between x↑ and Φ is the coefficient of multiple 
correlation between Xi and the set of variables x%, ∙∙∙, ‰. It may be represented by Γ1.23.. m∙ If the regression coefficient of x1 on Φ is L, the square of the standard deviation of 
x1 — LΦ is σ^2 (1 — r12 03 m). But any constant multiple of Φ is a linear combination of x2, ∙ ∙∙, xm, and by the definition

and let
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V. GEOMETRY OF FUNCTION SPACE 169of Φ no other linear combination of x2, ∙ ∙∙, xm can give so good an approximation to x1 according to the least-square criterion as Φ itself. Hence it must be that L — 1, and the standard deviation of x1—LΦ is the standard deviation of 
xl— Φ, already denoted by ¢1.23...m, so that

σi.23∙∙∙wι σι(l zi.23∙∙ra),Taken in conjunction with an equation previously obtained for o'1223...w, this shows that
1 ri^.23. ■ m = (1 ri2)^ ri3.2) (1 ri4.28^*"^ rΓm.28∙∙∙m-1^’a relation from which the coefficient of multiple correlation can be calculated.4. The geometry of frequency functionsApart from the generality which the preceding account of the application of geometry to analysis possesses by virtue of the fact that at the outset the independent variable may be one taking on a finite number, an enumerable infinity, or a continuous infinity of values, its substance can be given still another setting. In the statistical case, if there are for example just two functions concerned, xjc = x(f) and yk — y(k), the formulas involve the different values of 7r symmetrically, and are not affected if the n pairs of numbers (α⅛, yιe) are permuted, each pair by itself being kept inviolate. That is to say, the independent variable serves only to define the association of a value of x with a value of y, and has no further significance of its own. For dealing with large numbers of observations, the problem may be idealized by supposing that (within limits, perhaps) any value of x may be associated with any value of y, but that some pairs of values (x, y) occur oftener than others, to an extent indicated by a frequency function q>{x,y), whose integral over any region of the x, y plane measures the frequency of pairs of observations (x, y') falling within that region. If x and y
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170 THE THEORY OF APPROXIMATIONare measured as deviations from their respective means, this fact is indicated by the conditions
x y>(x, y} dx dy = 0,the integrals being extended over the range of definition of y. The squares of the standard deviations of x and y are then

y2 fP (x, y) dx dy

and the coefficient of correlation between them isJ J aψy(*, y) dx dy

1 ∕JΓx~ g>(x, y) dx dy∖I" [∫JΓ.z∕2 9,(ab y) dx dy∖ΓTo illustrate the geometry of frequency functions, let the case of three dimensions be chosen. Let <p(x,y,z') be a non­negative continuous function of its three arguments, to be regarded as a frequency function for the occurrence of the set of values (x,y,z) for three measured variables. To ob­viate the necessity of convergence proofs, let it be supposed that y is different from zero only over a finite domain of three-dimensional space. It may further be supposed without essential loss of generality that the triple integral of y over the domain where it does not vanish is equal to unity—in abbreviated symbolism. J y = 1—which means that all frequencies are referred to the total number of cases as unit. The assumption that x, y, z are measured from their arithmetic means is equivalent to the set of equations 
jxφ = J*yy — Jzφ = 0; no use will be made of these equations, except to justify the statistical terminology em­ployed. The squares of the standard deviations of x, y, z are fxa(∕∙, J y2<f, and J* zaφ, since the quantity fy, which 
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V. GEOMETRY OF FUNCTION SPACE 171

and let the quantity σ1 τ1 a1 y(x, y, z) = o1 τl ω1 y1 (A, Γ, Z), as a function of the new variables, be represented by ΦiGb, ‰ ζi). In terms of ⅛1, q1, ζ1 as variables of integration, the relations

would otherwise annear as denominator, is 1. The coefficientof correlation between x andand the other coefficients of correlation are correspondingly defined.As a first step toward the setting np of a geometrical representation, let auxiliary notation be introduced as follows:

Let

In these formulas A', lz, and Z, as well as γ, are to be thought of as functions of x, y, and z, and the integτation as performed with regard to these variables. As the func­tional determinant of Ar, Tr, Z with respect to x, y, z is 1, however, the integrals may equally well be taken with regard to X, Γ, Z, if the limits of integration are suitably adjusted, or, what comes to the same thing (since each integrand is identically zero except over a finite region), if the integrals are extended over the whole of space. As a function of 
X, Γ, Z, let <f,(x, y, z) be denoted by φ1(X, Y, Z). Then, with X, Γ, Z as variables of integration,
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172 THE THEORY OF APPROXIMATIONare satisfied, together with the equations

If ⅛ι + 61 ηi ⅛ cl ζ1 and a2 ⅞'i + 62 ηl ψ c2 £i are any two linear combinations of ⅛'1, ηl, £r,

Finally, for the sake of generality, let £, ⅛, £ be any variables expressible in terms of S1, ∕∕1, £t by means of a (normalized) orthogonal transformation. Let φι(£i, ⅞ι, £i) = φ(⅛', 'z∕, £). As the determinant of the transformation is ± 1, the equations of the preceding paragraph, including the last one as formulated with the various sets of coefficients involved in the transformation, give 
j φ=(ξ2φ=j∖2φ = (iζ2φ = 1.

the variables of integration now being 'i, η, ζ. The basis of the geometrical interpretation is the possibility of finding £,//,£ as linearly independent linear combinations of a, y, z. so that these relations are satisfied.The equations expressing £, //, ζ in terms of x, y, z mani­festly are in fact linearly independent, and #, //, z consequently can be linearly expressed in terms of £, //, £. Furthermore, any linear combination of x, y, z can be similarly expressed. Let
U — «i a? -J- βγy 4- γxz = A1 ⅛ -f- Bi η ⅛ C∖ £be any such combination. Then
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V. GEOMETRY OF FUNCTION SPACE 173If y = a2 x -⅛- β2 y ⅛ /2 z = A2 ⅜ -j- P2η -⅛^ C2 ζ,is any second combination of the same form.
Jj ∣UVφ dxdydz = A A2 ÷ B1∕A ÷ C1 C2.

Let P be the point with coordinates (dυ B↑, C11), and Q the 
point (A, T>2, C2), with reference to a system of rectangular 
awes in three dimensions, and let 0 be the origin. Then j 772<∕ and § V2φ, the variables of integration being x, y, z, are 
the squares of the distances OP and OQ, and

the coefficient of correlation between U und Γ, is the cosine 
of the angle POQ,. Through the medium of the equations 
expressing x, y, z in terms of 'ξ, η, ζ, each of the variables 
x, y. z, and every linear combination of them, can be associated 
with a definite point in three-dimensional space, in such a ιvay 
that standard deviation and coefficient of correlation have the 
same sort of geometrical meaning as before. From this begin­ning the geometrical structure of the theory of correlation can be built up along the lines previously followed.5. Vector analysis in function spaceThere is further scope for the application of simple geometric ideas in functional analysis, where the complete picture calls for a geometry of infinitely many dimensions. For a single illustration (discussed by Levy, Lecons d,analyse fonctionnelle, Paris, 1922, pp. 127-128), consider the integral
where y is a (suitably) arbitrary function of x, y = f(x), and F is a given function of its arguments. Not to enter into details with regard to questions of continuity, let it be assumed that all the functions that appear in the discussion have as many continuous derivatives as are needed to justify
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174 THE THEORY OF APPROXIMATIONthe operations performed. If y is looked upon as a point in a function space of infinitely many dimensions, or as a vector from the origin to the point, !l(y) is a scalar point function in that space. Subject to the appropriate conditions of diffe­rentiability, let η (x) be an arbitrary function vanishing at 
a and at &, and h an arbitrary constant. The familiar process of differentiation gives

the last expression resulting from an integration by parts performed on the second term in the brackets, with use of the fact that η (ci) = η (b) — 0. Let the function J,2z — (d∕dx)Fy> be denoted by φ(x). Then the expression for the derivative may be abbreviated to J ηy>dx, or, in a notation previously employed, (∕∕∙φ). The variation hη may be regarded as an infinitesimal vector increment of the vector y in function space, of geometric magnitude 7z(^--^)1/2. If the increment of 11 is divided by this quantity, instead of h, passage to the limit gives a directional derivative in the direction of the vector η. Its value is (η ∙ φ)∕(⅛ ∙ ^)1/2. But this can be written in the form
(φ . φ)V2 (v ■ <jp)

(∙,y ∙ (φ . φ)V2 ’ from which it appears that the directional derivative in the 
direction η 'is equal to the quantity (φ ∙ <p)1/2 multiplied by the 
cosine of the angle between the vectors η and φ, being greatest 
when y is collinear with φ. The “functional derivative” φ, 
considered as a vector in function space, thus has the character 
of a gradient of the scalar point function 11.The functional derivative can also be obtained formally after the analogy of the ordinary representation of a gradient in terms of a rectangular coordinate system. Let it be supposed now that y = f(χ) itself vanishes at the ends of 
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V. GEOMETRY OF FUNCTION SPACE 175the interval (a, 6), and that it is expanded in a series of normalized orthogonal functions uk(x), each of which likewise vanishes at the ends of the interval, in the form∕(rr) = al ul (a?) + a2 ui 0) ⅛ ∙ ∙ ∙.Let it be assumed further that this series admits differen­tiation term by term. The integral -f-, is a function of the infinitely many variables (α1, a2, ∙ ∙ ∙), the coordinates of the point y with respect to a set of rectangular axes in space of an enumerable infinity of dimensions. The derivative of -Q with regard to <⅛ is
f a∏ y' y^ dx•J a o ak

y, y') uk(x) + Fy' (x, y, y') u,k (a?)] dx

This is the Fourier coefficient of y(a?) with respect to u⅛(a∙).
The expression

∞ ∂Ω3 ak
uk (a?)

for a vector having the component ∂Ω∕,∂ak in the direction 
of the corresponding coordinate axis is the formal expansion 
of the functional derivative φ according to the orthogonal 
system (uk).An exposition of other elementary developments of the vector analysis of function space, rendered concrete by the use of theorems on the convergence and degree of convergence of certain expansions in series of orthogonal functions, has been given by the author elsewhere (Annals of Mathematics, (2), vol. 27 (1926), pp. 551-567; Bulletin of the American Mathe­matical Society, vol. 32 (1926), pp. 641-643).
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