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INTRODUCTION

The purpose of the present treatise is to offer an ap-
proach to a higher and more generalized arithmetic
through a systematic study of the algebraic numbers.
By virtue of the simplicity of its foundations and the
rigor of its deductions, arithmetic stands alone in the
beauty and harmony of its truths. A divine gift, it offers
proof that the mind is a reality attested by the sciences on
the one hand, and the philosophies on the other. The
province of arithmetic in this high position between
science and philosophy, is both to serve and to be served
in the quest of higher truths.

The earlier investigators in the theory of numbers made
the rational integer the basis of their endeavor and, rest-
ing upon this foundation, their theories were advanced in
a remarkable manner to very great heights. These
heights naturally become the more elevated, the broader
and wider the bases are made. The present work pro-
poses to show how the field of rational numbers is broad-
ened by the introduction of the algebraic numbers and
how thereby the realm of rationality is extended. In
this “*widening of the field of arithmetic” by the intro-
duction of algebraic quantities, by the employment of
rational functions of algebraic quantities, and similar ex-
tensions, many difficulties have been encountered and, in
particular, difficulties that are found in the treatment of
the algebraic numbers themselves. In connection with
the overcoming of these difficulties and smoothing the
paths of ascent, whether it be to a higher number theory
or to a more exact science, or to a deeper and purer phi-
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Vi INTRODUCTION

losophy, it is the part of the expositor to exhibit the
power of a generalized arithmetic in its simplicity, its
rigor, its harmony, and its charm. As indicated in the
beginning, the purpose of this treatise is to help in making
the theory of algebraic numbers more accessible, more
attractive, and less difficult.

Soon after the introduction of the algebraic numbers as
a study in themselves by Gauss, Jacobi, and others, a
serious difficulty appeared in that, unlike the rational
integers, they did not admit a unique factorization. This
very perplexing condition was later overcome in part by
Kummer’s discovery of the ideal numbers, which, although
of a somewhat fictitious nature, are not ““mere fiction.”
As Kummer would express it, they are like certain chem-
ical compounds which have their reality in their combina-
tions. There exists here a marked analogy with Plato’s
““doctrine of idea and number” which must again give
new thought to the modern philosopher.

In mathematics these ideal numbers served as a start-
ing point for the remarkable discoveries made by two of
Kummer’s followers: Dedekind, on the one hand, with
the theory of moduls and ideals; Kronecker, on the other,
with the methodical use (employ) of the theory of forms
with indeterminate coefficients and of the modular sys-
tems. The exploitation of these two great theories is in
the main the object of the present work.

The author had the good fortune, while a student in the
University of Berlin, to hear the lectures of Frobenius on
the Dedekind Theory and those of Kronecker, the last
he ever gave, on his own work. Every method known to
the author has been used to simplify the exposition which
often involved proving anew fundamental theorems and
formulas as they arose. If he has inadvertently made
omissions and inaccuracies, it is hoped that the general
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theory follows in such form that the reader can supply the
defects. As an example of these difficulties, Dedekind
himself declared that there always seemed to him to be a
gap (Lucke) or at least a questionable point (zweifelhafte
Stelle) in the foundation of the theory of ideals as given by
Kronecker in his Grundziige. It may be proved, how-
ever, that by the introduction of a fifth postulate (in
addition to Dedekind’s four), the difficulty is obviated.
This fifth postulate is the generalized Gaussian Lemma,
proved independently by Kronecker, Dedekind, Hur-
witz, and others.

A central point of both the Kronecker and Dedekind
theories is found in the treatment of the divisors of the
discriminant. Here again exceptional cases arose which
were of,an exceedingly baffling nature. Both Kronecker
and Dedekind wished to establish a theorem by means of
which a certain conformity between the ideal divisors of a
prime integer p on the one hand, and the factorization of a
fixed rational integral function, modulo p, on the other,
was set forth. This theorem proved by Kummer for the
case of cyclotomic realms was conjectured by him to be
the key to the general theory. It was found, however,
that this conformity fails when p is a so-called irregular
divisor of the discriminant. If one considers only the al-
gebraic numbers themselves and applies the highest scien-
tific method in their handling, as was done by Dedekind,
there remain lurking difficulties. Such and other ob-
stacles impeded the publication of Kronecker’s Grund-
zuge and were the subject of repeated notes in the
Gottingen Abhandlungen by Dedekind.

These difficulties were finally overcome by Hensel,
who, by the introduction of the ““fundamental form” and
the ““fundamental equation” of Kronecker, proved in
their generality certain theorems which Dedekind found
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necessary for a satisfactory exposition of his theory. In
this treatment, the modular systems of Kronecker render
a valuable if not indispensable service. It is fortunate
that for the most part the difficulties found in the Dede-
kind theory are different from those of the Kronecker
theory, so that a combination of the two gives a satis-
factory exposition of the whole. Thus, through the
united efforts of two of the world’s greatest mathemati-
cians was the theory of algebraic numbers established
upon a firm basis, free from defect.

It is here presented from a heuristic point of view with
the hope that through this mode of treatment the innate
relation of the general number theory to the function
theory, algebra, algebraic (Abelian) integrals, and other
branches of mathematics will be further developed and
eventually generalized into a united arithmetized entity,
the one contributing to the advancement of the other.
Thus would Kronecker’s belief be realized, a belief that is
cherished by others in increasing numbers. In this real-
ization, mathematics becomes as much the philosophy of
thought as an apparatus of computation and thus too the
confines of philosophy may in their turn be extended into
something like an exact science. This generalized theory,
while reaching to the highest arithmetical heights, be-
comes a profound mathematical-philosophical study, and
its application to the sciences, as in the case of a related
mathematical theory in Einstein’s work, is a natural con-
sequence. A similar theory emanating from an extended
philosophic study which had its initial conception in
something similar to Plato’s doctrine of idea and number,
if applied to mathematics, might conceivably lead to
analogous results.

The Dedekind theory was systematically worked out
by Dedekind and, difficult though it be even in his final
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presentation, the extent of the ideas which he wished to
convey may be fathomed. Further advances in his work
seem possible in many directions. Kronecker, a man of
independent fortune, had little experience as a lecturer.
As he wrote no text-book, his work, while more compre-
hensive than Dedekind’s and possibly susceptible of vast
extensions, remains to be put in systematic form with an
emphasis upon the clarity of its exposition.

The present work, wihile it follows more closely the
Dedekind treatment which is purely arithemetical, sets
forth the final fundamental results from both these en-
tirely different standpoints, in that the ideals and moduls
of Dedekind are put in juxtaposition with the funda-
mental forms and equations of Kronecker, the discrimi-
nant and order-modul being their common vantage
ground. And thus it is brought about that the “ method-
ical means of help derived from the indeterminate coeffi-
cients” with an intermingling of functions of many vari-
ables, does not appear foreign in a subject where the pure
number concept is paramount. While the Dedekind
theory is presented in its entirety, the Kronecker theory is
everywhere emphasized. If this has been done effectu-
ally, it will appear that the work of even so great a mathe-
matician as Hurwitz adds but little that is new to the sub-
ject. His contributions, which are given in a separate
chapter, offer a synoptic review of many of the previous
results.

The classic theory of quadratic realms, interesting and
instructive in themselves, serves as a stepping stone from
the usual theory of rational integers to the general theory
of algebraic numbers. This theory, founded upon the
lectures of Hilbert, has been thoroughly worked over by
Reid, The Elements of the Theory of Numbers, and by
Sommer, Vorlesungen uber Zahlentheorie. Their results
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are incorporated in and form a part of the first volume.
This volume is intended as an introduction to the general
theory which is given in the second volume. The reader,
having acquired through the study of the quadratic
realms the meaning and significance of such terms as
norms, units, moduls, ideals, divisibility, unique factor-
ization, etc., will naturally wish to see this theory ex-
tended to wider fields of investigation in the more general
realms of rationality. Accordingly, the second volume is
devoted to the presentation of this general theory.

The author has inserted in the text many historical
notes and references which may be of service for those
who wish to go deeper into the subject, as well as for
university students who may be required to make reports
on particular phases of the work. For this purpose fre-
quent references are also made to the works mentioned
below, which give a very exhaustive history of the sub-
ject: ""Report on the Theory of Numbers” by H. J. S.
Smith, Collected Works, Vol. I, pp. 38-364; History of the
Theory of Numbers, in three volumes, by L. E. Dickson
(Carnegie Institution, Washington, D. C.); Appendix to
David Hilbert’s Die Theorie der algebraischen Zahlkorper,
Deutsche Math. Vereinigung, Vol. 4, Berlin, 1897. The
latter report was brought up to date (1923) with the in-
clusion of omissions, in a supplementary Report on Alge-
braic Numbers (The National Academy of Sciences,
Washington, D. C.) by Professors Dickson, Mitchell,
Vandiver, and Wahlin.

The subject matter of the first volume is found in the
Table of Contents, which follows.

I wish to express to The Macmillan Company and to
their able representative, Mr. F. T. E. Sutphen, my
appreciation of their uniform courtesy from the reading
of the manuscript to its execution in book form.
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I offer my profound thanks to Professor William T.
Semple, to Mrs. Louise Taft Semple, and to the other
members of the Charles Phelps Taft Memorial Fund for
bearing the entire expense of the publication of this work
and for their interest in the Department of Mathematics
in the University of Cincinnati.

Harris Hancock.
Cincinnati, Ohio,

November, 1931.
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CHAPTER |
PRELIMINARY NOTIONS

Art 1 Reducible and Irreducible Functions. It has
been seen in algebra that an algebraic function of the
nth degree

f(x) =anxn+an-1xn 1+ .. - +alx+al
may always be resolved into its linear factors in the form

f(x) =an(>x-x1)(x-X%2) - - -(X-Xn)
where Xi, X2, - - -, xn are the n roots of the function. But
this distribution into linear factors ceases if the co-
efficients are subjected to certain conditions. for example,
the coefficients of f(x) being all real, it may be required
that the coefficients of its factors be all real. In this case
we may resolve f(x) into factors of the first and second
degree, since a function of the second degree with
negative discriminant is irreducible, if we demand that
the roots be real. One may further impose the condition
that the coefficients of the factors of f(x) be integers, it
being supposed that the coefficients of f(x) are integral.
Functions which under such and similar conditions are
resolvable into factors, are said to be reducible; if they
may not be resolved into factors, they are called irre-
ducible.

By ““function” we shall always mean ““algebraic func-
tion” unless it is expressly stated to the contrary.

Art 2. Realms. Any system of an infinite number of
numbers or quantities constitute a realm or domain. For
example, all integers form a realm, also all fractions con-
stitute arealm. Itis evident that the latter realm is more

1
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extended, that is, embraces more quantities than the
former. If the coefficients of a given function f(x) all be-
long to one and the same realm, we may ask: Is f(z)
reducible into factors whose coefficients belong to the
same realm? If this is the case, the function is said to be
reducible in this realm, otherwise irreducible. For ex-
ample, if the realm in question includes all quantities real
and complex, then all functions are reducible except the
linear functions; but if the realm includes only real quan-
tities, then all functions are reducible except the linear
functions and the quadratic functions with negative
discriminant.

Art. 3. Congruence of Two Functions with Respect to
a Modulus. Let

f(x)=al0+alx+- - -+anxn

be an integral function in x with integral coefficients. If
the coefficients a0, al,- - -, an are all divisible by the
positive integer k, we say that f(x) is divisible by k.

It is seen then that

fO)=kg(x),
where g(x) is also an integral function with integral
coefficients. The function f(z) is therefore a multiple of k
when and only when all the coefficients f(x) are divisible
bv k. Let
f(x) =a0+alx+alx2+ - - - +anxn
g(x) = b0+bix +b2x2+ - - - +bnxn
be two integral functions with integral coefficients. If
the difference f(x)—g(x) is divisible by k, the two func-
tions f(x) and g(x) are said to be congruent with respect
to the modulus k and this fact is indicated by the notation
f(x)=g(x)(mod k).
From this congruence it follows that
av=bt,(mod k) (=0, 1,2, - n);
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or
av = bv+cik (v=0,1, 2, - - n),
where the c s are integers. It follows also that
f() =g()+kh(x),
where h(x) like f(x) and g(x) is an integral function with
integral coefficients.

Art. 4. The Gaussian Lemma. After these intro-
ductory remarks we may next prove the following
theorem (stated by Gauss, Dis. Arith., Art. 43):

Theorem. If the product of two integral functions with
integral coefficients is divisible by a prime integer p, one of
the factors is divisible by p. Denote the two integral
functions by

f(x) =al+alx+ - -+anxn+- -

g(x) = b0 + blx+ - - -+ -bmxm+ - - -
and let their product be the integral function
d(x) =f(x)g(x) =c0+clx+c2x2+ - - -

¢0 = alh0, cl =a0Obl+b0al, ---

To prove the theorem it is only necessary to show that if
f(x) or g(x) is not divisible by p then @(x) is not divisible
by p. Suppose of the coefficients that appear in f(x)
that a0, al, - - an-1 are divisible by p; and of the
coefficients in g(x) suppose that b0, bl, ---, bm-1 are
divisible by p while an and bm are not divisible by p.

The coefficient of xntm in <p(x) is
cn+m= albn+m + albn+m-1 + a2bn+m-2+- - -

+anbm+an+1bm-1+ - - - + an+mbo.

All of these terms are divisible by p except anbm. It
follows that cn+m is not divisible by p and consequently
also thatd(x) =f(x)g(x) is not divisible by p.

The theorem when extended to the product of any
nurr21ber of functions is: A product of several integral

where
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functions with integral coefficients is only divisible by the
prime integer p when and only when one of the functions is
divisible by p. The theorem is also true for functions of
several variables, and may be proved as above, if the
functions are arranged according to a definite sequence
of the powers of the variables.

Art. 5. Primitive Functions; Divisors. If the coeffi-
cients of an integral function are integers and have t
as their greatest common divisor, t is called the divisor
of the function; and if this divisor is unity, the func-
tion is said to be primitive. Accordingly, a primitive
function is an integral function in the variable with integral
coefficients that have no common divisor other than unity.
We may also speak of the divisor of fractional coefficients.
Let

f(x) =c0+clx+c2x2+ - - -,
be an integral function with fractional coefficients c0, cl,

- and let s be the least common multiple of the

denominators of these fractions. It follows that c0 = b0/,

cl=bs, ---, where b0, bi,- - - are integers. Further let
r be the greatest common divisor of b0, bl, --- so that
b0=d0r, bl=dlr, .. where d0, di, --- are integers.
Denote r s by t.  We thus have c0=td0, c1 =tdL, ---. As
above, t is said to be the divisor of the function. It has
the property that all the coefficients ¢, cit, - - are

integers which have no common divisor other than
unity.

It may be proved as follows that there is only one such
divisor t. For suppose that t' were another. We would
then have c0=t'd0), c1=t'd, ---, where d0, dl, ---, are
integers. Since d0, di, ... are integers whose greatest
common divisor is unity, we may determine other
integers x0, x1 - - such that

x0d0+x1d1+ ---=1.
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It follows, since td0=c0=t'dDl, etc., that
t(x0d0+x1d1+ - - -) =t'(x0d0+d'IX1+ - - ).

Hence tt'= d0x0+dIx1+ ---=k, say, where k is an
integer. It is thus seen that t==tk and also that
f(xyt' = kf(x)/t; and it further follows that the coefficients
of f(x) when this function is divided by t' are all divisible
by the integer k. Thatf(x)t' be a primitive function we
must accordingly have k=1 or t=t. Note that the
guotient of any integral function by its divisor is a
primitive function.

Art. 6. The product of two or more primitive func-
tions is a primitive function. For if f(x) and g(x) are
two primitive functions and if f(x)g(x) = hfx), the coeffi-
cients of h(x) are integers; and if they have a com-
mon divisor i, then t is also an integer. Further de-
composing t into its prime factors, these prime factors
are divisors of either f(x) or g(x), but as both f(x) and
g(x) are primitive functions, these factors must all be
unitv (Art. 4) and therefore t must be unity.

Art. 7. The divisor of a product of two or more func-
tions is equal to the product of the divisors of these
functions. Letf(x) and g(x) be integral functions with
rational coefficients and sunnose that

f(x)9(x)=h(x).
Let a and B be the divisors of f(x) and g(x) so that
f(x) =/1(2), 9(x) =Bgl(x) where fi(x) and gi(x) are
primitive functions. Further let y be the divisor of h(x)
so that h(x) =yhl(x), hl(x) being a primitive function.
We then have

Since on the right hand f1(x)gl(x) is a primitive function,
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its divisors must be unity. It follows that

y=a}.
Another form of the same theorem. If F(x) is an integral
function with integral coefficients and if g(x) is a primitive

function; then if is an integral function of x, its co-

efficients are integral also. The coefficients in this
fraction must be rational numbers, since division is a
rational operation.

We may therefore write where h(xy is a

primitive function. It follows that f(x) = th(x)g(x).
Since the coefficients of fix') are integral, it is seen that

t is an integer and consequently the coefficients of

are integers.

Art. 8. If an integral function whose coefficients are
integers is resolvable into a product of two integral functions
with rational coefficients, it may also be resolved into a
product of two integral functions with integral coefficients.

For let f(x) =g(x)h(x) and write g(x) =pgl(x) where B
is the divisor of g(x) so that gl(x) is a primitive function.
It follows that F(x)ygl(x) =ph(x), where Bh(x) is an
integral function with integral coefficients (Art. 7).

From this it also follows that if an integral function
with integral coefficients is not resolvable into the
product of two integral functions with integral coeffi-
cients, it cannot be resolved into two such functions with
rational coefficients; or, if an integral function is irre-
ducible in the realm of all integers, it is also irreducible in
the realm of all rational numbers.

Art. 9 Let f(x) be an integral function whose
coefficients are integers and suppose that the coefficient
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of the highest power of x is unity; further let g(x) be a
divisor of f(x) where g(x) is also an integral function of x
having unity as the coefficient of the highest power of x.
We may show | that the other coefficients ofg(x) are also
integers. For let
g(x) =b0+ bix+---+ 1 -x8,
Let B be the divisor of g(x), so that b0, b/B, - - -, 1P are
integers without a common divisor other than unity.
Write 1B=b, where b is an integer. Since f(x) is
divisible by g(x) and sinceg(x) = Bgl(x), where g1(x) is a
primitive function, it follows tha f(x)g1(x) = x(x), where
(Art. 7) x(xX) is an integral function with integral
coefficients. Let ¢ be the coefficient of the highest
power of x in x(x).
Comparing the coefficients in

f) =g10)x(x).

l=b-c.
As both b and c are integers, it follows that b=c=I=3
and consequently the coefficients of g(x) are integral.
The above may be expressed differently as follows:
Theorem. |f

f(x) = 1-xt+at-1xt-1+---+alx-+al,

it is seen that

and
g(x) = 1-x8+b8-1x8-1+---+b1x+b0,
the a,s and b,s being rational; if further,
f(X)g(X) =h(x) =x8+t+c8+t-1x8+t-1+---+clx+cl,
then the c's cannot all be integers, unless the a,s and b,s are
all integers.

Art. 10. If the function g(x) is of the first degree in x,
say
g(x) =x-r,
1 See Gauss, Dis. Arith., Art. 42.
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where r is a rational number; if further f(x) of the pre-
ceding is divisible by g(x), then from above r must be an
integer. If however f(x) is divisible by x—r, then r is a
root of f(x) =0. It follows that if in f(x)=0, all the
coefficients are integers and if the coefficient of the highest
power of x is unity, then the rational roots must all be
intearal.
We have thus a simple method of determining all the
rational roots of the equation
F(x) =alxn +alxn-1+- - -+an-1x+an=0,
where the a,s are integers. For multiply this equation
by ap™ and then write alx=y. We have
yn—+alyn-1+alalyn-2+- - -+aln-1lan =0,
an equation in which the coefficient of the highest power
of y is unity, the other coefficients being integers. To
determine whether this equation has integral roots, write
for y the integer r; then, since all the terms except the
last has r as a factor, it follows also that aOn-lan must be
divisible by r, if r is a root of the equation. From this it
is seen that all the roots of the equation in y that are
rational are integers that are divisors of aOn-lan. Since
alx =y, we have only to divide these roots by a0 to have
the rational roots of the equation in x.
Fundamental Theorem. If all the coefficients of the
functions
A (x) = alxm+alxm-1+- - -+am-Ix-+am
and
B(x) = bixn+blxn- 1+- - -+bn-1x+bn
are rational, and if all the coefficients of their product
C(x) =cOxm+nAclxm+n 1+ ... <+cm+n
are rational integers, then all the products aibk are rational
integers.  For, if a and b are the divisors of A(x) and
B(x), the integer c being the divisor of C(x), it is evident
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that aibk has the form aai -bbk=caibk, where ab=c and
where @i and bk are integers due to the property of the
divisors a and b. This theorem is also due to Gauss.

Art. 11. The irreducibility of certain special functions
may be considered next.

Theorem. Let f(X) be an integral function whose
coefficients are integers and let p be a prime integer. In
f(x) suppose that the coefficient of the highest power of x is
not divisible by p and suppose further that the constant
term is not divisible by p2.  The functionf(x) is irreducible,
if all the other coefficients are divisible by p including the
constant term.

Let

f(x) =al0+alx +ax2+ - - - +anxn,
where al, ai, ++ an are integers such that an is not
divisible by p while a0, B, -- -, an-1 are divisible by p,
and further a0 is not divisible by p2

Suppose that fix) is resolvable into factors, and write

f(x) = (b0+Dbix + b2x2+ - - - +brxr)(cO0+clx+ - - - +-cix8),
where the coefficients are integral (Art. 8). Equating
coefficients of the highest power of x, it is seen that

an br-cs and al = b0c0.

Since an is not divisible by p, it follows that neither br
nor cs is divisible by p. From the second relation since
al is divisible by p but not by p2, it follows that either bl
or c0, but not both of these numbers, is divisible by p.
Suppose then that cl is divisible by p. We have at once
the following congruence
T(x) = anxn = (b0+b1x + b2x2-)-----

+Dbrxr)(cix+c2x2+ - - - +c88) (mod. p).

Hence h0cl=0 (mod. p) and since b0# 0 (mod. p) it
follows that c1=0 (mod. p). The term clx may conse-
quently be dropped from the above congruence. Con-
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tinuing this process it is seen that all the c¢’s would be
divisible by p. But ca is not divisible by p.

We therefore meet with a contradiction when we
assume that f(x) may be resolved into factors.

This theorem is usually ascribed | to Eisenstein, as it is
proved by him in the paper “ Ueber die Irreduktibilitat,”
etc. (Crelle, Bd. 39, p. 160). It is proved, however, by
Schonemann (Crelle, Bd. 32, p. 100).

Art. 12. An interesting application of the preceding
theorem is to prove that the function (xp—1)(x—1), p a
prime integer, is irreducible. It may be noted that the
division of a circle into p equal parts depends upon this
fact. We have at once
(1)  (Xp—DAX-1) =xp-1+xp-2+ - - - + X2+ x+ L
With Eisenstein (op. cit. p. 167) write x=1+x, so that

xk=1+kz+k(k-1y2 22+ - - - + kzk-1+2zk
Observing that
n(n+1) =%[Nn(n+1)(N+2) — (n - )n(n+1)],
(n=Dn=%[(n-Dn(n+1) - (n - 2)(n-Hn],

1.2=%(1-2-3-0-1-2),
it is seen that
nn+D+ (Nn-Dn+ ... +1.2=%n(n+1)(n+2),

and similarly
n(n+N(n+2)-+...+2-3:4+1:2-3

=¥%n(n+1D(n+2)(n + 3),
etc. Function (1) becomes when equated to zero
p+p(p —1)2!z+p(p-1)(p-2")3 'z

+ . 4pzp-2+2zp-1=0.

1 For example by Netto in his Algebra, p. 56; and by Koenigsberger, Crelle,
Bd. 115, p. 53. See Report on Algebraic Numbers (p. 32) by Dickson, Mitchell,
Vandiver, Wahlin. In the future this report will be referred to as the Report on
Algebraic Numbers.
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In this equation the coefficient of the highest power of z
is unity and the constant term is divisible by p but not by
p2, while all the other coefficients are divisible by p. It
follows that (xp— I)Y(x—1) is irreducible.

Art. 13. Schénemann,s Theorem. The quotient

where p is a prime integer and n any integer, is irreducible.
To prove this theorem write x= 1 +z and note the follow-
ing congruences:

(I1+2)p=1+2zp (mod. p),

or

where ¢(z) and Y(z) are integral functions of z with inte-
gral coefficients. These values substituted in the above
quotient causes it to become

As the numerator is divisible by the denominator, the
quotient may be written

o determine a0, write z=0 and consequently x=1.

Since it follows that a)=p.
Further writing

it results that

(mod. p).
Equating like powers of z on either side of this congruence
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it is seen that while (mod. p), all the other
as are =0 (mod. p). It follows that is not
divisible by p and since the constant term al is not
divisible by p2, the given function is irreducible.

It may be noted that the division of a circle into pn
equal parts depends upon the solution of the above
equation.

Art. 14, The Algorithm of the Greatest Common
Divisor. Let f(x) and f1(x) be integral functions with
integral coefficients, the degree —#~(x) being greater than
or equal to the degree of f1(x). Through division it is
seen that

f1() = QXFL(x)+R(x),

where Q(x) and R(X) are integral functions in x, whose
coefficients are rational but in general not integral.
The degree of R(x) is less than that off1(x). We may
write Q(X)=q1(x) s, R(x) = f2(x)/s, where s is an integer
so chosen that the coefficients of bothgl(x) and f2(x) are
integral.

The above equation is consequently

sf(x) =q1l(x)f1(x) - f2(x), and similarly
s1f1(x)=q2(x)f2(x) — f3(x),,

sr-2fr-2(x) =qr-1(x)fr-1(x) - fr(x),
sr-1fr-1(x) = qr(x)fr(x)

Since the degree of fi+1(x) is less than that of fi(x), (1=2, 3,
v+ -, r—1) and as this degree can not be a negative integer,
it follows that there must be a function frix) which is a
divisor of sr- fr-1ix) as indicated. This function frix") is
an integral function with integral coefficients being of
course an integer when its degree in x is zero.

Euclid-s scheme
Liber 1X, 20
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Art. 15. Any of the polynomials f2(x), f3(x), ---,
fr(x) may be expressed as linear homogeneous functions
of f(x) and f1(x); for note that

TA=gA\-1fA-1 — sA-2fA-2
where the functional sign is used to represent the function.
Writing for 1\l its value, we have
fA= (g\-1g\-2 — SA-2)fA-2 - sA-3gA-1fA-3
= [g\-1gA-2 gA-3 — SA-20\-3 — sA-3gA-1]fA-3
[gA-1gA-2 - sA-2]sA-4fA-4

= PA-1f1—A-1f.
To determine ! the recursion-formulas for y\-1 and ¢A-1
we note that
fA+2=gA+1fA+1 -SATA
In this formula write
fA= QYA-1f1-dA-1F fA+1= WAFL-PASf
It follows that
fA+2 = [PAQA+1 — SAPA-1]FL - [DAgA+1 — SAPA-]F
and consequently
lIJ)\+1= QA+1UA - 5)\[“)\-1 (I)
OA+1 = gQA+10A - SAA-1
Further since
fl=00-F1—-¢0F=1 F1O T
f2=yifl—¢1f=qlFl-sf,
it is seen that

wo=l, 0 =0,
Pl=ql 01 =s,
U2 =glg2-s1, ¢2 =502,

W=qlg2g3 s2q' -slg3, 3 =s0g2q3-sS?,

1 See Netto, Algebra, p. 65.
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Art. 16. If we eliminate gh from the formulas
WA = gMIA-1 - SA-1 YA-2,
O) = gAdA-1 - sA-1 hA-2,
we have
OMA-1 — YAA-1 = SA-1[OA-1 YA-2 - YA-1HA-2]
And since ¢pipo~Pido=s, it follows that
DAPA-I~ PAPA-1 = SA-1sA-2- - -Sls,
or

From the relation
fLYA-FPA=T+1,
we have
f1/f = QX PA+A+LAPA
If we put A=r, then since fr-1=0, it follows that
fU/f = s/POYl+ss1/ply2+ - - - +ssl. - sr-2Apr-1yr-
Art. 17. It is important to determine the degrees of
the functions yi(x) and ¢1(x) (i=1, 2, ---, r=1). Let
the degrees of f(x) and fl(x) be respectively n and n-nl
where Denoting the degree of any function g(x)
by [g] have [f]=n, [f1]=n-N1 .- [fA]=n-nN)
-, [frl=n-nr, where 0 nl<n2<n3 --<nr n. It
follows at once from the formulas of Art. 14 that
[g1]=n1, [g2] =n2-n1 ---,
[gA] =nA—nA-1 - - - [qgr] =nr-nr-1,
and from Art. 15 that
[Wi]=n1, [W2] =n2, ---, [YPA] =nA ---, [Wr] = nr-1;
[¢1]= 0, [¢2] =n2-nN1 -,
[pA]=nA-Nn1 - -, [ér-1] = nr-1-nl



PRELIMINARY NOTIONS 15

From above it was seen that

nr-1<nr n, sothat nr-1-n!l nNn-nl-1
We may therefore assert: If the function fr(x) is the
greatest common divisor of the two functions f(x) andf1(x)
we may always determine two functions Yr-1(x) and ¢r-1(x)
such that

fLOOWr-1(x) ~F(x)or-1(x) =fr{x),

where the degree of Yr-1(x) is at most n—1 and that of
¢r-1(x) is at most n —nl1—1.

Art 18. Lagrange’s Interpolation | Formula. Suppose
that/(z) is an integral function of the nth degree with
rational coefficients. If for n +1 different values ascribed
to the variable, say x0, x!, - -, xn the n+1 values of
the function (x0), f(x1), - -, are known, then f(x)
may be completely determined. For write

fi(x) =f(xi)

and note that fi(x) is equal to f(xi) for x=xi and is zero

for the other n ascribed values of x. For brevity, put
(X-x0)(x-x1) - - - (X-xn)= ¢(x)

We then have

Further write

It is seen thatf(x) is identical with F(x), since two

| Lagrange’s Oeuvres, T. 7, p. 285; see also Hermite, “ Sur I'interpolation,”
Comp. Rendus, 1859, T. 48, p. 62. The word is used by Wallis, Arithmetica
Infinitorum, Oxford, 1655.
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functions of the nth degree which are equal for n+1
values of the variable are identically equal.
Art. 19. The Resultant. Let

f(x)=alxm+alxml+-- -+ -am-Ix+am

=al(x —al)(x — a2) --- (x —om)
g(x) =b0xn + bixn-1 +---+bn-Ix-+bn

=b0(x -1 (X -B2)---(x -Pn)
be two integral functions in x with rational coefficients.
It is required to find the condition that the two functions
have a common divisor. As this divisor must be at
least of the first degree in X, we must derive the condition
that the two equations

f(x) =0 and g(x)=0
have at least one common root.
It follows that one of the quantities a must equal one
of the quantities f and consequently also that

0=Rf,,g
where we define Rf,gas the product of the following
m-n differences of roots:
Rf,,g = a0nbOm(al-f1)(al- f2) --- (al- Bn)
(02- B1)(02- B2) - (a2- Bn)

(om- B1)(om- B2) " (am- Bn)

= a0ng(al)g(02)

= (=D)m-nbOmf (B1)f (B2)- - -f (Bn).
The expression Rf,g is called the resultant of the two
functions f(x) and g(x) and its vanishing is the condition
that the two functions have a common factor.

Art. 20. The resultant may be expressed as an

integral function of the coefficients off(x) and g(x) in
determinantive form as follows:
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Form n identical equations by multiplying the expression
alxm+alxm-1-+- - -+am-Ix+am-=F(x)=0
respectively by xn-1, xn-2, -, x, 1; and then form m

other equations by multiplying
bOxn + blxn-1+- - -+bn-1x+bn=0
respectively by xm;lxm:2---,x, 1. The m-+n equa-
tions as shown on insert facing this page, thus present
themselves.
These m-n equations are satisfied by the values x =3,
x=pn- If then we write t=f(x), it is seen
that the determinant

a0, al, a2, am-2, am-1, an 0 0, 0, 0, 0

0, ao, a1, am-3, am-2, am-1, am-t ,® 0, 0

0, 0, a0, am-4,am-3, am-2, am-1, am-t, O 0, 0
a0, al, 0, dam-1, am-t

b0, b1, b2, bn-1, bn, 0,

0, bo, b1, bn-2,n-1, bn,

0, 0, 0, bo, bl b2, bn, N

0, 0, 0, 0, b0,  bl, bn

is a function of the nth degree in t, whose roots are

tl=T(B1), 12=F(B2), th = f(Bn)-

The product of the roots in this equation is equal to the
constant term divided by the coefficient of tn. The
coefficient of (-t)n is (- L)m-nbln, while the constant
term is D, where

a0, al, a2, am-, O, 0, 0, 0

0, a0, a1,, am-1, am O, o,

0, 0, ao, am-2, am-1, am 0, 0
b= 000 ao al g,

b0, b1, b2, bn-1, bn, 0, 0, o, o, 0, 0

0, b0, b1, bn-2, bn-1, bn 0, o, o, 0, 0

0, O, O, b1, b2, b3, bl bn, 0

0, 0 0 bo,bl, b2, b3 .. bn
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It follows that

or
D = (- 1)mn bOmf(BL)f(B2) - - -f(Bn) = Rfg
=alg(al)g(a2)- -g(am).

Art 21. In the determinant D multiply the first
column by xm+n-1, the second by xm+n-2, the third by
xm+n-3, - -, the next to last by x, and add all these
columns thus multiplied to the last column. If the deter-

minant is then developed with respect to the elements of
this last column, it is seen that

D =Rf,g =f(x)G(x) + g(x)F(x),

where F(x) and G(x) are definite integral functions in X,
the degree of F(x) being equal to or less than m — 1, while
the degree of G(x) is at mostn—1. Note that f(x) and
g(x) had a common factor, then this factor must be a
divisor of D. And hence, D being a constant, must be
zero, when f(x) and g(x) contain a function of x as a
divisor. See also Lagrange’s Addition to Euler's Alge-
bra, Sect. 4.

Art. 22. The Discriminant. If we write
f(x) =alxm—+alxm-1+---+-am-Ix+am
=al(x-al)(>x-a2) - - -(x-am)
9(x) =f'(x),
then from Art. 19 (since here n=m-1)
Rf,f=am-1f*(al)f'(a2)- - -f'(am)
If we put
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and write

it follows that

Now if Rf,f = 0. then is

A(al, a2, - -, am) =0,
which is the condition that f(x) and f'(x) have a common
root, and that is, that f(x) have a multiple root. The
quantity A(al, a2, - - -, am) is called the discriminant of
/f(x):

We also have as in Art. 21
Aal, a2, - - -, am) =f(x)P(x) +F' (X)W (x),
where the degree of ®(x) is at most m — 2, while the degree
of W(x) is at most m — 1.
Art. 23. An Interesting Expression for A. Consider
the sum of terms
S =a0ké"(al)d'(02) - - -¢"(am) + alkd'(@0)d'(a2) - - - d"(om)

+ - +amk¢’(@0)¢*(al) - - -¢*((om-1),
where ¢(x) is defined in the preceding article, and note
that ¢'(al) is divisible by a0O-ad as is also ¢(al). It is
further seen that all the terms in > are divisible by
(00—01)? except the first two and these two terms may
be written
(a0-a1)¢'(02)d*(@3) - - -¢*(am)[alka0-al) - - -(aO-am)

—a0k(a0-al)- - -(al- am)
The quantity within the brackets vanishes for (ol =al
and is therefore divisible by a0O-al and consequently
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$ is divisible by (a0-al)2  Similarly it may be shown
that B is divisible by

Since the dimension of S in the quantities a0, ol,---, am
is m2+k while that of A is m2+tm, it follows, since S is
divisible by A, that S=0 for k=0, 1, -+, m-1, and

consequently S’A =0 for these values of k.  On the other

hand S’A = constant for k=m. If then we write S=A-C

and equate like powers a0m2+n, it is seen that C=1 and that
S=A.

Art. 24. The Fundamental Theorem. In the theory
of rational integers, the fundamental theorem is that
every integer admits factorization into its prime factors
in only one way. The proof of this theorem depends
upon the Euclid Algorithm. This algorithm for the
determination of the greatest common divisor of two
integral functions of x was given in Art. 14.

For two positive integers a and b a similar method is
as follows (Euclid, Liber VII, 2): We may take b less
than a. If g is the quotient of the division of a by b,
and if r is the remainder, we may write

a=hq+r,
and similarly,

b=rgl+rl

r=rlg2+r,

rn-2=rn-1gn+rn
Since r=>r1>r2> ... >rn, the r's being positive integers,
we finally reach a remainder rn which is either unity or
zero.
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If m=1, the two integers a and b are relatively prime
and by proceeding as in Art. 15, two integers m and n
may be found such that

ma+nb = 1.
If m=0 and rn-1=>1, it is seen that rn-2 is divisible by
m-1 as are also rn-3, rn-4, - - -,r,b, a. In this case rn-1=d

is the greatest common divisor of a and b and as seen in

Art. 15 two integers k and | may be found such that
ka-+Ib =d.

The greatest common divisor d of two integers a and b

may be written (a, b) =d, and in particular, if a and b

are relatively prime, (a, b)=1.

Corollary. If (a,b) =1 and if ¢ is any third integer,
then every common divisor of ca and b is a common
divisor of ¢ and b.

This is evident if the equations above are each multi-
plied by c, thus giving

ac = bcg+rc,
bc =rcql + riC,
rc = rlcq2+rc,

m-2c = rn-1lcgn—+rnc,
where
m=1

It is evident that any divisor of ac and b in the first of
the above equations also divides rc, and is also a divisor
of ric in the second equation, as it is of ri, - -, rn-Ic,
rc=c. This is also seen from the fact that since (a, b') =1
we may write ma+nb =1 or mac+nbc=c. Hence, every
divisor of ac and b on the left hand side is a divisor of ¢
on the right hand side.
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It follows that if (a, ¢) =1 and (b, ¢) = 1, then (ab, ¢) = 1;
and if (ab, p)=p, then either (a, p)=p, or (b, p)=p.
From this it follows that: A positive integer a may be
decomposed into its positive prime factors in only one way.
And this is the fundamental theorem.

For, if

where the p’s and g's are prime integers, the h’s and k’s
being positive integers, then from the theorem just
proved, one of the p’s on one side must equal to one
of the g’s on the other side, and vice versa.

Art 25 Ifal a2 - -, an are n positive integers and if
aij is the greatest common divisor of ai and aj, and if
further dv is the greatest common divisor of all products of
every v of these numbers (v = 1, 2, - - -, n-=1), then is

(1)

For let p be a prime number that enters al to the ki
power and arrange the numbers ab o2 -, an so that
ki k2 ks --- kn; then p appears in ai,j to the ki
power and consequently in the product []alj to the
power (n —Dkl1+ (n-2)k2+ ... +1-kn-. On the other
hand p appears in dl to the ki power, in d? to the (k1+k2)
power, in di to the (k1+ k2-+k3) power, in dn-1 to the
(k1+ k2+ - - - +kn-1) power. It follows that p appears to
the same power on either side of the formula (1) with
which the correctness of the theorem is established. It
is seen in Art. 127 that the analogous theorem is true for
moduls.

Art. 26. A Fundamental Theorem in Linear Forms.
A homogeneous linear form in n variables is an expression

f=alxl+alx2+--- + anxn,
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in which the a% are constant coefficients and the x§ are
variables.

If there are n such linear forms

fi=ailxl +ai2Q +-+ ainm (i=12, -, n),
the determinant of the n? coefficients of these forms
A gll a22, -, ann)
is called the determinant of the n forms.

The Minkowski | Theorem. Iffi =ailx1 + ai2x2 +--+
+ainxn i =1,2, - - -, n), are n homogeneous linear forms
with real coefficients and with determinant +1, it is always
possible to determine n rational integers for x1 to xn in such
a wau that

| T | a B [fn] 1.

The following proof due to Hilbert (1890-1891) is
given for the case n =3, and then it is not difficult to pass
to the general proof.

The proof is presented in three parts:

lo. Let the normal form of three forms f1 2, 3 be
defined by

where hl and h? are rational integers and cl, i2 are arbi-
trary real quantities. Note that A=1 The integers
hi, h? may be taken positive, as the integers x! and x?
are susceptible of either positive or negative integral
rational values. Now write for x! any one of the integers

0, #1, %2, - when hl is an even integer, and
0, 1, *+2, - when hl is odd; simi-

larly write for x2 any of the integers 0, 1, - -,

1 Geomelrie der Zahlen, p. 104.
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when h? is even, and O, =1, - -, when
h? is odd. We thus have (h1+ I)(h2+I) combinations of

values of x! and x2 for which f1 2 or and at

the same time 2 %2 or Corresponding to each

of these N= (h1 + I)(h2+]) combinations of values of
X1, X2, we may so choose x3 as a rational integer that

has a value situated between 0 and hlh2, for we have
only to give x3 an integral value such that

is situated between 0 and 1.
The integer hih? may be marked off on a straight line
consisting of hlh? in-
tervals ot unit length. As there are N= (h1l + I)(h2+I)
combinations of values of x{, x2, it is seen that for these
combinations there is more than one value of £ that
must fall within at least one of the intervals. Suppose
then that x1 = al, x2=a?, x3=a3, and x1 = bl, x2 =h2, x3= b}
are two of the above combinations of values of xi, x?
that cause f3 to fall within one and the same interval
and denote the corresponding values of f3 by 3 and 3
so thatf'3 =clal +c2a2 + hih2a3 and 3= clbl + c2b2 + h1h2b3,
Since 3 and f3 fall within a unit interval, it is seen that
[f3—f3 1,
and that is
|cl(al—hl)+c2(a2—h2)+h1h2(a3—b3)| 1,
where (a3-b3 is an integer, while al-bl, aa2-b2 are integral
values of x1, x2 that are found among the N combinations
of values initially allotted to x!, x2 so that |al-bl| hi,
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|a2-b2| h2 And these values make |f1| 1and |f2| 1
20. Next let
(€)) fi=ailxl + ai2x2 + ai3x3 (i=1,2, 3)
be three linear forms with arbitrary real coefficients and
determinant A=1. The transformation
(M xi=lilyl + li2y2 + 1i3y3
in which the Vs are integers may be used to transform
the f's into the normal form above. The determinant
of this transformation, namely (all, a22, a33)(liL, 122, 133)
must be unity; and that is (111,122, 133) must be unity.
From equation (T) it is seen that the y,s have integral
values, if the x,s are integral, and vice versa.
In order that the unit transformation (T)cause fl to

become  where hl is a rational integer, it is necessary
that

(111, 122,133) = 1, ()

(i)
alllll +al12122 132 =0, (i)
alll13 +al2123 +al3I133 =0, (iv)

It is evident that (ii) cannot be satisfied if all, al2, al3
have a greatest common divisor which is not of the form

However, we may show as follows that the condi-

tions (i), (ii), (iii), and (iv) are satisfied by other forms
which differ from the form (1) by quantities arbitrarily
small. Note that the minor of at least one of the
guantities ax3, «23, «33 in the determinant

all al2 al3
a2l a22, a23
a23 a32, a23
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must be different from zero. Let this be alla2?, — a21al2,
the minor of a33' and let & be a positive quantity that is
arbitrarily small. Then it is always possible to find a
quantity €<d, such that when the coefficients all, al?,

--, a} are varied by quantities €11, €22, - -, €2 which
are all less than ¢, the coefficient a33 need also be varied
by a quantity €33 which is less than 9, in order that the
determinant of the corresponding forms be = 1: that is

all —€ll, a12 -e1p, al3-€13

a21-€21, a22-€22, a23-€23 =1
a31-€3l, a32-€32, a33-€33

Noting that the determinant (a11 a22, «a%) =1, if we put
each of the quantities €11, €22, - - -, €32, equal to e, excepting
¢33 and expand the determinant, it is seen that

€33[Al + €A2] +€B1+ B2 =0,

where A1 A2, Bl, B2 are functions of the coefficients
all, ---. a33 and A1#O0.
It follows that

By choosing e sufficiently small, it is evident that
may be made <3d.

Suppose next that the coefficients of the function

fl=allx2 + al2x2+ a23x3
which were hitherto real be varied by quantities less
than ¢ and at the same time are made rational numbers
of the form

Multiply the numerators and denominators of these
guantities by a sufficiently high power of H =hl1h12h13
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and replace all, al2, al} in the form fl by

where these expressions differ from an, cg2, ctl3 by quan-
tities less than e.

Since H1l, H12, H1 can have no divisor other than
unity, we may apply the transformation (T) to the form

and determine the coefficients | of the transformation
so that

11111 -+H1212 + H13131 = 1, (iia)
H11112 +H12122 + H13132 =0 (iiia)
H11113 +H12123 + H13133 = 0. (iva)

For, from (Hid) and (ivd) it is seen that
H11= (122133 -123132)
H12 = t(132113 — 112133), V)
H13 = t(112123 —I13I22),

t being the factor of proportionality.
It follows that

Since 1 is the greatest common divisor of HIil, HI
and H13 integers m, n and k may be found such that

r— 1 L T« giving where g is a rational

integer. Writing this value of tin (v), it is seen that the
differences 122133 — 123132, ---, must each be divisible by g.
After this division the resulting integers must be rela-
tively prime since this is true of H11, H12, H13. Had the
differences 122133 — 123132, -, been chosen relatively prime
initially, it is seen that t=1. Suppose that this has
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been done and determine values 111, 121, 131, which satisfy
(ifa).  If in the resulting form the values of H1l, H12, H13
from (v) are written, it is seen that (111, 122, 133) = 1.

The transformation (T) has thus offered the three new
forms

@) f2 = b2lyl, + b22y2 + b23y3,
'3=h31y1, + b32y2 + b33y3,
where the b,s are real quantities.

Next determine a positive quantity €1 such that by a
variation of b2l, b22, b2 by quantities less than €l, the
corresponding variations of the original coefficients a2l,
a2, a3 shall be e

Then vary the quantities b21, b22, b23 by quantities less
than €l so that f2 takes the form

where the integers H22, H2 have no common divisor
save unity and where h? and H2 are rational integers.
To the formsf'l, ¢2, 3 apply a new transformation:
yl =2
y2 = m21z1+m22z2+m23z3
y3=m3lzl + m32z2-+-m33z3

with determinant m22m33-m3m23 = +1, where the inte-
gers m satisfv the conditions

H21+-H2m21+ H23m3, = 0, (ib)
H2m22+ H23m3) = 1, (iib)
H22m23+ H 23m33 = 0. (iiib)

Since the integers H2 and H2 are relatively prime,
equation (iib) may be satisfied by integral values of m2
and m32' and by writing m3 =H2 and m23 =- H2Z it is
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seen that (iiib) is satisfied as is also the determinant of
the substitution. The transformation (T') offers the
three new forms

03" = ¢31z1 + ¢3222 + 3323

Since the determinant of these three forms is +1, it is
seen that C33=hlh2. We thus have the normal form in
which the Minkowski Theorem was proved to be true;
that is, there are integral values of z1, z2, z3 which cause
each of the forms just written to be less than unity.
And by expressing the x,s in terms of the values of the
z,s it is seen that the same is true of the three linear
forms (1), where in these linear forms the coefficients
have been varied by quantities less than €.

30. We have finally only to prove that if the theorem
is true for the forms

(1) @i= (ail- €il)xl+ (ai2 - €i2)x2 + (ai3-€i3)x3 (=1.2,3),
it is also true of the forms
() fi=aill+a2k + ai3x3 @i=1,23).
This may be done as follows:

Solve the equations

Qi =wi (i=1,273)
for values of wi which lie between —1 and +1. with
respect to xi (i=1, 2, 3). The values of xi thus derived

are all in absolute value less than a finite quantity G, say.
Since, however, there are only a finite number of integral
rational numbers whose absolute values are less than G,
there are only a finite number of systems of integral
values of x{, x2, x3, for which |¢1]| <1, |92|<1, |93]|<1,
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Suppose that for none of these systems the inequalities
il 1 (i=1, 2, 3) exists, but that, for one of the forms/,
say, |k =1-+A, where A is a positive quantity for all such
systems of values.

Now so choose our § as defined above that

It was seen that a system of integral values of x, say
&l, &, &, whose absolute values are less than G, cause
|ok| to be less than unity, that is

while

It follows that

or

and therefore also 3GM A, where M is the largest abso-
lute value of any €. But since M <3, this contradicts the
value assumed for & above, as well as the assumption
that A is positive for all the system of integral values of
x1, X2, X3.
Theorem Il. |f
fi =ailxl + ai2x2 + ai3x3 (i=1,2, 3)
are three linear forms with real coefficients and with the
positive determinant A; and if further wl, w2, w3 are three
positive quantities whose product wl-w2-w3=A, but which
otherwise are quite arbitrary, then it is possible to determine
three rational integers X!, x2, x3 for which the three in-
equalities
I wi 2] w2, I3 w3,
simultaneously exist.
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The correctness of this theorem follows directly from
the first theorem. We need only write

fl=wlel, 2 =w292, T3=w33,
from which it follows that @1, @2, @3 are three real forms
with determinant = +1,

It follows from the first theorem that integral values
may be given to xI, x2, x3 such that

lol] 1 lo2[ 1 lo3[ 1
and consequently also
If1]  wi, 12| w2, If3] w3,
Further, if the three equations fi=ci [i=I, 2, 3] be
solved for xy, x2, z3, we have the theorem:
Theorem 111, If the three linear forms
Xi- = Ailcl+Ai2c2+Ai3c3 (i=1, 2,3
have real coefficients with determinant +1, we may always
give to ¢l c2, 3 real values which are situated between +1
and -1, in such a way that x1, x2, x3 are rational integers.
Note in this connection that if A is a determinant of
the nth order, its reciprocal determinant A'=An-1, so
thatif A= +1, thenalso A'= +1  The proof given above
is a variation of the one found in Sommer, Vorlesungen

uber Zahlentheorie, p. 64, where a reference is made to
Hilbert.

Art. 27. The following is an ingenious proof of the
Minkowski Theorem due to Hurwitz, Gott. Nachrichten
Math. Phys. KI., 1897. See also note by Humbert in the
Appendix of the Translation of Hilbert’'s Die Theorie der
algebraischen Zahlkbrper, by A. Levy and Th. Got.

As the process of the proof is the same for any number
of variables, this number will be limited to three as in the
preceding articles.
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Let the three linear forms be
fi(x) =aix+biy-+ciz (t=1,2,3)
with determinant A, which as above may be taken posi-
tive.

If the coefficients ai, bi. ci (i=1, 2, 3) are each divided
by A the determinant becomes +1. Thus in all cases
there are three forms, say rFi=l, 2, 31 with deter-
minant =—+1.  To say, then, that for x, y, z integral
values different from zero may be determined such that

(i=1,2, 3)
is the same as to say that for these values
Ifi|=- A
in the case of n forms in n variables). The proof bv
Hurwitz is divided into four parts.

First Part. Suppose that the coefficients of the~ are
all integers.

If in the form

fl = alx+bly—+clz
the coefficient cb say, is in absolute value as small or
smaller than ai and bl, we may make the substitution
XIx. ylly,  zllz+Ax
a substitution whose determinant is +1.

This substitution is denoted briefly by (z; z+Ax).
Observe, however, that the variables on the right hand
side are not the same as those on the left, although for
convenience in notation they are written alike.

By this substitution the coefficient of x Decomes
ai+Acl, and by a proper choice of A, this coefficient, a'l
say, may be made to be >0 and |c1|, while the coeffi-
cients of y and of z remain unchanged.

Next make the substitution (x; x+vz), and choose v
so as to render the coefficient ¢, say, of z positive and

|a'l]. By continuing this process the coefficient of z
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may be caused to vanish, then by a series of similar
substitutions (y; y+uy) we may cause the coefficient of
y to vanish. Due to these substitutions f1(x) has be-
come, say, F1(x) = Ax, where A is positive.

The above substitutions have caused the form 2(x)
to become, say, Leaving x unchanged we
may operate with successive substitutions upon y and z,
and cause the coefficient of z to vanish, the form#2(x)
becoming b,x+By where B>0.

Finally making the substitution (y; y+uy), we may
make the resulting coefficient b of x positive and <B,
the form thereby becoming

F2(x) = bx+By.
Due to these substitutions the form f3(x) is, say,

Since all the substitutions made have had +1 as
determinant, the determinant of the three forms F1(x),
F2(x), f(x), and that is ABC, is equal to A. Hence C
is positive.

Further, in the form f3(x), make the substitutions
(z; z+Ax) and (z, z+py) and thereby render the coeffi-
cients, say ¢l and c? of x and y, respectively, positive and
less than C, the form f3(x) now being F3(x) =clx +c2y +Cz

Observe finally that the original system of forms
fi(x) (i=1, 2, 3) have become

F1(x) = Ax A>0,

F2(x) = bx+By B=0, O<b<B,

F3(x) =clx+c2y+Cz C>0, 0O=cl<C, 0=c2<Cj
and note that, since all substitutions have had as deter-
minant +1, the new variables are integers if the old
were, and vice versa.

Second Part. Two linear homogeneous functions
®L(x, y, z) and ®2(x, y, z) with integral coefficients are
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said to be congruent with respect to F1(x), B2(x), and
F3(xFas moduli, if

DL(X, Y, 2)—D2(X, Y, 2) =AIF1I+A2F2+A3F3,
where A1 A2, A3 are any rational integers. The function
® being a fixed linear form with integral coefficients, all
functions ®+ALF1+A2F2+A3F3, the A's being variable
integers, are congruent (modd. Fi, F2, F3).

Consider the function

Y:=Pp+A1F1+A2F2+A3F3,,
where
® = Alx +Bly +Clz,

the integers A1 Bl C1 being fixed. In this W-function
choose A3 so that C1+A3C be positive and <C; and
similarly by suitable selections of Al and A? cause the
coefficients of x and y to be positive and respectively less
than A and B.

Such a function ¥ is said to be reduced (modd. F1 F2,
F3).

Since the coefficient of x in such a function lies between
0 (inclusive) and A (exclusive), while that of y is between
0 (inclusive) and B (exclusive), and that of z is between 0
(inclusive) and C (exclusive), it is evident that there are
ABC(=A) such reduced forms, say W1 W2, ..., ws
And every linear form with integral coefficients is con-
gruent (modd. Fl, F2, F3) to one of these forms.

Thus it is seen that there are A forms and only A
forms that are incongruent (modd. Fl F2, F3), and
among them is the form in which all three coefficients
are zero. It is clear that there are the same number of
incongruent forms (modd. f1, 2, £3); for two incongruent
forms (modd. f1, f2, f3) remain incongruent when they are
operated upon by substitutions of determinant 1.

Next let r be a positive integer such thatr3 A< (r+21)3
and consider the forms g(x) = lix + 12y + 13z, where 1, 12, 3
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may take any of the values 0, 1, 2, - - -, r. It is evident
that there are (r+1)3 such forms. It is also clear that
at least two of these functions, say gl(x) and g2(x) must
be congruent (modd. f1, 2, f3). And that is,

Al (alx+bly+clz) +A2(a2x+b2y+c2z) +A3(a3x+b3y+c32)
=g1(x)—g2(x) =t'Ix+ty+t3z.
Further note thatt'l, t2, and t3 are not all zero, since
g1(x) and g2(x) are two distinct functions.
It follows that
alAl+ a2\2 +a3A3 =t'l,
bIAL + b2A2 + b3A3 =t'2,,
cIAL + c2A2 + ¢c3A3 =t'3,,
where
ta] r (i=1,23).
Since r A% the Theorem of Minkowski is proved for
the formsfi(x) [1=1, 2, 3], whose coefficients are rational
integers.
Third Part. The theorem is also true if the coefficients
offi(x) [i= 1, 2, 3] are any fractions. For if Sis the least
common denominator of all these fractions, we may write

where all the coefficients of gi(x) are integers.

Observe that the determinant of gi(x) [i=1, 2, 3] is
AS3. The theorem being true of forms with integral
coefficients, it is possible to find for x, y, z rational integral
values that are not all zero, such that |gi(x)] <SA% and
for these values of X, y, z it is also true that "\@ | =a%.

Fourth Part. Suppose finally that the coefficients ai,
bi, ci of the forms

fi(x) =aix—+biy+ciz (i=1, 23
are real quantities. As in Art. 26 it is seen that by
varying all of these coefficients by quantities less than 9,

3



36 THE THEORY OF ALGEBRAIC NUMBERS

where § is an arbitrarily small positive quantity, the
functions fi(x) become the forms @i(x) with determinant
A where
0i(x) = Aix+Biy + Ciz (i=1, 2, 3),

Ai-, Bi, Ci being rational numbers.

From the third part above integral values may be
assigned to x, y, z such that |@i(x)| =A% (x=1, 2, 3).

For such a system of values it follows also (Art. 26) that

[fi(x)| <M (i=1 2,3).
Minkowski’'s proof of the theorem for forms in n
variables is found in Vol. Il, Chapter 8 of the present

treatise.



CHAPTER I

THE GENERAL NOTION OF REALMS
OF RATIONALITY

Art 28. In Art. 2 it was seen that all integers
constituted a realm. These integers may be called
elements of the realm and the realm may be called a
realm of integrity.l It is evident that the operations of
addition, subtraction and multiplication performed with
integers upon integers give integers belonging to the
realm in question. Hilbert? calls such a realm of
integrity a Zahlring or Ring.

There exists a realm which is constituted solely of the
number *“zero.” This realm we shall once for all exclude.

Take a quantity a which is different from zero. It is
seen that all quantities that are had through rational
operations upon a constitute a realm (see Abel, Vol. I, p.
220). Such a realm was called a realm of rationality by
Kronecker. In the word ““realm” we must avoid any
notion of space (Kronecker, Vol. Il, p. 249). This
realm of rationality, or realm as we shall usually denote
it for brevity, was called a body of numbers (Kdérper
von Zahlen, or Zahlkérper by Dedekind; see p. 435 of
Dirichlet’s Zahlentheorie, 4th Edition). Denote the realm
formed by rational operations upon a by R(a). It is
sometimes denoted by R(a). It is evident that the

quantity appears in this realm and consequently

1 See Kronecker, Grundzuge, etc., p. 14. We shall denote this paper by
the word Kronecker.

2 Hilbert, Jahresbericht der deutschen math. Vereinigung, Vol. IV, p. 237.
We shall refer to it as Hilbert, Bericht.

37
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also all integral or fractional numbers are found in the
realm R(a). The realm R(a) consisting only of rational
functions of a is closed in itself.

The collectivity or totality of all rational numbers
form for themselves a realm. This realm Kronecker
(Grundziige, p. 8) called the absolute realm of rationality.
We denote it by 9t(l), or simply by Roman R.

To get by means of an example an insight into what
will follow, consider the plane of the complex variable
z=x-+iy. This plane is the realm R(i), where i is a root
of the equation x2+1=0. If a and b are two rational
numbers, or if, as we shall say, a and b are two numbers
belonging to the realm R(l), that is, to the realm of
rational numbers, then a+ib is a number of the realm
R(i) and is denoted by a point on the complex plane. If
c+id is any other number of the realm R(i), any rational
combination of a+ib and c+id is a quantity of the form
U+iV, where U and V are numbers belonging to R(1).
Further U+iV is represented by some point on the
complex plane or is a quantity of the realm R(i).
Observe that all real numbers lie upon the real axis on
the plane of the complex variable.

If all the numbers of the realm 2., say, also belong to
the realm B, we say (Kronecker, p. 9) that A is a divisor
of Bor that B is divisible by A. Every arbitrary realm
is consequently divisible by the realm R(l), that is, by
the realm of rational numbers. A realm more general
than the absolute realm must contain other quantities
besides all rational numbers. If, for example, the realm
contains an indeterminate quantity u, it contains also u?,
u3, - - -, and all integral powers of u.  If ¢(u) and Y(u) are

two such functions of u, the realm contains and in

short all rational functions of u.
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Such a realm we denote by R(u). If the realm con-
tains two indeterminate quantities u and v, it contains
also all rational functions of these quantities with rational
coefficients. This realm we denote by R(u, v), etc.

By B(1) we denote the realm of integrity which con-
tains all integers; by 1(u) we denote the realm of
integrity which contains all integral functions of u with
rational coefficients and by B(1, u) we denote the realm
of integrity which contains all integral functions of u
with integral coefficients.

It is evident that R(u) is divisible by I(u) and that
I (u) is divisible by 1(1, u).

By 0I(u, v) we denote the realm of integrity that
contains all integral functions of u and v with rational
coefficients and in the realm B (1, u, v) the coefficients are
also integers.

If of two realms R(u,v, - and R(u',Vv', ---) the
elements u, v, - are rationally expressible through the
elements u', V', ---, then R(u, v, ---) is a divisor of
R(u’, v', ---); if further the elements u’, v,, - are also
rationally expressible through u, v, - -, the two realms
are identical.

We consider any fixed realm as the basis of our
investigation. Such a realm may be called the stock-
realm (Stammbereich; see Kronecker, p. 7). It is the
realm from which all other realms (and quantities) are
produced during the investigation in question. When
emphasis is put upon certain quantities u, v, - - - of this
realm it is denoted by R(u, v, - - -), otherwise simply by R.
All quantities that belong to this realm are regarded as
rational.

Let x be a variable that is not contained in the realm R
and consider two integral functions of x whose coefficients
belong to the fixed realm R. If we multiply two such
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functions, it is evident that the coefficients of the
product also belong to R. Reciprocally, if a function
whose coefficients belong to R is resolvable into two other
functions whose coefficients all belong to R, we say that
the function is reducible, otherwise irreducible (cf. Abel,
Works, Vol. I, p. 479) in the realm R. For example
X2 —4x+9 is irreducible in R(1); but

XL+ 4x+9=(x— (2+ V-5)(x— (2 - V-5))
is reducible in R(V/-5).
X44+X3+X2+X +1

is irreducible in R(1), reducible in R(V-5).

EXAMPLES

1. Show that x6—1 may be decomposed into linear factors in
R(/-5).

2. It was proved that is irreducible in R(1), if nis a
prime integer (Art. 12). Show that this function is reducible in
It may also be observed that if a is a root, other than
unity of xp—1=0, then other roots are a, a2, ---, ap-1, ap=1, so
that or writing x=1,
p=1(1-0)(l - 02)- - (1 —ap-1).

It is seen from Ex. 2 that p, an irreducible prime in R,
may be decomposed into p factors in R(a). We shall see
later (Art. 105) that these factors are algebraic integers in
R(a).

Art. 29. To fix the ideas let us consider some of the

theorems of Chap. | in more extended realms of ration-
ality, the proofs here being practically the same as there.
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Take first a function P=P(u) integral in u whose
coefficients are rational numbers, that is, let P(u) belong
to the realm 1(u). If P(u) is irreducible in the realm
R(1), we say it is a prime function in this realm although
it may contain as a factor a constant. The quantity u
may be looked upon as having definite values in the
function P(u) and is introduced as an element in the
realm of rationality Such a quantity u may be
called an indeterminate to distinguish it from a variable x
which never enters as such as an element in a realm of
rationality.

Let g(u) and h(u) be two other functions of the
indeterminate u which belong to the realm 1(u). De-
note them by A and B respectively.

Theorem: If the product A-B is divisible by the prime
function P, one of the factors A or B is divisible by P. For
suppose that A is not divisible by P. Then A and P are
relatively prime; that is, they have no common divisor
which is a function of u.  For suppose they had a greatest
common divisor, say ¢(u). Denote this divisor by D,
where D is an integral function in u whose coefficients are
rational numbers. It would follow that P is divisible by
D. But since P in the realm of all rational numbers is
irreducible, it follows either that P=D or that D is a
constant. But since A is supposed not to be divisible by
P, the case P=D must be excluded. If then A B is
divisible by P, the factor B must be divisible by P.
Suppose further that P(u) is also a primitive function in
1(1, u), that is, a function with integral coefficients whose
greatest common divisor is unity. We also assume as
above that P(u) is irreducible in the realm R(1), and is
cal,ed a prime function. If then A -B is divisible by P
and if A is not divisible by P, then B/P is an integral
function with integral coefficients provided the coefficients
of B are integral.
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Art. 30. Consider next an integral function in x and u,
say
(X, u) =A0+AIX+AX2+---,

where A0, A1 ---, are integral functions in u with
rational coefficients. The A’s therefore belong to the
realm B(u). Suppose as above that P(u) is irreducible
in R(I) and further that f(x, u) is divisible by P; in
other words, let f(x, u)/P=g(x, u) where g(x, u) is an
integral function in x, whose coefficients belong to 1 (u).
We may then write

(X, uyP = AVP- -AYPX+AZPX2+---,,

and from the preceding article it follows that A0 P,
AlP, .. are integral functions in u with rational
coefficients. We may state this in the following theorem:
If a function f(x,u) integral in x and u with rational
coefficients is divisible by a prime function P(u), then all
the coefficients of this function arranged according to
powers of x are divisible by P(u).

Further since any integral function in u, say Q(u), may
be resolved into a product of prime functions, and as the
theorem is true for all of these prime functions it is also
true if in the place of P(u) in the statement of the theorem
we write Q(u)

If we have two functions f(x,u) and g(x,u) integral in
X, whose coefficients belong to the realm 1(u), then we
may write as in Art. 3

f(x,u)=g(x,u)[mod. P(u)]
it f(x,u)-g(x,u) is divisible by P(u).
Art. 31. Generalization of the Gaussian Lemma.
Theorem. Suppose that f(x, u) and g(x, u) are two given

integral functions in x and u.  If the product f(x, u)g(x, u)
is divisible by P(u), then one of the factors is divisible by
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P(u). The proof of this theorem is similar to the one
given in Art. 4.
Let
(X, u) =A0+AIx+AX2 + -,
g(x, u)=BO0+B1x+B2x2 + -,
where AO, Al, -+, BO, B1, - - belong to the realm 1 (u).
We assume, of course, as in the two preceding articles,
that P(u) is irreducible in the realm R(l).
The theorem may be indirectly proved by showing
that if neither of the factors is divisible by P(u), then
their quotient is not divisible by P(u). In f(x, u) suppose

that the coefficients AO, Al, - - -, Ar-1 are divisible by
P(u), but that Ar is not divisible by P(u); and further
suppose that the coefficients BO, B1, - - -, Bs-l1 are

divisible by P(u), but that Bs is not divisible by P(u).
The coefficient of xr+8 in the quotient is A0Bs+r+A1Bs+r-1
+- - -+ArBs+Ar+iBs-1- - -+Ar+sB0. In this sum all
the summands are divisible by P(u) except ArBs. It
follows then that the product of the two factors of f(x, u)
and g(x, u) is not divisible by P(u).

Art. 32. We may next introduce the notion of divisor
for such functions. Again write

f(x, u) =A0+AIx+AX2 +- - -

where it is supposed that the coefficients Ao, Al, - - - are
integral or rational functions of u. Then as in Art. 7 a
function t=t(u) may always be determined such that

where the C's are integral functions in u and have no
common divisor other than possibly a constant. The
function F(x, u) is said to be primitive with respect to the
realm B (u) and tis called the divisor off(x, u). Itis also
possible so to choose the divisor that the C’s are integral
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functions in u with integral coefficients which have no
common divisor other than unity. The corresponding
function F(x, u) is then primitive with respect to the
realm I(L,u)- In most cases the nature of the coeffi-
ients is disregarded, and we shall therefore (cf. Kro-
necker, Grundziige, p. 4) employ the first definition as
that of a primitive function. We have already (Art. 29)
disregarded the constant factor in the definition of a
prime function.

We have the theorem: The product of two primitive
functions of x and u is a primitive function; and the divisor
of the product of two primitive functions is the product of
the divisors of these functions. These theorems are true
for both the realms B(u) and 1(1,u). The following
theorems may also be proved: If f(x,u) and g(x,u) are
integral functions in x and u whose coefficients are rational
numbers, iffurther gfx, u) is a primitive function in 1(u)

and if is an integral function in x, it is also an

integral function in u (cf. Art. 7).

From this we have further: If an integral function in x
and u is resolvable into two factors integral in x and rational
in u, it is also resolvable into two factors that are integral in
both x and u.  In other words: If an integral function in x
whose coefficients belong to the realm 1(u) is resolvable into
factors whose coefficients belong to the realm R(u), the
function may be resolved into factors whose coefficients
belong to the realm 1 (u); and further if an integral function
in x whose coefficients belong to the realm B(1,u) is
resolvable into factors whose coefficients belong to the realm
R(u), it is also resolvable into factors whose coefficients
belong to the realm I(1,u).

Let f(x,u) be an integral function in both x and u in
which the coefficient of the highest power of x is unity and
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let g(x, u) be an integral function in x in which the
coefficient of the highest power of x is unity while the
remaining coefficients are rational functions of u and

finally suppose that is an integral function of x,

then also in g(x, u) the coefficients of x must all be
integral functions of u (see Art. 9). Similarly, if f(x, u)
is an integral function in x whose coefficients belong to
1(1, u) and the coefficient of the highest power of X is
unity; if further in g(x, u) the coefficient of the highest
power of x is unity and the other coefficients belong to

R(u) and if is an integral function of x, then also

in g(x, u) the coefficients of x belong to 1(1, u):

Art 33. The above theory may be extended to the
case where there are present two indeterminates u and v.
Let P be an integral function in u and v whose coefficients
are rational numbers. We further assume that P cannot
be resolved into two integral functions of u and v with
rational coefficients. In other words P(u, v) belongs to
the realm B (u,v) and considered as a function of u is
irreducible in the realm R(v) and therefore also in 3f(v)
(Art. 32). The function P(u, v) is then said to be a
prime function in the realm R(u, v). It may have as a
factor a constant term, which is independent of both u
and v. Let g(u,Vv) be a second function which may be
denoted by A.  If A is not divisible by P, then considered
as functions of u alone A and P must be relatively prime.
For if considered as functions of u the functions A and P
had a greatest common divisor D, then we must have
P =D-E where D and E are integral functions of u with
coefficients that are rational in v. But P in the realm
¥(y) is irreducible. It follows that either D =P or that
D is a constant. But P cannot equal D, for in that case
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A would be divisible by P which is contrary to our
hypothesis.

Art 34. Suppose that A and B as above are functions
that belong to the realm 1(u, v) and let P-P(u, v) be a
prime function. If the product A-B is divisible by P
and if considered as functions of u, A and P are relative

prime, it follows that B must be divisible by P or

is an integral function in u. Further if P considered as a
function of u is a primitive function with respect to the

realm R(v) (Art. 32), it is seen that s an integral func-

ibn in both u and v.  Suppose that ®(u, v) =t(v)W¥(u, v),
where t(v) is the divisor of ®(u,v). It follows that

W(u, v) belongs to I(u, v). Then, since where
g(v) and gl(v) are integral in v without a common divisor,

t is seen, if where H(u, v) belongs to

1(u, v), that

Since g(v) is the product of prime functions, say pl(v),
p2(v), - - -, while W(u, v) is the product of prime functions
P1(u,v), P2(u,v), ---, then (see Art. 4 A must be
divisible by all, some or none of the prime functions
p(v) while B is divisible by the rest of them. If further

then C must be divisible by all, some or none

of the prime functions P(u, v) while D is divisible by the
rest of them.

Art. 35. Consider next integral functions of x whose
coefficients belong to 1(u, v). The following theorem is
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found also to be true here: If the product of two functions
f(x, u, v) and g(x, u, v) whose coefficients belong to 1 (u, v)
divisible by the prime function P(u, v) which belongs to
I(u, v) and is irreducible in R(v), then one of the functions
is divisible by P(u,v).

To introduce the conception of the divisor for such
functions, write

f(x, u, v) =A0+AIX+AX2+--- -,

where the coefficients belong to the realm R(u, v). Then
as in Art. 32 we may always determine a divisor t =t(u, v).
such that

where the B’s belong to I(u, v) and have no divisor other
than a possible constant. The function F(x, u, v) is
primitive with respect to the realm R(u, v). If t has been
so chosen that the B’s belong to the realm I(1, u, v) and
the integral coefficients B0, B1 B2, - - have no common
divisor other than unity, then F(x, u, v) is a primitive
function with respect to the realm 1(Z, u, v).

Let ¥ be an integral function in x whose coefficients
belong to I(u, v) and suppose that the coefficient of the
highest power of x is unity. Further let g be an integral
function in x whose highest coefficient is unity while the
other coefficients belong to R(u, v). If finall f/g is an
integral function in x whose coefficients belong to 1(u, v),
then the coefficients of g belong also to I(u,v). The
same is also true if for the realm 1(u, v) in the statement
of the theorem we substitute 31(1, u, v):

It may also be shown that if an integral function in x
whose coefficients belong to 1(1, u, v) may be resolved
into factors whose coefficients belong to R(u, v)., it may
also be resolved into factors whose coefficients belong to
1(1, u,v).
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Art 36. Continuing it is seen in general that if
P=P(u,v, - - 5s) belongs to therealm 1 = I(u, v, - - -, 9),
and considered as a function of u is irreducible in the
realm R(v, - - -, 8), it is also irreducible in the realm
I(v, - 8) and is a prime function belonging to the
realm R(u,v, - - -, 8) =R, say. The constant coefficients
may have a common divisor other than unity. If A is
any other function that belongs to 1 and if A considered
as a function of u is not divisible by P, then A and P are
relatively prime. If further A and B are two functions
belonging to 1 and if A-B=P is a function belonging
to 1, then either A or B is divisible by P.

If the product of two integral functions in x, say f(x)
and g(x) whose coefficients belong to 3 is divisible by P,
then either F(x) or g(x) is divisible by P; if f(x) say, is
divisible by P, all the coefficients of x in f(x) are divisible
by P.

It is always possible to find in the realm R a divisor t
which will render any integral function in x whose
coefficients belong to R a primitive function. The
product of two primitive functions of x whose coefficients
belong to 1 is a primitive function whose coefficients
belong to I- If further fis an integral function of x
whose coefficients belong to 3 and if g is a primitive
function of x with respect to the realm R and if f/g is an
integral function of x whose coefficients belong to R, the
coefficients of this quotient also belong to I-

It may be further shown that if an integral function in
x whose coefficients belong to 1 is resolvable into two
factors whose coefficients belong to R, it is also resolvable
into two factors whose coefficients belong to 3- The
same is true for the realm 1(1 ,u,v, - -, S).

IfFis an integral function of x whose coefficients belong
to 1, the coefficient of the highest power of x being unity,
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and if g is an integral function in x having unity as the
coefficient of the highest power of x; if further f=-g is an
integral function of x whose coefficients belong to R, the
coefficients of g belong to B In this connection see a
paper by Pierpont “ Galois’s Theory of Algebraic Equa-
tions,” Annals of Mathematics, Second Series, Vol. 11
(1900-1901), pp. 22 et seq.

Art. 37. The Greatest Common Divisor. Iff(x) and
fl(x) are integral functions of x of degrees m and n
respectively (m n), with coefficients belonging to the
realm 1=10(u, v, ---,2), we may write as in Art. 14

sf()=ag1 (%) - 12(x),
where s and the coefficients of g1(x) and f2(x) belong to I
The greatest common divisor fr(x) may be found in the
same way as was done for the realm 0(1) in Art. 14.
Further as in Art. 17 two integral functions of x may be
determined say Q(x) and ¢(x) whose coefficients belong
to 3 such that

fLOQU(X) —fC)P(x) =fr(x),
where the degree of yi(x) is at most m — 1, and the degree
of ¢(x) is at most n—1.

Art. 38. The Reduction of a Function into Its Irre-
ducible Factors. A table of prime numbers gives a
ready method for the resolution of an integer into its
prime factors. Consider first an integral function F(x)
of degree 2n or 2n—+1 in x whose coefficients belong to
1(1). Give to x such integral values xi that F(xi) #0 for

i=Q 1 2, -, n.  These functional values are evidently
integers. Denote their divisors by

do1, doz, of F(x0)

di1, di2, of F(x1),
€

dni, dn2 of F(xn)
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where in the first row unity and F(x0) are to be included
among the divisors, in the second row unity and F(x1),
etc
Further write
f(xi)=dil(i=0, 1,2, ---, n)
and put
D(X) = (X-X0)(x-X1) - - -(>x=%n).

By Lagrange’s interpolation formula (Art. 18) we form
the function F(x) which for the n—+1 values x0, x1, ---, xn
takes the n+1 values d01, di, - - -, dnl, viz.

If f(x) is a divisor of Fix’), it is evident that/(z}) is a
divisor of F(xi).

The number of functions of the nth degree which like
f(xX) may be formed by the interpolation formula by
taking one of the d,s out of every row of the scheme (1) are
in number kO0-k1- -kn. The divisors, if any, of the nth
degree in x of the function F(x) are contained among
these functions and are to be found by trial. In the
same way the divisors of the (h—I1)st degree may be
found, etc.

Take next the problem of finding the divisors of the
function F(x, u), which is an integral function of the 2n
or 2n+1 degree in x and whose coefficients belong to
3(1, u). We give to x respectively integral values
X0, x1, - -, Xn which are to be so chosen that the function
is not zero for any of them. Let djl(u), dj2(u), - - -, djij(u)
be the divisors of F(xj)[§ =0, 1, 2, - - -, n).  We may then
as above by means of Lagrange’s interpolation formula
determine 10-11. - -In functions of the nth degree in x
whose coefficients belong to B(1, u) from which the
divisors of the nth degree in x, if any, of F(x, n) are to be
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found by trial. The same process must be continued for
the divisors, if any, of the (n- I)st degree in x of F(x, u),
etc.

In this manner it is evident that we may determine the
irreducible factors of a polynomial F(x, u, v, -+, 9)
integral in x whose coefficients belong to the realm
1(1, uyv, ---, 9).

To resolve an integral function of x, say ¢(x,u,v, - - -, s)
into its irreducible factors, when the coefficients are not
integral but belong to the realm R(u,v, - - -, s), we note, if
t(u, v, - -, s) isthe divisor (Art. 32) of ¢(x, u,u, - - -, 9), that

where ®(x, u, v, - - -, 8) is integral in all its variables, with
integral coefficients. We may further write

where g and g! are integral in the variables with integral
coefficients. Writing

it is seen that the divisors of g, gland ® may be derived
as above and consequently also the divisors of ¢(x, u, v,

-, 9).

The) above method of decomposing an integral function
into its irreducible factors is due to Kronecker {Grundzige,
p. 4). It is of interest in particular from a theoretical
standpoint in that the existence of the roots is not
presupposed.

In practice the process of finding the factors has been
simplified.!

1 See for example for the case of one variable papers by Runge, Crelle’s
Journal, Vol. 99, p. 89; Mandi, Crelle’s Journal, Vol. 113, p. 252; and for the
case of several variables, see Meyer, Math. Ann., Vol. 30, p. 30; Hancock, Ann.
de I’i,cole Norm. Sup., 3f Série, T. XVII, p. 89.
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Art. 39. Letf(x) be an irreducible integral function of
X, whose coefficients belong to a fixed realm of rationality
R and let g(x)be an integral function whose coefficients
belong to the same realm. We have the following
theorem: If the equation g(x)=0 has a root in common
with the irreducible equation f(x) =0, it is divisible by f(x).
(See Abel, Works, Vol. 1, p. 480).

To prove this theorem, let ¢(x") be the greatest common
divisor of g(x) and f(x). It is not possible for the
irreducible function f(x") to be divisible by ¢&(x) unless
either d¢(x)=fFf(x) or ¢(x)=a constant. If P(x)=F(x),
then g(x) is divisible by f(x) and the coefficients of the

quotient belong to the realm R. We then

have
9(x) =f(x)h(x),

where h(x) is a function integral in x. It follows that
every root of f(x)=0 satisfies the equation g(x)=0.
If ¢ is a constant, then T and g are prime to each other
with respect to the realm 9t. In this case it is always
possible (cf. Art. 17) to determine two integral functions
p(x) and q(x) whose coefficients belong to 91 such that

P(MF()+a(x)g(x) =1
It is evident from this that f(x) and g(x) have here no
root in common. Hence the irreducible equationf(x) =0
either has all its roots in common with g(x) =0 or none.
(Abel, Vol. I, p. 230. See also Serret, Cours d’algebre
superieure, No. 100).

Art. 40. Iff(x) and g(x) are two integral functions of
X, whose coefficients belong to the realm 91, and iff(x) is
irreducible in this realm, then if every root of g(x)=0
satisfies the equationf(x) =0, it is seen that g(x) must
to a constant factor be a power of f(x). For if f(x) and
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g(x) have a root in common, it follows from the preceding
article that g(x) is divisible by f(x) so that

9(x) =F()g1(x),
where g1(x) is a function integral in x whose coefficients
belong to R. Since the roots of gl(x)=0 also satisfy

g(xX)=0, they must satisfy f(x)=0. It follows that
gl(x) is divisible by f(x) or

g(x) =f(x)292(x),
where g2(x) is integral in x with coefficients that belong
to R Continuing in this manner we must finally have
g(x) equal to a power of f(x) multiplied by a constant.

Art. 41. The following theorems follow at once:

1. Anirreducible equation can have no root in common
with an equation of lower degree.

2. An irreducible equation f(x)=0 cannot have a
multiple root; for this root would also be a root of
f'(x) =0 and f'(x) is of lower degree than f(x).

We shall regard two irreducible functions as different,
when they differ otherwise than by a multiplicative
constant.

3. Two different irreducible equations can have no
common root.

4. When a product of two integral functions is divisible
by an irreducible function, one of the factors is divisible
by this function.

5. A reducible function may be distributed into
irreducible factors in only one way, where all the coeffi-
cients belong to a fixed realm R.

For let A be a reducible function of x which by a con-
tinued reduction into factors has the form

A=P-P"-P"..-,
where the P’s are irreducible functions, not necessarily
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different. If there is possible another reduction, say
A=Q-Q.Q"...,
we must have

P-P-P"-..=Q.Q".Q""---,
It follows that P -P'-P" 1. must be divisible by Q, and
also by Q', Q", - - -. Hence one of the factors P, P', P",
---+, say P is divisible by Q. But since P and Q are both
irreducible, it follows that P =Q and similarly for all the
other factors. It is thus seen that the sequence of the
irreducible factors of a function may be different while
the factors themselves must be the same.

EXAMPLES

1. Using the method of Mandi (Crelle, Vol. 113, p. 252) show
that x6+2x5+3x4+3x3+3x2+2x + | is factorable in 1(1, x).
2. Using the same method show that

is irreducible in I(1, x)- The six roots of this last function are
given by Poisson, Réflexions sur la théorie des nombres, p. 125.
See also Gauss, Disg. Arithm., Art. 73.

For such equations as see the method given in Weber's

Algebra, Vol. I, § 179, and the original source as found in Legendre,
Théorie des nombres, Vol. 11, pp. 191 et seq.



CHAPTER 111
ALGEBRAIC REALMS OF RATIONALITY

Art. 42. Take a fixed realm of rationality R, as the
stock realm. Let f denote an integral algebraic function
whose coefficients belong to the realm R. If x is a
guantity which does not belong to this realm and which
causes such a function as T to vanish, we say that x is an
algebraic quantity. If, however, there is no algebraic
equation which x satisfies, then x is a transcendental
guantity. That there exist such quantities was first
shown by Liouville in a paper “Sur des classes tres-
étendus des quantités dont la valeur n,est ni algebrique
ni meme réductible a des irrationelles algébriques”
(Liouville's Journal, Vol. 16, p. 133, Serie I, 1851).

In particular Hermite (1873) in a paper ““Sur lafonction
exponentielle” (Comp. Rend., Vol. LXXVII) has shown
that e is not an algebraic quantity. Later Lindemann !
proved that the same is true of . In the same con-
nection see a paper by G. Cantor ““Ueber eine Eigenschaft
des Inbegriffs aller algebraischen Zahlen,” Crelle, Bd. 77,
p. 258 (1874).

Art. 43. If the stock realm R is formed of all rational
functions of u, v, w, - - -, 2, then x is an algebraic function
of u, v, w, - -, z, if there exists an algebraic equation
whose coefficients belone to this realm and which x

1 Lindemann, ““Ueber die Zahl 11" (Math. Ann., Bd. XX, p. 213). See also
Weierstrass, ““Zu Lindemann’s Abhandlung, ueber die Ludolp’sche Zahl,” Sitz,
der Ber. Akad. (Dec. 1885). Papers by Hilbert, Hurwitz, and Gordan on the
same subject are found in the 43rd VVolume of the Mathematische Annalen. See
other references in the Encyklopaedie der math. T7iss, Bd. I, p. 669; also in
Hancock’s ,*Systemes modulaires de Kronecker,” Ann. de I'Ecole Normale,
Paris, 1900; and Report on Algebraic Numbers, p. 76.
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satisfies, provided x does not belong to this same realm.
We say that x is an algebraic quantity which is derived
from the realm R (any stock realm), if x satisfies an
algebraic equation whose coefficients belong to this realm.

All the algebraic quantities which are derived from a
fixed stock realm clearly form another realm.

If x is an algebraic quantity that is derived from the
realm R, there is an algebraic function which vanishes
for this value of the variable. It may happen that the
function is reducible. In this case, as we saw above, it
may be uniquely resolved into its irreducible factors, one
of which must be satisfied by x. Hence associated with
every algebraic quantity x there is a definite irreducible
equation which x satisfies. If this equation, f(x) =0 say,
is of the nth degree, then the remaining n — 1 roots x', x",
---, X(n_1) are called the algebraic quantities conjugate to
X. This conception is relative, since it refers to the realm R.

Art. 44, If we adjoin (cf. Galois, Oeuvres, p. 34;
Galois, Liouville,s Journal, Vol. 11, p. 418; see also Weber’s
Algebra, I, § 147 of the 2nd Edition) the algebraic quantity
X to the stock realm R, we have a new realm R(x), which
in addition to containing the realm R consists of all
rational functions of x whose coefficients belong to R.
(See also Dedekind, p. 455 of Dirichlet’s Zahlentheorie").

Consider next any rational function of x, say h(x) g(x),
which has a definite value, so that therefore g(x)#0.
Suppose further that x satisfies the irreducible equation
f(t)=0 of degree n and also that git) and f(t) have no
roots in common. We may determine (Art. 39) two
functions p(t) and q(t) such that

p(Ha(®) +q(t) f() =1
If in this expression we write t=x, we have
px)gx)=1  or  h(x) gKx)=h(x)p(x),
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which is an integral function of x. It is therefore
sufficient in the realm R(x) to consider only integral
functions of the algebraic quantity x. Further suppose
that g(t) is an integral function whose degree in X is
greater than n, so that

g(O)=F(O () +h(),
where h(t} is an integral function in t of degree less than n.
Writing t=x, we have g(x) =h(x). From the above it
is seen that every rational function of x may by means of
the equation F(x)=0 be transformed into an equation of
degree less than n, and in such a way that we have the entire
realm R(x), if we form the expression

cO0+cl1X—+clx2—+- - -=+cn-1xn-1

and write for the ¢ s all possible quantities of the realm R;
and every quantity of this realm is thereby had only once.

Otherwise by equating two such quantities, we would
have an equation of degree less than n that was satisfied
by x.

The realm R(X) is called an algebraic realm of the nth
degree.

Art 45 If x satisfies an irreducible equation of the
nth degree, the n roots of this equation were defined above
as being conjugate to one another. We saw above that
by adjoining x to the stock-realm Rt a new realm R(X) was
derived. Similarly to the quantity x' there corresponds
the realm R(x"), to the quantity x" the realm R(x"), etc.
These n realms are called conjugate realms.

Two conjugate realms R(x) and R(x') will have a
number of quantities in common, for example all the
quantities of the stock realm IR They may also be
wholly contained the one in the other. For if X' is a
rational function of x, the realm R(x') is contained in the
realm R(x). If not only x' is a rational function of x
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but also x is a rational function of x', the two realms R(x)
and R(x") are identical.l

There are realms which are identical with all their
conjugate realms. Such realms are called Galois or
normal realms of rationality. They exist if all the roots
of the equation f(t) =0 have the property that each one is
a rational function of the other. Equations in which
this property exist are called Galois or normal equations.
(See Galois, Oeuvres. See also Abel, Mémoire sur une
classe particuliére d'équations, etc.; Oeuvres (Sylow and
Lie), Vol. I, p. 478; Weber, Algebra, I, § 152 et seq.)

Art 46. If we compare realms of rationality with one
another we have two important conceptions to develop:
viz., the least common multiple and the greatest common
divisor of realms of rationality.

Let x be an algebraic quantity which is derived from
the stock realm R and let y and z be two other algebraic
guantities that are derived from R. Consider the
realms R(x), R(y) and R(z). We understand by the
least common multiple of these realms, the smallest realm
which contains them all; by the greatest common divisor
we understand the realm which consists of all quantities
common to these realms.

Art. 47. We shall first develop the notion of the least
common multiple. The least common multiple of any
number of realms is also called the product of these realms.
Both conceptions are the same. For the realm R(X, y)
contains the realms R(x) and R(y) or R(x) andR(y) are
both divisors of R(X,y). The latter realm is also the
least common multiple of thejltwo former. For any

1 If a is a quantity belonging to 9t(1), then is
a=c0+clx+clx2+- - - +cn-Ixn-1
where the c’s are rational numbers in 9i; and when for x we write the conjugate
roots x', x", ---,R-1)  we have the quantities o', a", ---, a(n-1) which are
conjugate to a.
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realm that contains R(x) and R(y) contains also R(X, y).
We may therefore write R(X)R(y) =R(X,y). It is evi-
dent if the realm R(x) contains the realm 9t(v) that
R(x) -R(y) = R(X, y) = R(X) since y must be a rational
function of x. We always have R (I)R(x) = R(x).

If further x, y, z, - - -, are algebraic quantities that are
derived from R then all rational functions of x, y, z, - -
form a realm R(X, y, z, - -) which is the least common
multiple of the realms R(x), R(y), R(z), - -:

We shall show how such a realm is equivalent to a
realm R(o) where the algebraic quantity ¢ is a rational
function of x, y, z, -+ and reciprocally the quantities
X, Y, z, - - are rational functions of 0. This theorem was
first given by Abel, Precis d,une theorie des fonctions
elliptiqgues. The proof given here is somewhat different.
See also Weber's Algebra, Vol. I, p. 459. Let z be aroot
of the irreducible equation f(x) =0 of degree m whose
coefficients are quantities of the realm 9t and let y
satisfy the irreducible equation g(x) =0 of degree n whose
coefficients likewise belong to ). We wish to show that
there is a quantity t say which belongs to the realm
R(Xx, y) and is consequently a rational function of X, y;
and reciprocally that x and y are rational functions of T.
When this has been proved it is evident that the realms
R(x, y) and Rj(t) are identical.

Let x, x', X", - -, X(m-1) be the roots of f(x) =0, and let
v, Y, ¥ 7" y(n-l) be those of g(x)=0. It is always
possible to determine a rational function T=X(x, y) in
such a way that the m-n values of 1 are all different when
for x all the conjugate values x, x', x", -, x(m-1) are
written and for y the values y,y', y'', ' y(n-1). The
linear function x-+qy has this property, if the constant g
is chosen as follows: Note that the difference x+qy

—(x,+qy") is not zero, if and observe that there



are m-n such values. If we give to q any other values
and write X(x, y) =x+qy, it is clear that the m-n values
of T=X(X, y) are different, when x and y take the above
values.

Art. 48. We may accordingly write

=X Y), r=xx.y), =Xy, -,
where the Xx’s go through the above conjugate values of x,
as dotheysofy. Lettbe avariable quantity and form
the product

(t- D(E-T) - - =P(D),
where ®(t) is an integral function of the m-n degree int
whose coefficients are the elementary symmetric functions
of the 1,5s. These coefficients may in turn be replaced by
rational expressions in the coefficients of f(x) and g(x) and
consequently belong to the realm R. To each of the
m-n values of X(x, y) there corresponds a different value
of T and to every T there corresponds a definite value of
X(X, Y) _ _ _
Let p = 3(x, y) be any rational function of x, y and write

P=9(xy) p'=9(x,y) pP"=8(X",Y)
where the p’s are marked as the r’s above, when the x’s
and y’s have corresponding values in the p’s as in the T's.
Next form the function

which is an integral function in t. If we write this
function in the form

it is seen that W(t) is an integral function in t whose
coefficients are symmetric functions in the x’s and y,s
and therefore belong to the realm R Writing t=t, we
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have
pd'(t) = ¥(1) or

which is a rational function of T whose coefficients belong
to the realm R But p=3(X, y) is any rational function
of X, y. We may therefore write p=x with the result
that x is a rational function of . The same is true fory.

IT therefore the function x as written above gives m-n
different values, it is seen that the realms R(1) and R(X, y)
are identical.

This is a sufficient, but not a necessary condition; for
it is sufficient that k of the m-n values of x be different,
where k is the degree of the irreducible factor h(), say, of
®(t), which is satisfied by T.

Art 49. Continuing the investigation we may take
instead of the two quantities x and y any number of such
guantities x, y, z, ---, which are derived from the realm
R Let x be defined through the irreducible equation
f(x)=0 of degree m, while y is defined through the
irreducible equation g(y)=0 of degree n, z through an
irreducible equation of degree I, etc.

The smallest realm which contains all these quantities
is the least common multiple of these realms, the realm

R(z, y, z, -+ ). It may be shown that from this realm
R(z,y, z, -+ ) anew gquantity ¢ may be derived which is a
rational function of X, y, z, - - -, say c=¢(x, y, z, - - -) and

at the same time x is a rational function of ¢ and also y is
a rational function of o, while z is a rational function of g,
etc.

It follows then that the realms R(X, y, z, - - -) and R(0)
are identical. It is sufficient for the proof of this
theorem so to choose ¢ that the m-n-I--- values of ¢
which are had when for x,y, z, --- their conjugate values
are written, are all different.  Such a function can always
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be determined.l For consider the linear expression
(1) w =hlol+h2a?+ - - - +hkak
where the a's are all different as are the h,s. It is seen by
permuting the a's that there are n=N values of w.
The difference of any two such w’s, say wi and w,, gives an
expression of the form
(2) wi—wj = hl(ali-alj) + h2(a2i-02j)

+ - - - +hk(aki-akj),
where ali-aij, etc., are differences among the as

including zero. There are such differences

among the w's. If we put hi=I, h2=h, hi=h2, ---,
hk=hk-1, then any of the differences of (2) may be equal
for k — 1 values of h, that is, for any root of the equation
(2), when we put wi-wj =0, and consequently there are

values of h for which any two values of w may be equal.
Any other value of h will give values of w different from
one another. Another proof is given in the next article.

Art. 50. We may with Weber (Algebra, Vol. I, § 43)
let P1(x, y, z, - ), ®2(X, ¥, z, - -), P3(X,Vy,2,--"), -
be integral functions of the variables x, y, z, -+ with
numerical coefficients, which do not all simultaneously
vanish in any of the functions. It may be proved that
values may be given to the variables in an infinite
number of ways, so that none of the functions @1, ®2,
®3, - - - vanishes. For, if the functions depend only upon
one variable, there are only a finite number of values
which cause the functions to vanish. Assuming that this
is true for n variables, it may be proved to hold for n+1

1 See Camille Jordan, Math. Ann., Vol. I, p. 143; Traits des substitutions, No.
351; Cantor, Math. Ann., Vol. V, p. 133; Bachmann or Galois, Math. Ann., Vol.
18, p. 460.
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variables. To show this, arrange the terms with respect
to the (n+D)st variable t, say. Then by hypothesis,
values may be given to the other n variables such that
the coefficients of all the powers of t shall vanish in none
of the functions. We thus have functions of the one
variable t and can ascribe such values to it that none of
the functions vanish. It is clear that we may use rational
values of the variables in establishing the desired result.

Theorem. |If none of the functions @1, ®2, ®3
above have a common factor, values may be given the
variables such that one of the functions vanishes while the
others are different from zero.

Let the variable t be present in say ®! and observe (see
Art. 17, end) that functions Wi, Qi may be determined
such that

Yidi + Qidi = i, (a)
where xi is independent of t. Determine such values of
the other variables that the functions xi are all different
from zero while ®1 becomes a function of t alone. Then
give to t such a value that ®1 becomes zero. It is seen
from (a) that none of the other functions ®i can vanish
for this value of t.

Art. 51 If a=¢(X, y, z, - ) is a rational function of
XY, z, - -, and if the m-n-I- - values of ¢ are all dif-
ferent when the conjugate values are written for x, vy, z,
- -, then reciprocally the quantities x, y, z, - -+ may be
expressed as rational functions of . The proof may be
performed in the same way as the one above for the two
quantities x and y. However, through a repetition of
that process, it follows that if

R(xy) = R(1)

fly, 2) = R(T, 2) = R(A),
R(x,y, z, 1) = R(A t) = R(u), etc.

then is
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As an example, let R be the realm of all rational num-
bers, that is, take R =R(l) and let
X=V2 and y=vV3

be two algebraic numbers that are derived from this
realm. A quantity T may always be found which is a
rational function of v2 and V3 and through which V2
and V3 may be rationally expressed. Such a function is
for example

T=V2+ 3.
It is seen that

u¥=1vV2+9V3.

It follows that

3-9T=2V2 or
and similarly

It is thus shown that
R(V2)R(V3) = R(V2, V3) = R((V2 + V3)).

Example. If R(\/5)R(\/-3) = R(T), find T.

Art. 52. Another Proof. Let a and B be two alge-
braic numbers which satisfy the irreducible equations
ar=alar-1+a2ar-2+---+ ar,

Bs = blfs-l+ b2Bs-2+---+f3s.

Further let u and v be two indeterminates. It may be

shown first that

Y = au-ypv
is an algebraic number. For represent the r-s=n
numbers apfo (p=0, 1, ---, r=1,0=0,1, --- s-1)in
any sequence by w (p=1, 2, ---, n). We assert that

wwy may be expressed through the form
1) wvy = Xviwl -+xv2wl +---+xvnwn,
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where the xs are linear functions of u and v. For
wvy = apPa(au—+pv) = aptlou+oapfotly.
If p<<r-1, then ap+1Bo is one of the w's above; but if
p=r—1, then
ap+1po=arfo
= (alar-1+a2ar-2+ - - - +ar)[o,
which is a linear function of the w’s.
Similarly if 0 <s — 1, then apfo+! is one of the w’s above;
but if 6 =s—1, then
apa+1 = apps
= ap(blBs-1+b2ps-2+ - - - +bs),
which is a linear function of the w’s. In every case, itis
seen that wvy takes the form expressed through the
relation (1).
These equations may be written in the form
(xH-y)wl+xI2w2+ - - - +XxInwn =0,
X2lwl + (x22 — yywz +---+x2nwn =0,

xnlwl - -xn2w2 +- - -+ (xnn —y)wn = 0.

Since the w’s are not all zero, as at least af3£0, we must
have

x||-y x12, xIn
x2l, X22 -y X2n -0
xnl Xn2 Xxnn -y

From this it is seen that y = cm+y satisfies an algebraic
equation, whose coefficients are rational functions of u
and v. This equation is not necessarily irreducible but
the function on the left hand side may always be resolved
into irreducible factors, one of which, say f(t, u, V)
becomes zero for t=y. We therefore have the identical
equation
T(au+pv, u, v) =0.
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If this equation is differentiated with regard to u and v
respectively, we have

Since the function is of a finite degree in

au—+pv whose coefficients are rational functions of u and
v, we may always give a pair of values to u and v such that

It is then seen that a and [ are rational functions of y.

It has thus been shown that if a and  are two arbitrary
algebraic numbers, we may always determine a number y
such that (1) y is algebraic, (2) y is a rational function of a
and B (this rational function may indeed be taken linear)
and (3) a and B are themselves rational functions of y with
rational coefficients. Similarly it may be proved that if
al, a2, -~ on are n algebraic numbers, we may always
find a number w, such that (I) w is algebraic, (2) w is a
rational function of al, a2, --- an (indeed w may be chosen
a linear function of al, a2, --- an with rational coefficients)
and (3) each of the quantities al, a2, --- an is a rational
function of w with rational coefficients.

Art. 53. Normal Realms. The following is an im-
portant application of the theorem in Art. 49. Let R be
the stock realm from which the algebraic quantity x is
derived, and suppose that x satisfies the irreducible equa-
tionf(x) =0 which is of the nth degree inx. Further letx,
x', X", -+ -, X(n-1p be the n roots of this equation and form
the realms R(x), R(x"), , -, R(x(n-1)):

The norm of the realmR(X) is defined as the product
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of the realms!
R(x), R(X),, - -, R(x(n-1)).
As shown in Art. 49 we may determine a function
o=0(x, X', -, x(n-1)),

linear in the quantities x, X', - - -, X(n-1), which by the
permutation of the x’s takes n! different values. These
n! values are denoted by ¢, ¢', ¢, - Take next a

variable quantity t and form the product

o(t) = (t-o)(t-o)(t-c™)...,
a function of the n! degree in t whose coefficients remain
unaltered when x, x', x", --- are interchanged. They
are therefore symmetric functions and belong to the
realm R Next take n! arbitrary functions formed
like the functions above. For example, such functions
may be had by permuting the x’s as follows;

v=9(x X'X", - x(n-1))

V' =9(x', X, X", - - -, X(n-1))

V' =9(x", X', X, -+, x(n-1))
etc. Form the function

It is seen that W(t) is an integral function in t whose
coefficients remain unaltered when for v and ¢ their
values in terms of the x,s are substituted and then the
X’s permuted. They are consequently symmetric func-
tions of the x,s and belong to the realm R It follows at
once that
vd'(a) = W(0),

or

1 See Abel, Vol. |, pp. 546, 547; Vol. 11, pp. 231, 241, 242, 336, 337; Gauss,
Works, Vol. I, p. 103 (1831); and Kummer, Liouv. Journ. 12, p. 187 (1844).



which is a rational function of 6. Since v is an arbitrary
function of x, x', - - -, x(n-1), we may write each of these
quantities in the place of v and then from the above
equation it is seen that each of these x’s may be expressed
as a rational function of 0. (See Example 6 at end of
this chapter.)

Consequently the norm of the realm R(z), that is
R(x, x', x", - - -, x(n-1)), is identical with the realm R(0).
The degree of the realm R(0) is equal to the degree of the
irreducible equation which ¢ satisfies. This degree is
very important in the further discussion. It is called the
order of the equation f(x) =0.

It was seen above that o, ¢', ¢', - - were rational
functions of x, x', x", ... Since x, x', x", .. are
rational functions of o, it follows also that ¢, ¢', ¢", -
are rational functions of 0. Hence the realms R(ag"),
R(g"), ,, are identical with the realm 9J(0). A realm
having this property is called normal.

We have thus proved the theorem: The norm of a
realm is a normal realm. (See Art. 45.)

Art. 54. We may next develop more fully the idea of
an algebraic realm of the nth degree. In Art. 44, such a
realm was defined through an irreducible algebraic
equation of the nth degree. It was seen that every
quantity of the realm R(x) could in only one way be
represented in the form

b1+b2x+b3x2+---+ bnxn-1
where the b's take all possible values of a fixed (stock-)
realm of rationality. The following definitions may be
offered: If x1, x2, ---, Xn are any n quantities of the
realm R(x), they are said to be linearly independent, if it
is not possible to determine n quantities al, a2, - -, an
of the stock-realm 91 such that

alxl+az2x2+---+anxn=0;
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and when this is the case, the n quantities x1, X2, ---, Xn
form an irreducible system (with respect to the realm
R(x) Dedekind, 8164 of the Dirichlet, Zahlentheorie.

If we take 1, x, X2, - -, Xn-1 as these n quantities, it is
seen that they are linearly independent, since x satisfies
an irreducible equation of degree not lower than the nth.

If x0, x|, xi, -+ -, xn are #+1 quantities of the realm
R(x), it follows that they may be expressed in the form

X0 = b01+b02x+b03x2+- - -+ -b0nxn-1,
x1 =b11+b12x+b13x2+- - -+ -blnxn-1,

XN =bnl+bn2x+bn3x2+- - -+ -bnnxn-1

where the b’s belong to the realm R

The n+1 quantities x0, x1, - -, xn are linearly de-
pendent, for it is always possible to determine n+1
quantities a0, al, - - -, an in such a way that

(1) aox0 + alxl+-: - -+anxn =0
To show this, substitute for x0, x1, - - -, xn their values

from above and equate the coefficients of the different
powers of x to zero. It follows that

b01a0 + bllal + b21a2+- - -+bnlan=0
b02a0 + b12al + b22a2+- - -+bn2an=0

bOna0 + blnal + b2na2+-: - -+bnnan=0

We thus have n equations in n+1 unknown quantities,
and from them we may always determine n+1 values
for a0, al, - - -, an which are different from zero and which
satisfy the relation (1). All these quantities belong to
the fixed realm R, since they are determined through
rational operations upon the b’s.

Art. 55. We seek the criterion by which it may be
determined whether n quantities xI, x2, - -, Xn are
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linearly dependent or linearly independent. These
quantities may be written in the form

x1 = bl14+b12x+h13x2+4-- - - +blnxn-1,
X2 = b21+b22x+b23x2+---+b2nxn-1,

xn = bnl+bn2x+bn3x2+---+bnnxn-1

The x’s are linearly dependent if n quantities al a2, - - -,
an can be found such that

alxl+a2z2x2+---+anxn =0
If in this equation we write for the X's their values, we
have the following relations

bllal + b21la2+---+bnlan=10

bl2al + b22a2+---+bn2an=0

blnal + b2na2+--+bnnan=0
We thus have n homogeneous equations in the a’s with
the determinant

b1l b21 hnl
D= bl2 b22 bn2
bin b2n bnn
Art 56. If the determinant D = 0, it is possible to
find n quantities al a2, - - -,, an, which are not all zero
and such that the n equations
@ bilal + bi2a2+--+binan=0  (i=1, 2, -, n)

are satisfied. For, assuming that the b’s are not all
zero, let

bll, b21, bm!
Di b12 b22, bm?
blm b2m bmm

be a sub-determinant of D which is not zero, while all the
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sub-determinants of higher order are zero, the extreme
case being the determinant D itself. Bordering the
determinant D! and developing the resulting determinant

b1l h21, bml ul
D = h12, h22, bm2 u?
b1,m+1 b2,m+1 1 bmm+1 um+1
with respect to ul, u2, - - -, um+1, if is seen that

D? =ulC1+u2C2+ - - - +umCm-+um+1Cm+1,
where
Cm+l =D1#0.

Observe that two columns in D2 become equal for

ul=bil, u2=bi2, ---, um+1=bi,m+1 (i= 1,2,---,m)
and when i=m+1, m+2, ---, n, the determinant D?
being a sub-determinant of D! and of order higher than
m, is by hypothesis zero.

Accordingly, if we write

al=C1, a2=C2, ---,am+1=Cm+1, am+2=Cm+2, ---, an=0
it is seen that the equations (1) are satisfied. Next
multiply the equations (1) respectively by 1, x, X2, -,
xn-1 and adding, it follows that

alxl + a2x2 + -+ +anxn =0
With this it is seen that the x’s are linearly dependent if
D1 =0 and form a reducible system. Otherwise the a,s
are all zero and consequently the x,s are linearly inde-
pendent and form an irreducible system.

Art. 57. We may accordingly introduce the following
definition of an algebraic realm of rationality. Having
fixed a realm R as a stock-realm, we regard all quantities
belonging to this realm as rational. Consider further a
realm which contains besides the quantities that belong
to the realm R still other quantities. This latter realm
is said to be algebraic, if there is a number n, such that
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any n—+I quantities of the realm are linearly dependent.
The smallest number n for which this is true is called the
degree of the realm.

If we consider a realm of the nth degree, say Q, then in
virtue of this new definition there exists n quantities in
the realm which are linearly independent, among which
therefore there is no such relation as

alxl+az2x2+ - - - EO,

where the a’s belong to the fixed realm R. But if x is an
additional quantity in Q there must be a relation

AtalxL+alid + - +anin=0
or,

Let x be an arbitrary quantity of Q which realm by

hypothesis also contains the quantities x1, x2, ---, xn.
This realm must therefore contain the products xx1, xx2,
.-+, XXn, so that

xx1 =allxl+al2x2+ --- +alnxn
xx2 = a21x1+a22x2+ --- +a2nxn

N
XXn= anlxl+an2x2+ --- +annxn

Since these n equations must exist, it is necessary that
their determinant be zero, or

all-x al2 al3 aln
D1(X) = a2l a22 - x az23 azn —0
anl an2 an3, ann-xn

If we develop this determinant, we have an integral
function of the nth degree in X, whose coefficients belong
to the realm R

Hence it is seen that x is an algebraic quantity that is
derived from the realm R, and reciprocally every guantity
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that belongs to the realm of the nth degree satisfies an
irreducible equation whose degree is at most n.

Art. 58. Observe next that if xI, x2, -- -, xm are any
other n linearly independent quantities of the realm, we
must have

X! = riIXu+r2ix2=+- - -+-rnlxn,
X2 =r12X1+r22x2+---+-rn2xn,

(1)

X'n = rlnXi+r2nx2+---+-rnnxn,

where the r’s are rational numbers and where the
determinant

ri1 r2l il
A= M2 122 2
rin, r2n, r2n

is different from zero.

It follows in a manner similar to that in which the
equations (1) of the preceding article were derived that
(2) xx'T=aixXl+a'ix2+--+a'inx'n (=12, ..-,n)j

and corresponding to the equation ®1(z)=0, above, is
derived the equation

a'll-x a'12 aln
0z = 2% a'22-x anm _0
: an2, a'nn-x

That the functions ®1(x) and ®2(x) are identical is seen
by multiplying them both by the determinant A. In the
first case multiply the columns by the rows and in the
second case, the rows by the columns. Observe in the
first case that the general term of the resulting de-
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terminant is
and in the second case the general term is

To show that these terms are equal, note that if the
values (1) are written in (2) we have

while from the equations
xxi =ailxl +ai2x2+---+ainxn
it follows directly that

with which it is proved that Cik=C'k and that ®i(x)
= 02(x).
Art 59. Norm; Spur. Expanding the determinant
that defines ®1(x), it is seen that
d1(x) =xn+Alxn-1+A2xn-2+ - - - +An-1x+An =0,
Denote the roots of this equation by x(1), x(2), - -, x(n)
If x is any one of these conjugate roots, by definition the
norm of x is the product of the roots and written
N(X) =N(x(1)) =N(x(2)) = - - - = N(x(n)) =xx(1) ‘¥
while the spur of x, is written
S(X) =x(1)+x(2)+ - - - +x(n).
By writing z =0 in the determinant that defines ®1(x),
it is seen that
all al2 aln

(1) (_ I)nAn - a2l a22 azn =N(X),

anl an2 ann
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while

S(x) =all+a2+ - - +am= —Al
From the equations (1) of Art. 57 it is seen that S(0) =0,
S(1) =n. If a is any rational number,

S(ax) =aS(x).
If a and B are two numbers of the realm Q, then is
S(a+B) =S(a) +S(B). Observe further that
N(0)=0, N(1) =1

It may be proved that x=0 is the only quantity of the
realm Q whose norm is zero. For, under the assumption
that the determinant (1) above is zero, quantities
tl, t2, - -, tn may be found such that

tlail+t2ai2+ --- +tnain=0 (i=1,2, --- n).
Hence, multiplying the equations (1) of Art. 57 respect-
ively by t1, t2, - - -, tn and adding, it is seen that
X(tIx1+ t2x2+ --- + tnxn)=0.

Since the quantities x1, x2, --:, xn are linearly inde-
pendent, it follows that x =0.

If a is a rational number, N(a) =an. If y is any other
number of Q, so that we have a second system of equations
analogous to equations (1) of Art. 57 and (2) of Art. 58

yxi =a'ilx1+a'i2x2 + -+ +a'inxn (i=l, 2, ---,n),
it is seen that
xyxi = Cilx1+Ci2x2 + --- +Cinxn  (i=l, 2, ---,n)

where
Cik =ailalk+ai2a% + - +a'ina'nk
From the multiplication of determinants it is seen that
. . .- -:|’ 2, e
(Cik| =|aik] - [a'ik] K=l 2
and that is

N(xy) = N(x) N(y).
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Writing in this expression it follows that

(i)

It is also seen that

or from (i)

Art. 60. Realms such as were defined like Q in Article
57 are finite realms. It was seen that a finite realm
contains only algebraic quantities. It follows also that
no transcendental quantity can belong to such a realm.
Regarding infinite realms we can only make negative
statements, just as the definition of an infinite realm may
only be expressed negatively.

If we adjoin the root of an irreducible algebraic equa-
tion to the stock-realm R, the realm thereby produced is
finite.

Reciprocally, we have all possible finite realms, if we
adjoin to the realm R the roots of all possible algebraic
equations.

To prove this we have only to show that in every finite
realm A, say, there exists an algebraic quantity x of such a
nature that the realm is completely determined through it.

Let n be the degree of A, Ifn=1thenisA=R(l) =R
and consequently x =1 Butif n> 1, there is an algebraic
quantity in the realm A Let this quantity be o and
let the degree of the irreducible equation which a
satisfies be a. If n=a, we have all the quantities of the
realm A by multiplying respectively the quantities
1, a, a2, -, oa-l by all possible rational numbers and
adding the products thus formed. In this case A=R(q)
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and consequently x=a. But if n>a, there must be
in A more than a linearly independent quantities so that
there must be at least another quantity a which is
linearly independent of the a quantities 1, a, a2, - - -, da-1
We may however (Art. 51) always determine a quantity B
which is a rational function of the a’s and o' and through
which the a,s and o¢ may be rationally expressed. Let
the degree of the irreducible equation which B satisfies be
b so that R(B) is of degree b. It is seen that the realm
R(B) contains the a+1 quantities 1, a, a2, - -, aa-1 and
o' and since these quantities are linearly independent
b a+l.

If b=n, then is A=R(B) and consequently x =f. But
if b<n, we must continue this process until finally we
come to a realm of degree n so that A=R(x) where x
satisfied an irreducible equation of the nth degree.

We have thus shown that in every finite realm there
exists a quantity x which satisfies an irreducible equation
whose coefficients are rational and whose degree is n; and
through this quantity x the realm is completely determined.

Art. 61. Primitive Quantities; Kronecker’s Gattung.
By adjoining to the realm 9t the algebraic quantities a, b,
v -, we saw that by a finite number of operations, we must
come to a realm R(x) of the nth degree. There must exist
several such quantities such as x which belong to the same
realm. Lety be another quantity which also satisfies an
irreducible equation of the nth degree. It is evident from
the manner in which these quantities are derived (see
also Art. 69) that both x and y may be rationally ex-
pressed the one in terms of the other. Such quantities
are called primitive quantities. A primitive quantity
determines its realm of rationality. The collectivity of
primitive quantities constitute what Kronecker called a
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“ Gattung.” Thus, associated with every realm is its
Gattung.

The following method may be employed to determine
whether quantities are primitive or not. Suppose that
X is a primitive quantity and that y=¢(x') is another
guantity belonging to the same realm 9J. Lett be a
variable quantity and form the equation

[E-00)1[t—d(x)I[E-P(X™)] - -[t-(x(n-1))]=9()
which is an integral function of the nth degree in t whose
coefficients belong to the realm 91. Writing y =¢(x),
y=0(x), y"=0¢(x"), - y(-1)=¢(x(n-1)), the above
equation becomes

(t-y) (t-y") (t-y™)- - -(t=y(n-1)) =g(t),
which is satisfied if y is written in the place of t. Butify
is to be a primitive quantity, it must satisfy an irreducible
equation of the nth degree. Hence the equation g(t) =0
must be irreducible and vy, y", -, y(n-1) must be the
conjugate values of y.

Accordingly, if the n quantities y=¢(X), y'=d(X),
y"'=¢(Xx"") - - y(n-1) = ¢(x(n-1)) are all different, theny is a
primitive quantity in the realm and the realm is com-
pletely determined through vy.

Observe that if a realm A is determined by a quantity
X, so that A =R(x), then x may be replaced by a rational
function of x, say ®(x), provided that the conjugate
quantities y=®(x), y'=¢(x), - - y(n-1) =o(x(n-1)) are
all different, the realms R(x) and R(y) being in this case
identical.

We have here also a second proof of the theorem that
if y belongs to the realm R(X), it is an algebraic quantity.
For it may be rationally expressed in terms of x and from
what we have just seen satisfies an irreducible equation
of degree at most =n.
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Art. 62. Basis. In Art. 54 we were able to define the
degree of a finite realm by means of the properties of the
realm. We saw that a realm was of the nth degree when
there were n linearly independent quantities in this realm,
while any n+1 quantities of this realm were linearly
dependent, however these quantities be chosen.

In a realm of the nth degree any system of n linearly
independent quantities is called a basis (cf. Dedekind, p.
468 of Dirichlet’'s Zahlentheorie) of the realm. If we
multiply the n quantities that constitute the basis by all
possible numbers that belong to the stock realm 9t, we
have through addition all possible quantities of our new
realm and each quantity only once (see below).

If al, o2, - -, an form a basis of a realm of the nth
degree and if n is any arbitrary quantity of this realm,
then (Art. 54) we may always determine n—+I rational
numbers x0, X1, x2, - - -, xn so that

x0On+xlal+x202+ --- + xnan =0
and in such a way that x0, x1,x2, - --,xn are not all zero. In
particular x0 is different from zero, for otherwise there
would be a linear relation among the a's. It follows that
n =ylol +y202+ - + ynan,
where the y,s are rational numbers.
There is only one way of expressing n in this manner.
For if
n=y'lal +y2a2+ - +y'nan,
we would have
0= (yl—yDal+(y2- y'2)a2+ --- +(yn- y'n)an,
and consequently since the a,s are linearly independent,
we must have

yv=yt (,=1,2,--,n)
The rational numbers yl, y2, ---, yn are called the
coordinates of n. The coordinates of any number of a
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realm are uniquely determined when once a definite basis
has been established.

If al a2, -, anand BL, B2, - -, Bn are two systems of
n numbers which belong to a fixed realm of the nth
degree and if al a2, ---, an form a basis of this realm,
we must have

fv=Cval+Cv202 + --- +Cvnan (v=1,2,---, n)

The B's also form a basis of the fixed realm if

— r=I1,2,---,n
C=|ers| #0 s=1.2 -

They do not form a basis if C=0; for in this case there
exists a relation of the form (Art. 56)
t1p1 +t2p32+---+tnBn =0

where the t's are rational numbers.

The quantities al, a2, - - -, an are called basal elements
or elements (terms) of the basis ab a2, - -, an

Art. 63. Discriminant. We shall now give a criterion
by which it may be determined whether a system of n
numbers al, a2, - - -, an form a basis of a realm or not.

Let the algebraic quantity through which the realm of
the nth degree is determined be x and let a1, 02, - - -, an be
expressed as integral functions of x (Art. 44). Then in
the expressions of the a,s in terms of x, let x be replaced
by each of its conjugate values (including x) x(1), X\ - - -,
X(n) and let the corresponding values of ay be

av anu (v=1,2,--, n)

We then write

{ f {

A(al, a2, -+, an) = a'l
an)l a2 a(nn
and call A(al, a2, - - -, an) the discriminant of the n

quantities a1, a2, - - -, an.
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The following four theorems may be proved:
(1) 1f al, a2, ---, on form a basis, then A(ab o2, ---

an) =0;
(2) If al, a2 -, an do not form a basis, then A(ax, o2,
-+, 0n) =0;
(3) If A(c,ax2, - -, an)#0, then ab a2, - -, an form a
basis;
(4) If A(ai, a2, -, an) =0, then al, a2 ---, an do not
form a basis.

These theorems are proved first for the case where the
system al, a2, - -, an consist of the n quantities 1, X, X2,
.-+, Xn=1 For this case we have

1 1, 1
x0)  xQ) x(n)

Al x, X2, -+, xXn-1) =

Observe if f(t)=0 is the irreducible equation which is
satisfied by x, that we have

f(t) = (t—x(1))(t—x(@2) - - - (t-x(n))
= (t-x(v))g(®),
where

g(t) = (t-x(ANt—x(2)) - - - (t-x(v-1))(t -x(v+1)) - - - (t-x(n)).
Hence
f(t) =(t-x(v)g'(H)+g(t),
and consequently
F(x(v)) =g(x(v)) = (x(v) - x(1)) (x(v) -x(2))
s (X(V) —x(v-1)) (x(v) -x(v+1)) - - - (x(v) -X(n))
(=12 ---,n).
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We therefore have

Since the equation f(t) =0, through which the algebraic
guantity x is determined, is irreducible, it has no multiple
root (Art. 41) and consequently f'(x(v))#0 and therefore

also

It follows that A(1 x, X2, ---, xn-1)#0. The four
theorems stated above are seen to be true for this special
case, as we know that 1, x, x2, - - -, xn-1 form a basis.

Art. 64. Let al a2 --- dn be any n quantities of a
realm of the nth degree. They may therefore be ex-
pressed in the form

op = avl+awx+aix2+ - - -+ amnxn-1 (v=I, 2, ---, n).

Let x(1), X(2), - - -, x(n) be the quantities that are conjugate
with x (including x) and write

M y=L,2, .., n).
By the theorem for the multiplication of determinants,
we have

al o'l o)t

a2 a2 a2

v M

an a(n
all ol2 aln 1, 1, 1
2L, 022 an  x(@),  xQ), x(n)
anl an2 ann x(n-1,  x(2)n-1, x(n)n-1

or

A(ab a2, ---,an) = ars|2A(l, x, X2, - - -, xn-1)
(r,s=1,2, .-.,n).
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Since A(l, x, X2, ---, Xn-1)#0 and since the quantities
al, a2, - -, an form, a basis™ when and only when |ars|#0,
it is seen that al a2, - - -, an form a basis when and only
when the discriminant A(al, a2, - -, an)#0.

We also note the quadratic relation that exists between
the two discriminants of any n quantities of a realm.

The conception of a discriminant of any n numbers of
an algebraic realm of the nth degree is a very fortunate
generalization of the discriminant of an algebraic equa-
tion (Art. 22).

Art. 65. Divisors of Realms of Rationality. So far we
have considered only multiples of algebraic realms; we
may next consider the divisors of such realms.

Let R be the stock-realm and let h(z)=0 be an
irreducible equation of degree ¢ in z whose coefficients
belong to the realm R. Let the roots of the equation
h(2)=0 be z, z', 2", - - -, z(c-1). We consider the realm
R(z) and an arbitrary quantity x of this realm. This
quantity x must (Art. 44) be an integral function of z,
say X =(z), whose coefficients belong to the realm 9t.

Suppose that the quantities which are had when for z
we write its conjugate values are

z=6(2),
z' = 9(2),
x"=d(z") etc.

These guantities are the roots of the equation

F(t) = t->)(t -x) - (t -x(-DFO0,
FO=[t-0@)]1[t-$(z)]- - [t-d(z(c-1))] =0.

This is a symmetric function of the ¢ roots z, z', - -,
z(c-1) and consequently its coefficients may be expressed
through those of h(z); but these coefficients belong to the
realm consequently the coefficients of F(t) belong also

or
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to the realm R We may prove the following theorem:
The function F(t) is either an irreducible function or the
power of an irreducible function.

If possible resolve F(t) into factors and let F(t) be one
of the irreducible factors of degree a, which vanishes for
t=¢(2) say, so that

f¢(2)]1=0.

This equation has therefore with respect to the realm R
a root in common with the irreducible equation h(z) =0.

We consequently (Art. 39) must have f[¢(2)] =0,
fo@)]=0f[p(z'")1 = O, f[Pp(z(c-1))] = O, orf(x)=0,
f(xr) =0, - - F(xc-1) =0. Itisthus seen that every root
of F(t)=0 satisfies the irreducible equation f(t)=0, so
that therefore (the lower suffices denoting the degrees of
their respective functions)

Fe() = [fa(®]n,
where ¢ = a-n (cf. Lagrange, Oeuvres, 111, p. 355) and where
the coefficients of both F and f belong to 9L

Art 66. Consider the realm R(x) which is formed by
adjoining the quantity x of the preceding article to the
realm R. Since every quantity in the realm R(X) is a
rational function of x and as x is a rational function of z,
it follows that every quantity in R(x) is a rational
function of z and therefore belongs to the realm R(2).
Hence the realm R(x) is a divisor of the realm R(x). On
the other hand every quantity in R(z) is not contained in
R(x).

If n=1 in the preceding article, then x satisfies an
irreducible equation whose degree is ¢. Further the
quantities 1, x, x2, - - -, xc-1 all belong to the realm R(z2)
and are linearly independent. But the realm R(z) does
not contain more than this number of independent quan-
tities. It follows that z may be expressed rationally in



ALGEBRAIC REALMS OF RATIONALITY 85

terms of the powers of x, and it is seen that x and z are
primitive quantities (Art. 61) in the realm R(z). The
realms R(z) and R(z) are then identical.

Art. 67. We take R as the stock-realm and consider a
realm C. of degree c. In this realm C there is a primitive
guantity z which satisfies an irreducible equation h(z) =0
of degree ¢. The realm C is completely determined
through this quantity so that

C=R(2).
Suppose next that the realm A is a divisor of the realm
C the realm A being of degree a. If x is a primitive
quantity in A it satisfies an irreducible equation f(t) =0
of degree a. Since x also belongs to the realm C, it is
seen that x is an integral function of z, say x=¢(z). It
was shown in Art. 68 that c=a-n, where n is an integer.
From this it follows that if A is a divisor of C, then a,
the degree of A is a divisor of ¢, the degree of C. It is
evident that there are realms which have no divisors
save R. This is evidently true when ¢ is a prime integer.

Art. 68. If 2 is a divisor of C, then the ¢ quantities
®(2), ¢(z"), ---, d(z(c-1)), as shown above, may be dis-
tributed into a groups, there being n equal quantities in
each group, namely (writing these same quantities in a
somewhat different notation)

X=0(2) =0(z1) = (z2) = - - - = ¢(zn-1),
X'=6¢(z)=0(z'1) = §(z2) = - - - = §(z'n-1),

X(a-1) =0(z(a-) =0(z1(a-1)) = p(z2(a-1) = - - - = o(zn-1(a-1)),
Observe that the function ¢(i)-x vanishes for the n
values of t=z, z1, - -, zn-1. It is seen that the functions
g(t, x) = (t-z")(t-z1) - - -(t-zn-1)
and A(i) have the common root t=z. And from this it
follows that t =z satisfies the irreducible equation h(t) =0



86 THE THEORY OF ALGEBRAIC NUMBERS

of degree ¢ in the realm R, while in the realm R(x) it

satisfies an equation of degree

It may be shown as follows that every symmetric
function of z, z1, ---, zn-1 is a rational function of x.
For, let S(t, tl, ---, tn-1) be any symmetric function in
t, t1, - - -, tn-1, and write

T=95(z, z1, ---, zn-1),
1=S(z, 21, -, z'n-1),

1(a-1)=S(z(a-1), 21(a-1), -, n-1(a-1)),

Observe that f(t) = (t - X)(t—x") --- (t —x(a-1)) is an irre-
ducible function in R and form the expression

It is clear that the coefficients of W(t) belong toR, while
is a rational function in x.

Theorem. With respect to the realm A the function
gt, xX) above, is irreducible. For suppose that g(t, x) were
resolvable into factors and let the irreducible factor that
contains the root z be G(t, X). Then, since x=(z), it
follows that G[z, $(z)] =0. The coefficients of G[z, ¢(2)]
belong to the realm R.  Hence this function vanishes for
the other roots of the irreducible equation h(z) =0 (Art.
41). It follows that

G[21 ¢(Z)] = 01 G[le ¢(Zl)] = Ov T G[Zn'l', ¢(Zn-1)] = 0
and consequently G(t, x) vanishes for the same values of
t as g(t, x); and, since G(t, x) is by hypothesis a divisor of
g(t, x), it is seen that g(t, x) is irreducible in the realm A

Hence also the degree of C with respect to A is c/a, if
with respect to the realm R it is c.
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Art. 69. Lety be a second quantity belonging to the
realm C, and form the realm B = R(y). Corresponding
to this divisor of the realm C suppose that there is a
second distribution of the ¢ quantities into a systems of
n quantities.

y=0@=y(l) = - =u(zn-1),
y'=0(@)=0(@1) = =u(n-1),

y(a-1) = Y(z(a-1)=¢(z1(a-1)) = - - - = P(zn-1(a-1))
It may be shown that y is a rational function of x; for let
t be any variable. Form the function

This expression is the same as

which is an integral function in t whose coefficients belong
to the realm R Denote it by S(t).
If in the above equation we put t=x, we have

yf'(xX)=S(x) or

and consequently y belongs to the realm R(x). It follows
that the realm R(y) is a divisor of the realm R(X).

In the above discussion it is not necessary that the
quantities y, y', y", - -, y(a-1) be all different; but if they
are, the two realms A=R(x) and B =R(y) are identical,
the quantities x and y being primitive quantities in them.
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Art. 70. We have seen that if the degree a of a
divisor-realm A is less than ¢ the degree of the realm C,
then to this divisor there corresponds a distribution of the
¢ quantities into n equal groups of a different quantities
or into a different systems of n equal quantities. Such a
distribution corresponds to each divisor. There is, how-
ever, only a finite number of distributions of ¢ quantities
into a systems of n quantities. Possibly to many of these
distributions there will correspond no divisors; to each
divisor, however, there will correspond one and only one
distribution. From this we conclude that an algebraic
realm has only a finite number of divisors.

Reciprocally, it may be shown that if a realm contains
only a finite number of divisors, it is an algebraic realm.
For consider any realm C taken with respect to a stock-
realm R. Let z be a quantity of the realm C, and form
the realm R(z) which consists of all rational functions
of z. Besides z the realm S contains also z2 Hence
also the realm R(z2) is a divisor of C. In the same way
C contains also the realms R(z3), R(zd), - -. It is thus
seen that C contains an infinite number of divisors. But
in virtue of our hypothesis, there can be only a finite
number of such divisors. Hence some of the realms
R(zk) must be equal, say

@) R(zp) = R(zq)  Where  p<q.
The realm R(zq) consists of all rational function of zg
of the form

where the a’s and b’s belong to the realm Rt. Since zp
belongs in virtue of (1) to the realm R(zq) it is seen that
zp must be expressible in the above form, so that

b0zp-+blp++b2zp+2q =+ - - - + bszp+sq = a0+a0zq+---+ arzrq,
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This being an algebraic equation in z, which is not
identically satisfied, since none of the exponents on either
side of the equation are equal, it follows that z is an
algebraic quantity.

If then A is any quantity that belongs to the realm C,
then is A an algebraic quantity, with which we may form
the realm R(A). Let A' be another algebraic quantity
of C which is not contained in R(A). Since C contains
the two realms R(A\) and R(A'), it contains also their
product, that is R(A) - R(A") = R(A, A") = R(u), say. Con-
tinuing in this manner, if p' is an algebraic quantity
different from p which is also found in C we form the
realm R(p) = R(M)R(Y") which is a divisor of the realm C.
Since C contains only a finite number of divisors, by
continuing this process, we must finally come to an
algebraic quantity 9, such that C=R(3). From this
it follows that C is a finite or algebraic realm.

Art. 71. Let C be a realm of degree ¢ and let z be a
primitive quantity of this realm so that C=091(2).
Further let A be a divisor-realm of degree a and let x be
a primitive quantity in this realm so that 3I=9t(x).
Since x belongs to A and as A is a divisor of S, it is seen
that x is a quantity in C so that x = ¢(z), where ¢ denotes
an integral function. The quantity z satisfies an irre-
ducible equation of degree ¢c. Let the other roots of this
equation be z', z", .-, z(c-1) so that the a quantities
conjugate with (and including) x are to be found among

b(2), d(z") - -, d(z(c-1)), each repeated n times (Art. 65).

Art. 72. We shall now see again how a realm is
reduced if we consider instead of the realm R, a more
general realm SB=R(y) as the realm of rationality. Let
the irreducible equation in R which x satisfies be Fa(u) =0
of degree a. Next consider the realm B = R(y) of degree
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b and let the least common multiple of A and B be
C=R(z) of degree c; that is A-B=C. Since B is a
divisor of C we have y = i(z), where ¢ denotes a rational
function whose coefficients belong to R We may also
express C in the form C=R(x, y) (Art. 47). It follows
that all quantities in C are rational functions of x and vy,
so that z=x(x, y), where X denotes a rational function.

With respect to the realm B = R(y), z satisfies an irre-

ducible equation of degree and C with respect to this

realm is of degree  (see Art. 68).

Due to the equations x =@(z) and z = X(x, y), it is seen
that x is a rational function of z and that z is a rational
function of x (taken with respect to the realm B). Let
the irreducible equation which x satisfies with respect to
the realm B be (see Art. 68, end),

Note in this connection also that If then R is

taken as the realm of rationality, then A is of degree a,
but if 53 is the realm of rationality, then A is of degree

and we may represent all the quantities of A in

the form
BO - B1x - B2x2+:--+ Ba'-1xa'-1

where the B’s are all quantities of the realm B = R(y).

Art. 73. Lemma. Let B be a finite realm and y a
primitive quantity in it, and let y' be a quantity con-
jugate with y. Further let F(u, y) and G(u, y) be two
functions whose coefficients belong to B.

Theorem: If F(u, Yy) is divisible by G(u, y), then is
F(u, y") divisible by G(u, y"). For if F(u, y) is divisible
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by G(u,y), we must have F(u,y)=G(u,y)H(u,y),
where the coefficients of H(u,y) also belong to the realm
B. In the equation

F(u,y)—-G(u,y)H(u,y) =0,
the coefficient of any power of u in this difference is a
function of y, say ®(y), and since these coefficients are
identically zero, it is seen that ®(t) becomes zero for t=y.
Hence also ®(t) becomes zero for the conjugate values of
y (Art. 41; cf. Abel, Vol. 11, p. 231).

It follows at once that

F(uy)-=G(u,y)H(u.y").
Further if F(u,y) is irreducible in the realm R(y), then
also F(u,y") is irreducible.

F(uy) = G(u,y)H(u.y"),
then we must have

F(uy) = G(u,y)H(u.y)
We saw that in the realm that is, when B is taken
as the realm of rationality,! the quantity x satisfied an
equation of degree  say G(u,y) =0; and in the realmR,

the quantity x satisfied an irreducible equation Fa(u) =0
of degree a. Since both equations are satisfied by x and
since is irreducible in the more extended

realm, it follows that Fa(u) is divisible by

From the lemma just proved it follows that Fa(u) is
also divisible by since Fa(u) remains unchanged

when in it we interchange y and y,. Similarly it is seen
that F(u) is divisible by G(u,y'"), ---, G(u,y(b-1))-
Each of these functions contains therefore at least one

1 See Camille Jordan, Traité des substitutions, p. 269; Holder, Math. Ann.,
Bd. 34, p. 47.
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of the roots of Fa(u)=0. But the coefficients of the
product of the G,s belong to the realm R. It follows then
that the product of the G,s is a power of Fa(u) and indeed

the  power.

Art. 74. Let A and B be two finite realms of degrees a
and b, with respect to R and let C be the product of
these realms of degree ¢. If 2 is taken as the realm of

rationality then 53 is of degree while ifB is taken

as the realm of rationality, then A is of degree
Hence c=ab'=ba' or

(1)

This result may be expressed in the following manner:
Take R as the stock-realm of rationality and let x and y
be two quantities that belong to the realm C =91(z), x satisfy-
ing an irreducible equation of degree a in R and y satisfying
an irreducible equation of degree b in R  Then there are
also in R(z) equations in which x appears with coefficients
that are functions of y and vice versa. Let the one in which
X appears to the lowest degree be of degree a' in x while
the one in which y appears to the lowest degree be of degree
b' in y; then among the numbers a, a', b, b' we have the
relation (1).

A special case is when x and y are rationally expressed
the one in terms of the other; in this case we have

a=1=b.
Art. 75. The Greatest Common Divisor. If A and B
are two arbitrary realms of degrees a and b they will in

general have certain quantities in common. All these
quantities that are common to the two realms form
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another realm D, the greatest common divisor of the
realms A and B. If t is a primitive quantity in D so
that D = R(t), it is evident that t is a rational function of
x and of y, say

t=¢(x) and  t=y(y)
Further since R(t) is the greatest common divisor of the
realms A and B., any quantity t' common to these realms
is a rational function of t.

We start then with two realms A=R(x) and B =R(y)
of degrees a and b with respect to 9L We form their
product C=R(x, y) = R(z) of degree ¢ and we let their
greatest common divisor be D = R(t) of degree d. The
guantity x satisfies an irreducible equation Fa(u)=0 of
degree a taken with respect to the realm R while it
satisfies the irreducible equation taken with

regard to the realm 23.
If next we take the realm D as the realm of rational-
ity it is seen that x satisfies an irreducible equation
of degree a/d (Art. 68). The coefficients of

this equation belong to D and since D is a divisor of B,
they also belong to the realm B. Consequently with
respect to the realmB the quantity x satisfies the equa-
tion But we just saw that with respect to

the realm B the quantity x satisfies the irreducible equa-
tion Hence considered as a function of

u, must be a divisor of It follows that

or cd ,ab.

Art. 76. Under certain conditions cd=ab and conse-
quently H(u) =G(u). This is always the case if Aor B
is a Galois or normal realm. If for example A is a normal
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realm, then the conjugate quantities with x, that is, Xx,,
x", -, X(@->, which are the roots of Fa(u)=0, are ra-
tionally expressible in terms of x.  Since G(u) is a divisor
of F(u), it contains a certain number of the a factors of
F(u), say

G(u) = (U-xX)(u-x,) - - -(U—x(k)), where k a-I.
The coefficients of G(u) belong to the realm B, but since
they are rational functions of x, they also belong to the
realm A.  Hence also they belong to the realm D which
is the greatest common divisor of A and 23. But in D
the quantity x satisfies the irreducible equation H(u) =0.
It follows (Art. 39) that G is divisible by H. But since
H is divisible by G, it follows that

G=H and ab =cd.

It may be proved as follows that instead of assuming 21
to be a Galois realm in the above statement, it is sufficient

to assume that is a Galois realm.

In 91 the quantity x satisfies the irreducible equation
Fa(u) = (u-x)(u-x,)- - -(u-x(a-1))
and in D it satisfies the irreducible equation

If is a Galois realm, the roots of H(u) are all rationally

expressible in terms of x.  Further since G(u) is a divisor
of H(u), it follows that the coefficients of G(u) are rational
functions of x and therefore belong to the realm A,  But
in the equation G(u) =0 the coefficients are quantities in
the realm B; consequently they belong to the realm D.
In D, however, the function H(u) is irreducible and since
x satisfies G(u) =0 and also H(u)=0 (the coefficients of
both equations being rational in the realm D), it follows
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that G(u) is divisible by H(u) and consequently as above
H(u)=G(u) or ab =cd.

Art. 77. The Relative Equality of Two Realms. Asan
example of what has been given above we may introduce
as a new conception that of the relative equality of two
realms. Let R be a fixed stock-realm and with respect
to this realm consider the realm A in which the quantity
X is a primitive quantity satisfying an irreducible equa-
tion Fa(u) =0 of degree a so that A= R(x). Hence every
gquantity of the realm A is expressible in the form (Art.
44)

g0+glx+g2x2+---+ga-1xa-1,
where the g¢'s are rational quantities of the realmR.

If A" is another realm taken with respect to a new
stock-realm R' and if x is a primitive quantity of A' so
that A'=R(x) and if the quantity x satisfies the same
irreducible equation Fa(u) =0 with respect to R' as it
did with respect to R then we may say that the two

realms and are relatively equal. The coefficients

of the equation Fa(u) =0 belong to both realms R and R
and consequently to the greatest common divisor of
these two realms. Every quantity in A and A" may be
expressed in the form

g'0+g'1x+g'2x2+--+g'a-1xa-1

where the coefficients belong to the greatest common
divisor of the realms R and R'

It is seen that if cd =ab, the realms and are rela-
tively equal; for in the quantity x is a primitive

quantity which satisfies the irreducible equation
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and in the quantity x is likewise a primitive quan-
tity which satisfies the irreducible equation
And from above G(u) = H(u).

Art. 78. Consider again (Art. 68) the four realms A
B, C, D. We saw that if B = R(y) is taken as the realm

of rationality, the quantity x satisfies the irreducible
equation The realm D being a divisor of B,

it is evident (Art. 68), if t=(y), that we have the follow-
ing system

t(d-1) = W'y(d-1)) =w(y1(d-1)) = - - - =y(ym-1(d-1)),

b=m-d.
Since 33 is a divisor of 21, it follows also that (see Art. 73)

when

If further ab=cd, then from Art. 76 we have
H(u, )=G(u, y),

and consequently also

Fa(u)=G(u, y)G(u, y) - - - G(u, y(d-1)).
Hence if we suppose that B is a normal realm, then since
G(u,y) is irreducible in the realm R(y), as are also
G, y), G(u,y"), - G(u,y(d-1) (Art. 73), it is seen
that the function F(u) irreducible in R has the above
factors irreducible in R(y).

Art. 79. We may next consider the norm of several
realms. If x is the root of an irreducible equation, and
if x', x", - are the quantities conjugate to x, we define
the product x- x'- x",-- - as the norm of any one of the
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guantities x, x', x", -, x(a-1) and write this product
=N(X) =N(x') =---.  From x s derived the realm R(x);
from x' the realm R(X'); etc. These realms we called
conjugate realms (Art. 45) and their product we called
the norm (Art. 53) of the realm R(x) so that
RX)R(X) - - Rx(a-1)) =R(x, x', - -, X(@-1)) =N[R(X)]
=N[R(X)] =" =N[R(x(a-1))]
Theorem I.  The norm of the product of several realms
is equal to the product of their norms. Suppose we have
given the two realms R(x) and R(y). The product of
these realms, that is R(X)R(y) = R(x, y) forms a new
realm, say, R(z), where z satisfies an irreducible equation
of degree c. We wish to prove that

R(z,z" - - z2(c-1))
=R(X1 X.’ T X(a_l) Y, ¥, y"’ T y(b_l))
This equality may be proved by showing that each of

the realms is divisible by the other.

From the equality of the realms

R(@@) = R(x, y),
we have
z=x(x,y),  x=6¢(2), y=u(),

where all the functions are rational in their arguments,
the coefficients belonging to the stock-realm R It is
evident since x=¢(z), that R(x) is a divisor of R(z2);
and, if we form

(@) 6", ¢(z(c-1)),

these quantities are conjugate to X, each one being
repeated c/a times. In the same way the quantities

w(z), (") Y(z(c-1))
are the quantities conjugate to y, each one being repeated
1 Gauss, Werke, 1, p. 103 (1831); Kummer, Journ. d. Math., Vol. 12, p. 187.
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c/b times. We have at once
R(X’ Xl’ T X(a_l) Y.y, y"’ N y(b_l))

=R[$(2), (), - - #(z(c-1), (@), - - -, Y(z(c-1)).
from which it is seen that every rational function of the
realm R(x, x', -, x(@1) vy,y,y" ---yb-1)). is a rational
function of the realm 9%o z', - - -, z(c_1)) and consequently
the first realm is a divisor of the second; or as it may be
expressed symbolically

(1) R, X', - y,VY, - )<R( z', ---,z(c-1)).
On the other hand, since
z=X(x, y), we have
2=X[$(2), ¥(2)J,
where in the latter expression the coefficients belong to
the realm 9L It follows that

zZ'=X[9(z"), v(z)],
and consequently
=X, y)
It is thus shown that z' is a rational function of x' and y'
and similarly z" is a rational function of x" and y", etc.
It follows that z, z', z', ., z(c-1) belong to the realm
R(x, X', -, x(a@-1) vy,y,y", - y(-1)) and consequently
@ R@ 2, 2C-1)<REX, Yy, Y- )
From the inequalities (1) and (2) results the equality
R(X, X', Y, y', .. ) = R(Z, Z', "',Z(C-l))
Theorem Il. The norm of the divisor of a realm is a
divisor of its norm. Let C=R(z) be a realm of degree ¢
and let z, z', ---,z(c-1) be the quantities that are con-
jugate to z, so that
R(z, z', ---,z(c-1)) is the norm of C
Further suppose that A= R(x) is a divisor of C where
the degree of A is a and denote by x, X', - - -, x(a-1) the
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guantities that are conjugate to x so that R(x, x', - - -,
x(a-1)) is the norm of R(x). Since A is a divisor of C,
every quantity in 21 is also contained in (5, and conse-
guently x=¢(z) where ¢ denotes a rational function.
The conjugate quantities are x'=¢(z"), X" =¢(z"), ---;
and these quantities x', x", .. are quantities of ift(x',
x", -+ ) which is the norm of R(X) = A, while z', 2", - -
belong to the norm of R(z) =C. Hence every quantity
belonging to the norm of x is also to be found in the norm
of z, so that the norm of A is a divisor of the norm of S.

Art. 80. We defined the realm A = R(x) as a normal or

Galois realm (Art. 45), if R(x) = R(X) =+ = R(x(a-1));
that is, if the realm R(X) is equal to its norm.
Theorem Ill. The least common multiple and the

greatest common divisor of two normal realms are normal
realms. Let A=R(x)and B = R(y) be two normal realms,
where x', X", -+ -, x(a-1) are the quantities conjugate to x
and the quantities y', y"', -, y(b-1) are the quantities
conjugate to y. Further suppose that C = R(X, y) = R(2)
is the least common multiple of 21 and SB so that

X =0(z) y=Uy(2) and  z=x(x ),

¢, ¥ and x denoting rational iunctions. lhe quantities
&(2), d(z), - - -, (z{c-1)) are conjugate to X, each repeated
c/a times; while Y(z), ¢'(z), 1 -, Y(z'c~r’) are conjugate to
y, each repeated c b times. Since z=x(X, y), it follows
(see preceding article) that z' = x(x', y"), so that z' is a
rational function of x' and y'. But since X' is a rational
function of x while y' is a rational function of y, and as
x and y are both rational functions of z, it is seen that z'
is a rational function of z. Similarly it is seen that z"
is a rational function of z, etc. It follows that C is a
normal realm.

Next let the greatest common divisor of two normal
realms A and B be D = R(t), so that t=¢(x) and t=y(y),
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where ¢ and  denote rational functions. Further every
guantity that may be rationally expressed in terms of x
and also in terms of y is found in the realm D and con-
sequently is a rational function of t.

Let the quantities that are conjugate to t be t' = @(x"),

t" =@(x"), -+ -; and correspondingly let

L=0@), =gy

It is seen that t' is a rational function of x', and conse-
guently also of x, since X' is a rational function of x
similarly t' is a rational function of y; and being a rational
function of both x and vy, it follows that t' is a rational
function of t.  Similarly it may be shown that t", t'**, - -
are rational functions of t, and consequently D is a normal
realm.

Art. 81. Let C be a normal realm and consider all
divisors of this realm; of these divisors select those which
are also normal realms. Let C'and C" be two such realms.
Suppose further that it is possible to find a divisor 51 of
C which is contained in C' and in which C" is contained.
If A, C" and C" are different from one another 5! is said
to lie between C' and C" or

C'=A=C"
And this means that C' is divisible by A and A by C"
Realms which have besides themselves and 91 no other
normal divisors are called simple realms.!

Suppose that C is not a simple realm and that it has
the normal divisor C3. Suppose also that there is a
normal divisor between C and C3 and denote this divisor
by ClL We next see whether between C and Cl there
lies a normal divisor. Suppose that this is not the case,
but suppose that between C1 and C3 there lies the normal
divisor C2.  We further assume that between Cl and C2;

I Camille Jordan, Math. Ann., Vol. I, p. 142, and Traite des substitutions, p. 41.
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C2 and C3; C3 and 9t there lie no other common divisors.
We say that the realms

C, CL C CyR
form a connected chain of normal divisors.

In order then that the above realms form a connected

chain of normal divisors, it is necessary that
C>Cl1=>C2=C3>R,

and that between two successive divisors no other normal

divisor appears.

Art. 82. It may next be shown that such a repre-
sentation of a connected chain of normal divisors is
unique and completely determined if the sequence of the
divisors is not considered. Suppose that we have found
in any manner the connected chain of normal divisors

C, CL, C ---, Ck R
and suppose that the degrees of

are

Suppose further that we have found in another manner
the connected chain of normal divisors C, C'1,C'2, -, C'k,
R and suppose that the degrees of

are

We shall show that the numbers ¢, cl, ¢2, ---, ck are
identical with the numbers ¢, ¢'l, ¢'2, -, c'k, if the sequence
is neglected. By assuming the truth of the theorem for
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the divisors of C which are of lower degree than S, we
may show it to be true also for the series including S.
Take the two connected chains of normal divisors

C, A AL ---, R

C B Bl .-, R
in which the A's and SB’'s are different. We shall show
that the realms of both series are relatively equal (Art.
77) to one another.

Let D be the greatest common divisor of A and SB.
Let d, a, b be the degrees of these respective realms. It
was seen in Art. 80, end, that D is a normal realm. As
there is no divisor between C and A and none between
S and SB, it is evident that C is the least common multiple
of A and B (Art. 47) so that C=A-B. We may show
that C, A, D and C, B, form connected chains. To
prove this we need only show that if there were a normal
divisor between A and T), then there would be also one
between C and SB; and if there were one between B and
D there would be one between C and A. Suppose that
A' is a normal divisor between A and D and let C' be
the least common multiple of A" and B. We assert C'
lies between C and SB. For it is clear that S' is a normal
realm that is a divisor of S and a multiple of SB. We
have then only to show that S' is equal to neither S nor
to SB. The greatest common divisor of A" and B is D,
for D is the greatest common divisor of A and B and
further A' is a divisor of A while D is a divisor of A’
and B.

If ¢' is the degree of C' and a' that of A', it follows since
the realms are normal realms (Art. 76), that

c'd=ab and cd =abh.
We thus have
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Since a=a', it follows that c=c' and therefore C=C'
Further A' is different D, it being >D. It follows that
A' is not a divisor of B; and since A' is a divisor of C', it
follows that C' is different from B. Hence if between A
and D there were to lie a normal realm, there would also
be one between C and B and vice versa. Hence C, A £)
is a connected chain as is also C, B, D.

Art. 83. Consider next the following four chains of
normal divisors:

() C, A D, D, -, R
@2 C, A Al A2 -, R
3) C, B B1 B ---, R
4 C, B, DD, ---, Rt

Since S =AB we have ab=cd and hence also

and

(Arts. 75 and 76). Hence if we take the series (1) and (4)

it is seen that these series are identical, only the first two
terms are interchanged. It is also seen that (1) and (2)
are identical by hypothesis, since they have the terms
C, Ain common and the theorem is supposed to be true
from A to R, Similarly (3) and (4) are identical, and
consequently also (2) and (3) are equal, since the quo-
tients in both series are neglecting the sequence relatively
equal.
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Art. 84. With the material which has been formu-
lated, we are now able to state the following theorem. We
know that the root of an algebraic equation is expressed
through its coefficients and involves the extraction of roots.

Theorem. Suppose that we have an irrational quantity
which has been found through the extraction of roots: let
rational functions be formed of this quantity, the coefficients
belonging to afixed realm. Then form another guantity by
extraction of roots of these functions.  Furtherform rational
functions of this new quantity, etc. The root expression so
formed satisfies an algebraic equation. Form the norm C

of this equation. The numbers that are there-
with determined, are powers of prime numbers, if C is the
norm of a solvable realm  Reciprocally, if are

powers of prime numbers, then C is the norm of a solvable
realm.! For the truth of the theorem it is not necessary
that the chain of normal divisors be a continuous one.
The necessary and sufficient condition that the quantities
of a realm be expressible through the extraction of roots

is that the integers be the powers of prime

numbers. Galois stated the theorem for prime numbers
(but not for powers of these numbers), viz., that such
an equation could be solved through the extraction of
roots and that the roots could be expressed rationally in
terms of one another.? Jordan observed that the num-

bers are invariant. It may also be observed

that the associated realms themselves are invariant.

1 See for example Frobenius, Crelle, Vol. 100. Sylow, Math. Ann., Vol. V, p.
589. Holder, Math. Ann., Vol. 34, p. 47.

2 Camille Jordan, Journ. de Math. (2) T. 12, p. 111.  Camille Jordan, Journal
de I'Ecole Poly., Vol. 38, p. 190 (1861). Abel, Oeuvres, 11, p. 222 and pp. 233, 256,
260, 262, 266, 270, 279.
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Art. 85. Realms of Rationality That Are Associated
with the Cubic Equation. Write the general cubic in the
form

X3 — pIx2+ p2x — p3 =0,
and denote its roots by X0, x1, x2. Let the quantities
pl, p2, p3, w, where w is a cube root of unity constitute a
stock-realm R. To this realm adjoin the quantity x0
and denote the realm R(x0) by A, which is evidently of
the third degree. The conjugate realms are R(x1) and
R(x2). Form the normal realm (Art. 53)

R(X0O)R(x1)R(x2) = R(x0, x1, x2) =R(x0, x1) = C,
say. Consider next the linear expression
Z = X0+ wx! + w2x2,

and note that the six values that this function may take
when z0, Xi, x? are permuted, are

Z =x0 + wx1 + w2x2 w2z =x1+wx2+w2x0
1) Wz = X2 + wx0 + w2x1
Z' =X0 + w2x1 + wx2 w2z' =x2 + wx1 + w2x0,

Wz' =x1 + wx0+ wW2x2.

Since zz' =p21-3p2, it is seen that the z' may be expressed
rationally in terms of z, since w is an element of the stock-
realm. The same is true of all six of the above values.
It follows | that z is a primitive quantity of the realm C,
so that C= R(2).

Consider next the third powers of the six quantities in
(1). Itis seen that only z3 and z'3 are different. These
quantities z3 and z'3 belong therefore to a quadratic
realm. Further note that the square root of the dis-
criminant is a two-valued function of the third degree in

1 Lagrange, I11, 403 writes: “ Voila, si je ne me trompe, les vrais principes de la
résolution des équations et I'analyse la plus propre a y conduire; tout se réduit,
comme on voit, a une espéce de calcul des combinations, par lequel on trouve a
priori les résultats auxquels on doit s’attendre.”
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z, the two values being &Ehd - V-D, where
@ D=(x0-x1)2(x1-x2)2(x2-x0)2.  For it is seen that
VD= +(x0-X1) (X1-X2)(X2-X0),
73 = %(2pil—qplp2 + 27p3) +32~/-3VD;

and the interchange of x1 and x2 in (1) and (2) changes z
to z' and VYD and-v-D. And it is evident that one of
these quantities may be expressed rationally in terms of
the other. It follows that the realm of the sixth degree
contains the realm, say B =R(vVD), which is a normal
realm of the second degree. It further contains the
realm A= R(x0), which is not a normal realm. Hence
the realm C is the least common multiple of the realms
A and B. Let D be the greatest common divisor of
these two realms. From Art. 76 it is evident that the
relation cd=ab exists among the degrees of the four
realms A, B, C, D, so that

If the realm C is considered with respect to the realm B,
it is seen that C is of the third degree and may be written
C=R(x0, x1) = R(x0, VD). Further since C is a normal
realm, the quantities X!, X2 may be exrpessed rationally
through x0 and VD.
To verify this, observe that
VD =(x1-x0)(x2-x0)(x2- x1),
F(X) = (x-x0) (x-x1) (x-X2),
F'(x0) = (x0—x1) (xO-x2).
It is seen that

and since x2+x1= pli—x0, it results that
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and

In the same way it may be shown that

In Art. 81 a connected chain of normal divisors was
defined. Such a case is present here, namely, C of the
sixth degree, B of the second degree, A of the third
degree and R of the first degree. Their quotients offer
the prime integers 3 and 2; and to this is due the fact
that the cubic may be solved through the extraction of
roots. Thus it is seen that if the radical vD be con-
sidered among the quantities regarded as known, it is
possible in the realm of R(VD) to express any root of a
cubic as a rational function of any other root and known
guantities.  (See Serret, Algebre superieure, Vol. 11, p.
406). Similar results were derived by the author for
the roots of the biquadratic. See examples and refer-
ences at the end of the chapter.

Art. 86. Realms of Rationality Connected with the
Biquadratic. Wsrite the biquadratic in the form

F(x) =ax4+-4bx3 +6¢cx2+4dx+e=0
and denote its roots by X0, xI, x2, x3. Next form the
normal realm
R(X0R(x1)R(x2)2R(x3) = R(x0x1, X2, x3)
=9R(x0,x1, x2,) = C,

say. This is a realm of the 24th degree, since the four
roots may be permuted in 24 ways. In the Theory of
Equations (see for example Burnside and Panton, Fourth



Edition, 1899, Art. 61), it is seen that

ax0+-b =vVp-vqg-r, axl + -b = Vp+Vq-Vr
ax2 + -b = Vp-vVg+Vr ax3 + -b = Vp+Vg+vr
where p, g, r are the roots of Euler’s cubic

It is evident that x0, X1, X2, x3 may be expressed rationally
in terms of Vp,vg,vr and vice versa; and consequently
it follows that
C =R(x0, x1, x2) = RVp,Vq,Vr).

From this it is also seen that S contains the realm of all
rational quantities in p, g r, and that is the realm
R(p, g, r) =B, where B like C is a normal realm being
equal to R(p), R(q), R(r), the quantities p, q, r being the
roots of a cubic. It was seen in the preceding article that
53 in its turn contained the normal realm of the second
degree R(VD) =A, say; while A contains the stock-realm
R of the first degree. The quotients of the degrees of

these realms are vhich are powers of

prime integers.

It follows from Art. 84 that the associated equations
are solvable. If further the realm C is considered with
respect to the realm B, then C/B is of the fourth degree
and x0 is a primitive quantity in it. It results that the
other roots x!, X2, x3 may be rationally expressed in terms
of X0, p, g, 1.

EXAMPLES
LIf
ax0+b= Vp+ vg++Vr=0 and axl+b=Vp- Vg- vr=T,

show that the rational relations

T4+Tio+3H(T2+To +6p)+G(30+5T)-2p(T2+2To-6p)

= 0’
04+03T+3H(02+0T+6p)+G(3T+50)-2p(02+20T-6p) =0
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exist, where p, g, r are the roots of the equation

and that is: 0 may be expressed rationally in T and vice versa.

2. Show that the following integral relations exist:
O0=T[8p3+12Hp2+G2]+4pla3+2Gpa2+ (24Hpi+G2)a+6Gp(2p+H)
with another equation having T and o interchanged and five other

similar pairs of relations.

3. Write

where A is the discriminant of the biquadratic, and show that Ao, Al,
and A! are integral functions of H, G2 and 1.
4. Write
G2alAT= Clo3+Clo2+Clo+C3; G2aiAo= C0T3+CIT2+C2T+C3
and show that C0, Cl, C2, C3 are integral functions of p with coefficients
that are integral functions in H, G2, 1.
5. Show that if the equations 8t3+12Ht2+G2=0 and the Euler

Cubic (where G#0) have a common

root, the original biquadratic has a double root.

For solutions of Examples 1-5, see Am. Math. Monthly, Vol. XXVI,
pp. 292-5, where they were given for the first time by the author.

6. In Art. 53 let x, x', x" be roots of x3+Ax+B=0. Write
0=2T+3T'+x", ¢'=2T'+31+2", 0"=2X"+31' +z, 0"'= 2T+3X"+T',
0(4)=2x"+3x""+X, g(b) = 2X"+3x+X".

Further write ¢(t)= (t-0)(t-0")- - - - (t—0(5)). Calculate x from the

formula

Similarly determine x' from Finally de-

termine x" as a rational function of ¢; also determine ¢' and ¢ as
rational functions of o.



CHAPTER IV
ALGEBRAIC INTEGERS

Art. 87. A quantity x is by definition an algebraic

number if it satisfies an irreducible algebraic equation

tnHipldtnt2l+ - - +an-1+an=0,

where al, a2, - -, an are integral or fractional numbers
that belong to a fixed realm of rationality !  and x is by
definition an algebraic integer if the quantities al, a2, - - -,
an are all integers in the fixed realm. This conception is
true also for the case of rational integers, for here n=1
and the equation which x satisfies is t—a=0.

If x is an algebraic integer, all the conjugate quantities
to x are algebraic integers.

The product of these quantities was called (Art. 59) the
norm of x [written N(x)]. The sum of these quantities
may be called the spur? of x [[written S(x)]. It is
evident that the spur and norm of an algebraic integer
are rational integers; for in the above equation

Sx)=-a and N(X) = (-L)nan

If an algebraic quantity satisfies a reducible or an irre-
ducible algebraic equation, in which the coefficient of the
highest power =1, while the remaining coefficients are all
integers belonging to a fixed realm, the algebraic quantity is
integral.

For, if the equation is reducible, it may always be

1 Those who are reading this subject for the first time may consult with
advantage a paper by L. J. Mordell; ““An introductory account of the arithmet-
ical theory of algebraic numbers, etc.” Bulletin of the Am. Math. Society, Vol.
29, p. 445.

2 Dedekind, § 167 of the Dirichlet Zahlentheorie:, see also Dedekind-Weber,
Crelle, Vol. 92, p. 188.

110
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resolved into irreducible factors in which the coefficient
of the highest power of the variable =1, and the other
coefficients are all integral (Art. 10). One of these
irreducible factors must be satisfied by the algebraic
guantity, which is consequently an algebraic integer.
This may also be shown as follows: If
h(x) =xn +clxn i+cxn-2+ - - +cn-1x-+cn,
where the c’s are integers, and if h((x)=f(x) -g(x) where

and

the integers a0 al, - - -, ar and the integers b0, bi, - -,bs
having no common divisor, save unity, then is al =1 =b0.
Fou
alblh(x) = (alxr+alxr-1+ - - - +ar)(b0xs + blxs-1 - - - +bs).
If p is a prime integer that divides alb0, then (Art. 4) it
must divide one of the factors on the right hand side.
But the coefficients of neither of these factors have a
common divisor other than unity.

Making an application of this to the special case that x
is a rational number, we have the theorem:

Every rational root of an algebraic equation, in which the
coefficient of the highest power of x=1 and the remaining
coefficients integers, is integral.

For if (where r and s are relatively prime) is a

root of the equation
xn +alxn-1+axn-2 + - +an-1x=+an =0,
where the a,s are integers, then
rn+alsrm-1+az2sirm-2+ - - - +an-1sn-1r+amnsn = 0.
It follows that s must be =1; otherwise if p is a prime
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integer that divides s, it must also divide r, contrary to
the assumption that r and s are relatively prime. (See
also Art. 10.)

Algebraic numbers that are not integral are called
fractional algebraic numbers.!

Art. 88. That the algebraic integers are reproduced
by the operations of addition, subtraction and multi-
plication is seen from the theorems below.

Theorem |.  The sum of two algebraic integers is an
algebraic integer.

Let a and B be integers which satisfy the equations

or = alar-1+a2ar-2+ - - - +ar,

Bs = b1Ps-1+b2Ps-2+ - - - +bs,
where the a's and b,s are integers belonging to a fixed
realm R In the sequel, unless otherwise stated, this
realm R is taken as the realm of natural numbers;
and we shall denote it by R (see Art. 28). Further let

u=o+p
and iorm the n=r-s numbers
oapBs (p=0, 1, ---, r—1; ¢=0,1, ---, s—1),
which denote in any sequence by
wil w2, - - -, WN.
It is evident that
Py v=1,2, ---,n)
may be written in the form (Art. 52)
pwv=avlwl+av2w2 +---+amwn (v=1,2, ---,n),
where avl, av2, - - -, awn are integers (including zero) of R.

1 Dedekind, § 173 of the Dirichlet Zahlentheorie. Also see J. Kodnig, Ein-
leitung in die allgemeine Theorie der algebraischen Grossen. Teubner, Leipzig.
1903.
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Through the elimination of wb w2, .-, wn, we have
all —y, al2 aln
a2l a22 -y, an
:Ol
anl an2 ann -,

from which it is seen that p satisfies an algebraic equation
in which the coefficient of the highest power =1, the
other coefficients being integers in R.

In the realm R(1) for example, that is, in the plane of
the complex variable, algebraic integers are of the form
X—+iy where x and y are natural integers including zero.
Such integers offer easy illustrations of the theorem
iust proved, as also of the following theorems.

Another Proof. Write

and observe that the coefficients of this polynomial are
symmetric functions of the conjugate numbers a(l), a(2),
---, () as also of B(1),--- -, B(9).

Theorem Il. The difference of two algebraic integers is
an algebraic integer.

This may be proved in an analogous manner as Theo-
rem l.

Theorem Ill. The product of two algebraic integers
is an algebraic integer.

Let a and B be two algebraic integers defined as above
and let y=ap. Further denote the numbers

apBs (p=0.1, -- -, r—1; ©=0,1, - -, s-1)
in any sequence by wl, w2, -- -, wn. It is evident that
pwv=cviwl+cv2w2 +---+cvnwn (v=1,2, --,n),



114 THE THEORY OF ALGEBRAIC NUMBERS

where the c’s are integers (including zero) of R. The
proof is in the same form now as in Theorem 1.

If a is an algebraic integer and a a rational integer,
then aa is an algebraic integer; for a must satisfy an
algebraic equation

an=alan-1+aan-2+ - - - +an,

where the a,s are rational integers. It is also evident
that
(ac)n =aal(ao)n-l+a2al(aa)n-2+ - - - +anan,

where the coefficients are also rational integers. Simi-
larly it may be proved that any algebraic number
multiplied by a suitably chosen rational integer gives an
algebraic integer. (Art. 93). It follows further that
every function integral in any number of algebraic
integers with integral (rational in R) coefficients is an
algebraic integer. (Further see Art. 162).

There is still a fourth operation through which algebraic
integers may be reproduced:

Theorem V. If y satisfies an algebraic equation in
which the coefficient of the highest power =1, the other
coefficients being algebraic integers, then p is an algebraic
integer.

For let

pm =olum 1+ o2um-2-+ - - - + am,

where al, o2, - - -, am are algebraic integers which satisfy
the equations, say

(v=1,2, ---,m),
the quantities afy, a2, - -, am being integers in R.
Further denote in any sequence the m-rl-r2.-rm=n

quantities
p1=0, 1, ---, r1—-1, p2=0, 1, ---,r2-1,

pm=,1,-,rm-1 1,A=0,12, -+, m-1
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by wl, w2, -, wn. Itis evident as above that
pw =dviwl +dvw2 -+ -diwn =1, 2, ---,n),
where dvl, av2, - - -,dvn are integers (including zero) of R.

From now on the proof is the same as in Theorem I.
Corollary. Itfollows at once that if p is an algebraic

integer, then is also an algebraic integer, For write

then is I-xn—pm=0 and from above x is an
algebraic integer. If further pm is a rational integer and
if # is a rational root of xn—pum=0Q, then is x a rational
integer. (See last article).

Example. If a is a root of x3+x2+x+I1=0 and B a root of
X2-2x —1=0, determine the equations which have as roots a+,

a-3, ap.
If B is a root different from zero of the equation

Xn + Blxn-1+ B2xn-2+ - - - +Bn-Ix+Bn=0,
whose roots are rational numbers, then clearly

It follows that IIf satisfies the equation

and is an algebraic number. It is clear, if we put

that a-+y, ay, etc., are algebraic numbers as in

Art. 88. Hence, any expression formed of algebraic
numbers and rational integers in a rational manner is an
algebraic number.

Art. 89. Definitions. If a and B are two algebraic
numbers (integral or fractional), then a is said to be
divisible by B, if &P is an algebraic integer.
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The spur | and the norm of an algebraic quantity may
be defined relatively with regard to an algebraic realm
R(x) in which the given algebraic quantity is found.
Let x be a root of the irreducible equation f(t)=0 of
degree a and let the conjugate roots be xw, xw, ---,
x(a-1) if then a is a quantity that belongs to the
realm R(x), then is a = @(x) where @ is a rational function
with coefficients that belong to the stock realm R.
Relative to the realm R(x) the spur and norm of a may
be defined through the relations (see also Art. 59)

S(a) =@(x) + @(x(1)) + ¢(x(2)) +---+ @(x(a-1)),
N(0) = @(x) - o(x(1)) - - - @(x(a-1)).
If a and B are two algebraic quantities that belong to
R(x), then
N(a-B) =N(a)N(p)

and

Since the norm of an algebraic integer is a rational integer,
it follows that if a is divisible by B, N(a) is divisible by
N(B). The inverse of this theorem is not true: that an
algebraic quantity x be integral, it is not only necessary
that its norm be a rational integer, but also all the
elementary symmetric functions of the conjugate quanti-
ties (of which it is one) must be integral.

As in the case of division for rational numbers the two
following elementary theorems are true also of algebraic
numbers:

Theorem |. Ifais divisible by B, and B by y, then is a
divisible by y.

For if a B and B/y are two algebraic integers, then the
product (see Theorem Il in Art. 88) of two such integers

1 See Art. 59.
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is an algebraic integer; it follows that that is, is
an algebraic integer.
Theorem Il. If a and B are both divisible by k, then

adxpn is divisible by k, where £ and n are algebraic integers.

For sinc( and ¢ on the one hand, and andn on the
other, are four algebraic integers. and are alge-

braic integers, and also ie., is an alge-

braic integer.

e Theorem Il may be generalized as follows: If
the algebraic numbers, a, B, y, - are all divisible by «
and if & n, C - are algebraic integers, then also

is an algebraic integer.

Art. 90. Algebraic Units. An algebraic integer ¢ is
called a unit if 1 is divisible by €. Hence if € is a unit,

both ¢ and are algebraic integers. This definition cor-

responds to the definition of the rational unit 1. In the

realm 91(i) for example, the units are =1 and =i.
Every algebraic integer is divisible by any algebraic

unit. For if a is an algebraic integer and ¢ an algebraic

unit, then since is an algebraic integer, is an alge-

braic integer. If of two algebraic numbers (integers or
fractions) a and f, the one is divisible by the other, then
each of the quotients is an algebraic unit. For put
Bo=c¢and a B =e, where e and e, are algebraic integers;

then is B/a-a/p=¢€e' =1, so that and and con-
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sequently 1 is divisible by € and also by €', or ¢ and €' are
algebraic units.

A criterion by which it may be determined whether an
algebraic integer is a unit, is as follows. If ¢ is an alge-
braic integer, it satisfies an irreducible algebraic equation

en+elen-1+e2en-2-—+---+en-le+en =0,
where the e’s are rational integers. Writing in this

equation, we have

1+ele' +e2e2+----en-1en-l+ene'n=0,
or

This equation is also irreducible and in order that e be
an algebraic integer the coefficients in the last equation
must be rational integers. Further since len is a
rational integer, it follows that en==l. Hence a
necessary condition that ¢ be an algebraic unit is that en,
[i.e. N(e)] be = %1. Here it is immaterial whether the
norm is restricted (Art. 89) to a definite realm of ration-
ality or not. For when restricted to a definite realm
N(e) is a power of N(e) where N(e) is the product of the
algebraic integers conjugate to ¢ (including €).  (Art. 65).
The necessary condition, viz., N(e) = =I. is also a sufficient
condition that ¢ be an algebraic unit.

For if ais an algebraic integer, then N(a) is divisible by
a. To prove this note that if the irreducible equation
which a satisfies, is

an +alan-1+a2an-2 +---+ an=0,
where al, a2, -- -, an are rational integers, then

N(a) = (- Dnan= (- Dn-1(an+&n-1 +---—+ an-la)
= ( - Dn-1a(an-1+ alan-2+ - - - +an-1);
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and consequently is an algebraic integer; or N(a) is
divisible by a. Hence if ¢ is an algebraic integer and
N(e) = =I, then is an algebraic integer and conse-

quently ¢ is an algebraic unit. We have thus proved the
theorem:

The necessary and sufficient condition that an algebraic
integer ¢ be a unit, is that N(€) = =+lI.

Art 91. A system of units is reproduced through
the operations of multiplication and division; for we have
the two following theorems:

Theorem |. The product of two units is a unit.

Theorem Il. The quotient of two units is a unit.

For if e and €' are two algebraic units, then ¢ and €', as
also 1€ and 1/&' are algebraic integers; hence also €€' and

are algebraic integers and consequently €€’ is an
algebraic unit.

Further and are algebraic integers, so

that is an algebraic unit.

If a is an algebraic number and ¢ a unit, then a is
divisible by oe and also e is divisible by a. Two such
lumbers which only differ through a multiplicative unit,
of which the one is divisible by the other are called
associate numbers. The one may be said to be an
associate of the other. If a is divisible by B, then every
associate number of a is divisible by every associate

number of B For if is an algebraic integer, then also

is an integer if € and €' are algebraic units. Hence in
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the case of division any algebraic number may be replaced
by one of its associate numbers.

The power of a unit with positive or negative exponent
is always a unit, since the system of units is reproduced
through multiplication and division; in fact, if € is an

algebraic integer, then er/sis a unit. For if ¢ and

are algebraic integers, then also (Art. 88) er/s and €'t/s are
algebraic integers, so that «fs is an algebraic unit.

Art. 92. Congruences. If a, B, k are three arbitrary
algebraic numbers, we write a=f (mod. k), if a- is
divisible by k. From this definition we have the
theorems as in the usual Theory of Numbers:

Theorem I. If a=B (mod. k), then is also B=a
(mod. K).
Theorem Il. If two numbers are congruent to a third

(mod. k), they are congruent to each other.
For if o=@ (mod. k) and B=y (mod. k), then

and are algebraic integers and consequently

is an algebraic integer; that is, is an alge-

braic integer and a=y (mod. K).
Theorem IIl.  If a=(3 (mod. k) and a'=p" (mod. k),
then is also azxa'=B=xp" (mod. K).

For since and are algebraic integers, then

also

is integral. The analogous theorem for the multipli-
cation of congruences is not true, neither is it true for
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rational (fractional) numbers. For example, we have

10=1 (mod. 3)
and

but

If, however, q, B, o', B* are integers (rational or algebraic)
and k arbitrary (rational or algebraic) and if a=a' (mod.

k) and B=p"' (mod. K), then are and in-

tegers, so that

is integral, or ap=cx'f' (mod. K).

If we wish to proceed as in The Theory of Rational
Integers, we must first define a prime algebraic integer.
If we define an algebraic integer as being prime when it
can not be decomposed into two integers without one of
these factors being a unit, we shall find that there is no
integer which has this (see Arts. 28, 88, Corollary, 112)
property. This difficulty may be overcome if we limit
the algebraic integers to a fixed realm of rationality (Art.
112).

Algebraic Integers of a Fixed Realm

Art. 93. Suppose we have a definite realm of ration-
ality, say Q=R(J) of the nth degree. The algebraic
quantity 39 which determines the realm satisfies an
irreducible equation (Art. 60) of the nth degree, say
f(x) =0.

If a and B are two algebraic integers of this realm,
then since a and B are both rational functions of 3§, it
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follows also that y=a+f is a rational function of § and
can be expressed in the form (Art. 44)
g = c0+cld+c292+ - - +cn-19n-1,

where the c’s are rational numbers. Hence y belongs to
the realm R(x); and, as we saw in (Art. 88) p is an
algebraic integer. It follows that the realm R(p) is a
divisor of R(x) and (Art. 67) the degree of the irreducible
equation which p satisfies is a divisor of n. Hence the
algebraic integers of Q are reproduced by addition. In
the same way it is seen that they are reproduced by
subtraction and multiplication.

In a similar manner as in Chapter 111 where all quanti-
ties of a definite realm were expressed through a basis, we
shall now express all the integers of the realm Q through a
basis.

We may first show that the basis of a finite realm Q
may be so chosen that it consists only of algebraic
integers:

If 0 is any algebraic number, it satisfies a certain
algebraic equation of the form (Art. 87)

aldn +alin-1+ - - - +an-19 + an =0,

where al, al, - - -,an are rational integers. If we multiply
this equation by &%l and write a0d =n, it follows that
nn-+alnn-1 +alalnn-2 - - - +alaOn-1 =0,
where the coefficients are rational integers, the coefficient
of the highest power being = 1. Hence n is an algebraic
integer. We have thus shown that every fractional
algebraic number 3 may be expressed in the form n al
where 1 is an algebraic integer and al a rational integer; or
it is always possible to determine a rational integer al
such that a0d is an algebraic integer, 3 being any algebraic
number.

If then BI, B2, - - -, Bn form a basis of the realm Q, we
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may always determine n rational integers, k1 k2, - - -, kn,
such that kipL, kB2, ---, knPn are algebraic integers.
Further since these n integers are linearly independent,
they also form a basis of Q. Denote these n integers by
al, a2, - -, an. It is evident that the discriminant
A(al, a2, -+, an) is a rational integer. For this dis-
criminant is an integral function of the a's and of the
quantities that are conjugate to the a's which are also
algebraic integers; the discriminant is therefore integral.
In Chapter 11, Art. 22, end, we saw that the discriminant
is also rational; hence it is a rational integer. Further
since an, al, a2, -+ an. form a basis,
Aol a2, - - -, an) Z0.

If in the linear form alxl+a2x2+ - -+ onxn we write
for the x's all possible systems of rational numbers, we
have all the quantities of the realm Q (Art. 57). Among
these numbers are found all the algebraic integers of Q.
If for x1, X2, -+ -, xn we write only rational integers, we
have only algebraic integers of Q, although not necessarily
all the integers of this realm. If all the integers of Q are
not had in this manner, there is an algebraic integer, say
p, such that

where rl, r2, .- rn, r are rational integers without a
greatest common divisor and r>1. If r is not a prime
integer, it is divisible by a prime integer, p say, so that
r=pg, where p=>1 and q is an integer. It follows that

is an algebraic integer in Q. Hence, if the expression
alxl+ax2+ - - - +anxn offers an algebraic integer for
rational fractional values of the x's, there is a system of
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fractional values of the x's in which the common denomi-
nator is p and for which the linear form alx!l+ a2x?
—+---+anxn represents an algebraic integer ¢ of Q. As
the integers rl, r2, - -, m are not all divisible by p,
suppose that rl, is relatively prime to p. Two integers
s and t may always be determined such that

ris-pt=1.
It follows that

say, is an algebraic integer in Q.
We thus have

0l =pPB1-sr2a2—- - - —srnon.

It is evident that the n quantities B1, a2, a3, - - -, anform a
basis of Q; for if there were a linear relation among them,
there would exist a linear relation among the a,s, when
for B, its value in terms of the a,s was written.

The realm Q of the nth degree contains a primitive
quantity, sayd such that (Art. 61) all quantities of Q
may be expressed linearly through 1, 8, 92, ---, 9n-1
Let the n quantities conjugate with & be , 9", -
9(n), of which one is 8. Represent next the quantities
B2, al, --- anthrough 8. When this has been done the
equation

al —ppl+sr2al +---=+ srnan=0
is an identical relation in { and consequently also in the
guantities conjugate to We thus have the n relations

all) = pPBiY) — sr2al) — sr3a3(A)----- srnan) A=, 2, -, n).

From the theorem in determinants that the determinant
remains unaltered if to one column the elements of
another column multiplied by a constant factor are
added, it follows that
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@ " pBL 02 u
T a'n pp!
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a() 02(n) an(n)
and consequently A(al, a2, - - -, an) =pABL, a2, - - -, an):
From this formula it is seen that 3{, a2, a3, - - -, an form a
basis; for A(al, a2, - - -, an) is different from zero due to
the fact that al, a2, ---, an form a basis. It is also

evident, since p>I. that
AR, a2, - - -, an)<A(al, a2, - - -, an)| -

Hence if there are any algebraic integers of Q which may
be expressed through rlol+ r202+: - -+rnan when the
r's are rational (fractional) numbers, then it is always
possible to determine a basis consisting of another set of
algebraic integers, and such that the discriminant is less
than A(al, a2, - -+ an)|.

If further the linear form r1B1+ r2a2+: - -+rnon repre-
sents algebraic integers of Q for a system of fractional
values of the rs, by proceeding in the same manner we
may derive another basis consisting of algebraic integers
and such that the discriminant is less than  A(BL, a2,

--,an) . By this process the absolute value of the
discriminant which is a rational integer becomes smaller
and smaller. We must therefore finally come to a basis
wl w2, -, wn which consists of algebraic integers and is
such that the linear form xlwl+X2w2 + ---+Xnwn Nno
longer represents an algebraic integer for a system of
fractional values of the x’s. This special basis is called
the basis of all algebraic integers of the realm Q. It has
the following three properties: (1) The quantities wi, w2,

- -, wn are all algebraic integers. (2) Its discriminant
#0. (3) If in xlwl+x2w2+---+xnwn all possible sys-
tems of integral rational values are written for the X’s,
we have all the algebraic integers of Q (and only these).
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This last property which is the fundamental charac-
teristic of the basis of all algebraic integers of Q may also
be formulated as follows: The basis of all algebraic
integers of Q consisting of w1l w2, - - -, wn is such that an
algebraic integer of Q which is expressed through this basis in
the form xlwl+x2w2+---+xnwn is only divisible by a
rational integer k when the integral rational coordinates
(Art. 62), x1, x2, - -, xn are all divisible by k.

Art. 94, Let wl w2, -, wn be a basis of all the
integers of Q and let al, a2, - - -, an be an arbitrary basis of
Q. We have

av = avlol +av2w2+ - - +avnon  (v=1,2, -, n),
where avl, av2, -- -, am are rational numbers. We again
suppose that all the quantities of Q are expressed through
9, where 9 is defined as in the preceding article. When
for 8 we write its conjugate values, we obtain the n
equations

& avlwl(k) +av2w2(k) +--+avnwn(k) (p, %=1, 2, .., n).

From these relations we have, due to the theorem for the
multiplication of determinants,

&< IbvER)|
and consequently if A = |avK|,
A(al, a2, - - -, an) = A2A(wl w2, - - -, wn).

It follows from this last expression that all discriminants
of Q must have the same sign. If as we have supposed,
the a,s are linearly independent, then A must be different
from zero (Art. 55); if however, the a's were linearly
dependent, then A must be zero.

If further the a's are all algebraic integers, then the
guantities av,k are all rational integers, as is therefore also
A.

A the a's, like the w's, form a basis of all algebraic
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integers of Q, then is
AWl w2, - - -, wn) = A%A(al, o2, - - -, an).
It follows that A2A"2=1 or A2=A"2=1, and consequently
A(al, a2, - - -, on) =AWl w2, - - -, W)

Thus we see that the discriminants of the different bases
of all algebraic integers of Q are equal. We note then
that the discriminant of the basis of all integers of Q is
independent of what basis of all the integers of Q has been
chosen. It is the most important invariant of the realm
Q. We may call it the basal invariant (Grundzahl) of Q.
It was denoted by D or A(Q) by Dedekind (see p. 538 of
the Dirichlet Zahlentheorie, Fourth Edition).

There are, of course, an infinite number of systems of n
algebraic integers of Q whose discriminant =D, and these
systems of n integers form bases of all integers of Q.
The basal invariant D is in absolute value a minimum
among all the discriminants (different from zero) of any
n integers of Q. The basis wl w2, - - -, wn is sometimes
called a minimal basis of Q.  We have the discriminant of
all other bases of Q consisting of n algebraic integers if D
is multiplied by certain positive integers A2 which are
different from zero.

If al, a2, -, an is an arbitrary basis of Q and if
K== |av/k|, then is

A(al, a2, - - -, on) = KIA(wl w2, - - -, wn)
The number K is called the index of the basis al, a2, - - -,
an. It follows that the discriminant of a basis is equal to
the product of the square of its index by D. If the
index of n algebraic integers, an, a2, - - -, an is equal to 1
and consequently also |av,k|] ===1, these integers form a
basis of all integers of Q. For if we solve the n equations

av = avlwl + av2w2+ - - +avnen  (V=1, 2, ---,n),
with respect to wl w2, - - -, wn, then, since |jav,k| =%1, it
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follows that each of the w's is a linear function of the a’s
with rational integral coefficients. Hence if all the
integers of Q can be expressed linearly in terms of the
w's with rational integral coefficients, they can also be
expressed linearly in terms of the a's with rational
integral coefficients.

If as a special case, a basis consists of 1, §, 82, - -, 9n-,
where § satisfies an irreducible equation of the nth
degree, fit) =0, say, then is

with respect to the realm Q=R(3). Here A(l, 8, ¥
-+, 9n-1) is called the discriminant of the number 9 [And
written A(8) ], or the discriminant of the equation f(t) =0,
while K is called the index of the number & or the index
of the equation f(t) =0.

Art. 95. Theorem. If«wl, a2, - an are n algebraic
integers and if is also an algebraic
integer, where c, ci, c2, - - -, cn are rational integers without a

common divisor, then is the index of the discriminant of the
a's divisible by c.

We have A(al, a2, - - -, an) = KD, where K is a rational
integer, since by hypothesis the a's are integral and
K==t latl, and the quantities avk are rational integers
defined through the n equations

ov=avlwl + av2w2+ - - - +avnwn  (v=1,2, -, n),
It follows that

If the left hand side of this expression is divisible by c,
then since the coefficients of the linear form xlwl+x202 +
- -+ xnwnmust all be divisible by ¢ (see end of Art. 93),
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each of the n expressions clavl + c2av2 +- - -+cnavn must be
divisible by c. If in the determinant opt we denote the
first minor of any element avk by Avk, it is seen that the
expression

(1)

is divisible by c¢. But this expression is

Each of these summations is zero except

which is equal to ckA, where A=K. Since k may take
the values 1, 2, - -, n, it is seen that the quantities CiA,
c2A, - - -, cnA and also cA are divisible by c.

But since the integers cl, ¢2, - - -, ¢n, ¢ have no common
divisor, we may always determine n+1 integers ki, k2,
-+ -, kn, k, such that

klcl +k2c2' + -+kncnAtkc= 1.
It follows also that
cl Akl-+c2 Ak2-+- - -+cn Akn+c Ak = A,

and as clA, c?A, .- -, cnA, cA are all divisible by c, it
follows also that A is divisible by c. This proves the
theorem since A =K.

Art. 96. Hilbert, Bericht, § 3, calls the product
o) = (@ —= ™ &) (a-a(n-1))

the different of the number a.
Writing
f(x) = (x -a") (x -a"). - - (x -a(n-1)),
it is seen that
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And it is further seen that

Observe that if a is an algebraic integer, its norm and
discriminant are rational integers, while &(a) is an
algebraic integer. Observe further that if $ is a number
that determines the realm R(3), then d(9) and A(3) are
both different from zero, and inversely (Arts. 61 and 63).

Another proofl that in a realm of the nth degree there
are always n algebraic integers wi, w2, - - -, wn, such that
every other integer w of the realm may be expressed in
the form

0= x1wl + x2w2 +: - -+ xnwn

where the x,s are rational integers is as follows:

Proof. Let a be an algebraic integer which determines
the realm so that Q= R(a). Then every number o of the
realm may be expressed in the form (Art. 54)

W =rl4+ro+- - -+rnon %
where the r’s are rational numbers, and the conjugate
values are

W' =rl+r2a'+- - -+rna'n -1,
wn -1 =rl+r2an -1+ - -+rn(a(n -1))n -1,

Solving these equations in determinant form, it is seen
that

(=12 .., n),

1 The kernel of this proof is found in Lagrange, “ Réflexions sur la résolution
algébrique des équations,” Oeuvres, 111, § 100. See also Kronecker, Crelle, Vol.
91, p. 307; Jordan, Traité des substitutions, p. 262; Netto, Substitutionentheorie,
Chapter V; Hilbert, Bericht, § 3.
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where d=A(a) is a rational integer and Ai being clearly
integral (and =dri), is rationally integral.

It is thus seen that every integer of the realm may be
put in the form

where d =A(a) is the discriminant of a and where the A’s
are rational integers.
Suppose that all the integers of the realm are collected

in the n groups G, G2, -+, Gn. In the first group G1 let
all the integers of the form be collected, where
i=1 2, ---. As all rational integers appear in the
realm, it is seen that Cli=id, i=1, 2, - -; and we may

accordingly write as the first basal element wl=1.
In the second group G2, write all integers of the realm
of the form

(i=1,2,--+)

Let the greatest common divisor of the integers Ci()
(i=1, 2,---;) be Cl) We may accordingly write

where () are rational integers.
Since > Cli(w2i are integers of the realm, it is seen that
as a second basal element we may take

which is an integer of the realm and Cl{2) is reduced
(mod. d).
In the group G3 put all integers of the form

(i:l, 2, ,)
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Let () be the greatest common divisor of Ci@y (i=1, 2,
---). Since integers Cli(jmay be determined such that
> G633 =C3(3) and since is an integer of the

realm, we may take as a third basal element

where C2(3) <C22), use having been made of w2, and where
(k) is reduced, mod. d.
Continuing this process, we form the basal elements

where G is the greatest common divisor of all the
integers Cif) (1=1, 2, - ), and where
Oll)  <OklfD)  Ck-2(k)<Ck-2(k-2) k=1,2, -, n).

The integers wi, w2, - -, wn are the basal elements
required in the theorem. For, if 0 is any integer of the
realm, it may be written in the form indicated above.
Observe that An is divisible by Cn(n), so that, say An=gnCnm.

It follows that

where Arl(l) is an integer divisible by Cnirl) and where
AL(L), A1), ---, An2?2) are rational integers. Writing
An-1(1) = gn-1Cn-I(n-1) it is seen that

where Al1(2), A2(2), -, An-3(2) are rational integers and
An2(2) is divisible by Cn2(12  Proceeding in this manner it
is seen that

w-gnun-gn-lon-1 + -+ q20w2~qlwl=0,
as asserted in the theorem.
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Quadratic Realms

Art. 97. Before going farther into the general theory,
it may be well to apply certain of the principles already
developed to some of the simpler realms, in particular to
the quadratic and cubic realms. If Q is a quadratic
realm, there exists in it a quantity 9 which satisfies an
irreducible quadratic equation of the form

adl+bd+c=0,

a, b, ¢, being rational integers without a common divisor.
It follows that

In this expression write b2 — 4ac = k2d, where the integer d
does not contain any square factor. We then have

or

The quantity d is different from 0 or 1, otherwise the
equation would be reducible. Note that the realms
R(Vd) and Q= R(1J) are equivalent. It may be observed
also that every quantity of the realm has the form
b0+b1d (Art. 44). It is seen that 1 and vd are two
numbers of the realm Q and are linearly independent.
For if they were linearly dependent it would follow that

x1+x2Vd =0,

where x! and x2 are rational numbers. But this relation
can exist only when x1=0=x2. It follows also that 1 and
vd form a basis of Q and that all numbers of this realm
may be expressed throughx1+x2vd where x1 and x2 are
rational numbers.
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We further have
1. 1
vd, —vg "2V

or
A(l, vd) =4d.
It must be determined next whether 1 and vd form a
basis of all the integers of Q.  Write
A(l, Vd)=4d =DK?,

where D is the basal invariant of Q and K the index of
the basis 1, vd. Since d contains no square factor and
K is a positive rational integer, it follows that K=1 or
=2

In the first case where K=1, D =4d, the form x1+x2vd
represents for integral rational values of xi and x? all the
algebraic integers of Q, and 1, vd form a basis of all the
algebraic integers of this realm.

In the second case where K =2, there must be algebraic
integers in Q which are expressed through the form
x1-+-x2vd where x1 and x? are rational (fractional) num-

bers. Let such an integer be where X, y, z are

rational integers without a common divisor. Since (Art.
95) K is divisible by z, it follows here that z=2.
Further write

X=2t"+t and y=2u'+u.
where t and u are either =0 or =1. It results that

Since must be an algebraic integer, and as

t'+u'-vd is integral, it follows that must be an

algebraic integer.
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Art. 98. As the case t=0=u must be excluded, since
then x, y, z would have the greatest common divisor 2,
the three following cases arise:;

1) t=1,u=0;, (2 t=0,u=1 @) t=1u=1
In the first case and in the second case

Neither of these humbers being an algebraic integer, we
have left only the third case. Hence when K=2,

say, is an algebraic integer: and if

is an algebraic integer, then inversely K must =2; for if
K =1, there would be no algebraic integer with fractional
coordinates. The irreducible equation which n satisfies is

(2n-NDH2=d or

Hence if K is equal to 2, then must be a rational in-

teger and consequently d=1 (mod. 4). Inversely if
d=Il (mod. 4), then K=2 and n is an algebraic integer.
Notice that

Summary. Since d does not contain a square factor,
d# 0 (mod. 4). If d=2 or =3 (mod. 4) thenis K=1, and

D =4d. Hence when K=1, or 3 (mod. 4), and

consequently D=8 or 12 (mod. 16). From this we see
that not every arbitrary integer can be the basal invariant
of a quadratic realm. An odd integer can have this
property only when it is =1 (mod. 4) and an even integer
only when it =8 or 12 (mod. 16). Further note, since
D =4d, that an odd integer can occur only to the first



136 THE THEORY OF ALGEBRAIC NUMBERS

power as a factor of D since by hypothesis d is divisible by
no integer squared; while 2 can occur only to the second
or third power as a factor of D. Similarly in the case of
realms of higher degree, every integer can not be a basal
invariant.

It is thus seen that when K=1, then 1, vd form a
basis of all the algebraic integers of Q and when K=2,

then 1, form such a basis. In the first case the
algebraic integers of Q may be expressed in the form
x1+x2Vd, that is in the form where x1 and x2
are rational integers. While in the second case all

integers of Q are expressible in the form

where x and y are rational integers.
It is evident that in general all the integers of Q may be

expressed in the form where t and u are rational
integers which must however satisfy the condition 2=Du?
(mod. 4), For if is an algebraic integer, it is

necessary and sufficient that the coefficients of the
irreducible equation which it satisfies, be rational integers,
with unity as the coefficient of the first term; that is, the
coefficients of

must be rational integers. Hence must be a

rational integer, or 2=Du? (mod. 4).
Art. 99. The Units of a Quadratic Realm. It is clear

(Art. 90) that an integer as defined above can
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only be an algebraic unit when its norm =x1. It
follows that

or

12-Du2= +4. 1)
We note that all the units of Q whose norm = — 1, are had
through the multiplication of one of these units by all
possible units of Q whose norm is +1. If we limit the
discussion to those units of Q whose norm =-+1, they

must have the form where t and u are rational

integers that satisfy the equation of Pelll
t2-Dul = +4.

As is evident, the equation (i) for a negative D which
# —3 or £ —4, has only the two solutions i=+2, u=0.
We consequently have in this case the two units +1.

If D= -4, Pell’'s equation has the four solutions

t=0, u=+1,
t= =42, u=0:
and correspondingly we have the four units
+1; i
which are had by taking the powers of the one unit, +1.
IT D = —8 the six solutions of Pell’s equation are
u=0, t==2,
t=+1, u==+1:
t=-1, u==+1;

1 See Dirichlet's Zahlentheorie, § 141. For an excellent history of Pell’s
equation, see Chapt. XII, Vol. Il of the History of the Theory of Numbers by
Prof. L. E. Dickson.

See also “Report” of H. J. S. Smith, Collected Works, Vol. I, p. 191, where the
theorem is attributed to Lord Brouncker. In the latter connection see Wallis’s
Algebra, Chapts. 98 and 99. The Canon Pellianus of Degen Havniae, 1817,
contains a table for values of D less than 1000. See also Cayley, Crelle, VVol. 53,
p. 369.
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and the units are

+1
which are all had by taking the positive powers of
(a primitive sixth root of unity).

IT D is positive, Pell’s equation | has an infinite number
of solutions, and then there exist in the quadratic realm Q
an infinite number of units (see Art. 91). These,
however, may be expressed in the form

where n takes all positive and negative integral values
and where T, U are the least solution of Pell’s equation in

which U#0. The quantity is called the fun-
damental unit.

EXAMPLES
1. Show that - 4 is the basal invariant of R(i), where i=v—L.
2. Show that 1+i and 3+2i constitute a basis of all integers in
R(t), as do also 1, i.

3. Show that 1, are the elements of a minimal basis of

R(v/—3), the basal invariant being —3.

4, Show that 1 and tv3 do not form a basis of all integers in
R(V-3).

5. Show that 1 and iVv5 form a basis of all integers in R(V-5)
and that the basal invariant is —20.

6. Determine algebraic realms whose basal invariants are 8, 12,
-8, 28, 13, -5.

7. Show that the fundamental unit of R(v11) is 10+3v11, and
that of R(vV22) is 197+42v22.

1 See Chrystal's Algebra, Part Il, p. 450; H. J. S. Smith, Collected Papers,
Vol. I, p. 192.
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8. Show that a minimal basis of R(v21) is 1, and that
the fundamental unit is

9. Show that a minimal basis of R(V73) is and that

the fundamental unit is

10. Show that 4+V17 is the fundamental unit in the realm
R(V17).

Cubic Realms

Art. 100. Lemma l. In adeterminant of the nth order,
if the first row consists of the n integers all, al2, -- -, aln
whose greatest common divisor is d, integral elements of the
other rows may be determined so that the determinant =d.

If a and b are two integers whose greatest common
divisor is d, it is possible to determine two other integers x
and y such that ay-bx=d, or

a, b
X,y

The lemma is thus proved for the case n=2. On the
assumption that the theorem to be demonstrated is
true for the case n — 1, it may be proved as follows for the
case n.

Let d be the greatest common divisor of all, ai2, - -,
al,n and let d' be the greatest common divisor of all, al2,

- al,n-1 so that d is the greatest common divisor of d'
and aln-l

By hypothesis we may so determine the elements
a2l, 022, - --,a2,n-1;a31 ---a3,n-1; -+ an-1 .- an-1,n-1

=d.
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that
all al2 aln-1
a2l, a22 a2,n-1 _
an-1,1  anl2 an-1,n-1,
If x and y are two integers to be determined later, we have
all al2 al,n-1 aln
az2l, az22 a2nl1 O
a3l, a32 a3n-l1 O
anll  anl2 aind, O
y

Hence the determinant is equal to yd'-xaln, where the
X and y are integers which may be so determined that
yd'-xaln=d.

Lemma Il. In everyfinite realm Q it is always possible
to determine a basis of all integers of Q such that 1 is an
element of this basis.

From a basis of all integers of Q other bases of all
integers of Q may be derived as follows:

Let wl, w2, ---, wnbea basis of all integers of Q, and
further write

av=avliwl + av2w2+ - - - +avnwn  (v=1, 2, ---,n),
where av,t are rational integers. The integers al, a2, - - -,
on form a basis of all integers of Q (Art. 94) if avk = +1.
Further the integer 1 may be expressed in the form

1 = blloll +h12012+ - - - +bLnwln

where the greatest common divisor of the b’s is unity.
Hence by the preceding lemma we may so determine
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n -1 other integers B2+ , Bn, say
Bu=bulwl +bplwl+ - -+bywn  @=2, ---, n),

such that HJuk]=1. It follows that 1, B2, B3, ---, Bn
form a basis of all integers of Q.

Lemma IIl. Ifin afinite realm Q there are r algebraic
integers al, a2, - - -,, ar through which no algebraic integer

(including zero) may bhe expressed with fractional coordi-
nates, then a basis of all the algebraic integers of Q may be
determined, which includes these r integers (r ri) as
elements.

Since the number zero cannot be expressed through
al, a2, - - -, ar with fractional coefficients, these r numbers
ol, a2, - - -, ar must be linearly independent. If r=n,
the theory is proved of itself in accord with the definition
of the basis of all the algebraic integers of Q. If, however,
r<n, then there is a number a'r+! which is independent of
al, a2, - - -, ar; if further r+1 <n, then there is a number
a'f2 in Q, which is independent of a1, 02, - - -,, ar, ar+l, etc.
In this manner n numbers al, 02, - - -, ar, a'r+1 a'r+2, - - -,
an are derived, which form a basis of Q, and we may
further assume (Art. 93) that a'r+l, - ., an are algebraic
integers. If these n integers form a basis of all integers
of Q, the theorem is proved. If, however, they do not
form such a basis, there is an algebraic integer in Q which
has, say, the form

where cl, ¢2, - - -, ¢n, ¢ are rational integers which have no
common divisor. If c=p-q, where p is a prime integer,
then is also

an algebraic integer in Q. Further the integers cr+l,
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cr+2, -+ -, cn cannot all be divisible by p; for in this case
there would result

which contrary to the hypothesis, is an algebraic integer.

Suppose that cn, say, is not divisible by p; we may then
determine two rational integers s and t such that

sch—tp=1.

Make use of this relation and form a new basis of Q
consisting of the integers which are had if we retain al,
a2, - on-1 and replace ah through another integer as
was done in Art. 93. The absolute value of the dis-
criminant of the new basis is smaller than that of the
original basis. By repetition of this process, the integers
ai, a2, ---, ar being retained while a'#l---ah are
replaced by other integers, we must finally come to a
basis of all the integer of Q.

Art 101. Basis of All Integers.l Let the cubic realm

be defined through the algebraic integer  Where 4 is a
root of the irreducible equation of the third degree

G(t) =t3+at2+at+a3 =0,

in which the a,s are rational integers, and let Q = R(t>) be
this realm. It is seen (Art. 44) that every algebraic
number of Q is of the form a=a+bd-+cH where a, b, ¢
are rational numbers in R. Denote the conjugate roots
of $ by t'and 3". If then we write

a=a+bd+cd,
af = a+bd +cd'
a'" =a+bd',+cd"

1 See Sommer, Einfuhrung in die Theorie der algebraischen Zahlkorper, p. 257;
and also Woronoj, Fortschr. der math. Wi'ssens., Vol. 25, 1894.
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it is seen that

where the discriminant A(3) is a rational integer. There

are similar values for the rational numbers

If a=a+bJd+cd is an algebraic integer in Q,

then is A a rational integer, as are also B and c. It is
thus seen that the algebraic integers of Q are expressed in
the form (see also Art. 96)

where A, B, ¢ and A=A(8) are rational integers.
Writing

where A2, B2, C? are the residues (mod. 4A), it is seen that
there are only a finite number (<A) of different integers
C2.  As Q1is also an integer in Q, it may be written in the
form

If, mod. A, the system of residues corresponding to
Clare C2 C2 CZ .-, A we are able to find a system of
integers c2, ¢2, ¢Z, - -, ¢, such that

c2C2+ c'2C'2 + c"2C"2-
where d2 is the greatest common divisor of C2,C2,C"2,--+ A
If further the corresponding algebraic integers o are
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multiplied by c2, ¢2, - - -, it is seen through the addition of
the resulting quantities that there exists an algebraic
integer, say w3, in Q, such that

where d? is a divisor of A, besides being a divisor of the
coefficient of 92 of every algebraic integer in Q, when this
integer is expressed in the form of a above.

If it is evident that gives rise to an
algebraic integer p of the form

Thus corresponding to every integer of the form a there
is an integer of the form B. By proceeding with the B,s
in the same way as was done above with the a's, it is
possible to derive an algebraic integer

where d! is a divisor of A, and also of the coefficient of 3
of every algebraic integer of Q which has been reduced to
the form .

Since the left hand side of this expression is an algebraic
integer in Q, the right hand side must also be an integer in

Q and consequently is a rational integer.

Since 1 is an integer in every algebraic realm Q (see
Art. 100), it is evident that the algebraic integers
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form a basis of all integers in Q; in fact (see Art. 100),
every algebraic integer of Q may be expressed linearlv
through !, w2, w3 with rational integral coefficients.

The rational integers dl and d? are divisors of A, while
the rational integers al a2 b2 are reduced, mod. A. It
will be seen below that w? and w3 admit of further simpli-
fication.

In Art. 94, we denoted by D the discriminant A(l, wb
w2) which is the basal invariant of Q.

If ¢ is any algebraic integer in Q we may always

write
1 = allwl + al202+al3w3,

0 =a21wl + a22w2+a23w3,
0?2 = a31wl + a32w2+a33w3,

where On, ai2, ---, «33 arc rational integers, If the
discriminant

all al2 al3

azl a22 a23 =1,

a3l a32 a33

then (Art. 94), 1, ¢, o form a basis of all integers in Q.
If this condition holds true for 9, the quantity that
defines Q, then 1, 8, 387 is a basis of all integers of Q.
Further note that

where A (see above) is A(1, 9, 92)=A(J). Again note
that d! and d? are divisors of A and that is a rational

integer =A(wl, w2, ®w3)=D. The prime numbers that
enter to an odd degree as factors of A(3) are evidently
factors of D.

Art. 102. Numerical Computation of the Basis of All
Integers. We may write A(D) in the form
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where the g s are prime numbers, the e s rational integers,
the p’s prime numbers not necessarily different from the
g,s and the f's are any of the integers 1, 2, 3, 4, 5.

Note that

which is a rational integer. Further di is a divisor of
A(®). Hence dl must be of the form

where the A,s have the values either 0 or 1; or
di=kki,
if

It is seen that w2 may be written

so that

or

Note that bl is an integer, since the left hand side of the
expression is integral. Further note that the left hand
side of the expression is divisible by the rational integer k,
and consequently also bl is divisible by k.

It follows that we may write w2 in the form

where bl as well as is divisible by k.  We may
further write
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where the rational integer b is as yet undetermined and

where
rl el r2z e2 r e
It follows that d must occur at least to the sixth power in
A(D). If then A(D) does not contain any prime factors to
at least the sixth power, then is d=1.
Write A(9) in the form d20 where § contains d to at
least the fourth power. We then have

and

Note that d? is a divisor of d26 and that d occurs to the
sixth power in A(9). It is evident that any factor
common to d? and d is also common to 4. Hence if d? is
not already a divisor of §, it is always possible to determine
rational integers x, y such that

xd2+yd = &2,
where ! is the greatest common divisor of § and d2.
Writing & = 0192. it is seen that

If we refer to the manner in which w3 was derived as an
element of the basis, it is clear that may be substituted
in its place; for xw3+ywl is clearly one of the algebraic
integers of Q. Noting that w2 is an integer in Q, it may
be written in the form

(i)
where u, v, w are rational integers. Expressing both
sides of this formula as an identity in 8, we note, by
equating the coefficients of like powers of 8, that

w=01
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while a3 and b3 are both divisible by 02 We may
therefore write as the third basal element

where ¢ and cl( = 2b-vd) are rational integers. Since w?
is an algebraic integer in Q, it satisfies the equation

or, observing the equation which defines 3,

As each of the coefficients must be integral, it is seen
that b must satisfy the three congruences
3b-al=0 (mod. d)
3b2—-2alb+a2=0 (mod. d?) (ii)
h3—alb2+a2b—a3=0 (mod. d3)
Write the first of these congruences in the form
3b—al=gd
(g an integer) and the second

3h2 — 2alb+a? = gld2
We have
alb-a? =d(gld-bg),
and therefore
alb-a2=0 (mod. d).
From the third congruence in (ii) it follows that
b3—a3==0 (mod. d).
Due to the first of the congruences (ii) we may write
w? in any of the following forms:

where cl = 2b-vd.
Note that is an integer and write formula (i) in
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the form

where Kk is an arbitrary integer; and that is,

(iii)
By equating the coefficients of 9 in this expression, it is

seen that
2al-3cl=vd
or
2al-6b + 3vd = vd.

Hence b must satisfy integrally the equation
3b-al=vd.
By equating the constant terms in (iii), it is seen that
cl—alcl +all- alcl — (3b —cl)dv = d2(wl+K) +c.
If the second of the congruences (ii) is written in the

form
a2+3h? — 2alb = dg!,

where gl is an integer, and if to cl is given its value
cl=2b-vd
and if we note that
3b-al =vd, al—cl=hb,
it is clear that

c21- alcl + a2 = d2(v2+gl+wl+k) +c.
The integer k may be so determined that the coefficient
of d2 vanishes leaving
c=-alcl+a2
If then A is written for cl, the three basal elements may
be written

wl=1,
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where al, a2, a3 are the integral coefficients of the equation
G(t) =t3+alt2+a2t+a3 =0,
of which is a root; while the integers A, d, must further
satisfy the congruences (ii), namely
3(A-al)+al=0 (mod. d)
3(A-al)2+2al(A —al)+a2=0 (mod. d)
(A-al)3+al(A —al)2 +a2(A —al)+a3=0 (mod. ).
Note that 3l is further restricted in that the right

hand side of the following expressions must be integral,
namely:

where s = A-al and that

where s=A —al. And finally observe that dé and ox are
divisors of A(B).

Art. 103. If Qis a cubic realm, the basis of the system
of all algebraic integers of Q consists of 3 algebraic
integers of Q, of which one may be taken =1. Suppose
that

1 q P
constitute a basis of all the integers of Q, so that conse-
guently all such integers may be expressed in the form
X-+ya+zB, where X, y, z are rational integers. Further
since ap is an algebraic integer of Q, it may be expressed in
the form
of =ap +ba+cl,
where a, b and ¢, are rational integers. It follows that
(a—a)(B-b) =ab +cl =c,

a-a=al, B—-b=pL
It may be proved that 1, al, pl also form a basis of all

say. Write
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algebraic integers of Q; for 1, a, p may be linearly ex-
pressed through 1, al, ! with rational integral coefficients,
and inversely 1, al, ! may be linearly expressed through
1, a, B with rational integral exponents in the form:

1=1, 1=1,

oa=1-a+al 0l = -1-a+aq,

B=1-b+p1 Bl=-1-b+f3
It follows that every integer in Q of the form x+ay-+f3z
may be expressed through the form x'+aly+flz' and
inversely, where x, y, z; X', y', z' are rational integers.

It has thus been shown that in every cubic realm there
is a basis of all integers of Q, of which the one =1 and the
product of the other two is a rational integer (= ab-+cl).

Let 1, a, B be such a basis of all integers of Q where

af =c,
¢ being a rational integer; and further let
al=a'a+ap-a",
B2=ba+b'B3-b",
where a', a, a', b, b, b", ¢ are rational integers. That
these seven integers are not independent may be seen by
computing a2f in two different ways: on the one hand
a2 = a(af) = ac,
and on the other
a2f = (a'a+ap-a")p=a'af +ap2-a"p
=a'ct+a(ba+b'B-b™)-a"p
=aba+(ab'-a"}p+a'c-ab™.
It follows that
aba+ (ab'—a'")B+a'c—ab" =ac.
Since 1, a, B are a basis of Q, there can be no linear
relation among them. Hence the relation just written
must be an identity. We therefore have:
ab =c, ab' —a'" =0, ac—ab"=0.
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Since c=ab=ap, it follows that a0 We therefore
have from the three relations just written the following:
c=ab a" =ab/, b" =a'b.

Besides these three relations among the seven rational
constants there are no others; for however we may start,
we always derive the three equations written above.

From these relations there result
of = ab, a2=a'a+ ap-ab’, B2=ba + b'B-ba’,
from which follow at once the formulas
a(a-a') =ap-b"),
B(B-b’) =b(a-a’).
The cubic equations which 1, a, B satisfy are (Art. 67)
either irreducible or the third power of a linear equation
with rational integral coefficients. It is clear that 1
satisfies the cubic equation
(x-1)3=0
and further
o3 =a'a2+aof —ab'a,
or
a3 —a'ol +ab'a-abh=0;
and similarly
B3—b,B2- -ba'p —bla=0.
These are the cubic equations which 1, a, B satisfy.
If we use the symbol S(x) to denote the spur of x, it
follows from the three equations just written that
S(1)=3, S(a)=a/, S(B)=b’,
N(1) =1, N(a)=a?b, N (B) = bla.
If a, a" are the conjugate quantities with a, it follows
from the equation
a2=a'a+ap-ab’
that
02, =a,a,+ap,—ab,
and
a'l=a'a"+af"-ab’,
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where ' and " are the quantities that are conjugate
with .
Adding the three equations just written, we have
S(a2)=a'S(a)+aS(B) —abS(l)
=a'a'+ab' —3ab’

=a'2—2ab'.
We also have at once from the two equations
B2=ba+Db'B-a'b, op =ab,

S|B2) =b2-2ba’ and S(ap') =3ab.

Art. 104. We may next determine the discriminant of
the cubic realm Q. We have seen (Arts. 63 and 94) that
if wl, w2, - -, wnis a basis of all the integers of a realm of
the nth degree and if w'yw"y - -, w are the quantities
that are conjugate with w, (including wv), then the dis-
criminant of wl, w2, -, wn is

D=Awl, w2, -, 0n) = o2 v, p=l, 2, -, n).
If we square the determinant on the right hand side, we
have

S(wh), S(wl, w2), S(wl, wn)

D= S(w2, wl), S(w22), S(w2, wn)

S(wn, wl), S(wn, w?),
We therefore have for the cubic realm for which 1, a, B is
a basis of all integers

s), s(), SB) 3 a b
D3= s(a), S(@2), S(op) = a, a -2ab’, 3ab
S(Ba), S(BY) b' 3ab, b2-2ba’

a'lb'l — 27ab? — 4ab" — 4ba,3+ 18aa'bb'.
Hence also here (see Art. 98), for the case of the cubic
realms we cannot take any arbitrary rational integer as
the discriminant, since as already noted the integers
a, b, @', b’ cannot be arbitrarily chosen.
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Note. It may be observed that were the determinant D=0, it

would be possible to determine n rational numbers x1, X2, -- -, Xn
such that

X1S(wiwl) + x2S(wiw2) + - - - +xnS(wiwn)=0 (=1, 2, .-., n),
And that is

S[wi(xlwl+x2w2+ - - - +xnwn) =0,
or
S(wit)=0 i=12 ..,n),
where
T= x1wl+x2w2+ - - - +xnwn.

If

p=plwl+p2w2+ - - - +pnwn
is an arbitrary number of the realm, then is
PT=x1wlp+x2w2p+ - - - +xnwnp.
and therefore S(pt)=0 for every number p of the realm. How-

ever, writing it would follow that S(1) = 0, which is not true.

Accordingly the discriminant of the basal elements w1, w2, -- -, wn
cannot be zero. (See Art. 63.)

EXAMPLES

1. If w is an arbitrary integer of the cubic realm Q, which may
therefore be written in the form ax + y+z, where x, y, z are rational
integers, and if ', " are the two integers that are conjugate to ,
derive the following relation:

(@ -0")(®,' —w)(© -w')= /DX, ),
where
o(X, y)= ax3+a'xly+b'xy2+bys.

2. If pis a primitive cube root of unity, viz. then
is
(0 +pw' +p20"") (0 +plw' +pw') = AX2+BXy + Cy2=(X, V),
where
A=a'2—3ab',
B=ab —9ab,
C=b - 3ba.
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#(T, 7) is the Hessian (covariant) of @(x, ), viz.,

3. Show that
(@ +pw' +plw")3 = (@ +plw' +pw")3= X (X, Y),

where (X, y) is the functional determinant (Jacobian) of @(x, y)
and Y(x, y), viz.,

4. Show that

5. Show that among the functions @(x, y), Y(x, y) and x(x, y) the
following relation exists

X2 + 27 D@2= 43,
upon which relation the solution of a cubic depends. The functions

X, @, U are covariants, while D (the discriminant) is the only
invariant of the cubic realm.

Cyclotomic (Division-of-the-Circle) Realms

Art. 105. The so-called cyclotomic (division-of-the-
circle) realms offer a further example of the general theory
of algebraic realms. Such realms are defined through a
root (#1) of the equation

(Fl=1.
The discussion will be limited here to the case where m
is a prime integer #2. It is evident that 9 satisfies the
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equation

The quantity § is an algebraic integer, in fact an algebraic
unit since N(9) = =1. It follows that

If we write t=1, it is seen that
f)=m=(9 @-92)--- (1-9m-1).

The quotient of any two of the factors on the right-hand
side is an alaebraic unit.

For consider first the quotient
m—1). We note that is an

algebraic integer, Further it may be shown that

is an algebraic integer; for, since r and m are relatively
prime to each other, two other integers, r, and m, may be
determined such that

rr'+=mm-‘=1.
It follows that

9 = Jrr'+mm' =9rr' - Imm' = Brr’,

so that

which is an algebraic integer. It is thus seen (Art. 90)

that are algebraic units. And,

since the quotient of two units is a unit, it follows that

(rs=1L2, ..-,m-1)
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are algebraic units. It is also evident from above that

Since the quotients on the right are units and the
product of several units is a unit, we have, if we put
1- 9=y,
m = pm-1,
¢ being an algebraic unit. From this it is seen that
N(M)=N(@{Em-1)N()=N(u)m-1N(e).

If § satisfies an irreducible equation of the nth degree,
where N m-1, then the realm R(3) is of the nth degree,
so that

N(m) =mn
and
N(e) = ==lI.
It follows that
mn = £N(u)m-1.

As m is a prime integer, N(u4) must be some power of m,
say
N(u) =mi,
where | is an integer. We then have
mn = £mim-1

so that
n=I1(m-1).
Since it follows that
n=m-1

It is thus proved again (cf. Art. 12) that the equation
f(t)=0 is irreducible and that the realm R(J) is of the
m — 1 degree.

Art. 106. The Discriminant. The m-1 guantities
that are conjugate with 8 are: 9, 92, - - -, 9m-1, and the
m—1 quantities that are conjugate with p are: 1—
1-92 -+, 1-3m-1. It follows that

N(U) = (1 -9) (1 -9 - (1 - 8m-1) =F(1) =m
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or
N(u) =m,

where p=1— It is also seen that
m=1-24%+ 3

W= 1-39+392 .3

etc. And it may be further noted that every linear form
of Wo, i, y2, - - -, um~2, that IS,
XQ+x2+ - - - —#—XxXm-2um-2,

where the x,s are rational integers, may, owing to the
above relations be expressed through a linear form of
90, 81, 92, - - -, Om-2 with rational integral coefficients; and
inversely the quantities 1, R, -, M may be ex-
pressed with rational integral coefficients through 1, y,
M2, -+, um-2.  Owing to the fact that the two systems of
numbers 90, 9, 92, - - -, dm-2 and Wi, pi, P2, - - -, ym-2 may
be expressed linearly and with integral rational coeffi-
cients the one through the other, it follows that (Arts. 22
and 63)

A, Y, M2, e, gm=2) =

From the identical equation
tm—1=(t—1)f(1),
we have through differentiation
mtm-1 =f(t) + (t-1)f'(t)
so that for t= 9
mdm-1 =Ff(J) + (3-)F' (D) = (S-L)f'(ID).
We therefore have
MIOIM-1=N(3-1)N{f'(3)}.
Since
N@®) =1, N (m) = mm-1,
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and
N(S-1) = (9-1)(32-1)---(Bm-1-1)
=(-1)m-11—-3)(A—-3)- - -(1—3m-1)
=N(1-3)=N[p)=m,
it follows that
N{f'3)} = mim-2,
and consequently

Art. 107. Theorem. The quantities 1, p, p2, - -,
pm-2 form a basis of all the integers of the cyclotomic realm
of the (M-1)st degree.

To show this let us first prove two lemmas.

(1) If the rational integer r is divisible by u, it is also
divisible by m.

For if r is divisible by p, then N(r) is divisible by N (),
that is, rm-1 is divisible by m, but as m is a prime integer,
it follows that r is divisible by m.

(2) If the algebraic integer

o =x0 +x1p+x2y2 + ---+xm-2um-2

where x0, X1, X2, - -, xm-2 are rational integers, is divisible
by m, each of the integers x0, x1, - - -, xm-2 is divisible by m.
Since
m=eum,

it follows, if a is divisible by m, that a must also be
divisible by p; and hence also that x0 must be divisible
by u. But if the rational integer X0 is divisible by p, from
the last lemma it follows that it must also be divisible by
m. If then the integer a is divisible by m, then also

X1y+x2u2 + ---+xm-2um-2
must be divisible by m. The expression is further
divisible by p2 and consequently the rational integer x1
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is divisible by p, and therefore also by m. Repeating
this process it is seen that all the integers 0, x1, - - -, Xm-2
are divisible by m.

To show that the integers 1, y, P2, - -um-2 form a basis
of all integers of their realm of rationality, suppose that
this were not the case and that there was an integer of
the cyclotomic realm that could be expressed through the
qguantities just written linearly with rational (but not
integral) coefficients, in the form

where c0, c1 - - -, cm-2, c#1 are rational integers without a
greatest common divisor. From the theorem (Art. 95)

it follows that A(l, p, - -,um-2}, that is is
divisible by c¢. It follows that c is a power of m.

If then cO+cly+cu2+ - - - +cm-2um-2 is divisible by c,
it must also be divisible by m, and consequently from
lemma (2), c0, c1 - ., cm-2 must be each divisible by m,
which contradicts the hypothesis that the integers c0, cl1

-+, tm-2, ¢ had no common divisor. It is thus shown
that 1, y, - - -, ym-2 form a basis of the cyclotomic realm,
and that the basal invariant is

Note. For examples see a paper by the author, “ Trigono-
metric Realms of Rationality,” Rendiconti del circolo matematico
di Palermo (1925), Vol. 49, pp. 147-183.



CHAPTER V

THE MODULS OF DEDEKIND. DIVISIBILITY.
GENERALIZED NOTIONS OF DIVISION

Art. 108. The problem of resolving uniquely an
integral function or a rational integer into prime factors
was made dependent upon Euclid’s Algorithm (Art. 14
and Art. 24). This Algorithm, as we shall show below, is
applicable to the realms R(i) and R(w), where i=+/-1

and but it is not applicable to realms

in general as we shall also see.

Consider first the realm of rationality R(i) where
i2= —1, and let {=x+iy be a fractional number of this
realm, at least one of the rational numbers x or y being
fractional. Next note that it is always possible to find an
algebraic integer p=m-+ni, where m and n are rational
integers, such that the norm of &-p, that is {x-tn)?
+ (Y —n)2 is not greater than %, for we need only choose m
and n such that the absolute values of x —m and y —n are
not greater than

As usual we shall denote algebraic integers by Greek
letters.

If then a and al are two integers in R(i), ol being
different from zero, it is possible to determine the integer
u such that

where

161
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It follows that
0= pal+a?, N(02)<N(a1)

If a2 is not zero, we may in the same way determine the
algebraic integer ut such that

ol= plo2+as3, NM<NM.

(See Smith’s Report, p. 72.) Since the norms are rational
integers, each being less than the preceding, it is evi-
dent that after a finite number of steps the norm must
be zero. The following system of equations is thus
presented.

a = pal+o2

ol= plo2+03

ah-2=ph-20h-1 +ah

ah-1 — ph-1oh
Observing the last of these equations, note that all the
integers ah-1, ah-2, - - -, a3, 02, al, a, and in particular al
and a are divisible by ah' and reciprocally starting with
the first of these equations it is seen that every common
divisor of a and al is a divisor of all the following a's, and
in particular of ah. Every other integer that has this
property must be an associate (Art. 91) of ah. In the
realm 9t(%) we may say that ah (and each of its associate
numbers) is the greatest common divisor of a and al. In
this realm an integer isfactorable when it is the product of
several integers in R(i) of which none is a unit. When
an integer is not decomposable into such factors, it may be
called a prime integer in R(i).

From the system of equations above it is seen that if §

is the greatest common divisor of two integers a and B in
R(i), two other integers k and A in R(i) may always be

found such that
KO+AB = 0,
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and in particular if a and B are relatively prime (having no
divisors in common except units), the equation
Ka+AB=1

can be satisfied through integers k and A in 9?(i). In
general it is seen, as in the case of rational integers (Art.
24), that an integer in R(i) may always and in only one way
be decomposed into its prime factors.

A somewhat different exposition of the above method
is the following:

Let a and B be two integers of R(i), say a=al+bli,
B=a2+bk, and such that N(a) N(B) Through simple
division it is seen that

where y is an integer in R(i) and r and s are rational
integers such that

Irl ¥2N(B), Is| ¥2N(B),
It follows that a=[py+pl where p0 is integral, since
a-Py is integral in R(i). Further it is seen that

Similarly it is seen that

B = pOyl-+pl where N(pl) *2N(p0),
and the process may be continued with the same cor
clusion as above.

It may be shown (see for example Weber's Algebrc
2nd Edition, Vol. I, p. 634 and p. 635) first, that every
prime integer p (rational in R(l) of the form 4n+I may
be expressed as the sum of the squares of two integers
For example 13=32+22, 29=5+22. It may be shown
secondly, that no prime integer g of the form 4n+3 can be

expressed as the sum of two such squares.
7
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Since a2+62= (a+td)(a-z6), it is clear that the prime
integers p of the first category are not prime numbers
in the realm 9I(i). To this category belongs also
2=+ (-i).

The four units of 9u(t) are x1, =i; and the four
numbers a+ib, —a —ib, —b-ai, b —ai are associates and
play a role in R(i) analogous to that played by two
numbers with opposite sign in R(I). On the other hand
primes q of the second category remain primes in 9(%).
Thus the primes in R(i) consist of the real primes q and
the factors of the primes p.I Reid in his Elements of
the Theory of Algebraic Numbers has given a very com-
plete and instructive discussion of the numbers of the
realm 9i(i).

EXAMPLES

1. Show that the following are complex prime integers in 91(1):
1+1, 1421, 3+21, 1+41, 5+21, 1+61, 11+41, 7+101, 1+14i,
11+6i, 9+4i, 13+2i.

2. Determine for the realm R(i) all the complex prime integers
whose norms lie between 350 and 400.

For tables of Complex Primes see Kummer in Liou-
ville,s Journal, Vol. 12, p. 206; Reuschle, Berlin
Monatsber., 1859, pp. 488, 694, and 1860, pp. 150 and 714;
also Cayley, Crelle, Vol. 55, p. 192 and 56, p. 186.

Art. 109. The Realm R(w) = R(v—3). The numbers
of this realm are of the form y=x-+wy, integral or
fractional when x and y are rational integers or fractions,
respectively. They have norms

N(y) = (x+wy)(x+wly) = x2-Xy+Yy?

1 See Gauss, ,,Theoria residuorum biquadraticorum, commentatio secunda,”
Werke, Vol. Il, p. 95. Dedekind, ““Sur la th6orie des nombres alg6briques,,’
Bulletin de Sc. Math., Ist Series, Vol. X1 and 2nd Series, Vol. I.
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Units in this realm are (Art. 99) =+1, #w, =#*w and
therefore, since I+w+w? =0,

+ (x+wy), t(wx +wly) = £[-y+(X-y)w]
F(x2+y) = F(y -X-XW)
are associated integers. If T is any fractional number of

R(w), an integer y may be derived as in the preceding
article such that

and as in the preceding article, it is seen that the Euclid
Algorithm is applicable and that factorization is a unique
process.

EXAMPLES

1. If pis a prime integer of the form 3k + I, show that it may be
expressed in the form a2 — ab+pb? and that 4p is of the form A2+27B2,
where a, b, A, B, are integers. (See Weber's Algebra, Vol. I,
§ 180).

2. If p has the form of the preceding example, show that

3. Show that in —3) the following are prime integers:
1 o, %30, 4+3w, 54"6w, 14T3w, - -9w, 13--150, 16"]-9w.

Art. 110. That the unique factorization theorem
which is true for the realm 9i(t) and 9i(w) is not true in
general even in the quadratic realms, may be surmised if
an examination is made of the more general quadratic
realm R(Vm), where ¥Ym is a root of the equation
x2—m=0.

If m==2 (mod. 4) or m=3 (mod. 4), it was seen in
Art. 97 that 1, Vm constitute a basis of all integers of
the realm R(Vm); if however m=l (mod. 4) then 1,

constitute such a basis.
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Art. 111. If a and P are integers in R(Vm) it is
evident that we may write,

when m=1 (mod. 4) or

a=py+p0
And we may again take

Irl %IN@)  and |s| %2N(B)I,

It follows that

from which it is seen that for m#z1 (mod. 4), N(p0) <N(B)
only when m=2, 3, —1, —2.
In the second case when m=I (mod. 4), it is seen that

and the condition |r| Y2|N(B)|, Is| Y2|N(B)| is
sufficient to make |N(pO)| N(B)|, only when m= -3,
5, 13.

When the Euclid Algorithm ceases to be applicable, it
is clearly not permissible to assume a priori the results of
theorems that depend on this algorithm.

To show that the methods hitherto employed do not
lead to a unique decomposition into prime factors of all
algebraic integers, take the integers of the realm R(V—=5).
Since —5=3 (mod. 4), such integers are of the form
Xx+y+V-5, where x and y are rational integers. If
a—+b+/-5 is a unit in this realm, its norm must be *1,

1 So great a mathematician as Cauchy attempted to prove the false theorem
that the norm of the remainder derived by dividing one complex number by
another can always be made less than the norm of the divisor.
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and that is
N(a+bV-5) = +1

a2+5h2 = =+I.
This relation can be satisfied only when a==I. It
follows that +1 and — 1 are the only units in this realm.
It is observed that 21 =3-7; 21 = (4++V-5)(4-V-5),
and also 21=(+2V-5)(I-2V-5), where 3, 7,
4++/-5, 4-~/-5, 1+2V-5, 1-2+/-5 are irreducible
integers in R(V-5) and are all different from one
another. If, for example, 3 were factorable in this
realm, then is
3 = (x+yV-5)(x1+ylV-5),
where X, y, x1, y1, are rational integers.
By equating the real and the imaginary members of
this expression, it is seen that
3 =xx1-5yyl,
0 = xyl+xly,
which equations can be satisfied integrally only when
X= =1, x1= =3, y=0=yl
or
X= =3, X1 = =+1, y=0=yl
It follows that 3, neglecting the unit factors =1, is
irreducible in R(V-5).
It is further seen that the above factors of 21 are
essentially different. For put
4+~ —5= (1+2V-5) (x+yV-5),
where x and y must be rational integers.
Equating the real and imaginary parts, it is seen that
4 =x- 10y, 1=2x+y,
equations which can not be satisfied integrally.
Similarly it may be proved that all of the six factors of
21, namely 3, 7, 4++/-5, 4-V/-5, 1+2V—5, |-2V-5



168 THE THEORY OF ALGEBRAIC NUMBERS

are different and irreducible in the realm R(V/-5).

Further examples in this realm are

9=3-3=(2++V-5)(2-V-5),
6=2-3=(1+V-5)(I-V-5),
etc.

In the real realm R(V10) it is seen that the algebraic
integers are of the form x+yv10 where x and y are
rational integers, since 10=2 (mod. 4), and the basis of
this realm consists of the integers 1, V10.

If we put

€ =x+yV10,
and
N(e) =x2—10y2 = —1,
it is seen (Art. 99) that
X = =3, y==+I|

so that ’
-1 =(-3+V10)(-3-V10),
(-1)2=(19-6V10)(19 +6V10),
etc., the units being e=(—3+V10), e any rational
integer.

In this realm it is again seen that the integer 6 may be

factored in the two essentially different ways
6=2-3=(4+V10)(4-V10).
However the two factors of 6, namely (16+5V10)(16
-5v10)) are not essentially different from (4 +v10))(4
- V/10); for it is seen that (4+V10)e2, that is
(4+v10)(19-6V10) = 16-5V10,
while
(4-V/10)(19+6V10) = 16+5V10.

Thus it is seen that the fundamental theorem in the
theory of rational integers, namely that such integers
are uniquely factorable into products of prime factors, is
no longer true of the algebraic integers of quadratic
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realms; nor is this theorem true of the integers of the
cubic, biquadratic, and the higher realms.

This leads us necessarily to something that must take
the place of prime factors in their respective realms when
it comes to the consideration of the unique factorization
of algebraic integers into such factors. Thus we are
brought to the study of ideals which are special kinds of
moduls, the general treatment of which is now given.
With Dedekind we make these moduls fundamental in
this generalized theory of numbers.

Art. 112. An algebraic integer of a realm Q might be
defined as factorable, if there exist two algebraic integers
a and [ which are not units and which are such that

w=ap.
Then clearly every algebraic integer is factorable, since
we always have
0=V Vv,

and Vo (Art. 88, end) is an algebraic integer which is
different from a unit. For if Vo is a unit, then also o is a
unit which case is naturally excluded. This troublesome
condition that every algebraic integer is factorable may
be obviated if in the definition of the resolution into
factors the discussion is limited to a definite realm.
Accordingly the following definition may be offered:

An algebraic integer w of Q is resolvable into factors if
there exist in Q two integers a and B that are different from
units and are such that o = ap.

This definition corresponds to that of the resolution of
a rational integer into its factors; for if w=ap, then is

N(®) = N(@N(B).
Thus it is shown that the resolution of w into the product
of two algebraic integers a and [ corresponds to that of
the rational integer N(w) into the product of the two
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rational integers N(a) and N(B), of which neither =1.
In the case of this definition an algebraic integer cannot
be resolved into an infinite number of factors; and
further there are integers which are irreducible, this
being clearly the case of such an algebraic integer whose
norm is a rational prime integer. An example is found
in Art. 108. Although we have thus obviated one
troublesome condition in the definition of divisibility, we
still meet with another:

The factorization of a composite algebraic integer is not
unique, but may be performed in different ways.

For example (as is discussed in Art. 205), it is seen that
in the realm R(V-5),
21=3.7=(4++V-5)(4-+V-5)=(1+2V-5)(1-2V-5),
where the factors are all different algebraic integers. It
is thus seen that an algebraic integer in Q = R(V-5) may
be resolved in several different ways with irresolvable
factors. In accord, then, with the last definition of
divisibility, an algebraic integer may be resolved into a
finite number of irreducible factors, but in several
different ways. This is owing to the fact that in the
theory of algebraic integers the theorem is not true that
if a product is divisible by an irreducible integer, one of the
factors of this product is divisible by that integer.

Example. Observe that in the realm 9i1(v/—7),
8=24=222=(1+V-7)(U-V-7),
and show that 2n(n>2) is factorable in products of complex
factors.

Art. 113. The troublesome condition just mentioned
was in part overcome by Kummer (““Zur Theorie der
komplexen Zahlen,” Crelle, 35), who recognized the fact
that prime numbers are not the extreme elements. To
introduce this theory of Kummer, the conception of



divisibility must be extended. Let us return for a
moment to the realm of rational numbers. Suppose that
a and b are two rational fractional or integral numbers.
Note that the linear form

ax + by,

for integral values of x and y, represents all those rational
numbers that are divisible by the greatest common
divisorofaand b. We may therefore define any number v
as divisible by the complex of numbers a and b, say [a, 6], if
it is possible to determine two rational integers x and y such
that

u=ax+hy.
This is an extension of the usual conception of divisibility
in that v is divisible by a, if v=ax where x is an integer.
This extension is clearly superfluous, so long as we
remain in the usual realm of rational numbers; for
evidently every number that is divisible by the complex
[a, b] is, so long as a and b are rational numbers, divisible
by the greatest common divisor d, say, of a and b, and
every number that is divisible by d is divisible by [a, b].
We may therefore write

[a, b] = [d]
or

ax—+by =dz,
where X, y, z are rational integers. For evidently
corresponding to any two integral values of x, y, there is
an integral value of z, and reciprocally corresponding to
every integral value of z, there are two integral values of
x and y. Hence the conception of divisibility by the
complex[a, b] is, so long as a and b are rational numbers,
identical with the conception of divisibility by d. It is
otherwise if we pass to the realm of algebraic numbers.
Accordingly the following definition is introduced: The
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integral or fractional algebraic number A is said to be
divisible by the complex [a, B] consisting of the two algebraic
numbers a and B, if there exist two algebraic integers & and
n such that

A=a&~+n.
This conception is no longer superfluous: for suppose that
0 is a third algebraic number through which a and B are

both divisible, sav and where y! and y? are

algebraic integers. It is evident that every number that
is divisible by [a, (] is divisible by 9, for if

T=a&0+fn0,
where & and n0 are algebraic integers, then also

T=0y1l + &y,
so that v v

which is an algebraic integer. However, every number
that is divisible by 3 is not divisible by [a, ] ; for if this
were true then § itself must be divisible by [a, B] and
hence expressible in the form
d=a&1+pn1

where &l and n! are algebraic integers. Hence 6 would be
divisible by every common divisor of a and B, so that ¢
would be the greatest common divisor of these numbers in
the sense that is usual in the theory of the rational
numbers. But such a greatest common divisor of two
algebraic numbers exists only so long as we remain in the
infinite realm of all algebraic numbers. We have on the
other hand just seen in the discussion of the resolvability
of an algebraic integer into its irreducible factors, that
this investigation must be restricted to a definite realm.
Hence with such a restriction the conception of the
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greatest common divisor of two algebraic numbers does
not in general exist (Art. 111). On this account the
conception of the divisibility through the complex
[a, B] consisting of two algebraic integers a, B is no
longer superfluous. It becomes necessary when the
restriction is made that all quantities belong to a definite
finite realm.

Art. 114. The Moduls Defined. The above consider-
ations and definitions are also true of such complexes as
[a, B, y, - -] which consist of more than two algebraic
numbers. The algebraic number A is said to be divisible
by the complex of algebraic numbers of the realm Q, say
[a, B,y, -] if it is possible to determine algebraic
integers ¢, n, ¢, - in Q such that

A=0&+Pn+ydl+ - - .

Through these definitions the theory of linear forms
a&+pn+yZ+ - - is introduced, the variables & n, ¢, 1-1
being algebraic integers, while the coefficients a, B, vy, - - -,
are integral or fractional algebraic numbers. All the
quantities introduced belong to a definite realm of
rationality, say Q. We shall next limit the investigation
by restricting the variables of the linear form,
in that they are allowed to take only rational integral
values, while the coefficients are any arbitrary algebraic
numbers of the fixed realm Q.

The collectivity of all algebraic numbers which are
expressed through the linear form ax+By+yz+ .. -,

where X, y, z, -, are rational integers is called! a
modul. It is denoted by the symbol [, B3, y, -] The
guantities a, B, y, - - are the elements of the modul. A

1 See Dedekind, § 165 of the 2ud edition of Dirichlet’'s Zahlentheorie. In
the derivation of this word, following the Germans, | use the stem of the
Latin word Modulus. See further Encyklopaedie der math. Wissenschaften,
Vol. I, p. 307.
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number A is said to be divisible by a modul [a, B, y, - - -J,
if A is a number of this modul, that is, if A is contained in
this modul, and that is, if rational integers x, y, z, - -
may be determined such that

A =ax+By+yz + -

Here we have encountered something which at first may
appear as a “ confusion of language ” in that the con-
ception of *“ divisibility ” and of *“ being contained
in,” which heretofore have been opposed are now identical.

Art. 115. The conception of modul may be made
more general, if we are freed from the conception of the
linear form. Having this in view, note that if A and A'
are two numbers that are divisible by the modulf  §,
Y, -+ -] then also A=xA' is divisible by this modul; for, if

A=ox+By+yz + -,

and
AN=ox+ By +yz' + -
then is
AEA = a(axa) + B(R£P) + ---
:ax"+By"+ _—
where x", y", - . are rational integers.

Accordingly the following definition of a modul may be
offered: A modul is a system of numbers, such that the
difference of any two numbers of the system is again a
number of the system. (Report on Algebraic Numbers, p.
91) .

It is seen from this definition of a modul that every
realm of rationality is a modul,l but reciprocally every
modul is not a realm of rationality. For a realm of
rationality Q = R(8), say, consists of all rational functions

1 Excepting the modul that consists of the one element 0, which is once for
all excluded, the simplest modul is the realm of rational integers. This modul
may be denoted by



THE MODULS OF DEDEKIND 175

of 7, and the difference of two rational functions is a
rational function.

The moduls are represented by small German letters.
A number a is said to be divisible by the modul g, if a
belongs to the modul a.  The number 0 forms for itself a
modul, and is the only modul that consists of a finite
number of numbers. This modul we exclude from
further consideration. All other moduls consist of an
infinite number of numbers and are reproduced not only
through the operation of subtraction but also through the
operation of addition. For if there appears in a modul
any number a(#£0), then by the definition of a modul
there appears also in this modul the number a—a=0;
from which it is seen that the number 0 belongs to every
modul. If then a is divisible by the modul o, then also
a—a—a= —a is also divisible by a. If further a is
divisible by a and also B is divisible by a, using the
definition just given of a modul, then also -[3 is divisible
by o and consequently a— (- ) is divisible by a; that is,
a+p is divisible by o.

It follows that if a is divisible by the modul o then ax is
divisible by o, where x takes all rational integral values.
There are two possibilities: either the quantities repre-
sented by ax constitute all the quantities of the modul o,
or there are also other numbers that are divisible by a.
In the latter case, if  is a number divisible by a, and not
found among the numbers ax, then also the numbers
ax+By, where x and y take all possible rational integral
values, are divisible by a. It may happen that these are
all the numbers divisible by a; if not, suppose that y is
divisible by o and is not found among the numbers
ax-1-By, then also the numbers ax+py + yz, where X, Y, z
take all possible rational integral values, are divisible by
the modul &, etc.
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This process may continue indefinitely, or it may
cease. In the latter case we come to a linear form
ax+py+ .- + nw such that ax+py+ --- + nw for inte-
gral rational values of the variables x,y, - -, w represents
all the numbers that are divisible by the modul o, and
reciprocally every number that is divisible by the modul
a may be expressed through the form

ax + By +-+-w,

where X, y, ---, w, are rational integers. In the latter
case the modul o agrees with the definition given above
of the modul [a, B, ---,n]. Such a modul is said to be
finite and is called a modul of finite order. The system
of numbers a, B, ---,n is called the basis of the finite
modul, and the number of these elements is called the
order (or rank) of the modul.

The representation of all numbers of a modul «
through a basis is clearly not unique, since the basis of
a modul may be chosen in an infinite number of different
ways (Art. 93).

Art 116. It was seen above that a realm of rationality
(excepting the one which consists only of the number 0)
is a modul, and from what was just given it is evident
that the order of such a modul is in general not finite.
For it is evident that the numbers %, %, %, 16, - -- cannot
be represented by a finite modul although they belong
to the realm R(I). We shall have little to do in the
sequel with moduls whose orders are not finite.

Definition. A modul b is said to be divisible by the
modul a if every number that is divisible by b is divisible
also by a.

If we apply this definition of divisibility to that of one
modul by another modul, both of order unity, we have
the theorem:
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If the rational number b is divisible by the rational
number a, then also [b] is divisible by [a].
For anv number bx where X is a rational integer may be

written where y is a rational integer; for ex-

ample: [6] is divisible by [3]; [¥] is divisible by

If a is divisible by the modul o, then every number ax
where X is a rational integer is divisible by a; if a and 8
are both divisible by o, then also every number of the
form ox+Py, where x and y are rational integers, is
divisible by o, that is, [a, B] is divisible by a, etc. Pro-
ceeding in this manner we reach the same conclusion that
was given in the preceding article.

The following definition at once presents itself.

Two moduls a and b are said to be equal (a=Db), if a is
divisible by b and at the same time b is divisible by a

From this definition are had at once the theorems:

fl) Every modul is equal to itself;
(2) ifa=bh, then b=a;
(3) ifa=bh, and b=¢, then also a=c.

If b is divisible by a, we say the modul a is a divisor of the
modul b and that the modul b is a multiple of the modul
a; if b is divisible by a, but a is not divisible by b, we say
that a is a pure divisor of b and that b is a pure multiple of
a.  The sign b>a, which has hitherto not been defined
for moduls, denotes that the modul b is divisible by the
modul a (including equality). From this definition
follows the important theorem:
If c>b and h>a then is also ¢ >a.

Art 117. The Least Common Multiple of Moduls. If
k is a modul which is divisible by both the moduls a and b,
we say that kis a common multiple of a and b; in this case
all numbers of k appear also in both a and b. It may be
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possible that the moduls a and b have still other numbers
in common. All numbers that belong to both a and b
form a modul; for if y and u' are two numbers which are
divisible by both a and b, then since a and b are moduls,
p-u" is divisible by both a and b. The modul m which
consists of all the numbers that are divisible by both a
and b, is called the least common multiple of the moduls a
and b and is denoted!l by a-b or b-a. Since this
relation has nothing to do with the difference of the two
moduls, we say a dash b and not a minus b. Since the
modul m=a-b="h-a consists of all numbers which are
divisible by both a and b, we have m>aand m>Db. Note
that the aggregate of numbers in m is less than that in
either a or b unless one of these moduls is m.  If further f
is a common multiple of a and b, that is, a modul which is
divisible both by a and b, then is k > m; hence we say m is
the least common multiple of a and b.

The modul m=a—b=b—a is therefore characterized
by the two properties, (1) m is a common multiple of a and
b, viz., m=>a and m=>=b; (2) every common multiple k of a
and b is divisible by nt.

We have at once a-a=a; if further a=b, then is
a-b=a

The above definition of the least common multiple of
two moduls may be at once extended to three or more
moduls; if a, b, ¢ are three moduls, then all numbers
which are divisible by a as well as by b and ¢ form a
modul in which we call the least common multiple of the
three moduls a b and ¢ We then have m=a, m=b,
m>c. If fis any modul such thatk>a, k>b, k>c, then is
k>m.

1 See Dedekind’s Festschrift: Ueber die Anzahl, etc. (Braunschweig, 1877).
See also Dedekind, Supplement X1 of Dirichlet, Vorlesungen Uber Zahlentheorie,
Fourth Edition. Reference to this supplement will be made by the word
Dedekind.
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We have further
m=(a-b)—-c=a-(b-c)=(@-¢) —b
and consequently the sign a — b — ¢ may be used for m. If
a=b, then the least common multiple of a, b, cisa-b-c¢
=a-c

If a and b are two moduls whose least common multiple
is m, and if further al and bl are two moduls whose least
common multiple is ml and if a=al and b=bl then is
m>ml. For if p is an arbitrary number divisible by m,
then since m is divisible by a and a by al it follows that p
is divisible by al; and since m>bh and b>b1 it follows also
that p is divisible by bl. Hence every number that is
divisible by m is also divisible by both al and b1, and such
a number is consequently also divisible by ml, so that
m>m1.

If a and b are two rational numbers and m their least
common multiple, then is

[m] = [a] - [b]

for since the rational number m is divisible by a and by b,
then every number that is divisible by [m] is divisible by
both [a] and [b] that is, [m] is a common multiple of
[a] and [b]. On the other hand [m] is the least common
multiple of and [b] forif [K] is an arbitrary common
multiple of [a] and [b], so that k<"1 > [fatipf
then k is a common multiple of a and b and consequently
divisible by m. But if k is divisible by m, then is

P thatfm] is the least common multiple of
[a] and [b]

Art. 118. The Greatest Common Divisor of Moduls.
If a, b, k are three different moduls and if a=k and also
b=k then the modul k is called a common divisor of a
and b. Of the three moduls f consists of the greatest
number of numbers; for k is constituted not only of all
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the numbers which constitute a, but of those also that
constitute b and there may be in addition other numbers
that are divisible by k and which are not divisible by
either a or b; that is, all numbers of the form o + 3 where
a is divisible by a and where B is divisible by b, are
divisible by k and in addition there may be other numbers
that are divisible by k which are not of the form a+§.
All numbers of the form a+[3, where a is any number
divisible by a, and B is any number divisible by b, form
a modul; for if § and &' belong to the complex of numbers
a+p so that, say, 6=a+p and & =a'+p', then 5-0'
= (a- a)=(B—p") belongs to the same complex, since
clearly a-a' is divisible by a and B-[' is divisible by b.
This modul which is constituted of all numbers of the
form a + [ we call the greatest common divisor of the two
moduls o and b. We denote it by a+b. If k is a modul
through which both a and b are divisible, that is, a
common divisor of a and b, then a+b>k for if a is
divisible by a and B by b, then a and (8 are both divisible
by k consequently since k is a modul, it follows (Art. 116)
that the sum a-+ is divisible by k. Hence any arbitrary
number which has the form a+(, and which in conse-
quence is divisible by a+b, is divisible by k so that
a+b >k

The greatest common divisor of a and b, say d=a+b is
characterized by the two properties:

(1) bis acommon divisor ofaand b, sothata>dand b >d

(2) Every other common divisor, say k of a and b is a
divisor of a+b, that is a+b=k

This denotation of the greatest common divisor of a
and b through the symbol a+b has more justification
than that of the least common multiple through a-b,
since the modul a+b consists of all numbers of the form
a+3, while the analog for the modul a-b is not true.
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Art. 119. If we have to do with finite moduls, the
greatest common divisor of two such moduls, say

[a B, Y, - n] and [a', B', ¥, - Nn'] is determined
through the addition of the two linear forms which
represent these moduls; for the modul o By, - Nl

consists of the collectivity of numbers which are ex-
pressed through the form ax+py+yz+ ... +nw, where
for the variables x, y, z, . w rational integers are
written, and the modul [a', B', - - -, n'] consists of those
numbers which may be expressed through the linear
form a'x+B'y + y'z+ - - - +n'w, where rational integers
are written for x', y', - - -, w'.  Hence the modul [q, B, Y,
- n]+[a, B Y, - - -, n'] consists of the collectivity of
numbers that may be expressed in the form ax+fy
+ yz+ - - - +nwHa'x+p'y + y'z+ - - - +n'w, where the
variables are rational integers.
It follows that

[av B’ Y, r]] + [a'v Bli y-, T r]']
= [Gv Bv' = 0, C(.’ Blv' " "n']'
If a and b are two rational numbers and d their
greatest common divisor, then is

[d]=[a] + [b]
For the modul [d] consists of all numbers of the form dx,
the modul [a] of all numbers of the form ay and [b] of
all numbers of the form bz, x, y, z being rational integers,
and the collectivity of all numbers of the form by +cz is
identical with the collectivity of all numbers of the
form dx, so that

[d] = [a] + [b]=[a, b]

If a and b are two arbitrary moduls and if d is their
greatest common divisor and if further al and bl are two
other moduls and dl is their greatest common divisor; if
further a=al and b>=bhl, then is d=d1, or in other words,
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a+b=a+bl For if & is an arbitrary number that is
divisible by b, we must have d = a+[3, where a ia divisible
by a and B is divisible by b. It follows then that a is
divisible by al and B by bl and consequently 6 =a+f is
divisible by bl so that b=bl

The conception of the greatest common divisor may be
extended to more than two moduls: If a, b, ¢, - are
moduls, then all numbers of the form a+p+y—+---
where a is any number that is divisible by a, B any
number that is divisible by b, y any number that is
divisible by c, etc., constitute a modul which is called the
greatest common divisor of the moduls a, b, c, - - -

This modul is represented by a+b+c+ - - - This modul
a+b+c+ - - - is divisible by every other common divisor
of a, b,c, --- We further have for a, b, c, - - - the

same rules as we have for the addition of numbers, viz.:
a+b+c= (a+b) +c —c+(a+b)
= a+(b+c) =etc.
For finite moduls, the modul a+b+c+ - - - represents in

reality a sum, viz., the sum of the corresponding linear
forms.

Art. 120. If a and ¢ are two moduls, we have at once

a-b =g, a-b=b,
a=a+b, b>a-+b.

Lemma. If a=al and also a=bl; if further b=al and
b=b1, then is a + b=al— bl

For a+b=al and a+b>bland consequently a+b
=>al—hl

From this may be derived the following important
theorem:;

If a, d, m are three moduls of which m=>d, then is

(a-d)+m=(a+m) —d
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In order to prove the equality of two module, we must
prove that either modul is divisible by the other.

We note that

a-d=a=a+m
a -d=d
m=>a+ m
m=d.

From the above lemma

(a-d)+ m> (a+ m) -d.
On the other hand let n be a number divisible by the
modul (a+ m) -d, then is n divisible by a+ m and fur-
ther n is divisible by b. Hence n-a-+u where a is
divisible by a and p by m; further since 1 is divisible by b,
it is seen that n=20 where 0 is a number divisible by the
modul b. It follows that

n=a+p=19 or  a=d-p

Since 0 is divisible by b and p by m, and as by hypothesis
m is divisible by b, we note that p is divisible by d.
Hence & —p is divisible by b, that is, a is divisible by d,
and since a is divisible by a, it is seen that the modul to
which a belongs is a common multiple of a and d and
consequently is divisible by the least common multiple
of a and b, that is by a -d. Hence the number n = oa+p
is divisible by a -d)+ m; and since this is true of every
number n of the modul(a+ m) -d., it follows that

(a+ m) -d> (a-d)+ m, (u)
We therefore have from (i) and (ii)

(a-d)+ m=(a+ m) -d,
where m>b (cf. Dedekind, § 169).

Art. 121. Multiplication of Moduls by Algebraic Inte-
gers. If ais a modul whose elements belong to Q and
n an arbitrary number of this same realm, then the
complex of numbers an, where for a is written every
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number that is divisible by a, forms a modul; for if an and
a'n are two numbers of this complex, then the difference
on—a'n = (a — a")n belongs to this complex. This modul,
which is formed of the numbers an, we call the product of
the modul o and the number n.  We denote it by

an =na.
It is also evident, if n' is another number of the realm Q,

that
(an)n'=§hM .

If o is a finite modul, say a=[al, a2 - . an], then is

an = [aln, o2n, - - -, ann]
for the modul a = [a1, a2, - - -, an], consists of all numbers
of the form alx+a2y +oa3z+ - - - +anw, where x, y, z, - - -,
w take all rational integral values, and the modul o7
consists of all numbers of the form alnx+ a2ny +a3nz
+ ... +annw for rational integral values of x, y, z, - - -, w.
(Dedekind, § 170.)

If the modul b is divisible by the modul a, then is the
modul nb divisible by the modul na. For if np is any
number divisible by the modul nb, then is B divisible by
b, and consequently since h > a it follows that {3 is divisible
by a; hence also nf >na and therefore nb >na. If recipro-
cally nb is divisible by na, then from what we just had,
n-1nb is divisible by n-Ina, and consequently b > a.

Ifnb=na then b=aand if b=aqa, then isnb=na Iftn
is the least common multiple of a and b, we have

nm =n(a-b) =na-nb.
For if py is a number that is divisible by m, then p is
divisible by both a and b; and nu, an arbitrary number
divisible by nm, is divisible by na and nb, and consequently
jna-nb. Reciprocally, every number that is divisible
by na and also by nb, is divisible by 77m; for every num-
ber that is divisible by a and also by b is divisible by m.
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If d=a+b, then is
nb=n(a+b) =na+np
for the modul b consists of all numbers of the form a+3,
where for a is written all numbers divisible by a and for

B all numbers that are divisible by b. The modul np
consists therefore of all numbers of the form

n(a+p) =na-+np.
In an analogous manner we have
n(a+b+c)=na+nb+nc
and
n(a-b-c)=na-nb-nc
etc.

Art. 122. The Product of Moduls. If the product of
two moduls a and b were defined simply as the complex of
numbers of3 where for a are written all numbers divisible
by o and for 3 are written all numbers divisible by b, it is
seen that this complex is not a modul; for a3-a'B' is not
of the form a"B". Accordingly a definition as follows
must be offered:

The product ab is the complex of those numbers which are
had if we sum in all possible manners the products of the
form a-B, where for a are written all numbers divisible
by a and for B all numbers that are divisible by b; that is, the

product a-b is the complex of all possible humbers of the
form

where a(l), a2, - individually run through all the
numbers that are divisible by a, and for each of the quantities
a(i) the quantity B(i) goes through all numbers that are
divisible by b.

In other words, if a=(al a2, a3, - - -) and if a(i) is any
number that is divisible bv a, then aw mav be added as
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an element, so that
a=(l1 a2 a3 ---, a@), ---);
and similarlv
b=PB1, B2 B3 - -.BG), ---)-
Hence in the product ab, every number of the form
a(p() found.

Note that the difference of any two numbers of the
complex is again a number of the complex. The product
a-bh may be regarded as the greatest common divisor of
all the moduls which are had if the modul b is multiplied
by all possible numbers that are divisible by a, that is

a-b=al)p+a@)p+a@@)p+ - -,
when for a(1), a(2), a@3), ---, are written all possible
numbers that are divisible by a; for if a(Q)p(l) is any
number divisible by a(l)b, and if a(2)f(2) is any number
divisible by a(2)b, etc., then is a(Q)B(1)+a)p@2)+--- a
number divisible by a(1)b+a(2)b + - - -, which modul is also
divisible by a-b; and reciprocally every number that is
divisible by a-b may be expressed in the form
a(l)BL)+a(2)p(2)+:--

Art. 123. As a special case, suppose that the modul

a is finite,! say
a= [al, a2, - on];
we then have
a-b =alb+o2b + - - - + anb.

In other words, we have the product of the moduls a-b, if
we take all possible moduls ab, where for a are written
only the n numbers al, a2, ---,an which form a basis of
a, and not necessarily all the numbers that are divisible
by a The product a-b (where a is a finite modul) is the
greatest common divisor of the n moduls alb, a2b, - - -,

1 The simplest case is when one of the moduls is J, the complex of all rational
integers. In this case za =a, where a is any modul. If further ka =a, where k
is a modul and a any modul, then is k=z.
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anb; for if A is a number that is divisible by ab, then is
A=a(1)B(1) + a(2)B(2)+,

where all the numbers a(l), a(2), - -, are divisible by a
They may therefore be written in the form

0(l) =alxl+o2x2+ - - - +anxn,
a(2) = alxl + a2x2+ - - - + anxn,
etc. It follows that

A= al(x1B(L) +x1p(2) + - - ) +o2(xP(1) +xP(2) + .. )+ . ..
=alnl-{a2n2}- - - -,

where the n's are divisible by the modul b. The number
alnl is divisible by the modul alb, the number a2n2 is
divisible by the modul a2b, etc. Hence A is divisible by
the greatest common divisor of alh, a2b, - -, that is by
alb +a2b+ - - +anb. Reciprocally, every number that is
divisible by alb + aa2b+ - - - +anb has the form

alnl + a2n2+ annn
where nl1 n2, ---,nn are numbers that are divisible by b.
It follows that each of the numbers alnl, o2n2, - - -, annn is

divisible by a-b and consequently the sum of these hum-
bers is divisible by a-b.

Having shown that each of the two moduls a:b and
alb + a2b+ - - - +onb is divisible by the other, it follows
that

a-b=alb + a2b+ - - - +anb.

If then al, a2, - -, an is a basis of the finite modul o,
then the modul ah consists of the collectivity of numbers
which are expressed through

alnl +a2n2 + - - -, annn,

where the variables n1 n2, ---,nn are all the possible
numbers that are divisible by b.
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Art. 124, As a still more special case, suppose that
both the moduls a and b are finite, say

a=[al,a2,: - ar]
. b=1[B1,P2 - PBs]
then is

ab = [alpl, alf2, - - -olfs, a2BL, a2p2, - - -02PBs, 1- arPs];
for if a is a finite modul, then all numbers divisible by
a-b may be expressed through

alnl+oa2n2 +-- . armr,

where n1 n2, ---,nr are all numbers that are divisible by b.
Since b is also finite, we have

nv=RLxvl + Bixvl+ . - 4Psxvs  (v=1,2, ---,r).
It follows that
alnl +o2n2 + - - -, arnr = o1f11x11 + alp12x12 + - - - +arpsxrs:
The quantities alpl, alp2, - - -alfs do not necessarily
form a basis of ab, as this basis may consist of fewer
than r-s elements; that is, the order ofa-b may be less

than r-s. It is evident that if alfl could be expressed
linearly in the form

olBL = x202B2 + X303p3 + - - -

where the X’s are rational integers, then alpl could be
dropped as an element of the basis on the right hand side.

Art. 125. The conception of the product may be
extended to more than two moduls. If a b ¢ - are
several moduls, then by uniting always a number of the
modul a with a number of the modul b with a number of
the modul ¢ into a product and making a summation of
all possible products of this kind, we have the complex
of numbers

2a(ip@ya) . .. =a()pLyE)+ . ..
+0(2) B2)y(2) + .. .+a(3) BR)Y(3)+ ...+
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where a(l), a(2), a(3), - - - are all possible numbers divisible
by a, and also the quantity B(i) goes through all possible
numbers divisible by b, while y(i) goes through all
possible numbers divisible by c, - - This complex of
numbers forms a modul, since the difference of two
numbers of the form 'Yay- - - has again this form; it is
called the product of the moduls a, b, ¢, - - and denoted
by abc - -, or by bac - -, or by cab - -, etc.

For the multiplication of moduls as thus defined the
two fundamental principles of multiplication as seen for
example in rational numbers are also true, namely the
commutative and associative principles. For it is evi-
dent that

ab = ba

abc= (ab)c = a(bc).
From these fundamental principles of multiplication
arise at once the other principles of multiplication, in
particular uniqueness in raising to a power, which is due
to the associative and not to the commutative principle;
for in raising to a power the factors are all equal and
consequently eo ipso interchangeable. We define an
where n is a positive integer #0 as the product of n
moduls of which each one is equal to o, that is

an=a-a-a- - --a
From the associative principle follows the important
theorem

ar- as = ar+s (r, s>0);
and from the commutative principle we have
arbr = (ab)r (r=0).

Remark. A product of several moduls cannot =0 unless at
least one of the factors is 0; for if abc=0O and if a0, b0, ¢£0,
then in a there is a number a0, in b there is a number B 0, and
in ¢ there is a number y#O and consequently there is in abc a
number aBy#0 which contradicts the hypothesis that abc=0
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Art. 126. If a is a number divisible by a and  is a
number divisible by b, then it follows from the definition
of ab that the number af is divisible by ab. This may be
generalized into the following:

Theorem. If a=al and b=bl then is ab=>albl

For since a>al, every arbitrary number a that is
divisible by a is also divisible by al and since b>b1 every
arbitrary number B that is divisible by b is also divisible
by bl It follows that af is divisible by albl. If further
o is another number divisible by a and B' is another
number divisible b, then also a'B' is divisible by albl, etc.
We thus see that all numbers of the form

>ap=ap+a'f +a"p" +---
are divisible by albl. but all these numbers constitute the
modul ab. We therefore have

b>albl.
The following special case mav be noted:!
If b>a, then is bc>ac.

The inverse of this theorem is not true in general, viz.,
if bc>ac, then it does not follow that b>a If a=[1]
and al=[i] where i2=-1, and b=[1, i], then is
ab =b =alb and consequently ab > alb: but a is not divisible
by al

The conclusion that if bc>ac, then is b=a can only be
drawn if ¢ is a one-term modul equal to, say, [n]. If
b [n]=a[n], then is b>a; for b [n] =bn and a [n]=an and
if bn > an, then is bnn-l>ann-1 or b>a

We observe in general that a product of moduls is not
divisible by one of the factors; that is the modul ab is in
general divisible by neither a nor b. The analogous
theorem is true for rational integers but it is not true for

| Observe that a>ab, if z>b, since za>ab, and za=a, where the modul :
consists of the collectivity of rational integers.
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rational fractional numbers, for although 6 is
divisible by neither of these factors.

Art. 127. If a, b, ¢ are three moduls and if b =a+b,

then is
dc= (a+b)c=ac+bc.

Proof:
a>h b=b
c>c (>
ac=>hc bc=>bc.

Since both ac and bc are divisible by dc, it follows that
(1) ac+bc=dc.
On the other hand let y be a number divisible by ¢ and §
a number divisible by b so that also d=o+ [ where a is
divisible by a and B by b. We note also that ay is
divisible by ac and By by be and consequently ay-+py
=9y is divisible by ac+bc. Similarly &'y' is divisible
by ac+bc if &' is divisible by b and y' by ¢, etc. It follows
that yd+y'd'+ - - - = 3yd, which is any arbitrary number
divisible by be, is divisible by ac+bc. Hence also
(2) dc=ac+bc, and from (1) and (2),
dc = ac+bc.
This may easily be extended to the following (Dedekind,
§170):
(a+b)(al+bl) =(a+b)dl
= adl + hdl
=a(al+bl) +Db(al+hl)
= aal-+abl+alb+bbl.
We have at once
_ (a+b)2 = a2+ab+hb?,
since
ab+ab = ab.
We further have the following important relations for
three moduls, a, b, c

(b +c)(c+a)(a+b) = (a+b+ c) (ab+ bc+ca),
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for
(b+c)(c+a)(a+b)
= abc—+abc + a2b + h2a—+a2c—+c2a+b2c+c2b,
g = abc+a2b-+b2a+a2c—+c2a + b2c+c2b,
an

(a—+b+ c)(bc + ca-+ab) = abc + a2b+b2a-+a2c+c2a-+b2c+c2b.

EXAMPLES
1. Prove that if
aij=dq  THZ 00
j=i

and

dl=al+a2+ --- +an

d2=ala2 + ala3+ --- + alan +a2a3+ --- +an-1-an

dn-1= ala2-- ml-an-1+ala2 - an-2an+"'---

then is

al2al3-- an-1,n=d1d2--- dn-1

2. The same theorem for positive rational integers was proved in
Art. 25, namely, letal a2 - - -, an be n positive integers and let  be
the greatest common divisor of at and aj and further let dv be the
greatest common divisor of all products of every v of these numbers
(v=I, 2, ---, n=1). We then have

J

1,2, —,n
2,3 ---, n-1
j=i

Art. 128. We saw above that
c(a+h) = ac+hc.

The analogous theorem for the least common multiple of
moduls is not true; in this case it can only be proved that
c(a—h) =ac—be.

For we have
a—bh>a a—b>b
c>c c>c,
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and consequently
(a —b)c=ac (a —b)c> be.
It follows that (a—b)c is divisible by the least common
multiple of ac and be, or
(a —b)c= ac—bc.
If « and b are two moduls and if b=oa+b and m = a-b,

then is
md =ab,

(a —b)(a+b) >ab.
For if & is a number divisible by b, thenis d =a + 3, where
a is a number divisible by a and f is a number divisible
by b; and if p is a number divisible by m, then is p=a
=1, where al is divisible by a and ! by b.
It follows that
Wd = (a+P)u=ap+pu = apl+pPal,
where apl and Pal are both divisible by ab and conse-
quently every number of the form
Ho(l)  wR0[Q) +uE)E) +---= S u(i)(i)

is divisible by ab. The equality

mb = ab
is in general not true as in the analogous case of rational
integers.

Art 129. The Quotient of Moduls. To define the
quotient of two moduls, consider first the quotient

or

where a is an arbitrary number. It is evident that
the modul a-1b is the aggregate of all those numbers
kK which are divisible by or better expressed, a-1b is
the aggregate of all those numbers k which are such that

ka is divisible by b.  In an analogous manner we define
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as the aggregate of all numbers k which have the property
that ka is divisible by b.

The aggregate of numbers thus defined is a modul;
for if k and k are two arbitrary numbers that are divisible

by so that ka=b and ka>b, and if a is a number

divisible by a, then are ka and K'a both divisible by b and
consequently also (K-k"a is divisible by b; and this is
true of all numbers a that are divisible by a. It follows

that k- «K' belongs to the aggregate

This modul is called the quotient of the two moduls b
and a

The characteristic properties of the modul are the
following:

(1) Ifkis a quantity divisible by  then is ka> b;

(2) if ka> Db, then is

This definition of the quotient of moduls is also
expressed through the following two important theorems;
Theorem I.  Ifq, b, fare three arbitrary moduls and if

ka>b, then is also

For if k is a number that is divisible by f, then is
ka=ka if further ka=h then is ka=h and consequently
every number k that is divisible by k in view of the

definition given above of the quotient s divisible by

and consequently k is divisible by
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Theorem Il. |f then is also ka>b.
For if and if k is an arbitrary number divisible by
k then is k divisible by  or in accordance with the defi-

nition given above of it follows that ka>b and simi-

larly also k'a>b where K' is a number divisible by k and
consequently also the sum

Ka+k'a+---=>b
and that is, due to the definition of multiplication,
ka>h.
Remark. Since every modul is divisible by itself, we have
so that The equality of these two moduls in general
does not follow.

Art. 130. Theorems | and Il of the preceding article
may be expressed as follows:

The quotient is the least common multiple of all those

moduls k which have the property that ka>b.

We may consider first this theorem for the case where
the denominator a is a one-term modul [].

We assert that

For if k is a number that is divisible by  then ko and

consequently kax is divisible by b, where x is a rational
integer; or k[a] is divisible by b, or finally k is divisible by

so that
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Reciprocally, if k is divisible b then is K[a]>b

and consequently kax, where x is a rational integer, is
divisible bv b. It follows also when x=1, that ka is

divisible by b so that k is divisible by or (2)

From (1) and (2) we have

If next a is a finite modul, equal, say, to [al, a2, - - -, an],
then is

a= [al]+[a2]+ --- +[an]
We assert that

say. Note that the least common multiple w of the
moduls is such that

(v=L2, ---1,n)

If y is a number divisible by m, then is p divisible by
and consequently pav is divisible by b (f=1, 2, - -,

ri).
We denote by x1, x2, - - -, xn, n rational integers. It is

evident that palxl, po2x2, - -, ponxn and consequently
also p[alXl+a2x2—+- - -+anxn] is divisible by b, It

follows that pa is divisible by b, or (1)
Reciprocally, let k be an arbitrary number divisible by
so that ka=b. It follows that the quantities kai, ka2,

-+, kan are all divisible by b. Hence the quantity « is
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divisible by  as well as by -+, as well as by

and consequently also by the least common multiple tn of
these moduls.  Since this is true for every number k that

is divisible by it follows that From (1) and

(2) we have

In the same way the following may be proved for
moduls which are not finite:

The modul is the least common multiple of all moduls of
the form o~1b, when for a are written all numbers that are
divisible by o.

Art. 131. It is well to consider next certain formulas
relative to the quotients of moduls.

Formula |. 1f b=bl and al>a, then is
and
For write so that ka=b; then is ka>bl Since

however kal > ka, it follows that kal > b1, or

Formula Il. If a b, ¢ are three moduls, then is

For

c>c
therefore
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or
Formula IlI.
For and . so that It follows
that
or
In the case of Formula II, if ¢ is a one-term modul

=[n], say, we have the equality

For or or (1)
On the other hand, from Formula Il we have

@)
From (1) and (2) it follows that

Further, if in Formula 111, we put b1=[A] and ai = [K],
we have

For so that
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and consequently
1)

But from Formula 111, we have (2) and

from (1) and (2) it follows that the two expressions are
equal.
Formula IV.

For or nr or (1)

On the other hand

and

so that
()

and from (1) and (2) we have the equality desired.
Formula V. If mis the least common multiple of the

two moduls a and b, then is  the least common multiple of

and and that is

For
> m=h
m=a and
c>C c=>C.

Hence from Formula |

and
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and therefore

1)
On the other hand

and
so that

and
Hence
or
@

From (1) and (2) follows the equality of the two
expressions

Formula VI. The least common multiple of and is

where d=a-+Dh, or

For let then since ¢=c¢ and a=bh, it follows
from Formula | that and similarly It follows
that

1)
On the other hand

and

so that
mla> ¢ and mlb> c.

It follows that mla+ mlb =c and since
mla+mlb =ml(a +b) =mld,
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we have mld>c, or
(2)

From (1) and (2) follows the equality desired.
Formula VII. The greatest common divisor oj ind

is divisible by that is

For
a=a-+h and b=a+b
al — bl =al al — bl > bl

From Formula | it follows that
and

and consequently

Art. 132. The following formulas have to do with the
special modul This modul is denoted by al and con-

sists of all numbers k such that ka>a. To these numbers
belongs clearly k=1, so that the modul [1] which consists
of all rational integers is divisible by the modul a0, or
[1]==a0. The modul [1] is sometimes denoted by
7 (see Art. 115, footnote). If k is a modul such that

ka=a then is that is k=a0, and if k=a0 then is ka>a

The modul a0 we call the order-modul of a. See also
Art. 133.

Formula VIII.
aal = a

For since we have also and consequently

(1) aa0=>a
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On the other hand

a=>a
[1]=a0.
Hence
a[1]=aa0
or
(2 a=aa0.

From (1) and (2) follows the equality required.
Formula IX.

For from VIII
aal = a,
and hence also
aa0=>a,
so that
1
On the other hand
a=a
[1]=a0

so that from Formula |
(2

From (1) and (2) we have the required identity.
Formula X.

a0a0 = a0.
For from Formula VI1II

aa0 = a,
and consequently
aalal =aal =a

From this it follows that
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or
(1) a0a0=a0.
On the other hand
a0=a0
[1]=40.
Hence
(2 a0=>a0a0.

From (1) and (2) follows the identity required.
Formula XI.

For since
a0=a0 and [1]=a0,

it follows from Formula | that

1)
Further since
a0a0 = a0,
it follows that

a0a0=a0,
and consequently also

@)
from which with (1) the required identity is proved.
is sometimes written (a0)0.

Formula XII. ara0 =ar (r a positive integer).
For from VIII,

aad = a
If we multiply by ar-1, we have
o ara0 =ar

and similarly
alar = ar.

From X and XII it follows that the formula (Art. 125)
aras = ar+s, which was true when both r, s were positive
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integers, is also true if one or both of the exponents =0.
For negative values of r and s the formula is not true. A
modul with negative exponents has not been defined.
Such a definition would be hard to give, since a modul
a-1 which satisfies the equation

a-la=al

in general does not exist.  Such a modul is had when a is a
very special modul which is considered later in Vol. Il,

Chapt. Il.  The theorem which is true for num-

bers, is not true for moduls.

Art. 133. A modul o which has the two properties
(1) 00 =0,

) [1]==0
may be called an order-modul.!

Note that if A and p are two numbers that are divisible
by o then also Ay is divisible by o. It follows that the
numbers of an order-modul are reproduced by the
operation of multiplication. Thus an order-modul con-
sists of a system of numbers which includes 1. These
numbers are reproduced not only through the operations
of addition and subtraction, as in the case of the usual
moduls, but also through the operation of multiplication.
Such order-moduls, since they contain 1 as an element,
contain all rational integers, and that is [1] or the modul
z.

Since 0>0 and [1]=o0, it follows that o[1] or 0= oo;
and since by definition 00=0, it follows that 0o = o.

Further, since 0o > o, it is seen that and from For-

Dirichlet and Kronecker, Grundzuge, etc., 85, used the word “Art” or
““Species” to designate such module, while Dedekind, X1 Supp. to Dirichlet’s
Zahlentheorie employed the term ““Ordnung.”
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mula | applied to o=0 and [1]>o0, it follows that
We thus have

The order-modul al has for the modul a the same
signification as unity has for ordinary numbers.

Congruence with Regard to a Modul

Art. 134. All numbers p of the modul m are said to be
divisible by m; they are =0 (mod. m). In general it
may be said that a is congruent to B mod. m, and written
o==f (mod. m), if a—f is divisible by m, and that is, if
o—f is a number of the modul m.  From this definition
are had the three following fundamental principles of
congruence (which exist also for the rational numbers):

(1) If a=B (mod. m), then is B=a (mod. m);

(2) a=a (mod. m);

(3) if o33 (mod. ) and if =y (mod. m), then is also
o=y (mod. m).

If a=B (mod. m), we say that a is a residue of f (mod.
m), and also that B is a residue of a (mod. m).

If a is not congruent to f (mod. m), then a is said to be
incongruent to  (mod. m).

If a=a' (mod. m) and B=("' (mod. m), then is also

axB=a'+RB"' (mod. m).
For since a—-a and B-3' are both divisible by m, it
follows that the sum and the difference of these quantities
are divisible by m.

Congruences added to or subtracted from congruences give
congruences. For multiplication, it is clear that if a=3
(mod. m) and if g is a rational integer, then also

ag=fg (mod. m).

In general if v is a number divisible by m0, where m(

is the order-modul of m, then is

va=vf (mod. m) if o= (mod. m).
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For if a — B is divisible by m, then v(a-[3) is divisible by
mm( (Art. 122) and consequently by m.

For numbers v that are not divisible by m0, the above
congruence cannot be proved; in fact, it is not true even
for rational numbers; for

8=3 (mod. 5),
but
8/2¢ 3/2 (mod. 5).

If =B (mod. m) and if m>b, then also a=(3 (mod. b);
for if a — B is divisible by m and if  is divisible by b, then
also a - is divisible by b.

If a=B (mod. a) and if a=B (mod. b), then also a=[3
(mod. m) where m=a—b; for if a—f is divisible by both
the moduls a and b, then a—- is divisible by the least
common multiple of these moduls.

Art. 135. Let M be an arbitrary complex or aggregate
of numbers. The complex which is formed of all
numbers o+, where p takes all values that belong to
M, a being an arbitrary number, is denoted by a+M or
M+ a

Let 50? be a modul, then in general a+M is not a
modul, but another system of numbers. For example, if
M is a finite modul, then M consists of all numbers
which may be expressed in the homogeneous form
alxl+a2x2+ - - - +anxn, where al, a2, - - -, an form a basis
of M and where x1, x2, - - -, xn are rational integers; on the
other hand, a+M represents all numbers that can be
expressed through the non-homogeneous linear form
oa+alxl+o2x2+ - - - +anxn,.  All numbers that are =a
(mod. 50?) form the complex a+M. If y is a number
divisible by M, where M is a modul, then is y+M = M:;
for every arbitrary number of the complex y+ M has the
form y+u, where p belongs to the modul M, and conse-
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quently, since y is also divisible by M, it follows that
y + M is divisible by M.
If a=B (mod.M), then is
a+M =B+M.
For if a—p is divisible by 90?, then from what we have
iust seen
a—B+M =M,
and consequently also
o-B+M+p=M+,

or
a+M=p+M.
Reciprocally, if a+M = + M, then is
a=p (mod. M).
For if
ao+M=p+M
then also
a+0=B+y,

where y is divisible by 90?. Hence a—p =y is divisible by
90?, or
a=(3 (mod. M).

If therefore two such aggregates of numbers «+90? and

/3+90? are completely identical, then is
a=p (mod. M).

If on the other hand two such aggregates of numbers
a+ M and a+M are not completely identical, then they
haven’t a single number in common. For suppose they
had the number Kk common, so that

K=o+p =R+,
where both p' and " are divisible by 90?; it would follow
that g -O‘—_Bﬁ .
a number divisible by m.  We should then have

a=p (mod. M),
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and consequently from above
a+M=p+M

It is thus shown that the two complexes of numbers
o+ M and B+ M have either all numbers or no numbers
in common. This fact is evident from the theorem that
if two numbers are congruent to a third (mod. M), they
are also congruent to each other (mod. M. For if
a=y (mod. M) and =y (mod. M), then is a=f (mod.
W2), or a+ M= + M.

Art. 136. Let a and b be two moduls and consider
first the special case where b=a Let o(l) be any arbi-
trary number that is divisible by a and let B be any
number that is divisible by b. Then since b>a, it
follows that a(1)+p is divisible by a, and consequently all
numbers of the complex a(l) +b are divisible by a.  Two
cases may happen, either the numbers of the complex
a(1l)+b comprise all the numbers of the modul a, or they
do not. In the latter case let al2) be a number of the
modul a, which does not belong to the complex <vu +bh.
We again have, since b>a, a(2)+b=>a, that is, every
number of the complex a(2) +b is found in a. Further as
seen above, -the complexes a(l) +b and a(2) +b have no
number in common. Two cases may again appear,
either the numbers of the two complexes a(l)+b and
aa(2) +b constitute all the numbers of the modul a, or they
do not. In the latter case let a(3) be a number that does
not appear in either of the complexes a(1) +b and a(2) + b,
and form the complex a(3)+b. This complex has no
number in common with the two former complexes.
Continuing this process it is seen that after a finite
number of times we either obtain all the numbers of the
given complex or we do not. In the former case we have
a finite number of aggregates or classes of numbers

a(l)+b, a2) +b, a@)+b, - - -, a(k)+ b,
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where the numbers of these complexes constitute all the
numbers of the modul o. In this case we shall use the
symbol (a, b) to denote the number k of these classes.
In the other event, where the number of classes is
infinite, we shall put
(a, b)=0.

When the number of classes is finite, we shall take a
number from each of the classes, thus having k numbers

a(l), a(2),-, a(k),

(of which one is zero, say a(1) = 0), which form a complete
system of representatives of the modul o with respect to the
modul . These k numbers have the following charac-
teristics:

(1) They are all divisible by a;

(2) the difference of no two is divisible by b;

(3) every number that is divisible by a is congruent to
one of these numbers (mod. b) and from (2), to only one of
these numbers.

Art 137. For the general case we may proceed as
follows: Let a and b be two arbitrary module and dis-
tribute | the numbers that are divisible by a into classes
with respect to the modul b. The number of these
classes may be finite or infinite. A system of k numbers,
a(l), a(2),---, a(k) is called complete system of repre-
sentatives of the modul a with respect to the modul b, if it
has the properties just enumerated. Each of the k
numbers a(l), a(2),--, a(k) represents a definite class of
numbers of the modul o. (Dedekind, § 171 of Dirichlet’s
Zahlentheorie, 4th Edition.)

Let m=a-bh and suppose that the system a(l), a(2),
---, a(k) forms a complete system of representatives of

1 That is, let a(l) be a number divisible by a, and take all numbers belonging
to a which are congruent to a(l) (mod. b) and put them in a class or group, and
similarly with a(1), a(2),---, a(k).
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the modul a with respect to the modul b; then this
system of numbers also forms a complete system of
representatives of the modul o with respect to the modul
m.  For the k numbers a(1), a(2),--, a(k) have the follow-
ing three properties:

(1) They are all divisible by &;

(2) the difference of no two is divisible by m; for if such
a difference were divisible by m, it would also be divisible
by b since m=b, and this is not true since a(1), a(2),--,
a(k) by hypothesis form a complete system of repre-
sentatives of the modul a with respect to the modul b;

(3) every number divisible by a is congruent to one of the
numbers a(l), a(2),--, a(k) (mod. m); for if a is congruent
to a definite one of the numbers a(1), a(2),--, a(k) (mod.
b), say to a(v), then is a—a(v) divisible by b; and since
a-a(v) is also divisible by a; it follows that a-a(v) is
divisible by m, so that

a=a(v) (mod. m).
It is thus seen that
(a b) = (a m);
or more definitely expressed: If the k numbers a(l), a(2),
.-+, a(k) form a complete systems of representatives of a
with respect to b, then also they form a complete system of
representatives of a with respect to the modul m.

Further let d=a+b then if k numbers a(1), a(2),,
a(k) form a complete system of representatives of the
modul a with respect to the modul b, they also form a
complete system of representatives of the modul b with
respect to b. For the k numbers a(1), a(2),---, a(k) have
the properties:

(1) they are all divisible by b since a>d;

(2) the difference of no two is divisible by b, since they
form a complete system of residues of the modul a with
respect to the modul b;
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(3) every number § that is divisible by d is congruent to a
definite one of the k numbers a(1), a(2),:--, a(k) (mod. b);
for observe that & = a+[ where a is divisible by a and B
by b; and since a(1), a(2),---, a(k) form a complete system
of residues of the modul a with respect to the modul b,
it follows that

a=q(v) (mod. b),
where a(v) is one of the numbers a(1), a(2),---, a(k), and
consequently a=ua(v) + B', where B' is a number divisible
by b.

It is thus seen that
d=a(v)+B+p"=a(v)+p"

where 3" is divisible by b; and therefore

o=a(v) (mod. h).
Through the two formulas just derived, viz.,

(a, b) = (a, a-b),

(a, b) = (a+bh, b),
it is seen that the general case has been reduced to the
special case already considered, where b>a

Art. 138. If a=b, then is (a b)=1, and vice versa.

For if a>b, then every number a that is divisible by
a is also divisible by b, and we have a=0 (mod. b). We
thus have only one class and therefore (a, b)=I.

On the other hand, if (a, b) =1 there can be only one
class. Since 0 is divisible by a, this one class may be
represented through the number 0, and all the numbers o
that are divisible by a must be =0 (mod. b) and conse-
quently divisible by b. It follows that a=b.

A special case of this theorem is

8 a) =1
If n is an arbitrary quantity different from 0, then is
(an, bn) = (a, b);
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and further, a(1), a(2),---, a(k), form a complete system of
residues of the modul a with respect to the modul b, then also
na(1), na(2),:--, na(k), form a complete system of residues of
the modul na with respect to the modul nb.

For na(1), na(2),:-, na(k), have the three required
properties;

(1) they are all divisible by na since a(l), a(2),---, a(k),
are divisible by a;

(2) the difference of any two na(u), na(v) is not divisible
by 7ih; for otherwise a(u)- a(v) would be divisible by b;

(3) every number divisible by na is congruent to one of
the definite numbers na(l), na(2),--, na(k), with respect to the
modul b; for every number that is divisible by na has the
form na, where a is divisible by a, hence a must be
congruent to one of the numbers a(1), a(2),:, a(k), with
respect to the modul b and therefore na is congruent to a
definite one of the numbers na(1), na(2),---, na(k) (mod.
nb).

Art. 139. Suppose that h>a and ¢>b, then is

(a, ¢) = (a, b)(b, ¢);
and in fact if a(1), a(2),---, a(k) is a complete system of
residues of the modul a with respect to the modul b, and if
B@), B@), -, B(m is a complete system of residues of the
modul b with respect to the modul ¢, the quantities auif)
+puv=1, 2, ---, k;p=1, 2, -, m) form a complete
system of residues of the modul a with respect to the modul c.
If this is proved, the correctness of the formula

(8, ¢)=(a, b)(, c)
is established, since the number of the quantities a(v) +B(u)
is k-m. The quantities a(v) +p(u) have the three required
properties:
(1) the guantities a(v) +p(u) are divisible by a, since b is
divisible by &;
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(2) the difference of any two of these quantities is not
divisible by c; for if a+ B=a'+ B' (mod. c), where a and a
are of the numbers a(l1), a(2),:--, a(k) and B, B' are of the
numbers B(1), B(2), - - -, B(m), then since ¢>b and B=p'
(mod. b) it would follow that

o=¢ (mod.b),
which contradicts the assumption that a(1), a(2),-, a(k)
form a complete system of residues of the modul a with
respect to the modul b, unless a=a'. But in this case

B=B" (mod. c),
which contradicts the hypothesis that B(1), B(2), - - -, B(m),
form a complete system of residues of the modul b with
respect to the modul ¢, unless f=p". It follows that two
different quantities a(v) +p(u) is not divisible by c;
(3) every number that is divisible by a is congruent to one

of the k-m numbers a(v) +B(u) ;’;'I g :::’r‘; (mod. ¢);

for if a is any of the numbers of a, then a must be
congruent to one of the numbers a(1), a(2),--, a(k) (mod.
b), since a(l), a(2),---, a(k) form a complete system of
residues of the modul a with respect to b. It follows that
a=a()) (mod. bh)
or
a=a(A)+B,

where f is divisible by b. Since the quantities p(1), (2),,
-+, B(m), form a complete system of residues of the
modul b with respect to ¢, it follows that f must be
congruent to one of these m numbers, say

B=R(r) (mod. c),
B=B(r) +y

where y is divisible by ¢. Hence we have
a=a(A)+B(r) +y or o=a(A)+p(r) (mod. c).

or
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With this is established the formula

(@ ¢) = (a b)(b, c),
a formula which is also true if either (a, b) or (b, ¢) or both
are zero.

Art. 140. Theorem. If a b, ¢ are three arbitrary
moduls, the following relation is true, namely

(a, b)(b, ¢)(c, d) =(a, c)(c, b)(b, a).

The following lemma is useful in the proof of this
remarkable theorem.

Lemma. Ifal>a al>b, bl>a, bl >b, then is

(a, al)(h, bl) = (a, b)(b, al).
For put
m=a-h.
Since
al=a bl=a

al=h b1>b,
it follows that

al>m and bl>m.
From the formula we have just proved, it follows, since
m>a and m>b,
(a, al) = (a, m)(m, al)
(a, b1) = (a, m)(m, bl)
(b, a1) = (b, m)(m, al)
(b, b1) = (b, m)(m, bl).
Through multiplication we have
(a, al)(b, bl) = (a, Tn)(m, al)(b, m)(m, bl)
= (d, bl)(b, al).
In Art. 137 we saw that
(a, b) = (a+b, b)

D D

and
(b, ¢) = (b, b-c),
so that
(a, b)(h, ¢) = (a+h, b)(b, b-c).
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But since
b=a+bh and b — c>b,

it follows that
(a+b, b)(b, b-c) = (a+b, b-c),
and consequently
(a, b)(b, ¢) = (a+h, b-c).
On the other hand
(c, @) =(c, a—¢),
so that
(8, b)(b, c)(c, a) = (a+b, b—c)(c, a-c).
But

h—c>c b - c>b+a a—c>c a—c=>a+h.
Hence from the above lemma,
(a+b, b —c)(c, a—¢) = (a+h, a—c)(c, b —¢),
and consequently
(a, b)(b, ¢)(c, a) = (a+b, a-c)(c, b-c).

The expression on the right remains unchanged when a
and b are interchanged, and consequently

(@ b)(b, c)(c, a) = (b, a)(a, c)(c, b)
(a, ¢)(c, b)(b, a).
The formula of the preceding Article may be derived at

once from this formula; for in the special cases c=b and
h>a, we have

(b, a) =1, (c, b) =1, (c, a) =1
(Art. 138), so that the formula iust written is
(a, b)(b, ¢) = (a, ©).
Art. 141. A Generalization! of Fermat’s Theorem.
Theorem. If a and b are two arbitrary moduls, then
(a, b)a=>b.
In the first place it is evident that the theorem is true, if

the number of representatives of a complete system of
1 See Dickson’s History, etc., Vol. I, Chapt. IIl.
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residues of the modul a with respect to the modul b is
infinite. For if (a, b) =0, we have O-a which is divisible
by b.

We may consequently assume that (a, b) =k, where k
is a positive integer different from zero.

Let the quantities a(l), a(2),--, a(k) form a complete
system of residues of the modul a with respect to the
modul b. If then ais an arbitrary number divisible by a,
then are the k numbers
(1) a+a(l), a+a(2),---, a+a(k)
all divisible by a; and further the difference of no two of
them is divisible by b, and consequently no two of the
series of numbers (1) belong to the same class. It

follows that
a(l) =a+a(r) (mod. b),
a(2)=a+a(s) (mod. b),

where the integers r, s, - - -, are (neglecting the sequence)
to be found among the numbers 1,2, - - - k.

Through addition of the n congruences just written
we have
a(l) + a(2) + -+ ak)= a+a(r) + a+a(s) + --- (mod. b)

=ka + a(l) +a(2) + - +a(k) (mod. b),
or
O=ka (mod. b).

Since this congruence is true of every number a that is
divisible by q, it follows that

ka=b
and consequently also
ka=b + a,
or
ka=d.

From the theorem just proved it is seen that if (a, b) #0,
there exists always a positive integer k, say, that is
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different from zero and is such that

ka=b.
Inversely it also follows that if there is a positive integer k
different from zero and such that ka=b, then also
(a, b)#0 so that the above condition that (a, b) be different
from zero is also sufficient.

Art. 142, Theorem. There are only afinite number of
moduls which are at the same time multiples of a and
divisors of b, if b=a and (a, b)#0

For let f be a modul such that k>a and b>k  Further

let a be a number that is divisible by k, and consequently
all numbers of the complex a +b are divisible by the
modul k and therefore also by a. If then 0, a(1), ---,
a(k-1) are a complete system of residues of the modul «
with respect to the modul b, then since a is also divisible
by a, the complex a+b is identical with one of the
complexes
(1) O+b, a(l) +b, a2 + b, - -, ak-1) +b.
Hence there may arise in all only the following possible
cases: The modul f comprises only the numbers of the
modul b, or besides, an additional one of the complexes
(1), or an additional two of the complexes (1), - - -, or all
of the complexes (1) in addition. Hence for the modul k
there are in all

+o 4 = (1+ D)k-1= 21

k-1
. k-1
cases conceivable.

We have thus proved the theorem and at the same
time given a method of finding all moduls which are at
the same time multiples of a and divisors of b, when
(a, b) 20 and b>=a.

Example. Prove that the inverse of this theorem is true.
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Art. 143. Theorem. Ifaand b are two moduls and if
p and ¢ are two given quantities, then the necessary and
sufficient condition that the following two congruences

w=p (mod. a),
w=c (mod. b),
be satisfied by one and the same quantity , is expressed
through the congruence
p=0c (mod. a+b).
We shall first show that this condition is necessary.
Assume that there is a number T such that
=p (Mod. a) and =0 (mod. b);
then is also
T=p (mod. a+b) and =0 (mod. a+b),

and consequently
p=c (mod. a+b).

This condition is also sufficient. For assuming that

p=0c (mod. a+b),
it is seen that

p—0o=04,
where 0 is a number divisible by b = a-+b. It follows that
p—0=a+p, or p—a=0+pf.

If then we put
T=p-a=0+p
it is seen that
T=p (mod. a) and =0 (mod. h),
or T satisfies both congruences.
The most general solution of the two congruences
w=p (mod. a) w=o (mod. b)
may now be derived. This of course depends on the
possibility of the solution, and that is, if
p=c (mod. a+b).
Let T be a special and w any arbitrary solution of the two
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congruences, so that
w=p (mod. a) w=0 (mod. h)
=p (mod. a) T=0 (mod. b),
and consequently
W=T (Mod. a) W=T (mod. b).
It follows that
W=T (mod. m),
where m=a —bh. We thus see that
W=T+ M,
where p is some number divisible by the modul m.
Reciprocally, if p is some number divisible by tn, then
always T+ p is a solution of the two congruences.
For if
p= 0 (mod. m),
it is seen that
p=0 (mod. a), p==0 (mod. b),
and since
T=p (mod. a), T=0 (mod. b),

it follows that
M+ T1=p (mod. a), g+ 1=0 (mod. b).
Hence if 1 is a special solution of the two congruences
r=p (mod. a), =0 (mod. b),
then the most general solution of these two congruences is

where | goes through all numbers that are divisible by m.
It is seen that this theorem is the analogue of the corre-
sponding theorem for rational integers.



CHAPTER VI
FINITE MODULS

Art. 144, Ifal, a2, - -, an are n arbitrary algebraic or
not algebraic numbers, the collectivity of numbers that
may be expressed through the linear form olxl+ a2x2,

- -+ anxn for positive or negative integral ~rational in
R(D)] values of the variables x1, X2, - -, xn, constitute a
finite modul, which is represented through (Art. 114)

a=[al, a2, - - -, an].

The quantities 1, a2, - - -, an form a basis of the modul a
(Art. 64). It is evident that the modul a may be
expressed through an infinite number of bases, since the
basal elements are susceptible of innumerable changes
without thereby altering the collectivity of numbers that
constitute the modul a. For example, one or more of
the basal elements may be replaced by its opposite value;
and further

where x1+x2+ --+xn are rational integers. In general
among the basal elements we may make a linear substi-
tution with determinant equal toil; for write (Art. 94)
Bl=cllal+cl2a2+- - -+clnon
B2 = c2lal+c22a2+- - -+c2nan

Bn =cnlal+cn202+: - -+cnnan,

so that
B1 cl2, cln
B2, c22 c2n
al = , 02 —etc.
Bn, cn2 cnn

220
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It is evident that any linear expression,! that can be
formed of the a,s may also be formed of the 3,5 and vice
versa. The changes that may be made among the basal
elements may be illustrated by the following example:

[87, 36] =[87 — 236, 36] = [15, 36] = [15, 36 — 2 15]

=[15, 6]=[15-2-6, 6] =[3, 6] = [3,6-2-3]

=[3, 0] =[3] =3,
where x is a rational integer. This process is nothing
other than a method of finding the greatest common
divisor of two rational integers. It is evident that it
may be applied to any number of rational integers. If
d is the greatest common divisor of a, b, ¢, then is

[a b, c] =[d],

if a, b, ¢ are rational integers (Art. 113).

Art. 145 The following definitions are offered: If a
finite modul has a basis which consists of n elements,
and if it has no basis that consists of fewer than n
elements, then n is called the rank or order of the finite
modul.

If al, a2, - -, an are n arbitrary numbers, we say that
they are dependent or that they form a reducible system
(Art. 57), if it is possible to determine n rational integers
x1, X2, - - -, Xn, such that

alxl +02x2 +--- +anxn=0
without all the x’s being zero. If this is not possible, the
quantities al, a2, - - -, an are said to be independent
(linear independent), and form an irreducible system.
An irreducible system is formed, for example, of the m
elements of the basis of a finite algebraic realm of the
mth degree (Art. 64). In the following investigation we
shall at first confine ourselves not wholly to algebraic

1 In this connection a paper by Frobenius on “Linear Forms” (Crelle's Jour-
nal, Vol. 86, p. 146) is of great importance.
See also Stieltges, Toulouse Ann., Vol. 4, p. 1.
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guantities, but shall take into consideration any arbitrary
guantities.

Let al, a2, - - -, an be any n independent quantities, and
form from them n new quantities by means of the
equation

Br=crlal, cr2a2,---,crnan (=12, ---, n),
where here the quantities crl, cr2, - -, crn are integral or
fractional rational numbers. If we put the determinant
of the nth degree |crs| = C, the following four theorems are
true (Art. 63):

(1) 1f C#0, then BL, B2, - - -, Bn are independent;

(2) if C=0, then B1, P2, -, Bn are dependent;

(3) if B1,B2, -, Bn are independent, then is C#0

(4) if B1,B2,---,Bn are dependent, then is C=0,

Art 146. Let o be a finite modul and suppose that a
has a basis consisting of n linear independent elements
al, 02, .-, an so that

a=[al, a2, - - -, an]
and further suppose that o has a basis consisting of n
arbitrary elementspl, 32, - - -, Bn, so that also
2 =[B1, B2, -, Bn]
It is evident that the two systems of numbers al, a2, - - -
an and B1, B2, - - -, Bn may be mutually expressed through
each other in the form
Br=arlal + ar202+ - - - + ar2nan
ar= bripl+ br2p2, + - -+ br2npn (r=1,2, ---,n).
where the quantities ara and bra(r, s=1, 2, ---, n) are
rational integers.
It is seen that
or=brl(allal +al2a2+ - - - + alnan)
br2(a2lol + a2202+ - - - + a2nan)

brn(anlal + an202+ - - - + annan)
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Since al, 02, -+, an are linearly independent, it follows
that in the above equation each coefficient of the a,s
must of itself be zero. Define er,;s as a symbol to be
interpreted as follows:
ers=0 if r#s, ers=1ifr=s.
Then from the above equation it is seen that
brlals+br2a2s+ - -brnans ers (r,s=1,2, -, n)

Due to the theorem for the multiplication of determinants
it results that

|brs|-|lars| = |ers| = 1
or if we put |brs| =B and [ars| = A, then

AB=1

But since A and B are rational integers, it is evident that

A=+1 B =41
It follows since A#0, that the quantities 1, 2, - -, Bn
are independent. We shall also make use in the sequel
of the other result, namelv that B = +1.

Art 147. Theorem. If of the elements of a finite
modul a there are n independent, then (I) the modul a has a
basis which consists of n independent elements; and (2} n is
the order of the modul.

The first part of the theorem may be proved as follows:
Suppose that the elements of the modul have been so
arranged that the n independent elements come first so
that

a=[ol,02,---,an, B, Y, - -1
whereal, al, a2, - - -, an are independent, while the elements
B,vy, -, which are of course finite in number, are
dependent. It will follow in the process of the proof that
the number n is a perfectly definite number. The
numbers al, a2, ---, an, B are not independent, and
consequently there is an equation of the form

bB = blol + b202+ - - -+bnan
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where b, bl, b2, .-, bn are rational integers with no
greatest common divisor other than unity. We must
also assume that b#0, otherwise there would be a linear
relation among the a,s. We may further assume that
b>1; for if b=1, it is seen that B is linearly expressed in
terms of the as and may therefore be dropped from the
elements that are to constitute the basis of a In a
similar manner y is dependent on the a’s so that there is
an equation of the form
cy =clo2 +c202+ - - - +cnan,

where ¢> 1 and ¢l c2, - -, cn are rational integers without
a greatest common divisor other than unity, etc.

Let p be a prime number that is a factor of b, so that

b=h'p.
It follows that
(1) b'pB = blo2 + b202+ - - - +bnan:
Further since the numbers bl, b2, - - - ,bn have no common
divisor, it is seen that all the numbers bl, b2, ---, bn

cannot be divisible by p. If say, bl is not divisible by p,
then two integers r and s may be determined such that

ps-blr=1

If we multiply the equation (1) by r, we have

b'pfBr = blral + (b2a2+ - - - +bnan)r

= (ps-1)al + (b202+ - - - +bnan)r,

and consequently

ol = p(sal-b'pr) + (b202+ - - - +bnan)r.
If we nut

al =sal-b'Pr,
it follows that
(2) &pa'l+-b2ra2 + -+ bnran.
Next multiply the equation (1) by s. It is seen that
b'pPBs = bsal + (b202+ - - - +bnan)s,
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or

b'B(L +blr) = blsal + (b2a2+ - - - +bnan)s,
so that
(3) b'B = blral + b2sa2+ - - - +bnsan.

The new system of the numbers a'l, a2, a3, --- ,on has the
same characteristic properties as have the n numbers
al, 02, a3, - ,on, in other words, if

(4) a=[oal, 02,03, ,an B, y, -1

then is also

(5) a=[0'l, 02,03, - ,0n, B, Yy, -]

This follows from the fact that the element
l=sal-b'rp

may be added to (4), giving
a=[al, a2, a3, - ,an, B,y, -, a'l]

When this has been done, it follows from (2) that ax may
be omitted from the elements, thus producing (5).

Further the elements al, a2, ---,an are linearly
independent. For if they were dependent, there must be
an equation of the form
(6) xlol+x202+ --- +xnon=0,
where the x s are rational integers. This equation may
be written

xI(sal = b'rB) +x2a2+ - - - +xnon =0,
or

or from (1),

It follows that
(XIps — x1rbl) al + (x2p —xIrb2)a?
+---+ (Xnp-xlrbn)an =0.
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Since al, a2, --- ,an are linearly independent, the
coefficients in this expression just written must be all
ZEero.

Hence

X1(ps-rb!)=0,
and since
s-rbl1=1
it follows that x1 =0 and then from (6)
X202 + X303+ -+ + xnan =0

Since a2, a3, - -, an are linearly independent, it follows
also that
X2=0=x3="-:.=xn.
Finally it is seen that 3, y, - -1 are expressible linearly

with integral or fractional coefficients through o™ 1,
<x e, form-(3) may be written
b'3=ba'l + b'202, -+, b'nan.

where b2, - - -,b'n are rational integers; or,
In this expression of B through al a2 --. oan, the
denominator b' is smaller than b which is the denominator
in the expression of  through al, a2, - -, an.

On the other hand in the expression of y, 8,
through a1, a2, - - -, an., the denominators are the same

as in the expressions of these quantities through al, a2,
-+, an.  For we had above
cy =clal+c202 + - - - + cnan [which from (2)]
=cl(pal+b2ro2 +- - -+bnron) +c202 + - - - + chon
=c'lo'l+c'202 + - - -+ c'nan
where ¢, ¢2, - -+ ¢n are rational integers. It follows that



FINITE MODULS 227

Comparing the elements al, a2, .-, an, B, y, -+ with
ol,02,---,an,B,y, - itisseen that lo, the number of
elements is the same in both systems; 20, the first n
numbers of both systems are independent; 3o, the ele-
ments B,v, - - -, may be expressed through the first n
elements of either system with the same denominator.

We note, however, in the expression of § through the
two systems, that the denominator b' occurring in the
first system is smaller than the denominator b which
occurs in the second system, since b=pb'and p#1. If b,
were equal to unity, we could omit f from the system
1,02, ---,an,B,Y, - - due to the fact that  could be
then expressed linearly with integral coefficients in terms
of the remaining elements. If b1, then is

b'=p'b",

where the prime integer p' is different from 1. Proceed-
ing as above we may form a new system of elements in
which the first n elements are linearly independent and
are such that when f is expressed linearly through them,
the denominator that appears is b", which is less than b,
while the denominators which occur in the expressions
for y, 8, -+ have not been changed. Continuing this
process we must finally come to a system of elements in
which the denominator for the expression for f§ is unity.
When this has been done, f may be dropped from the
system. The same process may be then applied to
Y, 9, - -.  We thus come finally to a system of n inde-
pendent elements which form a basis of the modul a

The second part of the theorem may be expressed as
follows:

If the modul a has a basis consisting of n independent
elements, it can not have a basis consisting of fewer elements.

It then follows that n is the rank or order of the modul a,
9
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and that the number of independent elements of the modul «
is its rank or order.

Let o have a basis consisting of the n linearly inde-
pendent elements al, a2, - - -, an, so that

a=[al, a2, -, an]

Denote the rank or order of a by m; it is then asserted
that m=n. Suppose that m<n, and that o has a basis
which consists of less than n elements, and let these
elements be Bl B2 -, Pm Then the a,s may be
expressed through the O’s in the form

ar= crifl+ cr2p2+ - -+ crmpm.  (r=1,2, -, n),

where crl, cr2, - -, crm are rational integers. It follows
also that

where x1, X2, - - -, Xxn are arbitrary rational numbers.
These quantities x1, X2, - - -, xn may, however, be so

determined that the equations

are satisfied, there being m equations and n(>m)
unknown quantities which may be satisfied always by
values of x different from zero. It follows then that

where the x’s are not all zero, and consequently also that
al, 02, - .-, an are linearly dependent. This is contrary
to the hypothesis. Hence the rank or order of the
modul a must be n, where n is equal to the number of
independent elements of a basis of a

Reciprocally, if the order of the modul a is equal to n,
then a has a basis of n linear independent elements; and
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in every arbitrary basis of a there are precisely n linearly
independent elements.

Art 148. If a is a finite modul and if the modul
b is divisible by a, then b is afinite modul; and the order of b
is not greater than the order of a. In other words every
multiple of a finite modul is a finite modul.

Let a be a finite modul of the nth order, say,

a=Jal, az,-- - an]

Since b is divisible by a, every number that is divisible
by b may be expressed in the form alx2 + a2x2+ - - - + anxn,
where xI, X2, ---, Xn are rational integers including zero.
However, to have all the numbers of the modul b it is not
necessary that all rational integral values be ascribed to
the variables x1, x2, - -, xn

If there are numbers of the form alxl which are divisible
by b, we seek that one which for a positive x1 has the
smallest value, and denote it by

Bl = allal.
If there is no number of the form alxl that is divisible by
h, put all=0. Consider next those numbers of the
modul b which may be expressed in the form alxl-+a2x2,
where x2#£0. If such numbers exist, choose that one for
which a? has the smallest positive value and denote it by
B2 = a2lal +a2202

If there is no such number, write a21=0=2a22. Con-
tinuing this process, consider those numbers that are
divisible by b and which have the form

00+ 0% +anr (r=1,2, -, n).

If there are numbers of this form, choose that one for
which ar has the smallest positive value and denote it by

Br =arlal +ar2a2+ - - - + arar;
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but if there is no such number of this form, write

arl =0=ar2= - =arr
It is asserted that the quantities B1 B2, - - -, Bn which are
thus derived constitute a basis of the modul b, so that
b= [Bl BZ’ T Bn]

When this is established, the first part of the theorem is
proved, viz., that b is a modul of finite order.
Take any number B which may be expressed through

the first r elements of the basis al, a2, ---, an in the form
B = Xi<XI~[-X2(X2- - - - - - ~Xr(Xr,
where x1, x2, ---, xr are rational integers. If arr=0,

then owing to the method by which arr was determined, it
follows that xr =0; but if arr£0, then xr must be divisible
by arr, due to the hypothesis that

|xr| arr.
For dividing xr by arr we have, say,

Xr =arrbr +ar,

where
O ar<arr.

It results that
B — brBr = (x1 — brarl)al + (X2 - brar2) a2+---+ (xr - brarr)ar

= (x1 - brarl) al + (x2 - brar2) a2+---+arar
It appears that the number B —brfr which is also divisible
by b is expressible through al, a2, ---, an and that the
coefficient of ar is smaller than arr, which by hypothesis
was the smallest coefficient of ar among all the numbers
of the form xlal+ x2a2 + - + xrar that were divisible by
h. It follows therefore that

ar =0,

and consequently xr is divisible by arr Suppose next
that B is any arbitrary number that is divisible by b
and consequently also by a, since b is divisible by a
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We may therefore write B in the form
B =alal+a202 + -+ anan.

If r is the greatest number for which ar#0, then
B—brPr = (albrarl)al, + (a2brar2)a2+ -+ (arbrarr)ar

ar =brarr =0,
we must have
B-brpr =a'lal+ a'2a2 + - + a'sos. (s<n).
It is thus shown that a new number B-brf3r has been
derived which is divisible by b and which may be ex-
pressed through fewer than r of the basal elements of a,
viz., through al,02, -, as (where s<r).

By means of the number B-brfr and using the same
method, we derive another number also divisible by b,
viz.,

B-brPBr-bsPBs =a"lal+a"a2 + -+ a"tat  (where t<s).
Finally we come to a number divisible by b which =0,
and we then have

B =brBr+bsps + btpt+ ---.

Thus it has been shown that every number B that is
divisible by b may be linearly expressed through the
numbers BL, B2, - - -, Bn with rational integral coefficients.
It follows that B1, B2, - - -, Bn form a basis of b and that b
is a finite modul. At the same time it is also seen that
the order of a is not smaller than the order of b; for of the
n elements 1, B2, - - -, Bn it has been seen that some may
be zero, and further there may be linear relations among
them. This latter question is again considered.

Art. 149. If a is a finite modul taken with respect to
an arbitrary (not necessarily independent) basis al, a2, -,
an, and if b > a, then as shown above we may determine a
basis of b, sayp1, B2, - - -, Bn such that

Br =arlol+ar2a2 + -+ arar (=12 - n),



232 THE THEORY OF ALGEBRAIC NUMBERS

where arl+ar2+ -+ arn are integers or zero. These
quantities art are zero if t>r, while all+a22+ -+ arr 0.
The quantities art form therefore a triangular system
which may be made rectangular by the addition of zeros
as illustrated in the following scheme:

all

al2 a22,
al3 a23 a33

aln az2n, a3n, a4n ann

Theorem. The number of incongruent residues of the
modul a with respect to the modul b is equal to the product
all-a22---ann; or

(a,b) =alla22---ann

In the proof of this formula two cases are to be
distinguished: namely (1) where the quantities alla2,
---ann are all different from zero; and (2) where some of
the quantities 11a22---ann are zero.

In the second case it is asserted that (a,b) =0, an
assertion which may be stated as follows: If (a,b)#0,

then none of the quantities an, a2, - -, ann is zero.
This is of course identical with the statement that
(a,b) =0 unless all the quantities «n, 02, ---, ann are

different from zero.
Suppose that (a,b) =m=0. It follows (Art. 141) that
ma=>h
and consequently mar is divisible by b forr=1,2, - -, n.
Accordingly there is a number divisible by b which must
have the form
x1al+x202+::-+xrar

and for which xr#0, and consequently arrz0 (r=1, 2,
---, n). With this the second case is proved.
Returning to the first case, suppose that each of the



FINITE MODULS 233

guantities all, a2, .- -, amn is different from zero. It is
then asserted that
(a, b) =alla22---ann
We shall derive a complete system of residues and it will
be seen that the system consists of exactly alla22- - -ann
numbers.
Form the expression
{ =z1al +72a2+ - - - znan
and in this formula give

to z1 the values 0, 1, - -, all—1,
to 22 the values 0, 1, - -, a22—1,
to zn the values 0, 1, - -, ann—1.

The all-a22---ann values of ( thus derived form a
complete system of residues of the modul o with respect
to the modul b. For they have the following three
characteristic properties:

(1) They are all divisible by a

(2) The difference of no two of these Quantities is divisible
by b. If for example we had
glol +g202+ - - -+ gnan = hlal + h2a2+ - - -+ hnan (mod. b),
then it would follow that

(01 - h1l)al + (g2 - h2)a2+ - - -+ (gn - hn)an = 0 (mod. b),

where some of the differences gr—hr (r=1, 2, - - -, n) are
not zero. Letr be the greatest of these integers such that
gr- hr 0.

It results that
(gl - hl) + (g2 - h2)+ - - -+ (gn - hn) = 0 (mod. b)
and it would follow since gr and hr are both less than arr
that
|gr- hr|<arr
which contradicts the definition of arr (Art. 148). Hence
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the difference of no two of the above numbers is divisible
by b.

(3) Every arbitrary number that is divisible by a is
congruent to one of the above numbers (mod. b). For let a
be a number divisible by o of the form

a =x1lal + x202+ - - - + xnon
where the x s are rational integers. Let xn be divided by
ann giving
XN= annyn+zn
where yn is an integer or zero and zn is one of the numbers
0,1 2 .-, ann—1. The B,s being defined as in the
preceding article, form the number
¢ ynBn = (xlynanl)d (nan)a
+ - - - + (Xxnynann)an
= (xlynanl)al + (x2ynan2)o2+ - - - + onzn
3+ znon
where a, is a quantity of the form
o =x"lol +x202 + - - - +xn-lon-1
It follows that
§Rpn +znon + 0
Applying the same process to ¢ as we have just done to a,
we divide x'n-1 by an-1,n-1, which gives
x'n-1=yn-1fn-1 + zn-lan-1 + a,
where zn-1 is of the quantities 0, 1, 2, - -, an-1,n-1;
then as above we have
= yn-1pn-1 + zn-lan-1 + o"
where a" is linearly expressed through al,02, - - an-2
Continuing this process we have finally
o =ynpn+yn-1pn-1+ - - - + y1p1
znon+ zn-1an-1+ - - - +z101
and consequently

a=szlal+ z2a2 - - - + znan (mod. b),
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where zv are of the numbers 0, 1, ---, aw—1 (v=1, 2,

-+, n). Thus it is seen that every number a of the
modul a is congruent to one of the above all-a22---ann
numbers (mod. b), so that these numbers form a complete
system of residues of the modul a with respect to the
modul b.

With this is demonstrated the correctness of the
formula

(& b) =all-a22a33---ann

The following results have been derived:

(1) If (a, b) 20, none of the quantities all, a22, a33,, ann is
zero and (a, b) =all-a22a33--ann

(2) If (a, b) =0, at least one of the quantities all, a22,
a33ais, zero.

(3) Ifall, a22,a33, ann are all different from zero, then is
(a, b) 0.

(4) If one of the quantities all, a22, a33,-, ann is zero, then
also (a, b) =0.

These theorems are true only under the condition that

As a corollary of this theorem, consider a one-termed
modul a =[a]; then if b > a, it follows also that b is a one-
termed modul.

Let b =[] and consequently

B =p1l=alla.
Since
all = (a, b),
and consequently
B = (a b)a,
it is evident that
h =(a, b)a,

or in other words, every multiple of a one-termed modul
is a one-termed modul and has the form just written.



236 THE THEORY OF ALGEBRAIC NUMBERS

Art. 150. Assuming that b=a suppose next that the
basis consists of the independent elements al a2, ---, an,
The system of the n quantities 1 2, - - -, Bn is defined as
above, the coefficients art forming a rectangle as given in
(Art. 149). Itis seen that the determinant art is equal
all, a22,a33,, ann, so that

lart] = (a, b)
The quantities B1 32, - - -, Bn as shown in the preceding
article form a basis of b and are linearly independent
(Art. 145) if |art] #0. In this case the order of b is the
same as the order of a. On the other hand 12, - - -, Bn
are linearly dependent if |artf =0 and in this case the
order of b is less than the order of a.

Since |art] =(a, b) the following theorems are thus
proved.

(1) 1f b=a and (a, b) #0, then the basis 1 2, - - -, fn of
b consists of n independent elements and the order of b is
equal to the order of a

(2) Ifb>aand (a,b) =0, then the basis 1 2, - - -, fn of
b consists of elements that are not linearly independent, and
the order of b is less than the order of a.

Art. 151. Theorem. If (a, b)#0, and if b is a finite
modul, then a is also afinite modul and the order of a is not
greater than the order of b.

For let (a, b) =m0, then (see Art. 141) ma=b and
consequently (Art. 148) ma is a finite modul, whose order
is not greater than the order of b. Further the rank of
ma is equal to the rank of a, so that the order of a is not
greater than the order of b.

From the two theorems given above it follows that if
b>a and ((a, b) #0 and if one of the moduls o or b is
finite, then both a and b are finite and of the same order.
In this case note that ma>b=>a
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Art. 152, Starting with the formula
@b=alla22, - ,amn,
where b>a, theorems will be introduced which become
more and more general until finally a means of de-
termining (a, b) for every arbitrary case is offered.
Again let a be a finite modul of order n, and write
a=[al a2, ---, an]
Further let b>a, and suppose that b has a basis consisting
of the n elements [y1 y2, -+, yn], which are not necessarily
independent, since we have not assumed that (a, b) #0.
Since b>a it follows that y1 y2, ---, yn may be expressed
through al a2, ---, an in the form

yr =crlal +cr2o2+ —+cman  (r=1,2, -, n),

where crl=, cr2=, -, crn= are rational integers. It is asserted
under the conditions just made, viz., if b>a, that the
absolute value of the determinant ¢rs|, that is of C, say,
is equal to (a,b). This theorem differs from the pre-
ceding one in that it is true for any arbitrary basis
y1ly2, ---, yn of b, while the preceding theorem was true
only for the special basis 1 2, - - -, Bn.
In the proof two cases are to be distinguished:

(1) when C=0 and (2) when C#0.

In the first case where C=0, the basal elements vy, y2,

--, yn are dependent (see preceding article) and
consequently the order of b is less than the order of a
When this is the case it was shown (Art. 149) that
(a, b) =0.

In the second case where C#0, the rank of b is equal n.
Since b>a, we may introduce the system of n basal
elements of b, B1 B2, - - -, Bn which was given in Art. 149,
viz.,

Br=arlal +ar202+ --+arnan  (r=I,2, ---, n),
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where art =0 for t>r and where
(a, b) = all a22, --- ,ann=|art|
Since the quantities f1 B2, - - -, Bn as well as the quantities
vy1lvy2, ---, yn form bases of b, they may be linearly
expressed through one another with integral coefficients
and the determinant of the coefficients is equal =1 (Art.
94).
Write

(r=1,2 ---n),
where brt are rational integers and brt = £1. Further
since

(t :11 21 e .in)l

it is seen that
(r=1,2,---n),

On the other hand, since

it follows that

As the a's are linearly independent, it is seen that
(r,s=1,2, -, n).
It follows from the theorem for the multiplication of
determinants that
C :utj: J|art| |brt|,
or, since bri = £1, it follows that
C==lartl = x(,b)

and consequently (a, b) is equal to the absolute value of
C = [crs|.
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As an example of this theorem, take the modul of the
nth order
a=[ol, 02, - an]
and for the modul b write
h =ka = [kal, ka2, - - -, kan],
where k is a rational integer. We then have
yn = kow (v=I,2, ---,n)
and consequently in the above discussion
cr kK crt =0, (r=t)  (nt=0,1 - - n)
Substituting in the determinant crs | it is seen that

k, 0,0, 0
aky= 0k 0 0 —yp
0 0, 0 k

or, if a is a finite modul of order n and k is any rational
integer, then is
(a, ka) =kn.
Art. 153. In the proof of the theorem indicated in the

formula

(& b) == |crs] = C|
it was assumed that b=a and consequently that the
guantities crs were rational integers. We now do away
with the restriction that crs are rational integers in that
they are allowed to be any rational numbers, and it is no
longer assumed that b>a. From now on it is assumed
that a and b are finite module and that

a=[al, 02, --- an]

b=[B1B2, - Bn]
The n basal elements al, a2, - - -, an are supposed to be
linearly independent but this assumption is not made for
the basal elementsBl 2, - - -, Bn of b. However, it is
assumed that there exist integral or fractional rational
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numbers cra such that

Br =rlal+cr2a2+ -+ cmon  (r=1,2 - n).
With these more general assumptions we cannot at first
compute the value of (a, b), but the value of the quotient

may be derived.

It is asserted that, under the assumptions just stated,
=|C],

where |C| denotes the absolute value of the determinant
C = |crs| Observe that this formula is true for the case
that C=0 (see again Art. 154) since then (a, b) =0 as
already seen in Art. 150, and further it is true for the case
h > a, for in this case (b, a) =1 (Art. 138) and consequently
(a, b) = |C]|, the quantities crs being integers.

To prove the more general case let k be the least
common multiple of the denominators of the fractions
crs so that the product kcra is a rational integer. It
results that

kBr = kerlal+ker2a2 + - + kernan (=1, 2, ---, n).
It follows that kB., kB2, - -, kBn, which quantities also
form a basis of kb, may be linearly expressed with integral
coefficients through al, a2, - - -, an. It is thus also shown
that
kb=>a
and consequently from the preceding theorem,
(a, kb) = £ |kers] = xkn [crs| = £kn C
Next write
a+b =bh.
Since a=>d and kb>a, it follows from Art. 139 that
(b, kb) = (b, a)(a, kb);
and since b>1h and kb >b, it is also seen that
(b, kb) = (d, b)(b, kb).
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Further since
(d, a) = (b, a) (Art. 137), (a, kb) = +knC,
(d, b)=(a, b), (b, kb) =kn,
it follows that
+(b, a)knC = (a, b)kn,
or

as is a positive number.

Art. 154, It may be shown that if C=0, then also
(a,b) =0. For if C=0, then B, B2, - -, Bn are linearly
dependent, and consequently the order of b is less than
the order of a, that is, less than n. It follows also that
the order of the modul kb is less than n. But since kb > a,
it follows from Art. 150 that

(a, kb) =0.

Hence in the formula given in the preceding article, viz.,
(d, a)(a, kb)=(b, b)(bkb),
it is seen that
(b, b)(b, kh) =0.

But since

(b, kb) =k,
where r is the order of b, it follows that (d, b) =0, or since
(b, b) =(a b),

(a, b) =0.

Art 155 Lemma. Letal o2 ---, anand Bl B2 ---,

Bp be two bases of one and the same finite modul o so
that

a=[al, a2, -, an] = [B1, B2, ---Bp].
and further assume that al, a2, ---, an] are linearly
independent, so that n is the rank of a while p n.
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We then have
(r=1,2, -+, n),

(t =1, 2, -, p),

where atr and bts are rational integers. It follows that

Since al, 02, - - -, an are linearly independent, it is evident
that

(r,S:l, 2) Y n))
where ers =0 for r£s and ers =1 forr =s.  This expression
may be written

arlbsl +ar2bs2 +ar3bs3 + --- + arpbsp =ers

(r,s=1,2,--,n),
It is then clear that
all, al2 alp bll, h12 blp
a2l a22 azp h21, b2 h2p
anl, an2 anp bnl, bn2, bnp
ell el2 elp
- e21 €22 e2p:1'
enl en2 enp

Denoting any determinant formed by taking n columns
of the system atr by A and any determinant formed by
taking n columns of the system bst by B, the expression
just written is

> (A-B)=1.
Itfollows that all determinants formed by taking n columns

from the system art, in number have no common di-
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visor save unity, the same being also true of the determinants
formed by taking n columns from the system bst.

A special case of this theorem was treated in Art. 94
where p =n. In this case there was only one determinant
formed from the system atr and only one from the
system bst and both these determinants had the value
+1.

Art. 156. Let a and b be two moduls of finite order,

a=[al, a2, -, an]

b=[B1, B2, ---Bp]-
and let ai, al, a2, ---, an linearly independent, the order
of o being n, while p n. Further assume that there are
pn rational numbers ct. such that

Bt =ctlal + ct202+ --- +ctnan  (t=1.2, ---,p)
and that is, the elements B1, B2, ---Bp by hypothesis
may be expressed linearly with rational coefficients in
terms of the a,s. It is asserted:

The greatest common divisor of all the determinants of the
nth order which are had from the system cls by taking n

columns is in absolute value eoual to

The special case v=n was proved in Art. 153.

In the proof of the more general theorem, two cases are
to be distinguished; (1) where the determinants of the
nth order formed by taking n rows of the system ct§ are
not all zero. In this case there are among the p quantities
Bi, B2, - - -, Bpn independent, and the order of the modul b
is n (Art. 148). Accordingly the modul b has a basis
consisting of n independent elements, say

b=[y1, y2, ---, yn].
It follows that 31, 32, ---B may be linearly expressed
through the vy,s Avith integral coefficients in the form

(1) (t=1,2, -+, n),
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where the quantities ats are rational integers and the
greatest common divisor of the determinants of the nth
order formed from the system als is, from the lemma in
the preceding article, equal to 1.

The quantities y1 y2, - -, yn may be expressed through
the B,s and consequently through the a's in the form, say

2) (=12 -, p)

where bsr are rational numbers.
If we put the absolute value of the determinant
br | =B, it follows from Art. 153, that

It is further seen from (1) and (2) that

(t =1, 2, -, p)
On the other hand, since
it results that
3) (t=1,2,,p).
Of the p numbers 1, 2, - -, p choose n and denote them

by t1,t2, - - -, tn. It follows at once from (3) that

B.
Since the numbers t1, t2, - - -, tn may be chosen from the
numbers 1,2, - -, pin ways, we have equations
like the one just written. These equations show,

since the determinants on the right hand side formed
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from the system ats have unity as their greatest common
divisor, that the determinants of the nth order formed
by taking n columns of the system cts have B for their
greatest common divisor, where

(2) In the second case the determinants of the nth
order formed from the system cts are all supposed to be
zero. In this case it is asserted that (a, b) =0. For of

the p quantities
B1, B2, ---Bp

select any n, say

These quantities are linearly dependent since by hypothe-
sis the determinant formed from the system cls is zero.
It follows that the order of b is less than the order of a.
It was proved in Art. 151 that if (a, b)#0 and if b is of
finite order, then the order of b is not less than the order
of a. It follows that (a, b) must equal zero.

Art. 157. Let o, b be two moduls of the rank n, say

a=[al, a2, -, an],

b =[B1, B2, ---pn]:
where al, a2, ---, an and B1, B2, --Bn are linearly
independent systems; further suppose that each system
of these n quantities may be linearly expressed in terms
of the other with rational coefficients, so that, say

(r:l, 2, e, n)l

where crg are rational numbers and C = |crs| ZO0.
It was proved above that
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and consequently the quotient is known. This

formula presents (a, b) after (b, o) has been found, To
determine (b, a), let
d=a+bh=[al, a2, ---, an, B1, B2, ---Bn]
The 2n elements of b may be expressed linearly with
rational coefficients through al, a2, ---, an in the form
Br =crlal + cr202 + - +crnan (=12 ---,n),
or =erloal + er202 + - +ernan
where ers=Q for r#s and ers =1 for r=s. If then of the
system of coefficients
1l cl2 cl13 cln
2l 2 23 c2n

cnl cn2 cn3 cnn
1 0 0 0
0 1 0 0
0 0 O 1

all possible determinants of the nth order are formed, and
if their greatest common divisor d is determined, then as
seen in Art. 156,

since a=b, so that (a, b) =1 (Art. 138). Hence

(Art. 137).

By the use of this formula the number (a, b) may be
determined. The fact that in each of the n last lines of
the above system of coefficients appear only zeros with
the exception of a single unit, permits the theorem as
expressed in the last formula to be stated as follows:
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The number (b, o) is the common denominator of all
the fractions which are had through the formation of
all the sub-determinants of every order of the system
cs (t=1,2 ---,n-. s=1,2, - -,n)

Art 158. It is evident from what follows that if a
and b are finite moduls, then also a-b, a+b, a-h

are Unite moduls.
(1) a-b is a finite modul, since a—b>a (Art. 117).
(2) a+b is a finite modul, since, if

a=[al, a2, -, an] b = [B1, B2, ---Pm]-
a+b =[al, a2, -, an, B1, B2, ---Bm]

then
is finite.

Through repetitions of (1) and (2) it is seen that if
al, a2, -, ar are finite moduls, then also al+a2, +a3
+..+arandal-a2-a3-----ar are finite moduls.

(3) a-bis a finite modul, for

a-b =alb + a2b+ ---+ anb
or

a-b =[a1B1,a1B2,:--, alpm,a2pl ---, anfm]
(Art. 122)

is a finite modul, for

(Art. 130). As a special case of (4) is a finite

modul; that is, the order-modul ot a finite modul is finite
(Art. 132).



CHAPTER VII
ALGEBRAIC MODULS

Art. 159. Definitions. (1) A finite modul a is called
an algebraic modul if all the numbers that are divisible by
a are algebraic. (2) An algebraic modul a is an integral
algebraic modul if all the quantities that are divisible by
a are algebraic integers. (3) An integral algebraic
modul a is a unit-modul if 1 is divisible by a and that is if
the modul [1] is divisible by the modul a

These definitions are limited to finite moduls. To
show that a finite modul is algebraic, it is necessary only
to show that it has a basis which consists wholly of
algebraic numbers; and to show that a finite modul is an
integral algebraic modul, it must be proved that the
modul has a basis whose elements are all algebraic
integers.

In virtue of the above definitions, the following
theorems are at once presented:

(1) Ifaand b are algebraic moduls, then a - b, a+b, a-b

and are algebraic moduls.

(2) If a and b are two integral algebraic moduls then
a-b,at+b, and ab are integral algebraic moduls.

(3) Ifa and b are unit-moduls, then also a-b,a+b,and ab
are unit-moduls.

The quotient of two integral algebraic moduls is in
general not an integral algebraic modul. On the other
hand the quotient of two algebraic moduls is always an
algebraic modul; and a special case is the theorem:

248
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The order-modul of an algebraic modul is an algebraic
modul.

Art. 160. Theorem. Let n be an algebraic number
and suppose that there is a finite modul such that na>a,
then n is an algebraic integer; reciprocally, if n is an
algebraic integer, there exists a finite modul a such that
na>a

For leta = [al, a2, ---, an] be a finite modul and let na
be divisible by o. Note that

na= [nal, na2, -+, nan]
and since na>a, it is evident that
nar= crlal + cr202 + - +crnan  (r =1, 2, ---,n)

where the ¢’s are rational integers.
From these relations we have at once

cll-n cl2 cln
c21 c22-n -0
cnl cn2 cnn-n

This is an equation of the nth degree in which the
coefficient of the highest power is unity and the other
coefficients are rational integers. The quantity n is
therefore an algebraic integer.

The inverse of the theorem is:

Ifn is an algebraic integer, there exists afinite modul g, in
fact an infinite number of such moduls and among them
algebraic moduls, such that na>a

Note that if n satisfies an algebraic equation

nn= cinn-1+ c2nn-2 + - +cn

where cl, ¢2, -+ -, cn are rational integers, then a modul
having the required property that na > a is evidently

a=1[1,n1,n2, ---,nn-1]



250 THE THEORY OF ALGEBRAIC NUMBERS

for
i =[n n2ns - nnl

=, n,N2ns, - nn-L, cinn-1+clinn-2H+---+cn];
and it is seen that all the basal elements of this modul
are divisible by a. It therefore follows that

na>a
Further if na > a then n is divisible by and vice versa.

It is thus shown that n is an algebraic integer when and
only when, it is divisible by the order-modul of a finite
modul.  This offers a third and the best definition of an
algebraic integer.

Art 161, Theorem. If a is a finite modul and b a

modul which is divisible by o, then is an integral algebraic
modul.
For if n is a number that is divisible by  then in

virtue of the definition (Art. 129) of we have na>b,
and consequently since b>a, it follows also that na>a

Hence every number n that is divisible by is an alge-

braic integer, so that is an integral algebraic modul.

This may also be proved by means of a determinant as at
the beginning of Art. 160.

Art. 162. Use may be made of the definitions and
theorems given in the preceding articles, to prove the
theorems already derived (Art. 88) regarding algebraic
integers.

Theorem |. Ifa and P are two algebraic integers, then
also a+b and a —b are algebraic integers.
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For if a and B are two algebraic integers, there are two
moduls, say a and b, such that
oa>a and B=>b
and since
b=b and a>a
it follows that

oab=>ab and Bab>ab.
If then 7 is a number divisible by the modul ab which
stands on the left of the expressions just written, then
ay and By and consequently ay +By = (axp)y is divisible
by ab. Since this is true for every number y that is
divisible by ab, it follows that

(axp)ab=ab,
and consequently ax[3 is an algebraic integer.
Theorem Il. If a and B are algebraic integers, then

also ap is an algebraic integer.

For if a and B are algebraic integers, there are two

moduls a and b such that

oa>a and Bb>b,
and further

Bb=>ph and a>a
It follows that

opab>pab and Bab=ah

and consequently afab=ab, so that af is an algebraic
integer.

Theorem Ill. If o satisfies an algebraic equation in
which the highest coefficient =1 and the other coefficients are
algebraic integers, then is w an algebraic integer.

For suppose that w satisfies the equation

wn=olwn-1+02wn-2 + . -=4an
Since al, 02, --- on are supposedly algebraic integers,
there must be n moduls al a2 - -, an such that

avav > av [*-1, 2, -, n).
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Note that
a2a3a4 - - -an >a2a3- - -an
and also that

olal >al
It follows that

olala? - --an>ala2 - -an

or if we put
_ a =ala2---an,
then is
ola>a.
In a similar manner it is seen that
ava>a (v=1,2, ---,n).

If a is a number divisible by the modul a on the left of
this expression, then also the numbers avav=1,2, ---,n)
are divisible by a.  Next let b be a finite modul such that
b=[I, w, w2, - -, wn-1].
It is evident that the numbers wn-v(v=1,2, ---,n) are
divisible by b and consequently the numbers avwn-va are
divisible by ab. It is further seen that (alwn-1+ 02wn-2
+ ... +an)o or wna is divisible by ab.  Since this is true of
every number o that is divisible by o it follows that

wna=>ab.
It is evident also that

wh =[w, w2, - - -, wn];
and consequently wba is the greatest common divisor
(Art. 119) of wa, w20, w3a, - - -, wna, or
wab =wa+ w20+ w3t - - -+ Na
On the other hand since w, w2, - - -, wn-! are all divisible by
b, it follows that
wa>ab, w2a > ab, wn-1,a=abh.
Further as we have just seen, wna>ab. It results that
wa+w2a+ - - - +wna or wab,>ab,.
On the other hand, ab being the product of two finite
moduls, is a finite modul. Hence « is an algebraic
integer.
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Art. 163. The following theorem due to Dedekind,|
which simplifies the whole theory of moduls, may be
proved:

Theorem. If 4 is a finite modul which belongs to a
given realm of rationality Q, then there is another finite
modul b in Q, such that the product ab is a unit-modul
u, and that is, the modul ab =u consists of only algebraic
integers, and 1 is divisible by ab.

The proof of the theorem depends upon the lemma
which is stated and proved as follows:

Let 9 be a root of the algebraic equation
(1) f(t) =altn+altn-1 +---+ an-It+an=0,
where the a,s are rational numbers. Note that f(t) is
divisible by t—98 and write the result in the form

=al(tn-1 +tn-28+tn-33 +---+9N-1)
+al(tn-2+tn-39+ tn-492 +---+9 n-2)
+al (tn-3 + +tn-49-+tn-592 +---+8n-3 )

+an-2(t+9) +an-1
Further write

where
n0=aldn-1+aldn-1 +a29n-1+---+ an-1,
nl=a0dn-2 + aldn-3+a2dn-4+ -+ an-2,

nn-r-1 =aldr + atdr-1+- - - +ar,

nn-2 =a0d +a&
nn-1=ao
| Dedekind, “ Ueber einem arithmetischen Satz von Gauss.” Deutsch, math.
Gesellschaft in Prag., 1892.
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Since
f(t) = (t- (N0 + nlt + n2t2 + - +nn-1tn-1)

it is seen that
(2> an-r=nn-r-1 -9n-r
If the quantities a0, al, a2, ---, an-1, an are rational
integers, the lemma consists in proving that

no,ni, ---, nn-1,n09, n19y, ---,Nn-19
are algebraic integers.

Write
c=[1 3,92, ---, 9n-1

That the quantities
0,1 n-!
0,1 N

nn-r-1 -9 ;
are divisible by ¢ is seen by observing that
nn-r-1-ds =a0dr+s+aldr+s-1+ --- +ards,

When r+s n-1, the quantity nqn-r-19s is linearly ex-
pressed through the basal elements of ¢. If, however,
r+s>n-1, the different powers of 0 which appear on
the right must be decreased by means of the equation
f(8) =0, and thus nn-r-1-9s is reduced to the form b0+bld
+ ... +bn-19n-1, where the b’s are rational integers.
Hence in all cases nn-r-19s is divisible by the modul c.
We have thus shown that

nn-r-1, nn-r-19, nn-r-192 , --- , Nn-r-19n-1, nn-r-19n
are all divisible by the modul ¢. From this it follows
that
(1) [nn-r-1, nn-r-13, nn-r-192 , --- ,;nn-r-19n-1] >¢,
or

nn-r-19¢ > ¢,
and consequently nn-r-t is an algebraic integer. Simi-
larly it is seen that
(2) [nn-r-1, nn-r-18, nn-r-182 , -+ \nn-r-18n] > ¢,
or

Inn-r-13c¢ > c,
and consequently nn-r-18 is an algebraic integer.
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The Dedekind Theorem may now be proved by the
inductive method. Consider first the modul consisting of
one basal element.

If a=[a] is a modul belonging to the realm of ration-

ality Q, then is also a modul belonging to the

same realm and it is seen that

so that the product ab is a unit-modul.
Consider next the special two-termed modul,
a=[l, 9],
where 3§ is any arbitrary algebraic quantity which
satisfies, say, the algebraic equation
a0dn + aldn-1+ . - +an-193 + an =0,
in which the a’s are rational integers without a greatest
common divisor other than unity. If the system of
quantities no, nl, ---, nn-1 are defined as at the begin-
ning of this article, and if the modul [n0, ni,n2,
nn-1] =b, say, is formed, it is seen that
ab =[1, 8][n0, n1, - - -,nn-1]
and it is asserted that
ab = [0,nL, 12, --n-L,n-L, 08, nta, - -, n-1 1=u,
where 1l is a unit modul. For the elements of u, that is
no, ni, - - -,Nn-19, are all algebraic integers in virtue of the
lemma just proved, and consequently this modul contains

only algebraic integers. Further 1 is divisible by u,
for owing to the formula (2), namely

nr-1-3nr =r (r=1, ---, n),
it is seen that a0, al, - - -, an-1 are all divisible by u as is

also an which, see equation (1), isn08. Since these integers
have by hypothesis no common divisor, we may always

L]
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determine rational integers x0, x1, - - -, Xn such that
alx0+alxl1l+- - -+anxn = 1.

It follows that 1 is divisible by u and that ab =u is a unit
modul.

Consider next the general two-termed modul a = [a, 3]
In this modul write 9=p/a so that a =fif]]= a
If again the quantities nO, nl1, - - -,nn-1 are defined
through the system of equations (Art. 163), and if we
write

then
ab =[1,9][n0, n1, - - - nn-1]
where u is, as just shown, a unit modul.

It remains to prove the theorem when n 3. Assume
that the theorem has been proved for moduls of orders
1, 2,3, 4, -+, n-=1, and then show that it is true for
moduls of the nth order; or better expressed, show that
the theorem is also true for moduls whose bases consist of
n elements.

Suppose that the modul a which belongs to a fixed
realm Q has a basis consisting of n elements. Distribute
these n elements into three groups where in each group
there is at least one element and consequently in no two
groups combined are there more than n—1 elements.
This distribution may be seen in the following modul

a= [(X, a ’a"’ T B! Bl! B"v Y, y'l y"l ]
Write
a=[a,a,a", -], a2 =[B, B, B
B=Ly, vy, y" -1
so that
azalta3

Each of the three moduls al +a2, al +a3,a2 + a3 has a basis
consisting of at most n—1 elements; hence, in accord
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with the above assumption, there are in the realm Q
three moduls bi. b>. b3 such that

hl(a2 +a3) =ul, b2(a3-+al) =u2, b3(al+a2) = u3,
where Ui, 12, uj are unit moduls.
It follows that

(a2 + a3)(a3+al)((al+a2)blh2b3 - ulu2u3 = u;
and since u is the product of three unit moduls, it is
itself a unit modul.
Further note the formula of Art. 127, namely

(a2 + a3)(a3+al)(al+a2) = (al+a2 +a3) (alata2 a3+a3al). -

If we put
(ala2+ a2 a3+a3al)blb2b3 = b,
it follows that
(al+a2 +a3)b =ab =u

and as b is a finite modul belonging to the given realm Q,
the Dedekind Theorem is proved.

Dedekind gives a somewhat different proof of this
theorem in Dirichlet's Zahlentheorie, 4th edition, p. 528.

If the nomenclature employed in the modul theory is
disregarded, the above theorem may be stated as follows:
If al, a2, -+ -, an are n numbers of the realm Q, there are in
the same realm n other numbers 1, f2, - - -, Bn such that

alpl +0a2f2+ - - +anfn =1

and the quantitiesarBs(r,s=1, 2, - - -, n) are all integers
although in general 1, B2, - - -, Bn are not integers.

Moduls of the NnTH Order in Realms of the
NtH Degree

Art. 164. An algebraic realm Q of the nth degree
consists of all rational functions of a root of an irreducible
algebraic equation of the nth degree (Art. 44). Let m be
the order of a finite modul whose elements belong to the
realm Q. It is evident that m cannot be greater than n;
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for if this were the case, there would be m(=>n) linearly
independent quantities in Q. This is not possible, since
the number of linearly independent quantities in Q is at
most n (Art. 54). Hence the order of a modul whose
elements belong to a realm of the nth degree is n.

We shall next consider moduls of a realm Q of the nth
degree, whose order is n. Let [al, a2,---, an] be a
modul of order n which belongs to Q. These quantities
must therefore be linearly independent and consequently
form a basis not only of the modul but also of the realm
Q to which the modul belongs. All numbers which are
divisible by the modul [al, 02, -+, an] may be expressed
in the form alx1 + a2x2-+ - - +anxn, where x1, X2, -+ -, Xn
are rational integers; while all the quantities belonging to
the realm Q may be expressed in the form alrl+o2r2+
-« -+ anrn, where rl, r2, ---, rn are rational numbers.
If then B is an arbitrary number of the realm Q, it may be
expressed in the form

B =alrl + o2r2+- - - +anrn
Let r be the least common multiple of the denominators

ofrl, r2,---, rn. We then have
Br=alrrl + 0a2rr2+: - - +anrrn,
where rrl, rr2, - -, rm are rational integers. It follows

that Br is divisible by the modul [al, a2, - - -, an], which
modul may be represented by a. It is thus proved that
every number of the realm Q may through multiplication by a
rational integer be transformed into a number that is
divisible by a.

Let b =31, B2, - - -, Bn be a second modul of the nth
order in the same realm Q of the nth degree. Since the
guantities 1, B2, - - -, Bn belong to the realm Q, there are n
rational integers sl, s2, - - -, sn such that

s1B1, s2B2, - - -, snpn
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are divisible by the modul a  Let s be the least common

multiple of the n integerssi, s2, - - -, sn, so that

are integers. It results that

or

sB1, sp2, - - -, spn
and consequently also sb is divisible by a. The following
theorem is thus presented:

Ifa and b are two moduls of the nth order in a realm of the
nth degree, there is always an integer r such that rb>a,
where rz0.

From this theorem follows an important consequence,
namely, the integer represented by the symbol (a, b), for
the case that a and b are two moduls of the nth order in a
realm of the nth degree, is different from zero. For on
the one hand, in virtue of the theorem just proved,
rb>a and on the other hand, since r is a rational integer,
ra=>a Ifwe putm=a-b, thenisra>m. Further since
m=>a and ra>m, it follows that (Art. 139)

(a m)(m, ra) = (a ra).
On the other hand, since (a, m) =(a, b) (Art. 137) and
a, ra) =r (Art. 152), it results that
(a, b)(m, ra) =rn
and, since r#£0, we must also have
(a, b) 0.
Art. 165. Theorem. Ifa and b are two moduls of the
nth order in a realm Q of the nth degree, then also (1) a- b;

(2) a+b; (3)ab; (4) (5)adl, are moduls of the nth order in

Q.
10
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For the proof of (1), let a-b =m and let m be the order
of in. Then from the theorem of the preceding article
there is an integer r£0 such that ra>=b and since r is a
rational integer, we also have ra=a and consequently
ra=>m. It follows (Art. 150) that the order of ra which
is the same as the order of o cannot be greater than m, so
that n m. On the other hand since m > g, it is also true
that m n and consequently m=n.

To prove (2) leta=[0ol,02,---,anJand b =3 L,
(PecHrat, d=Fal, o2, - --, gn, B1, B2, -, pBn]. All
numbers that are divisible by b belong to the realm Q.
Consequently the order of b is at most =n.  On the other
hand there are at least n independent basal elements of
b, viz.,al, a2, - -, an, or f1,B2,---,Bn]. It is thus proved
that the greatest common divisor of two module of the
nth order in a realm of the nth degree is a modul of the
nth order.

Again for the proof of (3) let a=[al, 02, -, 0an]. We
then have

ab = alb+ a2b+ - - -+ anb.

Since these moduls are all of the nth order, by repetition
of (2) it is evident that ab is of the nth order.
o prove (4) observe that if a=[al, 02, an] then

Further since are all moduls of the

nth order, through repetition of (1) it is seen that also

is of the nth order. As a special case of the last state-
ment we have: The order-modul a0, where a is of the nth
order in a realm of the nth degree, is of the nth order.

Art. 166. A realm of the nth degree consists of all
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rational functions of a root of an irreducible equation of
the nth degree. Let 9 be the root of such an equation
T(t)=0, which defines Q=R(®)j and let &, 9, ---
3(n) be the n roots of this equation, one being 9. Further
let al, a2, - - -, an be n quantities of Q and express ar(r = 1,
2, -+, n) as rational functions of Then replace 9 by
the n conjugate roots. We thus have the n quantities
ar,a'r, .-, a(n(r=1 2, -, n) that are conjugate with
ar.

The discriminant of the n quantities al, 02, - - -, an was
defined (Art. 63) through

al o2 !

U“l a..z amn

A(al, 02, -+, 0n) =
an)L,  on)2 u(n

It was also seen that this discriminant was zero if al, 02,
.-+, an are linearly dependent. On the other hand this
discriminant is not zero, if the o's are linearly independent.
Suppose that al, a2, - - -, an are linearly independent and
consequently form a basis of Q.

Further let B1, B2, - - -, Bn be n arbitrary numbers of
this realm, so that

Br=crlal+cr202+ - -+crnon (r=1,2,---,n)

where the c’s are rational numbers.

In this equation write for al, a2, - - -, an their values in
terms of 9 and then for & write its conjugate values. We
thus have the quantities B(s)L, (s)2, -+ BS)n(s =1, 2, - -,

n) which are conjugate with and include b B2, - -, Bn.
Since the quantities
crl+cr2+ - - +cr (r=1,2,---n)

have remained unchanged, it is evident that

Br(s) = crlal(s)+ cr2a2(s)+ - - -+crnan(s)
(rs=1,2,--,n)
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It follows from the theorem for the multiplication of
determinants that
[Br(s)| = lcrs| |ar(s];
or, if we represent the determinant |crs| by C, we have
|Br(s)| =C |ar(s|.
Through squaring, it is seen that
ABL, B2, - -+, Bn) =C2A(al, a2, - - -, an).

If it is assumed that al, a2, - - -, an and B1, B2, - - -, Bn form
bases of one and the same modul a, then al, a2, - - -, an are
linearly expressed through the B,s with integral coeffi-
cients and vice versa. It follows that C= =1 and (see
also Art. 94)

ABL, B2, - -, Bn) = A(al, 02, - - -, an).
It has thus been shown that the discriminant of the basal
elements of a modul o is independent of the choice of the
elements. It may therefore be denoted by A(a).
Art. 167. As a second application of the formula
ABL, B2, - -+, fn) = C2A(al, a2, - - -, an),
suppose that both 1,32, -, pfn and al, 02, - -, an are
linearly independent so that each of these systems of

guantities determines a modul. Denote these moduls
respectively by b and a We saw (Art. 153) that

If this value of C is written in the above formula, it
results that

If the symbol of the preceding article is adopted, this
formula becomes

(a, b)2A(a) =(b, a)2A(b).
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Next apply this formula to the special case b=77q,

where n is a number of the realm Q. It is seen that
(a, na)2A(a) =(na, a)2A(na)
If the quantities that are conjugate with n are denoted by
n, n", n™, - - nM (including n), it is clear that
A(na) =A(nal, na2, - - -, non
(v9) =A(al N2 -wonan) o o
n'a"l nN'a"2 n'a’

a1 n"a”n n(nan(n)
= {0 nRA@R)=N(n)2A()
It is thus shown that
_ (a, na)2A(a) =(na, @)2N(n)2A(a);
or, since
A(a) #0,
(a, na)2 = ((na, a)2N(n)2
and consequently

In extracting the root, so choose the sign that

is positive, since the numerator and denominator are by
definition positive integers. It follows that

and from this it is seen that the quotient is inde-

pendent of a.

Art. 168. It has been proved (Art. 94) that in every
algebraic realm of rationality of the nth degree there are
n algebraic integers wl w2, - - -, wn such that all algebraic
integers of the realm may be expressed through the linear
form

x1wl +x2w2, +- - -+ xnwn,
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where the x’s are rational integers. This theorem may
be expressed as follows:

All the algebraic integers of the realm of the nth degree
form a finite modul of the nth order. This modul may be
denoted by o. It is clearly an order-modul.

This theorem may be derived directly from the modul-
theory. Let 1, B2, - -, Bn be n elements of a basis of a
realm Q of the nth degree. That is, suppose that f1, f2,
.-+, Bn are n arbitrary, linearly independent quantities of
the realm Q.  Since every algebraic number may through
multiplication by a rational integer be transformed (Art.
93) into an algebraic integer, it is possible to determine n
rational integers sl s2, - --, sn such that s1f1,s2f2, - -,
snpn are algebraic integers. Denote them by &1,
cu 27 js evident that the modul

a=[al, 02, -, on]

consists only of algebraic integers of the realm Q. The
two following cases are possible: either all the algebraic
integers of the realm Q are divisible by a, or they are not
all divisible by this modul. For the first case the
theorem is of itself proved. For the second case there
must exist in Q an algebraic integer B which is not divisible
by a. Since al, a2, -- -, an constitute also a basis of Q, it
is seen that  may be expressed in the form

where k, ki, k2, - -, kn are rational integers without a
common divisor other than unity. It is assumed also
that k=1, for if k=1, then B would be divisible by a.
Letb=[B], m=a-b d=a+b Ifpisanumber divisible
by in, then p is divisible by both a and b. Consequently
it is seen on the one hand that p=x-B, where x is a
rational integer, and if we substitute for [ its value from
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above

On the other hand since y is divisible by q, it follows also
that
U =xlal + x202+ - - -+ xnan,

where the z’'s are rational integers, As the a,s are line-
arly independent, it results that

(r=1,2, ---,n).

It follows that must be rational inte-

gers, and consequently that x must be divisible by k.
For if x were not divisible by k, there must be a number p
which divides k and is not a factor of x. This number
must also divide ki, k2, - - -, kn, which is contrary to the
hypothesis that these integers had no common factor
other than unity.

It follows that every number p that is divisible by in
is an integral multiple of pk-, for y=xf and x is divisible
by k. Reciprocally, notefirst that every integral multiple
of Bk is divisible by a, for Bk =klal + k202+ - - -+ knan, and
secondly since b = B] and k is a rational integer, it follows
that Bk and all integral multiples of Bk are divisible by b.
Consequently as all integral multiples of Bk are divisible
by both a and b, they are also divisible by m.  We thus
see that [kB]=m.

As just seen every number divisible by m is an integral
multiple of kB, and consequently m=>[k@B]. It follows
that

m=k[B] or  m=K[B]

Observing that b is a one-termed modul, it is seen
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(Art. 149, end) that
m = (b, mb = (b, m) [B];

and consequently
k=(b m)=(b a =(b a)

(Art. 137). Finally from the formula (Art. 167)
(a, d)2A(a) = (d, a)2A(d),

A(a) =k2A(d).
Since k2=>1, it results that

A(d) <A(a).
In other words, if there is an algebraic integer in Q which
is not divisible by the modul a (this modul consisting of
only algebraic integers), then a modul b of the nth order
in Q may be determined, which also consists only of
algebraic integers and is such that A(d) <A(a).

If there are still algebraic integers in Q which are also
not divisible by b, by proceeding in the same way another
modul of the nth order in Q may be derived which consists
of only algebraic integers and whose discriminant is also
<A(d). Continuing we must finally come to a modul of
the nth order in Q consisting of only algebraic integers,
whose discriminant is a minimum. All the algebraic
integers of Q must be divisible by this modul which is
denoted by o; otherwise the discriminant of o would not
be the smallest discriminant and consequently, pro-
ceeding as above, a modul could be derived with still
smaller discriminant which consists only of algebraic
integers in Q.

Art. 169. It has thus been shown that the algebraic
integers of a realm Q of the nth degree form a finite
modul o of the nth order. The elements of this modul
may be denoted by wl w2, - -, wn, so that

0=[wl w2, -, wn]

it follows that
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The discriminant of this modul, A(o) is denoted by D
(Art. 94), and is called the basal invariant (Grundzahl) of
the realm Q. Accordingly an integral modul in Q may be
defined as follows: A modul is integral, if it is divisible by
0. Since every realm, excepting the trivial case of the
realm which consists only of zero, contains the unit
1, the modul o has the property that 1 is divisible
by o and consequently also [1]=o0. Since further the
product of two integral algebraic moduls is an integral
algebraic modul, it follows that (1) oo=o0 (Art. 132,
Formula X), or 02=>0. Further since [TJ>0 and 0>0,
we have [T]Jo=0l or (2) 0=02 From (1) and (2) it
results that
02 =0,
and similarly it may be proved that

(Art. 132, Formula XI1). The modul o is an order-modul
of 0 and indeed it is its own order-modul. It is called
the fundamental or principal order-modul. This modul
plays the same role in Q =R(3) as 1 does in R(1).

Art. 170. Theorem. Ifais an arbitrary modul of the
nth order in a realm Q of the nth degree, then every number f3
which belongs to Q may through multiplication by a rational
integer be transformed into a number that is divisible by a.

For let the n numbers al, a2, - -, an form a basis of o.
They consequently also form a basis of Q; and since B is a

number belonging to Q, it follows that  may be expressed
in the form

where s, sl, s2, - -, sn are rational integers which have
no common factor other than unity. We therefore
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have

sp =slal +s202 +- - -+ snan
so that s is divisible by a.  Applying this theorem to the
case f =1, it is seen that there is always a rational integer
s-1 or s which is divisible by a. It is thus shown that
every finite modul of the nth order in Q contains rational
integers.

All rational integers which are divisible by a finite
modul a form a finite modul and the order of this last
modul is clearly unity since the modul consists entirely of
rational integers. The basis of this modul consists
therefore of one element, say a. It follows then that all
the rational integers that are divisible by a are divisible
by the modul [a] and consequently may be expressed
through the form ax where x is a rational integer. This
number is the smallest rational integer that is divisible by
a and all other rational integers that are divisible by a are
integral multiples of a. For the modul o the number
a =1, because all rational integers are divisible by o, and
[1] is the modul formed of all rational integers.

Complementary Bases and Complementary Mod-
uls in a Realm of the nth Degree

Art. 171. We come next to the complementary bases
and complementary moduls which play an important
role in the Theory of Abelian Integrals.

Let Q be a realm of rationality of the nth degree and
letal, a2, - - -, an form a basis of Q constituting therefore a
system of linearly independent elements; and further let
ar(1),ar(2),- -+, ar(2) be the n quantities conjugate with
ar(r=1, 2, -+, n). The following formula was derived

in Art. 104,

r=1.2 ---.n
1,2,

= --,Nn

A(al, a2, - - -, an) = [N(aras) |
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where

S(aras) =ar(L)as(L) +ar(2)as(2)+ - - -+ ar(2)as(2)
Under the assumption that al, a2, - - -, an are linearly
independent, it follows that A(al, o2, - - -, an) and conse-

quently also the determinant of the nth degree |S(aras)|
is different from zero (Art. 63).

Next introduce n new quantities a'l, 0’2, - - -, a'n defined
as roots of the n linear equations

ar =S(aral)a'l+S(ara2)a'2+ - - -+S(aran)a'r, (r=1,2, ---, n).
To be distinguished are the a"s from the preceding
alphas whose indices are in brackets. Since their
determinant is different from zero, these n equations with
rational coefficients may be solved with respect to the
unknown quantities a'l, a'2,---, a'n. It is therefore

evident that a'1, a'2, - - -, o'n are quantities of the realm Q.
It is asserted:

The n quantities a'l, a'2,---, a'’n form a basis of the
realm Q.

For write
1) (r=1,2,---,n)

Suppose in (1) that all the quantities are expressed
through ¢ where 3§ is the algebraic quantity defining the
realm of the nth degree Q=R(¥). Further in the
resulting expression write for & all the conjugate values of
% and note that S(aras) being a rational quantity remains
unchanged. It is seen that

(r=1,2,---,nt=12 ---,n)
It follows that

lar(t)|=|S(aral)|- |a's|
or squaring,

A(ol, a2, - -+, an) =A2(al, 02, - - -, an)A(a'l, a'2, - - -, a'n).
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Further since al, a2, - - -, an are linearly independent, it is
seen that A(al, a2, - - -, an) #0 and consequently
(2) A(al, a2, - -+, an) A(a'L, a'2, - - -, a'n) =1.

From this relation it is evident thatA(a'l, a'2, - - -, a'n) #Z0,
and consequently a'l, a2, - - -, a'n form a basis of Q. This
basis of numbers o'1, a2, - - -, a'n defined through the n
equations (1) is called the complementary basis of al, a2y

Art. 172. A generalization of equations (1) may be
made which will serve as a further definition of the
complementary basis.

If a and [ are two arbitrary algebraic numbers and if
y is a rational number, then we have (Arts. 59 and 89)

S(axB)=S(a)=S(B),
S(ya) =yS(a)
Any arbitrary number ® of the realm Q may be written

where yb y2, - -, yn are integral (or fractional) rational
numbers. From (1) it follows that

or

3)

It is clear that the equation (1) is a special case of
equation (3). From this it is seen that the coordinates
(Art. 62) of any arbitrary number w of the realm Q with
respect to the basis a'1, a'2, - - -, a'n which is complementary
of the basis a1, 02, - - -, an are

S(wal), S(wa2),, S(wan).
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Art. 173. If in equation (3) as a special case we write
W =4ar,
there result the n equations

(‘[ :1l 2, e n)

It was proved above that a'l, a'2,---, a'n are linearly
independent. Consequently the n relations just written
must be identities. Using the symbol ers=0 when r#s
and ers =1 when r=s, it is seen that

4 S(aras) =ers (r,s=1,2, -+, n)
The n? equations just written are characteristic of the
basis o', a'2, - - -, a'n that is complementary of & 1,
iePthis may be expyessed as follows:

Theorem. Ifal,a2,---,anand Bl B2 -- -, Bn are two
systems of n numbers in the realm Q, among which the n?
equations

S(arPs) =ers (r,s=1,2,---n).
exist, then (1) al, a2, ---, an are linearly independent,
(2)B1, B2, - - -, pn form the complementary basis of the basis
al, a2, -, on in the realm Q.

The proof of (1) is as follows: If al, a2, -, an were
linearly dependent, it would be possible to determine n
rational integers xl, x2, - - -, xn such that

x1lal+ x2a2+ - - -, xn an=0
or

Form the expression

This expression is equal to
=0; and this is true fors=1,2,-- -, n
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On the other hand by hypothesis
(=12 - - n)

It results that
xs =0 (s=l, 2, - -, n),

and consequently the relation can only exist,

if x1=0 =x2= --- =xn. Itis thus seen that the quantities
al, a2, - - -, an are linearly independent, and form a basis of
the realm Q.

For the second part of the theorem it remains to show
that 1, B2, - - -, Bn form the complementary basis to al, a2,

-+, on
Suppose that the quantities a'l, a'2, - - -, a'n form the
complementary basis in Q of al, 02, - - -, an

We then have by writing o =fr in (3),

=ar (r=1,2, --- n).
It follows that B1, B2, -, fn form the complementary
basis in Q of al, a2, - -, an.

From equation (4) it also follows in virtue of the
theorem just proved that if the quantities a'l, a'2, - - -, a'n
form the complementary basis in Q of the basis a1, a2, - - -, an,
then the quantities ab a2, - - -, an form the complementary
basis in Q of o', 0’2, - - -, a'n.

Due to this theorem, the theorem that is expressed
through (3) and (4) is also expressed through the two
relations

©)
3)
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In other words, the coordinates of an arbitrary number w

with regard to an arbitrary basis al, a2, - .-, an are
S(wal), S(wa?2), - -, S(wan), where o'l, a2, an form the
complementary basis of al, a2, - - -, an.
To the relations
(4) S(a'ras)=ers
may be added
4" S(a'ras)=esr (rs=1,2 -+ n)
Art 174, If al,a2,---,an and BL B2, - -, Bn are two
bases of Q complementary of each other and if the
guantities conjugate with ar are or(l), or2), ---, arn) in-
cluding ar, while the quantities conjugate with (s are
Bs(L), Bs2), ---, Ps(n) including Bs (r, s=1, 2, ---, n), then
from above

S(orfs) =ar(Ufst)+ or@pse - afse) =es

Denote by A and B the two determinants

oal(l) od(2)y--  olfn) B BL2) --- Pl
Q) 2@ - 1) A B

() on@) -~ o) Ba() pn@) )
It is evident from the n? relations written above that if
the elements of the rth row of the first determinant be
multiplied by the elements of the s row of the second
determinant, and if the n products thus had are added,
this sum =ers, and this is =1 when r=s, and =0 when
r#s.

Further it also follows from these n2 equations due to a
well-known theorem in determinants, which fact is also
proved below, that the first minor Afj) associated with
ar(s) of the determinant A, divided by the determinant A
is equal to Br(s), and consequently the reciprocal system of
the system of quantities a(5) (r, s=1, 2, - -, n) is formed
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through the quantities f§) (r, s=1, 2, -+, n). This is
evident from the following; two relations:
ar(L)Ar(1)+ ar(2)Ar(2)+ -, ar(n)Ar(n) =A.
ar(1)Bs(1)+ ar(2)Bs(2)+ -, ar(n)Bs(n)=ers.
It is seen that

etc. It is also known from the theory of determinants
that if the above n? relations exist among the elements
of the lines of the two determinants A and B, the same n?
relations exist among the elements of the columns of
these two determinants. We therefore have the ad-
ditional relations

() al(r)BL(s)+ 02(F)B2(s)+ -, 03(r)P3(s) (1 s =L, 2, -+, )
Art. 175, It follows from T5) above, if we nut
at(l) =at, Bt(1)=a't (t=1, 2, - -, n),
that

(6) alo'l+0202+ - - +arar =1, and
al(rnal +ara2+ --- “ar(njar =0.

By means of these n linear equations in the n unknown
guantities a'l, a'2, - - -, a'n we may define the basis a'l, a2,
-+, a'n complementary to the basis al, a2, - -, an
However this definition is not as good as the definition of
the complementary basis as presented through the
equations (1). For in the case of the definition as given
through the equations (6) it must be shown that the
guantities a'l, a2, - -+, o'n belongs to the same realm of
rationality as the quantities al, a2, - - -, an, a fact which is
evident in the case of the definition through equations
D).

Art. 176. A further consequence may be drawn from
formulas (4):
Ifal, 02, .-+ an; 01,02, - an are two complementary

(r=2,3 ---,n.
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bases of the realm Q. it follows in virtue of (4) that
S(ara's) =ers  (r=1,2, ---,n;s=1,2 -, n).
It is evident that
S(narn-la’) =ers (r=1,2, -+, n;s=1,2 -+ n)
where n is an arbitrary quantity of the realm Q. From
the existence of the n? relations just written it follows
from the theorems of Art. 173 that
nal, no2, - -, non
n-la'l, n-10'2, - -, n-1a'n
are also two complementary bases in the realm Q to
which belong the quantities al, a2, - - -, an,
Art. 177. Suppose that al, a2, - - -, on and 31, B2, - -
fare_two arbitrary bases of the realm Q of the nth
degree. It follows that B1, 2, - - -, Bn may be expressed in
the form

(r=1,2, -, n), (|)
where the ¢ s are rational numbers.
On the other hand it follows from (3'), if we denote the

basis complementary to al, 02, ---, an by a'l,a'2,---, a'n
and write in (3) w=pr (r=1, 2, - -+ n), that

(r=1, 2, ---, n;).
Through subtraction it results that
(r=1,2, -, n).
Since the a,s are linearlv independent, it follows also that
crs =S(Bra’s) (rns=1,2, -, n)
If further we denote the complementary basis of B1, B2,

-+, Bn by p'L, B2, - - -, B, it follows from (3), if we write in
those equations w =a'r that

(r=1,2,,n;)



276 THE THEORY OF ALGEBRAIC NUMBERS

or
) (r=1,2, - n).

Compare these equations with those given under (i) and
observe in particular the coefficients.

Art. 178. From the formula just derived follow some
very important consequences. Suppose that ab a2, - - -,
an are the elements of a modul of the nth order and write

a=[ol, a2, ---, an] =[B1, B2, - -, Bn]
It follows then that
(r=1,2, -, n).

where the c’s are rational integers. Further since the a,s
are linearly expressible through the B,s with rational
integral coefficients, it was proved (Art. 94) that the
determinant of the nth order |crs| = 1. As the deter-
minant remains unchanged when the rows and columns
are interchanged, it follows also that

|csr|=|crs|=%1
From (7) it is seen that

the c’s being rational integers with determinant = 1.
It follows that the modul which has the basis o* 1,
«iscided#eal with the modul-which has the basis 3'1,
3 =, - [Pénote this modul by a', where
a' =[a'l,a2 - an]=[p'1 B2 Bn]

The modul o is the complementary modul of a. The
following definition is presented:

A modul a' is said to be the Complement of a modul a, if
the bases are complements of each other.

It is thus seen that corresponding to every modul there
is a complementary modul uniquely defined. For from
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whatever basis of a we start, we always have the same
complementary modul a', since the modul a' is inde-
pendent of the choice of the basis al,a2,---, an. In
virtue of its definition the modul a' is like the modul a a
modul of the nth order in a realm of the nth degree.

Art. 179. Next do away with the restriction that the
determinant |crs|==1, although it is assumed that the
c’s are rational integers with determinant different from
zero. Since the a’s are supposed to be linearly inde-
pendent, it follows also that the B,s are linearly inde-
pendent. The two systems al,02,---,anand (31,
fEEBNHR® two -moduls of the gth order in the realm of
the nth degree, say a=[al,02,---,an], b =[B1, B2, -,
Bn]. Further suppose that b>a, so that

where the ¢’s are rational integers.

If the basis complementary to al, 02, - - -, an is denoted
by o', a'2,-- -, a'n and the basis complementary to 31,
= 2y, B'1, B2, - -+, Bn, it results from (7) that

r:]_, 2, e n)

If then we put a'=[a'l, a'2, - -+, a'n] and b' =[B'1, B'2,
- 1B'we also have

a=b
In Art. 150 it was proved that
lcrs| = (a, b).
In virtue of (7) it is seen that
[csr| = (b', &).
Further since |csr| = |crs|, it results that
(a, b)=(b", a").

The following theorem has thus been established:
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Theorem. Ifa and b are two moduls of the nth order in
a realm of the nth degree and if b>a; and if the moduls
complementary of a and b be denoted by a' and b’, then is

(1) a'>D’
and also
) (@, b)=(b", a")

Art. 180. In the sequel the modul complementary of
any modul k is denoted by k' The following conse-
guences arising from the theorem of the preceding
article are presented:

If a and b are two arbitrary moduls of the nth order in the
realm Q of the nth degree, then is

(a+ b)y'=a'—b",
and
(a- b)=a'+b.

To prove these statements, let b=a+b and m =a—b.
Since a=h and b>d, it is evident from the theorem just
proved that d'=a' and d'>=b' and consequently

d'=a"-b"

On the other hand every common multiple of a' and b’
is divisible by b'.  For if kis a common multiple of o' and
b', so that k=a' and k=b', then it follows from above,
since (a')' =a and (b)=Db, that a=k' and b>k'. Hence
k' is a common divisor of a and b. But since b is the
greatest common divisor of a and b, it follows (Art. 118)
that d> k' and consequently k>d'. It is thus proved that
d' is the least common multiple of a' and b' and that is

(a+b)'=a'-b.
From the same formula, it is evident that
(@+b)'=(a)'-(")'=a- b
and consequently
(a-b)'={(@+b")} =a"+b"
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Finally the formula

(8) (a, b)=(b", a"
may be proved for the general case. The proof of this
theorem for the special case b=a was given in Art. 179.
Write b=a+b. Since (a, b)=(d, b) (Art. 137) and
since b > d, it follows that (d, d) = (b', d'). Sinced =a'-b'
it follows that
(d, b)= (", a'—b")=(b"a")

EXAMPLES

1. It may be proved that for let a=[o1,02,- -+, an

an]. so that
ab=alb+a2b+ - +anb.
Hence we have

[ab]= (alb)'-(o2b)'-- - -- (anb)'

2. Prove that (na) =n-la'.
3. Prove that (aa'),=al= (a')0.



CHAPTER VIlII
THE MODULAR SYSTEMS OF KRONECKER

Art. 181. We have seen that the aggregate or complex
of rational integers of the form - ., a&a-3m, a-2m, a-m,
a, a+tm, a+2m, a+3m, - -, may be defined by saying
that they are congruent to a, modulo m. And the series
of integers a-+km, where a and m are rational integers,
while k takes all positive and negative integral values, is
completely determined through two quantities, viz., the
fixed modulus m and any other term of the series.

Kronecker (Werke 1111, p. 148, and Crelle,s Journal,
Vol. 99, pp. 330 et seq.) defined two linear forms of the
variables x and x',

a+bx, a'+b'x

as equivalent to each other, if the one could be trans-
formed into the other by the integral substitutions

X =ax'+p, X' =a'x4+3',
where a, b, a', b, a, B, x and x' have rational integral
values.

The necessary and sufficient conditions for this equiva-

lence are therefore

b==xb’, a=a, (mod. 6).
The conception of the congruence of the integers a=a,
(mod. m) is quite the same as the conception of the
equivalence of the linear forms a+mx~a,* mx'. Clearly
any rational integer g that may be expressed through
either of two equivalent forms may be expressed through
the other. The natural extension of the conception of
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the congruence with regard to one modulus to the more
general conception of the congruence with regard to a
system of moduli is at once suggested, when instead of
the linear forms | with one variable, we consider linear
forms in any number of variables

a+mixl +m2x2+ - - - +myxy,
where all the quantities occurring have rational integral

values.
Two linear forms

(1)
are defined as being equivalent, when the one can be
transformed into the other by the integral substitutions

(h=1,2, k=12 V),
in which the c¢s are rational integers. Hence the
necessary and sufficient conditions for the equivalence of
the forms (1) are expressed through the equations

(A)
(B)

(h=1,2, - -, py; k=1,2, -, V)
By giving to the coefficients ¢ and c' above all possible
integral values, it is clear that the aggregate or totality

of all the rational integers that may be expressed through
the form

(2)

is defined by saying that they are congruent to one

another with respect to the modular system [m1, m2, ---

my . For brevity this system may be denoted by M.

Any integer g which may be expressed through the form
1 Encyklopaedie der math. Wissenschaften, Vol. I, pp. 255, 258 et seq.
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(2) may be written as the congruence
g=a (modd. m1l, m2, ---,mp),
or briefly,
g=a (mod. M).

If a =0 in the form (2), then is g a linear homogeneous
function of the m’s with integral coefficients and may be
written g=0 (mod.M).

Due to the formulas (A) and (B) the complex of
integers that may be expressed through either of the
forms (1) is the same, so that the conception of the
equivalence of two modular systems (m1, m2, ---,mp),
(m'1, m'2, ---,m'v) is a natural consequence.

The equations (B) are characteristic of the equivalence

(ml1, m2, .- my) —(m'L, m'2, ---,;m'v)
In other words, the necessary and sufficient conditions
for the equivalence of the linear forms

are expressed by the congruence
a=a' (modd. m1, m2, ---,mp),
together with the equivalence
(m1, m2, ---,mp) ~(M'1, m'2, ---,;m'v)
Let M' demote the modular system (m'1, m'2, ---,;m'v)

and suppose that each of its elements is congruent to
zero (mod. M), and that is

(3) m'r =arlml+ar2m2+ . - - +arymy  (r=1,2, ---,v);
then if a==a' (mod. Af'), it follows that a=a' (mod. M’).
For, due to the first congruence
a-a' =glm'l+g2m'2+. .-+ gvm',
where the g's are integers. Writing for mx, mz, - - -, their
values from (3), it follows that
a-a' = GIm1+G2m2 + - - - + Gumy,,
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where Gi (i=1, 2, ---, y) are integers; and that is,
a=al(mod. M).

If the equations (3) exist, it is seen that every integer
that may be linearly expressed through m{, - - -, mv, may
be also linearly expressed through ml - -, my. In this
case the modular system M" is said to be divisible by M.

And following the analogy of the preceding chapter,
we shall write

M'>M,
and say M' is divisible by M, and therefore M' is a
multiple of M, while M is a divisor of M'. If further,
M >M"', then is M ~M.,,

Observe that if g=0 (modd. ml, - -, my, m',, - -, mb),
and that is, if g=0 (modd. M, MY, and if also the
equations (3) exist, then evidently M' may be omitted
from the system, leaving simply

g=0 (mod. M).
Any element m may be added to the modular system M = (mL,
m2, ---,my) or omittedfrom it when mis a linear function of
the remaining elements with rational integral coefficients.
This offers the suggestions and also a means for the

reduction of a system M to its simplest form. For,
suppose that and through division let

where g and r! are integers. It follows that

fingm2 +rl and rl =ml—gm2. Due to the latter relation,
rl may be added as an element to M and the former
element may be omitted, thus rendering

(m1, m2, ---,mu) —(rl, m2, ---,mp),

where rl<ml
Continuing this process it is seen that

(m1, m2, ---,;mu)—(d),
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where d is the greatest common divisor of the elements
mi,---, my, (See Art. 14.)

Art. 182 In his Vorlesungen uber Zahlentheorie, p.
154, Kronecker defines a realm of rationality as follows:
Let R be any prescribed quantity | indeterminate in that
at any time a definite value may be assigned to it. This
guantity connected with itself through the operations of
addition, multiplication, subtraction and division pro-
duces a realm of quantities which is completely closed in
so far that its individual elements reproduce themselves
through the operations just mentioned.

For, if ®(R) and W(R) are any elements of this realm,
then to it belong also

D+Y, d-Y, DY,

it being assumed always that in the operation of division,
W is not zero.

Since 1 =R R, it is seen that all powers 1, R, R2, - -,
belong to this realm, as do accordingly also all integral
functions

f(R) = &= O+ alR ++amRnm,
where the a,s are rational integers; and likewise also all
rational functions

where the b’s are also rational integers. As 1 is an
element of the realm, it follows by definition that all
rational numbers are elements of the realm, so that in the
above expressions it is not necessary to impose the
conditions that the a,s and b’s are integers. Kronecker
denoted the realm in question by (R) while the realm of
integrity consisting of all integral functions of R, he

1 It would be better if the 1I's used here were replaced by u’s, as was done in
Art. 28. However, the notation of Kronecker is followed.
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denoted by[R] (see Art. 28). Thus as seen in Art. 28
[R] constitutes a part of the realm (7?) while [1, R]
constitutes a part of [R], in that rational numbers may
enter as coefficients in (R). Thus Kronecker denoted a
realm of rationality by parentheses ( ) and the realm of
integrity by brackets [ ].

No confusion can arise since the word “ realm”
usually precedes the parentheses or brackets.

In general, denote by R', R", - R(n), n arbitrary
indeterminates.l The complex of all those quantities
that can be produced by addition, subtraction, multi-
plication and division upon the R’s constitute the realm
(R(1), ---, R(n)) while every integral function

(Kl=1,2, - - K=12 = -~ kn=12 - ),

enter as elements of this realm.

If the operations are restricted to those of addition,
subtraction and multiplication, omitting division, the
resulting realm is one of integrity and is denoted by
[R@1), - -, R()]- As above it constitutes a portion of the
realm (R(1), - - -, R(n)). (See Report on Algebraic Num-

bers, p. 81; and for the literature see the Report, pp.
86 et seq.)

Art. 183. In the present discussion rational integers
and integral functions of the variable with rational
integral coefficients shall constitute the realm? of
integrity [1, x]

1 These R,s may be replaced by ul, u2, , un.

2 See Kronecker Grundzuge, etc., pp. 3et seq Molk, Actamath., Vol. 6, p. 20;
Hancock, Quart. Journ., Vol. 27 (1894) pp. 152 et seq.; and see in partlcular the

Paris thesis of Hancock printed in the Ann. de I'Ecole Normale Supérieure, Vol.
XVIII (1901), where algebraic integers are introduced.
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he results of Art. 181, practically word for word, may
be repeated here.

Let

A, M1 - -, My A', M1, -, M\
be integral quantities that belong to the prescribed realm
of integrity. The equivalence (see two papers by the
author in Crelle,s Journal, Vols. 119 and 122) of two
modular systems
(ML, M2, ---, My), (ML, M2, -, MY),

and the congruence of the two quantities A and A, with
regard to one of these systems may be defined by the
equations:

(A)

(B)

in which the C’s and C's are also integral quantities of
the realm of integrity [1,X] These same equations
serve also to define the equivalence of the linear forms

and the equivalence of these forms is in turn characterized
by the congruence
A=A' (modd. M1, M2,---, Mp).

together with the equivalence

(M1, M2,---, Mp) ~(M'1, M2, - - -, M,v).
Again, if the v congruences

M%=0 (modd. M1, M2,---, M)  k-=1,2,---,v)

exist, the system (M'1, M'2, - - -, M,"v) is said to be divisible
by (M1, M2,---, Mp); and of the two systems, if each is
divisible by the other, we have the equivalence

(M1, M2,---, My) ~(M'1, M2, - - -, M,"V)
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Art. 184. It is evident that any system may be trans-
formed into an equivalent system by adding to or subtracting
from any element of the system one or more of the other
elements, and any element may be added to a modular
system or taken away from it, when this element is a linear
homogeneous function of the remaining elements of the
modular system.

As an example, it may be proved, u being any inde-
terminate, that

(213 + 14u2+4u, 7u?+3u) ~(3u2+5u, 2u2—u).
For.
2 ud+ 14u2 +4u = (3u2 +5u) (3u+1) + (2u2 — u) (6u + 1),
7u2+3u = 1(3u2-+5u) + 2(2ul — u);

while
3u2+5u =2(21u3+ 14u2+4u) — (7u2+3u)(6u + 1),
2u2-u= -1 (2uld+ 14u2+4u) + (7ul+3u) (3u +1).
Similarly,

(Bu2+5u, 2u2- u) —(2u2-u, u2+6u) ~(u2+6u, 13u).
If for brevity we put

g (M)=(M{, ---,Mp), (MHY=(M{, ..-, MY)
" (M"™Y=(M"1, ---, M"D),
and if

M'=>=M" andif M">M, thenis M'>M.

By the composition or multiplication of any modular
system (M) with any other system (N) =(N1 N2, - -,
Nv), we understand the system which has as its elements

the p-v elements MhNKk Ezll § o\ and that is

(M)(N)=(MINL, MIN2, ---, MINy, M2N1, ---, M}
If (M) ~(M") then is (M)(N) ~(M")(N). If (N") is any
system such that (N) ~ (N)") and if (M) ~(M"), then also is
(M)(N) ~(M)(N,). For (M)(N) ~(M’) (N) ~ (M) (N).
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Art. 185. The greatest common divisor d of two
rational integers m and n is such that both m and n are
divisible by d and any other common divisor k of both m
and n is a divisor of d. A similar definition is applicable
to modular systems: If the greatest common divisor of
two modular systems (M) and (N) is denoted by D
=(D}, D2 ---, D), it is required that (M)=>(D)) and
(N) > (D) with the further characteristic that any divisor
(N)) of both (M) and (N) be a divisor of (D). For it is
clear that

(D)=(M1, M2,---, My, N1, N2, - - -, Nv),

since

(M)=>(M1, ---, My, N1, - - -, Nv)
and

(N)=>(M1, ---, My, N1, - - -, Nv)
Further if (M) > (K) and (N) > (K), then also is

(M1, ---, My, N1, - - -, Nv)>K.

If the greatest common divisor of two rational integers is
denoted by (m, n), then is the least common

multiple of m and n. And if | is an integer that is
divisible by both m and n, then is
(m, N)I=0 (mod. m-n).

The analogue for modular systems is as follows:

If (L) =(L1L2 - - LA is asystem that is divisible by
both (M) and (N), then is
(M1, M2,---, My,, N1, N2, - - -, NV)((L1 L2, ---,LA) =0
(mod. (M)(A)).

Art. 186. Let us consider the modular system
(FL (<), Phere
fl(x)=al0+alx+---+amxm, F2(x) =bO+bl1x+---+bnxn,
are functions in which the a,s and b,s are rational integers,
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while m and n are positive integers such that
Divide f1(x) by f2(x) and denote the quotient by g(x) and
the remainder by r(x), so that

f1(x) =g(X)Ff20)+r(x).

The coefficients that occur in g(x) and r(x) are rational
numbers. Let nl denote the least common multiple of
their denominators and put

and

We thus have
n1fl(x) —g2(x)f2(x) + f3(x) =0;
and consequently, since.~3(rr) is linearly expressed in
terms f1(x) andf2(x), it follows that
(f1(x), f2(x)) ~(f1(x), f2(x), f3(x)).

Continuing, we may divide~2(z) by/3(t) and thus derive
the following system of equations (see Art. 14):

nifl-g2f2+f3=0,

n2f2-g3f3+f4=0,

@)

nv-2fv-2-gv-1fv-1+fv=0,

nv-1fv-1-gvfv = 0.
From these relations it is seen that
(f1, f2) ~ (f1, f2f3) ~ (f1, f2,f3, f4) ~ - ~(f1, 12, - - fv).

The equations (1) may be written in the form of con-
gruences:

f3=0 (modd. 1, f2),

f4=0 (modd. 2, 13),
)

fv=0 (modd. fv-2}-
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and also from equations (1), it is seen that
nlfl=0 (modd. f2, 3),
n2f2=0 (modd. f3.47),

3)
nv-2,fv-2=0 (modd. fv-1, fv),
nv-1,fv-1=0 (mod. fv).
From the equations (1) it is further seen that
fi= gyfv-1 nv-2,fv-2 = gv-1 (gv-2fv-2 - nv-3fv-3) - nv-2fy-2
=c2fv-2 + c3fv-3
where c2, ¢3 are quantities of [1,x]. Hence,
(fv, fv-1) > (fv-1,fv-2) > (fv-2 A3) > - - > (f1, 12).
And in particular, fv> (f1, f2); or
4) fv=0 (modd. f1, f2).
If we multiply the next to the last of the congruences (3)
by nv-1 and observe that nv-1,fv-1=0 (mod.fv), it is seen
that nv-1nv-2,fv-2=0 (mod.fv). And proceeding in the
same manner it is seen that
nin2n3: 1 -nv-1nv-2,f1=0 (mod.fv),
nn3. - -nv-1nv-2,f2=0 (mod. fv),
n3 - -nv-1nv-2,3=0 (mod.fv),

()

nv-2nv-1fv-2=0 (mod.fv),
nv-1fv-2=0 (mod.fv).
If we put sl equal to the product of the integers nl n2,
--, nv-1, while s? denotes the product n2:n3--- Nnv-1,
it is seen that
(6) s1fl=6 (mod./)) and s2f2=0 (mod./,).
Observe that the relations (6) and (4) do not connote the

equivalence
(f1,f2)~fv
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The conditions for this equivalence require that sl =1 =s2.
When these conditions exist and only then is fv the
greatest common divisor of Ll and 2 in the realm [,
For, from (6) it follows that

) s1fl =fvel, s2f2 = fug2,
where @l and @2 are quantities of this realm. It is seen
that

and that s! does not divide the coefficients of either ¢! or
02, since both sl and s? were taken as the smallest integers
which satisfied the congruences in question. Were the
realm of rationality [l  extended to (1,x) and that is,
if rational numbers were admitted in the discussion, then
fv would be the greatest common divisor of fl and f2 and
we would have the equivalence fv~ (f1,f2).

A modular system (f1(x),f2(x), ---,fn(x)) with an arbi-
trary number of elements f1(x), - - -,fk(x), which system is
equivalent to a system with only one element, say
(F(x)), was called by Kronecker a modular system of the
first kind, while all other systems were named modular
systems of the second kind. Thus the conditions for a
modular system of the first kind

(f1(), - - -FOY~(F(x))

f(x) =0 (modd. f1(x), - - -fk(x)),
together with

are

fi(x)=0 (mod.f(x)) (i=1,2, ...fc).
An example of a system of the first kind is
(B3x =3, x2—1, x2+x-2) —(x—1);
for observe that
3x —3=0 (mod. (x—1)),
x2—1=0 (mod. (x—1)),

1 x2+x-2=0 (mod. (x—1)):
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and
(x —1)=0 (modd. 3x—3, x2—1, X2 +x-2),
since
X—-1=(X2+x—2) - (x2—1).

A system of the second kind is for example
(m, x—n).

For there is no integer or integral function which divides
both elements save unitv, and were

(m. x-n) —1,
it would follow that identically

1 =mo(x) + (Xx-mu(x),

where @(x) and Y(x) are quantities of [1,<7]. Writing
x =n, it would follow that 1 =m@(n), which is impossible
since @(n) is an integral function.!

Example. Show that 37 may be added as an element of the
modular system
(x5+5x3+5x + 1, 2x3+2x+I).

A pure modular system of the second kind
(f1,£2, ---,1)

is one whose elements f1, ---,fk are not all divisible by
the same integral function f(x). Were these elements all
divisible by f(x), the system would be a mixed system of
the second kind which could be written

(f1(x), f2(x), - - -, Tk(x)) =F(X)(F1(xX), F2(x), - - -, Fk(X)},
where

fi(x) =f(x)Fi(x) (=12 -, K.
However, f(x) cannot at the same time be =0 (modd.
f1(x), - - -,fk(x)). For in this case the given system would

be equivalent to (f(x)) and would not be a system of the
second kind.

1 In this connection see Smith’s Report, p. 149, where references are made to
Galois, Liouville’s Journ., Vol. XI, p. 381; Serret, Algebre, Lecon 25; Dedekind,
Crelle, Vol. 54, p. 1, etc. Also see Dickson’s History, Vol. I, pp. 233 et seq.
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Thus (5, 2x+ 1) is a pure system, while (5x, 2x2+X) is a
mixed system.

Art. 187. Fundamental Theorem: A rational integer
may always "¢ added as an element of a pure modular
system of the second kind.

This is at once evident, for the elements f1(x), f2(x),
---, tk(x) have no common divisor save unity. It is
therefore always possible (Art. 17) to determine other
integral functions g1(x), g2(x),,, gk(x) with integral coeffi-
cients such that

m =g1(x) f1(x)+ ---+ gk(xX)fk(x)
and accordingly,
(fL(x), f2(x), ---, fk(x))~(m,f1(x), ---,Tk(x)).

Kronecker (Vorlesungen, loc. cit., p. 186) proves the
above theorem as follows. Writing for fv(x) the function
®2(x) in formulas (3) and (6) of the preceding article, we
have
Q) 02x)=0 (modd.f1, 2),

s1f1=0=s22 (mod. ¢2).
Introducing @2 as an element in the system, we have
(fa, f2,---, fk) — (f1, f2,92---, k)
and proceeding with f3 and ¢2 as was done with fl and f2

in the preceding article, it is seen that there exists a
function @3(x) such that

2 03==0 (modd. @3,f3),
and
s202=m3f3=0 (mod. ¢3)
In virtue of formula (1), it follows that
»3=0 (modd.f1, f2,f3).
If the last two congruences of (1) are multiplied by s2,
and if we observe that s2¢? is divisible by @3, it follows
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from (I) and (2) that

k1fl =k2f2 — kzfz=0 (mod. @3),
where k1, k2, k3 are definite integers. Next add @3 as an
element to the system and treat ¢3 and 4 in like manner
as before and continue the process until the last element
Tk is reached. We have finally an element @k for which
there exist the following congruences

3) ©ok=0 (modd.f1f2, ---,fk)
and
[1F1=12f2= - - -=1kfk=0 (mod. @k),
where 11, 12, - - -, |k are definite integers. It is clear that

@k must be an integer, m, say; for were P(z) an irreducible
factor of @k(x), it would follow from the second congru-
ence in (3) that each of the elements f1, - .. fk was
divisible by P(x), contrary to the assumption that these
elements had no common divisor. And from the first of
the congruences (3) it is seen that m may be added as an
element to the system, so that

(f1(x), ---fk(x))—~ (M,f1(x), ---,fk(x))-

Art 188. Another important theorem due to Kro-
necker is the following:

Theorem. It is always possible to add as an element
of a pure modular system of the second kind a function
f(X) in which the coefficient of the highest power of x is unity.

Proof. Suppose that the elementsfl(x), - - -,fk(x) are
of degrees ni, - - -, nk, respectively, where

ni n - nk

Then form the integral function

a function which evidently may be added as an element
to the system. It is also seen that the coefficients of this
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function are the same as those that occur in f1(x), - -,
fk(x), since the coefficients of the latter are in no case
mixed in the formation of the coefficients of the function
F(x). These coefficients accordingly have no common
factor, since by hypothesis the functions f1(x), - - -, fk(x)
had no common divisor save unity.

Further, as in the preceding article, let m be an integer
that may be added as an element to the modular system
and suppose that

where the ps are prime integers. Reduce all the
coefficients in F(x). modulo n... so that

F(X) = 0i(x) —piWi(x),
and observe that since F(x) =0 (modd. f1(X), - - -,fk(X)),
it follows that

®i(x)=-pi¥i(x), (modd. f1(X), - - -,fk(X))
and therefore also
(modd. f1, - - -,fk)

This expression multiplied by

modd. f1, - - -,fk).
Since m is an element of the modular system, it is seen
that

1) (modd. f1, - - -,fk)

(i=1,2 - - k),
in which the coefficients of ®i(x) are less than pi and are
not all zero.  Since pi is relatively prime to it is seen

that the coefficient, say Ci, of the highest power of x in
Xi(x) is relatively prime to pt however, Ci contains as
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factors all the other prime factors of m as often as they
are found in m.
We may accordingly determine an integer Bi such that

(i: 1,2, ---, I’]),
while at the same time for every other divisor of m, say
PJ

Form the sum

where the integers A are so chosen that the highest power
of x in each term is, say n. The coefficient of xn is
therefore
C=BICl1+B2C2+---+BrCr.
Further, observe that
(i=1,2, 1),

and therefore also writing the congruence in the form of
an equation, we have

If finally we put

it is seen that the coefficient of the highest power of f(x)
is unity.

Since X, - -, Xr, m, may all be added as elements to
the modular system, it is clear that f(x) is also an element
of this system. And with this the theorem in question is
proved.

Writing (M) =(m, f,f1, - -, k), it may be noted that
there are only a finite number of incongruent (mod. (M))
guantities of the realm [1,x]. For, it may be shown
that every quantity @(x) of this realm may be reduced,
modulo (M), to another whose degree is less than n, the
degree of f(x). For, if @(x) =cxn+v+ - -, it is seen that
the degree of ¢1(x) = @(x)-cxFi(x) is less than that of
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¢@(x), while @1(x) is congruent to ¢(x) (mod. (M)). By
repeating this process we may derive a function
which is congruent to @(x) and whose degree is at most
n-1, say

As each of the ¢’s may have any of the values 0, 1, - -,
m -1, it follows that there are at most mn incongruent
functions (mod. (M)); and that is, every quantity of the
realm [1,x] is congruent (mod. (M)) to one of these mn
guantities. These residues are in general not all incon-
gruent (mod. (M)).

The determination of the number of such incongruent
residues for a pure modular system of the second kind, is
a problem which, | believe, has not been done.

Art. 189. Any quantity R of the realm [1,x] is said
to be relatively prime to the modular system
y (M)=(L, -, )

i
(R,f1,f2, ---,fv)~1.
For example, if besides m there is another integer m,
which may also be added as an element to the modular
system of the preceding article, and if m!l is relatively
prime to m, so that two other integers g and gl exist such
that
migl+mg =1,
then is
(M)=(f1, - - -, fk)=(m, m{ 1, .-, fk)~1

Theorem. If R and R' are two quantities of [1,x],
which are relatively prime to (M), then also is R-R1
relatively prime to (M).

Proof. Since

(R,f1, -, fk) ~1 and (Rf2, -, fk)~1
it follows that

(R,fL, - - - fk) (R'fL, - - -, f)~1
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and that is,

(RR', Rf1, - - -, fk R'f1,---, R"fk, - --, fifj, .- ) ~1.
Observe further that
1-(RR', R" fk, - --, fif}, - - -) >(RR,Rf1,- -, fk),

and therefore 1 may be added as an element to the
system on the right-hand side, thus proving the theorem.

In the preceding article it was seen that the number of
incongruent, modulo (M), residues was finite. Select
those which have no common divisor with the system
(M). Such residues are called units, modulo (M); and
the system having as an element one of these residues is a
unit system.

Let y be the number of these incongruent units (modulo
(M)), which denote by

R, R2 ", Ry
If R is any unit (modulo (M)), then as just proved,
RRL, - -, RRy are units, modulo (M) and they form a

complete system of incongruent units, modulo (M) For,
were any two of these products, say, RRi and RRj
congruent, modulo (M), it would follow that
(1) R(Ri-Rj)=0 (modd. f1, - - -,fk)

Observe however that if the equivalence (R, f1,---
fk)~1 be multiplied by Ri-Ri, there would result
2 (R(Ri-Rj), (Ri-Rj)fL, - -, (Ri-Rj)fk ~RI~R;

and were (1) true, every element of the left-hand side of
(2) would be divisible by (M) and the same would be
true of Ri-Rj. It would follow that

Ri=Ri (mod. (M)),
while Ri and Rj were assumed to be incongruent (modulo
(M)). Accordingly, the p products

RR!, RR?, ---, RRy
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form a system of incongruent (modulo (M)) units.
Hence, if S(RL--- Ry) is any integral symmetric
function of these units, there exists the congruence
S(R1, - -, RW=S(RRY - --, RRy) (modda, - --,/%),
and in particular, for any variable X

(modd. f1, - - -,fk)-

By equating the terms that are free of X, it is seen that
MRh=RyMNRh (modd. f1, - - -,fk)

Writing MRh=Q, it follows from above that

and therefore @, A9 ~1,

QIRp-1LI(Rp-1)fL, ---, (RU-1)fk)—Rp-1

and since
Q[Rp-1]=0 (modd. f1, - - -,fk)

every term on the left-hand side and therefore also

Rp-1=0 (modd. f1, - - -, fk):

This is a direct generalization of the Fermat Theorem,!
which may be formulated as follows:

The pth power of every quantity in [1,><] which is
relatively prime to (M) is always congruent, modulo (M), to
1, where p is the number of incongruent units (mod.(M))).

An immediate consequence of this theorem is the
followine:

If (M) is any pure modular system of the second kind
and R an arbitrary unit (modulo (M)), it is always
possible to determine a second unit R, such that

RR,=A (mod.(M)).
For this congruence is evidently satisfied by writing
R,=Rp-1 (mod.(M)).

1 The reader should not neglect to read Smith’s “Report on the Theory of
Numbers,” Collected Works, Vol. 1, Art. 10, for Fermat's Theorem. And for
the Extension of Fermat's Theorem see p. 152 of this report. For the Galois
generalization see Dickson, Vol. I, p. 235.
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Two such functions R and R' are called complementary
units.

EXAMPLES

L If M)=(2, x2), show that y=2 and determine the two
incongruent (mod. (M)) units.

Observe that if f(x) is any quantity of [1,X], so that

f(x) =al+alx+adx2+---
where al is not congruent to zero modulo (M), then is
f(x)2== (a0+a1z)2 (mod. xi) and =1 (modd. 2, x2).

2. Determine p for the system (3,x3) and find the incongruent
units.

3. If R0 is not a unit, modulo (M), where (M) is any pure modular
system of the second kind, determine another quantity Rq of
[1,X] such that

ROR'=0 (mod. (M)), where RO'Z0 (mod. (M)).

Art. 190. We come next to the decomposition of
modular systems of the second kind into their simplest
forms.!

Let

(M) =(m, f1(x), - -,fk(X));

and suppose that m=mi-m2, wherem1l and m2 are
relatively prime to each other. It is seen from what
follows that

(m, f1, - - fk) —(m1, f1, - - -,fk)(M2, f1, - - -,fk)
In general, let,f(x) be any element of a modular system
and suppose that f(x) is equal to the product of ff0,
where the factors f0 and f0 are relatively prime, modulo
(M). It follows that
(1) (fo,f0,f1, - - -,fk)~1-
It will be proved that

(2  (ff1, - - - fk) = (fo,f1, - - -, fk)(f0,f1, - - -,fk).

1 Macaulay, Math. Annalen, Vol. 74, pp. 66-121, has discussed the resolution
of a system into “primary systems.”
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For, multiplying together the two systems on the right-
hand side, it is seen that
(3) (fo,f1,---)(fO[f1,---)

(fof'o,fo,f1,- - -,f'0,f1, - - -, f1f1. - -)
Next multiply (1) by the system (f1, - - -,fk), thus pro-
ducing the equivalence

4) (fo,f,- - - ,f'O,f1, - - -, f1f1- - .)) —(f1, - - -,fk);

and substituting the elements on the right-hand side of
(4) for the equivalent elements on the right-hand side of
(3) itis seen that (3) becomes

(fo,f1,- - -, fk)(f'0,f1, - - -, fk)—(fOF'O, - - -, fk).
And this verifies the relation (2).

The above includes a proof of the theorem:

Every pure modular system of the second kind is equiva-
lent to a product of systems

(Mh) =(ph,f1(x),---, fk(X)).

For the further reduction of modular system two
additional observations may be made:

(1) A system (m, f1, - - -,fk) in the sense of equivalence
remains unchanged if any coefficient of any of the elements
is increased or diminished by arbitrary multiples of m.

For, if

f(x) =alxl+alxl+ . - +aixl-1+- - -+al
is an element of the system, and if

it is clear that may be added as an element to the
system, and that therv(z) may be dropped.

(2) A system m, f1, - - -,fk) remains unaltered in the
sense of equivalence, if any of the elements f1, - - -,fk is
multiplied by a unit, mod. m.

For, if e is a unit (mod. m) and e' its complementary
unit, such that ee,=1 (mod. m), or ee'=1+mg, then on
the one hand
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(m, f1, ---,ee'fi, ---,fk)=(m, f1, ---,efi, ---,fk)
and on the other hand
(m, f1, ---efi, ---,fk) > (m, f1, ---fi, ---,fk)-
And this proves the equivalence
(m, f1, ---fi, ---,fk) ~ (m, f1, --- efi, ---,fk)-.
Art 191. We may consider next the simplest case

where in the preceding article h =1, and that is, we shall
further reduce the system

(MD=(p,fl(x), ---,.k(x)).

If the coefficient of the highest power of x in f1(x), is e, it
follows from the preceding article that f1(x), may be
multiplied by €', where ee’=1 (mod. p), and that thereby
the equivalence of the system is unaltered. Accordingly,
using also the first observation made at the end of the
last article, we may assume that the coefficients of the
highest powers of x in each of the elements f1, - - -,fk are
unity, while all other coefficients have been reduced,
mod. p. If the degree of f1(x) is greater than or equal
to that of f2(x), the coefficients of the highest power of
f2(x) being unity, it is seen through division of fI(x) by
f2(x) that there results the equation

where all coefficients are integers. And due to this
eauatiot may be added as an element of the system
and then f1(x) dropped. Due to the presence of the
element p in the system, the coefficient of the highest
power of x in mav be made umtv. and the others
reduced, mod. p.

Continuing this process (see also Art. 186), and drop-
ping out those elements that are divisible, mod. p, by
any other element, we finally reduce the system to one
in which besides p, there is only one element left. Were
this element a constant, the system would be equivalent
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to unity. Accordingly there results the following im-
portant theorem:

Every pure modular system of the second kind, in which a
prime integer enters to the first power as an element, is
equivalent to a reduced system (p, f(x)) of two elements.
The element F(x) =xn+alxn-1+ - .- - +an-Ix+an has coeffi-
cients reduced, mod. p, the coefficient of the highest power of x
being unity.

Art 192. Consider next the reduction of the system

(M2) =(p2, f1(x), - - -f2(x),);
and to this end form the auxiliary system=(p, f1(x), - - -,
fk(x)). From the preceding article it is seen that

(1)

and from this we have

where F and gi (i=1, 2, ---,k) are quantities of [1,x].
Determine a new function-f(x) by the relation

)

and observe that (p, f(X))~(p, f(xX)), so that from (1) it
follows that

3) (p, f1(x), ---Tk(x))~(p, f(x)).
Due to (2) it is evident that
4) (p2, f1, ---fk) —(p2, f1, ---fk,F)

Due to (3) we have
fi=pyi+foi(i=1,2, - - K or fi=pyi (mod.T),
where all the quantities introduced belong to the realm

[1’X]
The right-hand side of (4) may accordingly be written

(®) (P2 Pyl py2, - - -, pyk,t).
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Since

(P2, pWL, - -+, pwk,) =p(p2, Y1, - -, Wk) ~p(p, g(x))
it follows from (5) that

(P2, pY1, - - -, pyk,f) —(p2, pg(x), f(x));

and that is
(M2) =(p2, pg(x), f(x)).

In other words: Every modular system in which a prime
integer enters to the second power as an element, may be
transformed into an equivalent system in which besides p2,
there are only two other elements, and one of these has p as a
factor.

Proceeding in a similar manner for the reduction of the
system

(M3)=(P3,f1(x), ---,fk(X)),
form the auxiliary system
(1)

From the latter it is evident that
and

where all the introduced quantities belong to [1, x].
We are thus able to determine two new functions g(x)
and f(x) through the relations

)

Due to these relations, it follows at once that
3)
and therefore also

4) (p2f1 - - -, Tk) —(p2 pg(x)./(X)).
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Further, and due to (2), the quantities pg(x),f(x) may be
added as elements of (Af), thus producing the equivalence

(p3, L, - -, Fk)—(pP3f1, - --,fk pg(x), F(X)):
From (4) it is seen that
fi{(x) =p2Xi+pg-Yi+f-gi,
the quantities introduced belonging to [1, x]; and
accordingly
(P3, f1, - - -tk pg, ) ~(p3, p2X1, - - -, p2Xk, pg, F)-
Putting: p2(pX1,. - -. Xk,)—p2(p. h(x)) we have finally
(M)=(p3,, L, - -,fk) ~(p3, pZh(x), pg(x).f(x)).
Continuing in the same manner, it is evident that
every systemh(Mh) =(ph f1, - - -,fk) may be brought to the
form
(ph, ph-1F1(x), ph-2F2(x), - - -, pFh-1(x), Fh(xf)),
where the coefficients of the highest power in each function
Fix) L&, 2, ---, h] is unity, the others being reduced,
mod. p.

Canonical Forms for These Systems

Art. 193. Let us return to the system in which a
prime integer p enters to the first power. Such a system
(see Art. 191) is of the form

(P, 6(x)),
where the coefficient of the highest power of x in 6(x) is
unity, and the other coefficients have been reduced,
mod. p.
Suppose that the original system (p, f1(x), - -, fk(X))
has been reduced by a different method to the form

(p, 81(x)),
where the coefficient of the highest power of x in 81(x) is
unity and the others have been reduced, mod. p.
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The question naturally arises: Is 81(x) the same func-
tion of x as is 6(x); and that is: Is (p, 8(x")) the unique
reduction, or a canonical form of the original system?

(I) To investigate this question, consider the equiva-
lence

(1) (p, 8(x))~(p, 61(x)).
It is seen on the one hand that

8(x)=@(x)61(x) (mod. p), (i)
and on the other,

810)=w(x)0(x) (mod. p), (ii)

where all quantities or functions introduced are of the
realm [I, x].

Multiplying both sides of these two congruences
together, we have

B(x)01(x) =0(x)01(X)e(X)Y(x) (mod. p).
Since neither 0(z) nor 01(x) is divisible by p, we may
divide this congruence by 0(rr)0i(x), which thereupon

becomes
If I=p(x)P(x)(mod. p).
@(x) =axk+ - and  Q(x) =bxh+ ---,
their product begins with the term abxhk+ .- -; and as

both a and b are reduced, mod. p, this term is not
divisible by p. Hence, in both ¢(x) and (x) there can
appear only the terms independent of x. Writing
e(X)=c and Y(x) =d, in (i) and (ii), it is seen that
¢ =1I=d, and therefore also
8(x)= 61(x) (mod. p).

The coefficients of like powers of x in these two functions
must be equal, since they have been reduced, mod. p.

We therefore have 8(x) =01(x) and (p, 6(x)) may be
regarded as a canonical form for the unique reduction of
the modular system (p, 1(x),f2(x), - - -, tk(x)).
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(I) Take next the system in which p occurs to the
second power, namely,
(M2) =(p2, pg(x),f(x))
Form the auxiliary system
©) (P, 9(x),F(x))~(p, B(x)),
where the initial coefficient of 8(x) is unity and the others

are reduced, mod. p.
From the latter system it is seen that

8(x)=0 (modd. p, g(x),f(x)),
pe()=0 (modd. p, g(x),f(x)),

T(x) =6(x)8 (X)+p(x),
where all quantities introduced belong to [1, x].
The system (M2) accordingly may be written without
changing the equivalence

(M2) =(p2 pg, pb, pe+68’).
From (1) we have

or

and also

g=0 (modd. p, 6),

pg==Q (modd. p2, pé).

The element pg may therefore be omitted from (M2),
which becomes

(M2) =(p2, pb, pp+66’)
Owing to the presence of p2 and pd within this system,
the coefficient of the highest power of x in 8, can be made
unity, and then the others may be reduced, mod. p.
For, suppose that

0'(x) =bxm+bilxm 1+ -,
and choose such that

or

Then clearly,
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may be added as an element to the system. Since
bB(x) = (1+p2)(pe+66’) —bplg-6-xm,

it is seen that p@—+66' may be expressed linearly through
O(x) and p2, and therefore B((x) may replace pe+686' in
the system. Evident substitutions with (<) offer the
required result.

The degree of @(x) may be made less than that of
B(x), and its coefficients reduced, mod. v.

We may therefore assume in the system (M2) that
(@) initial coefficients of 8 and ©' are unity;
(b) @ is of less degree than 6;
(c) all the coefficients of the respective functions

are reduced, mod. p.

If by any other method of procedure the system (M?2)

in its original form has been reduced to
(p2, pbl, pel+010),

and if the conditions (A) are true of the corresponding
elements of this system, then due to the equivalence
(1) (p2, p8, po+68") ~(p2, pbl, pei+6161),
it may be shown that 6 =81, ¢ = @1, 8' =6i.

Proof. It follows from the equivalence that

pe1-+0101'=pOvV+( pe—+00)0 (mod. p2)

and therefore

(A)

918'1=608'g (mod. p),
the coefficient of the highest power of x in the function g
being unity.
In a similar manner
06'=010l'gl (mod. p).
If these congruences are multiplied together and the
factor 60'0161' omitted from the resulting congruence, we

have
1=glg (mod. p).
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If
g =cxk+cixk 1-4---—ck
and
gl=dxh+dIxh-1+---+dh,
the first term in the product of these functions is cdxh+k
+ ... and the coefficient cd is not divisible by p, since
neither ¢ nor d is divisible by p. It follows that g =Ck and
gx=dh' and these values substituted in (i) and (ii) show
thatg=1=gL
It results that
60'=06101 (mod.p). (iii)
From (1) we have
pei=pO-F+(60'+p@p)G (Mmod. p2).

From this congruence it is seen that 86,G and therefore
also G is divisible by p.  Writing G =Glp, it follows that
81==0F—+(80'+p@" )Gt (mod. p),

or
81=0(F+06'Gl') (mod. p).
In the same manner it may be proved that
0=01(F+jr61G'l) (mod. p).
These two congruences, when multiplied together, offer
001=001(F+6'Gl")(FL- -01GY (mod. p).
Hence, as above, F+8,Gy =1 =F1+6+G!, and therefore
0=6! (mod. p).
Since the coefficients of both 6 and 8! have been reduced,
mod. p, it follows that 6=61, and therefore from (iii) it
also follows that 6, =61 Writing these equalities in
(1), we have

(P2, pb, pe+0686") ~(p2 pb, pel+66;, pe+66")
(P2, B, pe+60', p(p~@pl)
And due to this equivalence, it follows that
P(p-p1)=pb -B +(pg- -66")A (mod. p2).
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It is evident that 68'A and therefore A must be divisible
by p. Writing A =pAl, the congruence becomes
@-@l=0(B +Al8) (mod. p).
Since the degree of 0 is greater than that of either ¢ or ¢,
it is seen that
B+AI18'=0 (mod. p),
and therefore also
@=@! (mod. p);
and the coefficients having been reduced, mod. p, it
follows that ¢ = ¢l
We may therefore regard (p2, p8, p@A-68") as a canonical
form for the unique representation of modular systems
which have as an element a prime integer p raised to the
second power.
(I11) The reduced modular system in which p3 enters
as an element was seen to be (Art. 192)
(M3) =(p3, pIf(x), pg(x), h(x)).
Form the auxiliary system
1) (P2 pf(x), 9((x) h(x))~(P2 PB(X), pP(x)+6(x)8'(x)),
where the conditions (A) above are fulfilled. It is seen
that
PB(x) =pf(x) -F(x)+g(x)G(x)+h(x)H(x) (mod. p2),
so that
p26(x) =plf(x) -F(x)+pg(x)G(x) (modd. p3, h((x);
and similarly,
PLPP(X)+6(x)8" ()]
=plf(x)-0(x) +pg(x) ¥ (x) (modd. p3, h(x)).
Accordingly we may add as elements p206(x} and
p2e(X)+pB(x)8'(x) to (M3) without altering its equiva-
lence, thus having
(M3) = (3, pl+(x), P26(x), PY(X), P29(x)+pB(x)6,(X)B h(x))
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If pf(x) and g(x) are expressed in terms of the elements on
the right-hand side of (1), it is seen that pif(x) and pg(x)
may be omitted from the system (M3) just written, which
becomes
(M3) =(p3, P28, p2¢+p68', h(x)).
Further from (1) we have
h(x) =p2y(x)+pbéw + (pg + 669",

and this value substituted for h(x) in (Af3) offers

(M3) =(p3, P28, p20+pb8', P2y + pbBw +p@p'+68'p").

Owing to the presence of pz, p28, p2¢+p66' in this
system, we may assume, including conditions (A) already
made, that

(a) the initial coefficients of 8, 6' and ¢, are each
unity;
() ¢ and Y are of lower degree than 6;
(B) (c) 0(2) is of lower degree than 6';
(d) the coefficients of all the elements are reduced,
mod. p.

Suppose that the original system was reduced by
another method to a form corresponding to the one just
written, where the corresponding elements conform to the
conditions (B), so that

(P3, p28, p2¢ +pbb', p2Y +pbB2, +p@’ +66'¢’)

~(p3, p261, p2gl+ pblel, p2yl+ pblbl)+ pele'l+018191).
Prove that the corresponding elements are identically
equal. See Crelle’s Journal, Vol. 119, pp. 161 et seq.; see
paper also by the author, Crelle, Vol. 122, pp. 265 et seq.,
where Canonical Forms of higher powers of p are given
and the realms extended from [I, x] to [1, X, y] etc.; also
see the papers in Vol. 18 (1901), of the Ecole Normal
Supérieure and of the Congrés des Mathémaliciens, C. R.
(1900).
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To determine whether two modular systems in which
appears a prime p to the same power are equivalent, it is
only necessary to show that they have the same canonical
form.

Art. 194. Definition. A function f(x) is called a
divisor, modulo p, of another function F(x) if there exists
a congruence

F(x) =f(x)g(x) (mod. p),
in which g(x) is also an integral function with integral
coefficients.

As this congruence may be written in the form of an

equation
F(x) =f(x)g(x)+ph(x),
it is clear thatf(x) is then and only then a divisor of
F(x), if there exists the equivalence
(P, F())~(p, f(x)g(x)).
In the further discussion we may regard the coefficients
of both F(x) and f(x) as reduced, modulo p. The
degree of a divisor of F(x) is at most equal to the degree
n of F(x). Such a divisor must accordingly be of the
form
f(x) =al+alx+---+aixy,
where the coefficients of aj are integers of the series 0, 1,
-+, p—1, and where As there can be in all only
pn+! such functions, we have the theorem:
A function F(x) has only a finite number of divisors,
modulo p.
Among these divisors there are the units, modulo p; and
that is, all integers that are not divisible by p. For, if al
is such a unit and if a0a'0=I1 (mod. p), then is

F(x")=ala)F(x)=alFO0(x)(mod. p),
where FO(x)=a'0F(x"). Such divisors are excluded in the
further discussion.
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A function is called a common divisor, modulo p, of
several other functions f1(x), - - -,fk(x), if, modulo p, itis a
divisor of each of them. And the following statement
is true:

All the common divisors collectivelv multiolied
together form a divisor which accordingly is the greatest
common divisor, modulo p, of f1(x), - - -,fk(x), and if f(X)
is this greatest common divisor, then is

(p.f1(x), - - -, Tk(x))~(p.f(x))-
It is further seen that f(x) is the second element of the
reduced system that is equivalent to (p,f1(x), - - -,
fk(x)). In fact, if f(x) satisfies the equivalence

(1) (P.f1(X), - - -, Tk(x))~(p.f(x))
then from the equations

fi(x) =f(x)Qi(x)+pyi(x),

fi(x) =f{()@i(x) (mod. p)  (1=L2 - K),
it is clear that/(z) is a divisor, modulo p, of the k func-
tions Fi(x); and vice versa, it follows from (1) that
(2;  f(x) =FL (<) glX)+ -+ Tk(x) gk(x) (mod. p).

If were another common divisor, modulo p, of the
k functions, so that therefore

or

(mod. p),

then must necessarily be a divisor off(x). For from
(2) it follows that

And with this the theorem is completely proved.
The k functionsfl(x), - - -,fk(x) are said to be relatively
prime, modulo p, if the associated system
(p,f1(x), - - -,fk(x))—~I.
In this case there are k functions g1(x), - - -,gk(x) such
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that
flgl+f2g2+. - -+fkgk=1 (mod. p),

where the functions gi(x) are determined as in Arts. 191
and 186.

The function F(x) of the nth degree has, modulo p, a
finite number of divisors, which are of the form

@(x) =xv+alxv+- - -+av

whose degree v n, and whose coefficients are reduced,
modulo p. These divisors may be determined through a
finite number of operations as follows: Write down all
integral functions of the form @(x) as above indicated
and arrange according to their degree. Denote them in
this sequence through @0, ¢l, - - -, of degrees v0, v1 - -,
wherev0 vl .- vk ... Formthe modular systems

(P, F), 90(x)), (P, F(X), x(x)), - -
Let (p, F(x), k(xY) be the first of these systems which is
not equivalent to unity. It follows necessarily that

(P, F(X). h(x))~(p, ¢h(x)).
where @h(x} is the divisor of lowest degree of F(x). For
were
1) (b, F(), 0h(0)~(p, ®(1)
where @(x) Zoh(x), then «@(x) would be a common divisor
of ph(x) and F(x) and the degree of @(x) must accordingly
be less or at most equal to vh. This degree cannot be
less than vh' otherwise ¢(x) would have appeared among
the previous functions. And were @(x) and o¢h(x), of the
same degree, it would follow necessarily from the
equivalence (1) that
) ph=ge(x)(mod. p),
where g is a rational integer, since the coemcients ot tne
highest powers of x in the congruence (2) are unity, it
follows that g =1. This divisor of the lowest degree of
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F(xX) may be denoted by P(x). We may accordingly
write

(3) F)=P(X)F1(x) (mod. p),

where Fx(x) is of lower degree than F(x).

The divisor P(x) cannot be further factored, modulo p.

For were
P()=Q(X)R(X) (mod. p),

where the degrees of both factors are less than that of
P(xY it would follow from (3) that

FX) =Q(X)R((X)Ft(z) (mod. p),
and that would mean that F(x) had a factor of lower
degree, modulo p, than the degree of P(x), contrary to
the assumption.

In the same manner as was done with F(x) we may
proceed with F1(x) in the congruence (3) and determine a
factor P1(x) of lowest degree, so that

F1(X)=P1(x)F2(x) (mod. p),

where P1(x) is irreducible, modulo p.

It follows from (3) that

F(x) =P(X)PL1(x)F2(x) (mod. p);

and it is clear that Pi(x) is also a factor, modulo p, of
F(x) and is of like or higher degree than P(z).

Continuing, we derive a factorization

F()=P(X)PL(x)--.Pu(x) (mod. p)

in like or different irreducible factors, modulo p. It will
be seen in the next article that this factorization is
unique.

Art. 195. The irreducible, modulo p, functions P(X)
play the same role in [1., x;] as do the prime integers in
[1]. A modular system ([1)=(p, P(x)), whose second
element is not factorable, modulo p, is called a prime
modular system. There exists the important theorem:
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A function F(x) of [1, x] is either divisible by a prime
modular system (I'1) or it is a unit, modulo (7).

For the system (p, P(x), F(x)) can be only equivalent
to (p, P(x)) or to 1; otherwise if it reduced to

then would P(x) be divisible, modulo p, by which is
in contradiction with the assumption made regarding
P(x).

From this follows immediately a second theorem: A
product F(X)G(x) is then and only then divisible by a prime
modular system (p, P(x)), if at least one of the factors is
divisible by this system.

For if the product F(x)G(x) is divisible by (), there
exists the equivalence

(P, F(X),F()G(x))~(p, P(X)):
and were we to assume that neither ,P(x) nor G(x) were
divisible by (M), it would follow necessarily that

(P, P(X), FG))~I and  (p, P(x), G(x))~1.
It would then follow through multiplication that
(p2, pP, P2, pF, pG, PF, PG, FG) ~1.
This system is clearly divisible by (p, P, FG) and there-
fore (p, P, FG)~1. And this means that FG is not
divisible by P, modulo p. The same theorem is evidently
true for a product of an arbitrary number of factors.

Finally we have the theorem:

If a quantity F(x) of [1, x] is divisible by two prime
modular systems (p, P(x)) and (p, Q(x)) which are not
equivalent, then is F(x) divisible by the product (p, P(x)) - (p,
Q(x)).

For if P(x) and Q(x) are relatively prime, modulo p,

thenis

(P, P(X)) (p, Q(X))~(p, PQ).
And the fact that P(x) is divisible by (p, P(x)) is nothing
other than that F(x) has P(x) as a factor, modulo p.



MODULAR SYSTEMS OF KRONECKER 317

If the function F(x), considered modulo p, has as
divisors both P(x) and Q(x), then, modulo p, it is divisible
by P(x)Q(x) and therefore also by the system (p, PQ).

The above theorems may be used to prove the unique-
ness of the decomposition of a function F(x) into its
irreducible factors, modulo p. For were there two such
factorizations, they would be congruent and that is,

(1) FO)=PL(X)P2(x) - Pu(x)
=Q1(x)Q2(x) - - -Qv(x) (mod. p).
Let S(x) denote the product of all factors that are

identical in both factorizations. The congruence (1)
may accordingly be written in the form

(mod. p);

and since S(x) is not divisible by p, this congruence is
only satisfied if

(mod. p),

where no factor appears at the same time on either side
of the congruence.

Since the product Q(X) - - -Qvi(x)=0 (modd. p, P(x)), it
follows that one of the factors, say Q(x) is divisible by
P(x), modulo p. The function Q(x) being irreducible,
modulo p, this is only true if P(X)=Q(x) (mod. p).

It may happen that the function F(x) has several equal
irreducible factors, so that the decomposition will take
the form

(mod. p),
where P(x), - - -Pv(x) are all irreducible, modulo p.
Art. 196. We may next consider the more general
reduced systems (p, f(x)) and impose the condition that
they be further decomposed. A pure modular system of

the second kind (p, f(x)) can clearly be decomposed only
into factors which are pure systems of the second kind;
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and if this is the case the numerical element must be the
same in each of the component modular systems, this
element being a prime integer, say p. Every such
system may be supposed brought to its reduced form.

We have accordingly to solve the question: Under
what condition is the factorization

1) ((p, () ~(p, FL)) (P, f2(x) ~(P2, pfl, pf2 f112)
possible?

Since p is divisible by the system on the right hand
side, it follows that

pP=p2F(x) +p f1(x) GL(x) + pf(x) GL(x) + fL(x)F2(x) H(X).
And as all terms contain p as a factor save the last, it is
clear that H(x) must be divisible by p, say H(x) =pHZ1(x).
It follows that

1 =pF(X) +f1(x) [GL(X) +F2(x)HL(X) ] +f2(X) G2(X),
and from this it is seen that the necessary condition for
the required factorization is
1—(p,fL(X),f2(x)).

nd that is, the two factors f1(x) and f2(x) must be

latively prime, modulo p.

Reciprocally, if (p, f1, f2)~1, and therefore (p2, pfl,
pf2) ~p, then is the right hand side of (1) equivalent to
(p, f1, ,f2).

This system is accordingly equivalent to the original
system (p, f(x)), if and only if there exists the congruence
(2» f(x) =f1(x) f2(x) (mod. p)
together with the equivalence

(p.f1(x) f2(x))~1
With this is given at once the complete factorization of a
modular system (p, f(x)) into its irreducible factors.
For if
(mod. p)
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is the decomposition of F(x) into its irreducible factors,
modulo p, then is

the complete factorization of the modular system (p,
f(x)) into irreducible systems.

Remark. Observe that a fundamental difference exists be-
tween the factorizations of integers in [1] and the decomposition
of modular systems in [1, x]. While the divisibility of an
integer m through another integer d carries with it the de-
composition into a product dd', in the case of a modular system
of the second kind this in general is not the case. For, clearly
the modular system (p, P(x)h) has as a divisor the system
(p, P(X)), while it is not possible to express (p, P((x)h) through the
product of two systems of which one in (p, P(x)h). A distinction
must accordingly be made between the decomposition of a
system and of its property of having a divisor. The property of
being irreducible in no wise precludes a system from having a
divisor, while on the other hand a system which has no further
divisor, clearly cannot be further reduced.

The property that a modular system of the second kind has
no further divisor characterizes it as a prime modular system,
while those systems which can be decomposed no further may be
called irreducible.

Art. 197. The following theorem offers a resume of
what has been proved in the preceding articles:;

Theorem. A modular system of the second kind is then
and only then a prime modular system, if it is equivalent
to a system (p, P(x)), where p is a prime integer and where
P(x) is irreducible (mod. p).

For if fO(X)(f1(x), - -, fk(x)) is a mixed system of the
second kind, it cannot be a prime system unless either
fo(x) or (f1(x), - - -, fk(x)) is equivalent to unity. Other-
wise there would be more than one divisor of the system.
Were the system equivalent to f0(x), it would not be of
the second kind.  Consequently the original system must
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be (M)—(f1(x), - - -, fk(x)), which is a pure modular
system. If, however, (M) is a pure modular system of
the second kind, and if m is a numerical element in it, and
if ph is an integer that divides m, then is (ph, f1(x), - - -,
fk(x)) a divisor of (M). If, further, (M) —(p, f1(x), - -,
fk(x)), where p is a prime integer, (p, f(X)) being its
reduced form, and if P(x) is a divisor of f(x), modulo p,
then (p, f(x) has as a divisor (p, P(x)). If, however,
P(x) is irreducible, modulo p, then is (p, P(x)) a prime
modular system.

A prime modular system is never equivalent to unity
unless P(x) is of the zero degree, and therefore a constant.

Suppose that (M=(p, P(X)) is an arbitrary prime
modular system, where

P(x) =xn+an-1xn-1+an-2zn-2+- - -+a0

is an irreducible function, modulo p, in which the
coefficients may take any of the integral values 0, 1, - - -,
p-I
It is evident that every quantity of [1, x] is congruent,
modulo (1), to a function
c0+cl1x+- - -+cn-1xn-1,

where the coefficients ¢ are to be found among the
integers 0,1, -, p-1

These functions are incongruent, modulo ([1). Ac-
cordingly, there exists the theorem:

The number @(IM) of all incongruent units for a prime
modular system (I')=(p, P(z)) is pn-"-, where n is the
degree of the function P(x).

Due to the theorem stated at the end of Art. 189 for
arbitrary systems, it follows here for every arbitrary
quantity X of [1, x] which is not divisible by ([]), that
the congruence
) Xm 1=1 (modd. p, P(X)),
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or, if a quantity X0=0 (modd. p, P(x)) is included, there
exists the theorem:

Every quantity X of the realm [1, x] satisfies the con-
gruence

Xpn-X=0 (modd. p, P(x)),
where n is the degree of P(x).

Corollary. Corresponding to every unit e there
exists a complementary unit e,, such that ee'=1 (modd. p,
P(x)). For in the expression (1) above it is only neces-
sary to put e, =ep-2

We have proved for a prime modular system (1) there
exists the theorem that a product is only divisible by this
system when this is true for one of its factors. It follows
that to every theorem regarding a prime integer p in [1]
there corresponds a completely analogous theorem re-
garding (M) in the realm [1, x]. In particular there
exists here the theorem:

A congruence for a prime modular system

G(Z2) =gkZk+gk-1Zk-1+---+gO=0 (modd. p, P(x)),
whose coefficients belong to [1, X], cannot have more roots
within this realm, than the degree of G(Zfi

Without changing the number of the roots oi the
congruence, all the coefficients of G(Z) may be reduced,
modulo (1), while the coefficient of the highest power
may be taken equal to 1. For the function G(Z) may be
multiplied by gt the complementary unit to gk, and the
roots of g'kG(Z)=0 are the same as those of G(Z)=0.

If such a congruence is

G(2)=Zk++gk-1Zk-1+---+g0=0 (modd. p, P(x)),
and if At is one of its roots, it is seen that
G(2) =G(2) -G (X)) = (Zk-X1) + - - - +gl(Z-X])
= (Z-X1)GL(Z) (modd. p, P(X)),
where G1(Z) is a function of the same kind asG(Z) but of
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degree k-1 in Z. Accordingly if X! is any root of the
congruence G(Z)=0 (modd. p, P(x)), then its left hand
side is divisible (modd. p, P(x)) by the linear factor
Z-X1. If further X2 is a second root that is different
from X1, it follows from the above congruence that for
Z2=X2,
G(X2)=(X2-X1)G1(X2)=0 (modd. p, P(x));

and since X2-X1 is relatively prime to (1), it is seen that
X2 must be a root of G1(Z) =0. If then the congruence
G(2)=0 of the kth degree had more than k roots, it
would follow that the congruence G1(Z) =0 of degree k—1
had more than k-1 roots, in fact, all those of G(Z)=0
with the exception of X1. If we assume that the theorem
is proved for congruences of the k- 1st degree, it is
therefore also true of those of the kth degree. Since the
theorem is evidently true of congruences of the first
degree Z +g0=0 (modd. p, P(x)), its validity is proved in
general and there exist precisely the same theorems as are
the case for the prime integer p in [1].

In particular if X1, X2, - - -, Xm are m incongruent roots
of our congruence, then is for the variable Z:

(modd. p, P(x)),

where denotes an integral function of the (k—m)th
degree.
The congruence (modd. p,P(x)) has exactly

the same number of roots as is its degree, namely, all of
the pn incongruent, modulo (), residues:

of the realm [1, x]; and therefore for a variable Z there
exists the congruence

(modd. p, P(X)).

By equating the coefficient of Z on either side of the
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congruence we have the following generalization of the
Wilson Theorem

(modd. p, P(X));
where the coefficients ai independently of one another go

over all integral values from 0 to p—1 and are not all
zero at the same time.

Art. 198. Write for Z any quantity a0+alx+ - -
+an-1zn-1 of the realm [1,Xx] with coefficients reduced,
modulo p; then as proved in the preceding article, is the
difference divisible by every prime modular
system (p, P1(x)) in which the irreducible functionPn(x)
is of the nth degree. In particular write Z =x and let us
consider the problem of finding every modular system
('p, P(x)) which are divisors of the function

The theorem may be proved without difficulty that the
above function is also divisible by every prime modular
system (p, Pv(x)) for which the degree v of Pv(x) is a
divisor of n and including n. For if Pv(x) is of degree v,
then due to the theorem just proved,

(modd. p, Pv(x)).
Raised to the power pv, this congruence offers

(modd. p, Pv(x)),
and in general
(modd.p, Pv(x)).

If then n =hv, and that is, if v is any arbitrary divisor of n,
it is seen that has the divisor (p, Pv(x)).

It may be further proved that is only divisible
by such prime modular systems (p, Pv(x)) for which vis a

divisor of n.  For suppose that anv svstem (p, Pv(x)) is a
12
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divisor of Then there exist the two congruences
(modd. p, Pv(x))

and from these we have as before the congruences
(modd. p, Pv(x))

If the first of these congruences is raised to the py
power, we have with the use of the second,

1) (modd. p, Pv(x))
From this it is seen, if g and 7 are arbitrary positive
integers, that is divisible by (p, Pv).

Let d be the greatest common divisor of n and v and
let g' and y' be two integers such that

g'n+y'v=d.
It follows for every integer r that
(@ +rv)n+(y -rn)v =d+2rnv.
Let r be so chosen that g'+rv and y'+rn are positive
integers and writing these values for g and 7 in (1), it

follows that or since we have

(modd. p, Pv(x)).
It follows that and therefore also the modular
system is divisible by (p, Pv(x).

Further as will be proved in the next article, every

quantity F(x) of [1, x] satisfies the congruence
(modd.

and therefore, afortiori,

2) (modd. p, Pi,(2)).

It has been proved (Art. 197) that with respect to the
modular system (p, Pv(x)) there are exactly pv incon-
gruentroots. Accordingly, there exist for the congruence
(2) exactly pv incongruent roots. Since a congruence

with respect to a prime modular system cannot have
more roots than its degree, it is necessary that pv pd or
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v d. On the other hand, since d is a divisor of v, it is
seen that d=v=(n, v); and that is, v must be a divisor
of n.

We therefore have the theorem: The function
has as divisors all and only those prime modular systems
(p, Pd(x)) for which the degree d of the function Pd(x) is a
divisor of n.

We shall next denote by d any divisors of n and by

Pd(x), P'd(x), - -, all, modulo p, irreducible functions of
x of degree d. Since the function is divisible by
all prime modular systems (p, Pd(x)), (p, P'd(x)), - - -, itis

also divisible by this product, and since

(p, Pd(x)), (p, P'd(x)) = (p, Pd(x),P'd(x)).
it follows from previous considerations that is
divisible by the modular system

(P, MPd(x))
and by no other system (p, Pd4(x)), where 3 is not a
divisor of n. The symbol d/n under a product sign is
read ““da divisor of n.”
There exists accordingly a congruence

©) (mod. p),

where the first product means that d goes over all the
divisors of n, whereas k in the second product dis-
tinguishes the different factors of the same degree, the
exponent hd| denoting a positive integer which is to be
determined.

We shall show that the function on the left of (3) has
as a divisor each modular system (p, Pd(x)) only once and
therefore that the exponent hd() is equal to unity.

For were this function to have a prime factor, say
P(x), to the second power, say
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where Q(x) embodies all the remaining factors, modulo p,
it would follow through differentiation that

or, if both sides are considered, modulis p, P(x), and all
multinles of p and P(x) dronned. it would follow that

—1=0 ((modd. p, P(x)).

And that is, — 1 is an element of (p, P(x)), which modular

system would accordingly be a unit system. And this

requires that P(x) be a constant relatively prime to p.
It follows that the factorization (3) may be written

(mod. p),

where the multiplication extends over all and only those
irreducible functions, modulo p, whose degree is a divisor
of n; and from this congruence results the following
decomposition of the modular system

This result Kronecker (Vorlesungen, p. 225) considered
one of the most beautiful and important of the whole
theory. See also Dedekind, Dirichlet-Dedekind, Zahlen~
theorie, 4th Edition, § 180.

Art. 199. In the present article we shall considet
integral functions of any number of variables with
integral coefficients and that is, quantities of the realm
[1, xi, x2, - -, XK].

Observe that for any prime integer p there exists the
congruence

(X1+ x2+ - - -+ xXK)p=xlp+x2p+ - - -+xkp (mod. p).

If this process is repeated r times, the resulting con-
gruence is



MODULAR SYSTEMS OF KRONECKER 327
which may be written

(mod. p).

Writing this congruence in the form of a modular system,
we have

(modd.
Next let

be any integral function in zl, - - -, zp with integral coeffi-
cients, and that is, quantities of the realm [1, z1, - - -, zp].

Write in the above congruences for xh each of the
individual terms of the function f(z1, - - -, zp), the sequence
being arbitrary, so that

The modular system thereby becomes

(modd. p, - - -,

It may be shown as follows that this system is divisible by
the simpler svstem

For due to the Fermat Theorem
(mod. p);
and therefore also

1
The latter system is divisible by

For, observe that the difference is divisible always
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by when kt is a positive integer. It follows then
that

(modd. p, - -,
and it is further seen that

is divisible by

Accordingly, it is proved that the system (1) is divisible
by the latter system. And with this is derived a gener-
alized Fermat Theorem, which may be expressed as
follows:

Every quantity f(zl. ---, zp) of an arbitrary realm
[1, z1. -, zp] satisfies the congruence
(modd.
uvhere p is any prime integer, and t=1, 2, -- -, p.

Art. 200. If the realm is limited to [1, z], the above
congruence takes the form

(1)

which written as an equation, is

where @(z) and y(z) are quantities of [1, z]. Observe
that this is an identical eauation true for every value of z.

We may so choose z that vanishes, and that is,
we may take for z one of the roots of Neg-
lecting the root z=0, we shall take for z any of the pr-1
roots of unity that satisfy

@)

with the result that the equation (1) becomes for such
roots

®3)

As examples of the latter congruence, let p be of the form
6n+I1, say 7, 13, 19, 31, 37, 43, - - -, and let w be a primi-
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tive third root of unity, say

Since p— 1(=6n) is divisible by 3, it is seen that (2) is
satisfied for r =1 and accordingly, from (3)
(F(w))p=F(w) (mod. p).
If, however, p =6n-1, say 5, 11, 17, 23, 29, - -, so that
p—1 is not divisible by 3, although 3 does divide p2—1,
then in (2) r=2 and (3) becomes
(mod. p).
If p is of the form 4n+1, say 5, 13, 17, 29, 37, - - -, and if z
is a fourth root of unity, for example, z =i, then is
(mod. p');
however, if p is of the form4n-1, say 3, 7, 11, 19, 23, - - -,
then is
(mod. p).

Examples. Writing show that:

(f(p))p=f(p) mod. p) if p=10n+1;
mod. p) if p=10n-1;
mod. p) if p=5n+2.

In general it is seen that if and if p is an arbitrary
prime integer which does not divide n, then from (2) ifr
is the smallest exponent for which pr=I (mod. n), we
have for every integral function f(p) with integral
coefficients, the congruence
(mod. p).
Art. 201. Returning to the formula of Art. 198

where the multiplication extended over all the different
prime functions Pij(x), modulo p, whose degree d is
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equal to n or is a divisor of n, it is seen by equating the
highest power of x on either side of the congruence, that

where Nd denotes the number of different prime functions
of the dth degree. It is clear that

where the first summation extends over all the prime
factors a of n, the second summation extending over all
combinations a, b, of any two such factors, etc.

Employ a notation | due to Mobius: for any factor d
occurring more than once as a divisor of n, let ed =0,
otherwise, when the number of factors constituting d is
odd, leted = — 1, while ed = + 1, when d consists of an even
number of factors of n, and el=1. Accordingly, the
above formula may be written

If the product of all the prime functions (mod. p) of the
dth degree be denoted by @d so that

pd(1)pd(2)--=®d
and if further we put

so that

we have

and that is

1 See Dickson, History, Vol. I, Chapter XIX.
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Observing the formula at the beginning of this article, we
may write

or finally

Art. 202. We shall consider next the modular system
(p, xp-x"). Observe that any function whatever of
[1, X] may be written in the form

F(X) = (xp—x)¥(x)+D(x),
where ®(x) is of the p— 1st degree. Due to the Fermat
Theorem, every rational integer a satisfies the congruence
ap—a=0 (mod. p). If then it is required that F(x) be
divisible by p for every value of x, it is necessary and
sufficient that ®(x), which is of the form
O(x) =al+alx+ax2 +---+ap-Ixp-!
be divisible by p; and that is, the congruence
®(x)=0 (mod. p)
must exist identically.
It follows that
P(x) =poi(x)
and with this the theorem: |
In order that a function F(x) of the realm [1, x] be

divisible by p for every integral value of X, it is necessary
and sufficient that it be of the form

F(X) =pe(x) + (xp—x)¥(x);
and that is, that it be divisible by the modular system
(. Xp-X).
This theorem admits the following generalization: The
1 See Hensel, Crelle's Journal, Vol. 113, p. 144.
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necessary and sufficient condition that a function F(x, vy, z,
--) of the realm [1, x, y, z, - - -] be divisible by p for all
integral values 1, x, y, z, 1 - -, is that F(X,y,z, - -) be of the
form
F(xy.z, -+ ) =pG+(Xp—X)®+(yp-y)¥ + (zp-2) =+,
where the functions G, ®, ¥, = belong to [1, X,y,z, - -] and
that is, that F be divisible by the modular system (p, xp-X,
yp-y, zp-z, ).
To prove this theorem, consider F(x, vy, z, - ) as a
function of x and write it in the form

(1) F(X’y’z’ e ) :(Zp_Z)Q(X1y121 t )+Q(Xi y1Z1 v ')1
where Q and Q are functions of [A, X,y,z, -1-J, and Q is of

degree at most p—1 inrr.
We may accordingly write Q in the form

) Q(x, y, z,- - -) =Q0+xQ1+---+hxp-1Qp-1,
where Q0, Q1 Q2, - - -, Qp-1, are functions of [1, x,y,z, - - -]
If next we give toy, z, - - -, any arbitrary integral values
and require that the function F(x, y, z, - - -) be divisible
by p for every value of x, it is necessary and sufficient that
the congruence
XQ0, XQ1, x2Q2+--+xp-1Qp-1 (mod. p)
be identically satisfied. The necessary and sufficient
condition for this is that each of the functions Qi[i =0, 1,
--, p—1] be divisible by p for every system of integral

values of y, z, - -. Observe that each of these functions
contains one variable less than the original function
F(x, Yy, z,

Hence, assumlng the theorem proved for any number
of variables, it is seen that the coefficients Qi must be of
the form

Qi=pGi+ (yp-y)¥i+(zp-2)zi-+ -,
where Gi, Wi, =i, - - - are functions of [1,x,y,z,---]. And
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from (2) it follows that Q(X, y,z, - - -) must have the form
@) QXxy.z, ) =pG+(yp-y)¥ + (zp-z")=+---,

where G, ¥, =, - -, are functions of [1, X,y,z, - - -], and
with this, due to (1), it is seen finally that the function
F(x, y, z, -+ -) must have the form asserted in the theo-
rem. Since the theorem has been proved for functions

F(x) of one variable, the inductive method proves its
validity for any number of variables.

Remark. The discriminant of a modular system may be de-
fined as an ““elimination-resultant” of certain systems of equa-
tions. See Kronecker, Ber. Sitzungsber., 1888, p. 451: Werke,
Vol. 112 pp. 1 ff.

This discriminant is not to be confused, although it sometimes
is, with the discriminant of a curve or surface, which offers a cer-
tain multiplicity (Mannigfaltigkeit) of the first rank (Stufe),
while the vanishing of the former indicates a multiplicity of a
higher rank. See § 25 of the Grundziige. Konig, Einleitung in
die allgemeine Theorie der algebraischen Grossen, seeks to give a
systematic development of the Kronecker theory in two direc-
tions: the one, an algebra of affine transformations, the other, the
general arithmetic of Kronecker as such.

See also Lasker, ““Zur Theorie der Moduln und Ideale,” Math.
Ann., Vol. 60, p. 20. Other references are found in the Encyclo-
pedie des sciences mathématiques, Tome 1, Vol. 2, pp. 233 ff.



CHAPTER IX

NOTIONS INTRODUCTORY TO THE THEORY
OF IDEALS

Art. 203. Before taking up the general theory of
ideals, we shall consider their meaning and import in the
simpler cases of the quadratic and cubic realms.

It may be well to introduce the conception of the ideal
by means of certain well chosen examples. Sommer !
employed the following example: Consider as the fixed
realm of rationality the realm composed only of integers
of the form 4n + 1, and permit in the discussion only the
operations of multiplication and division in their usual
sense.

In the series 1, 5, 9, 13, 17, 21, 25, 29, - - -, 45, - ., 117,
--, 517, --- it is clear that the product of any two
integers of the series is an integer of the series, since
An+DH(@m+I1) =4q9+lI,

where n, m, and q are integers.

The numbers 5, 9, 13, 17, 21, 29, are irreducible in the
realm of integers thus fixed; for example, 21 is not equal
to the product of two other integers of the series. The
number 10857, however, may be factored in the following
two different ways 10857 =141.77 =21.517, where 21,
77, 141, and 517 are irreducible in the fixed realm.

It is observed, however, that this factorization becomes
unique if the fixed realm of integrity be extended so as to
include all rational integers.

It is then seen that 10857 =3-7-11-47 is the unique
factorization in the extended realm.

1 Sommer, Vorlesungen Uber Zahlentheorie, p. 38.
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Kummer’s thought, when applied to the above special
case, consists in replacing the factors 3, 7, 11, 47 by what
may be called ideals in the restricted realm. In this
realm observe that the integers 3, 7, 11, 47 as such, do
not exist.

Denote the greatest common divisor of two integers
by (a, b), and observe that (a, b) = (b, a). The expression
(a b) is called an ideal. It is here nothing other than
the greatest common divisor of the integers a and b
(Art. 113). Note that 3= (21, 141).

In the extended realm, 3 may be replaced by the
elements 21,141, which are entities in the restricted realm.
Further we mav out

(7) =(21, 77), (11) = (517, 77), (47) = (517, 141).

It is evident that

(141) = (141, 21)(141, 517); (77) = (77, 21)(77, 517),
and
(10857) = (141, 21)(141, 517) (77, 21) (77, 517) = 141 -77.
On the other hand

(21) = (21, 141) (21, 77); (517) = (517, 77) (517, 141)
and
(10857) = (21, 141) (21, 77) (517, 77) (517, 141) =21.517.
Similarly it is seen that 693 =21-33 =9-77, where the
integers 21, 33, 9, 77, are irreducible in the fixed realm.
Observe that

(693) = (21, 9) (21, 77) (33, 9) (33, 77).
Again, 441 = (21)2=9-49. We may write

(441) = (21, 9)(21, 49)(21, 9)(21, 49).
Here the ideal (a, b) in the restricted realm is merely the
greatest common divisor of a, b in the extended realm.

In the usual realm of integrity we said (Art. 113) that
a number k is divisible by the ideal (a, b) when k can be
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expressed in the form k=xa-+yb, where x and y are
likewise rational integers. But if (a, b)=d, then also
k=zd, where z is a rational integer. Corresponding to
every pair of integral values x, y there is an integral
value z, and vice versa.

Itis clear that (a, b) = (a, b, ma+nb) where m and n are
integers.

Any integer g is said to be divisible by the ideal (o, 6)
if g may be written in the form xa+yb =g, where x and
y are integers. When g is divisible by (a, b), we may
add g as an element to the ideal, so that (a, b) = (a, b, g).

Art. 204. Another illustration due to Hensel ! is of
interest.  Let all the rational integers be distributed into
two classes. Into the class Co let unity and those
integers enter which when factored offer an even number
of prime factors, while class Cl is to include all those
integers which when factored present an odd number of
prime factors. It is seen that

COo- I, 4, 6, 9, 10, 14, 15, 16, 21, 22, 24, .- -],

Cl=12, 3,5 7,8, 11, 12, 13, 17, 18, 19, 20, 23, - - -].
Let the integers of one class only, say Co, form a fixed
realm. It is seen that

210=6-35=10-21 = 14-15,
which are three products of prime integers in Co. Ob-
serve, however, that we may write
210 = (6, 10)(6, 21)(35, 10)(35, 21) =2-3-5-7,

= (6, 14) (6, 15) (35, 14) (35, 15)=2-3-7-5,

= (10, 14)(10, 15)(21, 14)(21, 15)=2-5.7-3.
Observe further that the ideals in each of the last three
lines are equal; for example, (6, 10) = (6, 14) = (10, 14).
If then we call the integers of Co the real integers and

those of C1 the ideal integers, it is seen that 210 is equal
1 Hensel, Festschrift zur Feier des 100 Geburtstages Eduard Kummer.
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to the unique product of the four ideal (Kummer)
integers 2, 3, 5, 7. Notice also that the elements of the
ideals, say 6, 10 of (6, 10) are numbers of the fixed
realm Co.

Art. 205. Consider next the factorization of 21 in the
realm R(+/-5), namely,

21 =3-7=(1+2V-5)(1-2V-5) = (4 ++V/-5)(4-V-5)
Clearly there is something common to 7 and at least to one
of the factors (1+2+V-5), (1—2+V/-5). Take the product
of these factors and form the congruence

1-22(-5)=0 (mod. 7). 0]
Note that —5=32 (mod. 7), so that (i) becomes

1-22-32=0 (mod. 7).
From this it is seen that 1+2-3==0 (mod. 7). Compare
this congruence with the factor 1+2+/-5. Kummer
denoted that which is common to 7 and 1+2vV-5 by the
Kummer factor {7, 3}=kl, while the Kummer factor
k2= {7, —3} denotes what is common to 7 and 1 - 2V-5,

Observing in a similar manner the congruence

1-22(-5)=0 (mod. 3), (ii)
it is seen that

- 5=27 (mod. 3);
and writing the congruence (ii) in the form
1-22.22=0 (mod. 3),
it is seen that
k3={3, 2} and k4={3, -2}

are the Kummer factors of 3 and 1+2~=5; 3 and
1 —2+/-5, respectively.

Similarly, that which is common to 7 and 4+ /-5 is
the Kummer factor kl = {7, 3} while k2= {7, —3} is the
factor of 7 and 4- V-5; and ks= {3, 2} is the Kummer
factor of 3 and 4+ /-5, ki= {3, —2} being that of 3 and
4-/—5.
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Hence, associated with the factors

(k1k2)(k3k4) = (k1k4)(k2k3)= (k1k3)(k2k4)
are the integers

7:3=(4+V—-5)(4-V-5) = (1+2V-5)(1-2V-5).

In the realm of natural numbers the Kummer factors
have no objective reality. Hence, the name ideal. As
such they have no quantitative existence. (Smith’s
Report, p. 110.)

In the more general quadratic realm R(V-5), m# I
(mod. 4), we have to do with the factorization of integers
x-+Vmy (Art. 97). And as above we are led to the con-
sideration of the congruence x2-my2=0 (mod. p).

If w2=m (mod. p) or w2-pr =m, where r is an integer,
we have a Kummer factor {p, w} defined through the
congruence

X+wy=0 (mod. p).
This congruence put in the form of an equation is
X =pz-wy.
From this it follows that
X2 — my2 =p(pz2—2wzy+ry?).
Hence, corresponding to the Kummer factor {p, w} of p
and X++vVmy, there' is associated a quadratic form
(p, w, 1), and consequently a class of equivalent forms
with determinant m through which p (connected with w
as above defined) may be expressed. Then and only
then when the class to which (p, w, r) belongs is a princi-
pal class (1, 0, m) can p be expressed through the form
p =x2-my2= (X + Vmy') (x— Vmy).

In this case and only in this case are the Kummer ideal
factors {p,w} and {p, —w} numbers (algebraic) and have
a real existence.

This offers the condition under which the rules of



INTRODUCTORY NOTIONS OF IDEALS 339

division that exist in the rational realm are also true in the
guadratic realms without the necessity of introducing the
Kummer factors. This is evidently the case when the
number of non-equivalent classes of quadratic forms
with determinant m is unity. When the quadratic form
through which the prime ideal p may be expressed is
not equivalent to the principal form it is necessary to
introduce the ideal factors to effect factorization of the
rational prime integers into irreducible factors uniquely.
Thus it is shown that the theory of quadratic forms with
determinant m is exactly correlated with the theory of
algebraic numbers of the realm R(¥Vm). (See Art. 272.)

The same is true for the theory of any higher realms.
In such realms there occur forms of a higher degree and
the distribution of these forms into their linear factors
corresponds to the unique factorization of the integers
of these realms into their irreducible elements.  This will
be considered further in the chapter on Kronecker,s
Linear Forms and in the chapter on Factorable Forms.
While this is the kernel of the matter, the method to be
pursued in this direction is not so direct as that found in
the Dedekind theory.

The Kummer theory may with some modification be
so changed that the ideal factors of unreal existence may
be replaced by “ideals” of a concrete form. For,
if a Kummer ideal prime factor {p, w} of p is defined
through the congruence

X+wy=0 (mod. p),

it is seen that the collectivity (complex) of all integers of
the form xtr~/m which are divisible by {p, w} with a
suitable choice of x, y, may also be expressed through
x=pz-wy. And that is, the complex of all those
algebraic numbers that are divisible by {p, wj} is of the
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form

pz+~m-w)y.
It is thus seen that these numbers are all expressed
through the modul

a==[p, vm-w].
And it is further seen that any number of this modul
pz+(¥m-w)y when multiplied by any integer of the
realm, say X' +y'vm is equal to

p(zx' = ryy'+wzyr) + (Vm —w) (V2' +pzy, —wyy'),
if we write w2-m =pr.
Observe that this latter exnression is of the form

pZ+ (Vm—w)Y,
and that is, a number of the modul a when multiplied by
an integer of the realm 91(vm) is a number of the modul a.
The counterpart of this in the theory of rational integers
is: if an integer is divisible by the rational integer a, then
the product of the first integer by any other integer is
divisible by a. This might in a measure be used to
define a rational integer a. It is used by Dedekind to
define an ideal i=[q, B], where the element p above is
replaced by a and where B stands for vm-w. Ac-
cordingly, the ideal i is defined as the complex of integers
aA + By where A and p run through all the integers of the
given realm, and where a and 3 are definite fixed integers
of this realm (see Art. 272, end).

The ldeals of the Quadratic! Realms

Art. 206. Definition. A system of integers a, p,
7, - of the realm R(¥m), say i=(a, B, Yy, - - -), such that
every linear expression aA+Bu+7p+ - - -, where A, g, v, - - -
are any integers in R(¥m), forms an integer that belongs to
the system, is called an ideal of the realm.

1 Report on Algebraic Numbers, p. 5.
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Any integer T that is divisible by the ideal t may be
expressed in the form t=oAl+Bul+yvl—+--- where
A1l pl, vi, .- are definite integers of R(¥m). Such an
integer T may be added as an element to t so that i = (a, B,
y, -+, ). Thus any integer T is divisible by i when it
may be adjoined or added as an element of i.

In particular, an ideal is called a principal ideal,
when the integers that belong to it are multiples of one
integer, say a; for example, i=(a, aA, ay, - - -) or simply
1=(0)-

Ig‘ 'ghe ideal contains 1 or any integer that is a divisor
of 1, it is called a unit ideal, and written i= (1).

The ideals are denoted by German letters a, b, - - -, p.

Definition. Two ideals (o, B, y, -+ -) and (o1,
(3) o the ygald R(Vm) are equal, and written

(0(, B! Y, ) = (O(l, Bl! yl ' )
if every integer a of the first ideal belongs to the second ideal,
that is, if a=alA, Bly, + - -, and. if, reciprocally, every
integer ay of the second ideal belongs to the first, so that
o =alA, By, + -, where A, y, - -+, AL i, - - are integers
of the realm, with similar conditions for B, B, etc.

For the multiplication of ideals the following may
serve as a definition: Ifa=(a, B, y, ) and b= (al, Bl
yl, - - ) are two ideals of the realm R(v¥m), then the product
of these ideals is had, if every element of a is multiplied by
every element of b, the terms thus had forming the elements
of the ideal a- b, that is

a-b= (aal, apl, -, Bal, BBL - -, val, yBL - ).
From this definition it is seen at once that the two
factors may be interchanged and that ob = ba.
An ideal a is divisible by an ideal b, if there is an ideal
¢ of the realm such that ab =c.
Thus while multiplication and division of integers may



342 THE THEORY OF ALGEBRAIC NUMBERS

be extended to ideals, the conception of addition and
subtraction cannot be extended to ideals.

Theorem. In every ideal of the realm R(¥m) there may
be derived in an infinite number of ways two integers
11 and 12 of the realm such that every number of the ideal may
be expressed as a linear combination of these two integers
with integral rational coefficients I1 and 12 in the form

[l +1212

Write the ideal i so that every element is expressed
through the basis of the realm in the form (Art. 97)
i= (al+blw, a2 +b2w, ad3+bdw, - - -, G, G2, - )
where al, bl, a2, b2, - -, Gl G2, - - - are rational integers.
It will be proved first that if al +blw and a2+-b2w are
any two numbers of the ideal, there belongs also to the
ideal a number a'+b'w, in which b' is the greatest
common divisor of bl and b2 For there belongs to the
ideal the integer x(a + blw) + y(al+d2w), where x and y are
rational integers which may be so chosen that xbl-+ yh?
=l,. By repetition, it is evident that the integer g+fu
belongs to the ideal, where g is a rational integer and i2
the greatest common divisor of b, bl, b2, - -.

Since  is a rational integer, it is clear that we may

adjoin as an element of the ideal

Having adjoined g+-i2w and gl as elements of the ideal,
it is seen that al+blw may be expressed linearly in terms
of these two elements and consequently dropped from
the ideal.

Similarly writing



INTRODUCTORY NOTIONS OF IDEALS 243

it is clear that if g2 is adjoined as an element to the ideal,
then a2+b2w may be dropped from it. By continuing
this process, the ideal t becomes

i: (g+|2g11 921 93: - T Ty Gla G21 v )
If i is the greatest common divisor of g1,92,, - - -, G1, G2,

- - -, it is possible to determine rational integers al, a2, - - -,
Al A2 - -, such that

algl +a2g2 + --- +A1G1+A2G2+ --- =i
Hence i may be added as an element to the system; then,
since the integers g1, 92,,---, G1, G2, - - are all divisible
by i, they may be dropped from the ideal, which becomes
(I, g+ilw).

Suppose further that g is greater than i so that g
=ig' + il where il<i. We may then add as an element
to the ideal g+i2co-g'i=il+i2w. When this has been
done, it is seen that g+i20w may be dropped, since this
element may be expressed linearly in terms of i and
il+i2w. Thus the original ideal becomes finally

i= (i, i1+i2w) = (11, 12), where 11=1i, 2=il+i2w.

When an ideal has been reduced to the form (i, i1+i2w),
it is said to be in its canonical form. Further note that
wi+(il+i2w) is an integer that belongs to the given ideal
and consequently the coefficient of w is divisible by i2
It follows that i+ i is divisible by i2 and therefore also i
is divisible by i2. If @' is the conjugate of w, it is clear
also that w'(il+i2w) is an integer of the ideal, and it fol-
lows that il is divisible byi2.

The quantities 11, 12 form a basis of the ideal t. Any
other basis (Art. 94) say

M =alil +bli2,

" =a2il +b212
is had, if the determinant alb2 - a2bl = &1. In this case
i= (1, 2)= (", ®)-
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Art. 207. Applications. We saw (Art. 205) that in
the realm R(V/-5)
21=3.7=(4-V-5) @4+ V-5)=(1+2 V-5 (1 -2V-5).
It may be proved that
21 = (3, 4- V-5)(3, 4+V-5)(7, 4+ V-5)
x (7, 4 = V-5) = plp2p3p
= (3, 1+2V-5)(3, 1-2V-5)(7, 1+2V/-5)
x(7, 1-2V-5) = p5pbp7ps
= (4-V-5, 1+2V-5)(4+ V-5, 1-2V-5)
x(4++/-5, 1+2V-5)(4-V-5, 1-2V/-5)
= p9pl0plIpl2-
For, writing forbrevity pl = (3,4 - V-5),p2 = (3,4 + V-5),
etc., in the order indicated, it may be proved first that
pl=p5=p9 p2=p6=pl0 p3=p7=pll p4=p8=pl2
To nrove this observe that
1+2vV-5= (4-V-5) 1-3(1 —V-5)
and
4-+/-5=1+2V-5)-1 + 3(1-V-5).
Hence,
1= (3, 4-vV-5) =3, 4-V-5, 1+2V-5)
= (3, 1+2V-5)=5.
This follows directly; for
(3, 4-vV-5) =3, 3+I1+ (2-3)V-5) = (3, 1+2V-5).
And similarly
p9=(4-v-5, I1+2vV-5. 9.21.3) = (3.4-V/"5)=)lL
Secondly, it is seen that
(3, 4+V—=5)(3, 4-V—5)

= (32, 3(4+V-5), 3(4-V-5), 21, 3) = (3)
while

(7, 4+V/-5)(7, A-V-5) = (7),
etc. Then by means of the ideals we have the unique
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factorization of (21) as the product plp2p3pd. Further
observe that
(3,4+V-5)(7, 4+V-5)
= (21, 3(4+V-5), 7(4+V-5), 1+8/-5);
and since the greatest common divisor of 3 and 7 is 1,
it is seen that 4+ /-5 may be added as an element of the
ideal on the right. Since both 21 and 11+8V-5 are
divisible by 4++/-5, it follows that
p2p3=(3, 4+V-5)(7, 4+V-5) = (4+V-5).
Similarly we have
plpd = (3, 4-V-5)(7, 4-V-5) = (4-V-5),
plp3= (3, 4-V-5)(7, 4+V/-5) = (1+2V/-5),
n2pd = (3, 4+V/-5)(7, 4-V-5) = (I-2V-5).
In this realm it is seen that
(@) =(2, 1+V-5)(2, 1-V/-5),

):
):

or, since
2, 1-V-5)=(2, I +V/-5)=¢5
we have
(2 =2, 1++V-5)2

Thus in the realm R(v/-5), the prime ideal factors of the
integers 2, 3, 4, 5, 6, 7, 8, 9, 10 are found among p1, p2
p3, p4, ql, 2= (V-5).

As a second example, observe that in the realm 9t(VT0)
the fundamental units are 32=V10(e, or ¢,) and that

6=2-3=(4++10)(4-V10)
Form the ideals
(2, 4+V10) = (2, V10) =pl = (2. 4-10),
(3,4+V10) = (3, | +V10)=p2,
(3, 4-V10) = (3, 1-V10) =p3.
It is evident that
(6) = (2, V10)2(3, 1+ V10)(3, 1-V10)=p1%ep2p3;
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for
(2, V10)2 = (4, 2V10, 10) = (2)
and
(3, 1+V10)(3, 1-VW) = (9, 3+3VvW, 3-3V10, 6) =(3).
Similarly it is seen that
(2, V10)(3, 1++10) = (6, 2+2V10, 3V10, 10+ V10)

g = (6, 2+2V10, 3V10, 10+V10, 4+V10) = (4 + V10)
an

(2, v10)(3, 1—-V10) = (4-V10).
In this realm show that
(5) = (5, V10)(5, V10)
(13) = (13, 6+V10)(13, 6-V10).
As a third example consider the integers of the realm
R(¥V—15). Since —15=+1 (mod. 4), the basis of this
realm s and theintegers of the realm

are a+hbw. where a and b are rational integers. It is
seen that
()
3)

2, W)(2, w)
3, V-15)2=(3, —1+2w)
=(3, —1+2w, 3w-(-1+2w))2
(3, 1+w)
(canonical form). It is also seen that
(5) = (5, V-15)2=(5, —I1+2w)2=(5, 2+w)?
(canonical form).
(17) = (17, 5+w)(17, 5+w").

In this realm note that 3 is divisible by the second power
of an ideal, as is also 5; further observe that both 3 and 5
are divisors of the discriminant of this realm.

Art 208. Realms in Which There Exist Only Principal
Ideals. Such realms are clearly those in which Euclid’s
Algorithm for division is applicable. For if T is the

=(
=(
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greatest common divisor of the algebraic numbers a, B,
Y, - thenis (o, B,y, -~ -)=(a By, - 1) =(0.

Art. 209. Congruences with Respect to Ideals. The
Norm of an Ideal. We say that a is congruent to zero
with respect to the ideal o, and write 0==0 (mod. a), when
a is one of the numbers that belong to the ideal a; and
that is o = Alal+A202+ - - -, where AL, A2, - - - are definite
algebraic integers in the realm to which a=(al, a2, - )
belongs. Similarly a=p (mod. a), when a—f can be
written in the above linear form.

If an ideal o is given, all the integers of the realm in
which a is defined may be distributed into classes, such
that the integers of every class are congruent to one
another with respect to the ideal; and no integer of one
class is congruent to an integer of another class with
respect to this ideal. Any integer of a class being
congruent (mod. a) to any other integer of the same class
may be chosen as a representative of this class. The
number of representatives is equal to the number of
classes and no representative is congruent (mod. o) to
any other representative. Such a system of repre-
sentatives constitute a complete system of incongruent
residues with respect to a. The number of representatives
constituting such a system of incongruent residues with
respect to the ideal a = (i, il+i2w) is |i-i2|]. This number
is called the norm of a and is written N(a). It is the
number of classes into which the integers of the realm
may be distributed with respect to the modulus a.
Consider any integer a+bw with respect to a

It is seen that a can have any of the values
1) a=0,1 2, - -i-1 and that b can take values

b=0, 1,2, - -i2—1 where i, i2 may be taken positive.

The system (1) forms a system of ii2 numbers which
satisfy the two following conditions:
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1st. No two numbers are congruent with respect to a

For if

ak+bkw- (al +blw) =0 (mod. a),
then is ak—al-+(bk—bl)w a number of the ideal a and
consequently (bk-bl) is divisible by i2.  This can be true
only if bk =bl since both of these numbers are less than i2,
and then ak—al must be divisible by i. It follows that
ak = al, for both ak and ai are less than i.

2nd. Any number A+Bw of the realm is congruent to
one and only one of the number a-+bw with respect to q,
where a and b take values as indicated in (l). For
writing

A+Bw - (a+bw) = 11i + 12(i1+ i2w),
we may so determine b(<i2) that
B -b=1i2
where 12 is a definite integer, and then a(<i) may be so
determined that
A —-a- il - Il
where Il is a definite integer.

It may be next shown that if d and 12 constitute an arbi-
trary basis of the ideal a= (i, i1+i2w), and if M =al+blw
and *=a2+bh2w, then is

al, bl _ . .
N(a) = 2 bl =112

For the basal elements d and d may be written
M =ri+s(il+i2w),
R =t + u((il+i2w),

where
T
(Art. 94). It follows that
al =ri+sil, bl =si2,

a2 = ti-+-uil, b2 = ui2,
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and consequently:
al bl _ o 1t
a2, h s, u
where the positive sign is to be taken, since the norm is
always a positive integer.
It is thus seen that the norm of an ideal is independent
of its basis.
The norm of an ideal is the product of conjugate ideals.
If in the ideal a=(a, B, v, - - -) we write the conjugates of
a, B, - -, we derive another ideal, say, a' = (o', B, y', - )
which is called the conjugate of a.
Theorem. The product of an ideal and its conjugate is a
rational principal ideal, and in fact

|a-a®| =i-12=N(a).

=ii2

For let
a= (i, il+ +i2w), a'=(i, i1+i2w".
It was seen in Art. 206 that i and A are multiples of i2
Write i = ai2 and ii = ali2, where a and ai are integers. It
follows that
a=(i))(a, al+w), a'=(i2)(a, al + w")
and consequently aa' = (i2)? (a, al+w) (a, al+w').
Further note that
(al+w)(al+w")H=0 (mod. a);

for a is a divisor of every rational integer of the ideal
(a, al+w). Through multiplication we have

a-a' = (i2)2(a2, a(al+w), a(al+w"), (al+w)(al+w").

Case I. When m=3 (mod. 4), o =Vm, 0,= —Vm.
observe that
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Further it may be shown that the greatest common
divisor of a is 1. For suppose that these three
integers have as a divisor the prime number g=>2. It is
clear that if we put a=qgb, then must be an inte-

ger, and since al — m is divisible by g as is 2m by hypothe-
sis, it follows that al is divisible by g and consequently al
is divisible by q. Further since a21-m is divisible by @2,
then necessarily m is divisible by g2, which is contrary to
the assumption that m must not contain an integer
squared as a factor. (Art. 97.)

If 2 were a divisor of a, 2m. then al-m must

be divisible by 4. Since however m=3 (mod. 4) or
m =4k+3, al must be an odd integer =2g+1, say. We
must then have (2g+1)2-4k—3 divisible by 4, which is
not true.

It follows that

= (i2)2(a) = (ii2)-
Case Il. When m=2 (mod. 4), o =vVm, w'=-vVm.
We then have as in the first case

As above it is seen that a, 2m, have no common

divisorg>2. If a, 2m, bad 2 as a common factor,
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then writing a=2k (k an integer), it is seen that

must be integral. But as m is divisible by 2, it follows
also that al must be divisible by 2, and therefore also by
4. We must then have m divisible by 4, which is not
true. Hence, as above, it is seen that
(a, al+w)(a, al+w") = (a).
Case IIl. When

m=1 (mod. 4), we have

In this case
(a, al+w)(a, al+w")

Now if a, m, 2al+1 contain a prime factor g, then is

prime to g, for since @1+ %)2 contains g as

a factor, and consequently g2, we would necessarily have
m divisible by g2 It follows as in the two preceding
cases that
(a, al+w)(a, al+w') = (a).
Note that the norm A(a)=u? belongs to the rational
integers of a. Further note that the norm of a product
of ideals is equal to the product of their norms, for
N@:-b-c---)=a-b-c.--a-b-¢ -
=AQ@AW0)A[C):---.
Art. 210. Theorem. If a is an arbitrary integer of
the complete system of representatives (Art. 209)
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with respect to a, consists of |[N(a)| integers. For this
number is the same as the number of representatives
which constitute a complete system of residues taken
with respect to the principal ideal (a) =a, say. As basis
of a, we may take *=qa, and #=oaw. Further writing
o =a-+hw, it is seen when m=21(mod. 4), that

i1* =a+bw,

since

It follows (Art. 209) that

In the second case, when m# 1 (mod. 4),
il*=a+bw,
2 =bm+aw,
and as above, we have
N(a) = |a2—b2m | = | N(a) |.

EXAMPLES

1. Let a=x+iy be an integer of R(i) so that N(a)=x2+y2
Since in this realm Euclid’s Algorithm for finding the greatest
common divisor is applicable, all ideals are principal ideals. If
G=x+iy is a prime integer of R(i) that is not rational, then is
N(®) =x2+y2=0®" a rational prime integer in R, say p (Art. 240),
and consequently the system of residues of R(i) with respect to &
consists of p integers. If, however, a rational prime integer in
9((l), q say, is also prime in R(vm), then is N(q") =g-q=q2

As an illustration take 5=(2+1)(2-1)=&®-®', where G=2+i.
The five representatives of the complete system of residues, mod. ®,
are 0, 1, 2, i, I+i. Every other integer of R(i) is congruent (mod.
a) to one of these five integers, for example

2= —V--1 (mod. ®),
3=1 (mod. ®),
A4=+I1+i (mod. @),
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etc. Similarly, since 3 is irreducible in R(t), the nine integers 0, 1,
2,0, 2i, 1+, 1+2i, 2+i, 2+2i constitute a complete system of
incongruent residues (mod. 3). Show that this number is 13 in the
case of 2+3f.

2. In the realm R(v/-5), it is seen that (3)=(3, 1++V-5)(3,
1 - +/-5) and the integers 0, 1, 2, constitute a complete system of
residues with respect to the ideal (3, I ++v/-5). On the other hand
Il is irreducible in R(v/-5 and the integers a+ib consisting of the
121 combinations 0=0, 1, 2, - -, 10; 6=0, 1, 2, -- -, 10 constitute
a complete system of residues taken with respect to p= (11, 11V-5),
N(p) being 121.

Art. 211. Theorem. An ideal may have as factors
only a finite number of ideals. For let i=a-b-c----, then
is N(i) =N(@)N(b)N(c) - - -, and the rational integer N(i)
is divisible only by a finite number of rational integers.
Of course, unit ideals are not counted.

It follows also that there are only a finite number of
ideals whose norms are less than a fixed rational integer.!
And this is equivalent to saying that there are only a
finite number of different ideals? which contain as an
element a given finite integer a.

If an ideal is a divisor of a rational prime integer p,
then p is a number belonging to this ideal and can be
expressed therefore through the canonic form

(i, 1I1+i2w).
Consequently since p may be added as an element of
this ideal, it is evident that i =p, otherwise (i, p) =1 and
the ideal reduces to a unitideal.3 Since i2 is a divisor of i,

1 When this ideal is in its canonical form, its norm =ii2 and this product being
ess than a given integer restricts i and is and therefore the number of ideals in
which these integers occur.

2 For, observe that the norm of an element a of an ideal is a rational integer
that may be added as an element and therefore is divisible by i.

3If an element a. of an ideal divides 1, and is therefore a unit of the realm,
then N(a) =1 is an element of the ideal, which may accordingly be called a
unitideal. Further observe that the unit ideal (1) consists of all the integers of
the fixed realm.
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it is in this case either p or unity. In the latter case the
ideal is of the form (p, il+w) where il<p but otherwise
undetermined; in the first case the ideal is of the form
(p, pw), for fuis divisible by i2 and may be neglected.

To the two cases (p, il+w), (p, pw) correspond the
norms p and p2 In the first case the ideal is said to be
one of the first degree, and in the second case it is said to
be of the second degree. We thus have the theorem:

Theorem. The norm of an ideal, which is a divisor of a
rational prime integer p is either p or p2

EXAMPLES
1. R(V=5). Leti=(2, I++/-5), i'=(2, 1-V-5). Note that
i=2, i2=1, so that 2V(i)=2. It is seen that
ii'=(4, 2+2V-5, 2-2V-5, 6)
= (4, 2+2V-5, 2-2V-5, 6, 2)=(2).

If t=(3, 1+v-5), i'=(3, 1-v-5), then is N()=3=ii\ If
i=(21, 10+V-5), i'=(21, 10-V-5). then N(i)=21=ii".
2. R(V-5), Leti=(2, w), i'= (2, o). Itfollows

that 7Vit)=2. Ttis further seen that

= (4. 1+V-15, 1-V-15, 4)
= (4 1+V-15, 1-V-15, 4, 2)=(2),

since are integersin thisrealm.  If i= (17, 5+w), it is seen

that iv(i) = 17=ii".
3. Derive the complete system of incongruent residues of the
preceding ideals.

The Unique Factorization of ldeals

Art. 212, If we define prime ideals as such that are
different from unit ideals and which are divisible only



INTRODUCTORY NOTIONS OF IDEALS 355

by themselves and by unit ideals, then it may be proved
that the decomposition of ideals into their prime ideals
as factors is unique.

Before attempting to prove this fundamental theorem,
we must introduce a series of lemmas.

Theorem. If a b, ¢ are any three ideals that are
different from zero, and if ac=ab, then is ¢=b For
multiply both sides of the expression by a', so that
aat=aab, or N(a)c=N(a)b. Since division by the
rational factor N(a) is admissible, it follows that ¢=h.

Important Theorem. If all the elements of an ideal
a are congruent to 0O with respect to the ideal b, then is a
divisible by b. Let the two ideals be a=(al, 02, ---),
b=BL B2 ---) and b = (B B2 ---). Then by hypothesis

al=0 (mod. b), 02:0O (mod. b),
It follows that

al1p1=O (mod. bb", a1p'2=0 (mod. bb"),

02f1=O (mod. bb'), 02p'2=0 (mod. bb ),

and consequently
alBl'=N(b)yll, aii2=N(b)y12,
a2pl' = N(b)y12, alB? = N(b)y22,

where y11, y12, - - are integers of the realm. It follows
that ab'=N(b)(y11, y12, - - -) where (y11,y12, - --) consti-
tute an ideal, say ¢. We thus have ab'=bb'c or a=tc.

It follows from this that the greatest common divisor
b of two ideals a=(al, a2, ---) and b=(p1 B2 ---) is
d=(al,a2, -+, B1B2, - ). Foran ideal thatis a divisor
of a contains the elements al, 02,, - - -, and if such a divisor
is also the divisor of b, it must contain the elements
By B2, ---. Further any other ideal k which is divisible
by both a and b is such that b>k
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Art. 213. Theorem. If a product of two ideals
a and b is divisible by a prime ideal p, and if b is not
divisible by p, then is a divisible by p; or if the product ab is
divisible by p, then at least one of the factors a or b is divisible
by p. For write aand b as above, and put p= (&1 &2, - - -).
Since by hypothesis b is not divisible by p, the ideal
D=pR1L B2 ¢+ - OLG2, - ) is a unit ideal, and it is
possible to find a number B in b and a number ® in p such
that I=B+&. It is also seen since ab=0 (mod. p) that
p=(®l @2, ---, ab) and therefore also alB=0 (mod. p),
aB=0 (mod. p), - -. Since & is divisible by p, it follows
that al(B+ &) =0 (mod. p), a23 +&) =0 (mod. p), - - -; or
since B+d =1, it is evident that al=0 (mod. p), a2=0(p),
.+, and consequently a is divisible by p.

Art. 214. Theorem. The factorization of ideals into
their prime factors is unique. Let i be a given ideal and
suppose that i =pl-p2: - - pn, where p1, - - - are prime ideals.
If further i=ql-gq2- - -gm, where g1 - - are prime ideals, it
must follow that pl-p2---pn=qgl-g2- - -gm  Of course, in
this expression some of the p’s as well as of the g's may be
repeated. It is evident that pl must divide the product
on the right and is therefore either a divisor of gl and is
equal to gl or itis prime to g1 and then pl must divide the
product g2- - -gm,. In this case pl must equal g2 or it must
be a divisor of g3--.gm, Through repetition of this
process it is seen that pl must be equal to at least one of
the quantities g By dividing this common factor out,
and by continuing the method of procedure, the theorem
is proved. (bommer, loc. cit., p. 56.)

Art 215. The following theorem offers a practical
application of determining whether ideals are prime or
not.

Theorem. Every prime ideal of the realm R(Vm) is
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always a factor of a rational prime integer p, or more
exactly, of a rational principal ideal (p). For if p is a
prime ideal, then N(p) =p-p'=<, where g is a rational
integer. Denoting the prime factors of g by pl, p2, - - -,
it is evident from the theorem above, since p- p'=plip?: -
that one of the factors pi, p2, - is divisible by p.
Further, no two of these factors are divisible by p, for see
Art. 211. In that case the two prime integers would
occur as elements in the prime ideal p, and as their
greatest common divisor is 1, the ideal would reduce to a
unit ideal. If p is divisible by p, it follows also that p is
divisible by p' and that pp'=p. It may be observed
further that only those algebraic integers are divisible by
p whose norms are divisible by p. For if a is divisible by
p, then a may be adjoined as an element of p, as also the
norm of a. Since p is an element of this ideal, it is
evident that unless N(a) is divisible by p, the greatest
common divisor of N(a) and p would be unity, and the
ideal p would become a unit ideal.

To determine the ideal prime factors of any ideal o,
first form N(a)=g, say. Then distribute ¢ into its
rational integral prime factors, and finally those prime
integers into their ideal prime factors. The fact that
the norm of every element of an ideal is an element of the
ideal and hence divisible by p must not be lost sight of.
In the distribution of the rational prime integer p into its
prime ideal factors, note that every principal ideal may
be expressed through one number a, say, in the form (a).
And every ideal which is not a principal ideal may be
expressed through two integers in the form (o, B) where
a and B do not necessarily form a basis of the ideal.
This is proved below in the form of a theorem.

Lemma. If a and b are two ideals that are different,



358 THE THEORY OF ALGEBRAIC NUMBERS

there exists an integer a of a such that the quotient

is prime to b.l
If b=p is a prime ideal, the lemma is at once evident.
For were divisible by p for every integer a of a it
would follow that a was divisible by op, which is not true.
For the general case let pl, p2, - - -, pr be the different
prime ideal factors of b, and form the ideals
al = ap2p3- - -pr, a2 =aplp3 - -pr, ar=aplp2- - -pr-1

and let resoectivelv ai be integers of al such that

are relatively prime to pi-(i=1I, 2, ---, r). It follows
that o =al+a2+---+ar is an integer as is required in
the lemma.

Theorem. Every ideal i may be expressed in the form
(a, Bf where i is the greatest common ideal divisor of the
integers a and B.  For choose any two integers a and p of

the ideal such that is relatively prime to

Writing it follows that i=(a, B). In

the factorization of p into ideal factors, since p occurs
itself as one element in each such ideal factor, it is only
necessary to determine the second element.

The ldeal Factors of the Rational Prime
Integers in the Realm R(VmM).

Art 216. We saw (Art. 211) that a prime ideal which
is a factor of a rational prime integer must have one or
the other of the forms
1) p=(p at+w),

| See Reid, The Elements of the Theory of Algebraic Numbers, p. 318.
2 See Sommer, Vorlesunaen uber Zahlentheorie, p. 59.
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or

) p=(p, pw) = (P)(I, w) = (p).

In the first case (p) =pp' and consequently (p) may be
factored into a product of two prime ideals; in the second
case p=(p) and here p is not reducible.

A simple criterion may be derived by means of which
it may be determined whether a prime integer is reducible
into a product of two prime ideals as follows:

Case I. m=3 (mod. 4), discriminant d=4m. Let
p > 2 be an arbitrary prime number, which is not a divisor
of the discriminant d =4m.

If p is factorable = (pp') in the realm R(¥m), then is

p=(p, a+vm)=(p, a+Vm, aZ- m).

It follows that
a2- m==0 (mod. p),

otherwise the ideal would be a unit ideal.
Reciprocally, if the congruence

x2-m=0 (mod. p)

admits an integral rational solution x=a, then is p
reducible, being the product of two prime ideals that are
different from each other. For if x=a is a solution of
this congruence but not of the congruence x2-m=0
(mod. p2), then are p=(p, a+vm) and p'=(p, a-Vm)
two prime ideals that are divisors of p. These two ideals
are different, since their greatest common divisor is

(p, a-+vVm, a-vm) = (p, a-+vVm, a-vm, 2a);

and as p and 2a are relatively prime, this ideal reduces to
a unit ideal.

The fact that x2-m=0 (mod. p) has a solution x =a,
which is not a solution of x2-m=0 (mod. p2), is denoted
in the theory of quadratic residues by the Legendre
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symbol

If p>2, the congruence x2-m=0 (mod. 79 admits a
solution if y2—4m=0 (mod. 79), that is, if y2—d=0 (mod.
79). For among the solutions of the latter congruence is
evidently an even integer and consequently x=%y is a
solution of the former congruence. Hence instead of

writing we may put asthe condition that

p be factorable. (See Sommer, Vorlesungen, p. 60.)

If Xx—=m=0 (mod. p), or, what is the same thing, if
y2-d=0 (mod. 79) does not admit of an integral solution,
then p is irreducible in the realm R(¥Vm) and (79) is itself a
prime ideal. The fact that the congruence x2-d==
(mod. 79 cannot be solved is represented through the
symbol

We must next consider the prime integers that are
factors of the discriminant d=4m, namely 2, and the
odd simple factors of m. The congruence x2-m=0
(mod. 2) is satisfied by x=1 or x=-1, two solutions
which are (mod. 2) equal. Hence as prime ideals we have

p=(2, 1+Vm)=p'=(2, 1-Vm).

Finally let p be an odd prime factor of m, which can
be only of the first power, since m by hypothesis does not
contain squared factors.

In this case the congruence

x2-m=0 (mod. 79)
admits the solution x =0 and p is divisible by

p=(p, VM) = p' = (p, - Vm),
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which ideals are different from unity and from p. We
thus have
(p) =p2

It is seen that every prime integer that is a divisor of
the discriminant d, is factorable, being the square of a
prime ideal.

If p is a rational prime integer that is a divisor of d;
and that is, if the congruence y2—d==0 (mod. p) has the
solution y=Q (mod. p) which is counted twice, then this
fact is expressed through the symbol

EXAMPLES

1. Realm R(v/=5),2m= -5,d= -20. Itisseenthat2and5 are
the only prime factors of 20, and consequently are factorable into
the squares of prime ideals. In fact

(2)=(2, | +V-=5)2 (5)=(V-5)2
The congruence z2+5==0 (mod. p) admits solution for p=3, 7, 23,
-+ -, but cannot be solved for p=11, 13, 17, 19, - -
We thus have
3) =@, 1+V-5)(3, 1-V-5),
(=@, 3+V-5)(7, 3-V-5),
(23) = (23, 8++V-5)(23, 8-V-5),
while (11), (13), (17), - - are prime ideals.

2. Realm R(V35), m=35, d=140. The prime integers which

divide 140 are 2, 5, 7, and therefore

(2) = (2, 1+V35), (5) = (5, V35)2, () =(7, v35)2
The congruence x2-35=0(mod. p) admits solution for p= 13, 17, 19,
-+, but cannot be solved for p=3, 11, - -

We therefore have

(13) = (13, 3+V35)(13, 3-V35),
(17) = (17, 1+V35)(17, 1-V35),
(19) = (19, 4+V35)(19, 4-V35),
while (3), (11), - - - are prime ideals.
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Case Il. m=2 (mod. 4), discriminant d=4m. It is
seen here as in the first case that if p is a prime rational
integer which is not a divisor of d, then p is reducible or
irreducible in R(¥Vm) according as

or

If p=2, then is

()=, Vm2=p2
and for an odd prime integer that divides d or m it is also
seen that

(p) = (p, Vm)2=p2
In both of these cases the congruence

x2—d= 0(mod. p)
has the root x=0, which is to be counted twice and as
above we must write

Example. 9t(V10), 4m—d=40. The prime divisors of 40 are 2
and 5. It is seen that
(2)=(2, v10)2,  (5)=(5, V10)2,
(13) = (13,6 + v10)(13,6-V10),
M=, @)=,

etc.

Case IlIl. m=Il (mod. 4); d=m. Suppose first that
p is an odd prime integer, such that (m, p)=1. If pis
reducible, it must have as a prime factor p = (p, a+w);
and consequently

must be divisible by p, and therefore (2a-+1)2-m=0
(mod. p) or x2-d=0 (mod. p) must admit a solution.
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We thus have as above

It may be shown that p= (p, a+w) and p=(p, a+w)
are different, for it is seen that their greatest common
divisor (p, a+w, a+w") =1. It is further seen that p
is not a unit ideal, nor is it equal to (p).

Suppose next that p=2. If 2 is divisible by the prime

ideal p = (2, a+w), then from above must be

an even integer and consequently (2a+1)2— m is divisible
by 8. Hence if 2 is factorable, the congruence

1) x2—d=0(mod. 8)

admits solution. This congruence may be solved it
d=1 (mod. 8), but cannot be solved if d= 5 (mod. 8).
And that is ifm=1 (mod. 8); and if

m=5 (mod. 8).

When (1) admits a solution, it is seen that p = (2, a+w)
and p= (2, a+w") are different, and that neither of them
is a unit ideal or = (2).

Finally suppose that p is an odd prime integer which is

a factor of m. Then as above must be an

integer that is divisible by p and therefore 2a+ I1=0
(mod. p). Since x2=d (mod. p) admits the double root

x=0 (mod. p), we may again write It is clear

that p=(p, vm), and pi=(p, —Vvm)=p are two ideals
such that p=p2 If we put 2a+1=p, it is seen that

Observe that
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Hence,

since p and are relatively prime. Since 2a+ 1=0

(mod. p), it follows that (p, 2a+2w) = (p, Vm).

The three different cases considered above when
expressed in compact form give expression to the follow-
ing theorem:

Theorem. A rational prime integer p is reducible or
irreducible in the realm R(¥m), whose discriminant is d,
being the product of two different prime ideals, the product
of two equal prime ideals, or finally irreducible, according as

or

It is thus seen that the problem of the resolution of a
prime integer into its prime ideal factors in the realm
R(Vm) reverts into the fundamental problem of quadratic
residues, and that is, whether or not the congruence
x2+m=0 (mod. p), or more generally whether the con-
gruence x2+ax+b=0 (mod. p) admits solution.!

EXAMPLES

1. Find the three prime factors of the norm of (10+~/-5) and
therefrom the prime ideal factors of this number.

Find the product of V-5, (3, 1 +-v-5), (7, 3+ V-5).

2. Prove that (3, I+”V-5) has four prime ideal factors and
determine the product of (2, 1++/-5), (3, | +~+/-5), (7, 3+V/-5),
(23, 8+V/-5).

Equivalence of ldeals. Classes of ldeals
Art. 217. Definition. Two ideals a and b of the

realm R(Vm) are said to be equivalent and written a~b if

1 It is of interest to read in this connection the article Elementary Theorems
Relating to Ideal Factors. See Smith’s Report, p. 108. See also Report on Alge-
braic Numbers, p. 17, by Dickson, etc.
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their quotient is equal to a number of the realm; or if there
are two integers o, B in R(¥m) such that

or (B)a= (a)b.

If a is a principal ideal, then this fact may be denoted
by writing a~(l).

From this definition follow at once the following
theorems for equivalences:

Theorem 1. If a—b and b~c, then is a~c.

Theorem 2. Ifa—b and c~b, then is ac~bb.

Theorem 3. Ifaand b are equivalent ideals and if ¢ is a
third ideal such that ac is a principal ideal, and that is,
ac~(l), then is also bc~(l).

Kummer used this as the definition of equivalence. It
has the same meaning as the definition first given, for if
ac—~he~~(1),

then is
aN(c)~bN(c)

and therefore a~b.

Theorem 4. If ac~bc, and if a—b, then is c—b; for
ac~bc—bb, and therefore c~b.

Corollary. Ifa~bthenisalsoa —b';foraa' ~ (1) and
bbz~(1) and therefore aa'—bb' and a'~b'.

From this conception of equivalence follows the next
definition.

Definition. All ideals which are equivalent to one and
the same ideal, form an ideal-class or class of ideals.

Accordingly every ideal determines an ideal-class,
which class contains an indefinite number of ideals.
All principal ideals are equivalent to the ideal (1) and
taken collectively form the principal class K=1

The classes of a realm may be denoted by K, K, K2,
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If the ideal al belongs to the class Ki and aj to the class
Kj, and if b=alal belongs to the class Kn, then Kn is
called the product of the classes Ki and Kj and is sym-
bolically written Kn= KiK.

We may accordingly multiply the classes by one
another, noting always the identity Ki= 1-Ki. Since to
every ideal ol there may be found a corresponding ideal
such that is a principal ideal, there is associated with
every class Ki always one and only one class  such that
KiKi= 1=K.

Two classes which stand in such a relation are called
reciprocal and may be written or

We may also introduce the notion of division into the
process of computation of ideal-classes: An ideal-class Kn
of the realm R(Vm) is said to be divisible by an ideal-
class Kj of the same realm, if there is an ideal-class Ki in
R(Vm) such that Kn = KiKj.

The exposition of ideal-classes thus defined renders
possible the following:

Art. 218. Fundamental Theorem. The number of
ideal-classes of a quadratic realm is always finite.l There
is in every ideal-class at least one ideal whose norm is less
than [VD|, D being the discriminant of the realm.

The proof of this theorem depends upon the following
lemma:

Lemma. In every ideal a of the realmi whose
discriminant is D, there is always a number a whose norm

in absolute value  N(a)vD| .
For suppose the ideal written in its canonical form
a= (i, il+i2w); and in the case of a real realm write
fl = ixx(il+i2w)y,
f2 =ixx(il+i2w"y.
1 See Smith’s Report, p. 112.
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In the case of an imaginary realm nut

®w+ ' being real, and

which is a real quantity. Regarding the sign =+, that
sign is to be taken which gives the positive sign to
A=ii2 ¥D| = IN(a)VD|.

Further in the case of a real realm let k! and k? be any
two real quantities such that kikz=A= |[N(a)VvD| and
in the case of an imaginary realm impose the additional
condition that k1 =k2 =k.

It follows from the Minkowski Theorem that two
rational integers x and y that are different from zero
may be found such that |f1] ki,|f2| k2 <fc2 (Art. 26).

In the case of the real realms, it is seen that a=f1 is an
integer of a such that

of =|fl|= |ix + (il +i2w)y K1,
la] =[f2]=|ix + (i1 + i2w")y K2,
It follows that
loa’] = [N(a)] klk2 |N(a)VvD|.
In the case of imaginary realms, it is seen, if

and

that
IN(0)| =%f12+f22] Y(k12+k22) k2 |N(a)VvD|.

Important Remark. The theorem is also true for principal
ideals a= (a). (See Art. 206.) As every number of this ideal is of
the form Aa, where A is an integer in R(¥m), it follows from the
above theorem that there is an integer Aa, say, such that

Nr(Aa) [N(a)VD|;
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and, since for principal ideals (Art. 210) N(a)=N(a), it is seen
that there is always an integer of the realm, A, say, such that
AN= VD .

Proof of the Fundamental Theorem. Let a be an ideal of
the class A, and let a be a number of this ideal such that
IN(0) IN(a)VvD|. Further there is in B, the recipro-
cal class of A, an ideal b such that a-b = (a),* and conse-
quently N(a)N(b) =N(a) = [N(a)VvD|.. It follows that
N(b) D . Thus it is seen that the class B contains
an ideal b whose norm  |VD|. By interchanging the
class B with the class A, it is seen that in the class A
there is an ideal whose norm  |VD|.

Since [VD| is a finite number, and as there are only a
finite number of ideals whose norm is less than a fixed
number, it follows that the number of ideal-classes is
finite. Cayley, Works, V, p. 141. See H. J. S. Smith,
Collected Works, Vol. I, pp. 191 et seq.

This number of classes, which will be denoted by h,
is one of the most important constants that occurs in the

discussion of the realm R(¥Vm).

Art. 219. The Theorem 3 of Art. 217 may be used to
determine whether or not two ideals are equivalent.

EXAMPLES FOR THE EXAMINATION OF THE EQUIVA-
LENCE OF IDEALS

1. In the realm R( v-b) it is seen that
(2, 1+v-5)~3, 1+v-5) ()
for multiplying by (3, | + v-5), we have
(3, 1 +v-5)(3, 1 —=v-5) =(3)~(1)
and
(2, 1+V-5)(3, 1 =V-5) = (I +V-5)~(1).
It is also seen that
@, 1+v-5)~-@3, 1-v-5) for (3, 1+v-5)—(2-v-5)~(1).
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Observe that
(1-vV=5)@3. 1 +V--5)= (1 +V-5)(3, I-V-5)

2. In the realm R(V-23), (2, w) 0* (2, ) for

2, w),= = (4,20, -6+w)=(4,2-w) (1),
while (2, w)(2, ®)=(2)~l. Observe that (3, w)~(2, w). For
(3, W)(2, w) = (6, 2w, 3w, W2, W) = (6, w) = (w), since

3. Tn the realm R(v31) it is seen that
(3, 1+V31)*V3, 1 -v3l),
for
(3, I+V31)2=(9, 2-v3i) (),
while
(3, 1 =V31)(3, 1+V31)=<3)~(1).
On the other hand
(3, 1-V31)~(5, 1 - V31),
for
(3, 1 +V31)(5, 1-V31) = (4+V31)~(1),
and also
(3, I +v31)-(5, | +V31).

EXAMPLES FOR THE EXAMINATION OF THE NUMBER
OF IDEAL CLASSES

1. For the realms R(i), R(V—-2), R(¥ - 3), the Euclid method for
finding the greatest common divisor is applicable and consequently
in all these realms the ideals are principal ideals and in each case
A=l.

2. For the realm R(V -5), m= —5=3(mod. 4), so that D= —20
and D <b5. In this realm 2 and 3 are reducible and in fact

(2)=(2, 1 +V-5)(2, 1-V-5)=p-p’ p=p', N(p) =2
(3)-(3, 1 +V-5)(3. 1-vV-5)-pl-pl, N(pl)=3.
Due to the fundamental theorem every ideal of R(~/-5) must be
equivalent to at least one of the ideals (1), p, pl or pl, for these are all
the ideals whose norms are loss than |vD]|. It was shown above
(Ex. 1, above) that p~pl~p'l (1), and consequently the number of
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class-ideals is here h=2. The representatives of these two classes
are (1) and (2, 1++/-5).

3. For the realm R(~/-23), we have m=l(mod. 4) and D= —23,
so that [VD] <5. The integers 2, 3, 4 are resolvable into factors

that are not principal ideals. We have wtw'=1,

W=w -6,
=02 w)(2, v)=a-a and Y(a) =2,
(3)=(3, w)(3, w)=b-b' and A(b)=3.

It is seen that a2=(4, 2-w), a3=(8, 2—w)=(2-w)~(1); ¢
=2, W)=, I-w), &2—a" b=(3, w), b2=(9, 6-w), bh2a' = (18,
3+w) = (3+w)~(l), so that h2—a a2—b—a' b3—ab~(l). The
representatives of these ideal classes are accordingly, (1), a, a'; or
(L), a a2 or (1), b a

4, For the realm R(¥31), m=3(mod. 4); d=124 and |VD| <12.
Of the prime rational integers that are less than 12, it is seen that
2, 3, 5 are reducible, while 7 and 11 are irreducible. It is ob-
served that

)
)

(2) = (39+7v31) (39 - 7V31),
being the product of two principal ideals; while
(3)=(3, 1+V31)(3, 1-v31)=a-a, N(a) =3,
(5) = (5, 1+V31)(5, 1 - V31)=bb, N(b) =5.
It was seen above that o, a', b, b' are not principal ideals and that
o~b, a'~b'. It may also be shown that a2=(9, -2++31), a
=(2-V31), a2—a.

The numbers 4, 6. 8, 9, 10 can therefore only lead to ideals that
are equivalent to the ideals (1), o, a2, or 1, b, b2 or (1), a, &', so that
A=3.

5. In the realm R(~/-5) show that h=2; in R(V7), h=1; in
R(V-31), h=3; in R(¥-43), h=1; in R(V13), h=I; in R(vV82),
h=4; in R(V-61), h=6.

To obtain all prime ideals whose norms are less than |[VD| we
have to solve the positive rational prime integers into their prime
ideal factors. By multiplying these ideals together, we are able to
obtain all those ideals whose norms are less than [VD]|. Evidently
this number is finite.
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Art. 220. For practical purposes this above method of
determining the number of ideal-classes is sufficient.
There is, however, an analytic method for determining
this number, a method which belongs to the “ Analytic
Theory of Numbers” and which is explained later
(Vol. 11, Chapt. 1X). This theory was introduced by
Dirichlet! and extended by Dedekind, Kronecker, and
others.

The different powers of an ideal that is not a principal
ideal, namely

a a, aj -
are different ideals and determine correspondingly classes
of ideals A, A2, A3 - -. But since there is only a finite

number of classes of ideals, the series A, A2 A3 -
cannot extend indefinitely and represent different ideal-

classes. If we call the first class which is identical
with a preceding class Aa, then is and conse-
quently The following two assertions may be
made:

1. The classes are all different, while
etc.

2. The smallest exponent h, for which (Art.

217) is a divisor of the number of class-ideals h.
Proof. If the collectivity of classes is represented

through then h=hl but if there is
another class B that is different from any of these classes,
then also are all ideal-classes different

from one another and different from the classes first
written. If this constitutes all the classes of the realm,
then is h=2hl If, however, there is another ideal-class
C different from all the ideal-classes, just written, then

| Collected Works, Vol. I, pp. 357 and 411.  See also Bachmann, Zahlentheorie,
Vol. I11.
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also form again h! new classes of
ideals that are different from one another and different
from all the ideal-classes hitherto introduced. By con-
tinuing this process it is seen that h = nhl,

A direct consequence of this fact is the following
theorem due to Hermite {Oeuvres, Paris, 1905, Vol. I, p.
274):

Theorem. If the quadratic form X2-+mY?2 is divisible
by p, where p, X, and Y are rational integers and p a
prime integer, then some power of p, say ph, may be ex-
pressed in the form ph=x2 + my2 where x and y are rational
integers.  For it is evident thatimy is
divisible by p, and consequently p is factorable in the
realm R(¥-m) into ideal factors, say p, p', where
p=(p, X+vV-mY), p'= (p, X-vV-mY), pp'=p. Further
if A is the class to which p belongs, and A' the class to
which p' belongs, Ah=1; and since x-++/my is a number
of the principal ideal, it follows that ph=x+ivmy, if
m# 1 (mod. 4); p'h=x-vJmy, and therefore ph=x2 + my2
We further have ph =t+ws if

m=1 (mod. 4);

Hence s is an even integer.

Art. 221. The Function! ®(a). In the theory of
rational numbers it is asked to determine the number
o(n) of all integers that constitute a complete system
of residues with respect to n and which are relatively
prime to n.

In a corresponding manner, if a is an arbitrary ideal of
the realm R(¥m), it is required to determine the number
of all the integers of R(Vm) that constitute a complete
system of residues with respect to a and which are

1 See Dickson’s History, Chapt. V; Euler’s @-function, etc.
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relatively prime to a The prime factors of a are sup-
posed known. The number in question is denoted by
®(a), where for the unit ideal a= (I), ®(@) =1.

First let a=p be a prime ideal of the first degree so
that p = (p, a+ ). The number of integers of a complete
system of residues with respect to p are represented
through the N(p) integers 0, 1, 2, ---, p—1. For let
b+cw be any integer in R(Vm). Note that

b+cw =c(a+w) +pg+r,
where g is a rational integer and r one of the integers 0, 1,
2, -+, p-1 And that is b+cw=r (mod. p). Of these
integers only 0 is not prime to p. Hence for this case

Consider next the powers of p= (p, ai1+w) and observe
that p2 must be equal to (p2, a2 +w), when reduced to its
cononical form, since N(p2) =p2.  With respect to p? as a
modulus it is seen that any integer

A +Bw =B (al+w) +gp2+r, where r<p2
Givingtorthevalues 1,2, - -, p, p+I, -+, 2p, -, PP,
it is seen that there are p2—p classes of incongruent (mod.
p2) integers that are relatively prime to p, so that

Similarly, since pl= (p3, a3+w), we have

etc.
Secondly let p be a prime ideal of the second degree

p=(p, pw) = (p)- In this case the numbers of a complete
system of residues are had through r+sw, where r, s take
all values 0, 1, 2, - - -, p—1. Among these numbers there
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is only one, namely 0, which is not relatively prime to p,
and we again have

We further have
pk = (pk, pkwk) = (pk).

The numbers r+sw form a complete system of residues
with respect to pk, if for r, s the numbers 0, 1, 2, - - -,
p,p + 1, ---, pk are substituted. This gives p2k = N(pk)
combinations, and among these numbers there are values
of r, s found in the series Ip, 2p, 3p, - - -, pk-1-p making
p2(k-1) numbers that are not prime to pk. Here again
itis seen that

To prove the theorem in general, assume that ®(a) is
determined for the case that where there
are n different prime factors of o, and seek to determine
®(al) where there being an additional
prime factor other than a has, and which is prime to o.

When brought to their normal forms, let

a=(a, al+alw),
pk=(i, i1+ i2w),
anc

the norm of the last expression being aiai2 =N (a) N(pk).

The integers r+sw which form a complete system of
residues with respect to a, are had by giving to r the
values 1, 2, - -, a, and to s the values 1, 2, - - -a2. The
integers which form a complete system of residues
with respect to [ are had by giving to  the values
1,2, ---ai, and to the values 1, 2, ---, a2i2. Among
the latter system of integers are the ii2®(a) integers which
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are relatively prime to a as is seen by writing the numbers

that constitute in the form 1, 2, 3, - - -, la, a+l, a+2,
..., 2a, 2a+1, ---,ia and the numbers that constitute
in the form 1, 2, 3, ---, la2 a2+l, a2+2, ---, 2a2
202+1, - - -, i2a2

Among these ai-a2i? = ii2®(a) = N(pk)®(a) numbers are
some which contain p as a factor. The number of these
integers may be computed if we observe the system of
residues with respect to al «that are relatively prime to a
and which are divisible by p. This number is the

number of the residues with respect to which are

relatively prime to a and this number we have just
seen is ®(a)N(pk-1).
It follows that
®(al) =2N(pk)P(a) — N(pk-1)P(a)

Applying this recursion formula in general to the ideal
it is seen that

Theorem. If the ideal ¢ is the product of the two ideals
a and b which are relatively prime to each other, then is

o(c) = (@) P(b).
For if

then is
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Theorem. Ift runs through all the ideal divisors of the
ideal a, then is

> d(t) =N(a).
Proof. First let a=pk so that the divisors of a are
1, p p2 - -, pk It follows that

20(1) =1+ (p) =P (p2) + - - - +B(pk)

=(pk)
For the general case put It is seen that

and consequently

Art. 222. Fermat’s Theorem for ldeals.! Let a be
an ideal of the realm R(Vm) and let a be an arbitrary
integer of R(¥m) that is relatively prime to a, then always
the following congruence is true

ad@=l (mod. a).
(Gauss, Theor. Res. Big., Art. 50).

Proof. Letpl p2 -- -, pibe the p=®d(a) numbers that
form a complete system of residues with respect to a and
which are relatively prime to a.

It follows that

pla=acl (mod. a),
p2a=a? (mod. a),

pia=aop (mod. a),
L For complex primes, see Smith's Report, p. 118.
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where adl, - - -, ovare again numbers of the same complete
system of residues with respect to a For no two of
these numbers can be congruent.

If, for example, oA=ou (mod. a), then also a(pA—py)
==0(mod. a), and as a is relatively prime to o, we would
have (Art. 213) pa=py (mod. a) which is contrary to the
hypothesis.

Further, none of the ideals (o)) can have a factor t in
common with o. For it would follow that prxa contains
t as a factor, and since o and a are relatively prime, it
would follow that ph is divisible by t, which is contrary
to the nature of pA

It follows that ol, 2, - - -, ovare a complete system of
residues with respect to a which are relatively prime to a,
and consequently, neglecting the sequence, must be the
same as the series of numbers pl, p2, - -, pv.

It results from the multiplication of the above con-
gruences that

p1p2 , pwad(a) =c0l-02 - ov (mod. a),
or
ad(a@)==l (mod. a).

Corollary I. If a is an algebraic integer in R(vm)
that is not divisible by the prime ideal p of degree
f(=1, or 2), then is

In other words the congruence

is true for any arbitrary integer a.

Corollary Il. If ais an integer that is not divisible
by the prime ideal p of degree f, and if e is the smallest
rational integer for which

ae=1 (mod. p),
then e is a divisor of pf—1.
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For suppose that e is not a divisor of pf-1, and that
the greatest common divisor of pf—-1 and e is el<e.
Then it is always possible to find two rational integers x

and y such that
ex+(pf-1)y=el

and since
oex=l(mod. p) and (mod. p),
it also follows that
(mod. p),
or
ael=1 (mod. p).

where ei<e contrary to the postulate of the corollary.
It follows that e must itself be a divisor of pf—1.

Corollary Ill. For an arbitrary kth power of p, the
following congruence exists:

Art 223. General Congruences. An integral function
of one variable ¢ of degree g with integral coefficients
that belong to the realm R(¥m) may be considered with
respect to an ideal-modulus a. A congruence with one
unknown ¢ is of degree g, if the coefficient of the highest
term &g is not divisible by a.

If the congruence

aég + alég1 + 02&g-2+---+ag=0 (mod. a)
is given, where a, ai, - --ag are integral coefficients, one
of the fundamental problems is:

Determine integers p in R(¥m) such that &=p satisfy
the congruence. If p is such an integer, it is called a root
of the congruence.

The simplest cases are for prime ideals for which the
following fundamental theorem is true:

Theorem. A congruence of the gth degree with respect
to the prime ideal p as a modulus, in which the coefficient a
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of the highest term is prime to p,
() =agg+aliég-l + - - -+ag=0 (mod. p).

can have at most g roots incongruent with respect to p.
(Cf. Lagrange, Hist. Ac. Berlin, 1768, p. 192).

Proof. If pl is a root of the congruence, then is

f(p1)=0 (mod. p)
and
f(&):F(&) —f(pl) =(&-p1)f1(§)=0 (mod. p),

where fl is of degree g —1. If further p2, - - -, py are other
roots, then is

f(&)=a(&-p1)(&-p2) - -(&-pg)=0 (mod. p).
For integers & this congruence can only be satisfied if p
divides one of the factors, and that is if &-pu=0 (mod. p),
which proves the assertion. (See Art. 197).

Art. 224. Primitive Numbers with Respect to a
Prime-ldeal. (Cf. Gauss, Disq. Arith., Arts. 52-55).

Let a be an integer of R(Vm) that is not divisible by
the prime ideal p of degree f(=1, or 2); for example a
number of the complete system of residues with respect
to p. It was seen above that there is always a divisor ¢
of the number pf—1 for which the congruence

oe=!1 (mod. p)
is satisfied.

If e is the smallest exponent which satisfies this
congruence, the numbers a, a2, a3 - - ae-l are all
different with respect to the modulus p.

For if there were two different integers el and e2 of the
series 1,2, - -, e—1 for which the congruence

were true, then also

and since is prime to p, it would necessarily follow that
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the congruence
(mod. p)

was true contrary to the hypothesis that e is the lowest
exponent for which such a congruence exists.

If e is the smallest rational integer for which the
congruence

oe=1 (mod. p)
is true, a is said to belong to the exponent e with respect to p.

A number @ of the realm which belongs to the exponent
pf—1, that is, where e =pf—1 is the smallest exponent
for which

ae=1 (mod. p),
is called a primitive number with respect to p. (See
Smith’s Report, p. 49)

The series present different (mod. p)
numbers of the realm R(¥Ym) which are prime to p; that
is, they constitute a complete system of residues (mod. p)
which are relatively prime to p.

That this definition has a real meaning is seen in the
fact that there exist such primitive numbers. To prove
this, application may be made of a theorem which is a
generalization of one that is due to Gauss.

Theorem. Ife is a rational prime factor of pf-1 and
p is a prime ideal of degree ¥ which is a divisor of the
rational prime p, then there are in a complete system of
residues with respect to p always ¢@(e) numbers that belong
to the exponent e.

Proof. It will be proved first that if there is a number
a which belongs to the exponent e (a divisor of pf - 1),
then there are at least, but not more than, ¢(e) incon-
gruent numbers of the realm with respect to p, which
belong to the exponent e. For, if r is a number of the
series 1, 2, - -, e—1, that is relatively prime to e, then
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ar must also belong to the exponent e, and cannot belong
to a lower exponent.

For if a belongs to the exponent e, it follows that

oer=l (mod. p) or (ar)e=1 (mod. p).
Since further r is prime to e, the congruence
(mod. p)

can exist only if rel== (mod. e) or e1=0 (mod. ¢) (cf.
Art. 222). If we write instead of r those numbers rl, r2,
---, 1, of the series 1, 2, - - -, e — 1, which are prime to e,
we have ¢(e) different numbers which belong to the
exponent e, since, as seen above, the numbers o, 02, - - -,
oe are all incongruent (mod. p). Those powers o3,
whose exponents s have a common factor d with e belong

to the exponent

Besides the numbers given above, there are no others
which belong to the exponent e. For such numbers must
satisfy the congruence

&e=I1 (mod. p);
and from a theorem above, this congruence is satisfied at
most by e integers that are incongruent (mod. p).

We have thus proved the lemma: if there is a number a
which belongs to the exponent e, where e is a divisor of
pf—I1, then there are @(e) such numbers.

We may now prove the assertion: there exist primitive
numbers with respect to the prime ideal p. For of the
pf—1 incongruent (mod. p) numbers of a complete
system of residues with respect to p, each one must
belong to a definite divisor of pf—1.

If then tl, t2, - -, tm are the divisors of pf—1 to which
there belong numbers of the system of residues just
mentioned, we must have:

otl) +o(t2) + - - - +o(tm) =Pf—1=N(p) — L.
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On the other hand we have seen that > @(t) = N(p) - !
where t goes through all the divisors of pf—1 including
pf— 1.

It follows that there exist numbers that belong to the
exponent pf—1, and in fact ¢@(pf-1) such numbers,
which are all incongruent (mod. p).

Art. 225. Wilson’s Theorem. If pl, p2, ---, pv are
the incongruent numbers of a complete system of residues
with respect to a prime ideal p, that is not a divisor of 2, then
is p1p2 - -pv= — I(mod. p).

For let & be a primitive number with respect to p.
We may then write

(mod.p),
(mod. p),
where el, €2, - - -, ev are, neglecting the sequence, the same
as the numbers 1, 2, -+ -, N(p) - 1.
It follows that
(mod. p)

Further since any integer a, say, satisfies the congruence
an(p)-1=1 (mod.p)
or
(mod.p),

it is seen that the one or the other of these factors
=0(mod.p); and when we write ® a primitive number
instead of q, it is seen that

(mod.p),
since N(p) - 1 is the lowest exponent such that
an(p)-1=+1 (mod.p),
By means of the Wilson Theorem it may be determined
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in which cases the congruence

&= —1 (mod. p),
p being any prime ideal that does not divide 2, admits
solution through integers of the realm R(vm).

It is evident that in the realm R(¥—1) the congruence
may be solved, and therefore in the following we may
neglect this realm.

1. Suppose that p is a prime ideal of the first degree,

and accordingly that

constitute a sys-

tern of incongruent numbers.
It is then seen that

and consequently that

Hence the number p is a solution of the congruence
2= -1 (mod. p),
when and only when
p —1=0 (mod. 4).
2. Suppose next that p is a prime ideal of the second
degree. In this case the numbers r+sw for

together with the numbers

and
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form a complete system of incongruent numbers (mod. p)
It follows that

where ri runs from 1 to and sl runs from
to Writing in the form

it is seen that this product is an even

integer and consequently
pl-p2 - -pv=p2= -1 (mod. p).
It follows that the congruence
2= — I(mod. p)
is in an arbitrary realm always solvable for a prime
modul p of the second degree.

Art 226. Linear Congruences with Respect to Ideals.

In the case of the linear congruence
a(=p (mod. p)
the question is: under what condition can such a con-
gruence be solved through an integer of the realm?

First Case. Let the ideal (o) and the ideal i be
prime to each other. If then for & all numbers p of a
complete system of residues with respect to i are written
apl, ap2, ---, dpv, these numbers must again form a
complete system of residues: for if

aps=apt (mod. i),
then is
a(ps-P1)=0 (mod. i).
And, since a is relatively prime to (i), it would follow that
ps=pt (mod. i),
contrary to the hypothesis.
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The integer B can therefore be congruent with respect
to i to one and to only one of the numbers ap.

If ap=p (mod. i), then is £=p a solution of the con-
gruence and the only possible one of the entire system of
residues. Besides this solution, every integer of the form
p+xi+y(il+i2w) satisfies the congruence, if i, il +i20
form a basis of i, and x, y are rational integers.

Due to the Fermat Theorem,

ad(i)=1 (mod. i)

and consequently

£=ad()}1, or  P=Pad(i)}-L
Note that with rational integers the equation

ax+by=1

may be solved by means of continued fractions, if a and b
are relatively prime. This is no longer possible in the
case of ideals in the realm RVm, since the Euclid Algorithm
is no longer applicable. (Art. 111).

Second Case. Take next the more general case
where (a) and i have the greatest common (ideal) divisor
b, so that (a)=ad and i=i*d. Then clearly the con-
gruence

a&=f (mod. i)
is solvable only if b is a divisor of B, so that () = bd.
For if
(a&-pB) =ti =tid,
then we must have al-B= -=0 (mod d).

If, however, B=0 (mod. d) is satisfied, then the
congruence admits solution as is shown below.

By hypothesis a and i* are relatively prime. It is
always possible to find an integer § of the realm such that
1st (0) is divisible by the first but no higher power of b,

and 2n is prime toi. (See Art. 215).
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Further determine an integer A of the ideal d! which is
prime to i, and write

The numbers al and B! are integers of the realm and
if the congruence a&=p (mod. i) is solvable through an
integer of the realm, say &=p, then also the congruence
aié=p (mod. i*) is satisfied by the same integer and
vice versa.

For if the congruence

ap=p (mod. i)
Aap=A\p (mod. i),
dalp =93Pt (mod. i);

is true, then also

or

and consequently

alp=pl (mod. i*)
Reciprocally, if

alp=p! (mod. i*),

Salp=3B1 (mod. i),

Aap =AB (mod. i);
and since A is relatively prime to i, it follows that
ap=p (mod. i).
Further since ai is prime to i*, the congruence
al&-PB1=0 (mod. i*)
may be satisfied by an integer p, and consequently also

the given congruence a&=p (mod. i) has p as a solution, if
the greatest common divisor of (a) and i is also a divisor
of (B)- _ _

We may write all the solutions of the congruence
al&=pl (mod. i*) in the form &=p+xi*+y(it+l*w), (X, y
rational integers) where i* and form a basis of i*,

then also

or
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while all the solutions of the congruence al=p (mod. i)
are of the form § = p+si+i(i1+i2w) (s, t rational integers),
where i and il+i2w form a basis of i. Observe that
N =N(d)N(i*)-

These latter ii2 integers repeat themselves in the
sequences of the former i*il integers, so that there are

incongruent numbers with respect to the modulusi

which satisfy the original congruence, and this number
is N(d).

What has been proved may be formulated as follows:

Theorem. A linear congruence a&=f (mod. i) may be
satisfied by an integer of the realm, if and only if the greatest
common divisor d of the ideal (a) and the ideal 1 is also a
divisor of the ideal (B), and in this case the congruence has
exactly N(d) incongruent solutions.

This theorem is in its entire development true, if the
modulus t is replaced by an integer 7 of the realm; and
the result may be formulated as follows:

A Diophantine equation with integral coefficients a, B, y
belonging to the realm R(Vm).

ag+yn =6,
admits solution (and therefore infinitely many solutions)
if the greatest common ideal divisor of (o) and (B) is
also a divisor of (y).

The following theorem for simultaneous congruences is
often of use:

Theorem. |If al, a2 are two ideals that are prime to
each other, and if a1, a2 are any two integers of the realm,
there is always an integer ¢ which simultaneously satisfies
both congruences

&=al (mod. al), &= al (mod. a2).
14
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Proof. Suppose that the integer p of the realm satisfies

the congruence
&=al (mod. al).
Suppose further that al = (i, il+i2w), so that the general
solution of the above congruence is & = p+ai + T(i1+i2w),
where ¢ and T are integers of the realm. In order that ¢
may also satisfy the second congruence, the integers ¢
and T must be so chosen that
p+aoi + 1(il+i2w) =a2 (mod. al),
and
oi + T(1+i2w) =a2—p (mod. a2).
Next write 6 =Ag!l and 1=B¢&! and so choose A and B
as rational integers that
Ai-+B(il+i2w) = al*,

say, is relatively prime to 02, which is possible since o* is
an integer of the ideal al, which ideal is prime to a2

ft is then seen that & may be determined as a root of
the congruence

W*é=0a2-p (mod. a2)

The guantities ¢ and 1 thus determined offer the required
value of & (Sommer, Vorlesungen, etc., p. 91).

Remark. The congruences kli&=al (mod. al), k&=cx? (mod.
al) where k! is prime to ai and k2 to a2, and where a1 and a are
relatively prime, may through multiplication by respectively

be brought to the two forms of congruences
above considered.
Example. Derive the necessary and sufficient conditions for
the solution of two simultaneous congruences where ki and o1 as
also k2 and a? are no longer relatively prime.

Quadratic Congruences and the Symbol

Art. 227. The most general congruence of the second
degree with respect to the modulus p is

(1) 0& +2al¢ +02=0 (mod. p),
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where a, al, a? are arbitrary integers of the realm. If q,
al, a? are all prime to p, the above congruence has a root,
if the congruence

a(ag+2alg + a2) :O (mod. p)
admits solution and vice versa.  (Read Smith’s Report, pp.

55 et seq.)
The last congruence may be written

(€ +al)2+aa —o2=0 (mod. p);
and the question whether the congruence (1) is solvable in

integers of R(vVm) is identical with the question whether
the combined congruences

(2a) g2+a*=0 (mod. p)
(2b) a¢ +al=oc (mod. p)

may be solved. Since (2b) admits solution when ¢
is known, the question to be answered is whether (2a) is
solvable.

If in the original congruence a or a? are divisible by p,
this congruence reduces to one of the first degree.

If on the other hand al is divisible bv P, the congruence
(1) reduces to

a&2 +a2=0 (mod. p).

Since a is prime to p this congruence admits solution if
3 Hdd (mod. p)
can be solved.

Due to the Fermat Theorem the last congruence takes
the form

§2+o*= 0 (mod. p);
and the question as to the solution of the general con-
gruence of the second degree resolves itself into the

guestion respecting the solution of a congruence of the
first degree in the special cases or of a pure congruence of
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the second degree of the form
(1) & —a=0 (mod. p).

It is therefore only necessary to consider this con-
gruence, and we begin with the case where the prime
modulus p is not a divisor of the principal ideal (2).

If a is divisible by p, we have the congruence &= 0
(mod. p) which admits a double solution. Hence only
the case where a is relatively prime to p is left to be
considered.

If & is a primitive number with respect to p, there is an
integral positive exponent a such that

Ma=a (mod. p);

and it is evident that the given congruence (11) is solvable
only when a is an even integer, say a = 2al, in which case

is the evident solution as is also We
shall next see that the sufficient and necessary condition
for this is that

(mod. p),

a result which may be expressed as follows:

Theorem. The quadratic congruence £2=a (mod. p)
with respect to a prime modulus p, which is not a divisor of
(2) isfor an integer a, prime to p, solvable by two incongruent
integers of the realm, when and only when

(mod. p).

Art. 228. If a congruence &=a (mod. p), where a is
not divisible by p, is solvable, we say a is a quadratic
residuel with respect to p; and if this congruence does not
admit of solution, we say that a is a quadratic non-
residue with respect to p.

1 Dirichlet, Zahlentheotie, p. 75.
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The first case is denoted by the symbol

while in the second case, the symbol

is used to denote that there is no solution.
Due to the generalized Fermat Theorem
aN(p)-1=1 (mod. p)
or

(mod. p).
Both factors on the left are not divisible by p; for in

that case would be divisible by p, which is not

true since neither 2 nor is divisible by p. It
follows that either

(mod. p) or (mod. p).
In the first case we have

(mod. p),
which is true if a is an even integer, and we then have

In the second case we have

(mod. p)
and consequently a is odd and therefore

If, therefore, p is not a divisor of 2 and if a is any integer
of the realm R(¥m) that is not divisible by this prime
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ideal, it is seen that a is a quadratic residue or non-
residue with respect to p according as

or (mod. p).
Both cases are expressed through the congruence

(mod. p).

Due to the theorem relative to the existence of primi-
tive numbers, and the fact that @, @2, - - -, @N(p)-1 repre-
sent a complete system of incongruent numbers with

respect to p, it also follows that there are incon-

gruent quadratic residues and an equal number of non-
residues with respect to the prime ideal p, where p is not a
divisor of 2.

Theorem. If a and B are two integers of R(Vm) that
are not divisible by p, then is

Proof. We have
(mod. p);
anti therefore
(mod. p).

It follows that

The case where p is a divisor of 2 or of the ideal (2)
may be treated independently.

For if in the realm R(Vm) the ideal (2) is reducible into
two factors p and p', then N(p) =2 and ®(p) = 1, and there
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is only one incongruent integer (mod. p), namely p=1.
Since a by hypothesis is prime to p, it is seen that
o==l (mod. p), and consequently &=l (mod. p) is
solvable.

In Art. 216, Cases | and Il, it was seen that 2 is either
=pp' or to p2, when m=2 (mod. 4) or m=3 (mod. 4); and
it is irreducible (Art. 216, Case I11) when m=1 (mod. 4),
and that is, when m=5, 13, 21, 29, etc. In this case
N(p) —1=3. Here the integers 1, w, I+w form a system
of incongruent residues, mod. (2). Observe, however,
that

&=l (mod. p) admits solution =,
82=w (mod. p) £=1+0,
&2=1+w (mod. p E=a.

Hence in all cases where p=(2) or is a divisor

of (2).

Art 229. If we wish to extend the previous con-
siderations by taking a quadratic congruence

£2—a=0 (mod. a),

in which o is an arbitrary ideal modulus, we must first
consider the case
(1) & - a=0 (mod. pk)
which is a congruence with respect to the kth power of a
prime ideal. This case alone we shall discuss here.

I. Suppose that p is not a divisor of (2). It is evident
that the congruence (1) can be solved only if the con-
gruence &2-a=0 (mod. p) admits solution, and that is if

But if this condition is satisfied and if A is a solution of
the latter congruence, where A is also prime to p, there
are an infinite number of roots of the form &=A+pp,
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where p is a prime rational integer that is divisible by p,
and where p runs through all the integers of the realm.
Among these numbers A+-pp there must be a root of the
congruence

& - a=0 (mod. pk),
if such a root exists.

We first put k =2 and assume that p is not divisible by

p2.  We must then determine p so that

(A+pp)2-a=0 (mod. p2),
or

2pAp+A2-a=0 (mod. p2).
If A2-a=0 (mod. p2), it is only necessary to put p=0.
If this case is excluded, we must determine whether or
not an integral value may be found for p such that the
congruence

2pAp+A2-a=0 (mod. p2)
is satisfied.

Since A satisfies the congruence A2-a=0 (mod. p),
it follows that p, the greatest common divisor of 2pAp and
(mod. p2), also divides A2-a, and consequently the
resulting congruence admits solution. If p=pl satisfies
this congruence, then &¢=A+ppl is a solution of the
congruence $2—a=0 (mod. p2).

In an analogous manner it may be shown that the
congruence

&= a (mod. p3)
admits solution; and in general the following theorem is
had:

Theorem. Ifpis a prime ideal of 91(vm) and is not a
divisor of {2) and is not a divisor of the discriminant of the
realm, and if a is an integer of the realm that is not divisible
by p, then the congruence

&2=a (mod. pk)
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admits solution or not, according as

or

If p2 is a divisor of the rational prime integer p, and
that is' if p is a divisor of the discriminant (Art. 216, end of
Case II11), the discussions respecting the solution of the
general congruence must be somewhat modified.

It is easy to see that in this case the congruence

{2—a=0 (mod. pk)

is only solvable for an arbitrary exponent k, if
&2-a=0 (mod. pk)

admits solution.

I1. The case where (2) is divisible by the prime ideal p
may be settled in a manner similar to the preceding case
and offers the following theorem:

Theorem. If p is a prime ideal of the realm
and is a divisor of (2), and ifa is aninteger of the realm that
is relatively prime to p, then the congruence &2-a= 0 (mod.
pk), where k is an arbitrary rational integer, admits solution
if, and only if the congruence

&2-a=0 (mod. pb) (i)
has a solution, in the case that p is a prime ideal of the first
degree, and if secondly

&2-0=0 (mod. p3) (ii)
has a solution, where | is a prime ideal of the second degree.

Observe that if n satisfies the congruence n2=a (mod.
23), so that

n2-a = 23y,
and if we substitute ¢ =n+A2] in the congruence §2=a
(mod. 24), we have
0=&2-a=23[y+An+2A2] [mod. 24]
and this congruence may be satisfied since A may be
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determined so as to satisfy the congruence y-+An=0
(mod. 2).
Similarly, if
&2-a=0 (mod. 2k
can be solved so that n2— a=2ky, then by the substitu-
tion &=n+A2k-1 it is seen that we can solve &2-o0= 0
(mod. 2k+1).

The question for what values of a are the congruences
() and (ii) solvable, may be determined through a
discussion of all possible individual cases. It is seen that
for both cases we must have

a=l (mod. pb) or o==l (mod. 23);
and in either case there are four incongruent solutions,

namely =1 and 3.
A method is not given here for the calculation of the

symbol In a later chapter a more general symbol

and the accompanying theory is discussed (see Chapter
X). A more detailed account of what has been given
above with numerous illustrative examples is found in
Chapter XII of Reid’s The Elements of the Theory of
Algebraic Numbers.

Art 230. Units | of the Quadratic Realm. Among
the integers of a realm appear the “ units ” which play
an interesting role. By these units is understood every
integer of the realm which is a divisor of =*1, or, what
amounts to the same thing, every integer whose norm is
equal to £1. In a discussion regarding algebraic units it
must first of all be proved that there exist such units
which are different from +1.

Theorem |. In an arbitrary imaginary realm, the
only units are 1. However, in the realm R(v—1) other

[ See Smith’s Report, p. 98; Sommer, Vorlesungen, etc., p. 98.
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units are ==+v-1, and in the realm R(+/-3), further units
are

Proof. Consider first the realm R(v-1), In this
realm Xx~/—1y is a unit if its norm = *1; and that is if
X2+y2=#x1 It is clear that x2+y2—-1 cannot be
satisfied by real values of x and y. However, the
equation x2+y2=+1 may be satisfied by the four
systems of values as given in Art. 99, which offer the
units =tl, =i, which are the four fourth roots of unity.

Further in the realm R(V-3), whose basis is 1,

an integer may be a unit of the

realm, if

and that is, if

(X +%y)2+ Yy2= +1.
It is evident that when the lower sign to the right is
taken, the corresponding equation cannot be solved in
real integral values of x, y. However, the equation

X2+xXy+y2= +1
admits six solutions with the corresponding units 1,

(Art. 99) quantities, that are the six sixth roots of unity.

Art. 231. For every other arbitrary imaginary realm
R(Vm), an integer of the form

x+vVmy, if m=1
or of the form

if m=1 (mod. 4),
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can be a unit only if
X2—myl==+1
in the first case, and if

in the second case. Note that m is a negative number in
both cases, as the question before us is regarding imagi-
nary realms.

In the first case and in the second case
In either case the only solutions are x= =1. It follows
that £1 are the only units in the general imaginary
realms.

Theorem Il. In every real realm R(Vm) there exist an
infinite number of units different from 1, and among
them there is one fundamental or principal unit e which in
absolute value is greater than 1 and is such that every unit of
the realm may be expressed in the form ee, where e is a
positive or negative rational integer.

The proof of this theorem is divided into two parts:
First, it is proved that in every real realm R(vVm) there are
an infinite number of units which are different from
=+ 1; and then the fundamental unit ¢ is derived which has
the properties stated in the theorem.

The first part of the proof is identical with the proof
that the equation

X2-my? = =+1 [if m# 1 (mod. 4)],
or

[if m\=1 (mod. 4)]

admits solution in integral rational values of x, y (at
least for +1 on the right hand side of the above equa-
tions) for every positive integer m.

Denote the discriminant of the realm by d and observe
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that 1, w =/w are a basis when m#1 (mod. 4) and that 1,
constitute a basis when m=l (mod. 4).

Consider the linear forms with real coefficients
f=x-wy,
' =x-w'y,
with determinant w — ', which is positive and equal to Vd.
It is clear that

ff' =x2 - my2 when m#1 (mod. 4);

when m=I (mod. 4).

Due to the Minkowski Theorem (Art. 26) if k and Kl
denote real positive quantities such that kki="d, it is
always possible to find rational integers x, y such that
Ifi=%-wyl k
F'l= x-w'y| ki
First let k=1 and kl=+Vd and determine two rational
integers X, y1 such that

Let
al =xl-wyi and al=Xi-w'yi.
Next let

and

and determine two rational integers x2 and y? so that
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and write al =x2-wy?, a?=x2-w'y2. Then write

and determine integers X3, y3 such that

and put a3 =x3-wys3, a3 =x3-w'"y3, etc.

Note that X!, y! are not the same as x2, y2, and that x2,y?
are different from x3, y3.

In this manner we may determine an infinite series of
integers al, a2, a3, - -, such that |al| > [02] > |a3| - -

Note, however, that (al), (a2), (a3), --- form an
infinite number of ideals whose norms are all in absolute
value vd. On the other hand it was proved (Art. 211)
that there are only a finite number of ideals whose norms
are less than a given quantity. Hence in the series above
the ideals must repeat themselves, so that (al) = (ar), say.

Since |al| > |ar]| it follows that

It is further seen that is an integer, and also that

is an integer, the reciprocal of the first integer.
Hence (Art. 90) we may write al = erar, where ¢r is a unit
that is =1, and where

Since e is a unit, N(er) ===I, and it is clear that
N(er2) = +1.

Hence in every real realm there are algebraic units
whose norms = +1. At the same time it is proved that
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Pell’s equations
xX=myl=1 when m# 1 (mod. 4),

when m=1 (mod. 4),

always admit solution in integral values of x, y. (See
Art. 99.)

However, it has not been shown! that the equations
X2—my? =721 and

admit solution.  Only for special values of m has it been
determined whether or not these equations admit
solution.

Art 232. After it has been shown that in every real
realm there are units which are different from *1, it is
easy to see that the powers in positive and negative
integral exponents of such a unit er offer an infinite
number of other units that are different from er.

If € is any unit, then for any integral exponent a, the
following equation is true:

N(€)=N()a=(=x1)a
and consequently also € is a unit.

If, further, a, ai are integers such that a=al>0, and if

le] >1, then is
while if
le| <1, then is

Itis evident that eaand  are different from each other
and that their product is not equal to +1.

Corresponding to every integer €, whose absolute value

is less than 1, there is another unit  whose absolute value

is greater than 1.

1 See H. Schubert, Unterrichts und Vorlesungspraxis, Vol. 2, p. 160, Leipzig,
1905.
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If the equations
x2-my2= —1 or

admit solution; and that is, if in R(Vm) there is a unit e
such that N(es) = — 1, the odd powers of € give an infinite
number of units whose norm = —1, so that there are an
infinite number of solutions of the above equation. The
even powers of ¢ on the other hand offer an infinite
number of solutions of the equations

X2-myl= +1,

since N(&2) = +1.

The units whose absolute value are greater than unity
may be arranged according to their magnitudes. If x{, y!
and x2, y? are positive integral solutions of

X2—myl==+1 or

and if x1>x2, then also it is seen that y!l > y? and vice versa.

It is also observed that if m#l (mod. 4) and if
nl = xi+yivm is a unit in R(Vm); if further xi is positive,
then 711 >1 when ylis positive. If further nl =x1 +y1vm,
N2 = x2+y2vm are units of this nature, and if y1 and y? are
both positive, and if yl>y2 then also is |nl| > |n2| and
vice versa.

If the solutions of the eauations

X2—-myl=+1 or

are determined for the upper sign and as far as possible
for the lower sign, and if the corresponding units nji are
determined when |ni| >1, and if they are arranged
according to the magnitudes of yi, we have the absolute
values of ni themselves, the smallest one corresponding
to the smallest value of y. Denote this unit by €, where
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neglecting the factor — 1, € is completely determined and
is the fundamental unit of the realm, being such that
le| >1.
If n is an arbitrary unit of the realm such that |n| >1,
then a positive integer € may be found such that
lee| = In| < [ee+]]
or

From this it would follow that there is a unit  of the

realm whose absolute value lies between 1 and |€|; but
this contradicts the definition of e. It follows that n = ee.
In the same manner it may be shown that a unit

whose absolute value is <1, is equal to where el is a

positive rational integer. And it is thus proved that all
the units of the realm R(VYm) may be expressed in the
form *ee where e goes through all rational integral
values (see Gauss, Disq. Arith., V, 200).

If the realm contains units whose norms = -1, it is
evident that the norm of the fundamental unit must be
— 1. For if nis a unit whose norm = +1, then n raised
to all rational integral powers offer units whose norms
= +1

Write ¢e=x1+ylw where yl is positive, and observe

that x1,yl (when m# 1(mod. 4)) and (when

m=Il (mod. 4)) offer the smallest integral positive so-
lutions of the equations:

X2-my2=+1 or

The positive signs to the right are to be taken when



404 THE THEORY OF ALGEBRAIC NUMBERS

N(e) = +1; and when N(€)= —1, the negative signs on
the right must be used.

If it is not certain that the norm of the principal unit
is —1, that is, whether the two above equations with
negative sign to the right, admit solution, we may
proceed as follows:;

By solving the equations

X2 —myl= +1 or

compute the unit n which is least in absolute value and
such that |n|>l. Write n=xl+ wyl

If € and not n were the fundamental unit where
N(e) = —1, then since N(e2) = +1, we must have

€= (X+wy) = N = =1+ wyl).

If these equations do not admit solution in integral
values of x, y, then n and not ¢ is the fundamental unit.

Art. 233. What has been proved above for the
imaginary and real quadratic realms may be summarized
as follows:

The Dirichlet Theorem. In a quadratic realm all
the units may be expressed in one and in only one way
through a fundamental unit in the form pee where p is a
root of unity which belongs to the realm (for the case
R(¥/-1) or R(¥/-3) and is otherwise equal to #+1, and
where e=+1 for imaginary realms, and is different from
1 for real realms.

EXAMPLES
1. For the realm R(V-3), the fundamental unit is €=2+V3,
Note that the equation
X2 —3y2=+1
may be solved only for the upper sign, and that x=2, y=1 are the
smallest (positive) values for the solution of the equation x2—3y2= 1.
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Further units arc
Nl =€2=7 +4v3,
n2=e3= 26+ 15v3,
etc.  We further have

£2=7-43,
€3=26-15V3,
etc. The norm of all the units is +1.
2. R(V14). The smallest integral solution of the equation
X2-14yl= +1
is had for x=15, w=4, so that
€=15+4V14,
€)= 449 + 120V14,

€3= 13455 +3596V14,
etc.

€2=449-120v14,
etc. The equation
x2—-14yl= —1
does not admit solution in integral values of x, y.
3. R(¥5). The smallest integral solution of the equation

X2+Xy-y2= -1,
is x=0, y=1, so that
€=, and N(e)=-1,
2= 1+, N(e2)=+I,
€3=1+2w, N(e3)= -1,

etc. It is also seen that

Art 234. Realms in Which There Is an Odd Number
of Classes.

Theorem.! Every integral or fractional number a of
the realm R(¥Ym), whose norm is +1, may be expressed as the

1 Hilbert, Zdhlb., Chapter XV, § 54; Sommer, Vorlesungen, p. 107.
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guotient of two coniugate algebraic integers in the forn

Proof. An integral or fractional number o of the
realm R(Vm) may always be expressed in the form

where a, b, ¢ are rational integers whose greatest common
divisor is unity.

Further, since N(a) = +1, it is seen that a and b are
relatively prime.

The proof must be divided into two parts according as
m=l (mod. 4) or m# | (mod. 4).

Case |. émod. 4), w =vm. If we put

it is seen that x and y are to be determined from the
equations

These equations may be solved in integral values of x, y
if the determinant vanishes; and that is, if

is zero This is true since the determinant just written is
1 = N(a) =0. As solutions we have

where t is a common divisor of a+c and b.
Case IlI.

m=1 (mod. 4),
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Again we may write

We have for the determination of the integers x, y the
two equations

whose determinant is

As in the preceding case we may write

t being any divisor of a+c and b.
In both cases y has the form

If as a particular case a is an integer of the realm and
consequently a unit, we may write for 7 the expression
I+e

Art. 235. Theorem, Iif the discriminant oj a reat
realm R(¥m) contains only one prime number, then the
norm of the fundamental unit of this realm is — 1.

It is seen that the discriminant of the realm R(V2) is
8 = 23, while that of the realm R(Vp) is p, if p=1 (mod. 4).
These are the only quadratic realms whose discriminants
contains only one prime factor.

Suppose that ¢ is the fundamental unit. Further
assume that N(¢) = +1. Then due to the preceding

theorem we may write where y is an integer and y'
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its conjugate. It follows that ey'=y or (y) = (Y.
Hence (7) being an ambiguous ideall is divisible only by
ambiguous ideals. Besides rational integers the only
ambiguous ideal (Art. 216, third case, end) is 4p. It
follows that (y) = (a) where a is a rational integer, or
(y) = (Vp), where 2 is included among the prime rational
integers.

In the first case y=na and in the second y=nvp,
where 1 is an algebraic unit.

It further follows that

or

And consequently ¢ contrary to the assumption is not the
fundamental unit.

This theorem proved by Lejeune Dirichlet, Works, I,
224 is also proved by Hilbert, Zahlb., XVII, § 68.

Theorem. If the discriminant of a realm R(Vm)
contains only one prime integer p, the number of classes h
of the realm is odd.

If contrary to the assertion, we assume that h is an even
integer, we can determine an ideal i which is not a princi-
pal ideal such thati2z~1 and ii'~1. (Note thatif a is any
ideal, an,~1).

It follows that i—i' or where a is an algebraic

number (rational or integral). And since i = ai', it is seen
that
N()=N(0)N(i") or  N(a) = =+I.
As shown in the preceding theorem, the norm of the
fundamental unit € being —1, we may write

if N(a) = +1,

1 An ambiguous ideal is one that is equal to its conjugate and which is not
divisible by a rational integer.
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and
if N(o)=-1.

It follows that

(V)i= (y)i
Hence the ideal (yi) can have as factors only rational
integers and ambiguous ideals.

The realm R(~/-1) has the ambiguous ideal (1++/-1),
and every other realm R(¥m) [in which m=2, or
m=p=I (mod. 4)] has the ambiguous ideal Vm.

It follows that (y)i=(a), or =(avm) or a(1+V-1).
And these are all fundamental ideals so that in each of
these cases i~(l). This is, however, contrary to the
hypothesis that t was not a principal ideal.

Art. 236. The Hilbert Number-Rings! If o, B,
y, --- are arbitrary algebraic integers of the realm
R(Vm), the aggregate of all integers which are had from
these algebraic integers together with rational integers
through the usual operations of addition, subtraction,
and multiplication, and that is the aggregate of rational
integral functions of a, B, y, - -, with integral rational
coefficients forms what Hilbert (Zahlb., Chapt. 1X)
called a “ number ring ” (Zahlring), or ring. It is
simply a realm of integrity as defined in Art. 182 and
Art. 28.

A case of some interest is presented in connection with
the realms of rationality R(Vm) where m= | (mod. 4).
It was seen in Art. 98 that a basis of all integers of such

realms is Associated with such a realm we

may study the ring or realm of integrity that has as basis
the two elements 1, (Ym). This ring may be denoted by
r(vm).

1 See Report on Algebraic Numbers, pp. 59, 74.
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It is evident that

1st, every integer of R(Vm) is an integer of R(Vm);

2nd, every integer of R(Vm) has the form x+-yvm,
where X, y are rational integers;

3rd, if w1, w2 and wl* w2* are two bases of the ring (rvm),
then

0l* = rool + sw2, 02* = tol + uw?,
where the rational integers r, s, i, u are connected by the
relation ru-st==1 (see Art. 94). The expression
1, vm b el w2 oty a2

Dr= 1, —Vm wl w2 0l i =4m
is called the discriminant of the ring. It is (see Art. 98)
a multiple of the discriminant of the realm R(vVm).

Ifi=(a B,y ), thenis

(G, Bv Y, - ) = ((X, B! Y. - G7\1+B)\+y)\3+ ' )
where AL A2, A3, - - - are integers of the ring. The notions
and definitions which have been given for bases of ideals,
norms of ideals, conjugate ideals, products of ideals, etc.
are at once applicable to ring ideals.

If, for example, ir=(a, B, v, - - ), and if i is the greatest
common divisor of all the rational integers of this ring; if
further a=al +blvm B=a2+hb2vm, ---, and if i is the
greatest common divisor of bl, b2, - -, then the basis of
the ring ideal iris i, il + 12w, where N(il + i2w) =0 (mod. i),
since every rational integer that may appear as an
element of the ideal i must be divisible by i.

It is also seen (Art. 209) that N(ir) =ii2.

However, all the theorems that have been derived for
the integers of a realm of rationality R(vm) are not at
once applicable to the associated ring ideals.

For example in the ring R(V—3) the number 4 may be
factored in the two ways

4=2.2= (1+V-3)(1-V-3),
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where 2, | ++/-3, | — /-3 are irreducible integers of the
ring.

Igor it may be shown that no rational integral values
of x, y satisfy either of the equations

(I ++V-3) =2(x+yV-3),
2=(1+V-3)(x+yV-3).

If we wish to set up the ideal prime factors of 4, we do
not find that such a factorization is unique, as is the case
for the realm R(V-3).

For write

ir=(2, 1++v-3), r=(2, 1-vV-3).
We have at once
irir=(22, 2(1++v-3), 2(1-v-3), 4)
=)[2, 1+V-3, 1-V-3]=(2)(2, 1+V=3).
Note, however, in the realm R(V- 3), that
i=(2, 1 +V-3) =(2, 2w) = (2),
is a principal ideal and that in this realm

say, is a unit.

It follows that 1++v/-3=2¢ and 1-vV/-3=2¢. In
general an ideal of the realm R(¥m) is not at the same
time a ring ideal; however, there are always an infinite
number of realm ideals which are at the same time
ring ideals.

Art. 237. The greatest common divisor of all realm
ideals which are at the same time ring ideals is called the
leader of the ring or ring-leader. This ring-leader for the
realms R(Vm) is the ideal (2).

Theorem. A realm ideal i is a ring ideal, if and only
if the realm ideal is divisible by the ideal (2).

For if i is a realm ideal which is divisible by (2) and if
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i = (2)ii, where ii = (i, i1+i2w), then clearly t contains only
integers of the ring of the form 2i, 2i1+i2 (I ++vm) and
consequently is a ring ideal. Hence if the realm ideal
i=(a, b+cvm) is at the same time a ring ideal, then a

must be an even integer, otherwise which

is an integer in the realm ideal, is not an integer in the
ring ideal. Similarly b—c must be even; otherwise
(b+cvm)w' [an integer of the realm ideal]

is not an integer of the ring ideal.

From this theorem it follows at once that the ideal (2)
is the ring-leader of the ring r(vm).

If i=(a, B, y, ---) is an ideal in R(¥m), where
a=a+alw, p=b+blw, etc., and ir=(a, B, y, - - -) isaring
ideal in r(vm), where a=a+alvm, p=b+blvm, ---, the
ideal i is the associate of the ideal ir, and if i is prime to the
ring leader (2), then ir is called a regular ring ideal.

It may be shown that the simple theorems for divisi-
bility, which are true for the realm ideals, are also true of
regular ring ideals, if the product and quotient of two
ring ideals are defined in an analogous manner as they
were for the realm ideals

This is put into evidence through the following two
theorems:

Theorem. Ifiis an ideal of the realm R(¥m), which is
prime to the ideal (2), there always exists in the ring r(vm)
a regular ideal ir which is associated with the ideal i.

Proof. Let i be the realm ideal

i=(a b+cw)
with basal elements a, b +cw. If further i is prime to (2),
a must necessarily be an odd integer; and as a is divisible
by ¢ (Art. 206), ¢ must also be odd.
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This being supposed, the ring ideal
t,= (a, 26+2cw)
is associated with the realm ideal i.
For, due to the fact that

it is evident that

and since a and are relatively prime,

Art. 238. Theorem. The product of two regular ring
ideals is an ideal associated with the product of the associated
realm ideals.

If, as in the preceding proof,

i=(a btcw) and h = (al, bl+clw)
are two realm ideals associated with the ring ideals
ir=(a, 2b+2cw) and hr= (al, 2bl+2clw),
it is seen that
ih = (aal, a(b1+clw), al(b+cw), (b+cw)(bl+clw))
= (aal, a(bi+clw"), al(b+2cw),
4(b+cw)(bl+clw)) =irhr.
For due to the fact that 4 and aal are relatively prime, it
is possible to find two integers k and g such that
maal+g4 =1
Hence
kaal (b+cw) (b1+clw) + g4 (b+cw) bl+clw)
= (b+cw) bl+clw)

may be added as an element to the last written ideal,
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while

and

And when these two expressions have been added as
elements, the equality of the above ideals follows.

Observe that aa-i and have only the common factor

a.

This theorem taken with the preceding theorem shows
that every regular ring ideal may be decomposed into a
product of regular prime ring ideal factors in only one way.
It is evident if ir is a regular ring ideal and if i is the
associated realm ideal, prime to the ideal (2), that i may
in a unigue manner be factored into a product of prime
ideals, which are all prime to (2). To each of these prime
factors there corresponds a regular ring ideal, and their
product is associated with the realm ideal i. But, as
tr is the ring ideal associated with i, it is seen that this
product of ring ideals is ir.

The norm of a regular ring ideal is equal to the norm
of the associated realm ideal, and the theorems regarding
the norms of regular ring ideals have their analogies in
those of realm ideals.

Two regular ring ideals ar and br are equivalent and
written ar—br, if there exist in the ring realm r(vm) two
integers a, B, so that Bar = abr.

All equivalent ideals belong to a definite class, and
there are a finite number of these classes (Art. 218).

Regarding the units of the regular ring ideals, the
following theorem is proved.
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Theorem. The units of an imaginary ring r(vm) are
=+1; while there are an infinite number of units of every real
realm ring which may be expressed through the fundamental
unit er in the form eg where e takes all possible positive and
negative integral rational values.

Proof. It follows from Arts. 99 and 231 regarding
realm ideals that it is only necessary to prove the above
assertion for real realms and real rings. The proof is
given in two parts.

Let be an even integer, that is, m=1 (mod. 8),

and let e=x+yw be the fundamental unit in the realm
R(Vm).
It follows, since

that y is an even integer while x is odd; and consequently

is also a unit in r(vm) so that ¢ =er.
If next is an odd integer; so that m=5 (mod. 8);

and if again e =x+yw is the fundamental unit of R(vVm),
then from the relation

it follows that 1st, y is even, x odd; or, 2nd, y odd, x even;
or, 3rd, y odd, x odd. For 1st case ¢=¢ as above.
However, for the 2nd and 3rd cases note that

3 =xl+ylw
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is a unit of the ring, since

which is an even integer.

Hence for the 2nd and 3rd cases it follows that er = €3
Further note that the norm of the fundamental unit e
is positive or negative according as N(e) is positive or
negative.



CHAPTER X

THE QUADRATIC LAW OF RECIPROCITY AND
ITS ANALOGUE IN THE
QUADRATIC REALMS

Art. 239. The Realms R(V/-1), R(V2), R(V/-2) are
Limiting Cases of this law and as such are here con-
sidered.!

As will be seen in Art. 264, it was a desire to derive the
general reciprocity law as Gauss had done for the cubic
and biquadratic residues, that led Kummer in his arduous
studies of the ideal numbers. And this was an under-
lying notion of Kronecker in his investigations of the
higher forms, and their decomposition into linear factors.
It is therefore not out of place to devote some space to
the discussion of this Law of Reciprocity and later in
Vol. 11 to the discussion of the Kronecker forms.

Art. 240. The Realm R(v/-1). Next to the realm of
rational numbers the simplest real is the realm R(v/-1).
In this realm it has been seen that Euclid’s method of
finding the greatest common divisor is applicable.
Hence (Art. 208) every ideal is a principal ideal.

[f an odd prime rational integer is factorable in this
realm, it consists of two prime ideals, so that

(P)=p-p’
and consequently,
p=(x+V-1y)(x- V-1y)

1 With Sommer | follow the treatment of Hilbert, Bericht der deutschen
math. Vereinigung, Vol. IV, pp. 280 et seq. See also Smith’s Report, p. 75, and
p. 120 for Kummer’s Law of Reciprocity.

417
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or
p =Xx2+y2

Since p is an odd integer, this representation is only

possible if, say, x is odd and y even; and consequently, a

necessary condition for the factoring of p is p=1 (mod. 4).

See also Art. 246.

This condition is also sufficient; that is, if p is an odd
prime integer, such that i=1 (mod. 4), then p is factor-
able in R(i). For the quadratic realm R(Vp) has as a
fundamental unit € whose norm is —1 (see Sommer, p.
109; see also theorem in Art. 235). This carries with it
also the consequence that there exists the equation

It follows that the congruence
(2x+y)2+4==0 (mod. p)
idmits solution. If the rational integer z is chosen to
latisfy the congruence
2z=| (mod. p),
it is seen through the multiplication of the above con-
gruence bv z2 that
X2+1=0 (mod. p)
admits solution and vice versa.
If X =a is a solution of this congruence, it is seen that
p may be decomposed into two factors so that
() = (p. a+i)(p, a-i).
Further, since all ideals in this realm are principal ideals,
it follows that
p=(x+iu) (x-iu).
Since a prime number p=3 (mod. 4) is irreducible in the
realm R(V—1), it follows that the congruence
x2+1=0 (mod. p)
does not admit solution when p=3 (mod. 4).
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The integer 2, which is a divisor of the discriminant
d= —4 of the realm R(+/-1), is decomposable into the
two ideal factors 2)=(1++V-1)(1- V-1)—(1-+/-1)
in the realm R(i). In this case (1+V-1) are the
ambiguous ideals of the realm. We accordingly have the
theorem due to Fermat and first proved by Euler,
namely (see Kronecker, Werke, Vol. 2, pp. 3 et seq.):

The guadratic congruence

x2+1=0 (mod. p)
admits solution when and only when p is of the form
4n+1; or, a number of the form x2+1 can only have
divisors of the form 4n + 1
In other words

if p=4n+1,
and
if p=3 (mod. 4),

which statements are connected through the formula

The following is a consequence of what has just been
proved: If m is a rational integer which contains prime
factors of the form p =4n +3, the congruence x2+I==0
(mod. m) does not admit solution; and that is, the
Diophantine equations

XX—myl= -1 and

cannot be solved. It follows further that the funda-
mental unit ¢ of a realm R(¥m), whose discriminant
contains a factor of the form 4n+3, is such that always

the norm

N() = +1.
15
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Art. 241. The Realm R(V2). All ideals are principal
ideals since the Euclid method of division is applicable.
Of particular interest are those rational prime integers
which are factorable in this realm.

If p is an odd prime that is factorable in R(v2), there
are two rational integers X, y which satisfy the equation
p =x2-2y2.

The fundamental unit is

e=1+v2, N(e)=-1.
It may be proved that if p =x2 — 2y2 admits solution, then
also —p=x%2yladmits solution: for we may wirrite
(p) = (x+yV2)(1 +V2) (x—yv2)(I-V2),
or
-p=(x+2y")2—-2(x+y")? =xt2yl

The Diophantine equation p=x2—2y2, where p is an
odd prime number, can only be satisfied if x is odd and y
either even or odd. In the first case

p=(2n+D2-2(2m)2=4n(n+ 1) —8ml+1,
or
p=I (mod. 8).

In the second case

p=(2n+D2-22m+D2=4n(n+1) —4m(m-+I) — 1,
or

p=-1 (mod. 8).

These conditions are sufficient for the solution of the
equation p=x2-2y2’ and that is, for the decomposition
of p into factors. For, write p,=p when p=Il (mod. 8)
and put pl= —p when p= -1 (mod. 8). It follows that
Pi is a prime of the form pi1=l (mod. 8) and hence from
the theorem (see Art. 235), the realm R(Vpl) contains an
odd number of classes. Further (see Art. 216, Case
111), since xX2—p1=0 (mod. 8), the ideal (2) is factorable
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in the form (2, a+w)(2, a+w"), where a is a rational
integer. It follows that either
pPp=(2) =2 1+w)(2, 1+w), or pp=(2)=(2 w)2 w).
Since the number of classes h is odd, there exists an odd
number 2g+1 which is a divisor of h and for which
p2g+l and p'2g+l are principal ideals, so that

p2g+1= (X+Yyw) and p2g+l=(X+yw").
Through multiplication,

It follows that
(2x +y)2—4-229+1=0(mod. pl).
Due to the Fermat Theorem there is a rational integer k
such that (22f+2)k=l (mod. pl). It is seen through
multiplication of the above congruence by 22ff+2)k-1, that
z2—2=0 (mod. pl).

If z=a is a root of this congruence, it follows that
(P) = (pl, a—Vv2)(pl, a+Vv2). Further, since in the
realm 9%1(v2) there exists only the principal class (h = 1), it
is seen that

(p1) = (X + yV2)(x - yV2).
At the same time it is evident that the congruence
x2—2=0 (mod. p) may be solved only when p==I
(mod. 8). Observe that the prime integer 2 admits the
factorization (2) = (vV2)(¥2), as is required in the general
theory.

We may now enunciate the following theorem (see also
Art. 216, Case I11):

Theorem. The quadratic congruence x2—2=0 (mod. p)
is solvable when and only whenp= +£1 (mod. 8); and that is,
an integer of the form x2—2 has only divisors of the form
8n=l.
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It follows also that if p is an odd prime of

the form p==xl (mod. 8); while if p=+3
(mod. 8). These two formulas may be expressed in the
one formula

Art. 242. The Realm R(+/-2). Through similar con-
siderations it may be shown that the quadratic congruence
x2+2=0 (mod. p) admits solution for odd prime numbers
p=! and p=3 (mod. 8) and is not solvable for p=5 or
p=7 (mod. <S); and that is,

We derived in Arts. 240 and 241 the two formulas
and

and it also follows at once from the formula

that

Art 243. The Quadratic Law of Reciprocity for Odd
Rational Prime Integers. Alter determining the limiting

cases for and we are next concerned with the

value of (p/q) where p and q are any odd primes that are
different from each other. Legendre, 1785, and again in
1798, found that

which is known as the Quadratic Law of Reciprocity.
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Euler | had already noted that a certain reciprocity
existed regarding the possibility of solving the two
congruences

x2—q=0 (mod. p) and X2—p=0 (mod. q),
(see Euler, opus cit., Anal. 1, 1783, p. 64).

The following proof of this law is due essentially to
Kummer (Abh. der Kgl. Akad., Berlin, 1861). See also
Hilbert, Zahlbericht, Chap. XVII, 8§ 68-69.

For convenience, denote positive prime integers of the
form4n+1 by p, pl p2, -+, and let g, qL, g2, - -, denote
positive prime integers of the form 4n+3. Then in the
proof the three combinations of]integers p, p1;p, q; g, gl
are to be considered separately.

First Case. If the quadratic congruence

x2-p=0 (mod. pl),
admits solution, that is, if (ppl) =1, then as seen above

pl in the realm R(Vp) may be resolved into two different
prime ideals so that

(p1) = (p1, a+w)(p1 a+w’) =pp'.
Since the number of classes h in this realm is odd, the
discriminant containing only the one prime number pl,
there is always an odd number hl=2g-+I, which is a
divisor of h, and is such that the hl power of p as well as
of p' are principal ideals. Further, the norm of the
fundamental uniteis —1. Hence, if pp'= - p1, then is
N(e)pp' = +pl. Accordingly, we may write

pY+1= (X +yw)(x + yw’),

or

, For the history of this subject see Kronecker, Vol. Il, p. 3, and further see
Bachmann, Niedere Zahlentheorie, Vol. I, p. 200; Baumgart, Zeitschrift fur Math,
u. Physik, Bd. 30, p. 169; Dirichlet-Dedekind, Zahlentheorie (4th Edition) p. 95.
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From this follows the congruence
(2x+y)2—pl(2ph2=0 (mod. p);
and from this congruence follows as above,
22 - pl=0 (mod. p).

It is thus seen that if (ppl) = +1, then is (plp) =1.

It also follows further that if (ppl)=-1, then
(plp) = - 1; for if (plp) = +1, it must necessarily follow
that (ppl) = +1 contrary to the hypothesis.

Second Case. In the congruence x2-p=0 (mod. q),

suppose that (p1) = +1, so that q in the realm R(Vp) is
factorable. It follows that

()= (9, atbw)(q, a+bw’)
Due to the fact that the number of classes of 9R(Vp) is an
odd number (see theorem in Art. 235) it is seen that if ¢
is the fundamental unit in R(vVp) that N(e) = — 1, and as
above there exists an equation

From this it is seen that the congruence
x2-g=0 (mod. p),
admits solution, and that is, if

(pQ) = +I, then is also (ap) = +1.
Reciprocally, it may be proved that if (qp) — 1, then is
also (pg) =1. For if x2-gq=0 (mod. p) admits solution,
then due to the fact that

it is seen that x2+g=0 (mod. p) admits solution. This
latter result may be derived independently as follows:

The congruence z2= — 1 (mod. p) is solvable, since p is
of the form 4n—+1. If z is a solution of this congruence,
then associated with the congruence x2—q==0 (mod. p)
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there is a second congruence (zx)2—z2g=0 (mod. p), in
which z is relatively prime- to p, and consequently,
x2+q=0 (mod. p). Since, (—ap) = +1, it follows that
in the imaginary realm R(v/-q), the prime integer p is
factorable and since — g=1(mod. 4), and as the norm of an
integer in an imaginary realm is always positive, it
follows as above that x2-p=0 (mod. q) admits solution.
It has thus been shown that if

(@) (pQ) = +1, then also is (op) =—+1,;
and if

(b) (ap) = +1, then also is (pq) = +1.

And from this it is seen at once that if (pg) = -1, then
also (op) = —1,; for if(qp) = +I, then from what was
just proved (pq) = +1, and not —1.

Third Case. Let the two prime numbers be q and qi.
If in the first place (yql) = —1, then is (-qqQl) = +1,
since (-qgql) = (-W) (-9ql) and (-Vgl)=-1. The
prime number q! is factorable in the imaginary realm
R(V-q), and as -gq=1 (mod. 4), the discriminant of this
realm consists of only one prime factor. The number of
classes is odd, and as in the preceding case (g¥q) = + 1.

In the second place suppose that (¢gl) = +1, then the
fact that (ygl) = — 1 does not follow from the preceding
methods. A proof, however, as given by Hilbert, loc.
cit., is had, if we consider the realm R(vVqql). For this
realm it is seen that m=qgl=1' (mod. 4), and the dis-
criminant of the realm is D=qql. In this realm (end of
Case Ill, Art. 216) the only prime numbers that are
divisible by the square of prime ideals are g and q.
Write (q) =q2 and (q1) =¢2  Here g, g1 and ggl = Vggl = Vm
are the only ambiguous ideals. It is evident that qql is a
principal ideal. It may be shown as follows that g and
gl are also principal ideals.
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Let ¢ be the fundamental unit in R(Vqql), where (Art.
240, end) N(e) = +1. Hence due to the theorem in
Art. 234, there is a number a of the realmR(vVqqgl) which

is not rational, but is such that It follows that

(o) = (a)', and that every ideal which is a divisor of (a)
is also a divisor of (a)'. Suppose then that (1), (a) is of
the form na where 1 is a unit of the realm and a a rational
number, or (2), suppose that (a) = nvggl, In the first case

and in the second,

and this is a contradiction to the assumption that ¢ is a
fundamental unit of R(Vqgl). Hence the only other
forms that (a) can have are (a) = (a)q and (a) = (a)gl and
in either case gq—~I1, gl~I. It follows by taking the
norm of g, that

or
+4ql = (2x+Yy)2-qqly2.
This Diophantine equation may be solved only if 2x +y
is divisible by gl. It may therefore be written more
simply
+4 =qlX2—qY2 (i)
To determine the sign of the left-hand side we may make
use of the assumption that (q gl) =1. Writing equation
(i) in the form of a congruence, it is seen that
qY2+4=0 (mod. ql),
or
Y1249=0 (mod. ql).
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Hence, in virtue of the assumption it is seen that the
minus sign is to be taken. It then follows from (i) that
—4 =qlX2-qY.,

or
gLX2= —4(mod. q), or X12=-4ql (mod. q),
and finally,
X12+491=0(mod. q).
Thus with the assumption (¢fl) = +1, we have neces-
sarily (q11) = +1, or (g¥q) = -1.
To repeat the results thus established, we have
simultaneously
(qgr)=—+1 and  ((qug) = -1
and further
(@g)=-1 and  (qlg) = +1-
With this is established completely, the reciprocal re-
lations between the prime numbers g and gi.
Art. 244. The above results combined may be stated
in the theorem.
Theorem. If p and g are any odd positive prime
integers, their mutual residue character is expressed through
the Legendre formula

with the limiting cases

See also H. J. S. Smith, Vol. I, pp. 55 et seq. and
Wertheim, Anfangsgriinde der Zahlentheorie, pp. 320-22.1

1 Among the references to the treatment of the quadratic law of reciprocity in
the quadratic realms mention may be made of the following: )

D. Hilbert, Math. Annalen, Vol. 51, pp. 1-127, and G6tt. Nachrichten, 1898.

Das all%a_meme quadratische Reciprocitatsgesetz, etc., by K. S. Hilbert.
Gottingen Dissertation, 1900.
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EXAMPLES OF THE LAW OF RECIPROCITY
1. Due to the formula

it is seen that

Further,

so that

(27/17) = (10/17) = (2/17) (5/17) = (5/17).
(5/17)(27/5)=1, so that (5/17) = (17/5) = (2/5) = — 1.
3. Show that

and that
4. Show that
for  x=73, 97, 241, 313, 409;
and

for x= 193, 337, 457, 673.

5. Show that the solutions of

1, 5 9 21, 23, 25, 31, 33, 37, 39,
81, 77, 73, 61, 59, 57, 51, 49, 45, 43,

where n is any integer.

X=82n+

Quadratische Reciprocitatsgesetze in algebraischen Zahlkérpern. By Gottfried
Ruckle. Gottingen Dissertation (1901).

Das quad. eciprocitatsgesetze im quadratischen Zahlkdrper mit der Classenzahl
1. Gottingen Dissertation (1898) by Heinrich Dadrrie.

Der Klassenkorper der quad. Korper, etc. Gottingen Dissertation (1903) by
Rudolf Fuetel.

Various papers by Ph. Furtwéngler in the Abhand. und Nach. von der Kgl.
Ges. der Wissenschaften zu Gottingen. See also Math. Annalen, Vol. 63.
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6. Show that the solutions of = -1 are

11, 13, 23, 31, 33, 37, 39, 43, 47, 55, 61, 65, 67, 69, 73,

x=118n%s 77,83,89,91,93,97,99,101,103,109, 111, 113,115,117.

Art. 245. A generalized form of the Law of Reci-
procity due to Jacobil (Werke, Vol. VI, p. 262) is as
follows.

If p, g r, - - are any positive integers that are
relatively prime to the integer a, we may introduce by
definition the symbolic equality

Then, if P and Q are any factorable integers that are
relatively prime, it may be proved that

Art 246. Expressions of Integers through Sums of
Squares. Through the factoring of numbers in special
realms it is possible to derive by means of the theory of
ideals certain interesting theorems which have been
known for a long time. Possibly others may be dis-
covered in this manner.

I. The Realm R(i). (1) In Art. 240 it was shown that
in the realm R(v—1) every rational prime integer of the
form p=4n +l, and p=2 were essentially factorable in
only one way in the form

p=(x+V-1y)(x + V-1y),
and that any other factors differed only from the numbers
X=*+V-1y by multiples of =1 or =v-1. Otherwise
formulated, this means that everv vrime number of the

1 Jacobi, Ueber die Kreistheilung, etc. Monatsbericht der Akad. der Wiss. zu
Berlin, Oct. 16, 1837, pp. 127-136; Crelle, Vol. 30, pp. 166-182. See also
Report on Alg. Nos., p. 72.
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form p=4n+I1 or p=2 may be expressed as the sum of
two squares p=x2+y? in essentially only one way.
Dickson! refers to this as Girard’s Theorem. That the
theorem was known in the time of Diophantus, see
Jacobi, Vol. VII, p. 332.

The derivation of the two numbers x and y was done by
Legendre | by developing Vp in a continued fraction.

If one wishes to derive by trial the integers x and y, the
following observation may shorten the work.

From the equation p=x2+y2, it follows that
(1) (zxX)2+ 1= 0 (mod. p),
where z, reduced (mod. p) lies between -p/2 and +p2.

If w is a solution of the congruence (1), it is seen that x
must be a divisor of w--ap, where a is a rational integer.

It is clear that x is not larger than and that a must

be such that w + ap is situated between

(2) If p and pl are any two odd prime integers of the
form 4n+1, then in the realm R(~/-1)
p = (x+iy)(x-ly),
pl = (x1+iyl)(x1l-iyl).
There are two combinations of these factors, the one
being
ppl= {((x+iy)(x1+iyl)H{(x-iy)(x1-iyl)} )
= (X+iY)(X-iY)
and the other
pp1= {((x+iy)(x1+iy1)}{(x-iy)(x1+iyl)}
= (X1+iY1)(X1-iY1),
Thus it is seen that the product ppl may be expressed as

the sum of two squares in two essentially different ways.

1 See Dickson, History of the Theory of Numbers, Vol. Il, p. 228; see also p. 234.
A table for the values of x and y is given for the primes from 1 to 12,000 by-
Jacobi, Vol. VI, pp. 265 et seq.
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If
pl=2=(1+1)(1-1),

2p = (1+i)(1-1) (x+iy)(x-iy);
and since I+i=i(l- 1), it follows that 2p may be ex-
pressed as the sum of two squares in only one way.

Il. The Realm R(¥-2). In this realm the only units
are =tl and the number of classes his =1. Observe that
p=2= -(v/-2)2 while every rational prime integer of
the form 8n—+I1, or 8n+3 is factorable as the product of
two different prime numbers in essentially only one way
and of the form (see Art. 242)

p=(x+V-2y)(x-V-2y).
And this otherwise formulated is:

Every positive odd prime integer p of the form 8n+1 or
8n+3 may be expressed in only one way in the form
p =x2+2y2,

where x and y are rational integers.

Values of x and y for p of the form 8nyl are given by
Jacobi, Vol. VI, p. 271.

1. The RealmR-3 Here again h=1. If p
=x2+3y?2, then there is an integer z, such that pz2 = X2+3,
or X2+3=0 (mod. p). Further observe that

then is

Hence in order that p be factorable, p must be of the form
p=3n-+Il. And p being of this form, the equation

may be satisfied in only one way, where x is an odd and y
an even integer.

Noting that are the cubic roots of unity
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=W, w2, say, write

p = (a+bw) (a+bw?),
or
p= {w(a + bw)} {(a+bw2)w2},
p= {02(a + bw)} {(a+bw2)w},
etc. Then the condition that x be odd and y even is
satisfied:

(1) for a+bw (a being even, b odd),

(2) for (atbw2)w?2 (a being odd, b even),

(3) for (atbw)w= —b+ (atbw)w (where a and b are both
odd).

Otherwise expressed, there is only one way of factoring a

prime integer p=1 (mod. 3) in the form

p=(Xx+yV-3)(x-yV-3);

and that is:

Every rational prime integer p of the form 3n+1 may
always and in only one way be expressed in the form
p =x2+3y2,

These theorems may be extended to the exposition of
factorable rational integers through the form x2 + 2y? and
X2+3y2, x2+my2. By means of the theory of ideals
innumerable special cases ! for the presentation of integers
through the forms x2+my2 may be derived. This is
treated later when the relations existing between the
composition of forms and the theory of ideals is given
(Art. 283). For primes of the form 3n%sl see Jacobi’s
table in Jacobi’s Werke, Vol. VI, p. 268.

IV. The Realm R(v2). In this realm %=1, while there
are an indefinite number of units derived by raising the
fundamental unit €= 1+ V2 to different integral powers.
In this realm prime integers p of the form 8n+1 and
8n+7 are factorable (Art. 241).

1 See Dickson, History, etc., Vol. 111, p. 3, where many references are found.
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From the factoring of (p) into its prime ideal factors,
namely,
(p) = (x+yV2)(x-yv2)
combined with the units of the realm there arise an
infinite number of expressions of the numbers p in the
form x2—2y2. For if p=x2-2y2, then is
-p= (X+2y)2—2(x+y)2
(Art. 241). Further since
-p = (X+yv2)e(x-yv2)e'
it is seen that
-p =(X+2y)2 —2(X-y)2
And writing
p = (x+yV2)e2(x-yv2)e2,
we also have
p = (3x+4y)2-2(2x+3y)2.

And thus we have the theorem:

Every positive or negative prime integer, which when
taken positive is of the form 8n=xl, may be expressed in an
infinite number of ways in the form x2-2y2, and all the
different ways are hadfrom a single way through application
of the units xek of the realm, k a positive integer.

In this connection many other interesting examples are
found in Legendre, Theorie des nombres, Vol. I, Second
Part. See also Dickson, History of the Theory of Numbers,
Vol. I, p. 255; Vol. Ill, p. 55; Cunningham (Tables.
Quadratic Partitions. London) for values of x, y in
P=X2+Yy2, p=X2%2y2, p=x2+ry2(r= =5, 7, 3, =3, +5,
etc.).

Hilbert's Symbol for Norm-Residues |

Art. 247. Having distributed the ideals into classes
the next step in the classification is to distribute the
1 Hilbert, p. 286.
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classes into genera (Gauss, Disg. Arith.), this being an
extension in the quadratic realm of an analogous distri-
bution and classification in the realm of rational integers.
This classification is simplified through the introduction
of a symbol that is an extension of Legendre’s symbol and
due to Hilbert (Zahlbericht, Chap. 17, 88§ 64-66, 70, and
Chap. 18, 8§ 71-78).

Definition. Let p be a positive rational prime
integer, while m, n are two arbitrary rational integers,
the only restriction being that m must not contain a
squared factor.  If further there are algebraic integers a
of the realm R(¥m) such that n=N(a) (mod. pe) for
every rational positive integer e, then this fact is denoted
by putting the symbol

equal to +1.

If, however, there is no integer a of the realm R(Vm) which
is such that

n=N(a) (mod. p),
and if the congruence

N=N(a) (mod. pe)

cannot be satisfied by integers of the realm for every
positive integral value of e, this fact is denoted by putting

In the first case the rational integer n is called a norm-
residue and in the second case a norm-non-residue of the
realm R(Vm) with respect to p as a modulus. As in the
case of the Legendre symbol, there are certain properties
of the Hilbert symbol which simplify computation in
numerical examples. Before expressing these properties
in definite rules we may make the following remarks.
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I. In the realm R(¥Vm) observe that
N(a) = (x -vVmy)(x + Vmy), if m# 1 (mod. 4)
Hence, if
nl= (x -Vmy)(x + vmy) (mod. pe),
then also
n=kn!i = (kx —-Vmky) (kx + vmky) (mod. pe).
It follows that

if n=k2nl,

where k is a rational integer. And it is evident that the
formula is also true when m=l (mod. 4).

I1. Of the numbers that form a complete system of
incongruent residues with respect to p as a modulus,
namely, 1, 2, ---, p-1, half are residues (mod. p) and
the other half are non-residues (mod. p). See Dirichlet-
Dedekind, § 33 (4th Edition). Denote the residues by

and the non-residues by

If any one of the non-residues be denoted by n, then
among the differences

there is at least one non-residue (mod. p).

This is evident for the case n=3. If p is >3, observe
that no two of the d’s can be congruent (mod. p). It
follows that no two of the d’s can be congruent to one
and the same residue.

Suppose next that all the d,s were quadratic residues,
so that, say,

where is to be found among the r s above. Hence,

or,
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and similarly,
(mod. p),
where is the same system of residues
(mod. p) neglecting the order as Through
addition it is seen that
(mod. p),
which is not true since neither n nor is divisible by

p. It follows that at least one of the d’s must be a non-
residue. We may show that at least one of the d's is a
residue. For, assuming that they are all non-residues,
it is seen that

Observing (see Dirichlet-Dedekind, § 43) that
(mod. p)

as is also the sum
(mod. p),

it follows through adding the above congruences that
(mod. p}.

And this is not true.
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Similarly if r is any one of the residuesrl, r2, - - -,
then among the differences rixr, nixn, ni-r, some

are residues and some non-residues (mod. p).

Art. 248. The signs which are to be associated with
the Hilbert symbol are determined by means of the four
theorems which follow.

Theorem I.  If n, m are two rational integers while p
is an odd prime integer which is a factor of neither n nor
m. then is

(A)
(B)

IT further both n and m are divisible by the first power
only of p, then is

(©)

Proof of (A). First let m=2 (mod. 4) or m=3 (mod.
4). The first theorem asserts that
N=x2-my? (mod. p),
or
x2—my2—n=0 (mod. p), (i)
admits solution in rational integral values of x, .

1. Consider the case A solu-

tion is at once ottered by taking y=0 (mod. p) and tor x
any value that satisfies the congruence x2=n (mod. p).

2. Take next the cases In these

cases we may write m=z2 (mod. p), where z is a definite
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rational integer and then (i) takes the form
X2-z2y2-n=0 (mod. p).

Since n=n! (mod. p), where ni may always be taken as an

odd integer, we may always choose y so that

(mod. p),

and x so that
(mod. p).

These values satisfy (ii) and therefore also (i).
3. Theremaining case is had when

Observe that a non-residue multiplied by a residue is
always a non-residue, while the product of two non-
residues is a residue. Hence the product my?2 for the
integers y=1, 2, ---, p—1, goes over all non-residues
(mod. p) twice. And when for x all the residues (mod. p)
are substituted successively in x2-n, there is at least one
non-residue (see previous article). And thus it is seen
that (ii) admits solution in this remaining case.

If m=l (mod. 4), theorem (A) resolves itself into
proving that

(mod. p),

or that the congruence
4n= (2x+y)2—my? (mod. p),
admits solution.

The above proofs are at once applicable and with
them it is proved that for the first power of p, there
exists always an integer a of the realm R(¥m) such that

n=N(a) (mod. p).

It remains finally to prove that there is an integer a

in the realm R(¥m) which is such that n=N(a) (mod. pe),
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where pe is any positive power of p. The proof is one of
induction.

Suppose that ol =a+bw is an integer of the realm
R(Vm) for which the congruence n=N(a1) (mod. pe-1) is
satisfied.

1. When m#1 (mod. 4), a2-mb2-n =gpe-1, where g is
arational integer. Further, in the expression x2 — mb2 —n,
put x=a-+upe-1, y=b+vpe-1, and choose u and v such
that 2ua-2mbv+g=0 (mod. p). It is clear that

N=N(X +yw) (mod. pe).

2. A similar proof is applicable when m=1 (mod. 4).
Thus it is proved that if there exists an integer qu in
R(Vm) such that n=N(al) (mod. pe-1), it is possible to
determine two rational integers X, y such that

N=N(x+wy') (mod. pe).
As it was shown that there is always an integer a such
that n= N(a) (mod. p), it is seen that the congruence
N=N(x+wy) (mod. pe) may always be satisfied; and this

fact is denoted by the symbol

Art. 249. Proof of (B). If m=p, the congruences
x2-py2-Nn=0 (mod. p), when p#z | (mod. 4), (2x+Y)!
-py2—4n=0 (mod. p) when p=l (mod. 4), admit
solutions for all positive integral values of e, if and only if

and cannot be solved if

If n=p, the congruences x2-my2-p=0 (mod. pe) and
(2x+y)2 —my2 — 4p=0 (mod. pe) may be solved when and
only when x2—my2=0 (mod. p), or (2x +y)2-my2= 0

(mod. p), and that is when It follows that
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The theorem is at once applicable if n or m is divisible by
p, say n=nlp. It is seen that

Proof of (C). If both m and n are divisible by p, say
m=pml, n=pnl but neither of them by p2 then the
congruences in question x2-my2-n=0 (mod. pe), and
(2x--y)2—my2 — Yn =0 (mod. pe), admit solution when and
only when a congruence of the form pX2-mlY2-n1=0
(mod. p) exists. And the necessary and sufficient con-
dition for this is, as shown above, that

m1Y2-n1=0 (mod. p) or (mlY)2+minl1=0 (mod. p),

a condition which is denoted by the symbol
It has thus been proved that

Theorem Il. If m and n are two arbitrary rational
odd integers, the following relations exist
(A)
(B)

In the proof of Formula (A) we have to show that there
exist solutions of the congruences

(1) x2-my2-n=0 (mod. 2¢), if m#1 (mod. 4),
and
(2) (mod. 2¢), if m=Il (mod. 4);

while in the proof of Formula (B) it is necessary to show
that there are solutions of the congruences

(3) X2 —2y?-n=0 (mod. 2¢),
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and of
(4) x2-ny?-2=0 (mod. 2¢), if n#l1l (mod. 4),

5) (mod. 2¢), if n=1 (mod. 4).

It is evident that all of the above congruences may be
solved for e=1. We first show that they may be solved

also for any value of e greater than 3, if they permit
solution for e = 3.

Suppose for example that x =a, y =, is a solution of the
congruence

X2 —my2 —n=0 (mod. 23)
and that a2-mb2-n is not divisible bv 24 Write
x=a+2u, y=b+22. It follows that
X2-my2-n = a2-mb2-n-[-8{au-mbv)-{-1Q"*u2-mv?),
and consequently,
x2—my2-n==0 (mod. 24)
provided

(mod. 2),

and that is,

1+au-mbv=0 (mod. 2).
Since either a or b must be an odd integer this last
congruence admits solution. Similarly, if al and bi are
solutions of

x2-my2-n=0 (mod. 24),
we may derive solutions of this congruence when the
modulus is 25, 26, - - -.

Next suppose that x=a, y="0b, is a solution of the
congruence

(mod. 23).

Write x=a+8u and y = b+8v and determine u and v such
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that
av +bu-+=0 (mod. 2).

The corresponding values of x and y satisfy the con-
gruence

It only remains to determine what values of m and n
satisfy the congruences
X2 —=my2 - n=0 (mod. 8),

(mod. 8).

These may be put down in a table,! the even integers being
added for future reference. The values are, of course,
given for m and n (mod. 8). The values of n are those
for which the corresponding congruences are solvable.

m n

11 3 5 7 2 6
21,7, 2

315 6
51 35 7
6 1, 3 6
715 2

And from this table it is seen when m and n are odd that
For example,

1 Hilbert, Bericht, p. 290; Sommer, Vorlesungen, p. 135.
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showing that there is a solution of the associated con-
gruence ; while

and the corresponding congruence does not admit
solution.

When n is an odd integer it is seen that

or — 1 according as n=*1 (mod. 8) or n= =3 (mod. 8).
And this is

The above table may be used for a discussion of the cases
where p =2 and m or n as well as when both m and n are
even integers.

Art. 250. Theorem IIl. If m, n, ml, nl, are rational
inteaers and all odd, then is
(A)
(B)
(®)

Proof of (A). It is clear that the congruence
x2—2mly2-n=0 (mod. 2¢) can be satisfied only when
there are solutions for the case e=3. We may therefore
take for mi and n the values

ml n
1 1,7
3 1,3
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These values give a positive value to the symbol in the
formula

And this is a verification of the formula

Proof of (B). To determine the value of the symbol

the two cases

(1) mM=3 (mod. 4)
and
2 m=1 (mod. 4)

are to be considered.
For the case (1) it may be proved that the congruence

x2—my?2 -2m=0 (mod. 23)
is satisfied for the values in the table
nl m

lorb5 1 7

3or7 1,3
These values together with the wvalues for which

may be united in the expression

and that is

where m# 1 (mod. 4)
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Case (2) where m=l (mod. 4). In this case it is to be
determined whether the congruence

(mod. 2¢)

admits solution. This congruence may be written
(2x+y)2—my2-8n=0 (mod. 2¢+2),

or
X2-mY2-8nl1=0 (i)
There is a solution for ei=3, if
X2-mF2=0 (mod. 23) (ii)

has a solution.

Reciprocally, the congruence (i) has a solution for
el=4 and el>4 if X and Y are such rational integers that
X2 -mY2=0 (mod. 23) while X2 — mY == ¢fod. 24). And
that is, X and Y cannot be even integers. It follows that
the congruence (ii) admits solution only for m=1 (mod. 8).
In particular, there are then two rational integers, X, vy,
which are solutions of the congruence (i); and it may be
proved as above that this congruence may be solved for
every value of e provided m=1 (mod. 8). In the present
case the nature of the integers nl is immaterial; and we
simply have

if m=1 (mod. 8),

if m=5 (mod. 8);
or, finally,

where  m=1 (mod. 4),

Proof of (C). The value of the symbol

depends upon the propertv of the congruence
X2 —2mly?—2nl=0 (mod. 2¢).
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This congruence admits solution for all values of e for
which there are solutions of the congruence

2mix2—- (2mly)2—4min1=0 (mod. 2etl).
Hence x must be an even integer. Write x=2X and
mly=Y. The congruence divided by 4 then becomes

Y2-2miX2 + min1=0 (mod. 2e+1).. (ii)
Upon comparison of (ii) with (i) it is evident that

Art. 251. Theorem IV. Ifm, n, mi, nl, are arbitrary
rational integers, having no squared factors and if p is a
rational prime integer, the following relations are true:

(A)
(B)
(©)
(D)

Proof of (A). This relation is evidently true, since
—m is the norm of vm so that for every integer p

jmsdl pe}.
Proof of (B). Take first p a prime integer #2. Then
if n and m are prime to p, it follows from Theorem | that

If further n=nlp and m not divisible by p,

(See (B) Theorem 1). If m=pm!l and when n is not
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divisible by p,

Finally if m and n are both divisible by p, it follows from
(C) of Theorem | that

Take secondly the case where p=2. From Theorem
111 this follows immediately if at least one of the numbers
mor nisodd. If, however, both m and n are even, then s

(see Theorem 111, (C)); while

Further,

and

Since m1==l (mod. 2) and n1==Il (mod. 2), it is seen
that

(mod.- 2).

And this proves (B).

Proof of (C). Let p be a prime integer not equal to 2.
Suppose first that p is relatively prime to both nnl and m.
In this case
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If however m = pmi, then is

An analogous formula may be derived if nnl is divisible

by p.
Next let p=2. Observe that if m, n, and n! are odd

integers
(mod. 2),
and that is,
(mod. 2).

It is then at once evident from Theorem |11 that

Again, observing when m, n, nl are odd integers that
(mod. 2),

it is seen through direct calculation that

If either of the integers nnl or m is divisible by 2, apply
Theorem 111 with the results just established.

Proof of (D). First apply Formula (B) of the present
Theorem, then (C) and finally (B) to the resulting
factors.

Remark. If N(a) is the norm of o in the realm R(vm), then,
since

for every prime integer p, it follows that
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Art. 252. The Character-System ofan Ideal. Ifaisa
rational integer and if further 11, 12, ---, It are the t
different rational prime factors of D, where D is the
discriminant (fundamental invariant) of the realm
R(Vm), the complex of the t units

is called the character-system of the integer a in the realm
R(Vm). (See Dickson, History, Vol. Ill, pp. 81-88, 90,
190, 201.) Denote itby Ua If this definition is extended
to the ideals of the realm R(¥m), a distinction is to be
made between the real and imaginary realms.

The norm of all integers of imaginary realms are
positive rational integers. If ais an ideal of an imaginary
realm R(¥m), we put n=N(a) which is a positive integer;
and the character system for n as defined above is called
the character system of the ideal a  If, however, ais an
ideal of a real realm R(¥m) then the character-system
U-t is first determined for the number -1 in this realm !
and a distinction is made for the two cases:

1. Where U-! consists of only positive units.

2. Where U-1 contains both positive and negative
units.

In the first case N(a) being always a positive integer,
the complex of the r(=t) units is called the character-
system of the ideal a in the realm R(¥m). In the second
case, let, say It, be a prime integer for which

then, if we put n==%N(a), that sign + or —, is to be
taken for which

1 Hilbert, Zahlber., § 65.
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Next write r=t—1, and define as the character-system of
the ideal a in the realm R(¥m) the r units

(See Sommer, p. 141) Due to the definition of the
symbol the character-system of a principal ideal

consists only of positive integers. Observe that for
imaginary realms the integer n is always positive while
for real realms m is positive always.

EXAMPLES

1 In the realm R(v/-21), the discriminant D= —84. The
prime divisors are I1=2, 12=3, 13=7. Observe that for the number
—1, the character system is

Hence for any number, say 3, we have the character-system

a=(5, 3+V—-21), n=N(a) =5,

we have for the character-system of a

2. In the realmR(V-34), the discriminant D= 136, 11=2, 12=17.
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In this real realm the character-system of —11is

and here r=t=2.
For a=(3, 1+V34), n=N(a) = 3; and the character-system of a is

3. In the real realm R(v51), D=204, 11=2, 12=3, 13=17. The
character-svstem of —1 is

Observe that associated with 3, for example, there is a negative
unit and as there are both negative and positive units, we have

r=t-1=2. Let a= (5, 6+V51), so that
if n= -5.

Hence, the character-system for a is

Art. 253. Theorem. All ideals of one and the same
ideal-class have the same character-system.

Proof. Let a and b be two ideals of the realm R(vVm),
which belong to the same class. Hence (Art. 217), there
are two integers of R(¥m), say a and [ such that
(a=(B)b. Write N[Qma]=A and ‘N[(B)b]=NL so
that N=Ni. Further, put =N(a)=n and ==N(b)=nl
Hence, for all prime numbers, in particular, p=1. 12, - - -,
It, we have

16



452 THE THEORY OF ALGEBRAIC NUMBERS

since is always = +1; and

Since N =N1, it follows that

And this is true for p=11, 12, - - -, It.

Art. 254. Distribution of Ideal-Classes into Genuses.
It is clear that all classes which have the same character-
system may be united into a group; and we may say these
classes belong to a genus. The genus which contains the
principal class, may be called the principal genus. Its
character-system consists of only positive units.

Due to the formula

it is seen that the multiplication of the ideal-classes of
two genuses offers the ideal classes of one genus, whose
character-system is had through the multiplication of the
corresponding characters of the two genuses. In par-
ticular, it is seen that the character-system of the square
of an ideal class taken out of any genus consists of only
positive units, so that the square of every ideal class
belongs to the principal genus.

The following theorem may be proved in regard to the
number of classes which belong to a genus.

Theorem. The genuses into which the ideal-classes are
distributed all contain the same number of ideal-classes.!

Proof. Let HI, H2 H3, .-, Hf be the classes which
constitute the principal genus. If this does not include
all the classes of the realm, let K be a class which does

1 Sommer, p. 143.
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not belong to the principal genus. It is proved below
first that the classes KHL, KH2, - - -, KHTf, are all different
from one another; and secondly, they all have one and the
same character-system and therefore belong to the same
genus. For, letii h2 ... f) be ideals, respectively,
of the classes K, H{, H2, - - -, Hf. It is clear, for example,
that if)i is not equivalent to ih2 for (see Art. 217) otherwise
Hi~f)2, which is not true. Hence, KH1ZKH22 And
similarly KH1zKH2(i, j=1, 2, ---,F i#]).
Further note that

with similar expressions forh2, - - -, hf,

It is clear by considering the right-hand side of these
equations that all the classes KH1, KH2, - - -, KHf, have
the same character-system. If all the ideals of the
realm R(¥m) are contained in the classes H1, H2, - - -, Hf,
KH1, KH2, - - -, KHf, the theorem is proved. If,

however, there are ideals that do not belong to any of
these classes, denote such a one by | and let | belong to
the class L. Form the classes LHx, LH2, - -, LHf As
above, denote by t an ideal of the class K and let iil= (1),
where (1) is a principal ideal (Art. 218). Hence (1)l =iill
=ia, where a=ill. From the relation ()l =ia, it is seen
that

k=1,2,---f).

Further if L had the same character-system as K, or
KHes, it is clear that

where k=12, --- T
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Were this the case, it is seen, due to the relation (1)l =ia,
that L = KHSs, which by hypothesis is not true.

By continuing this process it is seen that eventually all
the ideal-classes have been reached. And this proves the
theorem.

Remark. In Art. 235 it was proved that if the discriminant of

the realm (Rvm) contains only one prime integer, the number of
ideal-classes is an odd integer. In this case the character-system
consists of only one unit.  As this unit could be either +1 or —1,
it is clear that the number of genuses could be at most 2. There
would then be an even number of ideal-classes. However, since
this number must be odd, there can be only one genus. Further,
as there are principal ideals in every realm, and the genus to
which such ideals belong is a principal genus, the character-
system must be +1.

This is a special case of the general theorem of the following
article.

Art. 255. Theorem. If m and n are two rational
integers, which have no squared factors, and if both m and n
are not negative, then is

where the product is taken over all possible prime integers p.
Proof. From Theorem | (A) of Art. 248, for every odd
prime integer p(£2), which is not a divisor of either m or

Hence if m and n are positive odd
integers that are relatively prime, there remain in the
computation of the value of besidesp =2, only

those prime integers that are divisors of m or n.  And we
have simply
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where pl, - - -, py, are the prime factors of m, while gl, - - -,
gv, are the prime factors of n.

By definition (Art. 245) the Jacobi symbol is defined
through the equality

while

and it was seen that

It was also seen that

With this it is proved that under the given

conditions.

Secondly let m and n be taken as above, with the
exception that either m or n is negative.

If n is negative, write n= -nNl where nl is positive.
We then have

where the second product on the right = +1.

?he Jacobi symbol means

where the p,s are defined as above. Hence,
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However,

(Art. 249) and also (Dirichlet-Dedekind, Zahlentheorie, p.
107)

The theorem is again proved in this case.

If m were negative = -ml, the theorem is proved by
using (B) of Theorem IV, Art. 251.

Thirdly take the case where m and n are odd integers,
which have the one common factor r, so that m=r-mi,
n=r-nl It is seen that here

It remains to consider the cases in which either m or n
or both m and n contain the factor 2.
Let m be odd and n even =2n}, sav. It is seen that

Further, using the Jacobi symbol, observe that

And that is,

Next, let m =2m], while n is odd; then due to the fact that
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the theorem is again proved.
Finally, let m and n be both even, say n=2n! and
m=2ml In this case,

When p#2, it is clear that And further,

for in the realm R(V2) it is seen that 2 is

the norm of 2+ 2.

It may be shown as follows that at least one of the
numbers m and n must be positive in order that the above
conclusions be true. For, suppose they were both
negative and put m= -ml, n= -nl, where m! and nl are
both positive. We may then write

Remark. If m is negative, and if A(i) is the norm of the ideal
t in the realm R(vm), then n= =N(i) is to be taken positive in the
computation of the character-system of the ideal i; if, however, m
is positive, then n= £N(i) may be taken either positive or nega-

tive with the condition, however, that
Art. 256. Letibe an ideal that is not a principal ideal

and give to n the values ==N(i) as indicated above, where
i without loss of generality may be assumed to be free of
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rational factors. We may then write

where the product denoted by []' extends only over the
prime factors of m and n together with the prime factor
p =2, if either m or n is an even integer.

If as above ql, g2, ---, gy are the odd prime factors of n
which are not also factors of m, then due to the assump-
tion relative to n, namely, that it is the norm of an ideal
which is not a principal ideal, it follows that

We then have remaining the equation

where the product is taken only over the prime factors
of m with possibly the prime integer p =2.

Next observe that when m=2 (mod. 4) or when
m=3 (mod. 4), then D =4m, and that when m=1 (mod.
4), then D=m.

Denoting b the product taken over all the

prime factors of the discriminant of the realm R(Vm),
where n is the norm of any ideal (not principal) of the
realm, then is

if m=2 or 3 (mod. 4); while if m=1 (mod. 4),

Observe that ifm=1 (mod. 4), whenn s
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odd. The integer n (as norm of an ideal that is not a
principal ideal) contains 2 as a simple factor only if 2 is
factorable in the realm R(Vm) and that is (Art. 216,
Case IIl) when m=l (mod. 8) and in this case (see
Theorem B, Art. 250)

with this it follows that

and that the product of the units which constitute the
character-system of an ideal that is not a principal ideal
is =—+1. Further, observing that the character-system
of a principal ideal consists only of positive units, it
appears that the results of the investigation just made
may be formulated in the following theorem:

Theorem.! The product of all the r units of a character-
system of an arbitrary ideal is always equal -1; or, a
system of r units £1 can present the character-system of an
ideal, only if their product is equal +1.

The number of different arrangements of the units +1
and -1 taken r at a time is clearly 2r, while the number
of such arrangements, whose product is —+1 is 2r-1
Thus in a quadratic realm there are possible at most
r-1 genuses.

The question now before us is: corresponding to the
above possibilities, do there in fact exist genuses and if so,
how many are there in a fixed realm? It will be shown
that there are r-1 such genuses. Before taking up this
proof, however, a careful investigation of the properties
of the ambiguous classes of the realm is necessary.

1 Hilbert, Bericht, p. 293; Sommer, Vorlesungen, p. 149; Dirichlet, Zahlen-
theorie, p. 319; Gauss, Disg. Arithm., Arts. 229-31.
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Art. 257. The Ambiguous Classes. In the quadratic
realm R(Vm) it may happen that when -vm is written
for vm in an ideal, that ideal remains unchanged. If a
and a' are two conjugate ideals in general they do not
belong to the same ideal class. Those special classes of
the realm R(¥m) which contain both o and o, where a is
not a principal ideal, are called ambiguous classes.

Every ideal of an ambiguous class is equivalent to its
conjugate; and that is i—i".

The square A2 of an ambiguous class A is a principal
class and reciprocally, if the square of an ideal-class is the
principal class, this class is ambiguous. Those classes
are clearly ambiguous, which contain ambiguous ideals.
It is also conceivable that there are ambiguous classes
which do not contain ambiguous ideals.

To find the number of ambiguous classes, we may
proceed in such a way that first those classes are de-
termined which contain ambiguous ideal, and to this
number add the number of ambiguous classes which do
not contain ambiguous ideals.

In virtue of the theorem (Art. 216 under Case II1)
regarding the ideal factors of the discriminant of the
realm, it was seen that every prime rational integer which
is a divisor of this discriminant is equal to the square of
an ambiguous ideal. If then I, 12, ---, It are the
different prime rational factors of the discriminant and
11, 12, ---, It, the corresponding ideal-factors of these
prime numbers in the realm R(¥m), it is clear that there
are t different ambiguous prime ideals. The product of
any two, of any three, etc., of these prime ideals are again
ambiguous ideals; or, neglecting the product of all these
ambiguous ideals, which is equal to the ideal (Vm), their
number is 2t—1. In other words, not including the
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principal ideal which is equivalent to (1), there are
2t—1 different ambiguous ideals in the given realm.

To calculate the number of different ambiguous classes,
which are determined by the ambiguous ideals of the
realm, Hilbert introduced the notion of the independent
ambiguous classes.  (See Hilbert, Bericht, p. 303.)

Definition. A system of ambiguous classes is called a
system of ambiguous classes independent of one another,
if no class can be expressed through the product of any
powers of the other classes, and where none of the
classes is the principal class.

For the ambiguous independent classes, which arise
from the ambiguous prime ideals of the realm there
exists the following fundamental theorem:

Art. 258. Theorem. The t ambiguous ideals which
are divisors of the discriminant of a quadratic realm R(vVm)
determine (1) in the case of an imaginary realm always t—1
independent ambiguous classes, and (£) in the case of a real
realm either t—2 or t—1 independent ambiguous classes
according as the norm of the fundamental unit of the realm
is +1 or —1. Corresponding to the two cases there are for
the imaginary realm 2t-1 and for the real realms either
2t-2 or 2t-1 different ambiguous classes with ambiguous
ideals. (See Hilbert, Bericht, p. 306.)

I. Proof of (1) where the realm is imaginary.

1. For the realm R(V-1) it is seen that D=-4,
I1=2, t=1 The only ambiguous ideal of this realm is
I=(1+V-1)— 1. There is here one ambiguous class,
which is the principal class and no independent ambiguous
class.

2. For the realm R(V-2), D= -8, I1=2, t=1. And
since I1=+/-2~1, there is also here only one ambiguous
class.
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3. The same is true for the realm R(~/-3), whose
discriminant is D=-3. The two realms and
R(V/-3) are the only two imaginary realms in which
there are units which differ from +1. For the other
imaginary realms, where m| >3, the only units are *1.

4. Let (o) =x+yw be an ambiguous principal ideal of
the imaginary realm R(Vm). It is seen that we must
have X+yw=¢€(X+yw,), where € is a unit of the realm.
If then |m| >3 it follows that either

(1) X+ YW =X+ yw'
or
2 X +yw= -X-yw.

The equation (1) is possible if y=0 and x equal to an
arbitrary rational integer, say a. The equation (2)
however offers solutions

1. for w=vm, x=0, y =b, say,
2. for X= -, y = 2b;

and from these results it is seen that (1), (Vm) are the
only ambiguous principal ideals of the realm.

If m: 1 (mod. 4) or if tn=2 (mod. 4), the product of
all the ambiguous ideals of the realm is I11-12- - - -t = (Vm)j
if, however, m=3 (mod. 4) and if It is the ambiguous ideal-
factor of 2, then is

12-13- - It = (¥Vm).
In both cases any one of the ambiguous ideals, say It, may
be expressed through (vm) and the rest of the ambiguous
ideals. Hence in either case there are at most t-1
independent ambiguous classes.

It must also be observed that there can never be an
equivalence of the form 11~I2. 13- - -It,, where m=Il (mod.
4) or m=2 (mod. 4); nor one of the form i2~I13:14 - -L
for the case m=3 (mod. 4), where For it would
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then follow that in the first case

12-12- - -, ~122133- - - lv—1
and in the second case,

11:12---lv~1

which is not true, as it was shown above that (1) and
(Vm) were the only ambiguous principal ideals of the
realm. It follows that associated with the t—1 ideals,
11-12---1t-1, there are t—1 independent ambiguous
classes. If these prime ideals are taken two at a time,
three at a time, ---, there exists a system of 2t-1—1
ambiguous ideals, in which system no two ideals are
equivalent and no ideal is a principal ideal. If then the
principal class is included, there exists in the realm
R (VM) classes that are different from one another
and which contain ambiguous ideals.

I1. Suppose next that the realm R(vVm) is real. The
real quadratic realms are to be treated differently
according as the norm of the fundamental unit is +1-
or —1

1. In thefirst case, that is, when N(e) = +1, there is in
the realm (see Art. 234) an algebraic integer a, say,
different from 1, and from ==vm, such that And
from this relation it follows that

(@) = (a)
and consequently (o) is an ambiguous principal ideal
which is different from (1) and from (vVm). Besides (1),
(Vm), (a) and (avm)), where the last ideal is freed of
rational factors, there is in the realm 9t(Vm) no other
ambiguous principal ideal that is independent of the four
ideals just mentioned. For if (B) is an arbitrary ambigu-

ous principal ideal of the realm there is necessarily a
rational integer f such that p = xeff'.  On the other hand
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af=tfa,f. Hence if we write

(1) when  B=-+eff'

and

(2) when B=-efp",

it is seen that 7 is a number, such thai Since

this can be true only when y is a rational number, there
can be no other independent ambiguous ideals in R(vVm)
besides the four principal ideals (1), (Vm), (a) and the
ideal (avm) freed from rational factors.

2. If secondly the norm of the principal unit is
N(e) = - 1, the quadratic realm has only (1) and (vVm) as
ambiguous principal ideals.

For, if o) is an ambiguous ideal which is different
from (1) and ,(vVm) and does not contain (vVm) as a factor,
we may write

so that

It follows that f is an even integer, for by hypothesis
N(e) =- 1.
Hence if we choose {3 in such a way that
iff2=0 (mod. 2) and
(1)
orif2=1 (mod. 2) and
while
if ¥2=0 (mod. 2) and
@)
or if’72=1 (mod. 2) and

then itis clear that B is a number such that and
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consequently, B is a rational number. It follows there-
fore that (a) = (1) and (o) = (Vm) are the only ambiguous
principal ideals. (See Sommer, Vorlesungen, p. 154.)

Art. 259. Having determined all the ambiguous prin-
cipal ideals that exist in a real realm, the system of non-
equivalent ambiguous ideals and the ambiguous classes
that are independent of one another may be determined
in the same manner as in the preceding case of the
imaginary realms. And it is seen that for a real realm
with fundamental unit e such that N(¢) = — 1, one of the
prime ideals I1, 12, ---, It may be expressed through
(Vm) and the remaining t—1 of these ambiguous ideals; if
however,N(€) = +1, of the ambiguous ideals 11, 12, ---, It,
that are factors of (Vm) or of (a), two may be expressed
through(vm) and (o) and the remaining I's, so that there
remains a system of t—2 inequivalent ambiguous ideals
that are not principal ideals. Thus it has been shown
that there are either t — 1 or t — 2 independent ambiguous
classes and as in the case of the imaginary realms it is
seen that there are in all 2t-1 or 2t-2 different ideal-classes
which contain ambiguous ideals.

It remains yet to determine in what realms there exist
ambiguous classes where such classes do not contain
ambiguous ideals and to determine the number of such
classes.

Observe first that if i is an ideal of an ambiguous class,
then i—i', or

(y)i=r.
If further N(y) = +1, then the ambiguous class certainly
contains an ambiguous ideal. For since N(y) = +1,
there is an integer B of the realm such that (see Art. 234)
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Hence, Bi='i"; so that fi is either an ambiguous ideal,
or is an ambiguous ideal multiplied by a rational factor.
Hence an ambiguous class without ambiguous ideals can
exist only when N(y) = — 1. And this is possible only for
real realms. If for such a real realm N(y) =- 1, and if
further the fundamental unit e of this realm is such that
N(€) = - 1, then is N(ey) = +1 and consequently ey =[pB".

Here again (B)i=(B"i' and the class contains an
ambiguous ideal.

Due to the above observation, there remains still the
possibility which is expressed in the theorem:

Theorem. In the quadratic realm R(vVm) there exists an
ambiguous class which does not contain ambiguous ideals
only in the case where the character-system of —1[ = N(y)]
consists solely of positive units and where the norm of the
fundamental unit of the realm is equal to +1. The
number of such classes is had by taking one such class and
multiplying it by all the different ambiguous classes which
contain ambiguous ideals.

Due to a previous theorem (Art. 248, end) the charac-
ter-system of — 1 consists solely of positive units if —1 is
the norm of an integral or fractional number of the
realm. The above conditions may be brought about as
follows: Let m contain besides the possible factor 2 only
prime factors of the form 4n—+1. The character-system
of —1 will contain in this event only positive units, since

and further (Art. 246) m may be expressed as the sum of
two squares in the form

m=u2+v2
If we write this equation in the form
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say, it is seen that —1 is the norm of an integral or
fractional number of the real realm R(¥Vm). This
number is evidently fractional, otherwise it would be a
unit and the norms of the units of the realm are by
hypothesis equal to +1. Next write y equal to the
quotient of two ideals  and ti that are relatively prime, so
that

or i=(y)il
Since N(y) = —1, it follows necessarily that

' =ilil,
As i and il are by hypothesis relatively prime and
consequently also i' and il it follows that i' =il1, and since
i= (Y)il, it is seen that i= (y)i' or i~i". Thus it is seen
that t determines an ambiguous class. This class cannot
however contain an ambiguous ideal. For were o an
ideal of this class, we would have a=ai where a is a

number ofR(¥m), or a= (a)(7)i'. If a were an ambigu-
ous ideal it would also follow that (a')(y")i= (a)(y)i', or

a=(a)(y"). It would follow that and N(y) = +1,

whichis not true. Neitheris N(ey) = +1, since N(e) = +1.
And with this the first part of the above theorem is
proved.

Art. 260. If next tis an ideal which is not ambiguous,
but which determines an ambiguous class of the realm,
and if al, a2, --., denote ambiguous ideals taken as
representatives of the different ambiguous classes which
were presented in the preceding theorem, then as proved
below, the ideals ial, ia2, ---, determine (1) different
ideals; and (2) they determine all the ambiguous classes,
which do not contain ambiguous ideals.
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It is easily seen that no two of these ideals are equiva-
lent For, if
iav, ~iay,
then is av—ay, which is contrary to the assumption.
Next let J be an ideal that is not ambiguous which is
taken from one of the ambiguous classes. There are then
two fractional numbers of the realm, say y and yl such

that N(y) = —1, N(yl) = —1, where and

consequently Since N(yyl) = +1, it is seen

(Art. 234) that yyl may be expressed as the quotient
of an integer a' and its conjugate in the form

or ()id = (aHI'T"

It is thus proved that (a)iJ is an ambiguous ideal, and

consequently is one of the ideals al, a2 -, above.
Writing a)iJ = a it follows that

J —i'a—ia
And with this it is shown that besides the classes that
contain the ideals ial, ia2, ---, above, there are no
ambiguous classes that contain ideals that are not
ambiguous.

A combination of the theorems just proved gives rise
to the following fundamental theorem:

Theorem. In every quadratic realm there exist 2r-!
different ambiguous classes.

This theorem in extenso includes the following results
that have been derived above:

For the imaginary realms, it was seen that r=t and
further that every ambiguous class contained necessarily
ambiguous ideals. Hence, for imaginary realms the
number of ambiguous classes is 2t-1 = 2r-1.
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When the realm is real, there are three different cases
to consider according to the nature of the character-
system of —!1 and the value of the norm of the funda-
mental unit.

(a) Suppose that the character-system of —1 contains
once at least the unit —1. In this case r=t-1. The
norm of the fundamental unit must be necessarily +1.
Every ambiguous class of the realm contains ambiguous
ideals. Their number is 2t-2=2r-1.

(6) The character-system of — 1 contains only positive
units while the norm of the fundamental unit is - 1.
It is seen that r=t and that every ambiguous class
contains at least one ambiguous ideal. Their number is
therefore 2t-1 = 2r-1.

() The character-system of —1 consists of positive
units only and the norm of the principal is +1. In this
case r=t. The realm contains 2t-2 ambiguous classes
which contain ambiguous ideals and in addition 2t-2
ambiguous classes which do not contain ambiguous
ideals, in all, 2.2t-2 =2t-1 = 2r-1 ambiguous classes.

Thus it is shown that 2r-! is the maximum number of
possible ambiguous classes. This correspondence gives
rise to the conjecture that there is an intrinsic relation
between the number of ambiguous classes and the
number of genuses. This is shown to be true in the next
article. It will be shown that every class of the principal
genus may be expressed as the square of a class of the
realm.

Art. 261. The Existence of the Genuses. Theorem.!
If m and n are two rational integers which have no squared
factors and if for every prime integer v the value of the

symbol is +1, then is n equal to the norm of an

1 See Hilbert, § 71.
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integral or fractional number of the realm R(vm).
Proof. If for all prime numbers p, the equation

is satisfied, then as has already been shown, at least one
of the two numbers n or m must be positive.

We may assume that neither n nor m has a squared
factor. Observe that if n=a:b, then (Art. 251)

Consider the exceptional cases that may arise: If pl is a
prime integer that divides n and also the discriminant
of R(¥m), then, as seen in the different cases considered
above, pi is the norm of an ideal in R(¥m); if p? is an
odd prime divisor of n but not of m and accordingly

and when this expression = +1, then p?

is the norm of an ideal in R(vm) finally if 2 is a divisor
of n but not of the discriminant of R(Vm), and as

it is seen (Art. 216, Case Ill), that

when this expression =-+1, then also 2 is the norm of
an ideal in R(¥m).

We may accordingly write n==N(i), where t is an
ideal of the realm R(¥Vm). Since (Art. 218) there is an
ideal h in the class determined by i, such that, if we put
nt=N(h), thenis nl1 [Dm, where Dnm is the discrimi-
nant of the realm R(¥Vm). As i and h belong to the same
class, it follows that i= (a)h where a is an integral or
fractional number of R(vVm). It follows that n=N(i)
==x=N(a) N(h=N(a)nl. If n1=+1, the correctness of
the theorem is manifest.
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Observe that nl being the norm of an integral ideal is
always a rational integer and in the further consideration
of the theorem that we may assume nl to be an integer
without a squared factor such that

for all prime integers p.

It is seen that if the theorem were proved for m and
every integer n1 where |nl] |vVDm], Dm being the
discriminant of the realm R(¥m), then it is true for every
n, and it is evident that no restriction upon the theorem
has been made, when it is assumed that |n1| |[vVDm].

SuDDose that the theorem has been proved for the two

numbers n! and m, and consequently that

In this expression, X, y, cannot be zero simultaneously,
nor can u, v be simultaneously zero. Observe further
that x, u cannot both be zero at the same time nor can y
and v be both simultaneously zero, for in either of these
cases n! would be a perfect square. Solving the above
expression for m, it is seen that

()
Due to the fact that

the meaning of the expression (i) is: If the theorem to be
proved is correct for two numbers n! and m then it is
also true when these two numbers are interchanged, and
that is, the theorem holds for m and nl. Observe however
that |nl] D1 The inverse of this theorem is also true.
In this discussion, if m 4, then is [VDm| < m and
therefore a fortiori |nl| < |m].
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Due to the first fact shown above the theorem is
correct for m and nl, where |[n1/ |vVDm| in case it is true
for two numbers m! and n! where and
is the discriminant of R(nl1). W.ith this the proof of the
theorem for two arbitrary numbers n, m is reduced to
the proof of two new numbers and which in
absolute value are less than |m|, provided [vDm| |m|
and that is, if |m|, 4.

Since we may reason backward from the truth of the
theorem for the two numbers n, m to the truth of the
theorem tor the two numbers which are greater in
absolute value, it is seen that the theorem is proved in
general if its correctness is shown for the realms R(V—1),
R(V+2), R(V£3) and that is for the realms where m<4.
For all these realms the number of classes is h=1, and
further note that the following eight are the only cases in
which |m|, 4 and at the same time |n| |vDm|. It

is proved below that = +1 for all prime numbers

p in each of the cases:

1=N(V-1), -2 =N(2),

2=N(1+V-1), 2=N(-2),

2=N((2+V2), -2=N(+v3),
—1=N(+V2), -3=N(V3).

For note that in the realm 9i(-v—1),

1=N(-1), 2=N(l+V-1),
while in the realm E(v2)

—1=N(e),
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where
e=l +\/2, +1:N(€);

—2=N2), 2=N(@2+V2).
In the realm R(vV-2)
and 1=N(-1),

and 2=N®H-2).
In the realm R(12))
1=N(-1),

~2 = A'(I+V=3) -3=N(3),
while in the realm R(vV-3),
and 1=N(-1).

In all these cases the theorem is found to be true and
from the above considerations it is true in general.

Art. 262. Theorem. Every class of the principal
genus in a quadratic realm R(¥m) may be expressed as the
square of a class of this realm.

Proof. Let H be a class of the principal genus in the
realm R(¥m) and let h be an ideal of this class which is
relatively prime to the discriminant D of this realm and
let n be the norm of h with the % sign assigned as in
Art. 252. Then is

for all prime integers p.

Due to the theorem just proved, we have n=N(a).
where a is an integral or fractional number of the realir
R(m).
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Next put where i and il are ideals that are

relatively prime. Since i and il are relatively prime their
conjugates are also relatively prime. From above

Hence, ii'=ilil, and consequently

i=il il=i'. It follows that If then

H denotes the class to which the ideal h belongs and Ki the
class to which i belongs, then in the corresponding
notation

H=KEg
as is asserted in the theorem.

Theorem. The number of genuses present in the
quadratic realm R(vVm) is equal to 2r-1.

Proof. Let the number of classes be h and let g be the
number of genuses. Further, let ¥ be the number of
classes which are contained in each genus so that h=gf.
Denote the classes of the principal genus by H1, H2, - - -,
Hf. From the theorem above, there exist f classes
Kl K2, -, Kf such that

H1=K2 H2=K2 Hf = K2

the classes K1, K2, - - -, Kf, being different from one
another and one of them representing the principal class
K=1 1If Al A2 ---, Aa are the a=2r-1 different

ambiguous classes of the realm, it may be shown that
through
KIAL KIA?, KlAa
0
KfAl KfA2, KfAa
all the classes of the realm may be expressed and each
class only once.
Observe first that these classes are all different. For if
KM = KiAp
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then is also KN = Ky
since the square of an ambiguous class belongs to the
principal class K=I. The K's however are all classes

different from one another.

On the other hand, if C is any class of the realm, then
C2 belongs to the principal genus. For if i is an ideal of
C. so that i2 is an ideal of C2 then is

Hence, there is a class Ky, say, such that
C2=Kw2,

where v is one of the integers 1, 2, ---,f Hence
is an ambiguous class since its square is equal to K, where
K denotes the principal class: and we may write

A denoting one of the ambiguous classes above. And
that is, C=AKv which class is found among the classes
(). Thus it is seen that on the one hand h=gf and on
the other hand h = af= 2r-If, so that
g=2r-1

It was proved in Art. 256 that the product of the units
which constitute a character-system is always equal to
+ 1, and consequently there existed at most 2r-! genuses.
In conclusion, it is seen that a system of r units +1,
always represents a character system, when and only
when the product of the r units is equal to +1.

Application! of the Existence Theorem of
the Genuses

Art. 263. 1. If the number of classes of a realm is odd,
all the classes belong to one and the same genus. For,
h=g-f=2r-1f and if h is odd, 2r-1 must equal unity.

1Sommer, Vorlesungen, p. 164.
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2. Let m=p be a positive or negative prime integer and
let m=1 (mod. 4). In this case D=m=p, so that t=1
=r. The number of genuses is 20=1. The realm
contains only one ambiguous principal ideal and only one
ambiguous class, namely, the principal class. When the
discriminant contains only the one prime factor, the
number of classes is odd (Art. 235) and if the realm is
real, the norm of the fundamental unit (Art. 235) is
equal to —1.

3. Let m=p be a positive prime integer of the form
4n+3. In this case D=4p, h=2, I2=p, and therefore,
t=2 The character-svstem of —1 is

sothatr=t-1=1  The number of ambiguous classes as

well as the number of genuses is 20=1. In particular, 2
is factorable (Art. 216) insuch arealm. Fori= (2,1 + Vp)
is an ambiguous ideal = (2, 1 = Vp) =i'.  And as the norm

of any principal ideal in this realm is of the form x2-py?,
it is clear that

+2 =x2-py2
Writing the equation 2=x2-py? in congruence form
x2=2 (mod. p), it is seen that

when p=42n+1)+3=8n+7

(Art. 216, Case Ill). Hence, -+-2=x2-py? admits solu-
tion for p=8n+7, and similarly, -2 =x2-py? admits
solution for p=4(2n)+3=8n+3 The solution of such
equations may be done by trial. Observe that often the
solution may be effected in a similar manner as that of the
equation (Art. 246)

+1=x2-my?
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by first determining the roots of the congruence
x2 2=0 (mod. p).

If w is a solution of this congruence, the required value
of x is to be found among the numbers x = w+ pg, where ¢
is a positive or negative rational integer. We may write
for g the values 1, 2, ---, p—1, and observe when

is a perfect square, say, y2

4. Let m= —p be a negative prime integer of the form
m=3 (mod. 4). In this case r=t=2. The number of
classes is even and the realm contains two ambiguous
classes in which appear the two ambiguous prime ideals

a= (vVvm), b= (2, I +Vm),
whose norms are N(a) = —m=p, N(b) = +2. The char-

acter-systems of o and b in the realm R(Vm) are ac-
cordingly,

where in the two last expressions the upper or the lower
signs occur according as p=I (mod. 8) or p=5 (mod. 8)
(Art. 216, Case I11). If the two upper (plus) signs occur,
then the class B determined by b belongs to the principal
genus. And since every class of the principal genus may
be expressed through the square of another class, it is
evident that B=K2 But B being an ambiguous class,
B2=1 and consequently Ké=1In this case it is seen
that the number of classes is divisible by 4 and that is, at
least equal to 4.

If however the lower (minus) signs occur in the
expressions in question, then B cannot be equal to the



478 THE THEORY OF ALGEBRAIC NUMBERS

square of a class, and the number of classes is divisible by
2 but by no higher power of 2.

In this case, if HL, H2, .-, Hf are the classes of the
principal genus, where f is an odd number, then the
remaining classes are HIB, H2B, - -, HfB. Due to the
fact that B2 =1, it follows that Hi=HR HI=HsHt, where
I, k, s, t are integers of the series 1, 2, ---,/.

5. Letm=p-p! be a positive integer where p and p! are
both positive prime integers of the form 4n+1. In this
case t=2=r, g=2. The number of the ambiguous
classes is accordingly 2 as is also the number of the
genuses. The number of classes is even. The ambigu-
ous ideals are

(p. vm),  (pL vm),  (Vm).
Further note that

Hence, see theorem in Art. 259, if the norm of the funda-
mental unit ¢ of the realm is =-+1, there exists an
ambiguous class which does not contain an ambiguous
ideal.

In this case the three ideals above must all be principal
ideals. And that is, one or the other of the two equations

as well as one or the other of the equations

admits integral solutions.

If we write it follows also that the equation
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admits integral solutions.
Reciprocally, if this equation can be solved in integers,
then the norm of the fundamental unit ¢ is equal to +1.
A necessary condition for the above Diophantine
equation is that
(PP = +1
The above result may be expressed in the theorem:

Theorem. If m=ppl where p and p! are positive
prime integers of the form 4n+1, then the norm of the

fundamental unit ¢ of R(Vm) is equal to — 1, if

If the fundamental unite may have

the norm =1, as is seen in the case of the two realms
R(V145), where e=11+2w, and N(e) = — 1, and in the realm
R(V221), where ¢ = 7+w and N() = +1.

The question when is N(e) = +1 and when is N(e) = - 1,
is discussed further from a different standpoint by P. G.
Lejeune Dirichlet, Ges. Werke, Vol. I, p. 288, in a paper:
“ Einige neue Satze Uber unbestimmte Gleichungen.”

Example. Write p=2, pi=1I- -4n and derive similar results as
those just proved.

6. Let m=qg! be a positive integer, where ¢ and qi are
positive prime integers of the form 4n+3. (See Art. 243,
third case.) In this case m=l (mod. 4) and t=2
Observe that

Hence r=t-1 and g=20=1 (Art. 262). The number of
classes is odd, since the ambiguous ideals are all principal
ideals (Sommer, p. 119), and no ambiguous classes can
exist which do not contain ambiguous ideals.
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The equivalence (g, Vqql) ~1 has the signification here
that one or the other of the two equations

admits solution; and that is, one of the equations
+4q = (2x+Yy)2-qqQqly?
may be solved in integers.
Writing 2x +y =zq, these equations become
+4 =7)9-yqlL
Further, observe that the equation with the upper or the
lower sign admits solution, according as
@ol)=+1 o (gigl)= —1

Note that if one solution of the equation +4 =gx2—qly?
is known, an infinite number of other solutions may be
determined by means of the units of the real realm
R(Vqgl): And it is further seen that the equations
#+1 =gx2-qly? admit solution according as (g/ql) = %1

7. If m= xpq is a positive or negative integer, p and
being prime numbers such that p=I (mod. 4) and q=3
(mod. 4), thenist=3 or t=2, and in either case, r=2 and
g=2. The number of classes of the realm is clearly even.

If the special cases above are taken into consideration,
the results may be expressed in the theorem:

Theorem. The number of classes of a realm is odd:
(1) if m is a positive or negative prime integer and m=l
(mod. 4); (2) if m is a positive prime integer of the form
4n+3; (3) iIf m=qgqi is a positive integer, being the product
of two positive prime integers q and gl of the form 4n+3,
In these and only in these cases is the number of classes of
the realm equal to one; in all other cases the number of
classes of a realm is an even number.



CHAPTER XI

APPLICATIONS OF THE THEORY OF IDEALS
OF QUADRATIC REALMS TO A DIS-
CUSSION OF FERMAT’S THEORM

Art. 264. L. E. Dickson in his History of the Theory of
Numbers, Vol. 11, pp. 731-776 devotes forty-five pages to
the discussion of this remarkable theorem. In the
preface of this volume, p. XIX he writes: “Fermat’s
last theorem is not of special importance in itself and the
publication of a complete proof of it would deprive it
of its chief claim to attention for its own sake. But the
theorem has acquired an important position in the
history of mathematics on account of its having afforded
the inspiration which led Kummer to his invention of
ideal numbers, which is one of the most important
branches of modern mathematics.” False proofs and
erroneous deductions are noted by Dickson, in particular
those of Cauchy, Lamé, Wantzel, and Kummer.

In his Observations sur Diophante Fermat (Vol. 11, p.
241) calls attention to the fact that the equation a2+b?
=2 is satisfied by a = p2+q2,b = p2-q2, p>q, ¢=2pq, and
says that he has a “ truly marvelous proof,” which the
“ margin of his book is too narrow to contain, that it
is impossible to solve an+bn=cn(n>=2) in rational inte-
gers.” Kronecker (Vorlesungen Uber allgemeine Arith-
metik, p. 23) says that mathematicians have probably
worked on this theorem more than upon any other and
that no problem has caused so many false and erroneous

481
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deductions. As stated by Dickson,! the study of the
theory of ideals grew up out of the study of this problem
combined with the study of the general reciprocity law
(see Art. 240).

Kummer’s fundamental discovery consisted in the
proof that all complex integers defined by the nth roots
of unity could, by the introduction of ideals, be factored
uniquely into primes which obey the usual laws of
arithmetic as regards multiplication and division. And
he wished to apply this immediately to Fermat’s theorem
and the higher reciprocity law in a similar manner as
Gauss, by the introduction of an i into the realm of
rationality, had done for the biquadratic residues as well

as by the introduction of in the realm of

rationality for the study of the cubic residues. See, for
example, Bachmann, Die Lehre von der Kreistheilung,
14th Vorlesung; or Jacobi, Works, Vol. 6, p. 223.
Legendre in the beginning of the second volume of the
Theorie des nombres writes: *“ The method, of which we
are going to make several applications, is deserving of
particular attention in that up to the present time (1830)
it is the only one through which certain negative propo-
sitions relative to powers of numbers may be proved.”
This method consists in showing that if a theorem is
true for certain numbers, it may be proved to be true for
smaller numbers. This being done, the proposition
(negative) is proved. For in order that the proposition
be true, it would be necessary that a series of positive
integers decrease indefinitely. Fermat is the first who
indicated this method (of infinite descent) in one of his

1 Dickson, “ Fermat's Last Theorem and the Origin and Nature of the
Theory of Algebraic Numbers.” (Annals of Math., Vol. 18, p. 161, Series 2.)
Also read the excellent account of this theorem by H. J. S. Smith, Collected
Works, pp. 131 et seq.
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notes on Diophantus, where he proves that the area of a
right angle triangle whose sides are integers can not be a
square integer.

Later Euler extended these applications and treated the
theory with great clearness in the second volume of his
Algebra.

Art. 265. Following Legendre (see also Sommer, p.
177) we may give the Fermat proof that the equation

(1) X4 + yh =72
cannot be solved in integers. A zero value for one of the
variables is excluded once for all. It is clear that no

two of the integers can have a common factor, otherwise
it must occur in the third integer and may be factored
from the equation (1). If this equation admitted a
solution, this solution could be expressed through
X2 =1r12-S), y2=2rs, 72 = r2+s),
where r and s are positive integers that are relatively
prime, and where y is an even integer. Further, since
2rs is a perfect square, it follows that either r and 2s or 2r
and s are perfect squares.
If r=u? and 2s =4v2, we have
2 X2 = u4-4v.
This Diophantine equation admits solution on the
assumption that (1) may be solved. We may accordingly
write
(3) u2=az2+h2, v2=ab,
where a and b are positive integers that are relatively
prime. Since their product is a square, it follows that
we may write
a=f, b =a2
where T and g are positive integers that are relatively

prime. These values substituted in (3) give the Dio-
17
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phantine equation
(4) u2="~4+ g4
which is the same as equation (1). Observe, however,

that of the two integers x and y, one must be the smaller,
say y. On the one hand we have

and on the other r2=u? so that and 2rs =4vir =y?,

so that Due to the relation ab =uv2, it is seen that

It follows that both f and g are less than y and this
causes u to be less than z. Accordingly it is seen that
equation (4) admits solution in smaller positive integers
than the solution x, y, assumed for (1). This method
could be continued indefinitely, contrary to the fact that
there are only a finite number of positive integers that
are less than a fixed integer z in (1).

As corollaries to this theorem it is seen that

(A) Equations of the form

X4 + vyl =t =22, (z=1)
S8+rf=t4 =12, (s=x2, r=y2),
xXn+yhh =t =22,
do not admit solution.
(B) No two of the relations

X2=1r2—S2, y2 = 2rs, Z=r2+58)

can exist simultaneously, otherwise equation (1) would
admit solution. Since (r—+s)(r—s) =x2, where r and s
have no common factor, it would follow that

r+s=u? and r-s=v2
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and consequently
2r =u2-+v, 25=Uu2-V2.
We would thus have
2y2 =4rs = ud — v4,

which, as thus stated, can not exist simultaneously with
x2=r2-s?, and that is, equations of the form

270 = x4-yl
do not admit solution in integral form.

(C) Since the equation

x4+yh=174
does not admit solution, there do not exist two integers r
and s such that

X2=r2—S2 72 =r2+S2, or X222 =ri—¢s4.

(D) The last result has the following geometric
interpretation. The area of a right-angled triangle whose
sides are integers, can not equal to a squared integer.

For were xy =2f2 and x2+y? =22, we would have

(x-y) =z72—-412, (X+Yy)2 = 22+4F2,
so that
(x2-y2)2 = z4—(2f")4,
which from (C) is not possible. Numerous examples are
given by Fermat. Dickson, Annals of Math., Vol. 18, p.
163, gives an interesting reference to Leibniz in this
connection.

Art. 266. The proofs which Kummer used for the
Fermat Theorem rest upon the following principle that
was introduced by Legendre, Vol. Il, p. 357. Legendre
made the impossibility of the solution of the equation
x3+y3=2z3 for example, depend upon the three propo-
sitions:

1. If this equation is possible, one of the integers x, vy, z
must be divisible by 3.
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2. That variable which is an even integer, must at the
same time be divisible by 3.

3. If one of the variables is divisible at the same time
by 2m and by 3n, the equation to which it belongs, may be
changed into another where the corresponding variable
will only be divisible by 3n-1.  Then by making use of a
series of transformations an equation is derived, in which
no term is divisible by 3. And the solution of this
equation is impossible by proposition 1.

To prove proposition 1, observe that if neither x nory
is divisible bv 3. then is

x=+1 (mod. 3) and  y=+1 (mod. 3).

Further if t==x1 (mod. 3), it is seen that

(t 13=t3 3@2+3t 1=t3 3(t 1) 1,
so that i3==1 (mod. 9). It follows that

x3+y3=2, 0, -2 (mod. 9).

Hence if z is not divisible by 3, then also is z3= +1 (mod.
9), so that

X3+y3-z3=+1 or +3 (mod. 9).
And accordingly we can never have

x3+yi3 =123

The Proof of Proposition 2. Observe that 3 is an odd
integer, and if a solution were possible, then by giving to
one of the variables the negative sign, it could be trans-
posed to the other side of the equation, which would
accordingly also admit solution.

Let z be the variable which is divisible by 2.  Writing
(1) X3 +y3 = 23mu3
we will prove that u must be divisible by 3. For observe
that x3 +y3 admits the two factors x +y and (Xx+y)?2 — 3xy,
which factors have only 3 as a common divisor; and if 3
does not divide the right-hand side of (1), then are the



ERMAT'S THEOREM IN QUADRATIC REALMS 487

two factors just written relatively prime. Since x and y
are both odd integers it follows that
X +y = 23ma3,
X2-XYy +yl =b3,
and u=ab, where b is positive and prime to a. Writing
b} in the form

it is seen that b3 is of the form p2+3q2 and is accordingly
the norm of an integer of the realm R(~/-3).

We may therefore write
b=f2+3g2  and (F+V-3g)3=F+V—3G,
where
F=f(f2—9q2),
G =3¢g[f2-9g2),
h3 = F2+3G2.
It follows that

or
X=13+3f.g-9fg2-393,
y=13-3f g-9g2 +3g3
Further as shown above, on the assumption that z is not
divisible by 3, either x or y must be divisible by 3. It
would follow that f is divisible by 3 and therefore both x
and y and therefore also z. This is contrary to the
assumption that the three variables had no common
factor.
The third proposition consists in proving that the
equation
) x3+y3=23m33nz3
is impossible. Suppose for the moment it is satisfied
without one of the variables being zero. Observe that



488 THE THEORY OF ALGEBRAIC NUMBERS

the two factors of the left-hand side, namely, x+y and
(x+y)2 —3xy have no common factor save 3 and no
higher power of 3 can be a common factor. Also note
that x2-xy—+y? is an odd integer. We may accordingly

write
X~y = 23m33n-1al

X2 — Xy—+Yy2 = 3b3,
z=ab.
Writing b3 in the form

we have as above

b=12+3g, b3 =F2+3G2,
where

It follows that 6G = x+Yy, or
(2 23m-133n-3a3 = g(f2 - g2).
Since 3b3=x2—xy +y2 is an odd integer, it follows that
b =p2--3q2 is also odd and therefore alsof2 — g2. It follows
from (2) that g must be divisible by 23m-1. Hence
writing g =23m-1A, f+g=B and f-g=C, we have
(3"-10)3=ABC,

where A, B, and C are relatively prime. We may accord-
ingly write
f+g=M3 f-g=N3, g = 23m-1L3, LMN = 3n-1a,
where one of the integers L, M, N is divisible by 3n-1.
We further have

M3-N3=2g = 23mL3.

Due to proposition 2 the solution of the equation just
written necessitates that L be divisible by 3. Ac-
cordingly putting L =3n-1T, it follows that
(3) M3—N3-(2m3n-1T)3.
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Comparing this equation with (1) it is seen that through
the repetition of similar transformations the solution of
(1) necessitates the solution of an equation of the form
®mz)3,

where z is not divisible by 3, and this in virtue of propo-
sition 1 is impossible.

With this it is also proved that the solution of the
equation x3+y3=2kz3, for integral values of k, is im-
possible. (See also Legendre, 11, 9.)

Art. 267. It may also be proved that the equation

(1) o3 —RI=vy3
does not admit solution m the realm R(V—3) = R(w),

The units of this realm (Art. 99) are

1, =i, *+w; and all the ideals are principal ideals.
Following Kummer (see Sommer, p. 184) write

so that (A\) = (+/-3). If a solution of (1) is possible it
may be proved first that one of the quantities a, f or y is
divisible by (A). For suppose that neither a nor B is
divisible by A. Since a is an integer in R(v/-3), it may
be written
o=ta+b -b(1 - w),
where a and b are rational integers. It would then
follow that a + b is not divisible by (A\) and consequently
3 is not a factor of a +b.
We accordingly must have

a= 1 (mod. A).
and similarly

B=x1 (mod. A),
and therefore

03-B3= -2, 0, or 2 (mod. A3).
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If then 7 is also not divisible by (A), we must have
y==+1 (mod. A)
and
03—P3-y3=+3, or =1 (mod. A3).

The solution of a3 — B3 — y3 =0 is accordingly impossible.
Hence for a possible solution of this equation, one of the
guantities a, B, or y must be divisible by A.  Writing
7=M7b n=l, it may be shown that n 2. For if A is
prime to a = ajrbw. then either

a= +1 (mod. 3), b=0 (mod. 3),
so that a==I1+A2t, where T is an integer; or a==lI
(mod. 3) and simultaneously b==I (mod. 3) so that
a= (I + w)+A, ¢ being an integer in R(v—3). Observe
that 1+w =n, say, is a unit of the realm. It follows that
in either case a=n (mod. A2) and similarly B=n! (mod.
A2), where n and ni are units of the realm.

Since a3 -B3=0 (mod. A3), it follows that n3-3=0,
and with this it is proved that a3 - 33=0 (mod. M), and
that is, y3 is divisible by M or y =Anyl, where n 2. It
may be shown next that the more general equation

2 03-33 = nA3ny3,
where n is a unit of R(w), does not admit solution.

Due to the conditions
(3) o= =1 (mod. A), B= %1 (mod. A)
and a3-B3=0 (mod. A3), it is seen that a and B must
satisfy the conditions in (3) simultaneously. And from
these we further have the simultaneous congruences:
(4) a-B=0 (mod. A), a—-wp=0 (mod. A),

a-wp=() (mod. A),

of which the difference a—f is divisible by a higher
power of A, but neither of the other two.

For observe that a =1 +AT, p = 1+A0, T and o integers,
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S0 that a—B=A(t-0). Since a-B=0 (Mmod. A2), it follows
that T-o=0 (mod. A) or tT=o+Ay. Then also

a—wp= (1 —w) (mod. A), or (mod. A).

And were a—wp=0 (mod. A2), it would follow that 1 was
divisible by A. It is further seen that the three con-
gruences (4) have no further divisor save A.
Hence from (2) we may write

a—B = €lA3n-213,

(5) a-wp = A3
a-w?2pB = €3\,
where €1 €2, €3 are units and T, y, v are integers in R(~/-3).
Observing that
w(a-B) +w2(a —wp) + (a-w?2P) =0,
it follows from (5) that
0 LAIN-2T3 + 2wW2AP3 + e3Av3 = 0,
an equation, which, divided by w2\, oners
©) H3—3=n1A3(n-1)T3,
where ( and nl are two new units. Write this equation
in the form of a congruence
(7) M3 = Qv3=0 (mod. A3)
and note that neither p nor v is divisible by A.  As proved
at the beginning of this article, we therefore have
p==xl (mod. A) and z'=+1 (mod. A) so that
p3=+£1 (mod. A3) v3i=+1 (mod. A3).

These values substituted in (7) show that of the six units
mentioned above we can only have {(=z=l. Hence on

the supposition that (1) may be solved, it follows that an
=quation of the form (6), that is

13- B13= N1A3(n-1)y13
may be solved.
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Continuing this process, it is seen that an equation of

the form

0k3- B = nkA3yk3
could be solved, in which none of the integers ak, Bk or yk
is divisible by 3. And this as already proved is im-
possible.

Art. 268. It may also be proved that the equation
(1) al+pi=vy?
can not be solved in integers of the realm R(i).

Here again all the ideals are principal ideals, and the
units are 1, i. Writing A= 1-i, it may be proved that
either a or  must be divisible by A. Note that 2 =N(A)
=(1-i)(1+i) and that I+i=1i(l-1) =iA. It follows
that 2= (1-i)2. Observe that 1=i (mod. A). It is
clear that every integer a that is prime to A satisfies the
congruence
2 a=i (mod. A).

Every integer that is prime to 2 satisfies ohe or the other
of the congruences
(3) o=i (mod. 2) or o=i (mod. 2).
From (3) it is seen that

o4= +1 (mod. A6, or mod. 23);
and that is, the fourth power of every integer a that is
relatively prime to A is congruent to +1 (mod. A6, or 8).

We may assume first that both a and B in (1) are

relatively prime to A. It follows that
o4==l (mod. A6), B4=1 (mod. Ac)
and therefore
04+PB4-2=0 (mod. Af).
The equation (1) is
4) ai+p4-2 =y2-2.
And it is seen thaty2 is divisible by 2(=1iA2). We may
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accordingly write y=Ay1 where y1 is relatively prime to A.
It follows that
y2-2 =\y12-2= -i2(y12—1i),
and therefore from (4)
y12—i=0 (mod. M).
This, however, is not possible; for from above, since y1 is
relatively prime to A, it is seen that
yld—1 = (y12-1)(y12+1)=0 (mod. A6),
so that y? is congruent to either 1 or —1 (mod. A4).

We may assume secondly that the integers B and 7 are
prime to A. Then from (3) y2= -1 (mod. 2) or y2= +1
(mod. 2); and since —1=1 (mod. 2), we have in either
case y2=1 (mod. 2). Since B4==1 (mod. A2), it is seen that
y2-3¢is divisible by A2 Hence from (1) a is divisible by
A, and it follows that this equation can be solved only if

Mnod =y2-B4
admits solution, and vice versa. We may accordingly
determine whether or not the more general equation

(5) €Mnod = y2-B4 n 1
may be solved. This equation when written in the form
(6) y2-1 =eMnad +p4-1,

shows that y2—1 is divisible by M at least. From (3)
y=-i (mod. A2), or y= +1 (mod. A2). And it is evident in
the case before us that the latter congruence must be
taken so that y- =Nt and therefore y+ I=A2(T- 1),
and as either T or T+l is divisible by A, it is seen that
y2 —1=0 (mod. Ab).
Since B4—1=0 (mod. A6), it follows from (6) that n=1.
Next write the equation (5) in the form
(5) eMnad=(y-B2)(y+B2)
and observe that y-[32 and y-+f2 can have no common
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factor save A2, otherwise such a factor would be common
to 2y and 2.
We may accordingly write
Y —B2=nA20! and y+ B2=n1Mn-214,
where ¢ and T are integers without a common divisor
and n, nl are units in R(i). It follows through sub-

traction that
232 = n1Mn-214 - n\204

Divide this equation by 2 and write for and the

units { and 1. It is seen that
B2—{od=rIM(n-1)14.

As n 2, we may write

B2—(04=0 (mod. M) or 32-¢=0 (mod. AY),
and since (B4-1) = (B2-1)(B2+1) (mod. A6), it follows
that

p2=I or -1 (mod. B4)

and therefore the unit £ is 21,

Accordingly we have

{IM(n-1)Td = B2-od.
Compare this equation with (5). It is seen that a
series of analogous substitutions will reduce it to the
form
EMTH = pd — @2,

a solution of which is not admissible, since it was shown
above that A must occur to a power greater than 4.

With this proof it is also evident that neither of the
equations

22 =Xx4 + y4, 22=x4-y4

may be solved lor rational integral values of the variables,
that are different from zero.

Art. 269. A consequence of the theorems just proved,
as remarked by Hurwitz, is that the quantities



FERMAT'S THEOREM IN QUADRATIC REALMS 495

are irrational for all rational values of x. Geo-
metrically interpreted, the meaning of these theorems is
that the curves
x3xy3=c3 x4+yd= c4,
where ¢ is a rational number, never pass through any
point whose coordinates X, y are rational numbers.
Further it is evident that the equation

is not satisfied by the square roots of any rational
numbers. For were a, b, ¢ three numbers that are not
perfect squares and which have no common factor, and if

it would follow that

and this is impossible, since the right hand side is an
irrational number.

And this means, geometrically interpreted, there is no
point whose coordinates may be expressed through the
square roots of rational numbers, upon the cubic

x3xyid =¢3,
where ¢ is a rational number.

In Art. 298 an important consequence due to Kronecker
(Works, Vol. I, p. 121) is made of the fact that the
equation
(1) x3+yi=1
admitted solution in rational integers, only when eithel
X Or y was zero.

For writing

where a and b are two rational numbers, it is seen that
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It is clear that every rational solution of
(2) 4a3+27b2+1=0
offers a solution of (1) and vice versa. The latter
equation admits solution only for x=1, y=0; or x=0,
y=1 Accordingly the only solutions of (2) are a= -1,
6=1/3.
Further it is seen that the discriminant of the equation
z3+ax+h=0
is (Art. 104)
A= -(4a3+27h2).
With this is proved the theorem:
Theorem. The equations x3—x=1/3=0 are the only
ones of the third degree whose discriminant is +1, in which
at the same time the sum of the three roots is zero.

Art. 270. An important theorem due to Kummer ! is
the following. By cyclotomic realms we understand (Art.
105) those realms which result from adjoining a root of
unity to the usual realm.

Theorem. Ifpisa prime integer (>2) and a, B, y are
any integers of the cyclotomic realm, which exists through the
adjunction of a pth root of unity to the usual realm, the
equation

ap+Bp+yp=0

admits no solution other than where one of the variables is
zero.  See for example, Hilbert, p. 517 and an interesting
article by Th. Got, which appears as an appendix to the
translation into French of Hilbert's Treatise, by Levy
and Got, and Dickson’s History, Vol. Il, p. 757. Prof.
H. S. Vandiver is doing much work in this direction.
Methods of solving the equation 2+n2={ in quadratic
realms are given by the author (Liouville’s Journ., Vol. 4,
Series 6 (1921), pp. 327 et seq.).

1 Kummer, Crelle, Vols. 16, 17, and 40.



CHAPTER XillI

CORRELATION BETWEEN THE THEORY OF
QUADRATIC FORMS AND THE IDEALS
OF QUADRATIC REALMS

Art. 271. In Arts. 240-2 we have determined whether
or not a rational integer g may be expressed through one
or the other of the special quadratic forms

X2+y?2, X2 —2y2, X243y2, X2 — my?2.
The more general quadratic form is
= ax2+2bxy+cy?,

in which a, b, ¢ are rational integers, while x and y are
variable integers. The middle coefficient 2b is usually
taken even. The greater part of the third volume of
Dickson’s History of the Theory of Numbers has to do
with the treatment of such forms.

If a, 2b, ¢ have no common divisor save unity, the form
is said to be properly primitive, and improperly primitive if
these three coefficients have 2 to the first power only as a
common factor. The quantity b2-ac=D is called the
discriminant of theform. We shall assume that D=0 and
that D has no square factor.

If in the form with determinant (discriminant) D we
make the substitution

X =rxl+syl,
y =txl+uyl,

with determinant A =ru-st, where all the quantities are
rational integers, we have a new form

f1 = alxl2 + 2bixlyl+clyl2
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whose determinant DI =DA2. If A= +1, the forms fand
Tl are said to be equivalent, properly equivalent if A=+ 1,
and improperly equivalent if A= - 1.

If in the form/\ we make the substitution
x1=r1x2+sly?,
yl =t1x2 +ulyl, Al=rlul-1-s1tl
the form/1 becomes 2 =alx22+2b2x2y2+c2l, whose de-
terminant D2 = DIAl = DAAL

In general, if we put SS1=3, S1S2=731 etc., it is seen
that the associative principle is applicable, and that is,

yS2=S31 and >1S3=S132;

Si=

while
(>S2)S3= (SY1)S3=S(21S3) = S(S1%2) =332 = SSIS2S3,
etc. If D=0, it follows from the substitutions 5 that

Two substitutions S and S-1 are called reciprocal when
X=X2,

y=y

We shall next consider only such substitutions in which
r, s, t, u are rational integers and where the determinant
ru-st=1. Such a substitution is called unimodular.
Its reciprocal has like properties.

If/is transformed into/ by a unimodular substitution,
we say that / andA are equivalent, and this property is
denoted symbolically by

f—fl
Itis evident that f—f. If further f—fl and f1~f2, then is
f—*12, as is readily proved, since A=Al—1 and D2 =D! =D.
All equivalent forms constitute a class. It may be

SS-1=
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proved that all possible forms with the same determinant
D may be distributed into a finite number of classes
(Dirichlet-Dedekind, Zahlentheorie, 8§88 67 and 75). It is
clear that any form of a class determines that class.

The fundamental problems of the Theory of Quadratic
Forms are the following:

1. Determine whether a given integer may be ex-
pressed through a given form; and when this can be
done, determine the values of x and y, so that the form
may present the integer.

2. Determine that form as representative of a class,
which will express the given integer with the least
numerical calculation.

3. Determine whether two forms with the same de-
terminant are equivalent, and if so, derive the substi-
tutions through which they may be transformed into
each other.

4. Prove that the infinite number of forms with the
same determinant, may be distributed into a finite
number of classes. In Art. 218 it was shown that the
infinite number of ideals that belong to a definite realm,
may be distributed into a finite number of classes. In
this realm the discriminant is a fixed integer.

5. Show that the classes may be distributed into
genuses.

Art. 272. Kummer in his first communication re-
garding the ideal numbers (Crelle, Vol. 35, p. 325) called
attention to the fact that the Theory of Quadratic
Realms was identical with that of the Theory of Quad-
ratic Forms. In this same paper Kummer writes as
follows: ““The ideal factors of the complex numbers
appear as factors of complex numbers that have a real
existence.” In other words the Kummer factors (Art.
205) are divisors of the integers of a fixed realm. ““And
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consequently,” he says “‘when multiplied by other
(Kummer) ideal factors, they produced integers of this
fixed realm.”

The two most important results, he emphasizes, are the
following:

1. There is always a finite definite number of these
Kummer numbers which are necessary and sufficient
when multiplied with one another, to produce all existing
integers of the realm.

We have seen that the ideals of a fixed realm were
distributed into a finite number of classes.

In another form the above theorem was proved by
Kronecker in his Berlin dissertation (1845), De unitati-
bus complexis. Observe that Kummer, the teacher and
friend of young Kronecker, produced the above men-
tioned results about this time (1845), and a study of them
greatly influenced the entire trend of Kronecker’s mathe-
matical endeavors, notably his introduction of modular
systems already considered in Chapter VIII, and the
general Theory of Forms in which he attempted (see
Vol. I, Chapt. 4 of the present treatise) to generalize
the Kummer results already mentioned in Art. 205.

2. Every ideal (Kummer) number f has the property that
when raised to a definite integral power it becomes an
integer of the realm. (See Art. 205.)

In Art. 218 it was seen that the h power of every ideal
was a principal ideal (that is, an integer) of the realm.
And we may accordingly prove the following:

Theorem. Corresponding to every ideal a of a fixed
realm Q there exists an integer k which in general does not
belong to Q, and is such that the integers of a are identical
with those integers of Q which are divisible by «.

For observe that ah=(w), say, where  is an integer of
Q. Writing it is seen that k has the property
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required. For if a is any integer of o, then ah is divisible

by ah(=(w)). It follows that is an integer, as is also

Reciprocally, if a is an integer of Q so that

is integral, then is  integral and therefore also is an

integral ideal as is also ((;) And this means that a is an

integer of the ideal a These numbers k are clearly
Kummer numbers which belong to a realm of degree h
above Q. (See Smith’s Report, p. 111.)

Let p=(p, b+Vm) denote a prime ideal of the realm
R(¥m). All numbers of this ideal are expressed in the
form xp+y(b-+m), where x and y go over all rational
integers. And the norm of such numbers is (Art. 205)

Observe that the determinant of the form

is m.  The problem before us is the investigation of the
correlation between p and f.  (See Sommer, p. 197.)
Art. 273. Case |. The real realm %(m), where
m# 1 (mod. 4). This case is presented in Articles 273 to
280. The discriminant is d=4m, the basis being 1,
w=+vm. Denoting by p any positive prime rational
integer, we sawt that the question of its factorization into
ideal factors presented three possibilities (Art. 216).

1 If then in R(Vm) it was possible to

factor (p) into the product of two ideals, which may or
may not be principal ideals.
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2. If then (p) is itself a prime ideal in

R(Vm). But if p is not factorable in this realm, it is not
of the form pp'=x2-my2 And this means that p can
not be expressed through a form ax2+2bxy+cy?, with

determinant m=h2-ac. For since it

follows that both a and c are relatively prime to p. And
if £p =ax2+2bxy+cy2, it is clear that

Zap = (ax+by)2—my2, or (ax +b)2=m (mod. p),
which is contrary to the assumption that

3. If that is, if d is divisible by p, then is

x2==0 (mod. p), and p is equal to the square of an am-
biguous ideal p= (p, vm).

Art. 274. Principal ldeals and Principal Forms. If
the ideal (p) can be factored into the product of two
principal ideals,

(p) = (a+bw) (a+-bw), i)
this is equivalent to the fact that the integer p may be
expressed through one or the other or through both of the
principal forms (Hauptformen)

(1 f=x2- my2,
(n = -X2+my?2,
in which for x and y two rational integers a and b, which
are relatively prime, may be written. If the norm of the
fundamental unit e of the realm R(Vm) is +1, and that is,
if
N(e) = N(r+vms) =r2-ms2= +1,

then only one of the two relations

n=al - mh? or -p =a2-mb?
follows from the ideal equation (i).
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If however N(e) = — 1, and if for two definite integers a
and b, we have from (i), say,
p =a2-mb2, (ii)
then also is

—p = (a2 — mb?) (r2 — ms2).
Observing that the latter expression is the norm of an
integer in 9t(Vm), we may write
(a2 = mb2) (r2 = ms2) = N (ar+hsm+ (as + br) vm),
so that
—p = (ar + bsm)2 -m(as- -br)? = al-mbl.
In this case it is seen that p and —p may be expressed
through the same quadratic form (1). If p=a2- mb?2 and
we write these same pairs of values, namely, x=a, y=b
and x=ar+bsm, y=as+r in (I), we have p and —p;
and if we write these pairs of values in (II) we have —p
and p. And thus when the N(€) =- 1, we have both p
and —p represented through the form (11).

In this case however, that is, if N(e)=r2-ms2= —1, if
sve put x1=rx+msy, yi= —-sx—ry, with determinant
—r2+ms2= +1, we have

—Xxl+myl = — (r2—ms2) (x2 — my2) =x2—my2,
and that is the form (I) is equivalent to the form (II).
If reciprocally there is a substitution with determinant
A==1, which transforms (I) and (Il) into each other,
then simultaneously p and —p may both be expressed
through either of the forms x2-my?, or —x2--my2 If
p=a2-mb? and -p =all-mbl, there exists the ideal
equation
(a+vVmb) = (a+Vmbl)

and consequently also
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Using the results derived above, as denning a corre-
lation” between an ideal and a form, we have the
theorem:
Theorem. Ifp=(a+bvm) is a principal prime ideal,
then
(A) the two non-egmvalentforms x2 — my2 and -x2-+my?
are correlated to p in the realm R(¥m) in which N(€) =1;
(B) the two equivalent forms x2-my?2 and -x2- -my? are
correlated to p in the realm R(¥m) in which W(e) = —1.
Art. 275. Ifin (1) and (1) we make the substitutions
X = rxl+syl,
y =txl+uyl,
where the rational integers r, s, t, u satisfy the condition
A=ru-st= +1,
and if we put r2-mt2=A, rs-mtu-B, s2—mu2=C, we
have two infinite systems of quadratic forms

da) Axl+2Bxlyl + Cyl
equivalent to (1), and
(MNa) -AXx21-2Bxlyl1-Cy!l

equivalent to (1), with determinant D =B2-AC=m.
And clearly every integer p which may be expressed
through (1) or (I1) may also be expressed through the
equivalent forms (la) or (I1a).

In the realms in which N(e) = I, the forms (1) and (II)
are different, as are also (la) and (Ila). These forms are,
however, equivalent in those realms in which N(e) = —1.
We may next prove the inverse theorem, namely, that if
the prime integer p can be expressed through the quad-
ratic form F = Ax2 + 2Bxy + Cy2 with determinant D= (B!
-AC) =m, then this form is equivalent to the form (I)
when N(e) =1, or to the equivalent forms (I) and (l1)
when N(e€) = — 1. In other words, if p can be expressed
through f and also through F, then is f equivalent to F.



QUADRATIC FORMS AND IDEALS 505

Due to the assumption that D can have no squared
factor it follows that A, B, and C can have no common
factor except unity. We may further assume that any
of the three integers A, B or C is relatively prime to any
given integer. For example, if A is not prime to p, we
may, without loss of generality, derive a form equivalent
to F in which the coefficient of the first term is prime to p.
For if A is divisible by p and if C is prime to p (which
includes the case p =2), then applying to F the substi-
tution

X = pxl+sy!
y = gx1+uyl, pu-sg=1,
where ¢ is prime to p, it is seen that the coefficient of x2 is
Ap2- -2pgB- -g2C, which integer is prime to p.
If on the other hand C is also divisible by p, the
substitution
X =qlxl+syl,
y = q2x+uy, glu-qgs =1,
where both gl and g2 are prime to p, offers a form in which

the coefficient of x2 is relatively prime to p.
Writing

p = Ax1+2Bxlyl+ Cyl, (Hi)
where xi and yi are relatively prime, it is seen that
Ap = (AXiA-By)2—myl =x2 — my2, (iv)

where

X =Ax1+Byl, and y=yl
And that is, Ap may be expressed through the form
X2-my?2.

From the equation (iii) it is seen that yl is prime to p,
and that A and y are relatively prime. And from (iv) it
follows that both y and Ax1+ By! are relatively prime to
Ap. The case before us assumes that p =f, and that is, p
may be factored into two prime principal ideals, so that
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p=X2-mY2 Equation (iv), when expressed in terms of
ideal factors, is (A)(X - VmY) (X+VmY) on the one hand,
and (Ax1+Byl-vmY)(Ax1+Byl+VmY) on the other
hand. Since X - vmY and X +VmY are prime ideals
they must divide one or the other of the ideal factors in
the right hand side of the equation. We thus have (A)
expressed as the product of integral principal ideals, say

A=rl-mg, (v)
where r and t are two integers that are relatively prime
Writing a=r+lymt, it is seen that N(a)=A. Further
observing that AC =B2-m-1, and writing ay =B —vm.
N(ap) =AC and y =s — vmu, we have

(r+vmt) (s-vmu) =B

where s and u are rational (and as proved below) integral

numbers.
From this we have at once

(vi)
or
(vii)
It follows that
Ap = (r2 — mt2) (X2-mY?2)
= [rX+tmY + (rY + tX)vVm [rX+tmY — (rY +tX)vVm].
This equation in connection with (iv) shows that the
integers x, u mav be so chosen that
AX1+By!l = rX+tmy,
—yl=tX+rY.
And from the latter equations, it follows that
X =rx+sy, Y = —tx—uy.
Observing in these equations that X, VY, r, t, X are inte-

gers, it is seen that sy and uy are integers. Hence
from (vi) if s and u were rational numbers, their de-
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nominators must be factors of A and y. But since A
and y are relatively prime, the numbers s and u are
integers. With this it is proved that the substitution

X = rxl+syl,
-y = txl+uyl, ru-st=1
is such that the form (1) is transformed into the form
F = Ax2+2Bxy + Cy2
With this our inverse theorem is proved.
Art. 276. Arbitrary Prime Ideals and Correlated
Forms in the Realms m# | (mod. 4). Let n be a nrime

rational integer such that or The

ideal (p) accordingly is factorable in the realm R(Vm) as
the product of two prime ideals which may or may not be

principal ideals. When , the two ideals are equal

(ambiguous) (see Art. 216).
Accordingly we may write

(p) =pp' = (p. b+Vm)(p, b-vm).
where b is a positive integer of zero. Again observe that
all integers that are divisible by p are of the form
px+(b-vVm)y, where x and y are rational integers.
With the ideal p. bv definition, are correlated the forms

M

or
(1
and to the ideal p the forms

(1)
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or
(V)

Note that:

(a) The formsfl and fi on the one hand and f2 and f4 on
the other are improperly equivalent, since the substi-
tutions s =x, y = —y! with determinant A = - 1 transform
these forms respectively into each other.

(b) With definite values ascribed to x and y the formsfl
and~7 on the one hand and f3 and f{ on the other offer
equal integers with contrary sign.

If the norm of the fundamental unit ¢ of R(Vm) is -1,
and only in this case are the forms fl andf2 improperly
equivalent as are the forms f3 and f4

For write

e=r+svm, r2-sim= —1;
and observe that

y = psxl+(r+bs)yl,
with determinant — 1, transforms f into f2 and also 3 into

f4,
Writing

y =psxl—(r+bs)yl,
with determinant +1, it is seen thatfl and f/ are properly
equivalent, as are also~7 and f3.
Accordingly the results (a) and (b) may be expressed as
follows: when Ar(e) = — 1, we have f1~f4 andf2~f3, these
equivalences being improperly equivalent to each other.
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Art. 277. Ambiguous ldeals | in Real Realms m~I
(mod. 4). If p is an ambiguous ideal, and that is, if
(p, b+vm)=(p,b-vm)=(p,b+vVm, b-vm),

then is

b -vm=pri+ (b+vVm)sl,
where rl and s! are rational integers. It follows that
sl= -1, 2b=prl, so that 2b is divisible by p.

It is evident at once that the substitution

y =yt with determinant A= +1, transforms fl into f3 and
likewise~7 into4.  If N(e) = +1, the two forms fl and f2
are representative of the four forms of the preceding
article. However, if N(¢) = —1, it was shown in the
preceding article that f1~f4, so that in the case before us
fl ~f2 ~f3 ~f4.

In (a) of the preceding article it was seen thatfl was
also improperly equivalent to f3 and f2 to f1. It is seen
that the substitution

y= -yl
with determinant A= -1 transforms these forms into
themselves. Such a form is improperly equivalent to
itself and (see Dedekind, Zahlentheorie, § 58) is called
ambiguous (Zweiseitig’). See also Kummer (Monatsb. d.
Berliner Akad., Feb. 18, 1858).

Observe finally that if p is a principal ideal, the
results of Art. 274 show that simultaneously, on the one
hand the formsfl and 3 and on the other 2 and 4 are
equivalent to one of the forms x2-my?2, -x2--my? or to
them both. And if the form—~T is both properly and
improperly equivalent to 3 they are both improperly
eauivalent to themselves.

1 See Smith’s Report, p. 189; Dickson, Vol. Ill, p. 13; and see the remark by
the author at the end of this chapter.
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Example. Let the ideal (p, b+ vm) degenerate into a principal
ideal. Deduce, using the methods of Art. 276, the results of Art.
274. Consider also the case of ambiguous principal ideals.

Art. 278. An integer p which may be expressed
through any of the forms f1, 2, 3, T4, say fl, is also pre-
sented through any form that is equivalent to f1. It
remains to prove the inverse problem, namely:

Any form f= Ax2 + 2Bxy + Cy2 with determinant D =m
through which p may be expressed by giving to X, y
definite values r and t, which are relatively prime, is
equivalent to one of the four formsfi, f2, {3, f4.

Suppose for example, that p = Ar2 + 2Brt+Ct2 where r
and t are relatively prime. Let s and u be two other
integers that are likewise relatively prime, such that

ru-st=1.
Introducing the substitution
X=rx"+sy,

y=K" +uy’, A=,
we observe that the form f is transformed into
F = px2+2{(Ar- -Bt")s + (Br + Ct)u}x'y'

+ (As?+ 2Bsu + Cu2)y"?

with determinant m; or if we put

F = px'2+ 2bix'y'+cly"2,

we have
m =2l — clp.

It follows that bl-m=0 (mod. p); and that is bl is a
rational integer which satisfies the congruence

X2 -m=0O (mod. p). (i)

In a later article (Art. 280, end) it is seen that 6i depends

upon the values for r and t, but is independent of the values

u, s, which as seen above are not uniquely determined.

Since is an integer, it is seen that b satisfies the
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congruence (i), so that bi= +b--gp, where g is an
integer (including zero). The form F becomes

F = px'2+2(gpxb’)x'y'+cy’2
Making the substitution
x'=X-gY, y'=Y, A=1,
we have
F = pX2+2bXY+c2Y?,

where c? is a definite constant. And since the determi-
nant of this form is m, and that is h2-c2p=m, so that

we have finally

And that is, £(—F) is one of the forms f1 or f3; and to these
two forms were correlated, by definition, the ideals p and
p'. The following rule expresses the results that have
been derived above.

If p=(p, bf-Ym) with its conjugate p'= (p, b-vm) is
an arbitrary ideal of R(¥m), in which b is a positive
integer (or zero) then with p are correlated.

(A) the forms f1 and f2 and with p' the forms 3 and fi if
N(e) = 1, it being assumed that p is neither an ambiguous
ideal nor a principal ideal;

(B) the quadratic form fu and with p' the form fi, when
N(e) = — 1, where p is neither an ambiguous nor a principal
ideal. If, however p is an ambiguous or principal ideal,
then 1 and f3fall together as do f2 andfl and are ambiguous
forms.

Art. 279. Instead of writing the ideal p in the normal
form, any other basis and may be taken, where
The form corresponding
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tofl above, which is correlated to p, is

x [(alx+-cly)-(bix+dly)vm]
or

Since and are both elements of p, these two
integers can have no common factor. It is shown below
that the determinant of the form F is m. Accordingly
the quantities al-blm, alcl-bldim, cl- dim are not all
divisible by p2, otherwise m would be divisible by the
square of p, which case has been excluded. It follows
that the coefficients of F have no common divisor save

unity.
Since we may write
jrt(b-f4mf where ru-st= =1,

Accordingly the form F may be written

The form / correlated with p in Art. 276 was

It follows that by writing

X =rxl+syl
y = txl+uyl, ru=st==+1=A,
that the form F is transformed intob where A=1. If

A= -1, we have the same substitution as above where
for r and s are written —r and -s; and in this case F is
transformed into f3.  Since the determinants of fl and f3
are equal to m, it is seen that the determinant of F is m.
We accordingly have the theorem:

To the different pairs of elements which constitute bases
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of the ideal p, there correspond forms with determinant m,
which are properly or improperly equivalent amongst
themselves. And that is, the dependence of different
pairs of elements among themselves leads to the equiva-
lence of corresponding forms.!

Arbitrary ldeals and Forms

Art 280. We saw in Art. 206, end, that an ideal
reduced to its canonical form was i= (i1, i2+i3w), where 13
divided both il and i2. If then we assume that i has no
rational factor, it may be written (a, b + ), where a is the
smallest rational integer that is divisible by i. Ac-
cordingly this factor may enter as an element of i.

Corresponding to the ideal i there exists a form,
analogous tofl of Art. 276, given by

And it is clear that ®=a may be expressed through this
form with three other forms analogous to 2, f3, f4 of Art.
276 and through every form that is equivalent to one of
these four forms.

However, inversely it is not true that every form with
determinant m, through which *a may be expressed, is
equivalent to one of the four forms that are correlated
with i and i'. For in general, there exist other ideals
with norms +a which are not equivalent to i and with
each of which may be correlated a new quadruple of
quadratic forms.

If on the other hand

F =Ax2+ 2Bxy + Cyl
is a quadratic form with determinant m, through which
an integer a may be expressed in the form
a=Axil+2Bxly! + Cyl,

1 Sommer, Vorlesungen, p. 207.
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where xi and yi are relatively prime; and if s and u are
two integers such that xlu-yls=1 then the unit

substitution
X =xX1X+SsY,

(0) = y=ylY+uY,
transforms F into its equivalent form
F'=aXl+2bIXY+clY2
If the substitution (o) is made on the form f and the
resulting coefficients of X2 and 2XY are equated to
those of F', we have

(1)

)

Multiplying (1) by u and (2) by yi, and subtracting we
have
(b+blyl =a(u-X1).
Since a and yi are relatively prime, it follows that
bh+bl=0 (mod. a).

From this it is seen that the form F' can only be equiva-
lent to f, if b+b1 =0 (mod. a).

To be able to determine whether F' and/are equivalent
it is above all necessary to know how the integer b
depends upon the quantities x1, yl, u, s.

Observe that the determinant of F' is bl—alcl=m, so
that bi is a root of the congruence x2-m=Q (mod. a).
If a is a prime integer, this congruence may have two
different roots; while there may be more than two such
roots, if a is not a prime integer.

It may be proved that the coefficient of bl depends,
modulo a, only upon the values of x! and y! and does not
change, modulo a, if for s, u any other pairs of values are
taken which satisfy the congruence xlu-yls=1 Ob-
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serve that if s, u and sl1, ul are two solutions of this
equation, then is
Xl(u-ul) —yl(s—sl) =0,
so that
u=ul+kyl, S = st+kxt,
where k is any integer.
The middle coefficients, see (2) above, are accordingly
bl = Axls + B (xlu—+yls) + Cylu,
b2 = Ax1sl + B(x1u+ylsl) + Cylul.
Through subtraction and the substitutions u — ul =kyl,
s-sl=kx|, it is seen that
bl — b2=0 (mod. a).
It is thus shown that there exists a unique relation be-
tween x1, y! and bl, and we may say that the expression
of the integer a through the form F by means of the
quantities x1, y! belongs to a definite root b! determined
through the congruence
x2-m=0 (mod. a).
We accordingly have the theorem:

Theorem. If an arbitrary! rational integer a may
be expressed simultaneously through f and F, the form F is
then and only then equivalent to the form f, if the expression
of the integer a through F belongs to the congruence-root b.

If finally i is an ideal which is divisible by a rational

integer z and if the correlated form corresponding

to it is first derived, with determinant D =m.

The correlation of forms and ideals may be reversed:
To a primitive quadratic form ax2+2bxy+cy? with
determinant mthere may be correlated the corresponding
ideal (a, b++vm) of the fixed realm. Hence one and the
same ideal is correlated with equivalent forms (see Art.
275),

1 Sommer, Vorlesungen, p. 209.

18



Art. 281. The first case, where real realms were con-
sidered and m=2, or m=3 (mod. 4), occupied Articles 273
to 280. We shall now encounter the second case.

Case Il. The imaginary realm R(¥m), where m# |
(mod. 4)- Again let d=4m be the discriminant; 1,
®=+vm, the basis; and A | the number of classes of the
realm.

If p is a rational prime integer, such that

and which accordingly does not admit factorization in
R(vVm), then p can not be expressed through a quadratic
form with determinant D =m (Art. 273). See Sommer,
bottom of p. 197.

Further observe that if

is a form with negative determinant m, then clearly a and
¢ must have the same sign; and the form f presents only
positive or only negative integers according as a, ¢ are
positive or negative. If a, ¢ are positive, the form is
called a positive form, while it is called a negative form if
a, ¢ are negative, the determinant in either case being
negative. In the consideration of such forms it is
accordingly sufficient to consider the forms of one kind,
say the positive, since the two kinds are completely
distinct, however in all other details quite the same.
Accordingly in the corresponding arrangement of forms
and ideals in contrast with the first case, considered
above, the only change to be made is that the discussion
be limited to the formsfl and f3 of Art. 276.

Art. 282. Case IlIl. It R(¥Vm) is a real realm where
m=1 (mod. 4) and if we wish to make a similar corre-
lation between the ideals and forms as has been done in
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the preceding articles, it is seen that the two theories are
not in agreement.
For let R(Vm) be such a real realm with basis: 1,

and discriminant d=m. Then, if as was done

in Art. 274 for example in the correlation of a principal
ideal p= (a+bw) and a principal (haupt) form, it is seen
that

and

And in the form/, contrary to that which was found in
the previous cases, the middle coefficient is not necessarily
an even integer. While in Case | and Case II, the
determinant of the forms was D =m=%d, we have here

which is a fractional number.

Historical ground justify the wish of correlating forms
of determinant D=m with the ideals of the realm.
Accordingly we must first introduce an observation
regarding the nature of the coefficients a, b, ¢ of the forms
with determinant D =m and of the integers which may
be expressed through such forms. If F=ax2 + 2bxy+cy!?
is a quadratic form with the determinant D = (b2 — ac) (= 1,
mod. 4) and if the coefficients a, 2b, ¢ have no common
factor, in particular have not 2 as a common factor, then
no integer which is divisible by 2 and not by 22 can be
expressed throughf. Forif ais an odd coefficient o, we
have

af = (ax+by)2—- my2;
and from this it is evident that af and therefore f for
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integral values of x, y is either an odd integer or T is
divisible at least by 22. Hence an integer divisible by 2
to the first and no higher power can only be expressed
through f if a and ¢ are even integers, or more exactly
said, if a, 2b, ¢ have as common factor 2 to the first power
only. Forms whose coefficients a, 2b, ¢ have 2 to the
first power only and no other common factor, were called
improper primitive forms of the determinant D (Art. 271),
proper primitive forms being those in which a, 2b, ¢ have
only unity as a common factor. For determinants
D (=1, mod 4) which are free from quadratic factors and
only for such do there exist primitive forms, improper as
well as proper. (See Dirichlet-Dedekind, Zahlentheorie,
861.) .

An improper primitive form can never be derived
through a transformation with integral coefficients from
a proper primitive form. Hence, in the exposition of the
present third case it is necessary at the beginning to
make a distinction between the proper and improper
forms. To effect this correlation of ideals and forms two
ways are suggested:

First. Forms other than f may be put in correlation
with p. For example, the improper primitive from

together with the proper primitive forms with even
middle term which may be derived from f through a
substitution with determinant 2. To derive these forms
differing from one another and from f, we may make the
substitutions

X =Xl X= —2yl Q) X =x1+2yl

A
. y=2y1 B y=xa y= —x1
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offering, besides 2f, the forms
fa=xl+2xlyl+ (1 = m)yl

Any substitution with determinant 2 may be derived
from one of the above substitutions with determinant 2
combined with another substitution with determinant
unity. Forif

X = r1x*+sly*, y = tIx*+uly*
is a substitution with determinant rlul-sitl=2, and if
xX* =rx1l+syl y* = tx1+uyl
is a substitution with determinant ru-st=1 then the
combined substitutiot

X=(rlr+slt)x1 + (ris+slu)y!
y = (tlr+ult)x! + (tls + ulu)y!
has the determinant 2.
If reciprocally

X = Rx1+Syl, y=Txl+ Uyl

is any given substitution with determinant
R, S _

T, Uu=?

then integers r, s, t, u, such that ru-st=1 may be
determined so that

R = rir+slt, S =rls+slu,
T =tlr + ult, U =t1S +ull.

For example using (A) above write

R=r, S=s.
T=2t, U=2u,



520 THE THEORY OF ALGEBRAIC NUMBERS

(with ri=1, sl=0, ul=2 t1=0); or with (B) write
| = -2t N= -2u,
T=r U=s,
or with (C) write
R=r+2t b=S+2u,
| T="-r, U=-s.

As a second method, instead of introducing proper and
improper primitive forms in the realm R(vm), we may
take certain quantities that belong to the ring R(Vm)
which is contained inf® Let p=(a+bw) be a
principal ideal of the realm and in its place put (2)p
= (2a+2bw) and associate with this latter ideal the
improper primitive forms

If further p=(a+bvm) is a principal ideal of the ring
r(vm), associate with it the proper primitive forms
fa=x2—my2,
o= -x2-my2
These two pairs of forms may be treated in detail as in
the Case I, there being two additional observations to be
made.

First it is seen tha f1 and f2 are ambiguous, since they
are transformed the one into the other by the substitution

= -x1-yl, y =yl with determinant —1.

And in the second place as noted above in general a
proper primitive form can never be equivalent to an
improper primitive form as is seen at once through
application of a unit substitution. The forms fl and 12
otherwise expressed correspond to the ideal (2, 2w) of the
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realm R(¥Vm), while fa and b correspond to the ideal
(1, 4m) of the ring r(vm). If p is an arbitrary ideal
different from (2) of the realm R(Vm), there may be
correlated four improper primitive forms corresponding
to the ideals (2) p and (2) p'; and to the ring ideals
pr and pr that may be associated with p and p' there may
be correlated four proper primitive forms as in Art. 276.
The essential difference between the treatment here and
that in Art. 276 lies only in the introduction of two kinds
of primitive forms.

Case IV. Where R(Vm) is an imaginary realm and
m=1 (mod. 4)- The distinction made here and in the
third case consists in limiting the discussion once for all
either to positive or negative forms of the determinant
D=m.

Multiplication of ldeals and the Composition
of Forms

Art 283. Through the reciprocal relations of quad-
ratic forms! to the theory of ideals and vice versa a basis
may be laid for the theory of quadratic forms. In the
establishment of the theory, it is necessary to know in
what relation the classes of forms stand to the classes of
ideals. The multiplication of ideals in connection with
the operations with forms is a question which will now be
considered. The two cases must again be considered
here: (1) where m=2 (mod. 4) or m=3 (mod. 4), and (2)

m=1 (mod. 4).
We shall limit the discussion to cases m=2 and m=3
(mod. 4).

Let p and q be two ideals of the realm R(Vm) and put
p=(p. b+Vm),  g¢=(gb+vm),

1 See Sommer, Vorlesungen, p. 213.
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whose product, being an ideal of R(m), may be written

pg = (pg, B+
Observe that it is always possible to determine two inte-
gers u and v such that
pu+b=B and gv+bl=B.

It follows that B+"m is an integer belonging both to the
ideal p and to g¢ We may accordingly choose p, B+vm
as basal elements of p, and likewise g, B + vm as basal ele-
ments of g.

Hence with the ideals p, g and pg may be correlated the
forms

Among these three forms there exists the following
striking relation: since px+ (B++vm)y, gx+ (B+vVm)y,
pgX+ (B+Vm)Y are integers respectively of the ideals
P, 0, pq, there exists through multiplication

[px+ (B +Vm)ylyl[ax1(B + Vm)yl]= pgX+ (B +Vm)Y.
By equating coefficients in this expression we have

and it is clear that the form F is transformed into the
product of two forms f and fl through the substitution
(2); and inversely the product of the two forms f andfl is
equal to F, if the variables x, y and x1 y! are connected
through the relations ().
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Further, correlating with the ideals p and q the forms

it is seen that F may be expressed as the product of ¢ and
o1 For the substitutions

X' =Xx+uy, X1 =x1+vyl,

y =Y, yl=yl
change ¢ to f, and ¢l to f1. For the multiplication of
forms Gauss (Disq. Arith., V, pp. 234 et seq.) used the
notation composition.! The form F is said to be com-
posed of the forms f and~1 and can be written sym-
bolically F=ffl.

The same is true of the composition of forms if p and g
are two ambiguous prime ideals. One may observe how
the forms are related which are correlated with p and
p2.  For let p be a prime ideal that is different from 2,
such that, say p=(p, B++vm), and p2= (p2, B++vm). If
the correlated forms are

it is seen that F =f2, where

By a comparison of the substitutions () and (31
observe that the special case may be derived directly
from the general case.

, Smith’s Report, pp. 231 et seq.; Dickson, Vol. 111, pp. 60 et seq.
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Such a composition fails only when p is a divisor of 2.
For example if m=3 (mod. 4) and pp'=2, it is seen that
p=(2, 1 +vm), p2= (2, 2”"m),
where m is an odd integer.
If p is any other ambiguous ideal, we have

p=(p, <m), p2=(p, pvm);
and

F=X2-mY2
It is clear that F =12, if the substitutions
Y =2xy

are made.

Art. 284. We must next observe how more generally
two forms may be compounded, which are correlated
with two ideals. Let these ideals be (see Art. 206, end)

i=(a, b+vm), il =(al, b1+vm)

with the restriction (a, al) =1, the theory being suffi-
ciently general for the results given in the sequel. Their
product is

iil = (aal, alb +alvm, abl+avm, bbl+ (b +b)vm+ m).
Observe that
aalu + (alb +alvm) =al(B + vVm),
aalv+(abl +alvm) = a(B + vm),

where B =au +b=aluv- -bl.
Since (a, al) ~1, we may add B+ vm as an element to
the product just written, which becomes thereupon

iil= (aal, B+Vm).
Further note that i=(a, B+vm) and il=(al, B+vVm).
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If then with the ideals i, i1 and iil are correlated the forms

we may regard F as the product of f and 1. For through
the multiplication of ideals it is seen that
[ax+By+vmy][alxl + Byl +'Vmyl] = aalX+(B+vVm)Y,
where

Y = axyl+alxly+2Byyl
These values written for X and Y offer at once the
product of the two forms f and f1.

If we correlate with the ideals i and i1, instead of the
forms / andi, the forms

corresponding to the ideals in the original forms, namely
i=(a, b+Vm), i1= (a1, bi+ vm),

then on the one hand f and ¢ and on the other f1 and ¢!
are equivalent, and it may be again shown, just as was
done above in detail for p and g, that F may be expressed
as the product of ¢ and ol

It is to be observed in particular that not only the form
F but also every form F' that is equivalent to F may be
compounded of the same forms f and f1.

The above treatment is also reversible: if a form F is
compounded of two forms f and f1 and if with the forms
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f and f1 are correlated the ideals i and i1, then to F there
corresponds the product iil.

Art 285. The fundamental theorem of composition
respecting the behavior of equivalent forms is the
following:

Theorem. If two quadratic forms ¥ and fl are com-
pounded into F and if two other quadratic forms @ and @!
are compounded into ®, and if on the one hand f and ¢ and
on the other f1, and ¢! are equivalent, then is F equivalent to ©.

Proof. If any two integers a and al can be expressed
through f and f1, then also these integers may be ex-
pressed through ¢ and ¢! and the product a-al can be
expressed through both F and ®. Due to the following
theorem, which for convenience is placed after the one
we are now proving, there correspond to the formsfand ¢
equivalent ideals, as also to the forms fland @1 If, say, i
and h correspond to the formsfl and @, while il and fq to
fl and ¢1, then is i—~h, il—hl and consequently also
(Art. 217) iil—~hhl. To the ideals iit and hhl there
correspond, among others, the forms F and ®, which
must be properly equivalent, since through them either
positive or negative integers may be expressed.

Due to the relation between the composition of forms
and multiplication of ideals there exists, as an important
consequence, the relation between classes of forms and
classes of ideals which is expressed through the following
theorem.

Theorem. If i and ti are two equivalent ideals of the
realm R(¥m) each without a rational factor, the quadratic
forms, which by definition are correlated with these ideals,
are also equivalent in pairs.

Proof. We may observe regarding the equivalence of
two forms that, if two formsf and f1 may be compounded
with the same principal form @(=x2-my2) so that the
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two forms f@ = F and f1 = F1 are equal or equivalent in
the sense of Art. 280, then are the forms f andfl equiva-
lent by definition in a somewhat more general sense.
For it is clear that any integer a which may be expressed
through f may also be expressed through f1 with both
expressions belonging to the same congruence root (Art.
280).

Due to the assumption that t and ti are two equivalent
ideals, there exist two integers of the realm a and [ such
that (a)i= (B)il- If then the principal form ¢ is corre-
lated with the principal ideal (a) and therefore the form
=+ with (B), and if there is correlated with the ideals
i, i1, (a)i=(p)il the forms f, fl, F, then necessarily is
F=of= xfl- In fact, the forms ¢, f on the one hand
and ¢, fy on the other hand may be compounded by the
general method above, since the coefficient al of ¢ is
unity, thus satisfying the condition that was imposed,
namely that a and al be relatively prime.

From the equation @f= x¢f! it follows that the forms
T and + Tl are equivalent; and hence also the four forms
which correspond to the ideals i and il are equivalent in
pairs.

If further f andfl are equivalent forms and if i and il
are ideals that are correlated with these forms, then it
follows vice versa that 1—il.

With this it is also proved that to the finite number of
ideal classes of the realm R(¥m) there corresponds a
finite number of classes of quadratic forms with de-
terminant D=m. This last number is at least equal, in
general greater and at most four times as great as the
number of classes of ideals (Gauss, Disg. Arith., p. 196).
With an ambiguous class of ideals (Art. 277) there
corresponds an ambiguous class of forms.

It was proved (Art. 218) that in every class of ideals
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there is an ideal a say, such that M(a)< vD . |If
a= (a, b ++vm), then N(a) =a, while b may be reduced so

that Observe that d =4m, where m=1 (mod. 4).

Accordingly in every class of forms with determinant
D =1, there is at least one quadratic form, whose middle
coefficient b and extreme coefficients a, ¢ satisfy the
conditions

bl  |vVm| la]  2|vm| and la] |c].

These are the conditions of a so-called reduced form
(Dirichlet-Dedekind, Zahlentheorie, pp. 176 et seq.)
namely

O<b<vVD, 0 <VD-b< jak <VD+b, la]  |c]

(Gauss, Disg. Arith., p. 196, Prob. 4).

With this the analogy of the quadratic forms with the
theory of ideals is again put into evidence. And it is
clear that all such conceptions as the multiplication of
classes, distribution of classes into genuses,! character-
system of a genus have their prototypes in either theory.

Example. Derive results analogous to the above for realms
R(¥m), where m=1 (mod. 4).

Remark. On p. 66 of the Evanston Colloquium Lectures Felix
Klein wrote: “It is true that we have here spoken only of complex
numbers containing square roots, while the researches of Kummer
himself and of his followers, Kronecker and Dedekind, embrace
all possible algebraic numbers. But our methods are of universal
application; it is only necessary to construct lattices in spaces of
higher dimensions.” Again on p. 58 of the Evanston Lectures
Klein wrote: ““Recent investigations have made it clear that
there exists a very intimate correlation between the Theory of
Numbers and other departments of Mathematics, not excluding
geometry.

| See Smith’s ““Report on the Theory of Numbers,” Collected Works, Vol. I, p.
202. See also Gauss, Disg. Arithm., Arts. 153-233.
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“As an example | may mention the theory of the binary quad-
ratic forms as treated in the Elliptische Modulfunctionen. An
extension of this method to higher dimensions is possible without
serious difficulties. Another example is found in the paper of
Minkowski, ‘Ueber Eigenschaften von ganzen Zahlen, die durch
raumliche Anschauung erschlossen sind, Collected Works, Vol.
I, p. 270. Here geometry is used directly for the development of
new arithmetical ideas.”

The author believes that one will reap richly the fruits of his
labor, if he will first read Minkowski, ““Zur Theorie der quadrati-
schen Formen,” Works, Vol. I, pp. 6-239, in connection with
Minkowski, Die Geometrie der Zahlen. The theories of this
wonderful mathematician, who died all too young, still remain to
be fully developed.



CHAPTER XIlII
GEOMETRIC PRESENTATION OF IDEALS

Imaginary Realms

Art 286. The theory of the ideals of the quadratic
realms admits of interesting geometrical interpretations.
These offer a close analogy with certain physical studies,
for example mineralogy, in particular crystallography,
etc. The sequence of analogies of pure analysis, ge-
ometry, etc., with physical subjects should never be lost
sight of. They should always be emphasized. There are
close analogies also with metaphysical subjects combined
with physical subjects, for example, the analogy among
ideals, the ideal numbers of Plato, chemistry, etc. See
a paper by the author in The American Math. Monthly,
Vol. 35, p. 282.

In the geometric treatment of ideals a distinction is to
be made between the pure and imaginary realms, as has
been done in their analytic development.

We shall first consider the imaginary realms and for
this purpose we may employ the realm R(¥—5) which

has been repeatedly in-
troduced. The number
of ideal classes h is two.

Take two axes inter-
secting at right angles
with the origin as usual
at the intersection. On
the real (x-axis) lay off
unit distances and on the

530
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imaginary axis (v-axis) lay off distances of length V5.
The integers of the realm are those points of the plane
expressed through the formula

a+bv-5,

where a and b are any rational integers. The plane is
thus covered with what may be called unit rectangles the
vertices of which are algebraic integers in R(+/-5). The
points thus obtained constitute the lattice-points ! of the
realm. We shall call them the fundamental set of lattice-
points. When a system of lines is made connecting
these points we have what may be called a lattice.

Thus corresponding to the one system of points there
may be drawn many different lattices. A parrellogram
that contains no lattice points within its interior is called
an elementary parallelogram of the lattice, or a mesh. A
lattice is completely determined through a position and
the dimension of a mesh. The meshes completely cover
the plane.

Theorem. Through the lattice-points an indefinite
number of different lattices may be laid.

Proof. Take any lattice-point A and any other lattice-
point B, so that the line AB does not go through a lattice-
point between A and B. Continue the line in either
direction through A and B. On this line at distances AB
are situated an indefinite number of lattice-points. This
line divides the plane into two halves. On either side of
it draw parallel lines through the lattice-points. On these
lines the lattice points are at distances AB from one an-
other. On the line that is nearest to ® take any lattice
point C and draw AC. Let D be the next point on this
line parallel to AB. The distance CD is equal to AB.
Join BD and it is seen that there can be no lattice-point in

| Encyklopaedie der math. Wissenschaften, Vol. I, pp. 606-616.
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ABCD, which accordingly is an elementary parallelogram
or mesh. Extend the line AC in either direction from
A and C and mark off the lattice-points at intervals AC
on this line. Lines drawn through these points, parallel
to the line AB will, with the first system of parallel lines,
divide the entire plane into elementary parallelograms
or meshes. It may be proved that were there a lattice-
point within one of these meshes, there would also be one
within ABCD.

By taking the lines through AB and AC as oblique
axes, and denoting the lengths AB and AC by wx and w2,
it is seen that all lattice-points may be had through the
formula

x1w1+x2w2

where Ti and x2 take all positive and negative rational
integral values; and that is, wl, w2 from a basis of all the
integers of the algebraic realm R(v/=5), the lattice-points
being geometric images of all algebraic integers of the
realm. The arithmetic interpretation of what has just
been given, is: there are an infinite number of ways
of choosing two pairs of values wl, w2 in every realm so
thatxlwl+x2w2 will, with rational integral values of x! and
X2, give all the integers of the algebraic realm. And recip-
rocally, if w1 and w2 form a basis of the realm, then 0, w1,
w2, w1+w? form the four vertices of the initial mesh. The
quantities w1, w2 give the direction of the coordinate axes
and the unit lengths on these axes.

If ul*, w2*form another basis that is different from wx, 2,
we saw (Art. 206, end) that

W* = rel+sw?,
(S i = too1+wenr
where ru +st==%1.

Observing that

Wl + w2y = (rx—+ty)wl+(sx+uy)w?,
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it is seen that the new variables

Xl =rx+ty,

(S2) yl =sx+uy, ru-st= =1,

offer a transformation from one system to another. The
coordinates x, y, X1, y! are in all cases rational integers.
The direction of the coordinate axes are determined
through wl w? and w!* w2* With the exception of the
origin, every lattice point is transformed into another
lattice point. The transformations (S1) and (S2) are
said to be contragredient. It is seen that the area of
every mesh that determines a lattice is constant. The
above results may be summarized as follows:

To the integers of a quadratic realm there correspond the
points of a lattice. These points we have called the funda-
mental set of lattice-points. Through the lattice-points an
indefinite number of lattices may be laid, whose meshes are
all of the same area. Every lattice corresponds to a definite
basis of the realm. Any two lattices are analytically con-
nected through a linear transformation with determinant &,
and this transformation is contragredient to the one that
connects the corresponding pairs of bases.

The product, sum or difference of any two lattice-points
is a lattice-point. To prove this we need only write a
complex integer in place of the lattice-point and employ
the usual rules for complex numbers.

Art. 287. If a is an algebraic integer, the principal
ideal (a) consists of the collectivity of all the integers of
the realm which are divisible by a. And this means
geometrically all those lattice-points which are obtained
by the multiplication of the fundamental set of lattice-
points by a. It is clear that these points also form a
system of lattice-points. Thus the lattice-points are
merely the integers of the principal ideal (a). To
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illustrate this take o= I1++—5, an integer in R(v/-5).
Multiply the points that lie on a line of the fundamental
set by a. The resulting points also lie on a line. For
denote the inclination that the quantity a makes with
the x-axis by  so that
therefore where
d denotes the absolute
value of o Observe
that if G=reip is any
point on a line, its co-
ordinates satisfy the equation
rcos (0-—¢)=d,
where d, 0 are the length and inclination of the perpen-
dicular from the origin to the line. A similar equation
may be had through the multiplication of a and &. It is
further seen that points which lie in two parallel lines (in
which therefore 9§ is the same) when multiplied by o offer
points that lie on two parallel lines. Also observe, since
that a vector drawn through the origin is
turned through an angle and stretched in the ratio
dr . r, so that there-
fore every figure is
transformed into a
similar figure. Since
the ideal (o) is de-
rived from the ideal
(1) through multipli-
cation with a, it is
seen that the ideal
(a) with elementary
parallelogram ABCO
is similar to the lattice (1) with parallelogram abco.
For observe that the complex quantities
0, & b, C,
0, 1, 1+iV5 V5,
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multiplied by a= 1+iV5 are

0, 1+iV5 -4+42iV5 —5+iV5
0, A, B, C.

From this it is seen that similar lattices correspond to all
principal ideals, the ideal (1) being the fundamental lattice.

Analytically it is seen that the derivation of the lattice
(o) from the principal lattice (1) may be brought about
by means of a linear transformation upon the latter.

For put a=u+v V-5 where u and v are rational
integers and denote points of the fundamental lattice by
x+Yy V-5, while those of the lattice (0) are expressed by
X~+YV5, where x, y, X, Y are rational integers. It is
seen that

X = ux-5hvy,

Y = ux—+uy,
with determinant

|o| = u2+5v2.

Mark off the points that are the vertices of the lattice
(). Through these an infinite number of lattices may
be laid whose meshes have a constant area precisely in
the same way as was done for the indefinite number of
lattice-points that were laid through the fundamental
lattice-points.  (Sommer, Vorlesungen, p. 227.)

Corresponding to every basis of the ideal (a), for
example a, a+/-5, there may be associated a lattice
whose elementary parallelogram has as vertices the
points O, a, aVv-5, a+aVv-5. To the different bases
there correspond different lattices, that are connected
through linear transformations with determinant 1. For
example in the figure above OA=w!=1+iVv5, 0C=w?
= —5-+15j and if we put

W*= rol +sw?,
w2* = pwl + qw2, rq-sp =1,
we have a different lattice, the vertices of the elementary
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parallelogram being 0, w*,w*l+w? 2. The area of the
meshes in both cases is 6v5. Accordingly we have the
theorem:

Theorem. With any ideal (o) there may be associated
a set of lattice-points that is similar to the fundamental set
of lattice-points.  Through this set of lattice points may be
laid an indefinite number of lattices each defined by a basis
of the ideal (o). Any two such lattices are connected by a
linear transformation with determinant =1.  This transfor-
mation is contragredient to the transformation which con-
nects the pair of bases, that correspond to the two lattices.
All such lattices have meshes of constant area.

Art 288. The ideal (1) corresponds to the funda-
mental set of lattice points. The ideal (a) corresponds
to a similar set of lattice-points, there being fewer such
points within the area which includes one or more meshes
of the fundamental lattice. The question then is: how
many lattice-points of the fundamental lattice lie on the
sides and within a mesh of the lattice (a)?

In this enumeration we shall count as belonging to a
definite mesh:

1. One vertex of the mesh, so that therefore every
vertex belongs only to one mesh;

2. All those lattice points that lie on the two sides of
the mesh that intersect at the vertex that is counted as
belonging to the mesh;

3. All points on the interior of the mesh.

Since all the meshes contain the same number of lattice-
points of the fundamental lattice, we shall take, for the
determination of this number, that mesh which belongs to
the normal basis of the ideal (a). Writing as above
a=u—+Vvv-5 let t be the greatest common divisor of u
and v, so that It is seen that
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since the norm of any basal element may be added as an
element of an ideal. It follows that (see Art. 206, where
i is divisible by i2( =t)),

If this mesh is so laid that the side lies on the

Xx-axis, it is seen that this side contains of the

initial lattice-points, while there are t such points on the
other side. In all there are u2+5v2=N(a) such points.
And these points constitute (mod. a) a complete system
of incongruent integers that belong to the realm R(~+/-5).
Accordingly we have:

Theorem. Every mesh of the lattice (a) contains N(0)
of the fundamental lattice-points, and these points constitute
a complete system of incongruent (mod. a) integers of the
realm.

Art 289. Instead of the principal ideal (o) consider
next any arbitrary ideal i with basal elements 1, 12 so that

i=(lni

where x and y are any arbitrary rational integers.
Corresponding to this ideal there is a lattice with mesh
having 0, 11, 12,11 +12 as vertices. By giving to x and y all
possible integral values, we derive lattice-points corre-
sponding to the integers of i. Besides the lattice just
written, an indefinite number of other lattices may be
laid through these points corresponding respectively to
the pairs of basal elements through which the ideal may
be expressed. In all these lattices the meshes are of
constant area.
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The number of lattice points of the fundamental
lattice (which corresponds to the ideal (1)), which lies
within one of these lattices, is equal to the absolute
value of the norm and that is |[N(i)|. And the num-
bers that correspond to these points constitute (mod. i)
a complete system of incongruent integers of the realm.

Let i and il be two ideals of the realm R(~/-5) that are
not principal ideals and which belong to the same class, so
that (a)i= (al)il, where a and alare integers of the realm.

Write i in a form (Art. 206) free from rational integral
factors i=(a, b+ +/-5) and also write il=(AB+V-5)
so that N(i) =a and N(il) =A. Further let a=c++/-5d
and al = C+ +V/-5D where ¢, d, C, D are rational integers,
with the norms N(a) =c2+5d2, N(al) = C2+5D2 Due to
the relation

1) () i=(ad)il,
we have

N(a@)N({)=W(a)W(il).
Writing

where x, y, X, Y are arbitrary rational integers, we have
from (1), when the real and imaginary forms are equated
on either side of the equation,

cax+ (ch —5d)y = CAX+(CB -5D)) Y,
@ dax-+(bd+c)y = DAX + (BD + C)Y.

From these two relations it is seen that
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with determinant

Reciprocally, if from (2) we express X, Y in terms of x, y,
which is done by changing the capitals above into small
letters, and vice versa and then a into al, it is seen that
the determinant of the resulting linear forms is

As in Art. 289, corresponding to the lattice that connects
the integers of the ideal i there is a similar lattice that
connects the points of (a)i. The same is true of the
ideals il and (al)il. Hence if (a)i=(al)il, the lattices
corresponding to i and i are similar. And due to the
results of this article the meshes of the lattices that
correspond to the ideals (a)i and (al)ilare of equal area.

Observe that the lattice that corresponds to the
product of the two ideals i and il contains all those
lattice-points that are common to these ideals. If all
the points that belong to both ideals i and il are formed
into another ideal J, the greatest common divisor of the
first two, the corresponding lattice is had by snner-
posing one of the ideals i on the other il
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Art. 290. The preceding theorems are immediately
applicable to all realms R(¥m) for which m#l (mod. 4).
If M=l (mod. 4), the integers of the realm are obtained

througl where x and y go over all

rational integral values. The lattice-points of the funda-
mental lattice are the set of points of an oblique system of
coordinates, so chosen that the origin is at the point O
and the unit points lie on the coordinate axes at the points

1, and

Among the lattices that may be laid through the
fundamental set of lattice-points (of the realm) there are
none that offer a rectangular mesh. A fundamental

mesh may be taken with vertices

As seen in Art. 294, the units of the given realm
that are different from =1 offer certain symmetric
properties of the lattice-points. In all other respects,
the results of the preceding articles apply literally for the
present case where m=I1 (mod. 4).

Art. 291. The geometric interpretation that the num-
ber of classes h of an algebraic realmR(¥m) is finite, may
be expressed as follows:

Theorem. The indefinite number of lattices that may be
laid through the lattice-points of the realm may be distributed
into h classes, so that all lattices of a class are similar to one
another and only these may be transformed into one another
by linear transformations.!

We saw that the meshes of all the different lattices that
could be laid through any one set of lattice-points were of
constant area. This area for any ideal i=(i, il+i2w),

1 See Klein, Ausgew. Kapitel der Zahlentheorie, Vol. 11, pp. 94 et seq.
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N(i) =ii2, may be calculated as follows. From the figure
it is seen that the area in question is

Since in every ideal-class
there is at least one whose
norm is less than |vd|
(Art. 218), we have the theorem:
Theorem. In each of the h classes of similar lattices

there is at least one lattice, whose area is less than

As a lattice represents an ideal, and an ideal in normal
form is as given above, it follows in every lattice whose

mesh is that an elementary parallelogram may be

laid whose sides are less than Id| anc respectively.

Real Realms

Art. 292. To give a geometric meaning of the ideals
in a real realm R(Vm) corresponding to the results
established in the preceding Articles for the imaginary
realms, we may introduce a pseudometric I geometry in
the place of the Euclidian-Cartesian.

Corresponding to the Cartesian method we may
introduce a rectangular system of coordinates with zero
as the origin and lengths 1 and vm laid off on the x-axis
and y-axis respectively. With this system of coordinates,
we must define:

(1) the distance between two points;
(2) the angle between two straight lines;
(3) the area of a finite closed figure.

1 Klein, loc. cit., pp. 50 et seqg. and p. 71; and Math. Annalen, Vol. 48, p. 562.
See also G. B. Matthews, Theory of Numbers, pp. 103-131.



542 THE THEORY OF ALGEBRAIC NUMBERS

1. First let x, yvm or (x, y) be any one of the lattice-
points, say P, the origin O being the point (0, 0). By
definition the expression

denotes the distance OP. All points which lie at a
distance r = | from the origin satisfy the equation
1=x2-my
a real hyperbola, which has its real axis on the x-axis.
This hyperbola is the standard curve for the pseudo-
metric distances. It defines a definite unit-length on
every line that is drawn through the origin, cutting the
hyperbola, the unit-length being constant for the line
which determines it. This hyperbola corresponds to the
Cartesian circle xX2+y2=1.
All points which lie on either of the asymptotes

and

are at a distance zero from the origin, since for any point
on an asymptote we have

The asymptotes play a peculiar role in this pseudo-
metric geometry. They correspond to the lines xxiy =0
of the Cartesian geometry.

Due to the fact that any two points of an asymptote
are at zero-distances apart, the asymptotes may be called
minimal lines, which name is also applied to the lines

X+iy=0.

All points which lie within the same angles included by
the asymptotes as the hyperbola, have real distances
from the origin. Points that lie in either of the other
angles have imaginary distances, since for them x2 — my? is
negative. However for these imaginary distances, the

real hyperbola
X2—myl= -1
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may be used as the standard curve of reference, the
factor i being multiplied into any measurements derived
from the first hyperbola.

If x, yvm, and that is (x, y), are the coordinates of any
point P and if (x1, yl) are the coordinates of a second
point Pi, by definition the distance r between these
points is

2. To determinel the inclination of any radius r=OP
with the z-axis, the following artifices may be used:
Introducing the hyperbolic functions, we may write
X=+yvm =r(chg + shg),
where
x =rchg, vmy = rshe.
By definition the angle ¢ thus determined is the
inclination of the radius OP with the x-axis.
It may be well to insert here some of the fundamental
relations among the hyperbolic functions. By definition

so that
ch( - @) =chg, sh(-¢) = —shg.
It follows that
chg + shg = eg, cho—shgp=e (.
with the relations
(che+shg) (chel+shef) =ch(g+ @) +sh(e+ ¢1)>
(chg +shg) (che! —shl) =ch(¢ —@l) +sh(e —p),
(chp-sh)(ch1-shgl) =ch(¢ + ¢1) - sh(e + ¢1),
(ch@-+shg) + (chipl —shgl) =ch(g - @1) + sh(p-@1),
(ch@+shg) =+ (chipl —shgl) =ch(@+ ¢1) +sh(p+9l),
(chg - shg) + (chpl-shel) =ch( - 1) —sh (¢—l).
Due to these formulas the multiplication of two numbers

1 Sommer, Vorlesungen, p. 236.
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x+yvm =r(che+shg) and x1-+ylVm=rl(chpl+shgl) is
accomplished in a manner analogous to that for the
multiplication of two complex numbers.
To determine the inclination ¢ of the radius OP use
may be made of the two equations
X+yvVm =rey, X-yvm = req,
or

It follows that

where the real value of the logarithm is here meant.
Observe that imaginary values might enter since
e20 = e2+2mik

Further, a distinction is to be made among the radii
OP which lie within the angles made by the asymptotes
and in which the hyperbola lies, and those radii which
lie without these angles, and that is, those which do not
cut the hyperbola x2-my2= 1.

In the first case x2-my? is positive, so that the norm
of the integer x +yvm is positive, and therefore r is real.

In this case

so that ¢ is a real angle.
In the second case, where x2-my2<0, it is seen that
N(x+yvm) is negative. It follows that
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or @= |@|+%in, which is a complex quantity. The
angle between two radii is by definition the difference
between the inclinations -l a fixed sign * having
been chosen to indicate a fixed direction. Two radii
which are separated by an asymptote include a complex
angle, while the included angle is real if no asymptote lies
between the radii.

From the formula for ¢ it follows that every asymptote
incloses with the x-axis, as well as with any arbitrary
radius OP, an indefinitely large angle.

3. The area is defined by choosing for a surface unit a
square whose side has the length unity in the ordinary
sense, the surface area being computed by the usual
methods of geometry and integration. For example the
parallelogram, whose vertices are 0, a+bvm, al+blVm,
a—+a-+(b+b1)Vm, has the area

g= @ bvm
~ al bvm

The mesh of the lattice points of the integers of the realm
R(Vm), which, as in the preceding case shall be called the
fundamental lattice, has the area vm.

With these assumptions the fundamental operations of
addition, subtraction, multiplication and division hold
good for the points of the lattice as for the integers of the
realm. For multiplication it is necessary to add the
inclinations of the radii and multiply their radius-vectors
r and ri.

Art. 293. A principal ideal (a) is represented through
a set of points which consists of those points of the
fundamental lattice that are divisible by a.

The expression of the ideal (a) through any basis, for
example a and avm, in the form

= (ab1-alb)vm,
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where x and y are rational integers, shows again that ar
indefinite number of lattices may be drawn through any
fixed set of lattice-points that cover the plane.

The set of points that express the ideal (a) is had if
each point of the fundamental lattice is multiplied by a.
Let say, and let be any
arbitrary point of the fundamental lattice. Then for the
product of these points we have

And from this follows the theorem:

Every lattice-point of the principal ideal (o) is had from
one of the points of the fundamental lattice by a turning of
the radius vector of the lattice-point through an angle a and a
stretching of it in the ratio & :1.

In other words, the set of lattice-points (a) depends
upon those of the fundamental lattice through a sub-
stitution

X =ax+bym,
Y = bx+ay,
with determinant

In this transformation a distinction must be made
according as the determinant a2 is positive, or negative.
If & is positive, in the theorem above the angle

is real and we have to do with a turning in the usual sense.
If, however, is negative, and therefore a imaginary,
we have

which is a complex angle; and there is situated an
asymptote between the initial and final positions of the
radius.
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This improper turning may be regarded as a com-
bination of a proper turning through a real angle

in which the radius does not pass

out of the angle between two asymptotes and of a
reflection about an asymptote.

As an example, consider the following figure which
corresponds to the realm R(¥10) in which the number of

classes is h=2. From the points of the fundamental
lattice 0=0, a=1, b=1++V10, ¢c= V10, we have the corre-
sponding points of the lattice (a) = (I ++V10), namely,

0=0, A =1+V10, B =11+2v10, c=10+V10,

as shown in the figure. Observe that OA makes with
the z-axis the angle

OB makes with the x-axis,

OC makes with the x-axis,

so that
<AO0C=% log (- 1) = <aOc.
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Similarly it is seen that
OAB =Cx+T1t-Ax=11—% log ( —1)
and
Oab =Tt-Cx=1-% log (—1),
so that OAB =0ab, while ABC=abc, and BCO = hcO.
We further have the ratios
OA :0B=vV—9:v90=v-1 : V10
Oa:0b=1:V-10,
so that
OA . 0B =0a : Ob.
With this it is proved in the pseudometric sense that the
figures OABC and Oabc are similar. (Sommer, op. cit.,
p. 239.)
This result, somewhat extended, may be expressed as
follows: The lattice (o) is similar to the fundamental lattice
and is derived therefrom through the turning about an angle

and with a magnifying ratio

Precisely as in the case of the imaginary realms, it may
be shown that an indefinite number of lattices may be
laid through the lattice-points of the ideal (a), and these
lattices may be transformed into one another through
linear transformations with determinant 1.

Art. 294. To understand fully the significance of the
structure of the set of points (a), it is necessary to
consider the geometric meaning of the units of a real
realm. We saw in Art. 99 that there were an indefinite
number of such units. The images of these lie on the
standard curve x2—-my2=1' in fact, these are the points
whose coordinates, integral in x and vy, satisfy the equa-
tion just written. In particular that unit is to be
considered whose radius vector makes the smallest angle
with the x-axis.

Consider first a unit e whose norm N(€) = 1. The set of
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points (€) consists of all points of the fundamental lattice
of the realm. For any definite unit e=a+bvm, the
turning angle as shown above, is

and since N(€) = +1, there is no magnifying. Similarly
from the fundamental set of points of the realm, we may
derive the set of points (ek), k any integer, by turning
through an angle k log (a+bvm), and also the set of
points (-€k) is had through a turning through an angle
k log (a + bvm) + mi.

Since the set of points (*ek) is identical with the
fundamental set of points of the realm, the existence
ofthe indefinite number of units of the realm has the
following geometric significance:

The fundamental set of points of the real realm R(vVm)
has the property of reverting into itself through a turning
through an angle or where k is any rational
integer. With this turning unit-points move along the
hyperbolas x2-my? = £1, while any arbitrary point of the
fundamental set moves along the hyperbola x2—my2=_C,
where C has a definite value.

Thus it is seen that the fundamental set of points of a
real realm have certain symmetric properties analogous
to those of regular polygons that are inscribed within a
circle.

Next, let € be a unit with norm N(e) = —1. It is still
true that the set of points (¢) is identical with the
fundamental set of points and the first set is derived from
the latter by an improper turning through the angle

=log (a+bvm) —%im,
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and that is, through a turning, together with a reflection
through an asymptote by which a change in the radius-
vectors in the ratio i : 1 is brought about.

The set of points (-€) differs from the set (+€) only
through a reflection through the origin.

The set of points (e2) may be derived from the funda-
mental set by a proper turning.

Hence in the discussion of the unit-lattices, a dis-
tinction is to be made between the units €2k and e2k+1.

Geometrically formulated, the above results may be
expressed as follows:

If the real realm R(¥m) has a fundamental unit € with

norm N(e) = —1, and if we put where is a real
angle, then the fundamental set of units revert into themselves
by a turning through an angle and then a reflection
through an asumvtote of the standard curve.

The geometric interpretation of the results of this
article makes clear the distinction of the positive and
negative norm of the fundamental unit of the real
guadratic realm.

Treated analytically the knowledge of the units of the
real realm is the knowledge of all linear transformations
with integral coefficients (see Art. 293)

X =ax+ bmy,

Y = bx+ay,
through which the fundamental set of points are trans-
formed into themselves. For it is clear that all transfor-
mations of this set have the determinant +1.

EXAMPLES

(Excepting examples 1 and 2 the results are to be derived for real
realms).

1. Determine the linear transformations with determinant 1 that
transform into themselves the fundamental set of units of the
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imaginary realm R(+/-3) and treat geometrically the ideals ()
and (w2), where w is a cube root of unity.

2. In the realm R(+/-1) the mesh of the fundamental lattice-
points is a square. Show that these points revert into themselves
with a turning through 900 and a reflection through the lines that
bisect the angles included by the coordinate axes.

3. Give in detail a geometric treatment of the results given above
for real realms where m=21 (mod. 4).

4. To every ideal i of a real realm there corresponds a set of
lattice-points through which an indefinite number of lattices may
be laid. These lattices may be transformed into each other by
means of linear transformations with determinant +1.

5. Due to the fact that (€)(i) =i, show that every set of lattice-
points may be transformed into themselves in an indefinite number
of ways.

6. The meshes of a set of lattice-points of the ideal i contain those
points of a fundamental set of lattice-points which (mod. i) form a
complete set of incongruent integers of the real realm in question.

7. To equivalent ideals there correspond similar lattices which
may be transformed into one another by linear transformations
with determinant +1.

8. The lattices may be grouped into h classes. Each class

contains at least one lattice the area of whose mesh is less than

Remark. Another method for the geometric representation
of ideals of a quadratic realm was given by Poincar6, “Sur un
mode nouveau de représentation geométrique des formes
quadratiques définies ou indéfinies/, Journal de I'Ecole Poly-
technique, Vol. 28 (1880), pp. 177 et seq. With him the lattice-
points may be expressed through

X =am-+bn,

y=cm +dn,
where m and n are indeterminates which may take all positive or
negative integral values and a, b, ¢, d are constants; or through
the notation

Am+Bn,

where A=a+cVD, B==b+dvD, the quantity D being the
determinant of the quadratic form.

Complex quantities of the form x+yvD are represented on a
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plane P or through the projection of this plane on a plane Q.
The nlanes P and Q cut along the x-axis. the angle between them

being cos-1 V-D). Observing that the modulus and argument
of x- -iy are and tan-1 y/x, by analogy he (p. 200) calls the
modulus and argument of y+xvD respectively and

When D is negative he introduces as a

curve of reference the ellipse (2—n2D=1, and when D is positive
the curve (2-n2D= —1 (hyperbola). Thus Poincar6 was able
(1880) to interpret geometrically all the results of the present
chapter.  The generalization of these results would lead to a
geometric interpretation of ideals in the extended realms, the
ellipse and hyperbola above being replaced by standard surfaces
in a generalized space. See Minkowski's Geometrie der Zahlen.,
pp. 9 and 73.

Bachmann, Grundlehren der neueren Zahlentheorie, p. 106, gives
a geometric treatment of quadratic forms and their equivalence
by means of lattice-points, the latter being the geometric images
of the former, while the same lattice-points present the geometric
image of two or more equivalent forms. On p. 129 is found the
reduction of quadratic forms with negative discriminant geo-
metrically interpreted through a method due to Gauss. On p.
219 a treatment of ideals and lattice-points is found and on p.
238 there is a geometric interpretation of the inner relation
between ““ideal (Kummer) numbers” and ideals of a fixed realm.

In the 45th volume of the Mathematische Annalen Hurwitz
treats geometrically the reduction of quadratic forms for both
positive and negative discriminants. His method may be
extended to higher realms of rationality.



CHAPTER XIV
THE CUBIC! REALMS

Art. 295. In Arts. 87 and 101 a quantity & which
satisfied an irreducible algebraic equation of the mth
degree with rational coefficients was called an algebraic
number; and if such a number ¢ is added or adjoined to
the realm of rational numbers, a new realm of algebraic
numbers (Arts. 42 et seq.) is had through the operations
of addition, subtraction, multiplication and division,
and that is, a realm consisting of all integral and fractional
functions of & with rational coefficients.

This realm has the following fundamental properties
which may serve in their turn to define the realm:

1. The sum or difference of any two numbers of the realm
is a number of the realm.

2. The product or quotient of any two numbers of the
realm is a number of the realm.

Let 8, 6', 8" be the roots of the irreducible equation of
the third degree,

(1) G(x) =x3+ali2+ax+aj=0,

whose coefficients are rational integers. Through defi-
nition (Art. 87) 6, 6, 8" are algebraic integers. These three
integers are different from one another and are not
rational. The quantities 6, 6', 8" are called conjugate
(Art. 45) and when adjoined to the realm of rational
numbers constitute the conjugate algebraic realms R(8),
R(8),R(6"). Any number v of the realm R(6) may be

1 Report on Algebraic Numbers, p. 12.
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expressed in the form (see Art. 44)
v=a +b0+cH2,
where a, b, ¢ are definite rational numbers.
From equation (1) since —al=0+0'+0", or 6'+0"
= —al-9, it is seen that 8'+0" is a number of the realm

9J(0) as is also 0"-0" =

Art. 296. Theorem. The sum, the difference, and the
product of any two integers of R(8) is an integer of R(0).
This theorem has been proved for the general case in
Arts. 88 and 162.
The following are simple proofs for the cubic realms.
Let a and B be two algebraic integers of the realm
R(6), where 0 satisfies the irreducible equation
(1) G(x) =x3+alx2+ax +a3 =0,
al, a2, a3 being rational integers.
It follows from above that o is of the form
a = u-+ve+wey, (i)
where u, v, w are rational numbers.
If 0 is changed in this last expression to 6' and 6
respectively, we have the conjugate quantities o' and a"'.
Similarly we may put
B =ul+v16+w162
where ul, vi, wl are rational numbers.
It is further seen that a satisfies the equation
(x—0)(x—0) (x—0a") =0,

or
x3+Alx2 + A2X+A3=0.

In this expression Al A2 A3 are rational integers,
since by hypothesis a is an algebraic integer.
In the same wav j must satisfy an equation
x3+BIx2+B2x+B3=0,
where B, B2, B3 are rational integers.
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Forming the expression

B([t-(a+p)][t-(a'+BH][t-(a"+B™)],
it follows at once from (i) and (ii) that the sum a+3
satisfies an equation of the third degree with rational
coefficients.

Since the coefficient of ts in the expression just written
is unity, it is only necessary to show that the other
coefficients are rational integers. This may be done by
forming the equation of the ninth degree:

T(1) = [t-(a+B) J[t-(a+B) ] [t-(a+B")]
<[t-(a+B)][t-(a'+B) ] [t-(a”+[(3)]
x [t-(a"+B)][t-(a"+B)H][t-(a"+B")]

an equation in which the coefficients are symmetric m
both the a's and the f's.

From (iii) and (iv) it is seen that these coefficients are
rational integral functions of the A’s and the B's.

It is evident that T(t) is divisible by S(t), so that

T(t)=S(t)S1(t)
From Art. 9 it follows that the coefficients of S(t) are
rational integers.

In a similar manner it may be proved that the product
a-B is an algebraic integer. Form the two quotients

o(f) = (t-ap)(t-a’B,)(t-a"p"),
Q) = (t-ap) t-apB,")(t-ap™) (t —a'P) (tap)(tap)
x (t-a'B") (t-a"B) (t-a"B’) (t-a"B").
It is clear that the coefficients of t in the latter expression
are integral functions of the A’s and B’s; and since Q(t) is
divisible by P(t), it follows also that the coefficients of
P(t) are rational integers and consequently af is an
algebraic integer.
Through repetition of the above theorem it is seen that
every rational integral function in any number of algebraic
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integers of the realm R(B) with rational integral coefficients,
is an integer of R(D).
If a is an algebraic integer, then also a'a" is an alge-

braic integer; and since it is seen that a'-a"

is an algebraic integer in 9t(0).

Theorem. If an algebraic integer a in R(8) is a
rational number, it must be a rational integer.

For lo, being an algebraic integer it satisfies an algebraic
equation S(t)=0 in which the coefficient of the highest
power is unity and the other coefficients are rational
integers; and 2° being a rational number, it follows from
the theorem (Art. 10) since S(t) is divisible by t — a, that
a must be a rational integer. (See also Art. 87.)

The Discriminant of an Integer of the Realm

Art 297. If a is an arbitrary integer of R(0), it was
seen (Art. 44) that a could be written in the form
a=u+ve+wl,
where u, vand w are rational numbers. When 8 is changed
to 8" and 0" respectively, there arise the quantities a and
a'', the conjugates of a.
The product of the three quantities a, a',a’" is called
the norm of a and written N(a) = a-a'-a'".  (Art. 59.)
The product
o(a) = (a—a’)(a-a")
was called by Hilbert (Bericht, § 3) the different of the
number a.
The discriminant of a is (see Arts. 63, 94, and 104)
1, o w2 ?
A@Q) = (0 - a)2(a’ - aM2(a” —op= 1 a. U
1, a" "
It is evident that N(a) and A(a) are rational integers.
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It is also seen that

—-N[3(a)] = —(a—a’)(a—a")(a"—a")
(a’-a")(a"-a) (o™ —a’)
= (a-a)2(a-a'")2(a"-a)2=A(a) (Art. 95).

Since the equation
(1) G(x) =x3+alx2+alx+a3=0,
which is satisfied by 8, is by hypothesis irreducible, it
cannot have a double root. (Art. 41.)

It follows that A(6) ZO.

And (see Burnside and Panton, Theory of Equations,

. 83),
P %) A(B) = ala22+ 18ala2al — 4a32 — 4a3la3 — 2733
(see Art. 104).
If al =0, this expression reduces to
A0)= —4a3-27an.

The discriminant of a rational number is zero, since a
rational number is its own conjugate; and reciprocally, if
the discriminant of a is zero, then is a a rational number.
For, if a were an algebraic humber, say

oa=0o+hbB+ch and

a'=a+hb" +ch?2
then is a-a'=b(0-0")+c(62-62);
and were a=a’, it would follow that o =b+c(6+6') and
consequently 6" would be a rational number, contrary to
the assumption that 8 satisfies an irreducible equation.

If A(0) is a positive number, the roots of G(x) =0 are all
real, and the three conjugate realms R(8), R{)R({)
contain only real quantities and are called real realms.
If, however, A(0) is negative, the roots of G(x)=0 are one
real and two conjugate complex. One of the correspond-
ing three realms is real and contains only real numbers,
while the other two contain complex numbers and are
called imaginary realms.
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Art. 298. Theorem |. The discriminants of all alge-
braic numbers of R(8'), which are different from zero, have
the same sign and that sign is the sign of A(6).

For writing any number a in the form

o =0l +bl6+cl6?,

02 =02 +b26+c2 62,
and substituting these values in the discriminant A(a), it
is evident that

1, o0 o 2
A0)= 1 o o2
1, o o'l

1, al+b16+c162,  a2+b26+c202 !
1, al+b16'+c162, 02 +h26'+c202,
1, a1 +Db16"+c16"2, o2 +b26"+c26"2
= (blc2—b2cl)2A(8).
Theorem Il. The discriminant of every integer of
9?(0) which is not rational, is differentfrom 0 andfrom +1.
If a is an algebraic integer that is not rational, it
satisfies an irreducible equation
x3+alx2+alx—+a3 =0, (i)
where al, a2, a3 are rational integers.
In this equation al is either zero or different from zero
In the first case
A(0) = -4a3227a.
In the second case where al#0, write

The equation (i) becomes

where A2 and A3 are rational integers
If a1=0 (mod. 3), then is A2 divisible by 3 and A3 by
27 and here again the discriminant takes the form
Aa) = —4aR-27323
where a2, & are rational integers.
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If. however.@ (mod. 3), we have

If, then, A(a) = —1, we must have an equation of one
or the other forms
4a32+27a23 =1,
4A32+ Al = 27,
where a2, a3; A2, A} are rational integers. It follows that
either
27a23-1=0 (mod. 4),
or
A32—27=0 (mod. 4).
Evidently neither of these congruences can be satisfied.
It may also be shown that A(a) is not equal to +1.
For it was seen (Art. 269) in connection with the proof
of the impossibility of solution of the Diophantine
equation x3 +y3=z3, that the equation

(1) y3—y+¥% =0
is the only equation, the sum of whose roots is zero, for
which A(a) = +1.

It is also seen that mere is no substitution

which transforms (1) into an equation
X3+ alx2+a2x+a3=0,
where al, a2, a3 are rational integers.

Art. 299. The Basis of All Integers of the Realm 91(0).
In Art. 101 it was shown that three algebraic integers wi, w2,
w3 of the realm R(8) might be derived in an infinite number of
ways such that every arbitrary integer of the realm could be
expressed in the form

XW1+yw2+z03,
where X, y, z are rational integers.



560 THE THEORY OF ALGEBRAIC NUMBERS

In Art. 102 a form for these three basal elements was

wl=1,

where d, 6! are rational integers, dé and &l being divisors of
A(B), and where the rational integer A was a root of the
three congruences given in Art. 102, end.

Art. 300. The lIdeals of the Realm R(8). An alge-
braic integer a is said to be divisible by another algebraic
integer B, if there is a third algebraic integer y of the
realm R(6), to which a and B both belong, such that
a=_py.

[f we neglect the units (Art. 90) of the realm R(6), itis
seen by passing to the norms, since N(a) = N(B)N(y)
(Arts. 59 and 89), that there are only a finite number of
factors of a. For N(a) is a rational integer, and a
rational integer admits only a finite number of divisors.

If, however, the factorization of the algebraic number a
is carried out until none of the factors admits further
factoring, we meet with the same difficulty in the case of
the cubic realms as was already had (Arts. 108, 203) in
the case of the quadratic realms, namely, the distribution
of an algebraic integer a of the realm R(6) into its irreducible
factors of the same realm, is no longer unique; and that is,
the factorization, as such, is no longer a unique process.

To avoid this difficulty we must introduce the ideals of
the cubic realms in a similar manner as has been done for
the quadratic realms. Thus a realm is to be regarded
as the collectivity of its rational numbers and its ideals.
It is only necessary to extend the definitions given for
ideals of quadratic realms (Arts. 206 et seq.) and to
observe the properties of the ideals thus generalized.
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These concepts will be further extended to the cases of
the more extended realms in Vol. 11, Chapts. 1, 2, and 3.

Definition. An ideal i=(al, a2, a3 ---) is the
totality or complex of the infinite number of algebraic
integers of the realm R(8), which has the property that every
linear expression Alal+A202+A303+ - - - offers an algebraic
integer that is found among this totality (complex'); and
that is, if 0 =Alal+A202+A3a3+ - - -, then i=(al, a2, a3,
---)=(al, a2, a3, -+, ¢, -+ -). The numbers aal, a2, a3,

- are definite algebraic integers of R(6), while A1, A2, A3,

- are any algebraic integers of the same realm.

Note from this definition that every ideal contains the
gquantity zero.

It was seen in Art. 296 that if a is an algebraic integer of

R(B), then is also an algebraic integer, say A,

of 9t(0). Hence if a is an element of an ideal, then is
Aad=N(a) also an element of the same ideal. And as
N(a) is a rational integer, it is seen that every ideal
contains an infinite number of rational integers. If,
further, an ideal contains an algebraic integer a which is a
divisor of unity, so that, therefore, N(a) = +1, the ideal is
called a unit ideal (Art. 211). In this case there is a
svstem of integers A1, A2, A3, - - -. such that
1= Mol+A\202+A303+ - - -

If in an ideal i = (01, 02, a3, --- q, ----) all the elements
al, 02,a3, - - are divisible by a, then isii = (a).

Such an ideal is called a principal ideal (Art. 206).

Art. 301. Theorem. In every ideal i of the realm
R(8) there may be derived in an infinite number of ways three
integers 11, 12, 13, such that every other integer of the ideal may
be expressed in the form

X1 +y12 + 213,

where X, y, z are rational integers (Art. 94).
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A normal basis of the ideal
t=(al, a2, a3, )
may be derived as follows: Let wl=1, w2, w} form a basis
of all integers of the realm R(6) (Arts. 100 and 101). We
may therefore write
0l =al +blw?2 +clws, o2 =a2 + h2w2 + c2w3,
etc.

If ¢ is the greatest common divisor of ¢1,¢2 ¢3, - - -, we
may always determine rational integers k1, k2, k3, - - -,
such that

klcl +k2c2+k3c3 - =c.

Further klol + k202+ k3a3 - - - =qa, say, may be added
as an element to the ideal t so that t= (al, 02, o3, - -, q,

% we put klal +k2a2+ . - =a and klbl + k2b2+ - - - =b,
it is seen that

o =#hl+cw3 .

Since ¢ is a divisor of c1, c2, - - -, we may write cl = dlc,
c2=d, c3=dsc, ---, where di d2, d3 --- are rational
integers.

It follows that ai-dia = ai-dia + (bi-dib)w? (i=1, 2,
3, - ) are elements that may be added to i. Further
write ai-dia=Ai and bi-dib=Bi and it is seen that
ai =dia+ Ai+Biw2 (i=1, 2, 3, - ).

It follows that Ai + Biw may be added as elements to i,
and that the elements ai may be omitted.

The ideal takes the form

i=(Al+Blw?, A2+ Blw2, A3+B3w?, ---,d, ---)

Continuing as in Art. 206, it is seen that 1 may be

reduced to the form
i=(i, i1+i(1)1, a),

where i is a rational integer that is the greatest common
divisor of all rational integers that belong to i. The
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numbers il and i)l are also rational integers, Vil being
(Art. 206) a divisor of both i and il

Writing for a its value a+bw2 + cwd and noting that iw}
may be added as an element to i, it follows as above that
a may be replaced by an element 18=1i2 +i(1)2-+i(22w3
where i(22 is a divisor of i, where i2" is reduced (mod. iw),
and 12 is reduced (mod. i).

The normal basis of the ideal i is thus shown to be

i=(1, 12, 13),
where
L=, 12 =il+i(1)1w2, 13 =12 +i(1)2+i(2)2w3
If we put

Ir*= arlil +ar212+ar313 (r=1,273)
and choose (Art. 100) the rational integers ars(s=1, 2, 3)
such that |ars| ==, it is evident (Art. 94) that ¥, % @
also form a basis of all integers of i.

Art. 302. Whenever the question of division arises
in the realms of rationality such as R(8), the ideals take
the place of the algebraic integers of the realm. Multi-
plication and division of algebraic integers are to be
replaced by multiplication and division of ideals for such
realms, the operations of addition and subtraction of
algebraic integers being retained as such.

Multiplication of Ideals. Let a=(al a2 - -, a, - ),
b=(BL B2, ---, B, - ) be two ideals of R(B). Here a is
supposed to be any integer of a, say

a=Alal+A202+- - -,
and similarlv
B= plal+p202+- - -,

where AL A2, - -, W1, Y2, - - are any algebraic integers of
R(B). The product a-b is an ideal, say ¢, whose elements
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consist of the products as follows:

c=ab=0alfl a1p2 alP3 alp,
a2Bl, a2B2, a2p3, a2,
a3l a2, a3p3, a3p,
oBl, op2, ap3 ap,

It is clear that the ideal ¢ is constituted of algebraic
number of the form
v1lalpl +vi3ul3+-+ , v10alpB+ - -

—8— v2102B1 +v2202B1 +v2302P2 + - +v2002B+ - - -
+v3103p1 + v3203p2 + v33a3p3 + - +v3003p+ - - -

4+ ...
+v010aB1 + v02aB2 VO30B3 + -+ +vO0aR+ - - -
+ >

where the v,s are any algebraic (including rational)
integers of R(0).

Reciprocally, an ideal ¢ is said to be divisible by the
ideal a when there is an integral ideal b such that ¢ =a- b,
the three ideals, of course, belonging to the same realm
R(6).

Since Vv11p1, v12p2, etc. are algebraic integers of R(0) it is
evident that if the ideal ¢ is divisible by the ideal a, then
every number of the ideal ¢ (and consequently of the
form just written) is also a number of the ideal a and
that is every number that is divisible by c¢ is also divisible
by a

An ideal that is not a unit in R(8) and which is divisible
only by itself and such a unit is called a prime ideal.

Art 303. Two ideals a and b of R(8) are said to be
equivalent (Art. 217) when there are two integers a and f3
of R(6) such that



MHE CUBIC REALMS 565

The same properties of equivalent ideals obtain here, as
are given in Arts. 217 et seq. All equivalent ideals form
a class.

It may be proved next that the factorization of ideals
is unique. An indirect proof of this theorem due to
Hurwitz is given here.!

Lemma I. An integer a of the realm 91(0) whose norm
N(a) = xa isfinite, can enter as an element in only afinite
number of different ideals.

For let

a=(ol, a2 a3, - -, a a - -

and let 1, w2, w3 be a basis of all integers of R(8) and let
=i, 2=il+i(1)lw2, 13=i2+i(1)202 +i(2)2w3 be a normal basis
of the ideal a. Since a, aw?2, aw3 may be added as ele-
ments of a, it follows from the derivation of the normal
basis that i is a divisor of a, while i)l and i are divisors
of i. There are only a finite number of ways of distrib-
uting the rational integer a into divisors. Further (12 is
reduced mod. i)l and consequently is an integer <i(l)l
while iland i2 are reduced (mod. i).

It follows that an ideal can have only a finite nhumber of
different ideals as divisors. For as seen in the preceding
article, every integer that appears in the dividend must
also enter the divisor.

Lemma Il. There are only a finite number of different
ideal-classes of the realm R(8). It is proved below that
this lemma follows, when we prove that every arbitrary
ideal of the realm is equivalent to at least one ideal, which
depends only upon the discriminant of the realm.

In the proof of this lemma a distinction must be made
between the real and the imaginary realms.

In the case of the real realms, let a= (al, a2, a3), where

1 See Hurwitz, Nachr. von der Kgl. Ges. d. Wissensch. zu Gétt., 1895, p. 323.
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the three basal elements (Art. 93) mav be written

0i = 0ilwl +0i2w2+0i3w3 (i=1,2273).
Form the norms of all the numbers of a Among all
these norms there is one whose absolute value is as small
as the norm of any other number of the ideal. Let 1 be
this number. It is asserted that a finite rational integer
A may be derived which depends only upon the dis-
criminant D = D(wl, w2, w3) of the realm, and is such that
Aa is divisible by 1, where a is an arbitrary number of the
ideal. (See also Sommer, Vorlesungen, p. 266.)

For let ai be any one of the three basal elements of the
ideal in question. Then due to the Minkowski Theorem
(Art. 26) four rational integers u, X, y, z which are not
all zero, may be found such that

1) aiu + 101X+ 102V + w3z K,
(2 oiu+ r'w'lx+ rw2v + 103z k2,
(3) a'iu + 1"0"Ix+ 1"0"2v + "w"3z k2,
4)

where ki1, k2, k3, k4 are four positive quantities whose
determinant is equal to the determinant of the four
forms just written, and that is

Since one of the k’s may be arbitrarily chosen, write
k4 =2|ai], so that from (4) u [2VD|. It follows that

k1k2k3, 2N(1)
Next put
B = aiu—+1(wlx + w2y + w3z).
Hence from (1), (2), and (3)
IN(B)|=k1k2k3,
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or

IN(B) Y2IN(D)]

Note that B =aiu+I(wlx+w2~-W a number of the
ideal a, since u and wlx+w2y + w3z=A, say, are integers of
9i(0), while ai and 1 are elements of the ideal. Further,
A cannot be zero; for in that case there would be a linear
relation among the basal elements of the realm. And u
cannot be zero; for in that case it would follow from (1),
(2), and (3) that

IN()-N(wix+w2y + w3z)] ¥2N()
or
IN(WIx+w2y + w3z)] Y5,

which is not true, since the norm of an algebraic integer in
absolute value is 1.
Since

INB)I *2IN(D)|
and since by hypothesis no number of R(B), other than
zero, has a norm which is less than N(1)], it is seen that
B=0. It follows that

aiu+A1=0

or, expressed in words: For each of the basal elements ai of
the ideal o, there may be determined a rational integer
lu| < |2VD| such that aiu is divisible by 1.

Of course, this integer u is not necessarily the same for
the three basal elements al, a2, a3

Denote by A the product of all positive integers that
are less than |2vVD|. Then clearly the product of each
of the numbers al, 02, a3 by A is divisible by t, or Aai = 19i,
where di is an algebraic integer of R(8).. It follows, since
every number a of the ideal a, is of the form alAl+o2A2
+0iA3, that Aa is divisible by 1t
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Note that
Aa=A(l a2, a3 -+, U - )=(Aal Aa2, Aa3, -+ Al - )

=1(0L, 62, 83, -+ -, A)—1b,
say.

It follows that every ideal o is equivalent to an ideal b
which contains the rational integer A. As there are
(see Lemma 1) only a finite number of different ideals in
which A may enter as an element, it follows that there
are only a finite number of different classes to which a real
ideal o may belong. Ideals bl, b2, ---, bh may be de-
termined such that each is a representative of a definite class.

Next suppose that R(6) is an imaginary realm and let
a, al a2, 1 have the same significance as above, ai and a
being complex quantities. Determine an integer B of q,
say B =aiu+1(wix+w2y+wiz), such that [N(B)] < IND|.
We may again apply the Minkowski Theorem to the
four linear forms:

B,
(B and B' being conjugate imaginaries, " real) and
B = aiu +1(wlx+wly+wiz),
B' = a'iu +1 (0'1x+w"2y+w'3z),
Note that ai and a'i are conjugate imaginaries, as are also
w1l t'e?, etc.
As in the case of the real realms above, rational

integers u, X, y, z that are not all zero, may be determined
such that

(1)
)
(3) Bl k3
(4)
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where kil-k3-kd is equal to the determinant of the left
hand side of (1), (2), (3), and (4), which is |aiN(1)].
Write k4 =2 |ai|, so that
k21k3= 22|N(1)|.
Observe from (4) that
[ul 2|vD].
Further, note that

or

IN(B)I Y2IN()|.

The proof from now on is the same as in the case of the
real realms. And thus it has been proved that the
number of classes into which the ideals of every realm R(0)
may be distributed, isfinite.  This number is denoted by h.

Art. 304. The following theorem may now be proved.

Theorem. If ais an arbitrary ideal of the realm R(8),
which is not a principal ideal, another ideal b, which is also
not a principal ideal, may be determined, such that the
product a b is a principal ideal.

Let a be an ideal that is not a principal ideal, and form
the powers of a, the ideals a, a2, a3, - - -

Due to the second lemma, these ideals may be dis-
tributed into a finite number of classes; and, as the most
general case, it may be assumed that is the first
power of a that falls into a class that has been occupied by
a preceding a, say the same class to which am belongs, so
that

or
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or finally
(1)
where a, B are integers of R(0).

It remains to show that is equal to a principal ideal
).

It must be shown first that A as defined through
equation (i) is an integer of the realm. Observe that
everv number of the ideal is also a number of the
ideal am, since every integer of the first ideal is also one of
the latter. If al, a2, a3 constitute a basis of the ideal am,
then Aal is an integer, since it is a number of the ideal

and as every number of this latter ideal is also a

number ot the ideal am, it is seen that

Aal=xlal+ylo2 +z103;
and similarly

A02= x201+y202

+2203 ; Ao3=x301+y302 + 2303 ;,
where the x’s, y’s, and z’s are rational integers. Through
elimination of al a2, o3 from these equations, it is seen
that A satisfies the equation

x1-A y1 pal

X2, y2-A 22

X3 y3, z3—A

Hence A (see Art. 87) is an algebraic integer.

If, further, B is any number of the ideal ahl then are
Bal, Ba2, Basd numbers divisible by the product of ideals

(A)am, and it follows also as in the case of A above, that

is an algebraic integer. Hence every number of is
divisible by A and consequently the ideal is divisible
by A

It follows that where tis an ideal. We may

therefore write
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ind from equation (ii) namely it is seen that
am(A)i = Aam.

Since A may be divided out of this equation, we have
finally .

ami=am. (ii)

It may be proved that i is a unit-ideal (Art. 206). For

let 1112, 3 be a normal-basis of i; and if al, a2, a3 are a

basis of a, it is evident that every number of the ideal am

on the righthand side of (ii) mav be written in the form

Alal(xlil +yli2+z13) +A202(x211 + y212+2213)

+A3a3(x311 + y312+2313)
where AL A2, A3 are arbitrary integers of R(8) and xi, i,
zi(i=1, 2, 3) are rational integers.

On the other hand all numbers of am may be expressed
in the form ulal +u202 + u3a3, where ul, u2, ul are any
rational integers. Equating this last expression for am to
the preceding one, it is seen that

ui=Ai(xitl+yi2+zi3) (i=1,2 3).
If for ul, u2, u3 we choose three rational integers that
are relatively prime, it is seen that the integers
ui=Ai(xill+y112+z113) (i=1,2,3).
may be added as elements to the ideal (i). As this ideal
contains also the greatest common divisor of these three
rational integers, it is seen that the ideal i is a unit-ideal.
It was proved above that ahl=(A)i, and as i is a unit
ideal, it follows that ahl= (A) is a principal ideal, or anl ~1.
Hence also

etc.
In other words, in the original assumption, we may take
m—1; and by hypothesis the ideals o, a2, ---, must

be necessarily in-equivalent.
20
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If then a is an arbitrary ideal of the realm R(8), which
is not a principal ideal, it is always possible to determine
another ideal say, which is also not a principal
ideal and it is such that a-b is a principal ideal.

Art. 305. The following consequences result from the
theorem of the preceding article.

Theorem. If 3§ b, ¢ are three ideals that are different
from zero, and which satisfy the equation ac=hc, then is
a=h.

For if b is an ideal such that cd = (A), where (A) is a
principal ideal, we may multiply both sides of the
equation ac=bc by b, and then divide by the algebraic
integer A.

Fundamental Theorem. If all the numbers of the
ideal b also belong to the ideal a, then is b divisible by b.
And that is, if h>a, then is b=ak, where k is an ideal.

If b=0 (mod. a), then is bm=0 (mod. am), where m is
any ideal.

Let m be an ideal such that am= (a). It follows that
bm=0 (mod. a) or bm=ok, k an ideal. Hence abm =aok
or ab = aok or b =ak

Theorem. If the product ab of two ideals is divisible by
the prime ideal p, and if a is not divisible by p, then is b
divisible by p. In other words, if the prime ideal p is a
factor of the product ab, then p must be a divisor of at least
one of the factors a or b.

If ab =pc, and if am = (@), then is (a)b = pcm; and since a
and p can have no factor in common, it follows that b is
divisible by p. This may be proved differently as
follows. If o is not divisible by p, then is (a+p=0)
and that is, two integers al and @ may be found such that
al+@®=1, since 1 is an integer in o.

And if B is any integer of & then is alf divisible by p;
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and since alp+®p =, it follows that =0 (mod. p), and
that s, b is divisible by p.

It follows from the above theorem that every ideal may
be distributed into its prime ideal-factors in only one way, or
the factorization of an ideal into prime ideal factors is a
unigque process.

A fundamental consequence of the theorem by which
the unique factorization of ideals is established, is the
fact that every prime ideal of the realm R(8) must be a
divisor of a rational prime integer; and that is, a rational
prime integer must appear as an element in every prime
ideal. For corresponding to every prime ideal p there
exists an ideal i such that pi=(a), a principal ideal.
Since aa'a"™ =N(a) =a, say, is a rational integer, and as

it is seen that (a) is divisible by (p) and conse-

qguently a is an element of p. It follows also that a is an
element! of p.  Since a is divisible by p, one of the prime
factors of a is also divisible by p, and being divisible by p,
appears as an element of p.

The following theorem is of peculiar importance for
the numerical calculation of ideals which belong to a
fixed realm. (See also Art. 215.)

Theorem. In every ideal a, which is not a principal
ideal, there always may be found two numbers a and al,
whose greatest common divisor is a, so that a may be written
equal to (a, ol).

For let a be any number of a  Then choose an ideal b.

such that where b is relatively prime to a.  Next
choose a number, say al of a, which is relatively prime to
1 For is an integer of the realm to which a belongs. It follows that if

afis divisible by p, then alsoaa'a" is divisible by p and accordingly is an element
of p.
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b, and let so that (al) =ai. Itis evident that i is

relatively prime to b, and it may be shown that a is the
greatest common divisor of (a) and (ol), or a= (o, al).
Since b and i are relatively prime, observe that we may
determine an integer § of b and an integer y of i (see
above) such that B+y=1 Hence, if ai is any integer
of a, it follows that

ai = aify + aiy = Aa+Alal, or a= (a, al).

Art 306. The Norm of an Ideal. An integer a of the
realm R(0) is said to be congruent to an ideal i as modulus,
and written a=0 (mod. i), if ais divisible by i, and that is,
if ais an element of i. Two numbers a and B of R(0) are
said to be congruent to each other and written a=3 (mod.
i), if the difference o - is divisible by i. (Art. 209.)

It follows that, if a and B are both congruent (mod. i)
to a third number vy, they are congruent to each other.

The totality (or collectivity, and that is, the complex
of all the integers of R(8) may be distributed (mod. i) into
classes, if all numbers are counted as belonging to the
same class, when they are congruent (mod. i) to a definite
number, and that is, every number of a class is congruent
(mod. i) to every other number of the class. Every
number of R(B) belongs to a definite class, and every
number of a class determines (mod. i) that class.

The number of such classes as seen below is finite.
If from each of this finite number of classes a definite
number is selected, a system of integers is constituted
which may be called a complete system of incongruent
residues (mod. i). Every number of the realm R(6) is
congruent to a definite one of the numbers of the complete
system. The number of the integers which constitute a
complete system is called the norm of the ideal i and is
written N(i). (Art. 209.)
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Theorem. Let a be an ideal of the realm R(8) and let
the basis of a be the quantities al, a2, a3, where

al =allwl+al2w2+al3w3
02 = a2lwl+a22w2+a23w3 (a)
a3 = a3lwl+a32w2+a33w3

the a’s being rational integers. Then is
N(o) = |all,al2,a13 |

Proof. First take the normal basis 11, 12,13 (Art. 301)
of the ideal a, where

11=1, 2 =il +i(1)lw2, B=i2+i(1)202+i(22w3  (b)
Every integer f of R(8) may be written
B = u+ulw2+u2w3,

where u, ul, u? are rational integers. When considered
with regard to the ideal a, by making use of the normal
basis it is seen that u may be reduced (mod. i) ul may be
reduced (mod. il)f) and u2 may be reduced mod. %2 It
follows that there are i-il)l i(2)2numbers like B of R(6) that
are different (mod. a).

Hence, since (al, 02, a3) = (11, 12 3), it is clear (Art. 94)
that if

al = Allil + A1212 + A1312,

02 = A2111 + A2212 + A2312, (©)
03 = A3ll + A3212 + A3312,

then

All A21 A3l
Al2 A22 A32 =4+1;
AL3 A23 A33

and further in (c) substitute the values of 11, 12 13 from
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(b) and compare the result with (a), and we have

all a12 al3
a2l a22, a23
a3l, a32 a3l
All, A12, A13 j 0 O
A1, A22 A23 il ,i&lfl 0
AL, A32 A33 2 102 iy
It follows that the absolute value of the left-hand de-
terminant is-i(1)1-(2)2 as stated in the theorem.

Since i is a number that appears as an element of the
ideal a, it is evident that A(a) = -i(1)12)2 is an element of
the ideal a.

Art. 307. The norm of the product of two ideals a and b
is equal to the product of the norms of these ideals, and that
is, N(a-b)=N(@)-N().

Proof. Let a be an integer of the realm R(8)which is

= =i 0L .

divisible by o and is such that is prime to b) (cf. Art.

215).

The form an+ & presents only incongruent (mod. ab)
integers of the realm, when to n there are ascribed a
complete system of incongruent numbers (mod. a) and to
¢ likewise a complete system of incongruent residues
(mod. b). There are in all N(a) -N(b)) such numbers, and
no two numbers of this system are congruent to each
other, mod. ob, while every integer of %(0) is congruent,
mod. a-b, to a number of this system.

It follows that N(a-b) = N(a) - N(b).

The norm of an ideal as shown above is a rational
integer that may be adjoined as an element of the ideal,
and that is N(a) is divisible bv the ideal a.

We may therefore write where is an ideal
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which may be called the reciprocal of the ideal a And
for two ideals it is seen that

Art. 308. The theorem for the determination of the
norm of an ideal may be applied to the special case of a
prime ideal; say

p=(p, I1+il)lwl, 12+il2wl+i(2)2w2
Since (Art. 206) i)l and  are divisors of p, these ideals
are of the form
(p, i1+i(D)1wl, i2+i(1)2wl+1w2)
(p, iIl+pwl, i2+i(1)2w2)
(p, il+iwd, i2+i(1)2wl+pw?2)
(p, iI1+pwl, i2+i(1)2wl+pw?2)

Corresponding to these four possibilities it is seen
(Art. 306) that N(p)=pe, where e=1, 2, or 3. This
number e is called the degree of the prime ideal p.

We thus have prime ideals of the first, second, and
third degrees. (See Art. 211.)

After the introduction of the norm of an ideal and the
calculation of its numerical value through the coefficients
of the basis, we are in a position to present the theorems
which are necessary for the calculation of the ideal-
classes of a realm.

Art. 309. Theorems of Minkowski for the Presenta-
tion of the Ideal-Classes. For the presentation of the
ideal classes of the quadratic realms we had (Art. 218) the
theorem that each of the different classes contained at
least one ideal whose norm was less or at least equal to
|[VD|, where D was the discriminant of the realm.

To prove the same theorem for the cubic realms we
must prove first the following lemma.

Lemma. Every arbitrary ideal a of the realm R(6)
contains a number a, whose norm satisfies the inequality
IN(@| N(2)[VD|
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First let R(8) be a real realm and let al a2, a3 be a basis
of the ideal a which may be written in the form (Art. 94)
av = avlwl-+av2w2-+aviw’ V=1, 2 3),

where wl, w2, w3 constitute a basis of all integers of the
realm R(0).

Due to the Minkowski Theorem (Art. 26) three rational
integers x, y, z that are not all zero may be found such
that the absolute values of the three linear forms

fl = alxl + a2y + a3z,

f2 = o'lx1 +a'2y +0'3z,

f3=0"1x1 + a2y + "3z,
are less than the three positive quantities ki, k2, k3 whose
product k1k2k3 is equal to the absolute value of the
determinant of the three linear forms |(al a2, a'3)| which
in turn = |(all, a22, a33) N

Write fl=q, so thatf2=a', and f3=a"

It follows that N(a)=klk2k3 or |[N(a)] (N(a)) VD.

Suppose next that R(0) is an imaginary realm, and
that R(8") is the conjugate imaginary realm, while R(6")
is the conjugate real realm.

Instead of the two forms f1 andf2 above consider the
two real forms

and

and of the quantities above let ki =k2
Noting the identity FA+F2=(F1+iF2)(F1-iF2) it is
seen that
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Again writing a = alx + a2y + a3z, o' = a'lx + a'2y + a'3z, we
have as above

a''<<k2,
or
IN(a)] <%6%o0
while
k1k3=N(a) | VD]

We are now in a position to prove the theorem:

Theorem. Every ideal-class of the realm R(8) contains
an ideal whose norm is smaller than the absolute value of the
square root of the discriminant of the realm.

Proof. Let a be an ideal of the realm R(8) and let be
a second ideal such that is a principal ideal, say (0)
(Art. 304). From the above lemma there is in the ideal

an integer such that Since a is
divisible by  Ywe may write where al is an ideal
of R(6).

Hence or

(see also Art. 218).

Since and it is seen that

or a—al, and it has thus been proved that the ideal-class
to which a belongs, contains an ideal di such that
The same is true of every ideal-class.

Hence to obtain directly the number of ideal-classes of
a fixed realmR(B), it is only necessary to consider the
positive rational integers that are less than or at most
equal to |[VD |.

These rational integers are to be decomposed into their
ideal-factors. Those ideal factors that are equivalent
and whose norms are at the same time  |VD| constitute
a class in question, and the number of such classes is thus
determined.
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Art 310. Derivation of the Prime Ideals in the
Realm R(B). Suppose that the realm R(8) is fixed, the
guantity 0 being a root of the irreducible equation

G(X) =x3+alx2+o2x + o3,
where al, a2, a3 are rational integers.

It is required to construct the prime ideals p, pl, etc.,
through which a rational prime integer p is divisible.

It is assumed at first that the prime integer p is not a
divisor of the discriminant A(6); and that is, A(B)% O
(mod. p).

In Art. 305 it was proved that any ideal could be
expressed as the greatest common divisor of two integers
of the realm R(8). It follows that p may be expressed in
the form (p,a) where a is an integer of R(0).

It was proved in Art. 102 that a basis of all integers of
R(8) could be expressed in the form

wl=l,

where d and 6! are definite divisors of A(0). Hence, every
integer a of R(6) may be written

where a, b, and ¢ are rational integers.

If now p is the greatest common divisor of p and q, it is
also the greatest common divisor of p and d2dla, since
d281 is relatively prime to p and therefore also to p. And
p, being the greatest common divisor of p and ddia, is
p=(p, d2la). Hence there remains the two possibilities
either d2dla is of the first or of the second degree in 6.

It follows that either

(1) p=(p, a+bo),

) p= (p, a+bB6+cH?2),
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and it remains to determine in either case the rational
integers a, b, c.

Since the number x6 -p+y(a+b8) may be added as an
element in the first case, and since p and b are relatively
prime, the rational integers x and y may be so chosen
that xp+yb = 1, and consequently an element of the form
— A +0may be added to the ideal (1), which now becomes

p=(p, a+hd, —-A+8).

Since a + bB-b(-A+06) =a+DbA, it is seen that a-+bA
may be added as an element of p. It is clear, also, that
a+bA must be divisible by p; otherwise the ideal
reduces to a unit ideal. Write a+bA =g-p, where g is a
rational integer. Further note that

gp + b(-A+0) =a+hb.
Hence aAbB may be omitted as an element, thus leaving
p=(p, —A+D).
It remains to determine A.

In this ideal it is evident that the element — A+0 may
be multiplied by (-A+8)(-A+8"), which product is
-Al—-alA2-aA -al or —-G(A). And this number
must be divisible by p, otherwise the ideal becomes a
unit ideal. It follows that A must satisfy the congruence

G(x)=0 (mod. p).
If this congruence does not permit solution, then p has
no ideal factor p of the form (1).

In the second case, namely when

p=(p, a+bB+chH),
we may, as in the first case, replace the second element
by an element in which ¢=1. The prime ideal then
takes the form

p = (p, a+b6+62),
and if in this ideal such elements of the form al+blf
enter, the coefficients al and b! must be divisible by p,
otherwise, p would reduce to the first case.
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If the element a+bB+62 is multiplied by the integer
z+0, where z is a rational integer to be determined, and if
we note that 03+alf2+a26+a3=0, it is seen that the
ideal may be written
p=(p, a+hb+02 az+(a+bz)d

+ (b+2)62+ 03, a3+a26+al62+63, ---)
=(p, a+bb+02, az-a3
+(a+bz-a2)0+ (b+z-al)s2, ---).

If z is determined so as to satisfy the congruence
b—+z-al=0 (mod. n), then the ideal takes the form

p=(p, a+bb + 02, az-a3+ (a+bz-a2b, - -).

We therefore must have the congruences

a+bz-a2=0 (mod. p),
az —a3==0 (mod. p).
If these two congruences are satisfied, it is seen that
(a+h8 + 62)(z+6)=a3+ab + alf2+63 (mod. p).
Thus the quantities a, b, and a+b6+6? are determined,
if a3+a206+alb2+63 may be factored (mod. p) into a linear

and a quadratic factor.
Hence, to determine the prime-ideal factor of a rational

prime integer p in a cubic realm R(8), where 0 is a root of

the equation
G(x) =x3+alx2+alx+al =98,

we have to determine the roots of the congruence
G(x) =0 (mod. p). (i)
It has been shown that
1. if A is a solution of (i), then is
x3+alx2+a2x+a3=(x-A)Ffl(x) (mod. p),
where f1(x) is a rational integral function of the second

degree in X;
2. the congruence (i) has at most three distinct

solutions.
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I. If the congruence (i) has no solution, then in the
realm R(B), p is not factorable into ideal-factors, and (p)
is a prime ideal of the third degree, and that is N(p) = p3.

I1. If (i) admits the only solution x =A, so that:

x3+alX2+ax+a3=(x-A)(x2 + bx+a') (mod. p),
then v admits the two prime-ideal factors

pl=(p, -A+06) and p2= (p, a+b6+62),
such that p =pl-p2, where pi is of the first degree and
p? of the second.

I11. If the congruence (i) admits the three solutions
Al A2, A3. so that

x3 +alx2 + a2x+a3=(x—Al) (x-A2)(x-A3) (mod. p),
then is p divisible by the three prime-ideal factors of the
first degree

pi=(p, -Ai+6) (i=1213),
so that p =plp2p3, where each ideal is of the first degree,
and that is N(pi) =p (i=1, 2, 3). (Sommer, Vorlesungen,
p. 277; Reid, Gottingen Dissertation (1899), p. 25.)

Art. 311 If next we consider the case where p is a
divisor of A(8), we encounter difficulties in deriving the
prime-ideal factors of p.

If A(B)=0 (mod. p), the congruence

G(x) =x3+alx2+alx+a3=0 (mod. p)
has a multiple root, say x=A1 and either
G(X)=(x-Al2(x-A2) (mod. p),
or
G(X}=(x-Al)3 mod. p),

For if G'(x) =3x3+2alx2+a2 is the derivative of the
function G(x), then a necessary and sufficient condition
for a common solution of the two congruences G(x)=0
(mod. p) and G'(x) =0 (mod. p) is A(8) =0 (mod. p"), as is
seen at once by eliminating x from the two congruences.

If, however, A is the common solution of the two
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congruences G(x)=0 (mod. p) and G'(X)=0 (mod. p);
and if we write
G(X)=(x-A")fL(X) (mod. p)
then is
G'(x) =f1(x) + (x - A)Fl(x) (mod. p)

From this latter formula it is seen that G' (x) ==0 (mod. p)
can have the root x=A (mod. p), when f1(x) = (X-A)f2(x)
(mod. p); and that is, when G(x) == (x ~A)If2(x) (mod. p)

If AB)=0 (mod. p) it might be surmised that the
rational integer p was divisible by the square of a prime
ideal. This is not always the case. The following
theorem was proved by Dedekind | and later by Hensel.

Theorem. All and only those rational prime integers
which are divisors of the discriminant D of the realm are
divisible by the square of a prime ideal.

This theorem was proved for the quadratic realms in
Art. 216. In this connection see the theorems for the
general realms of rationality in Vol. Il, Chapter VI.

The Units of the Realm 9t(0)

Art. 312. Among the integers of the realm 9t(0) those
are of peculiar interest, whose norms are equal to 1, and
which are called units of the realm (Art. 90). If e is such
an integer, then is €'€" = =1, and that is, ¢ satisfies an

equation of the form
x3j+alx2+ax+1=0.

That is also a unit, is seen by writing ’or X in the equa-

tion just written.

1 R. Dedekind, “ Ueber den Zusammenhang zwischen der Theorie der ldeale
und der Theorie der héheren Kongruenzen.” Abhandl. der math. Klasse der Kgl.
Gesellschaft der Wissensch. zu Gottingen, 23 Band, 1878.

2 Hensel, Crelle, Vol. 113, 1894; Vols. 127, 128, 129; see also Hensel, Jahresber.
der deutschen math. Ver., Vol. 6 and G6tt. Nach., 1897; and Hilbert, Zahlber.,
p. 195.
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It is also evident that if ¢ is a unit that is different
from 1, then every power et with integral positive
and negative exponents e are units; for clearly

g-.€'e-e (ee'e")e==xI.

If the realms R(8), R(6"), R(6") are all real, the roots of
the equations t2==tl, t3= £1, when imaginary are not
units of the three realms, since these realms do not
contain complex integers.

If, further, R(8), is real and R(®), and R(6") are
conjugate imaginary realms, then in none of the three
realms can there appear the roots of unity, other than
+1.

Suppose for example that

is a complex root of unity in the realm 91(0").
Then is n'-n" = £1, so that n'= £1.
It follows that

or, B satisfies an equation a2 +hb6+cxk =0, of the 2nd
degree which is not true since the cubic which® satisfies is
irreducible (Art. 41).

In the same way it follows that every unit e of the
realm R(8), for which |e|=I, is itself =x1. For if
R(8) is a real realm and if |€|=1, then e being a real
quantity is =x1. If next 91(0") is a complex realm in
which |€']|= +I1, then in the conjugate complex realm
R(68") itis evident that |€'|=1, where €" is the conjugate
complex of e'. It is further seen that |€|= +1 in the real
realm R(6), and consequently e= £1, as must be also t'
and €".
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Art. 313. The following is a theorem ! which in
generalized form was proved by P. G. Lejeune Dirichlet,
Werke, Vol. 1, pp. 622, 632, 642.

Lemma. In every (real or imaginary) realm R(6) of the
third degree there exists a unit which is different from +1.

The proof of this theorem is very similar to that given
for the real quadratic realm of Arts. 230 et seq.  See also
Arts. 99 et seq.

I. First let the discriminant D of the realm be positive
so that all the realms R(8), R(6"), R(6") are real. Let
Al, A2, A3 be any three positive quantities, whose
product is

AlAZA =V D). (i)

It is possible, due to the Minkowski Theorem of Art.
26, to determine rational integers u, X, y, z which are not
all zero, such that

|olu + awlx + aw2y +awiz| Al
[0lu+a'wix+a'w2y +aw3z| A2
[a"lu+a"w"lx + a"w"2y +a"w"3z| A3

The quantities Al A2, A3, Al satisfy the relation

where al, a are integers in R(8) and where wl, w2, »3 form
the basis of all integers of R(8).

Further put and write

a=alu + awlx + aw2y + aw3z
It follows that
A1A2,A3= |VD|. (i)
It is seen that a is an integer of R(8) such that Ja] AL
o'l A2]a"] A3

1 See also H. Minkowski, Geom. d. Zahlen, pp. 137 et seq.; D. Hilbert, Berichl,
Chapt. 6, pp. 214 et seq.
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Since a is an integer in R(B), its norm, that is
|al-all.all| l

and consequently

and therefore also

Thus for a and its conjugates o' and a", there exist the
inequalities

(i)

Due to eouation (i). the last inequality may be written

Consider next three new real positive quantities

whose product, due to (i), is again = |VD |.
From similar considerations there exists an integer B
of R(8) which satisfies the inequalities

(iii)
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Instead of the last inequality we may again write

Further write

and determine an algebraic integer y in the same way as
a and p were determined above.

If this process is continued, there exists an unbroken
series of algebraic integers which satisfy inequalities
such as (ii) and (iii).

Since the discriminant |[VD| > 1, it is evident from (ii)
and (iii), that the numbers |al, IB], |yl - -; as well as
the numbers '], IB'], |Y'], - - - form a series of de-
creasing numbers, while the series |o™|, IB"], [Y"], - - -
constitute a series of increasing numbers.

If we use the fact that the principal ideals (a), (B),
(y), -+ constitute an endless series of ideals whose
norms are  |VD|, and observe (Art. 309) that there can
exist only a finite number of ideals, whose norms are less
or at most equal to a finite rational number, it is seen
that of the series (a), (B), (y),--- two ideals must
eventually become equal.

If, say, (a) =(y), and if |a|> || , then the quotient

presents a unit of the realm R(8), which is different
from =tl. Due to the inequalities for a, B, v, etc., itis
seen that |e€|>I, |€' |>1 while |€"|<l, where
and

It is clear that |¢f and |€'| cannot be equal. In an
analogous manner one may construct a unit n, for which
(n[>1 [n| <1, and |n"[>1.
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Il1. Suppose next that the discriminant D is negative.
We may assume that R(6) is real, while R(6") and R(8")
are imaginary realms. Due to the Minkowski Theorem
two positive real quantities A and Al may be so chosen
that AAl= |[VD]| and an integer a of R(8) may be so
determined that |a] A and |a'| A1l and since
|a'|=]ax™|, it follows also that |a"| ALl In a similar
manner as was shown above, it is seen that

Next write and BI=A1]| D|, so that BB!

= |vVD|, and construct the integer B of 91(0) so that

Through a continuation of this process, an infinite
series of ideals (a), (B), - - - may be constructed, and as in
the case where D >0 it is evident that there exists a unit
different from =+1 in each of the three realms 91(0),
R(0), R(6")

In the derivation of such units and contrary to the
preceding case, it is seen that either |e] >1 while €|

= |€"| <1, or |n] <1 while |In'|=In"] >1
Art. 314. The Dirichlet Theorem. If among the
three conjugate realms R(8), R(8"), R(6"), there are rlreal

realms and pairs of imaginary realms, then in each

of the three realms (for example in R(0)) there are r=rl
+r2—1 fundamental units, namely ¢ and et when all three
realms are real, and e€lwhen there are a pair of complex

1 See Smith’s Report, where other references are found to Kummer’s work and
that of Kronecker.
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realms. Further, every other unit of the realm in the first
case may be expressed in the form and in the second
case in the form where ei and e? are rational integers
(see Art. 233).

Minkowski’s proof (Joc. citf) is as follows (see also
Hilbert, Zahlbericht, p. 214):

First let R(0), R(6"), R(6"™), be three real realms.
There are two units e and n, see lemma above, such that
e >1, |el>1, |"<1 and |n] >1, |In"I<1l, Qh"|>1-

If $ is any arbitrary integer, the real quantities log [¢],
log |&'|, log |&"| are called the logarithms of the number&,

For brevity we may write

I(§)=log [&l,  11(§)=log [&]  12(€) =log [€"]
If € is a unit, &1, and consequently the loga-
rithms of a unit & satisfy the equation

f1(€) = 1(&)+11(§) +I12(¢) =0, (i)
so that every unit must contribute a solution to this
equation.

If one or all three logarithms 1(&),11(E), 12(&) is zero,
it follows from the preceding article that necessarily
&=+1. Hence to derive the units of the realm that are
other than %1, it is necessary to find all the solutions of
the equation (i), whose values are different from zero.

Write

f2(&)=hl(&)+ h1l1(€)
and determine h and hlso that
f2(n)=hl(n)+ h111(n)>0
If we put hi=-01(¢ and h=1I1(g), it is evident that
/12(n) = 1()1(n) —1E©)I1(n) >O;

for 11(n) is negative since N" |<1, while I(n), I(e), and
I1(c) are positive.

Further note that the required solutions of equation (i)
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mav be presented in the form

I&) = sll(e) +s21(n),

11(€) = s1I1(e) + s211(n), (ii)

12(€) = s112(€) + s212(n),
where sl and s? are arbitrary real numbers. In fact the
three values I(§), 11(€), 12(¢) as given in (ii) satisfy identic-
ally (i); and corresponding to a given solution I(§), 11(€),
and 12(¢) the quantities sl and s2 may be uniquely
determined as finite numbers from the first two of the
equations in (ii) in the form

Observe that
I(n) >0, 11(n) <O, 12(n) >0,
1(€)>0, 11(¢)>0,, 12(€)<0,,
and that the signs of I(§), 11(), 12(§) must be at least one
positive and one negative. Since f2(n) >0, it is seen that
when the values just written for sl and s2 are substituted
in the third formula under (ii), there is no contradiction
as to sign.
For ¢=¢, we have from (ii) s1=1 and s2=0, and for
&=, itis seen that s1=0, and s2=1.
It mav be shown next that the ineaualities

0 s1 I, O s2 |
can exist simultaneously for only a finite number of units.
For, if these two inequalities exist for a unit &, we neces-
sarily have for the absolute values

(&)= [I(e)] + \I(n)],

[Ni@)I= [li(e)| + [li(n)] (=1 2)
and that is, the absolute values |&|, |&'|, |&"| are less
than three definite numbers that depend only upon e
and n.
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If then
§ = X+yw2+zm3
(Arts. 93 and 103) represents an integer of the realm
R(B), and if x, y, z are computed from the equations
X+w2y+w3z =¢,
X+w2y+w3'z=¢
X+w2"y+w3"z=¢& ,
we have
X=ALE+A2E'+A3X"
with similar values for y and z.

The quantities A1 A2, A} are constants whose absolute
values are finite. If further the absolute values of the
&'s lie within finite limits, then [x| must be less than a
finite number as must also |y| and [z]. Thus it is seen
that only a finite number of combinations of rational
integral values can be given to X, y, z, so that |&|, |,
and |&"| lie within definite limits.

MI the units whose expression in the form (ii) is such
that

0 sl1 1, 0 s2 1
may be arranged in two classes.

The first class contains the units, for which s2=0,
while the second class contains those for which s2>0.

In the first class determine that unit € for which sl
takes its smallest value, say SI, which is differentfrom zero;
and in the second class determine that unit € for which s?
takes its smallest value, say S2

There is then no unit other than =1 for whose expres-
sion in the form (ii) exist simultaneously the inequalities

0O si1<S! and 0 s2<S2 (iii)

If ¢ denotes an arbitrary unit of the realm, and if €l

ind e? are rational integers, to be determined later, then

also is a unit of the realm.
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Write
L =1(8) —ell(el) —e2l(e1),
L1 =11(¢) - ell1(el) - e211(el),
L2 =12(€) - e1l2(e1) - e212(€1).
If we put I(el) =Sll(l) and I(e2) =Sl(e) + S21(n) in the
above expressions, we have
L=1(&)- (e1S1+e2S) I(e) —e2S2l(n) (iv)
L 1=11(8)- (e1S1+e2S) I11(e) — e2S211(n)
Next from (ii) it is seen that we may put L and L in
the form
L =sl1l(e)+s2l(€)
Ll = s1l1(e)+s211(e).
Writing these values for L and L! in (iv), it is seen that
I(§) = (s1+elS1+e2S)l(e) + (s2+e252)I(n),
I1(€) = (s1+elS1+e2S)I1(e) + (s2+e2S2)I1(n).
Solving for s1+elS1+e2S and s2+e2S2, it is seen that

v)

Since f2(n)=0, we may determine e from the first of
these equations and then el from the second as positive or
negative integers such that sl and s satisfy the ine-
qualities (iii). But this is contrary to the statement
that the two inequalities can not be simultaneously
satisfied. It follows then that L=0 and L!=0. Hence,
also L2=0. And from these equations el and el are
determined.

It follows that

or

and with this the Dirichlet Theorem is proved when the
three conjugate realms are real.
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For the second case where D<O0, R(8) being a real
realm while R(6) and R(8") are a pair of conjugate
imaginary realms, let €l be that unit in R(8) which has the
smallest absolute value among all those units whose
absolute values are >1. It may be then proved in a
similar manner as was done above for the units in the
real realms that any arbitrary unit & of the realm may be
exoressed in the form

where el is a positive or negative rational integer.
For, writ< and suppose that E#1 so that either

EpPb1, or In the latter case put Itis

seen for the first case that I(E) =I(&) —ell(el) and it is
clear that el may be so chosen that
I(E) <l(e1)
which is contrary to the assumption made relative to el
A similar result is had for the second case.
Observe here that from I(E) =0, the integer el is
uniquely determined and that I1(E) is also zero.

EXAMPLES
In solving the following examples one may consult the Gottingen

dissertation of L. W. Reid, entitled Tafel der Klassenanzahl fiir
kubische Zahlkérper. It may be proved that in every class there

exists an ideal (a) such that where r, de-

noting the number of pairs of imaginary roots, is here either 0 or 1.
(See Vol. Il, Chant. VIII, of the present work.)
1. If 8 is a root of the equation
x3+x+1=0,
then is
AB®)=-31 and D= -31.
Show that the basis of R(8) is 1, 6, 62, and that h=1 Show that in
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this realm 2 and 5 are irreducible and that
3=(1-0)(82+6+2) = P1-@2,
where @1 and®2 are principal ideals. The units are 0 and 1+0.
2. Let 0 be a root of the equation
x3+6x+8=0.

Show that
A(B)= -2592= -25-34,

that 1, 0. may be taken as basis of all integers, and that

D= —23-34 Observe that A and D1, where D1 is a divisor of A(6)
must satisfy the congruences (see Art. 102):
3(A-al)2+2al(A-al)+a2=0 (mod. D),
(A-al)3+al(A-al)2+a2(A-al)+a3=0 (mod. D3L),
where here al=0, a2=6, a3= -8, giving A=0, D1=2. Show that

(3)="(3, 6-1)3,
(M=, 6-2)(7, 3+20+02);
thath=3 and that a unitis0+1
3. If x3+3x+5=0 has a root 0, show that the basis of all integers

of the realm R(6) is 1,6, that units are §+1
and h=1.
4. If 0 is a root of
X3+8x2+2 =0,
show that a basis is 1, 6, that h=1.
5. 8 being a root of
x3+8x+1=0,
show that a basis is 1, 8, and that

6. If 0 is a root of
x3+100=0,
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show that a basis is 1, 0, in the realm R(8); while 1, 6,

form a basis in R(0), if 8 is a root of

z3+28=0.
7. In general (see Sommer, p. 261), let 6 be defined by an irre-
ducible cubic
x3 +a3=0.
Suppose further that a3 is not divisible by the third power of a prime
integer, and write
a3=n- N2,
where n and N are integers. In R(6) prove that:

(1) If a3=0 (mod. 3), then 1,8  form a basis.
(2) If a320 (mod. 3), but a3=%*2, or a3= +4 (mod. 9), then

again a basis is 1, 6

(3) If a3=1 (mod. 9), then 1, 6, is a basis when N=1
(mod. 3), and 1, 6, s a basis when N= -1 (mod. 3).
(4) If a3= —1 (mod. 9), then 1, 6, is a basis when

N=I (mod. 3) and 1, 6, is a basis if N= -1 (mod. 3).
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Criterion for, 69.
Least common multiple.
of modular systems, 288.
of module, 177 ff.
of realms, 58, 99.
Legendre’s symbol for quadratic resi-
dues. (See Symbol.)

Measure of lengths, Euclid, 541.
Descartes, 541.
pseudometric, 541.

Mesh, 531.

Minkowski’s Theorem for

forms, 23 ff., 399.
Geometrie der Zahlen, 529, 552.
Theorem as to number of ideal

classes, 366, 566, 577.

Modular systems (Kronecker), 268

ff., 280 ff. (See Order-modul.)
as divisors, 325 ff.
canonical forms of, 305 ff.
decomposition of, 300, ff, 317.
mixed, 292.
multiplication of, 287.
of first kind, 291.
of second kind, 291, 317.
prime, 315, 319.

linear

INDEX

pure, 292, 317 ff.
reduction of, 303 ff.
Module (Dedekind), 161 ff.
algebraic, 248 ff.
complementary, 268 ff.
defined, 173.
equal, 177.
finite, 220 ff., 247.
integral, 267.
multiplication of, 185, 248.
multiplication of by algebraic in-
tegers, 183.
of finite order, 176, 181, 186, 257
ff.
product of, 185.
quotient of, 193, 248.
Multiple of a modul, 177, 217, 221.
modular system, 283.
Multiplication of ideals, 341, 521,
563.
of modular systems, 287.
of moduls, 185, 248.
(See Composition.)

Norm.
of a quadratic realm, 347.

less than 1VVDI, 366, 579.

of a cubic realm, 574.

of a divisor of a realm, 98, 101.

of an algebraic number, 74, 110,

116.

of an ideal, 347, 574.

of a product, 351, 576.

of a realm, 66.

of fundamental unit, 407.

of several realms, 96.
Normal realms. (See Galois.)
Norm-residues, 433 ff.

symbol of, 433, 351, 576.

Order of a modul, 176, 221, 228, 258.
Order-modul  (““Art”, ““Species”),
201, 204, 247, 249, 260, 261.

Pell’s equation, 137.

®-function of Euler.
defined for ideals, 372.
product theorem, 375.
summation theorem, 376.
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Prime number, 162.
and correlated forms, 507.
ideal, 354.
factor of prime integer, 356, 364.
ideal in cubic realms, 580.
ideal in quadratic realms, 354.
factor of prime integer, 356, 364.
factors, resolution of ideals into,
354, 573.
function, 41.
modular system, 315 ff.
relatively, 45, 48, 343.
relative to an ideal, 358 ff.
relative to modular system, 297.
Primitive function, 4, 43, 47.
forms, 497, 418, 520.
number with respect to a prime
ideal, 379.
quantities, 77, 85, 86, 108.
Product of ideal and its conjugate,
349.
forms or functions, 40.
of ideal classes, 366.
of ideals, 356, 413
of modular systems, 287, 317.
of module, 185, 248.
of norms, 351.
of primitive functions. 5, 44.
Pseudometric geometry, 541.

Quotient of module, 193.

Realm (Kdrper, Zahlkérper) 1, 37.
absolute, 38.

Realm of rationality, 33 if.
algebraic, 55 57, 71, 89.
algebraic realm determined by

algebraic quantity, 76.
biquadratic, 107.
conjugate, 57.
cubic, 105, 139, 150, 553.
cyclotomic, 155 496.
defined, 284.
degree of, 57.
derivation of, 38, 56, 64.
divisor, 88, 100.
finite, 76 ff., 257, 261.
identical, 39, 61, 85.
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quadratic, 133.
stock, 39, 92.
Realm, normal, 56, 92, 106, 108.
Realm, simple, 100.
Reciprocity, quadratic law for prime
integers, 417
in a quadratic realm, 390.
Reducible function 1 2, 40.
equation, 110.
Relative equality of two realms, 95.
Representatives, complete system of
with respect.
to a modul, 209.
to an ideal, 347.
Residues, norm 433 ff.
Residues, quadratic, 388 ff.
complete system of incongruent,
with respect to a modul, 209.
complete system, with respect to
prime integer, 435.
number of, 232, 236 if.
with respect to a modular system,
297.
with respect to a modul, 205.
with respect to an ideal, 347, 352,
380, 574.
Resultant defined, 16.
Ring ideal, 410.
Ring-leader, 411.
Ring-number, 409 ff.
Root-expression, 104.
Root of polynomials, g, 53.
of congruences, 321, 379.
of equations, 56, 11, 257.
multiple, 10.

Schénemann Theorem, 10, 11.
Spur of an algebraic number, 74,

110, 116, 152.
Standard curve in pseudometric ge-
ometry, 542.
Symbol of Legendre, 360 ff.
Symbol 388.
Symbol 1 434 ff.
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Symbol, (a, b), 209.
value of this integer, 235 ff., 277.

Transcendental quantity, 55.

Unique factorization of ideals, 354 ff.
Unique factorization of rational in-
tegers, 20.
failure of, 167 ff., 334 ff.
of algebraic integers,
339.
of polynomials, 49.
Unit. geometric meaning of, 540,
548.
complementary, 300, 321.
Unit ideal, 341.
Unit modul, 248, 251, 253 ff.
Unit modular system. 298 ., 316.
Units, algebraic, 117.

162, 165,

INDEX

of a character-system, 449 ff.
their product, 459 .
Units, number of incongruent, 298,
320.
and lattice-points, 540, 548.
Dirichlet.)

Units of a cubic realm, 584 ff.
cyclotomic realm, 156.
quadratic realm, 136, 345, 396,

403.

Units of a ring, 411, 415.
fundamental in cubic realms, 589.
fundamental m quadratic realm,

403, 479.
Units, system of independent, 298.

(See

Wilson’s Theorem.
for ideals, 382.
tor modular systems, 323.
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