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These last three expressions, in which all positive values of
are admissible differ from the corresponding formule in §§3

and 4 only by the factor ;ll , which occurs outside the whole

expression, and also in the argument of the Gamma function.

Thus, taking the first double integral, we see that its value
when the exponent u‘+v'+2zuv is raised to the power n
bears to its value when the exponent is raised to the power m
the ratio of

1F(a+8+2) » lr(a+3+2).

;a 2n m 2m

DEVELOPMENTS IN POWERS OF &*-#%
By J. W. L. Glaisker.

The general theorem, § 1.
§1. IN §§ 9 and 10 of the preceding paper it was shown

that
n+1
R R S RV I‘( 2 ) Ko
16 e §''dsdt = — | sd"udu
a ]

o .

TS 1Y, (A1) (n+57., }
3 r‘*( : ){I-l- Sl TS N e

n+3\ (1, (n+38)' , (n43)'(n+7) ,
-4r’( 1 ){é“ Tl e e

where A =% — %, & and %’ denoting 4" and %" respectively.
The letter m is not restricted to integral values: it may
have any value > — 1.

Differential relation between P, and P, § 2.
§ 2. By differentiating the first relation
! (n+ 1

f j ¢* ¢ 23\3"7"3”;9‘38&:_ — f sd" u du,
L Pzl o
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110 DR. GLAISHER, DEVELOPMENTS IN POWERS OF &7 -/’

with respect to A, the left-hand side becomes

0 0
=) j f e"‘"“mﬁszs“'t"“dsdt,

D]

which
n+3
I‘( 2 ) X
w12 [P
[
K [
whence def sd“udu=—‘.}n—2ilj sd™ udu;
o 1]
go that, if
I
P= " sdud,
Jo
df, n4l
then = e,
or, since A\ =— 2dh,
dP, n41l
& =g L

Tt is to be noticed that this result (which may be obtained
also by differentiating the series) is true not only for positive
and integral values of n, but also for fractional values > — 1.

The cases n=0, 2, 4, dc., §§ 3-5.
§3. Putting n=0,

rE
.R,=}o du=K;

dP,  dE @&
whence P =2 Fr Nl Sl
Similarly
IR EE T 8RR
2d , SE+8I T .. A(K-1)
5 a4 15/°K* BT e

a,

K,

and 80 on.
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§4. Putting n=0, 2, 4, 6, &e. in the last two equalities
of § 1, we find
1’ g8

4r(d) P=r'(}) {1+ﬁx’+ 2163

At &e }

L
'”(&){=l+246l+‘.4..10h+&°}
27!
r(3) 2= r*(g){1+-—w+23468r+&c}

1 5 5.9
- L O w 3
4T (‘_t)<{‘3u+2467u+2.4 7\.+&c}

ir(5) P=1" () 1+fx=+ 0.9 e
T 2.4.6.8
| - :"’112 p
—4r (;fi){ a'+24—6l 7\.-{—&
9T () Z=T" () 1+7-’->«2+?'”'x‘+&c
E =l 247 7 2468
s Bl gigl & Ngajqe !
B (2){ Marsr et +&°}
&e., &e.,
giving
ey | e ?\.”-i—&c}
@1 +a4™ + 2163

88.79 -
. 2(a s 5 M= &
- (*){ 7”"'146 a0 +&°} g

R’
i 1 Y
41 (g){ }\+2—4687\.+&c}
1 5 9.9 L, _G
"“’(9{:* “a“ﬂ—“&"} s T

. 5-“93-‘
){l-{- P\ 24687\*—&0}
3 Ty i 1T }
431"(5"{:‘;“2.4.’6"*24 Uil
K 2(M =R

b 1y Sy

af}
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By differentiating, we find
S b~k
*T2kk T 2Rk KK
Pe 3K+ 387 — 2Lk o 3 (K —h)
. 84k Kl 8R°A" ?
&e. &e.,
whence, proceeding as in § 4,

’ @ 1 ' - 1
{1+2 M8 &e } {l-l-%l‘ L 4?\.’+&c}

! 41 5!
Eﬂ
1+3'-r+?-'-lx+&c ﬁr{?\.+3’2\."+§-——5~?\.‘+&c}
2.4 4! 5!
1 K=k vy

T ahkh T 4hk EE?

1 g2 ¢ 7 n2
im {1+ !l'-t-i-—é-?\.‘-l-&c} {2\+4l’+4 67\‘+&c.}

] 3! l
S4B -2y 3(K—h)
‘ 32071 H S AT
dee. &e.

§7. We can easily verify these results, for

1? 1°. 3¢ l 1
— Al LA
oy M S Sy

and
T e 2’4 " sin”'\A sin™ (1 - 24")
s M 7 T ) Yo a7
3m—2y
2kk?

8o that the first equation becomes
™ sl W |
okk okl T R
which is an identity, The other results follow from the first
7 differentiation.
YOL. XXII, 1
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116 DR. GLAISHER, DEVELOPMENTS IN POWERS OF k™ —£"

§13. Similarly, taking the case in which the suffixes are
uneven, we have

(2n+2) W' P,

which, since

+ (2”']'1) (‘&‘_}') P“*I—Z’HP‘,_I":O,

ntd

1 /d\"
Pm.=ﬂ—!(d—&) P,

A

gives

' d e ] d o T d = —
ohh (a) P4(2r+ 1) (B b) (d_h) P~ (ﬂ) P=0,
where P = % .

This is the same result as would be obtained by operating

n-1
with (é‘ upon the differential equation

dh/
.d%u L e >

P T
which is satisfied by u = W

Corresponding formule involving enu, §14.

§ 14. Since
sd (K —u)= kl,cnu,

rK rE
we gee that J en"udu=%" J sd"udu,
o [}

80 that in the preceding results we may attribute to P, the

value ,1
i

veniently expressed by means of the function sdu, as we
should expect, the group of functions edu, sdu, ndu being
generally more simple and regular as regard its formule
than either of the two corresponding groups snu, enu, dnu
or dcu, ncw, scu.*

K.
'[ en"udu. The formule are however more con-

'n

* One very convenient property of sd u distinguishes it from all the other elliptic
functions, viz. adiu=isd (4, k'), where i denotes one of the square Toots of — 1.
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118 DR. GLAISHER, DEVELOPMENTS IN POWERS OF &7 — A%

where n and ¢ are any quantities, subject only to the
conditions

n+i>—4, n—i>-14.

) It is evident that the integral may also be written in the
orm

F(n+1) d”' ( ~cn u\
28 W, 1+cn a)

§ 17. Patting in this formula 4» for n, we have
fn+1
0 (_2__) IE T =cenuy
- j ad u ( )dﬂ'
an A 1+cnu

fnb 1\*
NSTEWPRL R
e,
E (n+3)
(e o

Je=GO -6

where n and ¢ are subject to the conditions

l’ - &c.} ]

n+20>—1, n—2i>-1,

This result includes both the formule of §§1 and 15
ag particular cases, the former corresponding to v=0 and the
latter to n=0.

§18. The formula contained in § 14 of the previous paper
(p. 104) corresponds to the case n=1. It was shown in that
section that the series then admit of summation, the resulting
formula being

f"'x (1 ~cnu\' o Bin2dy

\tonu TR siner?
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where v is the modular angle. In this formula ¢ must be
between — 1 and + 1.

§19. This result may be easily verified in the case of
¢=4, for the right-hand member of the equation then
becomes

T . _'ﬂ'
et )

and the integral

K /l-cnu\i ¥}~ cnu
=f sd u f du
” \l+cnu} o Gnu

K [
—2[ ndud’u-—— [tan (&’Z%E)] =%.g=§.

§20. Putting a=n-1, B=n,

in the general theorem of § 4 of the preceding paper (p. 99),
we find that the series becomes

() fre e D0 )

-3ir ( ——) (j) {(n 1) nh+ (x=Lin(zt Lin8) Nt &c.}

~

2 8!

ALCON LU R

e r(’ii-‘
'—'r(g)r(n:l) (14:2\,)" <] (3)2“4&'“ : )’
and the integral

-l d) [

Msn™Mu (14 enu)
du"e

du

l|-1
3'.-’ Ny (?1 al; ) J li .1-' du y

n n+1
e e 0(@v (- F

G

M T, P
where n is any quantity > — 1.

whence
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This result includes the formula given in §17 of the
preceding paper (p. 106), in which n was restricted to positive
and integral numbers.

§ 21. Replacing n by 3n in the above formula, it becomes

n w1
I b r@)r(is)

dn"u n+1
o
r(*5)

wﬁere n is any quantity greater than — 4.

1
F k)

Integrals involving elliptic functions with special values
of the modulus, §§ 22—29.

§22. Tn vol. XIr., p. 98, of the Proc. Lond. Math. Soc. it
was shown that for modulus %?,
K, _1r@)
fo Y(dnu) du= g o |
This result may be readily generalised for the same value
of the modulus, as follows:

By putting u =rsin8, v =r cosf, we find

If P dudy

[ ] & H020) avpns 00 0 P0drdl

l’l o

~lp(= -I- +2\ (™ sin"f cos’840
=i p ' S

(1—§sin'26) 6

1 l_,(a+,8+2 ™ sin*}f cos’36d6

=1z KA )f atft2

(1—3sin’0) &
1 N r(a+8+2) Ff(l-—cnu)* (1+enu)¥ i

LT 6 atp-1

(dnu) 8

=0

W

the modulus being %} , Whence

www.rcin.org.pl



DR. GLAISHER, DEVELOPMENTS IN POWERS OF &7 — 4% 121

r(zt}\r(ﬁl)
E(1— cnu)t* (1 4 enu)¥ Qi=th R N
L T e a+B+2
(dnw) 8 = F(T)

¥
[}

L) I’
where a and 8 are any quantities > — 1, and the modulus = ‘—f -

§ 23. If 3 =a, this equation becomes

a+1
K @ -1 L=
f s:li fzu=-2——— —-(—6..._.) (mﬂd, — %3) 3

o - 3 fa+ 1
dn 3 u l"(g)

which includes the formula quoted at the beginning of the
preceding section as the particular case of a = 0.
By putting a =%, we find

jf&/(mu)c?u=.-]. @) (mod.:%g)

vz T(3)
22 .
— "

. . 1
where I° is the value of the K corresponding to & by
NI

§ 24. 1f 8= a + 2, the integral becomes

K sn*u (1 +cnu)d 5 "X sney du
. m e g«?‘ '
dn 3 u dn % g

8o that
o+ 1\ P(a-{-Ssl

[ A

e & L N
- 3 N ok 2
dn 8 u 3

the only condition with respect to a being that it must be
>=-=1
By putting a= -1, we find
"x-——&u au = 1 - w (n‘lod = ﬁ)
. 2 -

Jo A(suu) y 342 I'($)
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§ 25, It is evident that

r (Ei'_l) r (@) . ] : f N &P 46-) I A
2 2 LI ]

=4 jJ‘ et dudy
a a

=16 [ [ e emeraa
(1] o

= 36 [ e—Po"q.P8:+Bg§ﬂ+!dP dg‘

| A

Putting m, u, s, p equal to rsinf, and n, v, ¢, ¢ equal to
rcos 6 in the different integrals, we find

5 fa+ 1) . ()3 5 1) . (a +8+ 2) fi" sind(* @ costt-1g

" 2 2 (sind + cos ¢ )" F+4)

o

i‘l’
or (Oﬁ‘_fﬁ')f gin’f cos’ 0 d8

R ks B + 2\ ¥ gin®™*'d cos*M0 df
( (1 — sin* 20+

or (a + B +2\ ™ sin™*"f c0s**0 40
2 )), (=Zsmaey=smnr

1]

in which « and 8 must both be > - 1.

§26. The last two results show that

2«'” do™#*y N2
8 [E(l-en W1 4 enu)in A3
2ea+'iﬂ1'! j do™y du (IIIOC]. = TJ—)

)G

AESE), 4
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or, as we may write the formula

Egnu (1 —cnu)® (1+ecnu)’ =
f., APy du (mod. = E)
3  [Een'u(1--cn u)i’ (1+cn u)‘f" A3

0 gb{*2)+7 3 du*# 1y, du (ﬂwd- = —2)

o+ 1 B+1

S Y [

a+ 8+ 2
Ay gl |

in which « and 8 must both be > — 1.

§ 27. Putting o = B3, the formula becomes

zsnﬂﬂ‘l‘lu 1
{ Wd& (mod. —72)

Yo

n+1
3 rxﬂllw"u 3 I"{—2 ‘}
- — T —du (]nod. = _) — arm-1
77, 2 T(n+1)

The first of these results may be verified by putting A =0

1
in the formula of § 1; we thus find that, for modulus 7

™ (‘R + 1)
ﬁ- R[] 4
f- sd'udy =2"" ———— |
‘n+1
5 _I‘( )
P

which agrees with the preceding result on putting 2n+ 1 for
n, The second result is the same as the first formula in § 23,

§28. In all the expansions in powers of A, by putting
A =0, so that the series reduces to its !il'st term, we obtain a
finite expression for an integral involving elliptic functions in

which the modulus is —Iz For example from § 17, we see
\|
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that

fkﬁd“ {1+2M du (mod. _Z/Tz)
PN
r(ﬂ; J)

The case when the modulus i3 ‘? corresponds to A= — 4.

§29. Tt may be remarked that if, in the system of equal
integrals in § 25, we include the integral

[ ’. ~f* y'jnﬂ i.\hl{.yﬁdg’

we do not thus obtain a result involving elliptic functions,
but we find

f”" 8in°@ (1 — cos6)** (1 + cos §)* 28
i (sin*0 + 8 cosg’g)HHE

—r

e

iy 2§(¢+ﬁ-=}

+|-...

r
a+ B+ 3
h ot

,——-..
‘h-_.ll\-

in which o and 8 must both be > — 1.
From this result, by putting « = 3, we deduce

2 (Tl
AT cot9dd ,_,j_{__g'_)
J, Or6smfssmoy™ - T(ntl)’
a being any quantity > - 1.

Expressions for I* (}) as a single definite integral, §§ 380, 31.

§30. In connexion with the method employed in §25, it
is interesting to investigate the results to which we are led by
treating in a similar manner the formula

J, f f | e-“-v‘*'dxdydué © @)
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Transforming the triple integral by putting
xz=rsinfcosd, y=rsinfsing, 2 =rcosd,

it becomes

fw fﬁ"rf e—e‘[sin‘ﬂ(sin‘¢+cos“¢)+coe‘9}rg Binﬁdr dﬂ dé,

which

1 L o sin 8d8dd
G)f A/{sin’d (sin®¢ + cos’d) + cos’d}
Now
A/{sin®@ (sin’p + cos’p) + cos’6} = /{sin®d (1 - £ sin"2¢) + cos’6}
= /(sin’0 + cos’) ,\/ { L *2¢.}

sin°d + cos’d
=y/(sin’d + cos’d) +/(1— K" sin"2¢),
2 sin®d

x_ 47 "
sin®t 4 cos®d

where

Thus, the integral

1 sin 8 dfdd
=g f., J; W (sin®0 + cos®d) v/{(1 — &* sin'2¢)}
1 o i sin @ dfdd ;
=6 P(“J. Jo A/ (sin’0 + cos°d) ¥/ (L — A7 sin’¢)?

whence we find

4+ (™ Ksinfdf 1
C® [ 0 s cost) = 51T D=6 ®:

the modulus % being equal to
/3 sin®d
2 y/(sin’d + cos’d) *

§ 31. This value of % gives

3 cos’d
o adade =
dk  cos’d
Wh — =
ey 46> 7 sin'd
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The integral therefore
O [* crrvate s B
coa’t! 4/ (s’ + cos’t) &
r@d ["’“ sin*d Kdk
T 243 e cos’d & '
sin’d 44
cos’d 8- 44%
sin®g _ 2%f
cos’d - (3 sy 4!&2)3' !

=

Wl

Now

so that

Substituting in the integral, we find
3
2 r ( 1) f Kdk 1 &
=T
Pa-wy o ®
[— Kdk ()
o BB ak)  2igig
This carious result may also be written in the form
(™ Ksin2ydy I"(&)
o (sing)i(sindy)t 293t

whence

Eaxpressions for T* (1), §32.

§ 32. The result obtained by a similar treatment of the
formula

[ e ssmigaemira

is perhaps also worth notcie.
We thus find

i 8in 8 0 du 1
o (sin'¢ + cos'd)* v/(dnu) 4
the modulus & bemg equal to
1 sn’d
V2 /(sin*0 + cos'd) *
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Transforming the second variable from 6 to &, we obtain
the formula

r (ﬁ) e du b
f A f o (1-289% y(douw) % @

dkdu 1 ()
o= fJo (-2 Y(dnw) BVZ T
C@  rd

= Tor 150 () @)’

Putting %k =siny, so that ¢ is the modular angle, this
result takes the form

J‘ WK cosydydu l'“ (€3]
o (c0s2y)? (dn u)! 167!
or, by substitating /' — u for u,
- i L}
fi fﬁ' (cosy)! (dn u)? b= [ 9] i
(cos2y)? 167

The right-hand member of this equation is also the value
of (K°)’, where K° is the value of K corresponding to the

modulus -i- 4
A2

Value of a series with squared factorials in the denominators,

§§ 33—36.
§ 33. The series
xl 4 c &
1+ + J,+1“‘s3’+ c!

may be represented by the definite mtegral f ey,
80 that the triple integral

f [7[ grrteiocost e gy gy

= wJ[ J ¢ parppr (l - ig,g + a‘,?f, + &e. ) dsdt
[ I ]

_w a 8 a(tx+ DB(B+2) o
_Er(é)r(z){l"' 2.4 '
a(a+2)(a+4)8(B+2)(B+ 4)
2% 4%, 6'

-{-&cr.
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Transforming the triple integral by putting
s=rsinf, t=rcosf,
we see that it

(a+ B)f J’i"’ (sin 8)"" (cos @)™ d8 &)

(siu*0 + cos'0 + 2 sin*d cos™d cosyY P

a+ By [T[7(sin}6)* (cos }6)* dBdy
( I J‘n ,L (1-4 Biu“ﬂ)é(“ﬂ} y

wherek-} 3z cosyl,
I (] — 3 A
- ‘:Gﬂ (a+.8 J’f (L —enu)"#(1 4 cnu)d dudy,

(dnu ) i SR

where 1 is connected with the modulus of the elliptic functions
by the relation

wis A
cos =—,
. A

X being, as before, =k* - K.
If in this double integral we transform the variable from

Y to A, we have to replace

f o dv,bbyj ‘—‘_7\’)

. A
Or,lfv-—;, byj-l...m-

§34. Taking the first and last forms of the integral, the
result may be written

2K (1 — e
[1[em D e iy (aod =t oy

J’ J’”"(l —cnu)"H (14 enw)’F dudy
-1

(.CTII_;I)M’G—l Y- v) (mod.)’=1 - av,

= ooty r___h(:) 4 (g_) (

2 (2+2)8(8+2) ,
i -l1+?z+ o +&c.}
*(57)

b

In this formula a and 8 must both be positive quantities,
and x must not exceed unity. If « is equal to unity, « and B
must be less than 2. :
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As a particular case, putting m =n and writing §n for n,

f*fm(ad u)" dudy, (mod.)'=4— i cosy

[T 1‘.:':-1 3 3 3
Lt he ( 4 ){1+(n+'l) e (ﬂ+l)'(?:+5) e &c_}.
r n+1 4 4.8
()

In this formula » must be > ~1 and @ not >1. If z=1,
n must in addition be < 1.

The case =1, §§ 87-39.
§37. Whenz=1,
h=4—} cosy,

so that cos2y=cosy, and therefore { =2y, where v is the
modular angle.
Thus from § 36,

J‘*’J‘M(l —cnu)” (1 +cnu)” Sy

, Anu)y™
r/m 1y rl"n 1A
g 2 TG i peed
> m+n+ 1\ 2"
r(—
-

L (m+ D) (m +§3§:‘*+§) (nt g)+&c-} )
and in particular

r4™ K n

[ L (sdw)" dudy

o

_ 2“-'

F’(ﬂ+-l)
4 (+1)  (n4 1) (045 o }
NZES {H o gg &,
=)
the value of n being > -1 and <1.

. This result may be obtained also by integrating the formula
n § 1 of the present paper.
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§ 38. Putting n=0 in this formula it becomes

i T r:(i) 1? ls 53 I: 5! 9:
f. L rd) {I tetEgtrep e }
The series in brackets was shown by Gauss* to be equal

to Eg-o, so that we find
i‘lf 1
f Kdy= [ if dk = (K°)".

§39. Since
2K i 15,81 1%.8. 57
7 =tk b org i+ e B+ &ey

it follows that
[T o= {1 G) + (52) + Gaa) + &=

The series in brackets is therefore equal to (%) , 48 was
shown by Gauss in the investigation just referred to.}
Second mode of reduction of the double integral in § 33 when
a=/3, §40.

§40. Putting a=@=n in the first form of the double
integral in § 83, it becomes

r(n) [T A" (sin26)"'d0dy

o ,{ j (s3n*¢ + cos’¢ + 2asin’6 cos’@ cos )"
The denominator

= (1 — 2 sin’f cos'd + 2z 8in’@ cos'? — 4 sin*f cos’d sin’}y)"

= 11— (} - ) sin 20 — z sin” 20 sin’ 3]".

* Werke, vol. iii., p. 425.
t+ Gauss’s process amounts toan 1ndependent pwoi that f Kdy isequal to (K93,
I0
For he points out that the series 1+l ‘| + ( + &e.

- 4 [4T (4T tI[‘Ifldlr}
R J(T—cos?p cosafr) !

v
aud that this expression | ( which obvionsly = i [ .’\'afy]
L ]

2
T

(& (A7 daf'dg .f?!\"\‘
]o J‘o "umj'-lm__.r) K

K2
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§42. By taking % as the variable in the first integral,
this general formula may be written

A (E (adu)™dudh _ ffi X1 (nd )™ dudh
1070 V(2= (B =R} VI(U+ ) =

- " (3») ' , n*(n+42)
=2 .l"() ]+-"d? +WO:

n(n+2)'(n+4) ,
28 4! 6!’

+&ci

The case n=1%, §§ 43, 44.

§43. In the special case n=1}, the equation in §41
becomes
= Kdx _oﬁf: Kdk
LNE-N) T BT R - R
*) { H' l' 5’ ‘ ] 5! 9! }

I+4—’x+48 83 +4‘J.88 zlw'*‘&’c

nhl:]

r

il

', 18, 1LY
i {H_‘” tre e

a®+ &c.}
§44. When z=1,
f= Kdh ' Kdh J- " -

) e = ), e,

and the series becomes

IR RN TGN O
(L3 g gt &)
T
T = 2(IK°)%

The formula therefore in this case agrees with the result
in § 38.
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The case n=1, §§ 45, 46.

§45. Putting n=1 in the general formula of §4I, it
becomes

J' J sd u dud\ = ndudud?z
o VE =) "f o V(L+A)D" - )
,ﬂ,i 19 l: 39 . 12 3’ 52 }
{1+ o top® T g +&c}+
=7k, (mod.=x).
This result may be verified, for the first integral
£ dx K
=J‘ —J-(—m J’o Sﬂudu,
n
and, by § 6, f sdudu= 'y,-- I 3835 ) !
8o that the integral
cos A dh
- VIE=A) (1=
* (3w —sin"A)dh dx
~J)LVIE 7‘”) a-™] " " VIE-M) -V

3 f \/Z(l-#)(l 0] 1 puiting A= =y

=nK, (mod. =x).
§46. Since
ndudu = k’ q
the second integral 2
J::. dh
= T [ ’ 1
KME[(L+ By = i)

= 2 71‘]1 r?u
(R VIT+ - (=7}’
\x

where V= V’(l -h) =K.
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The denominator in this integral
VI + )z =14} {1+ 241 - o]
=Vl +2) o' - (A -2)} {(1 +2) - (1 -2) ']

.._ur'(l-z)‘\/‘ {I_Li? }{l_i;;,,-}]
A RO

Thus the lntegral itself

a(1+w)f '\/[(1—%0’){ 1+m) ’”'

wh:ch since

dz :—r dee =31/K”
f\,/{(l ) (1- Kz "}_t[j_ﬁ {(l—x")(l—-k"w’)}hitﬁ'
= -IT- K, (mod. — 12—4{—2-) ==K, (mod. =z).

The case n=3§, § 47.
§47. Putting n=1$ in the formula of § 41, it becomes
*  Pdx 2 (= Q,hAdh

2

N@ ) Jm«f(l-'rk)‘ %)

I gty BT BT
TR 1‘* trg® tag e t&
G 4G
where = ] sd'u du= B~ 150!
E
— 2 ==
Q,-L nd’u du 7
€]
d —iL=1 0"
T r@
We thus obtain the result
g Gdn Ehddh

= VE =) 2 f_;. VI )2 — I

3? e ai? 2 3% 7.9 % )
=1TG°{1+I,$ + — e 8‘ +WI + &e.} .
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The equality of the first integral and the series may of
course be at ouce derived by integration from the formula

¢ Py 3 0 SUEENIE
- & {1"'_1 traes” Tzt "'&c‘}
B e
- LK =t Dn T Dt 2
el { Moge tiasen &

The case n=2, §§ 48, 49,
§ 48. From § 6 we have
Le 1 K-k g
f, sdudu=crp ~ W% 7%
9 2\ cos”'A |
T=N " (i’
whence, putting n=2 in §41 and taking the first integral
only, we find
3 dn (i~ A cosTA dA

2]

LA E - J-,(1 —A)E (& — )i

=2r(1+2"+a'+2° +&c)-—%.

Replacing cos™A by 47 — sin™A, this result becomes

d\ * AsinAdN 0w
T, A—yi@— ) 2(1=)

The first integral is easily shown to be equal to
so that we find

z R,Blﬂ XCD\, r 1 = 1 }
o (1= Ny} (@' A =3 {=e ~va=a)

m
ay(i-z2’

The integral may also be written in the forms

¥ sin ¢ sin™* (x sin ¢) b =

fxsnu gin” (2 8nu) .
Ji (1- a'sin*¢)}

—-d
dv’u .
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§49. Putting @ =sina in the first form of the integral,
we may also express the result by the equation

' 6 sin 6 d6 sin‘}a

r g = my —
_’ , cos'd (sin‘a — sin‘d)? cos'a

Values of integrals and series, §§ 50-54.

§ 50. It is easy to prove that

A+ AN+ AN + &e.
o
13, . 135
{A+}Ax+24A 246Ac+&t.}

and by applying this result to the expression of & on p. 148
of vol xix., we find

*_ Gdy o( ! 3 . 81T
fo m’—f_ h.) =m 'l 4, +4,.8,-'B +4,.8,-12,¢ = &C.},

and
© (1 v 1. G
e e R —é tEen’
i )
treiz6” +&°‘f '

§ 51. Similarly from the series for I and Z we find
]:‘/—(-;%=FGJ [l- g.c'—f:—:%x‘-g%::%,m'_
- g,n-K"[l tpr tppd t g T

| 5’ l'l 4 9!

; b ..
+ 4K (14 o+ g ey &

}
IS 170578 RSG5 g } :
j
§

with corresponding serics in which dX is replaced by AdA.
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§ 52. By putting
a= i': B= }} =
in Gauss’s well-known formula

r '(y—a—
rean-E SR

we find
[ L A r ) )
Hrtrrtre Y TrFE T rFOr®

=m L@ _2K
27!

T ’

agreeing with the result quoted in § 38.
Similarly, putting

a=_%? B=-% o=
we find
a2 3.7 r@ _ ir@
HetistTem T O TGO T AP W
Ve B

™

and by putting
a=—}, B=4% v=1,

we find

v o8 B el &o=m— T @ _ar@d

S R T ARG T I DR e )
L s G
TRT w

§53. Putting =1 in the formul=z of §§50 and 51, and
substituting the above values for the series, we tind

[ aiy=1(a,
] :1r Idy =2 (G°) -} (K°),

ir
" Bay=2(@y+ 3 &,

v being the modular angle.
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The last two equations give by subtraction

4
" Kay=xoy,
o
which is the formula found in § 38.

§ 54. By subtracting the first formula from the second and
third, we find

f., BEdy = 2(G°) +3 (K% = _F’ Edy,
j:*k”Kd?="9(G°)'+%(K° ‘=—j:wfd%

The case n=3, §§55-51.
§ 55. When n = 3, the general formula gives

("B D@
J V@~ T @) |

It can be shown (see § 57) that the series
3'] 3! 5’ ‘ 3! 5? 7!

3‘2 38.5! 4,3‘ 5‘3 2
L+ 52 e G +&c}

1+ :::-1-),4, +2,426,m+&c
is equal to
2(G+ E) 2
m 1 (mod. = :.'C),
80 that the equation becomes
o P dn _2 G+ E

§ 56. Now, by § 6,

pSH =B +4hl oy 3K k)

7 TR 7 S T
' . 6N
= Mcos_‘h -_—
(l B A’ 4 {l . h)
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__§57. The value assigned to the series upon the right-hand
side of the equation in § 55 may be obtained as follows :
Differentiating, with respect to %, the formula

2K i % L
= =l Ehtg gt et &e,
we find
2 G L L 1%. 3. 5° 17. 3% 5.7

O L ” ,
7w ki 3 +2,.4 h+ SOVEN R+ 2‘.4“.6“.5;!' + &e.,

whence, multiplying by % and differentiating again,

2 d G\ 1 8%, S5kl 35T,

; Ez (?;;) =§{1 +'2-,}¢+ 2—,‘?";& +——'—'—'2,.4,.6,k +&c.}-
Now

d @ 1K G 22 G+W¥K_G+E

p; 35 <l AUl A R T Ol
80 that the equation becomes

2 G+E SR N BT
=l ph g

which, when % is replaced by =, is the result quoted in § 55.

R+ &e.,

The general theorem when n is a positive integer, §§ 58—63.

§58. The method employed in the preceding section
suggests a symbolic form in which the theorem of § 41 may
be exhibited when n is a positive integer.

Taking only the first of the two integrals, this theorem
may be written

= T ;] ]
P i =2'""wm—3?2 {l +}x,+n (n+2) =

V(=N r(n) 2° 41
Ll ¥ 3
SESTIOINNY
K
where P, =] @aw™d.

§59. Let S, denote the series

. ' (n 4 2)° ' (n42)" (n + 4)
I 'l' ;i_'a:! ’1__(‘;;_1.___} w. + n (n +2‘ i'(ﬁ. ) xﬂ_]_ &C-,

www.rcin.org.pl



142 DR. GLAISHER, DEVELOPMENTS IN POWERS OF k" — &’

then by performing the operations we easily find (as in the
preceding section) that

—x— 8 =n® -
dexdm'q' “S-u

If we denote the operation

L BN & v i
=" dz " B
this equation may be written
1
Snﬂ & ;8 gSu'
§ 60. Thus we find
Ss i~ tsﬂ
1
Sb s :;5 ;“Sﬂ‘
&e., &e.,
and in general
1

Bea= g o1y o o
Now, when n = 2r + 1, the coefficient of S, in the general

theorem y
-4 r (r oo %)

C(2r+1)
wa, r=8' =BT F)
- g (2r)!
gt ,(2r —1)" (2r — 3)...8%.1"
L @)1 :

Thus, in this case, the theorem becomes

TR L

Ar bt

NE-A) @)i°™

or, since S, = g-:_r{(’ (mod. = z),

J” P, d\ 2"#(1;1! d

dr+l . - — P
NE=-N) T @) \z de 'rdx) =
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so that the theorem becomes

= PN 2
=2 T el §5y
that is
B w1 dy 1
ANE@ - —(2r+l)li\5dxrtf.r) 1 -’

‘We may also write the theorem in the form
4P, dr IR
B = iy [a: dx d-.c) S

vz

or

'dT cosT'A I s e (1 d P d '_l__
J:{dh""' \_/_(l - A «/(.s’—?\')_-w z dx E;) 1-z'"

The case » = 0 was considered in § 48,

§63. It may be observed that if we put a'=2z, the
operator &

1d d 4_¢f_=d
a:d.c drx dz dz?

go that the theorems may be written

ds'P d\ —oiy ,L:f_._c_f_) K,

)\sr s/(-L‘ X‘)
where z=2a" is the square of the modulus of I,
a™pP  dr 8.0/, 4058
= f PreaaveIesy) halak W(&"zzd—z) 1=z’

where z = z*,
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