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ON THE MOTION AND REST OF FLUIDS.

[Philosophical Magazine, xιιτ. (1838), pp. 449—453.]

M. Ostrogradsky’s memoir on this subject inserted in the Scientific 
Memoirs seems to have excited much attention, and has been made the 
occasion of some annotations* by a distinguished writer in the Philosophical 
Magazine. Mr Ivory’s recent papers in the same periodical must still more 
tend to invest with a new interest all such speculations. It seems to me 
desirable therefore to present the theory of fluids in all the simplicity of 
which it is susceptible.

I consider a fluid as a collection of particles subject to some law of 
relative position other than that of rigidity. These particles by their mutual 
actions maintain the connections of the system. As to the law of force 
between them we know nothing; but I assume it is a general principle 
of nature, that for each instant of time the sum of the internal actions 
(reckoned by the product of each particle into the square of the space due 
to the internal force acting on it) is a minimum. This in fact is Gauss’s 
principle of least restraint. We may if we please split this principle into 
two parts; that is to say, assume that the internal system of forces is always 
such as if acting alone would keep the fluid at rest; and then again assume 
that any equilibrating system of forces must be subject to the law of virtual 
velocities. I say assume, because it is impossible a priori to prove this.

Lagrange’s so-called demonstration is unworthy of his name, and (albeit 
sanctioned by the powerful oral authority of an ex-Cambridge Professor) 
contrary alike to sense and honesty. It is better therefore at once to 
proceed upon Gauss’s principle. It might easily be shown that this is in 
effect tantamount in all cases to D’Alembert’s and Lagrange’s principles 
combined.

Before entering upon the investigation I may call attention to one point 
of great analytical interest, and relating to the difficult subject of the 
algebraical sign, viz. that if the density of a point {x, y} in any circumscribed 

space be expressed by the quantity ÷ so that the mass is

[* Phil. Mag. May, 1838, p. 385. Ed.] 
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that is not equivalent to 

that is if we please 

(where s is for clearness’ sake and to avoid double limits taken an element of 
the bounding curve) as at first sight it might appear to be, but is in fact 
equal to

I shall demonstrate this point in the next number* of the Magazine. 
It at first caused me some trouble in conducting the annexed inquiry, 
I shall also take occasion at some other time to revert to a new species 
(as I believe) of partial differential equations; that is to say, where there 
are fewer of them than of the principal variables, which may be called 
therefore Indeterminate Partial Differential Equations. A complete solution 
of one of these appears in the subjoined

Investigation.

For the sake of simplicity I take an incompressible fluid. The method 
is nowise different for a fluid of varying density.

Let Aa?, Ay, ∆2r be any displacement undergone by a particle at the 
point X, y, z parallel to the axes x, y, z respectively; it is easily shown that 
to satisfy the condition of invariability of mass we must have

One relation between u, v, w the velocities parallel to x, y, z is obtained 
immediately by putting wδi, v3t, wZt, for ∆^c, ∆y, ∆2r, which gives

u,κ, u,z>

as usual.
Again, if X, F, Z be the impressed forces, and X^, Y^, the internal 

forces acting on any particle parallel to the axes, we have 

from the mere geometry of the question.
[* p. 36, below. Ed.]
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Finally, Gauss’s principle teaches us that

Now 

as appears from the equations (1), (2), (3), (4); and hence 

the complete solution of which, free from the sign of integration, is 

ω, ψ, -ψ^ being any three independent functions of x, y. z.

On substituting these values in equation (/3) we obtain

This may be put under the form
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Here it must be remembered that ω, φ, ψ are perfectly independent of each 
other. Also the values of the three first written quantities depend upon the 
values of X^, Y^, at the bounding surface; the values of the three last- 
written depend upon the general values of X^, It is clear therefore
that each system of three equations and each member of each system must 
be separately zero.

The three latter equations give

The three former require that for each section of the surface parallel to 
the plane xy 

for each section parallel to yz 

for each section parallel to zx 

and these equations are to hold good whatever ψ, φ, ω may be. From the 
equations (γ) we derive

(δ)
from equations (δ) we obtain

f = constant for all points in any section of the bounding surface parallel 
to the plane of xy,

f = constant for all points in any section of the bounding surface parallel 
to the plane of yz, ’ -

f = constant for all points in any section of the bounding surface parallel 
to the plane of zx.

Now by drawing through all the points in a plane parallel to xy, planes 
parallel to yz, we may cover the whole surface; hence f is constant all over 
the surface bounding the fluid.

* See remark at introduction.
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Therefore (6)
for all variations of dx, dy, dz taken upon the surface.

The equations (1, 2, 3, 4, δ, 6) are coincident with those obtained by the 
usual method; with this difference, that Xγ, Fι, here take the place of

Thus then we have obtained all the conditions requisite for determining 
the motion of fluids from the universal principle of least constraint conjoined 
with the specific character of the system in question.

General Remarks.

In the case of equilibrium, that is in the case where no particle moves, 
we have + X = 0, + F = 0, Z^ + Z=Q. Hence Xdx + Ydy + Zdz is a
complete differential always and zero for the surface.

The above results have been obtained upon the principles of the differ­
ential calculus, and the continuity of the forces has been tacitly assumed. 
If now we were to suppose forces of finite magnitude (as compared with the 
whole Slim acting upon the entire system) to be applied to a layer of single 
particles or to a layer of a thickness of the same order of magnitude as the 
distances between the particles themselves, (which has been treated as an 
infinitesimal) it would appear that our results would be no longer applicable, 
just in the same manner as it would be erroneous to apply the principle 
of vis-viva (for example) without modification, to the case of impulsive forces, 
because we had deduced it by the calculus in the case of the motion 
being continuous. Hence the above equations ought not strictly to apply 
to the motion or rest of a fluid contained between physical surfaces; for the 
pressure afforded by these surfaces, whatever its actual value may be, we 
know a priori is commensurable with the whole amount of force acting on 
the fluid ; but the immediate application of this pressure {alias repulsive 
force) is confined to the bounding layer of fluid particles, or at most extends 
to a distance bearing a low ratio to the distances between the particles 
themselves.

Accordingly, to the non-applicability of the equations for free fluids to the 
case of fluids confined at the boundaries, and to an independent investigation 
upon the minimum principle for this class of problems, it is, that I look for 
the true explanation of the phenomena of capillary attraction (vulgarly so 
called).
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