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INTRODUCTION

The present supplement contains some developments of a view of Mathematical Optics, which
was proposed by me in the foregoing volume of the Transactions of this Academy. According to
that view, the geometrical properties of an optical system of rays, whether straight or curved,
whether ordinary or extraordinary, may be deduced by analytic methods, from one fundamental
formula, and one characteristic function : the formula being an expression for the variation which
the definite integral, called action, receives, when the coordinates of its limits vary; and the
characteristic function being this integral itself, considered as depending on those coordinates.
Although this view was stated, and the formula announced, in the Table of Contents prefixed to
my preceding Memoir, yet the demonstration was not given in the part already published, except
for the Systems produced by the ordinary reflection of light; it has therefore been thought
advisable to give in the present Supplement, the general demonstration of the formula, and some
of its general consequences. The demonstration is founded on the principles of the calculus of
variations, and on the known optical principle of least action. The result deduced from these
principles, is, that the coefficients of the variations of the final coordinates, in the variation of the
integral called action, are equal to the coefficients of the variations of the cosines of the angles
which the element of the ray makes with the axes of coordinates, in the variation of a certain
homogeneous function of those cosines: this homogeneous function, which is of the first
dimension, being equal to the multiplier of the element of the ray under the integral sign, and
therefore to the velocity of that element, estimated on the hypothesis of emission. It was
proposed, in my former Memoir, to call this result the principle of constant action: partly to
mark its connexion with the known law of least action, and partly because it gives immediately
the differential equation of that important class of surfaces, which, on the hypothesis of undula-
tion are called waves, and which, on the hypothesis of molecular emission may be named surfaces
of constant action. But in the present Supplement, it is proposed to designate the fundamental
formula by the less hypothetical name of the Equation of the Characteristic Function: because,
whatever may be the nature of light, the definite integral in this equation is, as we have before
observed, a function of the coordinates of its limits, on the analytic form of which function the
properties of the system depend. In the applications of this formula, to systems of straight rays,
ordinary or extraordinary, it is advantageous to introduce the consideration of a characteristic
function of another kind, depending on the direction rather than on the coordinates of the ray,

but connected with the former function, and with the geometrical properties of the system, by
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108 II. FIRST SUPPLEMENT

relations which form the chief subject of the present Memoir. The theory of these relations,
from the generality of its nature, will, perhaps, be interesting to Mathematicians: I am aware
that it admits of being much farther extended, and that much remains to be done, in order to

render it practically useful.
WILLIAM R. HAMILTON.

Observatory,
Aprd 1830.
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SUPPLEMENT, &c. &c.

Fundamental Formula of Optical Systems, or Equation of the
Characteristic Function.

1. The fundamental formula that we shall employ in our investigations respecting the
geometrical properties of optical systems of rays, straight or curved, ordinary or extraordinary,
which, after issuing from any luminous origin, have been any number of times reflected and
refracted by any combination of media, according to any laws compatible with the known
condition of least action, is the following:

S & &

SJvds— 8718w+8—,§8y+8_«y

In this equation, #, y, 2, are the coordinates of any point of the system, referred to three rect-
angular axes; @, 3, v, are the cosines of the angles which the tangent to the ray at that point, or
the direction of the element ds, makes with the axes of coordinates; v is the quantity which in

dz. (A)
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110 II. FIRST SUPPLEMENT 1,2

the hypothesis of molecular emission represents the velocity of this element, and is supposed to
be in general a function of the six quantities, #, ¥, 2, @, B, v, depending on the nature of the
medium, and involving also the colour of the light; the partial differential coefficients,

dv dv v

S’ 8B’ &’
are obtained by putting v under the form of a homogeneous function of @, B, v, of the first
dimension, with the help of the relation e+ 8% + 4*=1, and by then differentiating this homo-
geneous function, as if @, B, v, were three independent variables; finally, the definite integral
[vds is taken from the luminous origin to the point @, ¥, z, and the variation 8 [ vds is obtained
by supposing the coordinates of this last point to receive any infinitely small changes, the colour
remaining the same.

2. To deduce the equation (A) from the known condition of least action, let us observe that

by the calculus of variations,

sfvds=f(sv.ds+v.8ds);

in which, by what we have laid down respecting the form of v,
v S v S
o= 8w+8 8y+8 <Sz+8 8a+ 8,8+878vy
ov
(B 8 +188,3 78 5
while, by the nature of e, 3, v,
da.ds+a. 8ds-8 ads=38.dz=d.dz,
8B.ds+B.8ds=8.Bds=8.dy=d.3dy,
Oy.ds+y.8ds=8.yds=8.dz=d.dz;
we have therefore,

sfvds_f( 8w+g”ay+§” )ds+f(8”da +§;d8y+svd82)

S OV i Aty o’ v &'
=8—aS 8:1; 8;88 8/38 +——8z 8,8z

dv % S Sv
fs’”(z d50)+ o (55 5= agg) + [5: (g e~ a).

the accented quantities belonging to the first limit of integral, and dlsappearmg when that limit
is fixed. The condition of least action requires that the quantities which remain under the
integral sign, as coefficients of 8z, 8y, 8z, should also vanish, and furnishes thereby the following
general differential equations of a ray,*

v v S & & Sv

Sa;ds_dS_a’ Sg‘;ds—ds—ﬁ, s;ds—dg'—y‘, (B)
of which any two include the third. And rejecting the evanescent quantities in the expression
for 8 [vds, we find the formula (A), which it was required to demonstrate.

* [Putting a=d£=a’:, etc., these equations take the Eulerian or Lagrangian form

ds
dév v

s 3% 3z =0, etc.,

where v=v (2, y, 2; &, 3, £).]
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3, 4] II. FIRST SUPPLEMENT 111

3. The fundamental formula thus obtained, resolves itself into the three following equations:

8fvds _& Sfvds & &[vds_&v
& S’ &y o8’ & oy

BV _% SV_b 3V _ 5
Sz Sa’ &y 8B 8z oy’
representing, for abridgment, the definite integral [vds by V, and considering this integral as a
function of #, y, z, of which the form depends upon the nature of the system, the medium, and
the light, and of which the partial differential coefficients of the first order are denoted by
8V &V &V

When the form of V is given, we can obtain these coefficients by differentiation; and if we
know also the form of v, which depends only on the nature of the medium and of the light,
we can by the equations (C) determine @, B, v, as functions of #, y, z; that is, we can find the
direction of the ray or rays passing through any proposed point of the system. The geometrical
properties of one system as distinguished from another, for any given medium and any given
kind of light, may therefore be deduced by analytic reasonings from the form of the function V;
on which account we shall call this function V| the characteristic function of the system ; and
the fundamental formula (A), that expresses its variation namely :

o Sv
SV— 58

we shall call the equation of the charactemstw Sunction.

which we shall thus write :

8+ 8y+ 8

Other Characteristic Function for Systems of Straight Rays.

4. In the remaining reasonings of the present Supplement, we shall confine ourselves to
the consideration of homogeneous systems* of straight rays not parallel; and in investigating
the properties of such systems, it will be useful to employ another function, connected with the
function V' by many remarkable relations. This new function, which we shall call W, is deter-
mined by the condition :+

W+V=alt 88;+z80 D)
which gives, on account of (A), or (C),
SW =8 4yd 22 48 " 8” (E)
e B

It results from this differential equation (E) (in whlch we employ the sign of variation 8
to mark the connexion with the definite integral fvds, a remark which applies to the whole of
the present Supplement,) that if the variations of w, y, 2 be such as to leave a, 8, v, and
consequently

v & v

, %’ B By
unchanged, that is, if we pass from any cne point of the system to any other point situated upon
the same ray, the function W will not vary. We may, therefore, consider W as a function of

* [The medium being homogeneous and the light monochromatic, » is a function of q, 3, y only.]
' + [See Appendix, Note 8, p. 473.]
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112 II. FIRST SUPPLEMENT [4,5

@, B, vy, of which the form can be determined from that of V, by eliminating «, ¥, z, between the
equations (C) and (D), when the nature of the medium and of the light is known. Reciprocally,
if the connexion between W, @, B, v, be given, that which exists between V, #, ¥, 2z, can be found.
For if we suppose that for the sake of symmetry, W has been put under the form of a homo-
geneous function of the dimension 4, by the help of the relation &*+B%*+¢%=1, and then
differentiated as if @, B, ry, were three independent variables, we shall have, by (E), and by the
nature of homogeneous functions,*

W &% &% &%
T Tiledeigy y8a8,8+ 8ady’
sW &% &% &%
= P onme Y 5t aEsy
SW &% &% &%

Sy =WVt ess +Ypes e g

in which we shall for simplicity suppose the dimension ¢=0; and eliminating @, 3, v, by means
of these equations, from that marked (D), we shall deduce the relation between V, #, y, 2, from
the relation between W, a, B, v. We may therefore consider W as itself a characteristic function,
which distinguishes any one homogeneous system of straight rays not parallel, from any other
such system, composed of light of the same kind, and contained in the same medium. It is
evident that on some occasions it must be advantageous to attend to the function W instead of V,
because V changes in passing from one point to another of the same ray, whereas W is constant,
when the ray and the system are given. On the other hand, in any sudden change of the system
by reflection or refraction, the function W receives a sudden alteration, while the change of V is
gradual ; it is therefore convenient to employ V instead of W, in investigating the effects of such
changes. Accordingly, in the remainder of this memoir, we shall consider both these functions,
and examine the relations between them: and shall begin by investigating the connexions
between their partial differential coefficients.

Connexions between the Partial Differential Coefficients of the two
Characteristic Functions.

5. The connexions between these coefficients, are to be obtained by differentiating the
preceding expressions for
BV W LIRS NG G
's_w ’ gy' ) &’ 2 —871_ ) "gﬁ ’ 8_'7 )
and by attending to the homogeneous forms which we have assigned to » and W. The dimension
of W being supposed = 0, we have by the nature of homogeneous functions,

*[sW= Exbg—:+02a8a, where 8a, 88, 8y are independent, and 6 is undetermined. Therefore

3W_ o, W
Fe =233t Y saap 2 Basy T 0 oo

Multiplying respectively by a, B, 5, and summing, we obtain, by (G), 0=iW.]
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a%v+ﬁ%y+v¥=0;
%+a%§r+ﬁ% +«y§:—g=
%wi—ggﬂs a;_g +y§;—2;=
%‘T+ag—?{; +,8887;—8E7 +78%Z=
&e.

We have also, by the homogeneous nature of », which we have put under the form of a function
of the first dimension, the following relations :

0;

% )

—~—

0;

2 0,

agg-i;ﬁ%+'yg%=v;

a g—;g +B¢%3+'y&i—2§-y -
“8%)3“3 g%’, +78§—§7=0;} (@)
asf—;v+ﬁg§—§7+*y %‘; =0;

g%+a g—g +B%}/§+v-§-§§—v=0;

&e.

£

These relations give
& v v
and therefore, by (C),

sV

4 sV
+/38@+78§ = (),

Sz

)

a condition which resolves itself into the three following,
a %,K+ B 88;—81; ey 88.':—81; =
[ g:—;; +8 88;—1: + 88;;—762 =
a 88;%;; +8 g;—gz + ?—;j
andﬁcoc;x;bining these three equations (H) with those which are obtained by differentiating (C),
we find,

0;
0; (H)

' * [See Appendix, Note 9, p. 476.]
HMP 15
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Y [V 82V) & (82V vl Ot . ov SZVSSv)

o 3“(%*@*9 %o\ etny’ntws’y)

Wad UV LAY PN B VRN ek SR D N L
48 _(3;2+5?+W)8—8/_3 (8.7:—8;:/88a+ oy? 88/3+8y8288ry)’ @)
way J(BV BV BVY B BV b BV % BV b
Vs ‘(EF*'S?"’E?) S_fy—(SwSz 88a+8y8z88/8+8z2 8 )’
in which
pr SVEY' (VAL RSN 82V)2 S_ZZﬂ_(_S"_V)z
! 8a? 8y (Wy) 8y? 822 (W 02% 8a* \dzdz/ ’
and
8z’ = dw — a (@dz + By + v82),
8y’ =8y — B (adz + B3y + 782),
82 =08z —q (adx + By +vd2);
so that
ada’ + BOyY + 82" =0.
Now, if we differentiate the expressions,
SW &% &% &%
e =% 52 TY5aspt “5ady’
W 8%y 82w 8%
E=.rc&x—8l—3+y73—2 +z838 ’ > (K)
SW % &% &%y
By~ "baby TY5asy 7 5

which result from the foregoing number, and put for abridgment,

5.5 5 4588 50 +8y.5 8817‘7 — 8w,

B
ba.d OY 488800 8ﬁ+zs~, 8888” S
a. 3388’;9+8,3 88/3, i as%g-_a gz
a. sbas’;w,s 88/38 +38 ‘;_7'; —323”
bo. 3V 48y, sosq + 8- 322;,"3'8”
. 82?6"’8 88%,”2 +82. 8,89287‘3'82
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we find
W — (xszs” +y82§;+ 5ed ) sab 30 + 585 B+s v g L
—8u8 3 43 'sggw 'ss”
and therefore, by (I),
VW=V (a8t 5+ 8 gt 2 328”)

(g + e+ o) {050) + 6ag) + (5}
(i (o) + 5 Cap) + 5 05) 2 55 0 50) (039)

32V (. v Sv 32V (. v
+250 (058) ) +25m (O 5) Pl @
in which, without violating the conditions (F), the variations 8¢, 883, 8y, may be considered as

independent, and which is consequently equivalent to six expressions for the six partial
differential coefficients of W, of the second order.

These six expressions may be put under the following form :
o AR TR R o IS N L 0L
2 =" 5 Y SarsBT ity TV SR V" &
o AR RN O RN Y A
3 "Rty s Tiemsy VISR T VT S
SW & o B 8 B BV
o bl w7 v Rk -1 e Skl v Bl b v Rl v
SW 5y 5y b 8 v o 8V
e af +z SRR e T T
388~ sa25p 8asBt 7 5adBoy T V" 8adB T V" Sudy’
SW 8y 8% B 8 v o 8V
588y =" 5aspsy T Y s@sy T2 sgep Y V7 588y T V7 yss’
R B Ll Pyl by i OBV,
Syoe =7 Satsy TY5asB8y "% Sady TV Sysa Tﬁam’)

(M)

in which

Lap 8% &%y ( &% ) &% &% ( 82117)2 v &% v \2
5 8adB) T 8@ 5y T \6BSy) T 8y a2 (&,‘“aa)
32y 8% &\ (Y 82V eV
S=(§a‘2+ﬁz+r¢)(w W +55) ‘
(’o"v 2V . 8% 8V 8‘30/8217 82y 8V &2y &V 82y SQV)

5355 T3 By T 5,2 08 T 2 5088 Swdy T - 585y 5905 T 2 Bysa 528a)"

and

These expressions enable us to deduce the partial differential coefficients of W, of the second
order, from the corresponding differentials of V'; they may also be employed to deduce the latter
p 15-2
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from the former. For if we put

83%7‘(“" g:; +ysf:33”82:s> ¥,

o (aam Y b e gn) =Y

3~ (= sewy vt s ) =D
%‘(‘” 8538/3 i sjzv,sz +28a§2)87)=M”
585, ~ (5835, +¥ 0057+ sgn) ~ Y
g%z"(“ sﬁz’é,, +-’/5a§jgsy+z 85?2> Gk

MN —-M"+NP—-N"*+PM—-P2=W",

A+ 3+ P) (ga+ o+ 2o - (3o w To p 2

8;82 Sy? 332 Sy?
’ 8 v ’ 8 v ’ 82” ’
+OM’ ok A s 4 9P ) = 8,
we find, by the equations (M),
‘VI’ WII - v’lz, VIISI o vIIS: ; (N)

and therefore
*V_ 8 & V'M 82V_S_' ) o o' M’ \

SBETW"'SET W Sa8y W" 8B~ W’
&V, 8 o'N . BV B P W

S WS W Sybs W sgsy W
TN A i R v A g i Rl i

8E WSR2 W7’ 8280 W” dyda W” °

©0)

-~

2
The coefficients of the form %—g, may also be deduced from those of the form %—l:—r, in the

following manner. Differentiating the equations (K) we obtain

M8a+M'88 + P'oy=5 g”,
M'3at+ N8B + N'oy=5 %, (P)
81)

P'da+ N'8B+ Py =¥ 5y

we have also
O=aM +BM'+ P’

O=aM’'+BN +yN’,
O0=aP’' +BN' +qP;
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and therefore 5 s p
W"e =(M+N+P)§ 5 —(Ms' 8”+M DLy T ”)

/3
W"38=(M + N +P)¥ %’é ~ (s % Ny 38,?; wyd ) @

5
” 187) ror g OU Sv
W8y =(M + N+P)8 g--(Pa gt NV g+ Py g )

Now, if we put

BV = swsW+s 88—;—’+8 s
we shall have
7 = sas's—”+s/33'83+sya' 44

and therefore by (Q),
er-oreen (£ (65 (4]

~fu gy v (og) + 2 (5

v (s OV (50 OV ,(,80)(,81)) ,81;) _)}
+2M (s )(83,3)"21" ¥55) (4 2P’ (s&/ ( )t (R)
an equation in which 8z, 8y, 8z, are independent, so that it is equivalent to six separate ex-
pressions, for the six partial differential coefficients of V, of the second order: and these
expressions may easily be shewn to coincide with those marked (O). And on similar principles

we can investigate the relations between the partial differential coefficients of the functions V'
and W, for the third and higher orders,

Changes produced by Reflexions or Refractions, Ordinary or Extraordinary.

6. Let us now consider the sudden changes in these partial differential coefficients of the
characteristic functions of the system, produced by reflexion or refraction, ordinary or extra-
ordinary. The general formula for such changes, is, from the nature of the integral V'

AV (=V,— V) =0, (S

A being here the symbol of a finite difference, and V;, V,, being the two successive forms of
the function ¥V, before and after reflexion or refraction., The condition (S) may be considered as
a form of the equation of the reflecting or refracting surface; and if =0 be any other form
for the equation of this surface, we may, by introducing a multiplier A, differentiate the following
formula :

AV (= Vy— V) =y, (T)

as if the coordinates z, y, z, were three independent variables. Differentiating in this manner
the equation (T), and making, after the differentiations, v =0, we find
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SV _8V,_8V,_, bu
S Sz oz da’
8V _&V, W 7\‘Su (U)

Sy &y Sy &
PR IR I P

Sz oz Sz oz’
2V 8V, 8V, &y 0
e e~ + -

BV _ BV, 8V, _ % b

T e ey o T

BV _ 8V, BV _ % 0
At =g~ 5% "M AT RN &

AV 8V, &V, S%u +87\.8u S\ Su

V)

88y~ Swdy ~ Swdy =X8a;8y 8z 5&4- Sy 8z’
BV _ BV, Vi Bu b b
dydz &ydz dydz 8ydz ' 8y bz ' 8z &y
PV Vs 9V, 8u S\ Su O\ du

77 P 7o PR 7o ok 8 Rk o A

A

The equations marked (U), contain the laws of reflexion and refraction, ordinary and extra-
ordinary; since, when put by means of (C) under the form

§? 8?)2 8’[)1 —X-S—?-‘
S Ooag Oa; oz’

S _du  du_ du &

and combined with the relation @y® + B,® + v,® = 1, they suffice to determine, for any given forms
of the functions v;, v,, and for any given directions of the incident ray and of the tangent plane
to the reflecting or refracting surface, the cosines a,, B, v,, of the angles which the reflected or
refracted ray makes with the axes of coordinates, and the value of the multiplier A; observing

that the ratio . y
o (5,) + o (sy) +7 ()

s () 8 (53) + . (52)

is positive in the case of refraction, and negative in that of reflexion. The equations (V), when
combined with the relations (H), determine the six partial differential coefficients of Vj of the
second order, together with the three quantities

2L T\
S’ 8y’ 8’
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since they give, for these three latter quantities, the conditions
v | % 8V 8%u L &u
s, ( Bl w) +h (SwSy o SwSy) *a (swaz“m) \

+87\'(¢128 +1828y+')'2 82>+8u( g;:-*-ﬂg 8y+')'z 8;;)

0=a (gwg; +7‘%) s (88;:1 +x§;“> + s (§;§;+x8—3—gz>

(X)
+g7;( 8u+’828u+w§_1f)+8u( 8w+’8287\ 87\)

oz +n oz)’

om (£ 41,28 ¢ o (B 0 28 s (T3

M du Su\ Su/ &\ O\
+8z( ’828y+% Sz) 82( 28w+’328y+% 82) /
in which the trinomial 8 } P
A A A
( = + ,32 + Y2 g)

can be determined by the following relation:
i 8V, 2V, | 8% 8V, &%
0 = gyt (8@‘2 +7\-8ﬁ2)+ﬁz( a+7\,8y)+')'z(822 +X822)

2V, . u 5V, |
+ 22, (552 B SwSy) +26m (8y P i 77 5;) +2mas

o O
(sza;Jf M 5a50)

+2<a28 +/828y+72 ?z‘)( 8$+,328y+')’z g:‘)

In a similar manner we can calculate the new values which are given, by reflexion or refrac-
tion, to the partial differential coefficients of V¥, of the third and higher orders; and can thence
deduce the corresponding changes in the coefficients of the function W, by means of the relations
which we have already pointed out, between these two characteristic functions; observing, that
while the value of V itself is not altered in the act of reflexion or refraction, but only its form and
its differentials, the value of W receives a sudden increment, which has for expression,

v o Sv
AW = a;A + A3,3+ A

=x(w%:+y%‘+zg§). (Y)

7. By the help of the foregoing formulz, we can compute the partial differential coefficients
of any given order, of the characteristic functions V" and W, for any homogeneous system of
straight rays, produced by any finite number of successive reflexions and refractions ordinary or
‘extraordinary, when we know the ndture of the light and of the mediums, and know also the
coordinates of the luminous origin and the equations of the reflecting or refracting surfaces. To
shew this more fully, let us observe, that in a system of straight rays diverging from a luminous
pomt and not yet reflected or refracted, we may put

z—X=ap, y—Y=Bp, 2—Z=1qp,
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p being the distance from the luminous origin X, ¥, Z, to any other point «, y, z; and that we
have the equations,
bR ov v v

V—vp—(w—X)s— +(y - Y)$+(Z—Z) 5y’
v Sv
Y et
from which we can deduce the partlal dlﬁ'erentlals of the functions V and W, in this first state
of the system; those of the second order, for example, being given by the following expressions:

(Z)
W= X +Y

80
2 ’ ’ ’
p&tV = 8.7:8 +3_'y8 8;8+828
eW=xs +Y¥%+Z$M
in which the symbols
, Ov g OV
8 S’ 8 Sa’

have the same meanings as before. Knowing, in this manner, the differential coefficients of V,
before the first reflexion or refraction, we can, by the method of the preceding number, calculate
the corresponding coefficients of V, and thence of W, immediately after that change; the coeffi-
cients of W, thus deduced, will remain the same, in passing from the point of first reflexion or
refraction to the second point at which the direction of the ray is altered, and, by the methods
of the fifth number, we can deduce from these coefficients of W the corresponding coefficients of
V, immediately before that second change; and so proceeding, we can calculate the alterations
in the partial differentials of the two characteristic functions, produced by any finite number of
successive reflexions or refractions,

Connexions of the two Characteristic Functions with the Developable
Pencils and the Caustic Curves and Surfaces.

8. Let us now suppose these partial differentials known, and let us examine their connexion
with the geometrical properties of the system. One of the most remarkable of these geometrical
properties is, that the rays are in general tangents to two series of caustic curves, which are con-
tained upon two caustic surfaces and form the arétes de rebroussement of two series of developable
pencils; that is, two series of developable surfaces, composed by rays of the system: a property
which was first discovered by Malus,* and to which I also had arrived in my own researches,
before I was aware of the existence of his. To investigate the connexion of these curves and
surfaces with the characteristic functions ¥ and W, let us consider the conditions which must be
satisfied, in order that a curve having for coordinates ", ", 2", should be touched by an infinite
number of rays of the system. Let z, y, 2, be the coordinates of any point on such a ray, and p
its distance from the point of contact #”’, %", 2"/, in such a manner that we may put

w=a"+ap, y=y"'+Bp, z=2"+p,
Sp=a(8z—382")+ B8y —8y")+vy(8z—87"):

and therefore

* [ Mémorres présentés o Ulnstitut par divers savans, 2 (1811), pp. 214-302.]
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we shall then have
82’ =8z —a (adz+ Bdy +ydz)=pde,

8y =8y — B (ado+ B8y +y32) = p3B, (A"
82’ =8z — vy (adz+ B8y +ydz) =pdy,

assigning to 8", 8y’, 82’, the same meanings as in the fifth number, and observing that by the
nature of z”, y’, 2”’, the variations 8z"’, 8y"’, 82"/, are proportional to @, 3, v, so that

axfi=a (aawll+B8yll+fyszll),
8yII=B(a8$" +Bsyll +78zll),
8" =y (a8 + B8y +82").

o Ju T AOg S QY

v S 14

The formulae (A') give*

¥ s5=Pd 55— P35 (B)
o Q0 ok B0 " SBY

8’2—2 having the same meaning as in the fifth number: and these equations (B) contain the

whole theory of the developable pencils and of the caustic curves and surfaces. Putting them
under the form,

0=(p%2;— gz% )8w+(p%—8%§)8y+(p%—%)8z,

ol 5 3V &% 32V .o i

0=(p%fz——8—i%)8m+(p§—;—8—§:—v>8y+(p§%:— g—;% )82,

we find by eliminating the differentials, and attending to the relations (G), (H), the following
quadratic equationt ‘
0=p*V" —pS+ ", (D"
which may also be thus transformed,
0 = Pavl' _PSI + WII: (EI)

the symbols »”, V", W", 8, 8’, having the same meanings as in the fifth number. The form
(D’) serves to connect the distance p with the function V, and the form (E’) with W. By
either of these forms, we obtain in general two values of p, and therefore two points z”’, ¥, 2"/,
which are the only points wherein the ray can touch a caustic curve: and the locus of the

1

. . . % &% %
* 4 i 5 i e Y
[The first of (B’) is obtained by multiplying (A’) in order by 32" 3208’ daby’

fifth formula in the group following (K), together with (G) and (C).]
+ [Putting 8z=0 in the first two of (C'), and eliminating 8z, 8y, we obtain a quadratic equation in p. This,

when added to two others obtained by cyclical permutation, gives (D’). (E) follows immediately, by means
of (N).] \

HMP 16

and summing, using the
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122 II. FIRST SUPPLEMENT [8,9

points thus obtained, composes the two caustic surfaces. The joint equation of these surfaces, in
2", y", 2, may be found by eliminating «, 3, v, between the four following equations:

m'l=w,+a(awll+ﬂyll +(YZII),
yll =y’+B(aw1/ +Byll +fyZ"),
2" =z, + 'y(a‘z,u +,33/" +fyZ”),
0=(axll +Byll +'YZ,I)2'0" + (m" +Byll+(yzll) S" + W’II;
in which S/, W,”, are formed from S’, W”, by changing z, y, 2, to #,, y,, z,, these latter symbols
being abridged expressions for the following quantities,*

¥

z—a(ez+ By +yz)=2,
y—B(ex+ By +v2)=y,
z—y(az+By+vy2)=2,

and being considered as functions of e, 83, «y, determined by the conditions

0=az,+ By, + vz,
SW_ &% % 5%
e g2 Yt Y sasy
SW 8 2 & > (@)
BT ssgt Y g T sy
Oy " 8a Sy '8B8y = T o2
which give, after elimination,¥
b (P S Sw\OW &% SW S SW , & SW
¥ "’F(saz*a_ﬁz*a?)—a‘(s—aa 87+W%+mrm)'
W (S S S\SW /8% W & SW & W .
= (5ot 5+ 57) 38~ (sasp 5a + 85 38 T BBy By’ s

vam(Tha By, BAOW_ (S EW, Be ST B o)
" \8a2 " 832 " §y2) Sy Sady 8¢ ' 8Bdy 6B ' dy® dy)’

The equation of the caustic surfaces in , ¥, z, may also be deduced from the characteristic
function W, by eliminating a, 3, vy, between the equations (K) and the following

W' =0: : I)
or from the function ¥, by simply putting

1 '

9. The formule of the preceding number determine by differentiations and eliminations
alone, the equation of the two caustic surfaces; but when it is required to determine also the two
series of caustic curves contained on these two surfaces, or the two series of developable pencils

* [The point #,, ,, 2, is the foot of the perpendicular from the origin on the ray.]
t [By (G') the right-hand side of the first of (H') is equal to
V"%, (%,Daa+Y,Dap+2 Day),
where the D’s are cofactors in the determinant of the second order derivatives of ». But, by (G),

a:Biy=Dy,:Dyg: D,y,
and thus, by the first of (&),
%, Daa+Y,Dap+2 Dgy=0.]
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composed by the tangents to these curves, we must then have recourse to integration. The
differential equation in @, ¥, 2, which determines the developable pencils, may be found by
eliminating p between the formule marked (B’), and may be put under any one of the three

following forms:
Sv OV o, 8 8V

2, 8——83—,9 83,
S0 3V o

AR LA G L I
5" i 5

y 3 5w .sW

oy’ oz Ba 8z’

in which e, B, v, are considered as given functions of , y, z, deduced from the equations (C). The
developable pencils having been thus determined, by integrating the equations (L), the caustic
curves will be known, because they are the arétes de rebroussement of those pencils; the caustic
curves may also be found by the condition of being contained at once on the developable pencils
and on the caustic surfaces; or, finally, we may find the differential equations of these curves in
z", y", 2", without reference to the developable pencils, by combining with the formulze (F’) the
differential relation between a, B, v, which results from the equations (B’) and admits of being
put under any one of the three following forms:

st i
5 5538y 5y 358 ar)
¥5- sy 3‘2”,
8,8_1) 8,8'0 8,81;

8(1 ’ B g >
being changed to their expressions (P), or rather to the equivalent expressions,

v

8'-8—a—M8a + M,/38 + P, 8fy+(aw+,3y+'yz)8
&§=M%+Mw+M%+m+w+msl, (")
3B o8
&8 Pisa W98+ Py +(aa+ By +yz) 8 L
Sy ' ’ 10Y () L &y’
from which ez + By + vz will disappear, when substituted in the equations (M’), and in which
: oW 8% &% &
M8+ M/8B+ Py =55, (m,S AR R sm)
3 AR Y 4 8y 82y 82y ;
M/sa+ NSB+N By =g ~ (28 5055 5500 s +z,8m>, (0)
l I SW &% 8% 8%

16-2
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10. A remarkable transformation of the equations (B’), which determine, as we have seen
the developable pencils, and the caustic curves and surfaces, may be obtained in the following
manner. We have by (P),

, O W 8%w % &%
55 =8, ( o854+ g3+ 235, )
which gives M
, O SW o Ol iy Sy P A
5O =0 (o8 5a+v"3 g5 sat 88a8)

when we substitute for @, y, 2z, their expressions '’ +ep, ¥’ + Bp, 2’ +yp, and attend to the
relations (G). And by similar substitutions in the expressions for

8v i 81)
8 3’ and 8
the equations (B") become,*

SW & y 81) 7 Kl

OSW . . 0% & o Sv :
SW 8%y e O o Sv
ol Ml o A B

Now, if we conceive another system of rays, composed of the same kind of light, and oo
tained in the same medium, but all converging to or diverging from the one point, ", ¥, 2",
and represent by W'’ the characteristic function, which, in this new system, corresponds to W
in the old, we shall have

SWh. | g Ote PN . o
E Y - Sl A 7 i >
BWY. P o2y S0ty
B F ety T By
Wy 0% i, O o 00

o syt Y st 5 @
88W =28 é_'l_) +9'8 &%y "g &%

jt il TRl dhd 7 7 e s |

1 ™ 81) y' &y vz 8%

SwW’ S ¥ 8%y o 81) J
ot ndid 7 e e T kot 5

the equations which determine the developable pencils, and the caustic curves and surfaces,
may therefore be thus written:*

W . 8W' . (BW S OW! A W nOW )

* [See Appendix, Note 10, p. 477.]

)
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On Osculating Focal Systems.™

11. The equations which we have thus obtained, as transformations of the formule (B’), are
not only remarkable in an analytic view, but contain an interesting geometrical property of the
caustic surfaces. To explain this property, it is necessary to introduce the consideration of
osculating systems of rays. Let us therefore conceive a system, placed in the same medium,
and composed of the same kind of light, as that given system of rays which has W for its
characteristic function, but converging to or diverging from some one point X, ¥, Z; and let us
denote by W', the corresponding characteristic function of this new system, which becomes
equal to the W’ of the preceding number, when the point X, ¥, Z, coincides with the point
z",y", 2"’; then the general expression for this function W’ is

W= X3”+Y§2+zs”+0 (S

C being an arbitrary constant;+ and the system which thus has W’ for its characteristic function,
we shall call a focal system. The four arbitrary quantities, X, Y, Z, C, which enter into the
general expression (S’) for W', may be determined by the condition that for some given ray of
the given system, that is, for some given values of @, B, v, certain of the first terms of the
development of W’, according to the positive powers of the variations of e, B, v, may be equal
to the corresponding terms in the development of the given function W ; and when the form of
W' has been particularized by this condition, we shall call the corresponding system of rays an
osculating focal system. Now, if we suppose @, 3, v, to be changed into &+ 8, B + 88, v+ &,
we may express the altered values of W and W' by means of the following developments :

W +8W +38W +358W +&ec.,
W +8W' +38W' + ;15 8W' + &c.:

in which
sW =57 st SB+8W
B
3w 3w W
W = St o “‘+——‘¢>‘/9’l 'Yz vy“'+ 5 838 8/8+2838 8/387+28 S dyda,
&e.
The equations »
W=W, W =5W, (T")

will be satisfied independently of the ratios of the variations 8e, 83, 8y, if we take the point
X, ¥, Z, any where upon the given ray, and suppose,
‘ S v 8v
O=W-(Xg+¥sg+Zs).

* [See Appendix, Note 11, p. 478.]
t+ [The constant (' is added in order that it may be possible to make W'= W in (T").]
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There remains therefore one arbitrary constant of the focal system to be determined, and this is
to be done by equating the next terms of the developments, that is, by putting

EW'=8W, (U
and assigning some limiting ratios to the variations 8e, 83, 8y, consistent with the differential

equation
ada+ BB +ydy=0,

which results from a2+ 32 +¢2=1. And, from the nature of the functions W, W’, the equation
(U’) may be put under the following form :

SEw' W « i ROk a _Ba
0= (Csar = 5a8) (32~ 50) + 2 (58~ sams) (3= 5) (3’3 v%)
8eEW' W 5 ;
+(oor —3m) (-500) )
which shews that there are in general an infinite number of osculating focal systems corresponding

to any given ray, that is, an infinite number of different values for the arbitrary parameter which
enters into the expressions of

W' SRW &W
52’ SadR’ OB’

according to the infinite variety of values that we may assign to the ratio

vB— B3y
yda—ady’

but that the values of this arbitrary parameter, which do not change for an infinitely small
alteration in the ratio on which they depend, are determined by the following equations:

o0~ (e~ ) (b= ) + (sasa sam) (3850,

i r (W’)
(I B e O R )

which give, by ehmlnatlog’zwl SW\ (BW SW\ (B S\ X'

<W_W>(W‘8_ﬂz)‘(m 8a85>' (X')

The systems that correspond to these extreme values of the arbitrary parameter, we shall call
the extreme osculating focal systems; and since, by the nature of the functions W, W', the
equations (W’) are equivalent to the formule (R’), the foci of these extreme osculating systems
are contained upon the caustic surfaces: and the ratios of &e, 83, dy, in these extreme systems,
are the same as in the developable pencils.

12. Let us now consider the law of the variation of the focus of the osculating system, between
its limiting positions. This law is analytically expressed by the formula (U’); in which we may
geometrically interpret 8a, 88, 8y, by considering these infinitely small variations of e, B, v, as
arising in the passage from the given ray to an infinitely near ray of the system. The plane which
passes through the given ray, and is parallel to the infinitely near ray, may be called the plane
of osculation: since, if it be known, we shall know the ratios of ée, 63, 8y, and can determine, by
the formula (U’), the position of the focus of the osculating system. To simplify this determina-

tion, let us put
X==2+eR, Y=y, +BR, Z=z+yR, Y")
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X, Y, Z, being the coordinates of the focus, and #,, y,, z,, having the same meanings as in the
eighth number; the formula (U’) then becomes, by the nature of W’, and by the relations (G),
)

R+ 8 W=, ”+ 838/3+ s&y ("

Y+ 8y 88”

&% denoting 8

v

dad 5. T 8,88 53
The second member of this equation (Z’) vanishes when the ray passes through the origin;

and if we suppose the ray to coincide with the axis of z, we shall have also dy=0, and the

equation will become

M SEW 2 & | &8W Y N e

0=(Bigs+ ) 802+ 2(Bopgs + oga) 9008 + (R + ) 98 (A")
which expresses the dependence of the parameter R, on the ratio of 83 to d; R being now the
o8

distance from the origin, upon the ray, to the focus of the osculating system; and the ratio e
being the tangent of the angle ¢, comprised between the plane of xz, and the plane having for
equation,

%S "
o = tan. ¢, (B")

that is the plane of osculation. This plane becomes a tangent to one of the developable pencils,
when the distance R attains either of its extreme values, corresponding to the two points where
the ray touches the caustic surfaces, and determined by the equation,

@%+%9@%*%9*%m3£$) (€

which results by elimination from the two following:

AL O S R
0=(R%+§:—z‘;) (R % + %-g;)tan.¢.

Let Ry, R, be the two values of R, determined by the formula (C”), and ¢;, ¢, the two
corresponding values of the angle ¢, which may be deduced from the following equation:

% & 8EwW 8w &% 8% SEW W i P
(Ba” + 538 20 4’) (8a8,8 3 tan "’) (8 55 +5m tan 4’) (saz + sasptam "’)’ (&
then the general relation (A") between R and ¢, may be put under the following form:
R - .R1 A sin. (¢ o ¢1) - i
nen= G4’ ik

¢ being a coefficient which is independent of R and ¢, and is positive or negative according as
the quantity

s~ (saap)
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is positive or negative. This latter quantity is the same with that which we have before denoted
by v, because the remaining parts of the general expression for v/, namely
»_ 0% 8% 0% \2 &% &% &% \% &% &% &% \?
=525~ sa38) * 55~ (5953) * i ~ (5980
vanish when ¢=0, 8=0. If therefore " be positive, and if we denote by R, the greater of the
two values E;, Ry, that is the one nearer to positive infinity, we shall have by (F*’), for all other
values of R,

R>R,, R<R, (v'>0); (G")
so that in this case the foci of the osculating systems are all ranged upon that finite portion of
the ray which lies between the caustic surfaces. If, on the contrary, »"’ is negative, then the two
differences R — R, and R — R, are both positive or both negative, so that

>0, (<0 ")

in this case, therefore, the foci of the osculating systems are all contained upon the remainder of
the ray, that is upon the two indefinite portions which lie outside the former interval. And in
each case, the distances of the focus of any osculating system from the two points in which the
ray touches the two caustic surfaces, are proportional to the squares of the sines of the angles
[(multiplied by certain constant factors, & 1, as expressed by (F”"))]* which the plane of osculation
makes with the two tangent planes to the developable pencils. In the foregoing investigations we
have supposed that W, and its analogous function W', which we consider for symmetry as homo-
geneous, are put under the form of functions of the dimension zero; a supposition which permits
us to adopt the expressions (K) for the partial differentials

W' i -8WrieW

S’ 3B’ &y’
instead of the less simple and more general expressions given in the fourth number: but if we
had assigned any other value to the dimension ¢, in those more general expressions, we should
have deduced the same results respecting the law of osculation.

13. The function v", the sign of which distinguishes between the two preceding cases of
osculation, has this remarkable property, that it is independent of the direction of the coordinate
axes; in such a manner that if @, B, v, be, as before, the cosines of the angles which the ray
makes with three given rectangular axes, and if we denove by a’, 8, v/, the new values which these
cosines acquire when we refer the ray to three new rectangular axes, we shall have

8% &% ( ) )2 &% &% ( &% >2 &% &% ( ) )2

5263~ \saoB) T o o2 \588y) T oyi 52 \5y8e
% & % \2 W 2 \? &% & Sy T\ i
- s sg (swsw) * s sy (say) *oysa (oyse) © @)

v being, in the first member, a homogeneous function of @, B, v, and, in the second member of
o', B, v, of the first dimension. To demonstrate this theorem, let us observe that by the known
formulee for the transformation of coordinates, we may put

a=dA +B'B +v'C, o =ad+BA +yA",

B =aIAI + BIBI + fy'c”’ BI =aB +IBBI +(YBI', 1 (K”)
fy =aIAII +BIB/I +’y’0"’ 'Y’ =a0 +BGI + (yO”;
* [Hamilton noted the omission of these factors in his enunciation ; cf. Third Supplement, Art. 24, p. 275.]
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A,B,C A", B, C", A", B", C", being constant quantities of which only three are arbitrary, and
which satisfy the following conditions:
A 4+B* +C* =1, A* +A" +4" =1,
A% B O =L B4 B+ B =1
A" +B"® +0'" =1, C* +0% +0'? =1, } R
AA' +BB +0C' =0, AB+ A'B'+A"B"=0
A'A" +B'B"+C'C"=0, BC + B'C'+B"(0" =0,
A"A +B"B +0"C =0, CA+C'A'"+(C"'A" =0

This being laid down, we have, by (K'’), and by the nature of partial differentials,

o v , v W 811

5z I_-A +.A SB + A

S Sv , v " &

S—B’:BS + B 3/3 + B

v Sv 80
—O' 0’ O’"

=05t 5t

and, continuing the differentiations,

827} Aﬁsv A,gS’U Anzgvz_l_zAAr 8'0 +2AIAII 878’ +2A//A88§ .

52 Yo BabpB 58
zf;”z B +19~°-§ﬁ;’2 B a +2BB 882;5’/3+ °B'B" 82;; +2B"B SSZga
882"’ 0204 0 ;3'; Lo 8— #0075 Soyg +200" s,‘Zé’ +20"0 882;’ ,
8058’2—_8% - 4 (Bt B gagp B"aa o5) +4 (Bze* B 550t B 5g,)
+ 4" (Bogs + B 55, + B 53)
%?= B (og e 0'58-;?+ 0" Sizgey> +B (058;,9” o Sé; 0"822;’ sae)
(o0 ),

&% ___O(Ab‘v A % A—§2—1)—)+0’(A &% A,Sv Auaf-}—g)

5y o’ § T 5a38 T 7 Bady sasgt 4 st
hene ] , o% 1, 0%
; +0 (A 5a3; 4 554 s,,z)

and substituting these values for
& &y &% &% 8
Sa’ 8B &y &a'SB’ 8BSy’ Sy'da’’

HMP 17
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in the second member of (I'’), and reducing by the relations (K"), (L"), and (G),* we obtain the
function in the first member. This function »”, which composes the first member of (I'"), may
therefore be obtained by assigning to the axes of coordinates, any arbitrary but rectangular
directions, which may most facilitate the calculation. For example, when we are considering an
extraordinary system of rays in a one-axed crystal, we may take the axis of the crystal for the
axis of z, and then the function v will take the form

v =Nm2? + n?(a® + B?), (M)
the quantities m, n, being independent of &, B, v; and we find by differentiation,
' By o Sl Sv
vsTx—na, '”33,79_"’3’ ”3—,),‘"”2'7»
3 &% 8 &% 3 8% :
,)? 8712 it mz'yz ot ,nZBZ, ,,? %ﬁ T mz,yz % nzaz: ,'? 873 =m? (a2 o 132)1 (N ’)

aBh0. . AR I 5 R e Al e
Assp- "o gy T TPV ke ™

values which may be verified by the relations (G), and which give
28 (o 4 B2 2,4
,Un____mn (o :;/3 +'Yz)='”%: (0"

we may therefore conclude that whatever be the directions of the rectangular axes of coordinates
in an extraordinary system of this kind, the function »" is essentially positive, and is equal to
the square of the constant m, multiplied by the fourth power of the constant n, and divided by
the fourth power of v; v being the velocity of the extraordinary rays of some given colour, esti-
mated on the hypothesis of molecular emission, and the constants m, n, being the values which
v assumes when the ray becomes respectively parallel and perpendicular to the optical axis of the
crystal. Hence it follows, that in extraordinary systems of this kind, the foci of the osculating
systems, considered in the preceding number, are all comprised between the two points in which
the given ray touches the two caustic surfaces. It is evident that this result extends to the case
of ordinary systems of rays, to which the expressions (M"), (N"’), for v, and for its partial differ-
entials, may be adapted by making n = m, a change which gives, by (0"), v"" = m?

Principal Foci and Principal Rays.

14. Another important property of the function v", is that when, by the nature of the light
and of the medium, this function is essentially greater than zero, (which we have seen to be the
case for all ordinary systems of rays, and for the extraordinary systems produced by one-axed
crystals,) the intersection of the two caustic surfaces reduces itself in general to a finite number
of isolated points. To prove this theorem, let us resume the formule of the twelfth number,
and let us suppose that the ray which coincides with the axis of z, passes through a point of
intersection of the caustic surfaces, so that the two roots of the quadratic (C") are equal; then
the two values of tan. ¢, deduced from the quadratic (E”), will be equal also; and if we put this
quadratic under the form
E (tan. ¢p)*— B’ tan. ¢+ E"' =0, (PY)

* [The left-hand side of (I”) is an invariant for any function # (a, B, y) ; it is not necessary to use the equations
of homogeneity (G).]
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in which

B = s 5258 ~ 5238 52’
we must have
E"?—4EE" =0. Q")
Now the coefficients &, E’, E", are connected by the following relation:
&% ’ &% " &_ "
Esatl 8a8/3+E e 0; (R")

and it results from this relation, that if
& &% (™ )2 0
8o 832 (Sa B
the condition (Q'") cannot be satisfied without supposing separately *
E=0, E'=0, E"=0. (8")
We may therefore put
L S R R ol
82 P32 Tasp T MEadp 58 T Mep
# being a quantity which can be determined by substituting these values in the quadratic (C"');

for this substitution gives,
v/ (R+p)=0, p=—R,

R being the common value of the two equal roots. Hence it follows, that when R is made equal

to this value in the equation (A’’) for the focus of an osculating system, that is, when we place

this focus at the intersection of the caustic surfaces, the coefficients of a? 20ad3, 68% namely,
&  82W Syl (TN &  8*W

Bsatsa Bsusgtisasp Tsptsg

become separately = 0; and it is easy to prove that in like manner+t the coefficients of

(Sa—g&y)z, 2(&:—-387)( ——§ &), (8/3—5 87)2,

must separately vanish, in the more general equation (V") of the eleventh number; we have
therefore generally, for the intersection of the caustic surfaces, when the function v is essentially
> 0,1 the following equations:

* [Substituting from (R”) for £’ in (Q”), we obtain
M ., dWw\3 , (8% 8% %
(Z5=2 53) +42F (539~ (ai) ) =

(8") follows, since, by (Q"), EE" > 0.]

t [See Appendix, Note 12, p. 481.]

1 [If we draw the wave surface with the origin as centre, and having the equation »=1/v(a,B,y), or
» (2, y, 2)=1, the condition #” > 0 for a direction q, 3,y implies that this surface has positive Gaussian curvature
at the point where it is intersected by a radius vector drawn from the origin in that direction.]

17-2
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A A L A .
Sa . 8a®’ SadB  oadB’ 8B 8B’ )
KW SW  &W  8W 8w &W
Sady ~ dady’ BBdy 8By’ &P &’

of which the three latter result from the three former. These six equations, which are all
expressed by the one formula (U’) or (Z’), provided that we consider 8¢, 883, 8y, as independent,
will give in general a finite number of real or imaginary values for e, 3, v, R, and thus will
determine a finite number of isolated points, as the intersection of the caustic surfaces. We shall
call these points the Principal Foct; and the rays to which they belong, we shall call the Principal
Rays of the system. In general, whether »” be greater or less than zero, we may employ the
equations (T"’) to determine a finite number of isolated points and rays, to which we shall give
the same denominations. It results from the equations by which these points and rays are deter-
mined, that if the focus of an osculating system be placed at a principal focus of a given system,
the osculation of the second order will be most complete, since it will be independent of the
direction of the plane of osculation (B”’); the three first terms of the two developments in the
eleventh number, namely,

W +38W +3168*W,
W +W' +§82W/,

becoming equal, independently of the ratios of 8a, 88, 8y. The principal foci of an optical system
possess many other remarkable properties, some of which we shall indicate in the course of the
present supplement.

On Osculating Spheroids and Surfaces of Constant Action.*

15. To develope one of the properties of the principal foci and principal rays of an optical
system, we must introduce the consideration of osculating spheroids, and surfaces of constant
action. The characteristic function ¥, the mode of dependence of which upon the coordinates
z, v, 2, distinguishes any one system of rays from any other, having the same kind of light and
contained in the same medium, is equal, as we have seen, to the definite integral [vds, that is to
the action of the light, taken from the luminous origin of the system to the point z, y, z; the
word action being used in the same sense as in that known law, which is called the law of least
action. We may therefore give the name of surfaces of constant action, to that series of surfaces
for each of which the characteristic function V' is equal to some constant quantity, and which

have for their differential equation,

v dv o
8V=O--8 oz +8,88y+8 dz. U

In like manner, if we denote by V' the analogous characteristic function of one of those
focal systems considered in the eleventh number, which have their light of the same kind and
in the same medium, but converging towards or diverging from one focus; the general ex-
pression of this function V"’ will be V' = vp + const., p being the distance from the focus; and
the differential equation

8.vp=0=28V", V")

* [See Appendix, Note 11, p. 478.]

www.rcin.org.pl



15] II. FIRST SUPPLEMENT 133

will represent a series of surfaces, which are analogous to the surfaces (U”). In the case of
ordinary light, these surfaces (V') are spheres, and they may be called in general, spheroids*
of constant action; the focus of the focal system being called the centre of the spheroid. The
general equation of such a spheroid contains four arbitrary constants, of which three are the
coordinates of the centre; and if we determine these four constants, by the condition that for
some given values of z, y, 2, that is for some given point of a given system, certain first terms
of the development

V'=8V"+ 48V’ + &e.
may be equal to the corresponding terms of the development

V438V + 48V + &e.,

the spheroid thus determined will be an osculating spheroid, to the surface of constant action
which passes through the given point of the system. The conditions

V'=V, 8V'=8YV, (W")

may be satisfied independently of the ratios of 8z, 8y, 8z, by taking the centre of the spheroid
any where upon the given ray, that is, by establishing between the three coordinates of this
centre the two equations of the ray, and by assigning a proper value to the other arbitrary
constant ; there still remains therefore, after satisfying the conditions (W), an arbitrary para-
meter depending on the position of the centre, which we may determine by the equation,

82171=82‘V" (X”)

assigning any arbitrary ratios to the three variations 8z, 8y, 8z, or rather any value to the

one ratio
y8z — adz

v8y — 8oz’
because, by the relations (H),

Al 3 a2V @ B &2V gd\"
2 -y v LR L PN W Bt o y IR PRI uet
#V'="g (8.'0 73) +2axsy(‘3‘” 782) (ay sz)+8y, (Sy 78z>,
so that the condition (X'’) may be thus written:

(B ) (n0- 20 (VL T (202 1) (32 0}

A4 B or
o By)(su-—sz) (¥")
or, by a further transformation,

o_(l g::; %::)(Sw 8)2+2(f—1).82—2§-8—S%)(Sw—%Sz)(Sy—gSz)

1 8% &7 HeY "
p being here the distance of the point z, 7, z, upon the ray, beyond the centre of the spheroid. This
equation (Z'’) contains the law of osculation of the spheroid, since it expresses the dependence of
the distance p on the direction of the plane passing through the ray and through the consecutive

* [They are not, of course, in general quadrics.]
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point @ + 8z, y+ 8y, z + 82. We shall call this plane the plane of osculation of the spheroid; and
we see, by comparing (Z'") with (C’), that the extreme values of p correspond to those directions
of the plane of osculation in which it touches the developable pencils; while the corresponding
extreme positions of the centre of the osculating spheroid, are contained upon the caustic surfaces.
And when the ray is one of those principal rays determined in the preceding number, it is easy
to prove that the equation (Z") is satisfied independently of the ratios of the differentials, if we
assign to p the value which belongs to the principal focus; the principal foci are therefore the
centres of spheroids, which have complete contact of the second order with the surfaces of constant
action. The equations which express this property of the principal foci are

160 8V 18 8V 18 87
p & — 822’ p&adB Sxldy’ pRE Oy’

AIII
1 BV 18 BV 18w 8V 2
pdady 8x8z’ p&BSy 8ydz’ pdyt 8227
of which any three include the rest; they may also be thus written,
P @A S i, o) NV il O
7St = R el 7 7 gl =
(B")

SAWELLL (GRS RPN LA LRI

Szdy  Sxdy’ Sydz 8ydz’ 828 &zda’
and may be summed up in the one equation (X’), by considering 8z, 8y, 8z, as independent. With
respect to those rays which are not the principal rays of the system, and for which the equation
(X"") can only be satisfied by assigning some particular value to the ratio

ydx —adz

v8y— B8z’
that is, some particular position to the plane of osculation of the spheroid, we find, by reasonings
similar to those of the twelfth number, the following law of osculation:

1l

pL_p sin. (Y — Y)\2 i
1_1=§(Sin-(‘1’2"\l"))' (C")
P P2

p1, p2, being the extreme values of p; yry, Vs, the corresponding values of the angle 4, comprised
between the plane of osculation and any fixed plane that passes through the ray; and the
coefficient ¢ being independent of p and 4, and having the same meaning as before. The formula
(C"") may be written in the following manner:

e—p_to (sin. § s \h))z. , ")

Pa—p P2 j

sin. (Y2 — )

in this kind of osculation, therefore, as in the former, the distances of the variable focus or centre
from the points where the ray touches the two caustic surfaces, are proportional to the squares
of the sines of the angles [(multiplied respectively by ¢ps, p2)]* which the plane of osculation makes
with the tangent planes to the developable pencils.

* [See footnote to p. 128.]

www.rcin.org.pl



16,17] II. FIRST SUPPLEMENT 135

On Osculating Focal Reflectors or Refractors.

16. Besides the two preceding kinds of osculation, it is interesting to consider a third kind,
which exists between the last reflecting or refracting surface, and certain other surfaces, which
would have reflected or refracted to or from one focus the rays of the last incident system, and
which we shall therefore call focal reflectors or refractors. Let Vi, V,, denote, as in the sixth
number, any two successive forms of the characteristic function V, of which we shall suppose
that ¥, belongs to the system in its given state, and V; to the same system before its last reflexion
or refraction; then, by the number cited, the equation V; — V3 =0, will be a form for the equation
of the reflector or refractor, at which the state of the system was last changed, and which we
shall consider as known. Let V3’ be the form which ¥, would have, if the rays of the final system
all converged to or diverged from one focus, this form being such as was assigned in the fifteenth
number, and depending only on the nature of the light and of the final medium, but involving
four arbitrary constants, of which three are the coordinates of the focus; then it is easy to prove
that the equation with four arbitrary constants, of the focal surface, which would have reflected
or refracted to or from one focus the rays of the last incident system, is

Vi— Vi =0. (E"")

We may determine the four arbitrary constants of V3’ in this equation, by the condition that
the focal reflector or refractor shall touch the given reflector or refractor at a given point, and
osculate in a given direction. The condition of contact, of the first order, is expressed by the
equations

V2 - V2,) 8V2 g 8V2’) (F”’)
and may be satisfied by establishing between the three coordinates of the focus the two equations
of the ray, and by assigning a proper value to the remaining arbitrary constant; and the position
of the focus upon the given ray, may be deterniined by the condition of osculation in the given
direction, which is expressed by the equation

82V, =8Vy, (G'")

assigning the given ratios to the variations 8z, 8y, 8z. This equation (G'”’) being the same with
that marked (X’’) in the foregoing number, we can deduce from it the same consequences; the
osculation therefore between the focal surface (E’”’) and the given reflector or refractor, follows
the same law as the osculation between the spheroid of constant action (V*’) and the given surface
(U") for which the function ¥V is constant; in such a manner that the focus of the focal reflector
or refractor coincides with the centre of the spheroid, if the point of contact, and the plane of
osculation be the same. The distances therefore of the focus of the focal reflector or refractor
from the points in which the ray touches the two caustic surfaces, are proportional to the squares
of the sines of the angles [(multiplied by certain constant factors, as in (D”))]* which the plane of
osculation makes with the tangent planes to the two developable pencils. And when the ray is
one of those principal rays, assigned in the fourteenth number, (the focus of the focal surface
being at the principal focus corresponding,) then the contact of the second order is most complete,
and the two reflectors or refractors osculate to each other in all directions.

On Foci by I/-’mjection, and Virtual Focu.

17. Another kind of focus, of which the law is similar, though not the same, may be deduced
in the following manner. If we conceive a plane passing through a given ray of a given optical
* [See footnote to p. 128.]
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system, and through a point infinitely near to this given ray; the ray which passes through the
near point may be projected on the plane, and the intersection of its projection with the given
ray may be called a focus by projection. Suppose, to simplify the first calculations, that the
given ray is the axis of z and that the infinitely near point is contained in the plane of zy; its
coordinates in this plane being denoted by &z, 8y, and the cosines of the angles which the near
ray makes with the axes of # and y, being 8e, 83: then, if we denote the general coordinates
of this near ray by z,,v,, z,, its equations may be thus written,

&y = oz + z,,Ba, Y= 8.'/ i+ z,,8,8, (H”,)

and the connexions between 8z, 8y, da, 83, will be expressed by the two following conditions :
2V 3V 8 v &%

s 0t 55y %= 5@ %0t asp %P o

eV eV 8 v 8%
which are obtained by differentiating (C) and making 8z=0, 8y =0. The equation of the plane
on which the near ray (H'”’) is to be projected, may be put under the form

Y %,
@, Oz’ it 2

and if p be the vertical ordinate of the focus by projection, the equation of the projecting plane is
Yn— 8y B Z,,SB . 33/ +P. Js (L’")

z,—0x—2z,0a Ox+p.oa’

p being determined by the condition that the two planes (K"”), (I'"’) shall be perpendicular to
each other, which gives

P oa? + Oy
In general, whatever arbitrary position we assign to the rectangular axes, if we represent by

z+ap, y+ Bp, z+qp, the coordinates of the focus by projection, those of the given point being
@, 1, z, and those of the near point  + 8z, y + 8y, z + 82, we shall find, by a similar process,

_ 1 _dada’+ 888y + dy82' dadz + 6B8y + 8ydz (N

p- &%+ Syt + 022 P+ oy + 02° — (adz + B Oy + ydz)*’

8«', 8y', 62', having the same meanings as in the fifth number.* And since the equations (C)
give, by differentiation and elimination,

LR )

sroan (80 8 B0\ BV (8 BV & BV
b= (5 33”&,2)8 G i 7l 737k 8a8ry 82)
it LB B\ 8V (8 5V 8 sv
o ( T ) Sy (sams% tmty 8/88 ) 1o
v (% 8% 82 SV (&% SV &% 3V S 8V

oy <a2+5,82 )881, (msﬁ%*agsf%;*s_yz 8_87>’

* [We have pa=8z+X\ (a+8a)+p(B82—y8y), ete., A, p being undetermined. Multiplying by dz, 8y, 8z and
summing, and multiplying by a, B, y and summing, we obtain
p2adr=30822+ 208z (a+0a), p=3adr+A],
from which (N"”) follows by elimination of A.]
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&% 8”)8217 (8,82; 4 dv OV 0] SV)

and therefore
o (3ads + 8BSy + 8y8z) = (az+a,sz St R ).

we find, finally, (RB'1)

7 , 4 8V , v 8V, dv 3V v (8% , v 8%\ 17
—(8w2+8y’+8 )= et Y 5t i s (37;2"5/32 72)8 V. Q")
" being the same function as before. It results from this equation (Q"’) or from (M"’) and (I")
that when the given ray is taken for the axis of z we shall have
v’ o*g. 'V My N a0y Y SR
i (8058;8 8xdy S,—B—ZW) (oog: T+ (8:18,8 dxdy 8o 8 2)( in: TP
2y (8BV  8V\ 8V (8% % ”
+{W(W+W)—m<8az SBZ)} sin, II cos. II, (R
if we put 8y = 8z tan. II, so that II denotes the angle which the plane of projection makes with
the plane of zz. Differentiating (R"’) for II only, we find that the values of this angle which
correspond to the extreme positions of the focus by projection are determined by the condition
(8%8217 &% 821 &% (8217 8“"V) eV (82@; 8%)‘

ws—yz—gzw)tan.2n=8—asﬁ _8—.7-72_-*—@2 _Sm—By W-Fs—ﬁz {

the planes of extreme projection, that is, the planes which correspond to the extreme values of p,
are therefore perpendicular to each other; and if we suppose them taken for the planes of zz, yz,
and denote by py, ps, the corresponding values of p, we shall have
S DY BT BTy BV (@, 2
T 8adB\ 62 T 8y? dwdy \da? * 882/’
v_”_ 32y 8BV  Fv &V 9’_’ o A R e A
3adB8z8y &B2 da®’ = 8adB Sudy T 8a® 5y’
and finally the dependence of p upon II, that is, the law of the focus by projection will be expressed
by the following formula :

(SIII)

(T III)

by Bt Biliors

2 pl(cos. II) +p2(s1n. LI i
When the given ray is one of those principal rays determined in the foregoing numbers, the

angle II disappears from this formula, and all the foci by projection coincide in the principal

focus, the condition (S") being at the same time identically satisfied, and failing to determine

the planes of extreme projection: but in general these planes can be determined by that

condition, and have a remarkable connexion with the tangent planes to the developable pencils,

which can be deduced from the equation (L’) of the ninth number,
00 8V b 8V
8 8 5 =0 58 o e

For, when we suppose 8z=0, 8y =8a; tan. I, we find from this equation (L') the following
quadratic equation to determine the two values of tan, II corresponding to the tangent planes
of the two developable pencils :

2 2 2 82 2 2 2 2 22 &2 2 2
v 8V &% 8V (8v8V 808V>(t my + (81}817 8v8V)ta.H:

= 8a28ady ~ 8adpP 8a?

dadB 82 B2 dwdy

da? oy B3 da? Y
( III)

HMP 3 18
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and if the first condition (T""") be satisfied, that is, if the planes of extreme projection be taken
for the planes of @z, yz, the product of the two values of tan. II determined by this quadratic will
be unity; the tangent planes to the developable pencils are therefore symmetrically situated
with respect to the planes of extreme projection, the bisectors of the angles formed by the one
pair of planes bisecting also the angles of the other pair. The tangent planes to the developable
pencils are not always perpendicular to each other, and therefore are not always fit to be taken
for rectangular coordinate planes, however remarkable they may be in other respects; but the
planes of extreme projection, determined in the present number, possess this important property,
and may be considered as furnishing for any given straight ray of an optical system, ordinary or
extraordinary, (except the principal rays,) two natural coordinate planes, which contain the given
ray, and are perpendicular to each other. And whenever the developable pencils are also
perpendicular to each other, the tangent planes to these pencils will coincide with the planes of
extreme projection, and the extreme foci by projection will be contained upon the caustic surfaces.
This perpendicularity of the developable pencils requires that there should exist a series of
surfaces perpendicular to the rays of the system, and having for their differential equation

adz+ B8y +ydz=0; | (W)

and reciprocally when this equation is integrable, the perpendicularity here spoken of, exists, and
we shall say that the system is rectangular. This condition is satisfied in the case of ordinary
systems, because, for such systems, the differential equation (U’) of the surfaces of constant
action becomes
8V =m(adz + Bdy+vdz)=0,

and consequently coincides with the equation (W), m having the same meaning as in the
thirteenth number ; the rays of an ordinary system are therefore perpendicular to the surfaces
for which the function V is constant, and their planes of extreme projection are touched by the
developable pencils. We may also remark that for such systems ¢=1, and the osculating foci
coincide with the foci by projection.

18. There is yet another kind of foci which we shall call Virtual Foci,* and which it may be
interesting to consider, because they conduct to the same pair of natural coordinate planes as
those which we have deduced in the foregoing number, and because they furnish new applications
of the characteristic functions of the system. By a virtual focus of a given ray, we shall understand
a point in which it is nearest to an infinitely near ray of the system. To explain this more fully,
let us observe, that if we establish any arbitrary relation between e, B, v, distinct from the
relation a? + 82 + o> =1, we shall obtain some corresponding relation between

LA A1 4
Sz’ &y’ &’
by eliminating @, 3, v, between the equations (C) ; the result of this elimination, which we may

represent by
7 (SV 8V SV) i

'S_w' ’ S_y' ’ g Evn O;
F denoting an arbitrary function, will be the equation of a pencil, that is of a surface of right
lines, composed by rays of the system : and unless this surface be one of the developable pencils
determined in the ninth number, the rays of which it is composed will not intersect consecutively,
* [See also p. 33.]

www.rcin.org.pl



18] II. FIRST SUPPLEMENT 139

so that there will be only a virtual intersection, or nearest approach, even between two infinitely
near rays. To find the coordinates of this virtual intersection, we are to seek the minimum of
8%+ 8y2 + 822, or of 8a'% + 8y’ + 82’2, corresponding to given values of &, B, v, 8¢, 88, &y. Now if
we put » =axz + By + vz, we shall have

z =z + ar Y=Yt Br, R R ) } (X"')

Sx=28x,+8.ar, Sy=38y,+8.Br, 8z2=2082+38.yr,
and therefore
8z’ =rda+ 8z, — a(adz, + B3y, + v382),
Sy’ =13p + 8y, — B (adx, + Bdy, + v8z), (Y™
8z’ =rdy + 8z, — (¢dz, + By, + v8z),
@,, Y,, 2,, and 82', 8y', 82, having the same meaﬁings as before; and the condition of minimum

gives
dadw, + 888y, + 8y oz

A 7 JF - il
which may also be thus written
0=38adz’ + 06B8y" + dydz' = dadx + 6B 8y + Sy dz: (A%
or, by the foregoing number,
82y v %\, ,81) OV , o 0v 8V ,8v 8V
(872+8132 W)av g T g (BY)

Another transformation of this condition, which shall involve the function W instead of V,
may be obtained in the following manner. Let W, be the form which the characteristic function W
would have, for a system of rays of the same light and in the same medium, but all converging
towards or diverging from the one point #,, y,, 2,; so that, by the theory already given,

SW 8 v 8 v 8 &%
SW,_ 8w &% 8%y
8—_8§_w18W+y’8 62 + 8868 ) (04)
sW, 0% 8%y 8%y
SW—E,S&ZTPY-‘l-y’SSB—&Y-FZ'SW H
then, by differentiating the equations (G'), and attending to the formule (Y"’), we find
8 W—-Ww) &
(T_)— g (82" — r8a)+8 SB(Sy r83)+8 8 (82" —rdy),
8(W W) &%
8/8 S 88(8‘” _7'8“)'*‘ 832 (By r86)+8ﬁ8 (85 —7‘8'7) { (D4)
8 W-Ww,
( 5 e M (8" —r8a) + 0 BS 5y’ — r8/3)+ (Yz (52’ —r8y),
0=c (82" —réa)+ B8 (8y’ —r8B) + v (82" —rdy); J
§ 18-2
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and therefore

" &% &% ) (W— W,)
V"’ (8’ — rda)= ( 8,82+8 )B—ST— \
82?)88<W W,)+ 8% SS(W—W,)+ 8(W W)}
il {&72 oa Sadp B 8a8ry Oy
W 32y v 8%\ S(W-TW,
o (5’ —r8B) = (Sa’; 8/32+—)8———-( = )
4
SSW=T) 8 s(W-T) & SS(W—W,)} } (B
{80&8,8 o 032 o8B o338y oy ;
JLel 82y 8%\ S(W-TW,
v (8z—r37)=(&7,‘+8—’82+p)8—-—( 5 )
{ 8‘é‘(W—W,)_*_ 8'o‘(W W) 8% (8(W— W)} )
~asy 8a T Y T T e
By these equations the condition (A?%) may be transformed into the following :
V'@ 88+ b+ (o + g+ 5.a) 8 (W = W)
8v (8 (W — W) Sv S(W— W,) v S (W—-TW)
il >l ~mat ncs 7 b T g Ul S (8

To find the geometrical law expressed by this last formula, let us take the given ray for the axis
of 2, and let us choose the planes of #z, yz, in such a manner that the bisectors of their angles
shall bisect also the angles formed by the developable pencils; we shall then have, by the
fourteenth number, Z = E", that is,

2y (BW &8W\ 8W (8 K &
a3 (58 * 382) = 5t 5 5%)” ot
and the formula (F*) will become
DO IR, o0, 05,k 8%@7) Sa? Sy FW . SfvBW\ 8 e
oo (aa 58 8aB ~ 5B2 8a? ) 8a* + 52 (Sa 5B %adB ~ Sa? 5BF ) ey R G
or finally*
r=7;(cos. w)?+ 7y (sin. ®)? (5]

when we put
7 By W . 8% AW . ol i - AW i BN GO B, 5 &
N SaSEEaiE 3P 3 UV Sabp Balp S . PAmtetane: (KD
o being the angle which the plane passing through the given ray and parallel to the near ray
makes with the plane of #z; and ry, 7, being the extreme values of 7.

The equation (I*) expresses in a simple manner the law of the virtual focus. It shews that
the extreme positions of that focus correspond to the same pair of natural coordinate planes,t

* [“Hamilton’s equation”; cf. p. 33, where the result is established for a normal congruence.]

+ [These planes are now generally known as “ principal planes,” and the extreme positions of the virtual foci
as “limit points”; cf. Salmon, Analytic Geometry of Three Dimensions, vol. 2 (1915), p. 60, where, however,
Hamilton’s definition of virtual focus is stated incorrectly. The geometrical results of 17., 18. may be deduced
directly from (I"”), the coefficients being replaced by arbitrary constants, and are thus made applicable to a general
rectilinear congruence without reference to its optical origin.]
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passing through the given ray, which we considered in the preceding number, and which we may
therefore call the planes of extreme wirtual foci, as well as the planes of extreme projection.
Indeed, when the given ray is one of the principal rays of the system, assigned in the fourteenth
number, then all the virtual foci, as well as all the other foci hitherto considered, coincide in the
principal focus: and the planes of extreme virtual foci become, in this case, indeterminate. How-
ever, we shall shew that their place is then supplied by another remarkable pair of planes, which
pass through the principal ray, and complete the system of natural coordinates: but for this
purpose it is necessary to enter briefly on the theory of aberration from a principal focus, which
we shall do in the following number.

Aberrations from a Principal Focus.

19. If we conceive a plane cutting a given ray perpendicularly at a given point, this plane
will be nearly perpendicular to the near rays, and will cut those rays in points near to the given
point : the distances of these near points from the given point, are the lateral aberrations of the
near rays, and the cutting plane may be called the plane of aberration. Let a, y, z, be the co-
ordinates of the given point, and @+ A=, y + Ay, 2+ Az, the coordinates of the point in which
a near ray is cut by the plane of aberration, A being here the mark of a finite difference; we
shall have the condition

0=alz + BAy + yAz, (1%

, B, v, being the cosines of the angles which the given ray makes with the axes of @,, 2: and if
we determine the successive differentials of =, y, z, with reference to «, 3, v, by differentiating
the equations (C) or (K) as if &, 3, , were three independent variables, and by putting

0=adz + B8y + vz,

0=adz+ B8% + y&%, (M*)
0=a8%+ B&% + 8%,
&e.

we shall have
Az = [8z] + } [8%] + 755 [8%] + &e.,
Ay =[8y] +} [y] + 575 [8%y] +&e, (N9
Az = [82] + § [8%] + 315 [8%] + &c.,

the expressions [8z], [8%], &e., being formed from &z, 8%, &c., by changing the differentials 8a,

88, 8y, to the finite differences Ae, AB, Ay: and finally, the lateral aberration of the near ray
will have for expression

V(Az) + (Ay) + (Az)%

Let us apply this general theory to the case when the ray from which the aberrations are
measured, is a principal ray of the system: and in order to simplify the calculations, let us take
this ray for the axis of z, and the principal focus for origin. Then, if we neglect the squares and
products of Aa, AB, we find by the preceding theory,

Az=pAa, Ay=pAB, As=0, (0"
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p being the distance from the principal focus to the plane of aberration ; if, therefore, we suppose
this distance p to be unity, and represent by a, b, the corresponding values of Ae, AB, we shall have,
Aa=a, UAB=b} (B%)
and if we take the principal focus for origin, the coordinates of the point in which the near ray
intersects the plane of aberration will be a, b, 1. If now we conceive another plane of aberration,
perpendicular to the principal ray and passing through the principal focus, we shall have, for
this new plane, p =0, and the expressions (O?%) for the components of aberration vanish: in this
case, therefore, it is necessary to carry the approximation farther, and take account of terms of
the second dimension, in the variations of e, B, 4. For this purpose we may differentiate twice
successively the equations (K), as if @, B, vy, were independent, making after the differentiations,
z, y, z, 8w, 8y, 8z, 8%z, each =0, and changing &, 88, &y, 8%z, 8%y, to Ae, AB, Ay, 2Az, 2Ay. In

this manner we find
w 2 2
3 [82 8 ] gy ot

da da? da 8/-?
yo 3%y 8%y @
#[5 | = savs be+ 5 2
in which we may put o e
sW BEW » M
[32 8a]= S A2 pabt S e
SW EwW EwW T
[82 86] sttt 5 0

changing Ae, AB, to their expressions (P%), and observing that the general relation
(@+8a)+(B+ AR+ (y+Ay) =+ B+ =1,

gives here 0=2Aq + (Aa)®+ (AB) + (Ay)%

so that the terms Aa Ay, ABAy, Aq? in the developments of

%) [

may be neglected, as being of the third dimension. And if, for further abridgment, we put , ¥,
instead of Az, Ay, in the equations (Q*) to denote the coordinates of the intersection of the near
ray with the plane of zy, that is, with the plane of aberration passing through the principal
focus, and denote the partial differential coefficients

W . W LW, PV

8B ' 8a2dB’ SadP?’ OB%’

by 4, B, C, D, we shall have

2 32 4y 87879 — §(4a*+2Bab+ 00, | e
””;;_B%Jf & _ 1(Ba?+2Cab + D), J
and by elimination,
20"z = ( gﬁ’; 388;B)a2+2( gﬂ’; oaag’ﬂ)am (Ggé’z 1)8?:—8”/3) B, -
%"y = (B(%;Z il si;,s) a+2(0 2t B 8"3) gb (Dga’; 08228/3) B,

" having the same meaning as before.
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Natural Axes of a System.*

20. The equations (S*%), or (T*), express the connexion between the coordinates @, y, of the
intersection of a near ray with the plane of aberration passing through the principal focus, and
the coordinates a, b, of the intersection of the same near ray with another plane of aberration,
parallel to the former, and at a distance from it equal to unity: they serve therefore to resolve
the questions that have reference to this connexion. The most interesting questions of this
kind, are those which relate to the comparative condensation of the near rays, in crossing the
two planes of aberration. Let us therefore consider an infinitely small rectangle 8a.8b on the
plane of a, b, having for the coordinates of its four corners,

Ist @, b; IInd a+38a, b; IIId a, b+8b; IVth a+da, b+8b:

the rays which pass inside this little rectangle, will, at the plane of @y, be diffused over a little
parallelogram, of which the coordinates of the corners are

. oz 8y o . dw 8y
Ist @, y; IInda:+§.-’8a,y+$8a, IIIda:+8b8b y+5 8b;
IVth @ + = 8a + 57 8b, y + 5/ 8a + g5 8b:

the partial differential coefficients
b da By 8y
éa’ &b’ oa’ &b’
being obtained by differentiating the equations (S*), or (T%). The area of the parallelogram on

the plane of ay is

i(s_‘”§l/_§f8_-'/>8 8b;

its ratio to the rectangle 8a b, is therefore expressed by
: (Sw Sy Ow 83/)

and by the equations (T%), or (S%),

8086 8 da= v’ (U9

M" =(Aa + Bb)(Ca + Db) - (Ba + Cb)2. (V)

The smaller the quantity M” is, the more will the rays which pass vhrough the little
rectangle 8adb, be condensed at the principal focus; so that the curves upon the plane of a, b,
which have for equation

if we put

M" = const., (W%

may be called lines of uniform condensation: and we see, by (V*), that these curves will be
ellipses or hyperbolas, according as N’ is positive or negative, if we put for abridgment,

4(B*— AC)(C* - BD)—(AD—-BOR=N". (X%)

These elliptic or hyperbolic curves are all concentric and similar, and their axes are all contained
on the same pair of indefinite right lines, which are perpendicular to each other and to the

* [Cf. p. 85.]
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given ray; and the planes which pass through the ray, and through these axes of the lines (W*),
will coincide with the planes of @z, yz, if the following condition be satisfied :

AD—BC=0, (Y%

that is, . .
3 3 3

SWSW SW SW )

8a® 8B° 828R 8adp?’

This condition is independent of the magnitude of the unit of distance, by which we have
supposed the two planes of aberration to be separated: there are therefore an infinite number
of systems of ellipses or hyperbolas, similar to the system (W#), and all having their axes
contained in the same pair of rectangular planes, which pass through the principal ray: and it
is natural to take these planes for the planes of @z, yz, the plane of 2y being still the same plane
of aberration as before. And thus, the intersections of these three rectangular planes, may be
considered as furnishing, in general, three natural azes of an optical system, which are perpen-
dicular each to each, and cross in the principal focus. These natural axes possess many other
properties, of which we hope to treat hereafter; but in the foregoing remarks we have only
aimed to shew, by some selected instances, the possibility of deducing the geometrical properties
of optical systems of rays, from the fundamental formula (A),

8/0ds=§%8w+§%8y+§%82,
with the assistance of the characteristic function ¥, and of the connected function W: and
believing that this object has been accomplished, we shall conclude the present Supplement.
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